Johnson, Ronald C.; Birdwell, Justin E.; Brownfield, Michael E.; Mercier, Tracey J.
2015-01-01
The Eocene Green River Formation was deposited in two large Eocene saline lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. Here we will discuss mass-movement deposits in just the Piceance Basin part of Lake Uinta.
Mercier, Tracey J.; Johnson, Ronald C.
2012-01-01
The in-place oil shale resources in the Eocene Green River Formation of the Piceance Basin of western Colorado and the Uinta Basin of western Colorado and eastern Utah are estimated at 1.53 trillion barrels and 1.32 trillion barrels, respectively. The oil shale strata were deposited in a single large saline lake, Lake Uinta, that covered both basins and the intervening Douglas Creek arch, an area of comparatively low rates of subsidence throughout the history of Lake Uinta. Although the Green River Formation is largely eroded for about a 20-mile area along the crest of the arch, the oil shale interval is similar in both basins, and 17 out of 18 of the assessed oil shale zones are common to both basins. Assessment maps for these 17 zones are combined so that the overall distribution of oil shale over the entire extent of Lake Uinta can be studied. The combined maps show that throughout most of the history of Lake Uinta, the richest oil shale was deposited in the depocenter in the north-central part of the Piceance Basin and in the northeast corner of the Uinta Basin where it is closest to the Piceance Basin, which is the only area of the Uinta Basin where all of the rich and lean oil shale zones, originally defined in the Piceance Basin, can be identified. Both the oil shale and saline mineral depocenter in the Piceance Basin and the richest oil shale area in the Uinta Basin were in areas with comparatively low rates of subsidence during Lake Uinta time, but both areas had low rates of clastic influx. Limiting clastic influx rather than maximizing subsidence appears to have been the most important factor in producing rich oil shale.
Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.
2016-05-02
The recent successful development of a tight oil play in the Eocene-age informal Uteland Butte member of the lacustrine Green River Formation in the Uinta Basin, Utah, using modern horizontal drilling and hydraulic fracturing techniques has spurred a renewed interest in the tight oil potential of lacustrine rocks. The Green River Formation was deposited by two large lakes, Lake Uinta in the Uinta and Piceance Basins and Lake Gosiute in the Greater Green River Basin. These three basins contain the world’s largest in-place oil shale resources with recent estimates of 1.53 trillion, 1.33 trillion, and 1.44 trillion barrels of oil in place in the Piceance, Uinta, and Greater Green River Basins, respectively. The Uteland Butte member was deposited during an early freshwater stage of the lake in the Uinta Basin prior to deposition of the assessed oil shale intervals. This report only presents information on the early freshwater interval and overlying brackish-water interval in all three basins because these intervals are most likely to have tight oil potential. Burial histories of the three basins were reconstructed to study (1) variations in subsidence and lake development, and (2) post deposition burial that led to the development of a petroleum system in only the Uinta Basin. The Uteland Butte member is a successful tight oil play because it is thermally mature for hydrocarbon generation and contains organic-rich shale, brittle carbonate, and porous dolomite. Abnormally high pressure in parts of the Uteland Butte is also important to production. Variations in organic richness of the Uteland Butte were studied using Fischer assay analysis from oil shale assessments, and pressures were studied using drill-stem tests. Freshwater lacustrine intervals in the Piceance and Greater Green River Basins are immature for hydrocarbon generation and contain much less carbonate than the Uteland Butte member. The brackish-water interval in the Uinta Basin is thermally mature for hydrocarbon generation but is clay-rich and contains little carbonate, and thus is a poor prospect for tight oil development.
2008-11-17
shale oil.7 The Mahogany zone can reach 200 feet in thickness in the Uinta Basin of Utah, and thus could represent a technical potential of producing...undiscovered technically recoverable conventional oil and natural gas liquids are estimated to underlie the Uinta -Piceance Basin of Utah-Colorado and...River formation over maps of access categories prepared for the EPCA inventory (Figure 6). The Uinta basin in Utah is shown as being subject to
Johnson, Ronald C.; Mercier, Tracey J.; Brownfield, Michael E.; Self, Jesse G.
2010-01-01
Using a geology-based assessment methodology, the U.S. Geological Survey estimated a total of 1.32 trillion barrels of oil in place in 18 oil shale zones in the Eocene Green River Formation in the Uinta Basin, Utah and Colorado.
Pitman, Janet K.; Fouch, T.D.; Goldhaber, M.B.
1982-01-01
The Douglas Creek Member of the Tertiary Green River Formation underlies much of the Uinta basin, Utah, and contains large volumes of oil and gas trapped in a complex of fractured low-permeability sandstone reservoirs. In the SE part of the basin at Pariette Bench, the Eocene Douglas Creek Member is a thick sequence of fine- grained alluvial sandstone complexly intercalated with lacustrine claystone and carbonate rock. Sediments were deposited in a subsiding intermontane basin along the shallow fluctuating margin of ancient Lake Uinta. Although the Uinta basin has undergone postdepositional uplift and erosion, the deepest cored rocks at Pariette Bench have never been buried more than 3000m.-from Authors
Dyni, John R.
2008-01-01
Oil shale units in the Eocene Green River Formation are shown on two east-west stratigraphic sections across the Uinta Basin in northeastern Utah. Several units have potential value for recovery of shale oil, especially the Mahogany oil shale zone, which is a high grade oil shale that can be traced across most of the Uinta Basin and into the Piceance Basin in northwestern Colorado. Many thin medium to high grade oil shale beds above the Mahogany zone can also be traced for many miles across the basin. Several units below the Mahogany that have slow velocities on sonic logs may be low grade oil shale. These may have value as a source for shale gas.
Johnson, Ronald C.
2014-01-01
The Uinta Basin of northeast Utah has produced large amounts of hydrocarbons from lower Tertiary strata since the 1960s. Recent advances in drilling technologies, in particular the development of efficient methods to drill and hydraulically fracture horizontal wells, has spurred renewed interest in producing hydrocarbons from unconventional low-permeability dolomite and shale reservoirs in the lacustrine, Eocene Green River Formation. The Eocene Green River Formation was deposited in Lake Uinta, a long-lived saline lake that occupied the Uinta Basin, the Piceance Basin to the east, and the intervening Douglas Creek arch. The focus of recent drilling activity has been the informal Uteland Butte member of the Green River Formation and to a much lesser extent the overlying R-0 oil shale zone of the Green River Formation. Initial production rates ranging from 500 to 1,500 barrels of oil equivalent per day have been reported from the Uteland Butte member from horizontal well logs that are as long as 4,000 feet (ft);. The cross section presented here extends northward from outcrop on the southern margin of the basin into the basin’s deep trough, located just south of the Uinta Mountains, and transects the area where this unconventional oil play is developing. The Monument Butte field, which is one of the fields located along this line of section, has produced hydrocarbons from conventional sandstone reservoirs in the lower part of the Green River Formation and underlying Wasatch Formation since 1981. A major fluvial-deltaic system entered Lake Uinta from the south, and this new line of section is ideal for studying the effect of the sediments delivered by this drainage on hydrocarbon reservoirs in the Green River Formation. The cross section also transects the Greater Altamont-Bluebell field in the deepest part of the basin, where hydrocarbons have been produced from fractured, highly overpressured marginal lacustrine and fluvial reservoirs in the Green River, Wasatch, and North Horn Formations since 1970. Datum for the cross section is sea level so that hydrocarbon source rocks and reservoir rocks could be integrated into the structural framework of the basin.
Oil shale resources of the Uinta Basin, Utah and Colorado
,
2010-01-01
The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales of the Eocene Green River Formation of the Uinta Basin of eastern Utah and western Colorado. The oil shale interval was subdivided into eighteen roughly time-stratigraphic intervals, and each interval was assessed for variations in gallons per ton, barrels per acre, and total barrels in each township. The Radial Basis Function extrapolation method was used to generate isopach and isoresource maps, and to calculate resources. The total inplace resource for the Uinta Basin is estimated at 1.32 trillion barrels. This is only slightly lower than the estimated 1.53 trillion barrels for the adjacent Piceance Basin, Colorado, to the east, which is thought to be the richest oil shale deposit in the world. However, the area underlain by oil shale in the Uinta Basin is much larger than that of the Piceance Basin, and the average gallons per ton and barrels per acre values for each of the assessed oil shale zones are significantly lower in the depocenter in the Uinta Basin when compared to the Piceance Basin. These relations indicate that the oil shale resources in the Uinta Basin are of lower grade and are more dispersed than the oil shale resources of the Piceance Basin.
NASA Astrophysics Data System (ADS)
Smith, M. E.; Carroll, A. R.; Singer, B. S.
2004-12-01
Due to their sensitivity to relatively subtle changes in regional drainage patterns, Eocene lake deposits of the Green River Formation offer a unique and richly detailed record of landscape modification caused by orogenic processes in the broken foreland of the western U. S. Recently obtained 40Ar/39Ar age determinations for 22 interbedded tephras provide excellent temporal resolution of this record, and enable inter-basin correlations at an unprecedented level of precision (approaching 2σ uncertainties of ± k.y.). Green River Formation strata span an interval of ~8 m.y., beginning and ending with freshwater fluvial-lacustrine deposits. Two episodes of regional basin closure and evaporite deposition, each lasting ˜1-2 m.y., coincide with evidence for active Laramide faulting at basin margins and increased rates of sediment accumulation. Evaporite deposition therefore appears to have been principally caused by enhanced uplift of basin sills rather than increased aridity. Regional stratigraphic relations, facies types, and 40Ar/39Ar geochronology permit deduction of the following paleodrainage history: 1) > ˜51.3 Ma: Fluvial-lacustrine deposition occurred in greater Green River, Piceance Creek and Uinta basins. The onset of lacustrine deposition is not well-dated due to a paucity of tephras. 2) ˜51.3-49.7 Ma: The greater Green River and Piceance Creek basins both became terminal sinks that received overflow from neighboring freshwater basins. Coarse clastic basin-marginal alluvial strata, cross-cutting fault relations, and pronounced differential subsidence in both basins indicate active uplift of the Uinta Mountains and surrounding ranges. 3) ˜49.7-49.1 Ma: Lake Gosiute expanded in extent, coincident with an influx of water and sediment derived from volcanic centers to the north. Episodic overflow over the eastern Uinta uplift flushed dissolved solutes southward, freshening Lake Gosiute while evaporite deposition continued in Lake Uinta. 4) ˜49.1-48.4 Ma: Fresh water spilled consistently from Lake Gosiute into an expanding Lake Uinta. The saline, organic-rich Mahoghany zone of the Parachute Creek Member was deposited over an interval of 0.6 ± 0.3 m.y. coincident with deposition of the freshwater upper LaClede bed of the Laney Member and alluvial Bridger Formation in the greater Green River Basin. 5) ˜48.4-46.3: Fluvial volcaniclastic sediments progressively filled the greater Green River and Piceance Creek basins. Alluvial and freshwater lacustrine deposition dominated both basins. Saline lake deposition continued unabated in the Uinta Basin. 6) ˜46.3-45.0 Ma: Lake Uinta, limited to the western Uinta Basin, became hydrologic closed as evidenced by bedded evaporite deposition. The change to evaporite deposition coincided with an increase in differential subsidence, reflecting a renewal of tectonic deformation. The up-section disappearance of west-directed volcaniclastic input into the eastern Uinta Basin at ˜46.3 Ma suggests that drainage diversion may also have contributed to hydrologic closure. 7) Following ˜45.0 Ma, Lake Uinta returned to fluvial-lacustrine deposition and was subsequently filled with alluvial deposits.
Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.; Brownfield, Michael E.; Charpentier, Ronald R.; Klett, Timothy R.; Leathers, Heidi M.; Schenk, Christopher J.; Tennyson, Marilyn E.
2015-09-03
Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean undiscovered resources of 214 million barrels of oil, 329 billion cubic feet of associated/dissolved natural gas, and 14 million barrels of natural gas liquids in the informal Uteland Butte member of the Green River Formation, Uinta Basin, Utah.
The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high‐ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozo...
Oil Shale in the Piceance Basin: An Analysis of Land Use Issues,
1983-07-01
basins -the Piceance, Uinta , Green River, and Washakie. The locations of these basins are shown on the map of the Green River Formation in Fig. 3...commercial interest. Deposits of low grade shale in the other basins are thin and scattered. Only the rich (30 gpt) deposits in the Uinta Basin are of...r n~p I S 806 OIL SHALE, IN lilE PICCANCE BASIN : AN ANALYSIS of LAND USE ISSUESIUI RAND CORP SANtA MONICA CA lJN IASIFID 0 RUBENSON El AL. JUL 83
Johnson, Ronald C.
2014-01-01
This report presents two detailed cross sections of the Eocene Green River Formation in the Piceance Basin, northwestern Colorado, constructed from eight detailed measured sections, fourteen core holes, and two rotary holes. The Eocene Green River Formation in the Piceance Basin contains the world’s largest known oil shale deposit with more than 1.5 billion barrels of oil in place. It was deposited in Lake Uinta, a long-lived saline lake that once covered much of the Piceance Basin and the Uinta Basin to the west. The cross sections extend across the northern and eastern margins of the Piceance Basin and are intended to aid in correlating between surface sections and the subsurface in the basin.
Subsurface fluid pressures from drill-stem tests, Uinta Basin, Utah
Nelson, P.H.
2002-01-01
High fluid pressures are known to be associated with oil and gas fields in the Uinta Basin, Utah. Shut-in pressure measurements from drill-stem tests show how pressure varies with depth and by area within the basin. The data base used in this report incorporates over 2,000 pressure measurements from drill-stem tests in wells completed prior to 1985. However, the number of useful pressure measurements is considerably less, because many drill-stem tests fail to stabilize at the actual formation pressure if the permeability is low. By extracting the maximum pressure measurements recorded in a collection of wells within an area, the trend of formation pressure within that area can be approximated. Areal compilations of pressures from drill-stem tests show that overpressured rock formations occur throughout much of the northern and eastern areas of the Uinta Basin. In particular, significant overpressuring (0.5 < pressure gradient < 0.8 psi/ft) is found throughout much of the Altamont-Bluebell field at depths ranging from 10,000 to 13,000 ft, equivalent to 5,000 to 8,000 ft below sea level. Limited data indicate that the pressure gradient declines at depths greater than 13,000 ft. An underpressured zone appears to exist in the Altamont-Bluebell field at depths shallower than 5,000 ft. Throughout the eastern Uinta Basin, moderately overpressured zones (0.46 < pressure gradient < 0.5 psi/ft) are common, with local evidence of significantly overpressured zones, but pressure gradients greater than 0.6 psi/ft are rare.
NASA Astrophysics Data System (ADS)
Davis, Steven J.; Wiegand, Bettina A.; Carroll, Alan R.; Chamberlain, C. Page
2008-11-01
Using multiple isotope systems, we examine the complex effects of drainage reorganization in the Laramide Foreland in the context of stable isotope paleoaltimetry. Strontium, oxygen and carbon isotopic data from lacustrine carbonates formed in the southwestern Uinta Basin, Utah between the Late Cretaceous and late Middle Eocene reveal a two stage expansion in the drainage basin of Lake Uinta beginning at ~ 53 Ma culminating in the Mahogany highstand at 48.6 Ma. A marked increase in 87Sr/ 86Sr ratios of samples from the Main Body of the Green River Formation is interpreted as the result of water overflowing the Greater Green River Basin in Wyoming and entering Lake Uinta from the east via the Piceance Creek Basin of northwestern Colorado. This large new source of water caused a rapid expansion of Lake Uinta and was accompanied by a significant and rapid increase in the O isotope record of carbonate samples by ~ 6‰. The periodic overspilling of Lake Gosiute probably became continuous at ~ 49 Ma, when the lake captured low- δ18O water from the Challis and Absaroka Volcanic Fields to the north. However, evaporation in the Greater Green River and Piceance Creek Basins meant that the waters entering Lake Uinta were still enriched in 18O. By ~ 46 Ma, inflows from the Greater Green River Basin ceased, resulting in a lowstand of Lake Uinta and the deposition of bedded evaporites in the Saline Facies of the Green River Formation. We thus show that basin development and lake hydrology in the Laramide foreland were characterized by large-scale changes in Cordilleran drainage patterns, capable of confounding paleoaltimetry studies premised on too few isotopic systems, samples or localities. In the case of the North American Cordillera of the Paleogene, we further demonstrate the likelihood that (1) topographic evolution of distal source areas strongly influenced the isotopic records of intraforeland basins and (2) a pattern of drainage integration between the hinterland and foreland may correlate in space and time with the southward sweep of hinterland magmatism.
Reservoir Characterization of the Lower Green River Formation, Southwest Uinta Basin, Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, Craig D.; Chidsey, Jr., Thomas C.; McClure, Kevin P.
The objectives of the study were to increase both primary and secondary hydrocarbon recovery through improved characterization (at the regional, unit, interwell, well, and microscopic scale) of fluvial-deltaic lacustrine reservoirs, thereby preventing premature abandonment of producing wells. The study will encourage exploration and establishment of additional water-flood units throughout the southwest region of the Uinta Basin, and other areas with production from fluvial-deltaic reservoirs.
Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 1. Process Analysis.
1984-09-01
Uinta Basin .......................too.... 11 b . Asphalt Ridge ........................ 13 c.* Tar Sand Triangle ..... to .. .. . .. .. . 15 e...Estimated ............**..* 7 3 CHARACTERISTICS OF UTAH’S MAJOR TAR SANDS ....... 12 4 UINTA BASIN DEPOSITS ................... *........ 13 *.5 UINTA ...7 UINTA BASIN , UTAH PROPERTIES -SUNNYSIDE ........ 20 8 UINTA BASIN , UTAH PROPERTIES -P. R. SPRINGS . 22 r9 ESTIMATED CALIFORNIA TAR SAND DISTRIBUTION
NASA Astrophysics Data System (ADS)
Ratigan, D.; Heller, P.; Trampush, S. M.; Chen, P.; Dueker, K.
2012-12-01
Basin subsidence patterns provide a record of the evolution of regional loading during orogenesis. As such, flexural analysis provides insight on the impact of topographic growth in adjacent ranges, as well as documenting lithospheric behavior and timing of deformation. Flexural analysis of a north-south transect across the Uinta Mountains and associated basins shows much of the topographic load of the Uinta Mts developed long after initiation of Uinta deformation in latest Cretaceous time, and that sharply contrasting rigidities are necessary to explain regional subsidence patterns. Two paleohorizontal datums, c. 48 Ma, exist in the Green River Formation. The Mahogany bed is found in the Uinta Basin of northeastern Utah, and the Laney Member is in the Green River Basin of southwestern Wyoming. Deflections of these beds result from regional loading since early middle Eocene time due to shortening and topographic development of the Uinta Mts. Downward deflection of the Mahogany bed is at least 2800 m over a distance of 90 km with respect to an inflection point at 2250 m above sea level, while the Laney Member is deflected only 600 m over a horizontal distance of 140 km with an inflection point at 1850 m above sea level. Two-dimensional flexural modeling along a transect at 110.66° W using the present topography of the Uinta Mts and densities for the mountain load, basin fill and mantle lid of 2800, 2400 and 3300 kg/m3, respectively, indicates strongly varying rigidity between the two basins. Best-fit rigidities are 1022 N●m to the south, and 1024 N●m to the north. The contrast in rigidities is coincident with the projected position of the Archean-Proterozoic suture of the Cheyenne Belt — the older crust to the north being more rigid than younger crust to the south. To achieve the best fit, all of the present topography of the Uinta Mts, as much as 1.7 km above the basin floor, must have developed after deposition of the 48 Ma datum. The estimated rigidity across southern Wyoming is an order of magnitude higher, and across Utah is an order of magnitude lower, than previous estimates based on analysis of Cretaceous deflections, suggesting possible changes in rigidity through time. In addition, assuming lakes in the Uinta and Green River basins were connected at the time of deposition of the paleodatum, the difference in present elevation of the inflection point of the subsidence profiles suggests that there has been a net isostatic offset between the two basins. The origins of this offset might be due to regional isostatic differences from lithospheric density contrasts. Future work will include 3-D flexural modeling across all of the basins surrounding the Uinta Mountains, including the Piceance Creek, Sand Wash, and Washakie Basins.
NASA Astrophysics Data System (ADS)
Davis, S. J.; Wiegand, B. A.; Chamberlain, C. P.
2007-12-01
Isotopic records from the Uinta basin in Utah are evidence of an evolving landscape during the early Cenozoic. Combined with studies of provenance and paleoflow, oxygen and carbon isotopic results have recently been interpreted to reflect changes in hydrology and catchment hypsometry as the basin responded to developing relief in the foreland. We now present strontium isotope data from lacustrine limestones indicating significant and rapid (< 1 my) shifts in the source of inflowing surface waters. Provenance of Eocene sediments has been used to argue that water spilling south from an overfilled Lake Gosiute in the Greater Green River basin caused a highstand of the lake in the Piceance Creek basin, which in turn overtopped the Douglas Creek Arch and connected with Lake Uinta in the Uinta basin. The lake highstand was extremely productive, and resulted in the deposition of the rich "Mahogany zone" oil shales. New data shows that the 87Sr/86Sr ratio of lacustrine limestones collected in the Uinta basin is generally low (< 0.7105) for most of the Eocene, but spikes higher (to 0.7122) in samples of the Main Body of the Green River Formation near and within the Mahogany zone. We interpret this data to reflect a period of input of water from Lake Gosiute, where that lake's catchments included exposed basement that was much more radiogenic. The strontium data further supports the interpretation that intraforeland basin development in the central North American Cordillera was largely controlled by shifting drainage patterns as the landscape responded to ongoing Laramide tectonism.
New constraints on Neogene uplift of the northern Colorado Plateau
NASA Astrophysics Data System (ADS)
Van Wijk, J. W.; Raschilla, R.
2013-12-01
The Late Cretaceous Uinta Basin is located in northeastern Utah within the northern most portion of the Colorado Plateau. The basin's uplift and subsidence history and thermal evolution have impacted the maturity of source beds in the Parachute Creek Member of the Green River Formation. Using measured data of the petroleum system of the Uinta Basin, we were able to constrain timing and amplitude of uplift of the northern Colorado Plateau. We used sixty wells in a basin modeling study of the Uinta Basin's thermal structure, tectonic history and petroleum system. The wells reached into basement, and four wells provided vitrinite reflectance measurements. Vitrinite reflectance is a measurement of the percentage of reflected light from a polished vitrinite sample. The percentage of reflected light is related to the temperature conditions the sample experienced during burial, and vitrinite reflectance is a maturity indicator that covers a broad temperature range from diagenesis through the latest stages of catagenesis and records the maximum temperature a rock experiences during its burial history All models were calibrated to measured data, including vitrinite reflectance and transformation ratios from Rock-Eval pyrolysis. The models predict that the heat flow ranges from 65 mW/m2 to 45 mW/m2 from south to north in the study area. Additionally, model calibration provides a means for estimating the amount of uplift and erosion in the Uinta Basin. Uplift predicted for the Uinta Basin ranges from ~2050 m to ~2200 m and started in the Late Miocene. Our models also predicted the maturity of the rich oil shales of the Parachute Creek Member.
Birdwell, Justin E.; Mercier, Tracey J.; Johnson, Ronald C.; Brownfield, Michael E.
2015-01-01
A range of geological parameters relevant to mining oil shale have been examined for the Mahogany zone of the Green River Formation in the Piceance Basin, Colorado, and Uinta Basin, Utah, using information available in the U.S. Geological Survey Oil Shale Assessment database. Basinwide discrete and cumulative distributions of resource in-place as a function of (1) oil shale grade, (2) Mahogany zone thickness, (3) overburden thickness, and (4) stripping ratio (overburden divided by zone thickness) were determined for both basins on a per-acre basis, and a resource map showing the areal distribution of these properties was generated. Estimates of how much of the Mahogany zone resource meets various combinations of these parameters were also determined. Of the 191.7 billion barrels of Mahogany zone oil in-place in the Piceance Basin, 32.3 percent (61.8 billion barrels) is associated with oil shale yielding at least 25 gallons of oil per ton (GPT) of rock processed, is covered by overburden 1,000 feet thick or less, and has a stripping ratio of less than 10. In the Uinta Basin, 14.0 percent (29.9 billion barrels) of the 214.5 billion barrels of Mahogany zone oil in-place meets the same overburden and stripping ratio criteria but only for the lower grade cutoff of 15 GPT.
Davis, S.J.; Dickinson, W.R.; Gehrels, G.E.; Spencer, J.E.; Lawton, T.F.; Carroll, A.R.
2010-01-01
U-Pb age spectra of detrital zircons in samples from the Paleogene Colton Formation in the Uinta Basin of northeastern Utah and the Late Cretaceous McCoy Mountains Formation of southwestern Arizona (United States) are statistically indistinguishable. This finding refutes previous inferences that arkosic detritus of the Colton was derived from cratonic basement exposed by Laramide tectonism, and instead establishes the Cordilleran magmatic arc (which also provided sediment to the McCoy Mountains Formation) as the primary source. Given the existence of a north-south-trending drainage divide in eastern Nevada and the north-northeast direction of Laramide paleoflow throughout Arizona and southern Utah, we infer that a large river system headed in the arc of the Mojave region flowed northeast ~700 km to the Uinta Basin. Named after its source area, this Paleogene California River would have been equal in scale but opposite in direction to the modern Green River-Colorado River system, and the timing and causes of the subsequent drainage reversal are important constraints on the tectonic evolution of the Cordillera and the Colorado Plateau. ?? 2010 Geological Society of America.
NASA Astrophysics Data System (ADS)
Jones, E. R.; Plink-Bjorklund, P.
2013-12-01
The Wasatch and Green River Formations in the Uinta Basin, UT contain fluvial sandstones that record changes in terrestrial sedimentation coincident with Paleocene-Eocene Thermal Maximum (PETM) and at least six post-PETM hyperthermal climate change events. While proxies for chemical weathering rates during the PETM have been developed using the marine osmium isotope record, to date there has been little research on chemical weathering rates in proximal terrestrial depocenters. This work is one part of a multi-proxy research effort combining quantitative petrographic analysis, the stable carbon isotope record, and a high-resolution stratigraphic and sedimentologic framework across the southern margin of the Uinta Basin. Relative tectonic quiescence in the Uinta Basin during the Early Eocene suggests that climate is the forcing mechanism controlling fluvial architecture and composition, and gradual basin subsidence has preserved at least six pulses of greenhouse climate change during the Early Eocene Climatic Optimum (EECO). Terrestrial records of PETM climate do not support a humid climate with increased precipitation as previously suggested from marine proxies of climate change. Instead, terrestrial records of the PETM climate show evidence of prolonged drought punctuated by intense terrestrial flooding events in mid-latitude continental interiors. Increases in chemical weathering rates during the PETM due to increased temperature and average precipitation is cited as a key carbon sink to initiate a recovery phase where atmospheric CO2 returned to normal concentrations. If terrestrial records of chemical weathering rates differ substantially from marine proxies the carbon-cycle dynamics active during the EECO must be reconsidered. Initial results of this study show that these peak hyperthermal climate change conditions in the Uinta Basin preserve more compositionally and texturally immature sediments due to extremely high erosion and deposition rates, and subdued duration of transport. In particular the relative proportions of preserved potassium and especially plagioclase feldspar are sensitive to these pulses of greenhouse climate change. This dataset suggests that the seasonality of sediment dispersal and transport can play a more important role in the preservation potential of unstable mineral phases in the sedimentary record than just variations in global chemical weathering rates. Compositional variability in perenially wet and peaked seasonality facies in fluvial sandstones in the Wasatch Formation.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-22
...: The commenter supported EPA's efforts to require ozone monitoring in Utah's Uinta Basin. However, the... air quality in the basin is not in compliance with the ozone standard,'' to designate the Uinta Basin... commenter refers to. For a discussion of other monitoring data in the Uinta Basin, see the response to...
2009-01-27
objectives and scales. Survey effort was lowest in Utah’s West Desert, the Uinta Basin , and extreme southeastern Utah. The Colorado Plateau ecoregion had... Basin shrub steppe, Mojave desert, Wasatch and Uinta montane forest, and Wyoming Basin shrub steppe) as did the physiographic province ( Basin and...shrublands, accounting for 48% of all data, Wasatch and Uinta montane forests 31%, the Great Basin shrub steppe 19%, the Mojave Desert 1.6%, and the
Morgan, C.D.; Bereskin, S.R.
2003-01-01
The oil-productive Eocene Green River Formation in the central Uinta Basin of northeastern Utah is divided into five distinct intervals. In stratigraphically ascending order these are: 1) Uteland Butte, 2) Castle Peak, 3) Travis, 4) Monument Butte, and 5) Beluga. The reservoir in the Uteland Butte interval is mainly lacustrine limestone with rare bar sandstone beds, whereas the reservoirs in the other four intervals are mainly channel and lacustrine sandstone beds. The changing depositional environments of Paleocene-Eocene Lake Uinta controlled the characteristics of each interval and the reservoir rock contained within. The Uteland Butte consists of carbonate and rare, thin, shallow-lacustrine sandstone bars deposited during the initial rise of the lake. The Castle Peak interval was deposited during a time of numerous and rapid lake-level fluctuations, which developed a simple drainage pattern across the exposed shallow and gentle shelf with each fall and rise cycle. The Travis interval records a time of active tectonism that created a steeper slope and a pronounced shelf break where thick cut-and-fill valleys developed during lake-level falls and rises. The Monument Butte interval represents a return to a gentle, shallow shelf where channel deposits are stacked in a lowstand delta plain and amalgamated into the most extensive reservoir in the central Uinta Basin. The Beluga interval represents a time of major lake expansion with fewer, less pronounced lake-level falls, resulting in isolated single-storied channel and shallow-bar sandstone deposits.
Year 1 Field Work Report: Utah Bat Monitoring Protocol
2010-01-28
Plateau shrublands, Great Basin shrub steppe, Wasatch and Uinta montane forests, Mojave Desert and Wyoming Basin shrub steppe. A total 65, 20 x 20 km... Basin shrub steppe, Wasatch and Uinta montane forests) each harbored 20 sampling cells, while the limited size of the Mojave Desert and Wyoming Basin ...Wasatch and Uinta montane forest and Wyoming Basin shrub steppe). Site # A unique identifier between 1 and 20 within each ecoregion. UTM The
An Archeological Overview and Management Plan for the Green River Launch Complex.
1984-03-29
2-4). The trappers and traders who entered the Uinta Basin after 1800 had little or no influence on the social and economic structure of the Ute...present town of Whiterocks, Utah, in the northern Uinta Basin . In 1836, Wakara (known as Chief Walker) a powerful Ute leader, rose to power by stealing...determined the Uinta Basin was unsuitable for Mormon use, President Lincoln, by Executive Order in 1861, set aside the Uinta Reservation. Much of the
NASA Astrophysics Data System (ADS)
Mansfield, Marc L.
2014-03-01
Natural seepage of methane from the lithosphere to the atmosphere occurs in regions with large natural gas deposits. According to some authors, it accounts for roughly 5% of the global methane budget. I explore a new approach to estimate methane fluxes based on the maturation of kerogen, which is the hydrocarbon polymer present in petroleum source rocks and whose decomposition leads to the formation of oil and natural gas. The temporal change in the atomic H/C ratio of kerogen lets us estimate the total carbon mass released by it in the form of oil and natural gas. Then the time interval of active kerogen decomposition lets us estimate the average annual formation rate of oil and natural gas in any given petroleum system, which I demonstrate here using the Uinta Basin of eastern Utah as an example. Obviously, this is an upper bound to the average annual rate at which natural gas seeps into the atmosphere. After adjusting for biooxidation of natural gas, I conclude that the average annual seepage rate in the Uinta Basin is not greater than (3100 ± 900) tonne yr-1. This is (0.5 ± 0.15)% of the total flux of methane into the atmosphere over the Basin, as measured during aircraft flights. I speculate about the difference between the regional 0.5% and the global 5% estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allison, M.L.
1996-05-13
The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin will is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil- bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch Formations in the Bluefell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by techniques based on the reservoir characterization. Transfer of the project results will be an ongoing component of themore » project. Data (net pay thickness, porosity, and water saturation) of more than 100 individuals beds in he lower Green River and Wasatch Formations were used to generate geostatistical realization (numerical- representation) of the reservoir properties. The data set was derived from the Michelle Ute and Malnar Pike demonstration wells and 22 other wells in a 20 (52 km{sup 2}) square-mile area. Beds were studied independently of each other. Principles of sequential Gaussian simulations were used to generate geostatistical realizations of the beds.« less
Environmental Assessment: Space Innovation and Development Center Schriever AFB, Colorado
2006-03-01
Ptychocheilus lucius E Gunnison sage-grouse Centrocercus minimus c Humpback chub Gila cypha E Razorback sucker© Xyrauchentexanus E Uinta Basin hookless...debilis c Razorback sucker© Xyrauchen texanus E Uinta Basin hookless cactus Sclerocactus glaucus T Yellow-billed cuckoo Coccyzus americanus c GILPIN...Razorback sucker© Xyrauchen texanus E Uinta Basin hookless cactus Sclerocactus glaucus T Yellow-billed cuckoo Coccyzus americanus c MINERAL Bald
Hutchison, J. Howard; Townsend, K. E. Beth; Adrian, Brent; Jager, Daniel
2017-01-01
We described newly discovered baenid specimens from the Uintan North American Land Mammal Age (NALMA), in the Uinta Formation, Uinta Basin, Utah. These specimens include a partial skull and several previously undescribed postcranial elements of Baena arenosa, and numerous well-preserved shells of B. arenosa and Chisternon undatum. Baenids from the Uintan NALMA (46.5–40 Ma) are critical in that they provide valuable insight into the morphology and evolution of the diverse and speciose baenid family near the end of its extensive radiation, just prior to the disappearance of this clade from the fossil record. These Uintan specimens greatly increase the known variation in these late-surviving taxa and indicate that several characters thought to define these species should be reassessed. The partial cranium of B. arenosa, including portions of the basicranium, neurocranium, face, and lower jaw, was recently recovered from Uinta B sediments. While its morphology is consistent with known specimens of B. arenosa, we observed several distinct differences: a crescent-shaped condylus occipitalis that is concave dorsally, tuberculum basioccipitale that flare out laterally, and a distinct frontal-nasal suture. The current sample of plastral and carapacial morphology considerably expands the documented variation in the hypodigms of B. arenosa and C. undatum. Novel shell characters observed include sigmoidal extragular-humeral sulci, and small, subtriangular gular scutes. Subadult specimens reveal ontogenetic processes in both taxa, and demonstrate that diagnostic morphological differences between them were present from an early developmental age. PMID:28686718
Smith, Heather F; Hutchison, J Howard; Townsend, K E Beth; Adrian, Brent; Jager, Daniel
2017-01-01
We described newly discovered baenid specimens from the Uintan North American Land Mammal Age (NALMA), in the Uinta Formation, Uinta Basin, Utah. These specimens include a partial skull and several previously undescribed postcranial elements of Baena arenosa, and numerous well-preserved shells of B. arenosa and Chisternon undatum. Baenids from the Uintan NALMA (46.5-40 Ma) are critical in that they provide valuable insight into the morphology and evolution of the diverse and speciose baenid family near the end of its extensive radiation, just prior to the disappearance of this clade from the fossil record. These Uintan specimens greatly increase the known variation in these late-surviving taxa and indicate that several characters thought to define these species should be reassessed. The partial cranium of B. arenosa, including portions of the basicranium, neurocranium, face, and lower jaw, was recently recovered from Uinta B sediments. While its morphology is consistent with known specimens of B. arenosa, we observed several distinct differences: a crescent-shaped condylus occipitalis that is concave dorsally, tuberculum basioccipitale that flare out laterally, and a distinct frontal-nasal suture. The current sample of plastral and carapacial morphology considerably expands the documented variation in the hypodigms of B. arenosa and C. undatum. Novel shell characters observed include sigmoidal extragular-humeral sulci, and small, subtriangular gular scutes. Subadult specimens reveal ontogenetic processes in both taxa, and demonstrate that diagnostic morphological differences between them were present from an early developmental age.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Berg, Michael Vanden; Anderson, Paul; Wallace, Janae
Saline water disposal is one of the most pressing issues with regard to increasing petroleum and natural gas production in the Uinta Basin of northeastern Utah. Conventional oil fields in the basin provide 69 percent of Utah?s total crude oil production and 71 percent of Utah?s total natural gas, the latter of which has increased 208% in the past 10 years. Along with hydrocarbons, wells in the Uinta Basin produce significant quantities of saline water ? nearly 4 million barrels of saline water per month in Uintah County and nearly 2 million barrels per month in Duchesne County. As hydrocarbonmore » production increases, so does saline water production, creating an increased need for economic and environmentally responsible disposal plans. Current water disposal wells are near capacity, and permitting for new wells is being delayed because of a lack of technical data regarding potential disposal aquifers and questions concerning contamination of freshwater sources. Many companies are reluctantly resorting to evaporation ponds as a short-term solution, but these ponds have limited capacity, are prone to leakage, and pose potential risks to birds and other wildlife. Many Uinta Basin operators claim that oil and natural gas production cannot reach its full potential until a suitable, long-term saline water disposal solution is determined. The enclosed project was divided into three parts: 1) re-mapping the base of the moderately saline aquifer in the Uinta Basin, 2) creating a detailed geologic characterization of the Birds Nest aquifer, a potential reservoir for large-scale saline water disposal, and 3) collecting and analyzing water samples from the eastern Uinta Basin to establish baseline water quality. Part 1: Regulators currently stipulate that produced saline water must be disposed of into aquifers that already contain moderately saline water (water that averages at least 10,000 mg/L total dissolved solids). The UGS has re-mapped the moderately saline water boundary in the subsurface of the Uinta Basin using a combination of water chemistry data collected from various sources and by analyzing geophysical well logs. By re-mapping the base of the moderately saline aquifer using more robust data and more sophisticated computer-based mapping techniques, regulators now have the information needed to more expeditiously grant water disposal permits while still protecting freshwater resources. Part 2: Eastern Uinta Basin gas producers have identified the Birds Nest aquifer, located in the Parachute Creek Member of the Green River Formation, as the most promising reservoir suitable for large-volume saline water disposal. This aquifer formed from the dissolution of saline minerals that left behind large open cavities and fractured rock. This new and complete understanding the aquifer?s areal extent, thickness, water chemistry, and relationship to Utah?s vast oil shale resource will help operators and regulators determine safe saline water disposal practices, directly impacting the success of increased hydrocarbon production in the region, while protecting potential future oil shale production. Part 3: In order to establish a baseline of water quality on lands identified by the U.S. Bureau of Land Management as having oil shale development potential in the southeastern Uinta Basin, the UGS collected biannual water samples over a three-year period from near-surface aquifers and surface sites. The near-surface and relatively shallow groundwater quality information will help in the development of environmentally sound water-management solutions for a possible future oil shale and oil sands industry and help assess the sensitivity of the alluvial and near-surface bedrock aquifers. This multifaceted study will provide a better understanding of the aquifers in Utah?s Uinta Basin, giving regulators the tools needed to protect precious freshwater resources while still allowing for increased hydrocarbon production.« less
Johnson, Ronald C.; Brownfield, Michael E.
2013-01-01
Halite and the sodium bicarbonate mineral nahcolite were deposited during the saline phase of Eocene Lake Uinta in the Piceance Basin, western Colorado. Variations in the area of saline mineral deposition through time were interpreted from studies of core and outcrop. Saline minerals were extensively leached by groundwater, so the original extent of saline deposition was estimated from the distribution of empty vugs and collapse breccias. Vugs and breccias strongly influence groundwater movement, so determining where leaching has occurred is an important consideration for in-situ oil shale extraction methods currently being developed. Lake Uinta formed when two smaller fresh water lakes, one in the Uinta Basin of eastern Utah and the other in the Piceance Basin of western Colorado, expanded and coalesced across the Douglas Creek arch, an area of comparatively low subsidence rates. Salinity increased shortly after this expansion, but saline mineral deposition did not begin until later, after a period of prolonged infilling created broad lake-margin shelves and a comparatively small deep central lake area. These shelves probably played a critical role in brine evolution. A progression from disseminated nahcolite and nahcolite aggregates to bedded nahcolite and ultimately to bedded nahcolite and halite was deposited in this deep lake area during the early stages of saline deposition along with rich oil shale that commonly shows signs of slumping and lateral transport. The area of saline mineral and rich oil shale deposition subsequently expanded, in part due to infilling of the compact deep area, and in part because of an increase in water flow into Lake Uinta, possibly due to outflow from Lake Gosiute to the north. Finally, as Lake Uinta in the Piceance Basin was progressively filled from north to south by volcano-clastic sediment, the saline depocenter was pushed progressively southward, eventually covering much of the areas that had previously been marginal shelves. A saline depocenter formed in the eastern Uinta Basin during this progradation, and saline minerals were deposited in both basins for a time. Ultimately, the saline depocenter in the Piceance Basin was completely filled in and saline mineral deposition shifted entirely into the Uinta Basin.
Hydrologic reconnaissance of the southern Uinta basin, Utah and Colorado
Price, Don; Miller, Louise L.
1975-01-01
This report summarizes the findings of an investigation of the water resources of the southern Uinta Basin conducted by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights. The purpose of the investigation was to evaluate the water resources of the southern Uinta Basin on a reconnaissance level and to provide information to assist in future planning and development of the water and related land resources.
1981-08-01
Colorado Plateau, and the Uinta Mountains. The Great Basin , which is the largest division, is divided into nine sections. Pine and Wah Wah * valleys lie...unconfirmed reports of sightings from Uinta Basin in 1972 and 1975, from New Green River in 1976, and from Rich and Emery counties in 1977 and 1978. The...Fish and Wildlife Service, Boise, Idaho, Personal communication, 3 April. Graham, E. H., 1937, Botanical studies in the Uinta Basin of Utah and Colorado
Parameters Affecting the Characteristics of Oil Shale-Derived Fuels.
1981-03-01
rock with essentially no organic matter. The oil shale of the Uinta Basin in Utah and extreme western Colorado is richer than the Wyoming shales, but...could be used in several areas of the Uinta Basin . Once the oil shale is mined, it must be heated to about 900’F to hreak down the kerogen. A variety... Uinta Basin of eastern Utah. The sections presented above d.l not exhaust the supply of retorting tech- niques that are in various stages of
Operation of the Uinta Basin Seismological Observatory.
The report describes the operations of the Uinta Basin Seismological Observatory (UBSO) from 1 April 1969 through 30 June 1969. Also discussed is the maintenance of the UBSO digital data acquisition system. (Author)
Operation of the Uinta Basin Seismological Observatory.
The report describes the operations of the Uinta Basin Seismological Observatory (UBSO) from 1 January through 31 March 1969. Also discussed are the maintenance and testing of the UBSO digital data acquisition system. (Author)
Hawkins, Sarah J.; Charpentier, Ronald R.; Schenk, Christopher J.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Brownfield, Michael E.; Finn, Tom M.; Gaswirth, Stephanie B.; Marra, Kristen R.; Le, Phoung A.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.
2016-06-08
The U.S. Geological Survey (USGS) completed a geology-based assessment of the continuous (unconventional) oil and gas resources in the Late Cretaceous Mancos Shale within the Piceance Basin of the Uinta-Piceance Province (fig. 1). The previous USGS assessment of the Mancos Shale in the Piceance Basin was completed in 2003 as part of a comprehensive assessment of the greater UintaPiceance Province (U.S. Geological Survey Uinta-Piceance Assessment Team, 2003). Since the last assessment, more than 2,000 wells have been drilled and completed in one or more intervals within the Mancos Shale of the Piceance Basin (IHS Energy Group, 2015). In addition, the USGS Energy Resources Program drilled a research core in the southern Piceance Basin that provided significant new geologic and geochemical data that were used to refine the 2003 assessment of undiscovered, technically recoverable oil and gas in the Mancos Shale.
Steiger, Judy I.
2007-01-01
The Altamont-Bluebell oil and gas field in the Uinta Basin in northeastern Utah has been an important oil and natural gas production area since the 1950s. Saline water is produced along with oil during the oil-well drilling and pumping process. The saline wastewater is disposed of by injection into wells completed in the Duchesne River Formation, Uinta Formation, and other underlying formations. There are concerns that the injected saline wastewater could migrate into the upper part of the Duchesne River and Uinta Formations and surficial deposits that are used for drinking-water supply and degrade the quality of the drinking water. The U.S. Geological Survey, in cooperation with the Utah Department of Natural Resources, Division of Oil, Gas, and Mining, began a program in 1990 to monitor water quality in five wells in the Altamont-Bluebell oil and gas field. By 1996, water-quality samples had been collected from 20 wells. Ten of the 20 wells were sampled yearly during 1996-2005 and analyzed for bromide, chloride, and stable isotopes. Comparison of major chemical constituents, bromide-to-chloride ratios, trend analysis, and isotope ratios were used to assess if saline wastewater is migrating into parts of the formation that are developed for drinking-water supplies. Results of four different analyses all indicate that saline wastewater injected into the lower part of the Duchesne River and Uinta Formations and underlying formations is not migrating upward into the upper parts of the formations that are used for drinking-water supplies.
Johnson, R.C.; Mercier, T.J.; Brownfield, M.E.
2011-01-01
The U.S. Geological Survey (USGS) recently (2011) completed an assessment of in-place oil shale resources, regardless of grade, in the Eocene Green River Formation of the Greater Green River Basin in southwestern Wyoming, northwestern Colorado, and northeastern Utah. Green River Formation oil shale also is present in the Piceance Basin of western Colorado and in the Uinta Basin of eastern Utah and western Colorado, and the results of these assessments are published separately. No attempt was made to estimate the amount of oil that is economically recoverable because there has not yet been an economic method developed to recover the oil from Green River Formation oil shale.
Beroni, E.P.; McKeown, F.A.
1952-01-01
Previous discoveries and studies of radioactive lignites of Tertiary age in North Dakota, South Dakota, Montana, and Wyoming led the Geological Survey in 1950 to do reconnaissance in the Green River and Uinta Basin of Wyoming and Utah, where similar lignites were believed to be present. Because of the common association of uranium with copper deposits and the presence of such deposits in the Uinta Basin, several areas containing copper-uranium minerals were also examined. No deposits commercially exploitable under present conditions were found. Samples of coal from the Bear River formation at Sage, Wyo., assayed 0.004 to 0.013 percent uranium in the ash; in the old Uteland copper mine in Uinta County, Utah, 0.007 to 0.017 percent uranium; in a freshwater limestone, Duchesne County, Utah, as much as 0.019 percent uranium; and in the Mesaverde formation at the Snow and Bonniebell claims near Jensen, Uintah County, Utah, 0.003 to 0.090 percent uranium. Maps were made and samples were taken at the Skull Creek carnotite deposits in Moffat County, Colo. (0.006 to 0.16 percent uranium); at the Fair-U claims in Routt County, Colo. (0.002 to 0.040 percent uranium); and at the Lucky Strike claims near Kremmling in Grand County, Colo. (0.006 to 0.018 percent uranium).
1977-03-31
J\\ "’l \\ UBO \\ NUR UINTA * BASIN ARRAY. UTAH \\ NURMIJARVI, FINLAND »X 1964-1971 ^ • A...Gs N 1 i 1 1 , 1. 50 60 STATION mK UBO UINTA BASIN ARRAY, UTAH 1964-1970 s...appropriate to the Basin and Range geologic province. This comparison indicates that the Colorado Plateau structure is significantly different than
NASA Astrophysics Data System (ADS)
Matichuk, Rebecca; Tonnesen, Gail; Luecken, Deborah; Gilliam, Rob; Napelenok, Sergey L.; Baker, Kirk R.; Schwede, Donna; Murphy, Ben; Helmig, Detlev; Lyman, Seth N.; Roselle, Shawn
2017-12-01
The Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) models were used to simulate a 10 day high-ozone episode observed during the 2013 Uinta Basin Winter Ozone Study (UBWOS). The baseline model had a large negative bias when compared to ozone (O3) and volatile organic compound (VOC) measurements across the basin. Contrary to other wintertime Uinta Basin studies, predicted nitrogen oxides (NOx) were typically low compared to measurements. Increases to oil and gas VOC emissions resulted in O3 predictions closer to observations, and nighttime O3 improved when reducing the deposition velocity for all chemical species. Vertical structures of these pollutants were similar to observations on multiple days. However, the predicted surface layer VOC mixing ratios were generally found to be underestimated during the day and overestimated at night. While temperature profiles compared well to observations, WRF was found to have a warm temperature bias and too low nighttime mixing heights. Analyses of more realistic snow heat capacity in WRF to account for the warm bias and vertical mixing resulted in improved temperature profiles, although the improved temperature profiles seldom resulted in improved O3 profiles. While additional work is needed to investigate meteorological impacts, results suggest that the uncertainty in the oil and gas emissions contributes more to the underestimation of O3. Further, model adjustments based on a single site may not be suitable across all sites within the basin.
1981-10-02
found in the Uinta Basin . Major production in Utah comes from the Four Corners area on the Colorado plateau. Geothermal resources are abundant in...upper Uinta Basin ; the Pineview Field in Summit County; and the Greater Aneth Field in the Four Corners region of southeastern Utah. In 1976, some 82...area. About 3,000 sq mi (7,800 sq km) in the Uinta Basin in northeastern Utah is underlain by oil shale 15 ft (4.5 m) thick and averaging at least 15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lauren P. Birgenheier; Michael D. Vanden Berg,
An integrated detailed sedimentologic, stratigraphic, and geochemical study of Utah's Green River Formation has found that Lake Uinta evolved in three phases (1) a freshwater rising lake phase below the Mahogany zone, (2) an anoxic deep lake phase above the base of the Mahogany zone and (3) a hypersaline lake phase within the middle and upper R-8. This long term lake evolution was driven by tectonic basin development and the balance of sediment and water fill with the neighboring basins, as postulated by models developed from the Greater Green River Basin by Carroll and Bohacs (1999). Early Eocene abrupt global-warmingmore » events may have had significant control on deposition through the amount of sediment production and deposition rates, such that lean zones below the Mahogany zone record hyperthermal events and rich zones record periods between hyperthermals. This type of climatic control on short-term and long-term lake evolution and deposition has been previously overlooked. This geologic history contains key points relevant to oil shale development and engineering design including: (1) Stratigraphic changes in oil shale quality and composition are systematic and can be related to spatial and temporal changes in the depositional environment and basin dynamics. (2) The inorganic mineral matrix of oil shale units changes significantly from clay mineral/dolomite dominated to calcite above the base of the Mahogany zone. This variation may result in significant differences in pyrolysis products and geomechanical properties relevant to development and should be incorporated into engineering experiments. (3) This study includes a region in the Uinta Basin that would be highly prospective for application of in-situ production techniques. Stratigraphic targets for in-situ recovery techniques should extend above and below the Mahogany zone and include the upper R-6 and lower R-8.« less
NASA Astrophysics Data System (ADS)
Gall, Ryan D.
The early to middle Eocene Green River Formation consists of continental strata deposited in Laramide ponded basins in Utah, Colorado, and Wyoming. This study (1) documents fluvial and lacustrine strata from the Douglas Creek and Parachute Creek Members of the middle Green River Formation, southeastern Uinta Basin, Utah, and (2) uses new interpretations of the link between climate and fluvial sedimentary expression to interpret the terrestrial evolution of early Eocene climate. The stratigraphy was analyzed via outcrops along a 10 km transect in Main Canyon on the Tavaputs Plateau, and is divided into three distinct, stratigraphically separated depositional settings: (1) the lowermost Interval 1 is dominated by amalgamated sandstone channels that contain 70-100% upper flow regime sedimentary structures. The channels are interpreted to represent fluvial deposits controlled by a highly seasonal climate, where most deposition was limited to seasonal flooding events. (2) Interval 2 is dominated by alternating siliciclastic and carbonate lacustrine deposits, interpreted as local pulsed fluvial siliciclastic input into shallow Lake Uinta, and periods of fluvial quiescence represented by littoral carbonate deposition. (3) The uppermost Interval 3 is dominated by erosively-based, trough cross bedded sandstone channels interbedded with littoral lacustrine and deltaic deposits. The Interval 3 sandstone channels are interpreted as perennial fluvial deposits with relatively little variation in annual discharge, akin to modern humid-temperate fluvial systems. The stratigraphic transition from seasonally-controlled (Interval 1) to perennial (Interval 3) fluvial deposits is interpreted to represent a fundamental shift in Eocene climate, from the peak hyperthermal regime of the Early Eocene Climatic Optimum (EECO) to a more stable post-EECO climate.
Freethey, Geoffrey W.
1994-01-01
In the Altamont-Bluebell Petroleum Field within the Uinta Basin of Utah, saline oil-production water is being injected into the Duchesne River Formation. On the basis of geohydrologic information, a qualitative assessment of the possible effects of this injection indicates that fresh groundwater in certain areas of the Duchesne River formation may be more susceptible than water in other areas to becoming mixed with injected oil-production water. The reason for this possible mixing is because these areas containing the susceptible groundwater lack a thick shale layer above the disposal zone, as indicated in geophysical logs. In other areas, naturally occurring moderately saline water exists at shallow depths and may be withdrawn from water wells completed more than 200 ft below land surface. Additional geohydrologic information will need to be collected to allow investigators to make a quantitative determination of the rate of horizontal and vertical migration of injected oil-production water within and above the disposal zone.
Uinta Basin Pneumatic Controller Research Project: Industry meeting slides
Upstream oil and natural gas (ONG) production has increased significantly within Utah’s Uinta & Ouray (U&O) Basin and across the United States over the last decade. ONG extraction and production activities can co-emit volatile organic compounds (VOCs), a subset of which consists...
Oil shale and nahcolite resources of the Piceance Basin, Colorado
,
2010-01-01
This report presents an in-place assessment of the oil shale and nahcolite resources of the Green River Formation in the Piceance Basin of western Colorado. The Piceance Basin is one of three large structural and sedimentary basins that contain vast amounts of oil shale resources in the Green River Formation of Eocene age. The other two basins, the Uinta Basin of eastern Utah and westernmost Colorado, and the Greater Green River Basin of southwest Wyoming, northwestern Colorado, and northeastern Utah also contain large resources of oil shale in the Green River Formation, and these two basins will be assessed separately. Estimated in-place oil is about 1.5 trillion barrels, based on Fischer a ssay results from boreholes drilled to evaluate oil shale, making it the largest oil shale deposit in the world. The estimated in-place nahcolite resource is about 43.3 billion short tons.
Geotechnical Properties of Oil Shale Retorted by the PARAHO and TOSCO Processes.
1979-11-01
literature search was restricted to the Green River formation of oil shale in the tri-state area of Colorado (Piceance Basin ), Utah ( Uinta Basin ), and...it is preheated by combustion gases as it travels downward by gravity. Air and recycling gas are injected at midheight and are burned, bringing the oil ...REFERENCES..................................38 TABLES 1-5 APPENDIX A: OIL SHALE RETORTING PROCESSES................Al Tosco Process Gas Combustion
NASA Astrophysics Data System (ADS)
Paulsen, Timothy; Marshak, Stephen
1999-11-01
Structural trends in the Sevier fold-thrust belt define a pronounced concave-to-the-foreland map-view curve, the Uinta recess, in north-central Utah. This recess separates two convex-to-the-foreland curves, the Provo salient on the south and the Wyoming salient on the north. The two limbs of the recess comprise transverse zones (fault zones at a high-angle to the regional trend of the orogen) that border the flanks of the east-west-trending Uinta/Cottonwood arch. Our structural analysis indicates that the transverse zones formed during the Sevier orogeny, and that they differ markedly from each other in structural style. The Charleston transverse zone (CTZ), on the south side of the arch, initiated as a complex sinistral strike-slip fault system that defines the abrupt northern boundary of the Provo salient. The Mount Raymond transverse zone (MRTZ), on the north side of the arch, represents the region in which the southeast-verging southern limb of the gently curving Wyoming salient was tilted northwards during the Laramide phase of uplift of the Uinta/Cottonwood arch. In effect, the MRTZ represents an oblique cross section through a thrust belt. The contrasting architecture of these transverse zones demonstrates how pre-deformation basin geometry influences the geometry of a fold-thrust belt. Analysis of isopach maps indicates that, at the time the Sevier fold-thrust belt formed, the area just north of the present site of the Uinta/Cottonwood arch was a basement high, with a gently dipping north flank, and a steeply dipping south flank. Thus, predeformational sediment thickened abruptly to the south of the high and thickened gradually to the north of the high. As illustrated by sandbox models, the distance that a fold-thrust belt propagates into the foreland depends on the thickness of the sedimentary layer being deformed, so the shape of the salient mimics the longitudinal cross-sectional shape of the sedimentary basin. Where basins taper gradually along strike, the thrust belt curves gently, but where basins taper abruptly along strike, the thrust belt curves so tightly that it disarticulates and becomes bounded laterally by a strike-slip accommodation zone. The geometry of the Uinta recess provides a field example of this concept. Differential movement of Sevier thrusts led to formation of gradually curving thrusts on the north side of the high, because of the gradual slope of the high's north flank, but led to the along-strike disarticulation of thrusts on the south side of the high, because of the steep slope of the high's south flank. In effect, therefore, thrust belt map-view geometry provides insight into predeformational basin geometry.
NASA Astrophysics Data System (ADS)
Ahmadov, R.; McKeen, S. A.; Trainer, M.; Banta, R. M.; Brown, S. S.; Edwards, P. M.; Frost, G. J.; Gilman, J.; Helmig, D.; Johnson, B.; Karion, A.; Koss, A.; Lerner, B. M.; Oltmans, S. J.; Roberts, J. M.; Schnell, R. C.; Veres, P. R.; Warneke, C.; Williams, E. J.; Wild, R. J.; Yuan, B.; Zamora, R. J.; Petron, G.; De Gouw, J. A.; Peischl, J.
2014-12-01
The huge increase in production of oil and natural gas has been associated with high wintertime ozone events over some parts of the western US. The Uinta Basin, UT, where oil and natural gas production is abundant experienced high ozone concentrations in winters of recent years, when cold stagnant weather conditions were prevalent. It has been very challenging for conventional air quality models to accurately simulate such wintertime ozone pollution cases. Here, a regional air quality model study was successfully conducted for the Uinta Basin by using the WRF-Chem model. For this purpose a new emission dataset for the region's oil/gas sector was built based on atmospheric in-situ measurements made during 2012 and 2013 field campaigns in the Uinta Basin. The WRF-Chem model demonstrates that the major factors driving high ozone in the Uinta Basin in winter are shallow boundary layers with light winds, high emissions of volatile organic compounds (VOC) compared to nitrogen oxides emissions from the oil and natural gas industry, enhancement of photolysis rates and reduction of O3 dry deposition due to snow cover. We present multiple sensitivity simulations to quantify the contribution of various factors driving high ozone over the Uinta Basin. The emission perturbation simulations show that the photochemical conditions in the Basin during winter of 2013 were VOC sensitive, which suggests that targeting VOC emissions would be most beneficial for regulatory purposes. Shortcomings of the emissions within the most recent US EPA (NEI-2011, version 1) inventory are also discussed.
Overpressures in the Uinta Basin, Utah: Analysis using a three-dimensional basin evolution model
NASA Astrophysics Data System (ADS)
McPherson, Brian J. O. L.; Bredehoeft, John D.
2001-04-01
High pore fluid pressures, approaching lithostatic, are observed in the deepest sections of the Uinta basin, Utah. Geologic observations and previous modeling studies suggest that the most likely cause of observed overpressures is hydrocarbon generation. We studied Uinta overpressures by developing and applying a three-dimensional, numerical model of the evolution of the basin. The model was developed from a public domain computer code, with addition of a new mesh generator that builds the basin through time, coupling the structural, thermal, and hydrodynamic evolution. Also included in the model are in situ hydrocarbon generation and multiphase migration. The modeling study affirmed oil generation as an overpressure mechanism, but also elucidated the relative roles of multiphase fluid interaction, oil density and viscosity, and sedimentary compaction. An important result is that overpressures by oil generation create conditions for rock fracturing, and associated fracture permeability may regulate or control the propensity to maintain overpressures.
Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions
In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (sup...
the array are buried to a depth of approximately 200 feet. This report outlines, in some detail, the installation of a buried array at the Uinta ... Basin Seismological Observatory. Major considerations in such an undertaking included the selection of the most effective array pattern and the most
Exploration for coalbed methane gains momentum in Uinta basin
Gloyn, Robert W.; Sommer, Steven N.
1993-01-01
A development program is planned, and at least three other companies are exploring for coalbed methane in the surrounding area. Estimates have been revised by the Utah Geological Survey for the coalbed methane potential of the southern Uinta basin. They are 8 tcf to more than the earlier estimates of 0.8-4.6 tcf.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-01
... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLUTG01100-09-L13100000-EJ0000] Notice of Availability of a Draft Environmental Impact Statement for the Gasco Uinta Basin Natural Gas Development Project, Duchesne and Uintah Counties, UT AGENCY: Bureau of Land Management, Interior. ACTION: Notice of...
Areas with close proximity to oil and natural gas operations in rural Utah have experienced winter ozone levels that exceed EPA’s National Ambient Air Quality Standards (NAAQS). Through a collaborative effort, EPA Region 8 – Air Program, ORD, and OAQPS used the Commun...
Donnell, John R.
2009-01-01
During most of middle Eocene time, a 1,500-mi2 area between the Colorado and White Rivers in northwestern Colorado was occupied by the Piceance lobe of Lake Uinta. This initially freshwater lake became increasingly saline throughout its history. Sediments accumulating in the lake produced mostly clay shale, limestone, and dolomite containing varying concentrations of organic matter. At the time of the maximum extent of the lake, the organic-rich Mahogany bed of the Green River Formation was deposited throughout the area. Shortly after its deposition, stream deposits began infilling the lake from the north through a series of contractions interspersed with minor expansions. This fluctuation of the shoreline resulted in the intertonguing of the stream sediments of the lower part of the overlying Uinta Formation with the lacustrine sediments of the upper part of the Green River over a distance of about 40 mi; construction of regional stratigraphic cross sections show the pattern of intertonguing in considerable detail. The data utilized in this study, which covered parts of Rio Blanco, Garfield, and Mesa counties, was derived from (1) geologic mapping of thirty-four 7 1/2-minute quadrangles and stratigraphic studies by geologists of the U.S. Geological Survey, and (2) shale-oil assay information from numerous cores. As a result of this previous work and the additional effort involved in the compilation here presented, more than a dozen Green River Formation tongues have been named, some formally, others informally. Middle Eocene strata above the Mahogany bed in the northern part of the study area are dominantly coarse clastics of the Uinta Formation. The sedimentary sequence becomes more calcareous and organic-rich to the south where, in a 400-mi2 area, a 250 ft-thick sequence of oil shale above the Mahogany bed contains an average of 16 gallons of oil per ton of shale and is estimated to contain 73 billion barrels of oil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.
1992-02-01
This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey's Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fouch, T.D.; Wandrey, C.J.; Pitman, J.K.
1992-02-01
This report characterizes Upper Cretaceous Campanian and Maastrichtian, and lower Tertiary gas-bearing rocks in the Uinta Basin with special emphasis on those units that contain gas in reservoirs that have been described as being tight. The report was prepared for the USDOE whose Western Tight Gas Sandstone Program cofunded much of this research in conjunction with the US Geological Survey`s Evolution of Sedimentary Basins, and Onshore Oil and Gas Programs. (VC)
Executive Summary of the Cloud Impacts on DoD Operations and Systems - 1988 Workshop (CIDOS - 88)
1988-01-01
over the Great Salt Lake Basin - an example of the complexity of satellite cloud detection. The image is photography #358 from the Large Format...over the Wasatch Range, east of the Great Salt Lake, and over the southern escarpment of the Uinta Mountains (lop right corner). The simple threshold
Multivariate Regression Analysis of Winter Ozone Events in the Uinta Basin of Eastern Utah, USA
NASA Astrophysics Data System (ADS)
Mansfield, M. L.
2012-12-01
I report on a regression analysis of a number of variables that are involved in the formation of winter ozone in the Uinta Basin of Eastern Utah. One goal of the analysis is to develop a mathematical model capable of predicting the daily maximum ozone concentration from values of a number of independent variables. The dependent variable is the daily maximum ozone concentration at a particular site in the basin. Independent variables are (1) daily lapse rate, (2) daily "basin temperature" (defined below), (3) snow cover, (4) midday solar zenith angle, (5) monthly oil production, (6) monthly gas production, and (7) the number of days since the beginning of a multi-day inversion event. Daily maximum temperature and daily snow cover data are available at ten or fifteen different sites throughout the basin. The daily lapse rate is defined operationally as the slope of the linear least-squares fit to the temperature-altitude plot, and the "basin temperature" is defined as the value assumed by the same least-squares line at an altitude of 1400 m. A multi-day inversion event is defined as a set of consecutive days for which the lapse rate remains positive. The standard deviation in the accuracy of the model is about 10 ppb. The model has been combined with historical climate and oil & gas production data to estimate historical ozone levels.
Montgomery, S.L.; Morgan, C.D.
1998-01-01
Bluefield Field is the largest oil-producing area in the Unita basin of northern Utah. The field inclucdes over 300 wells and has produced 137 Mbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10 500-13 000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta Basin withi reservoirs in similar lacustrine and related deposits.Bluebell field is the largest oil-producing area in the Uinta basin of northern Utah. The field includes over 300 wells and has produced 137 MMbbl oil and 177 bcf gas from fractured Paleocene-Eocene lacustrine and fluvial deposits of the Green River and Wasatch (Colton) formations. Oil and gas are produced at depths of 10,500-13,000 ft (3330-3940 m), with the most prolific reservoirs existing in over-pressured sandstones of the Colton Formation and the underlying Flagstaff Member of the lower Green River Formation. Despite a number of high-recovery wells (1-3 MMbbl), overall field recovery remains low, less than 10% original oil in place. This low recovery rate is interpreted to be at least partly a result of completion practices. Typically, 40-120 beds are perforated and stimulated with acid (no proppant) over intervals of up to 3000 ft (900 m). Little or no evaluation of individual beds is performed, preventing identification of good-quality reservoir zones, water-producing zones, and thief zones. As a result, detailed understanding of Bluebell reservoirs historically has been poor, inhibiting any improvements in recovery strategies. A recent project undertaken in Bluebell field as part of the U.S. Department of Energy's Class 1 (fluvial-deltaic reservoir) Oil Demonstration program has focused considerable effort on reservoir characterization. This effort has involved interdisciplinary analysis of core, log, fracture, geostatistical, production, and other data. Much valuable new information on reservoir character has resulted, with important implications for completion techniques and recovery expectations. Such data should have excellent applicability to other producing areas in the Uinta basin with reservoirs in similar lacustrine and related deposits.
Howells, Lewis; Longson, M.S.; Hunt, Gilbert L.
1987-01-01
The base of the moderately saline water (water that contains from 3,000 to 10,000 milligrams per liter of dissolved solids) was mapped by using available water-quality data and by determining formation-water resistivities from geophysical well logs based on the resistivity-porosity, spontaneous potential, and resistivity-ratio methods. The contour map developed from these data showed a mound of very saline and briny water, mostly of sodium chloride and sodium bicarbonate type, in most of that part of the Uinta Basin that is underlain by either the Green River or Wasatch Formations. Along its northern edge, the mound rises steeply from below sea level to within 2,000 feet of the land surface and, locally, to land surface. Along its southern edge, the mound rises less steeply and is more complex in outline. This body of very saline to briny water may be a lens; many wells or test holes drilled within the area underlain by the mound re-entered fresh to moderately saline water at depths of 8,000 to 15,000 feet below lam surface.
Emissions Inventory for the Uinta Basin of Eastern Utah, Winter 2012
NASA Astrophysics Data System (ADS)
Moss, D.; Hall, C. F.; Mansfield, M. L.
2012-12-01
We report the results of an emissions inventory for the Uinta Basin, Duchesne and Uintah Counties, Utah, focusing on emissions categories that are poorly represented by existing inventories. We have also focused on wintertime emissions in general and on the winter season of 2012, in particular, in order to have an inventory that is relevant to winter ozone events in the basin. The inventory includes categories such as major and minor point sources, produced water evaporation ponds, wood stoves, mobile emissions, biogenic and agricultural emissions, land fills, etc.
1980-12-22
Nevada and Utah Great Basin area, can be quickly drawn because of the paucity of known sites. The sole commercially producing area of oil and gas in...good production (in addition to oil shale, tar, sand and Gilsonite) is to be found in the Uinta Basin . Major production in Utah comes from the four...Utah crude came from these four fields. About 3,000 ni 2 (7,800 km 2 ) in the Uinta Basin in northeastern Utah is underlain by oil shale 15 ft (4.5 m
2017-01-01
Summarizes spot coal prices by coal commodity regions (i.e., Central Appalachia (CAP), Northern Appalachia (NAP), Illinois Basin (ILB), Power River Basin (PRB), and Uinta Basin (UIB)) in the United States.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, C.D.
1997-02-01
The objective of this project is to increase oil production and reserves in the Uinta Basin by demonstrating improved completion techniques. Low productivity of Uinta Basin wells is caused by gross production intervals of several thousand feet that contain perforated thief zones, water-bearing zones, and unperforated oil-bearing intervals. Geologic and engineering characterization and computer simulation of the Green River and Wasatch formations in the Bluebell field will determine reservoir heterogeneities related to fractures and depositional trends. This will be followed by drilling and recompletion of several wells to demonstrate improved completion techniques based on the reservoir characterization. Transfer of themore » project results will be an ongoing component of the project. The recompletion of the Michelle Ute 7-1 well commenced and is the first step in the three-well demonstration. As part of the recompletion, the gross productive interval was logged, additional beds were perforated, and the entire interval was stimulated with a three-stage acid treatment. The operator attempted to stimulate the well at high pressure (about 10,000 pounds per square inch (psi) [68,950 kPa]) at three separate packer locations. But at each location the pressure would not hold. As a result, all three stages were pumped at a lower pressure (6500 psi maximum [44,820 kPa]) from one packer location. As of December 31, 1996, the operator was tripping in the hole with the production packer and tubing to begin swab testing the well.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County Washakie County... Park County Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County... PSD Baseline Area—Powder River Basin. Campbell County (part), That areabounded by NW1/4 of Section 27...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County Washakie County... Park County Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County... PSD Baseline Area—Powder River Basin. Campbell County (part), That areabounded by NW1/4 of Section 27...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County Washakie County... Park County Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County... PSD Baseline Area—Powder River Basin. Campbell County (part), That areabounded by NW1/4 of Section 27...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County Washakie County... Park County Platte County Sheridan County Sublette County Sweetwater County Teton County Uinta County... PSD Baseline Area—Powder River Basin. Campbell County (part), That areabounded by NW1/4 of Section 27...
Brooks, Mark S.
2012-01-01
The Wasatch and Uinta Mountains Ecoregion covers approximately 44,176 km2 (17, 057 mi2) (fig. 1) (Omernik, 1987; U.S. Environmental Protection Agency, 1997). With the exception of a small part of the ecoregion extending into southern Wyoming and southern Idaho, the vast majority of the ecoregion is located along the eastern mountain ranges of Utah. The ecoregion is situated between the Wyoming Basin and Colorado Plateaus Ecoregions to the east and south and the Central Basin and Range Ecoregion to the west; in addition, the Middle Rockies, Snake River Basin, and Northern Basin and Range Ecoregions are nearby to the north. Considered the western front of the Rocky Mountains, the two major mountain ranges that define the Wasatch and Uinta Mountains Ecoregion include the north-south-trending Wasatch Range and east-west- trending Uinta Mountains. Both mountain ranges have been altered by multiple mountain building and burial cycles since the Precambrian era 2.6 billion years ago, and they have been shaped by glacial processes as early as 1.6 million years ago. The terrain is defined by sharp ridgelines, glacial lakes, and narrow canyons, with elevations ranging from 1,829 m in the lower canyons to 4,123 m at Kings Peak, the highest point in Utah (Milligan, 2010).
NASA Astrophysics Data System (ADS)
Jones, E. R.; Plink-Bjorklund, P.
2015-12-01
Flashy delivery of water and sediment had distinct effects on the process of deposition in coeval fluvial megafan and fan delta deposits on opposing shorelines of a paleolake that occupied the Uinta Basin throughout the Eocene. The Tertiary Uinta Basin was an asymmetric continental interior basin with a steep northern margin, adjacent to the block uplift controlling basin subsidence, and a low gradient southern margin. A ~140 km wide fluvial megafan with catchments as far as ~750 km away occupied the southern margin of the lacustrine basin. Within this megafan system, fluvial deposits contain within-channel continental bioturbation and paleosol development on bar accretion surfaces that are evidence of prolonged periods of groundwater flow or channel abandonment. These are punctuated by channel fills exhibiting a suite of both high-deposition rate and upper flow regime sedimentary structures that were deposited by very rapid suspension-fallout during seasonal to episodic river flooding events. A series of small (~8 km wide) and proximally sourced fan deltas fed sediment into the steeper northern margin of the lacustrine basin. 35-50% of the deposits in the delta plain environment of these fan deltas are very sandy debris flows with as low as 5% clay and silt sized material. Detrital zircon geochronology shows that these fan deltas were tapping catchments where mostly unconsolidated Cretaceous sedimentary cover and thick Jurassic eolianites were being eroded. A combination of flashy precipitation, arid climate, catchments mantled by abundant loose sand-sized colluvium, and steep depositional gradients promoted generation of abundant very sandy (5-10% clay and silt sized material) debris flows. In this way, the Wasatch and Green River Formations in the Uinta Basin, Utah, U.S.A. gives us two very different examples of how routing flashy water and sediment delivery (associated with pulses of hyperthermal climate change during the Early Eocene) through different depositional systems produced unique processes of deposition, and also gives us an opportunity to isolate the effects of other variables (e.g. sediment caliber, system gradient, catchment size) that can modulate the flashy precipitation signal in stratigraphy.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Teton County Uinta County Washakie County Weston County 1 This date is November 15, 1990, unless... Sublette County Sweetwater County Teton County Uinta County Washakie County Weston County 1 This date is... Hampshire Energy Area, and the Kennecott/Puron PSD Baseline Area—Powder River Basin. Campbell County (part...
Survey of Rural Areas in the Western United States with the Potential to form Winter Ozone
NASA Astrophysics Data System (ADS)
Hall, C. F.; Mansfield, M. L.
2012-12-01
Both the Uinta Basin of Eastern Utah and the Upper Green River Basin of Western Wyoming are prone to winter ozone events. Ozone in both basins is believed to require a specific set of meteorological phenomena, namely, snow cover and persistent thermal inversions. It is also believed that the primary source of ozone precursors in both basins is the production of oil and/or natural gas. We have conducted a survey of many basins and valleys in the West United States in order to identify regions having meteorology similar to either the Uinta or the Upper Green River Basins, but also having dissimilar industrial activity. Ozone monitoring in such regions may help us better understand the role of oil and gas emissions in the winter ozone phenomenon.
Selected hydrologic data, Uinta Basin area, Utah and Colorado
Hood, J.W.; Mundorff, J.C.; Price, Don
1976-01-01
The Uinta Basin area in northeastern Utah and northwestern Colorado covers an area of slightly more than 10,000 mi2 (25,900 km2). More than 95 percent of the basin is in Utah, thus most of the data in this report apply to Utah. Most of the water wells are concentrated in populated areas along the lower parts of the basin; records of only a representative number of these water sources are included in this report.This report presents consolidated listings of data selected for use in hydrologic studies in the Uinta Basin area through June 1974. The data are principally taken from three studies made during 1971-74 by the U.S. Geological Survey in cooperation with the Utah Department of Natural Resources, Division of Water Rights. Also incorporated in this report are data collected since 1935 by the Geological Survey and other organizations. This report is intended to make data conveniently available and to supplement interpretive reports that will be published separately. For some data sites, the volume of data is too great for complete inclusion here. For these sites, data summaries are provided, and for greater detail the reader is referred to the sources listed under Selected references.
Critical Elements in Produced Fluids from Nevada and Utah
Simmons, Stuart
2017-07-27
Critical elements and related analytical data for produced fluids from geothermal fields in Nevada and Utah, Sevier thermal belt hot springs, Utah, and Uinta basin oil-gas wells, Utah are reported. Analytical results include pH, major species, trace elements, transition metals, other metals, metalloids and REEs. Gas samples were collected and analyzed from Beowawe, Dixie Valley, Roosevelt Hot Springs, and Thermo. Helium gases and helium isotopes were analyzed on samples collected at Patua, San Emido and two wells in the Uinta basin.
1981-10-02
data from a well-watered heterogeneous area in the High Uintas (Stankey, 1973) as compared to the majority of the arid Great Basin wilderness resources...Jarbidge in the Humboldt National Forest in northeastern Nevada, and Lone Peak in the Uinta and Wasatch National Forest of central Utah. These areas...from a comprehensive study of the Great Basin (Bostick et al., 1975). Designated National - Natural Landmarks on the Registery in Nevada and Utah are
Nelson, Philip H.; Hoffman, Eric L.
2009-01-01
Gas, oil, and water production data were compiled from 38 wells with production commencing during the 1980s from the Wasatch Formation in the Greater Natural Buttes field, Uinta Basin, Utah. This study is one of a series of reports examining fluid production from tight gas reservoirs, which are characterized by low permeability, low porosity, and the presence of clay minerals in pore space. The general ranges of production rates after 2 years are 100-1,000 mscf/day for gas, 0.35-3.4 barrel per day for oil, and less than 1 barrel per day for water. The water:gas ratio ranges from 0.1 to10 barrel per million standard cubic feet, indicating that free water is produced along with water dissolved in gas in the reservoir. The oil:gas ratios are typical of a wet gas system. Neither gas nor water rates show dependence upon the number of perforations, although for low gas-flow rates there is some dependence upon the number of sandstone intervals that were perforated. Over a 5-year time span, gas and water may either increase or decrease in a given well, but the changes in production rate do not exhibit any dependence upon well proximity or well location.
Geochemistry of spring water, southeastern Uinta Basin, Utah and Colorado
Kimball, Briant A.
1981-01-01
The chemical quality of water in the southeastern Uinta Basin, Utah and Colorado, is important to the future development of the abundant oil-shale resources of the area. This report examines the observed changes in chemistry as water circulates in both shallow and deep ground-water systems. Mass-balance and mass- transfer calculations are used to define reactions that simulate the observed water chemistry in the mixed sandstone, siltstone, and carbonate lithology of the Green River Formation of Tertiary age.The mass-transfer calculations determine a reaction path particular to this system. The early dominance of calcite dissolution produces a calcium carbonate water. After calcite saturation, deeper circulation and further rock-water interaction cause the reprecipitation of calcite, the dissolution of dolomite and plagioclase, and the oxidation of pyrite; all combining to produce a calcium magnesium sodium bicarbonate sulfate water. The calculations suggest that silica concentrations are controlled by a kaolinite-Ca-montmorillonite phase boundary. Close agreement of mineral-saturation indices calculated by both an aqueous-equilibrium model and the mass-transfer model support the selection of reactions from the mass-transfer calculations.
Johnson, Ronald C.; Brownfield, Michael E.
2015-01-01
Leaching of saline minerals began sometime after the Green River Formation was lithified enough to allow collapse breccias to form. Leaching is ongoing today, indicated by the discharge of highly saline water from a series of springs in the northern part of the basin. Groundwater invasion and saline mineral dissolution is commonly incomplete in areas that lack fractures, leaving behind pockets of unleached saline minerals in otherwise leached intervals. Today, the base of the leached zone slopes toward the north and toward the area where the brines are being discharged.
Major Oil Plays in Utah and Vicinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas C. Chidsey; Craig D. Morgan; Kevin McClure
2003-12-31
Utah oil fields have produced over 1.2 billion barrels (191 million m{sup 3}). However, the 13.7 million barrels (2.2 million m{sup 3}) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. The Utah Geological Survey believes this trend can be reversed by providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, andmore » other factors. The play portfolios will include: descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary techniques for each play. This report covers research activities for the sixth quarter of the project (October 1 through December 31, 2003). This work included describing outcrop analogs for the Jurassic Twin Creek Limestone and Mississippian Leadville Limestone, major oil producers in the thrust belt and Paradox Basin, respectively, and analyzing best practices used in the southern Green River Formation play of the Uinta Basin. Production-scale outcrop analogs provide an excellent view of reservoir petrophysics, facies characteristics, and boundaries contributing to the overall heterogeneity of reservoir rocks. They can be used as a ''template'' for evaluation of data from conventional core, geophysical and petrophysical logs, and seismic surveys. In the Utah/Wyoming thrust belt province, the Jurassic Twin Creek Limestone produces from subsidiary closures along major ramp anticlines where the low-porosity limestone beds are extensively fractured and sealed by overlying argillaceous and non-fractured units. The best outcrop analogs for Twin Creek reservoirs are found at Devils Slide and near the town of Peoa, Utah, where fractures in dense, homogeneous non-porous limestone beds are in contact with the basal siltstone units (containing sealed fractures) of the overlying units. The shallow marine, Mississippian Leadville Limestone is a major oil and gas reservoir in the Paradox Basin of Utah and Colorado. Hydrocarbons are produced from basement-involved, northwest-trending structural traps with closure on both anticlines and faults. Excellent outcrops of Leadville-equivalent rocks are found along the south flank of the Uinta Mountains, Utah. For example, like the Leadville, the Mississippian Madison Limestone contains zones of solution breccia, fractures, and facies variations. When combined with subsurface geological and production data, these outcrop analogs can improve (1) development drilling and production strategies such as horizontal drilling, (2) reservoir-simulation models, (3) reserve calculations, and (4) design and implementation of secondary/tertiary oil recovery programs and other best practices used in the oil fields of Utah and vicinity. In the southern Green River Formation play of the Uinta Basin, optimal drilling, development, and production practices consist of: (1) owning drilling rigs and frac holding tanks; (2) perforating sandstone beds with more than 8 percent neutron porosity and stimulate with separate fracture treatments; (3) placing completed wells on primary production using artificial lift; (4) converting wells relatively soon to secondary waterflooding maintaining reservoir pressure above the bubble point to maximize oil recovery; (5) developing waterflood units using an alternating injector--producer pattern on 40-acre (16-ha) spacing; and (6) recompleting producing wells by perforating all beds that are productive in the waterflood unit. As part of technology transfer activities during this quarter, an abstract describing outcrop reservoir analogs was accepted by the American Association of Petroleum Geologists, for presentation at the 2004 annual meeting in Dallas, Texas. Another abstract was submitted for consideration on basin-wide correlation of Green River Formation plays and subplays in the Uinta Basin in Utah. The project home page was updated on the Utah Geological Survey Internet web site.« less
The crazy hollow formation (Eocene) of central Utah
Weiss, M.P.; Warner, K.N.
2001-01-01
The Late Eocene Crazy Hollow Formation is a fluviatile and lacustrine unit that was deposited locally in the southwest arm of Lake Uinta during and after the last stages of the lake the deposited the Green River Formation. Most exposures of the Crazy Hollow are located in Sanpete and Sevier Counties. The unit is characterized by a large variety of rock types, rapid facies changes within fairly short distances, and different lithofacies in the several areas where outcrops of the remnants of the formation are concentrated. Mudstone is dominant, volumetrically, but siltstone, shale, sandstone, conglomerate and several varieties of limestone are also present. The fine-grained rocks are mostly highly colored, especially in shades of yellow, orange and red. Sand grains, pebbles and small cobbles of well-rounded black chert are widespread, and "salt-and-pepper sandstone" is the conspicuous characteristic of the Crazy Hollow. The salt-and-pepper sandstone consists of grains of black chert, white chert, quartz and minor feldspar. The limestone beds and lenses are paludal and lacustrine in origin; some are fossiliferous, and contain the same fauna found in the Green River Formation. With trivial exceptions, the Crazy Hollow Formation lies on the upper, limestone member of the Green River Formation, and the beds of the two units are always accordant in attitude. The nature of the contact differs locally: at some sites there is gradation from the Green River to the Crazy Hollow; at others, rocks typical of the two units intertongue; elsewhere there is a disconformity between the two. A variety of bedrock units overlie the Crazy Hollow at different sites. In the southeasternmost districts it is overlain by the late Eocene formation of Aurora; in western Sevier County it is overlain by the Miocene-Pliocene Sevier River Formation; in northernmost Sanpete County it is overlain by the Oligocene volcanics of the Moroni Formation. At many sites bordering Sanpete and Sevier Valleys the Crazy Hollow beds dip beneath Quaternary sediments that fill the two valleys. The Crazy Hollow Formation ranges from 0 to 1,307 feet (0-398 m) thick in the region, but is usually much thinner than the maximum value. At most outcrops it is only a few scores of feet (12-50 m) thick. Its age is middle Eocene, for it is only a little younger than the underlying Green River Formation. The unit developed by the washing of detritus into the basin of the southwest arm of Lake Uinta from the various source rocks in the highlands surrounding the basin. The limestone beds and lenses formed in ponds and small lakes that developed in the basin from time to time during and following the draining and evaporation of Lake Uinta. The qualities of the Crazy Hollow Formation are described in detail for 10 different areas of outcrops in the Sanpete and Sevier Valleys and vicinity.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
... DEPARTMENT OF THE INTERIOR Bureau of Land Management [LLUTG01100-12-L13110000-EJ0000] Notice of Availability of a Final Environmental Impact Statement for the Gasco Energy Inc. Uinta Basin Natural Gas Development Project, Uintah County, UT AGENCY: Bureau of Land Management, Interior. ACTION: Notice of...
Astronomical pacing of ecosystem function in the Green River Formation of Utah and Colorado
NASA Astrophysics Data System (ADS)
van Keuren, M. A.; Whiteside, J. H.; Eglinton, T. I.
2008-12-01
Part of one of the largest petroleum reserves in the world, the Green River Formation of the Uinta and Piceance Creek basins of Utah and Colorado, formed in a huge Eocene lake system during the warmest, most equable period in recent Earth history. Despite the unit's great potential economic importance and correspondingly large number of geochemical analyses and the preeminent role of these strata in Milankovitch theory (Bradley, 1929), there are surprisingly few systematic studies of the geochemistry of the characteristic permeating cyclicity. Here, we report multiple proxies of lacustrine ecosystem dynamics including oil shale yields, sedimentary facies, carbon and nitrogen isotopes, and molecule-level carbon isotopes from the most oil-rich parts (including the Mahogany oil shale zone) from a series of cores and outcrops in a transect across the Uinta and Piceance Creek basins spanning ~500 m stratigraphically and 3.2 m.y. temporally. Our initial results show covariation in sedimentary facies, oil shale yield, TOC, C/N ratios, and δ13Corg in the expected Milankovitch periodicities, although significant lateral and vertical changes in accumulation make the relative spectral power in the precessional range rather weak. There are, however, differences in the mode of response with oil shale yield, TOC, and sedimentary facies showing more power in the precessional range, while C/N ratios track the 100 ky cycle. C/N ratios tend to be high through multiple precessional cycles dominated by kerogen derived from microbial organic matter suggesting persistent anoxia and a large resulting pool of hypolimnetic ammonium. This pool was eliminated during low lake stands and C/N values then fluctuate through several precession controlled steps. The δ13Corg record, while showing a signal coherent with that of other proxies, has a rather complicated relationship with other proxies, the analysis of which is in its early stages. Molecule-level δ13Corg analysis of n-alkanes suggests mixing of carbon from different sources of varying isotopic composition, and presents a dramatically different pattern from that seen in published studies of the saline facies of the formation. Based on our results, the Milankovitch cyclostratigraphy of these cores in concert with that from the rest of the Uinta and Piceance basin sections, can provide a basis for a time scale for continental environments and pivotal mammalian evolution during the hot-house Eocene.
Pitman, Janet K.; Franczyk, K.J.; Anders, D.E.
1987-01-01
Thermogenic gas was generated from interbedded humic-rich source rocks. The geometry and distribution of hydrocarbon source and reservoir rocks are controlled by depositional environment. The rate of hydrocarbon generation decreased from the late Miocene to the present, owing to widespread cooling that occurred in response to regional uplift and erosion associated with the development of the Colorado Plateau. -from Authors
1983-11-04
Arizona, and the Uinta Basin Seismological Observatory near Vernal, Utah. The seismometer locations at Edwards AFB were on a quartz monzonite outcrop and a...sandstone and limestone section covered the seismometer array area. The array area at the Uinta Basin site consisted of fluviatile, friable, cross...ONuSU"a 00121 SUSCOMIMM oil &MMN OOllTVlCl OqMCA OSM A O&O T U.&L COal .a n od - pNOW I" ""I564-746- Congress of the ’United * atets C P*C•TO
A Dendroclimatic Analysis of Fluctuations in the Great Salt Lake.
1986-01-01
in the Great Salt Lake drainage basin , and are therefore only an estimate of the amount of precipitation falling there; Tree ring indices end, for the...Express Nevada PONY Pinyon Pine 30 39 49’N 114 37’W 1400 - 1982 Uinta Mountains, Site D Utah UINTAD Pinyon Pine 8 40 37’N 109 57’W 1430 - 1971 Conners Pass...Single Leaf Pinyon 14 39 16’N 114 07’W 1610 - 1978 Uinta Mountains, North Utah UINTAN Englemann Spruce 18 40 57’N 110 26’W 1610 - 1971 Uinta Mountains
Thermal maturity map of the lower part of the Upper Cretaceous Mesaverde Group, Uintah Basin, Utah
Nuccio, Vito F.; Johnson, Ronald C.
1986-01-01
The ability of rock to generate oil and gas is directly related to the type and quantity of kerogen and to its thermal maturity; therefore, thermal maturity is a commonly used tool for oil and gas exploration. The purpose of this study ws to provide a thermal-maturity map for the lower part of the Upper Cretaceous Mesaverde Group in the eastern part of the Uinta Basin. Prior to this study, thermal-maturity data were not available for the Uinta Basin. This study uses coal rank to show the thermal maturity of the associated rocks. The map was prepared in cooperation with the U.S. Department of Energy under its western gas sands project.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vanden Berg, Michael; Morgan, Craig; Chidsey, Thomas
The enclosed report is the culmination of a multi-year and multi-faceted research project investigating Utah’s unconventional tight oil potential. From the beginning, the project team focused efforts on two different plays: (1) the basal Green River Formation’s (GRF) Uteland Butte unconventional play in the Uinta Basin and (2) the more established but understudied Cane Creek shale play in the Paradox Basin. The 2009-2014 high price of crude oil, coupled with lower natural gas prices, generated renewed interest in exploration and development of liquid hydrocarbon reserves. Following the success of the mid-2000s shale gas boom and employing many of the samemore » well completion techniques, petroleum companies started exploring for liquid petroleum in shale formations. In fact, many shales targeted for natural gas include areas in which the shale is more prone to liquid production. In Utah, organic-rich shales in the Uinta and Paradox Basins have been the source of significant hydrocarbon generation, with companies traditionally targeting the interbedded sands or carbonates for their conventional resource recovery. Because of the advances in horizontal drilling and hydraulic fracturing techniques, operators in these basins started to explore the petroleum production potential of the shale units themselves. The GRF in the Uinta Basin has been studied for over 50 years, since the first hydrocarbon discoveries. However, those studies focused on the many conventional sandstone reservoirs currently producing oil and gas. In contrast, less information was available about the more unconventional crude oil production potential of thinner carbonate/shale units, most notably the basal Uteland Butte member. The Cane Creek shale of the Paradox Basin has been a target for exploration periodically since the 1960s and produces oil from several small fields. The play generated much interest in the early 1990s with the successful use of horizontal drilling. Recently, the USGS assessed the undiscovered oil resource in the Cane Creek shale of the Paradox Basin at 103 million barrels at a 95 percent confidence level and 198 million barrels at a 50 percent confidence level. Nonetheless, limited research was available or published to further define the play and the reservoir characteristics. The specific objectives of the enclosed research were to (1) characterize geologic, geochemical, and geomechanical rock properties of target zones in the two designated basins by compiling data and by analyzing available cores, cuttings, and well logs; (2) describe outcrop reservoir analogs of GRF plays (Cane Creek shale is not exposed) and compare them to subsurface data; (3) map major regional trends for targeted intervals and identify “sweet spots” that have the greatest oil potential; (4) reduce exploration costs and drilling risks, especially in environmentally sensitive areas; (5) improve drilling and fracturing effectiveness by determining optimal well completion design; and (6) reduce field development costs, maximize oil recovery, and increase reserves. These objectives are all addressed in a series of nine publications that resulted from this extensive research project. Each publication is included in this report as an independent appendix.« less
Geologic Controls on the Growth of Petroleum Reserves
Fishman, Neil S.; Turner, Christine E.; Peterson, Fred; Dyman, Thaddeus S.; Cook, Troy
2008-01-01
The geologic characteristics of selected siliciclastic (largely sandstone) and carbonate (limestone and dolomite) reservoirs in North America (largely the continental United States) were investigated to improve our understanding of the role of geology in the growth of petroleum reserves. Reservoirs studied were deposited in (1) eolian environments (Jurassic Norphlet Formation of the Gulf Coast and Pennsylvanian-Permian Minnelusa Formation of the Powder River Basin), (2) interconnected fluvial, deltaic, and shallow marine environments (Oligocene Frio Formation of the Gulf Coast and the Pennsylvanian Morrow Formation of the Anadarko and Denver Basins), (3) deeper marine environments (Mississippian Barnett Shale of the Fort Worth Basin and Devonian-Mississippian Bakken Formation of the Williston Basin), (4) marine carbonate environments (Ordovician Ellenburger Group of the Permian Basin and Jurassic Smackover Formation of the Gulf of Mexico Basin), (5) a submarine fan environment (Permian Spraberry Formation of the Midland Basin), and (6) a fluvial environment (Paleocene-Eocene Wasatch Formation of the Uinta-Piceance Basin). The connection between an oil reservoir's production history and geology was also evaluated by studying production histories of wells in disparate reservoir categories and wells in a single formation containing two reservoir categories. This effort was undertaken to determine, in general, if different reservoir production heterogeneities could be quantified on the basis of gross geologic differences. It appears that reserve growth in existing fields is most predictable for those in which reservoir heterogeneity is low and thus production differs little between wells, probably owing to relatively homogeneous fluid flow. In fields in which reservoirs are highly heterogeneous, prediction of future growth from infill drilling is notably more difficult. In any case, success at linking heterogeneity to reserve growth depends on factors in addition to geology, such as engineering and technological advances and political or cultural or economic influences.
Production of NOx and other precursors of ozone formation in the Uinta Basin
NASA Astrophysics Data System (ADS)
Smith, E.; Lyman, S. N.; Martin, R. S.; Anderson, R.
2012-12-01
The Uinta Basin, located in northeastern Utah, sometimes experiences ozone mixing ratios greater than the EPA NAAQS during specific meteorological conditions that include a combination of snow cover and inversion. We monitored ozone and some of its precursors, including NO, NO2, NOx (NO + NO2), and NOy (sum of reactive nitrogen species), at two sites (Roosevelt and Horse Pool). The Roosevelt site is in a city of about 6,000 people, and the Horse Pool site is in an area of intensive oil and gas production. In February and March 2012, NO, NO2, and NOy mixing ratios were 0.5 ± 0.8, 5.2 ± 2.6, and 6.5 ± 3.9 ppb at Roosevelt and 0 ± 1.3, 2.8 ± 2.7, and 4.1 ± 4.4 ppb at Horse Pool, respectively (mean ± standard deviation). NO, NO2, and NOx were measured at 7 other sites around the Basin by other entities. The spatial and temporal patterns in NOx and NOy indicate the dominance of local source influences on observed mixing ratios. NOx at urban sites and in oil and gas production areas appeared strongly influenced by traffic patterns. At some sites, wind direction analysis and air trajectory analysis indicated that areas of oil and gas production are significant sources of NOx, though pinpointing individual NOx sources proved difficult.
NASA Astrophysics Data System (ADS)
Sitaula, R. P.; Aschoff, J.
2013-12-01
Regional-scale sequence stratigraphic correlation, well log analysis, syntectonic unconformity mapping, isopach maps, and depositional environment maps of the upper Mesaverde Group (UMG) in Uinta basin, Utah suggest higher accommodation in northeastern part (Natural Buttes area) and local development of lacustrine facies due to increased subsidence caused by uplift of San Rafael Swell (SRS) in southern and Uinta Uplift in northern parts. Recently discovered lacustrine facies in Natural Buttes area are completely different than the dominant fluvial facies in outcrops along Book Cliffs and could have implications for significant amount of tight-gas sand production from this area. Data used for sequence stratigraphic correlation, isopach maps and depositional environmental maps include > 100 well logs, 20 stratigraphic profiles, 35 sandstone thin sections and 10 outcrop-based gamma ray profiles. Seven 4th order depositional sequences (~0.5 my duration) are identified and correlated within UMG. Correlation was constructed using a combination of fluvial facies and stacking patterns in outcrops, chert-pebble conglomerates and tidally influenced strata. These surfaces were extrapolated into subsurface by matching GR profiles. GR well logs and core log of Natural Buttes area show intervals of coarsening upward patterns suggesting possible lacustrine intervals that might contain high TOC. Locally, younger sequences are completely truncated across SRS whereas older sequences are truncated and thinned toward SRS. The cycles of truncation and thinning represent phases of SRS uplift. Thinning possibly related with the Uinta Uplift is also observed in northwestern part. Paleocurrents are consistent with interpretation of periodic segmentation and deflection of sedimentation. Regional paleocurrents are generally E-NE-directed in Sequences 1-4, and N-directed in Sequences 5-7. From isopach maps and paleocurrent direction it can be interpreted that uplift of SRS changed route of sediment supply from west to southwest. Locally, paleocurrents are highly variable near SRS further suggesting UMG basin-fill was partitioned by uplift of SRS. Sandstone composition analysis also suggests the uplift of SRS causing the variation of source rocks in upper sequences than the lower sequences. In conclusion, we suggest that Uinta basin was episodically partitioned during the deposition of UMG due to uplift of Laramide structures in the basin and accommodation was localized in northeastern part. Understanding of structural controls on accommodation, sedimentation patterns and depositional environments will aid prediction of the best-producing gas reservoirs.
NASA Astrophysics Data System (ADS)
Schnell, Russell C.; Johnson, Bryan J.; Oltmans, Samuel J.; Cullis, Patrick; Sterling, Chance; Hall, Emrys; Jordan, Allen; Helmig, Detlev; Petron, Gabrielle; Ahmadov, Ravan; Wendell, James; Albee, Robert; Boylan, Patrick; Thompson, Chelsea R.; Evans, Jason; Hueber, Jacques; Curtis, Abigale J.; Park, Jeong-Hoo
2016-09-01
As part of the Uinta Basin Winter Ozone Study, January-February 2013, we conducted 937 tethered balloon-borne ozone vertical and temperature profiles from three sites in the Uinta Basin, Utah (UB). Emissions from oil and gas operations combined with snow cover were favorable for producing high ozone-mixing ratios in the surface layer during stagnant and cold-pool episodes. The highly resolved profiles documented the development of approximately week-long ozone production episodes building from regional backgrounds of 40 ppbv to >165 ppbv within a shallow cold pool up to 200 m in depth. Beginning in midmorning, ozone-mixing ratios increased uniformly through the cold pool layer at rates of 5-12 ppbv/h. During ozone events, there was a strong diurnal cycle with each succeeding day accumulating 4-8 ppbv greater than the previous day. The top of the elevated ozone production layer was nearly uniform in altitude across the UB independent of topography. Above the ozone production layer, mixing ratios decreased with height to 400 m above ground level where they approached regional background levels. Rapid clean-out of ozone-rich air occurred within a day when frontal systems brought in fresh air. Solar heating and basin topography led to a diurnal flow pattern in which daytime upslope winds distributed ozone precursors and ozone in the Basin. NOx-rich plumes from a coal-fired power plant in the eastern sector of the Basin did not appear to mix down into the cold pool during this field study.
Spatial Distribution of Ozone Precursors in the Uinta Basin
NASA Astrophysics Data System (ADS)
Mangum, C. D.; Lyman, S. N.
2012-12-01
Wintertime ozone mixing ratios in the Uinta Basin of Utah exceeding the EPA National Ambient Air Quality Standards measured during 2010 and 2011 led to a large campaign carried out in 2012 that included a study of the spatial distribution of ozone precursors in the Basin. In this study, speciated hydrocarbon mixing ratios (compounds with 6-11 carbon atoms) were measure at 10 sites around the Uinta Basin with Radiello passive samplers, and NO2, NO, and NOx (NO2 + NO) mixing ratios were measured at 16 sites with Ogawa passive sampler and active sampling instruments. Analysis of the Radiello passive samplers was carried out by CS2 desorption and analyzed on a Shimadzu QP-2010 GCMS. Analysis of the Ogawa passive samplers was done via 18.2 megohm water extraction and analyzed with a Dionex ICS-3000 ion chromatography system. February average hydrocarbon mixing ratios were highest in the area of maximum gas production (64.5 ppb as C3), lower in areas of oil production (24.3-30.0 ppb as C3), and lowest in urban areas and on the Basin rim (1.7-17.0 ppb as C3). February average for NOx was highest in the most densely populated urban area, Vernal (11.2 ppb), lower in in the area of maximum gas production (6.1 ppb), and lower still in areas of oil production and on the Basin Rim (0.6-2.7 ppb). Hydrocarbon speciation showed significant differences in spatial distribution around the Basin. Higher mixing ratios of toluene and other aromatics were much more prevalent in gas producing areas than oil producing areas. Similar mixing ratios of straight-chain alkane were observed in both areas. Higher mixing ratios of cycloalkanes were slightly more prevalent in gas producing than oil producing areas.
NASA Astrophysics Data System (ADS)
Lyman, S. N.
2017-12-01
Most of the water extracted with oil and natural gas (i.e., produced water) is disposed of by injection into the subsurface. In the arid western United States, however, a significant portion of produced water is discharged in ponds for evaporative disposal, and produced water is often stored in open ponds prior to subsurface injection. Even though they are common in the West (Utah's Uinta Basin has almost 200 ha), produced water ponds have been excluded from oil and gas emissions inventories because little information about their emission rates and speciation is available. We used flux chambers and inverse plume modeling to measure emissions of methane, C2-C11 hydrocarbons, light alcohols, carbonyls, and carbon dioxide from oil and gas produced water storage and disposal ponds in the Uinta Basin and the Upper Green River Basin, Wyoming, during 2013-2017. Methanol was the most abundant organic compound in produced water (91 ± 2% of the total volatile organic concentration; mean ± 95% confidence interval) but accounted for only 25 ± 30% of total organic compound emissions from produced water ponds. Non-methane hydrocarbons, especially C6-C9 alkanes and aromatics, accounted for the majority of emitted organics. We were able to predict emissions of individual compounds based on water concentrations, but only to within an order of magnitude. The speciation and magnitude of emissions varied strongly across facilities and was influenced by water age, the presence or absence of oil sheens, and with meteorological conditions (especially ice cover). Flux chamber measurements were lower than estimates from inverse modeling techniques.Based on our flux chamber measurements, we estimate that produced water ponds are responsible for between 3 and 9% of all non-methane organic compound emissions in the Uinta Basin (or as much as 18% if we rely on our inverse modeling results). Emissions from produced water ponds contain little methane and are more reactive (i.e., they have higher maximum incremental reactivity) than typical oil and gas-related emissions. Produced water ponds emit about 11% and 28%, respectively, of all aromatics and alcohols from the Uinta Basin oil and gas industry.
Discussion on a Potential DJ Basin Pneumatic Controller ...
ORD NRMRL and Region 8 collaborators are conducting emission measurements and method development studies on pneumatic controllers (PCs) in the Uintah Basin, Utah (and potentially in Colorado), in cooperation with Oil and Natural gas (ONG) operators. ONG operations use PCs for production process control and safety functions. PCs emit gas to the atmosphere as they operate and sometimes they malfunction and emit more than they are supposed to. Because of the very large number of PCs in use, these devices contribute significantly to greenhouse gas (GHG) and volatile organic compound (VOC) emissions. There is considerable uncertainty in levels of real-world PC emissions and measurement methods for PCs are somewhat underdeveloped. In collaboration with EPA R8, the State of Colorado, (and industry participants in Step 2), ORD NRMRL is evaluating a potential follow-on research effort to the Uinta Basin Pneumatic Controller (PC) Study. The Uinta PC Study is described in a recent APPCD Research Highlight (attached )with results summarized in “Assessment of Uinta Basin Oil and Natural Gas Well Pad Pneumatic Controller Emissions”, E. Thoma et al., Journal of Environmental Protection, 8, 394-415, (2017). doi: 10.4236/jep.2017.84029; at (http://www.scirp.org/Journal/PaperInformation.aspx?PaperID=75669). This RAP research was funded by an EPA R8 RARE and ACE Task EM 1.2 (next gen. emissions measurements). For both technical and programmatic reasons, we seek to
Gas in the Uinta Basin, Utah - Resources in continuous accumulations
Schmoker, J.W.; Fouch, T.D.; Charpentier, R.R.
1996-01-01
Continuous-type gas plays can be envisioned as large areas within which the reservoir rock is everywhere charged with gas. As part of its 1995 National Assessment of oil and gas resources, the U.S. Geological Survey identified four continuous-type gas plays in the Uinta Basin. These occur in sandstone reservoirs of the lower Tertiary Wasatch Formation (two plays) and the underlying Upper Cretaceous Mesaverde Group (two plays). Only the play representing the eastern part of the Wasatch Formation continuous accumulation (Natural Buttes area) has been the target of appreciable drilling activity to date. The volume of undiscovered gas estimated to be recoverable from these four plays using existing technology and development practices ranges between 3.7 trillion cubic feet of gas (TCFG) (95th fractile) and 11.9 TCFG (5th fractile), and averages 7.0 TCFG. However, these are geologically based resource estimates, made without direct reference to economic viability. Economic analysis indicates that only a fraction of this assessed resource could be economically found and produced at prices less than $2.00 per thousand cubic feet of gas (MCFG), based on costs that prevailed at the beginning of 1993. Production characteristics of continuous-type gas plays vary significantly from well to well. Difficulty in identifying locations with poor production characteristics in advance of drilling contributes to the unfavorable economics of some plays. The need exists for improvements in technology and geologic understanding that increase the chances of selectively drilling the more productive locations within a continuous-type play.
NASA Astrophysics Data System (ADS)
Khatun, Salma
2008-07-01
This research consists of two parts. One part deals with an integrated analysis of the structural anomaly associated with the Uinta Mountains, Utah. The other part deals with a study on the effect of Tamarix on soil and water quality. The Uinta Mountains are an anomalous east-west trending range of the Central Rocky Mountains and are located in northeastern Utah and northwestern Colorado. They have long been recognized as a structural anomaly that is surrounded by other Laramide structures that trend N-S or northwest. The study area extends from -112 to -108 degrees longitude and 41.5 to 39 degrees latitude and consists of three major geologic features: The Green River basin, Uinta Mountains, and the Uinta basin. This study investigates the tectonic evolution and the structural development of the Uinta aulacogen. There is a growing interest in exploration for petroleum and other hydrocarbons in the area of this study. Oil companies have been drilling wells in this area since the 1950's. The results of this study will enhance the existing knowledge of this region, and thus will help in the pursuit of hydrocarbons. A highly integrated approach was followed for this investigation. Gravity, magnetic, drill hole, seismic and receiver function data were used in the analysis. Gravity and magnetic data were analyzed using software tools available in the Department of Geological Sciences such as Oasis Montaj and GIS. Filtered gravity maps show that the Uinta Mountains and the surrounding basins and uplifts are deep seated features. These maps also reveal a correlation between the Uinta Mountains and the regional tectonic structures. This correlation helps in understanding how the different tectonic events that this region went through contributed to the different phases of development of the Uinta aulacogen. Four gravity models were generated along four north-south trending profile lines covering the target area from east to west. Interpretations of these models give a comprehensive picture of the structures in the study area. These models show that the Uinta uplift is a single sedimentary block with numerous thrust faults on the northern and southern flanks of the uplift. These models also reveal the fact that the thickness of the crust is quite variable in the study area. This is also supported by the crustal thickness map constructed for this study from seismic and receiver function information. Magnetic maps show that the Proterozoic sedimentary package known as Uinta Mountain Group extends into the Basin and Range and indicates its link with the ancient rift margin in the Western United States. Findings of this research are correlated to earlier studies and placed in a broader context. Finally an analogy is made between the Uinta aulacogen, the Southern Oklahoma aulacogen and the Dniepr-Donets aulacogen in Ukraine. This discussion focuses light on the mechanism that led to the Uinta's development from a failed rift to an uplift. Part two of this research examined the effect of saltcedar (Tamarix sp) on water and soil properties in the Rio Grande River valley in West Texas. Tamarix is a woody phreatophyte (water-loving plant) common in riparian habitats. The presence of Tamarix in a river system raises concerns about its effect on water quality because it can increase the salinity of water and surrounding soil and it reduces stream flow. Geophysical electrical techniques were used to track soil salinity and moisture changes caused by Tamarix, as well as to determine how soil salinity and moisture properties are altered when Tamarix is eradicated from the region. These techniques allowed more rapid in-situ assessment of the soil properties than the conventional method of removing soil and water samples for analysis. This study was focused on the influence of Tamarix on soil properties and hydrology at the subsurface at four sites in the Rio Bosque Wetlands Park, El Paso, Texas Two sites had flourishing Tamarix and two others were areas where the Tamarix have either been killed with herbicides or chopped down but their stumps have been left in place. Two soil properties, namely resistivity and ground conductivity, were monitored at the sites for one year on a bi-monthly basis. Ground penetrating radar was used to investigate near surface soil stratigraphy that influences groundwater flow and soil properties. The target was to determine what role Tamarix plays in the seasonal variation of the electrical properties of the soil. Seasonal variation in resistivity shows that resistivity primarily varies at shallow depth and this variation is more prominent away from the trees. Also this variation was higher at the dead tree site compared to the live tree sites. This suggests the trees act to maintain relatively constant salinity and moisture condition around themselves.
Hettinger, R.D.; Kirschbaum, M.A.
2002-01-01
Cross section A–A' was constructed in support of the oil and gas assessments of the Mesaverde and Mancos/Mowry Total Petroleum Systems in the Uinta and Piceance Basins of Utah and Colorado (fig. 1) (U.S. Geological Survey Uinta-Piceance Province Assessment Team, in press). This citation is referred to henceforth as simply “USGS, in press.” The Mesaverde Total Petroleum System contains continuous gas derived primarily from carbonaceous shale and coal in the Mesaverde Group [chapter by Johnson and Roberts in USGS (in press)]. The Mancos/Mowry Total Petroleum System contains continuous gas derived primarily from marine source rocks in the Mancos and Mowry Shales [chapter by Kirschbaum in USGS (in press)]. Cross section A–A' illustrates the stratigraphy of these Upper Cretaceous rocks, emphasizing the fluvial, coal-bearing coastal plain, nearshore marine, and offshore marine strata. The cross section is presented as a hard copy in this report and as a chapter by Hettinger and Kirschbaum (USGS, in press).
Three Mountain Areas in Southwestern Wyoming.
purpose of this report the areas are called the Wyoming-Salt River Range Area, the Wind River Range Area, and the Uinta Range Area. These mountain...ranges enclose the Upper Green River and Bridger Basins , high plateau basins with a general elevation of 6,500 to 7,500 feet.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-05
... District Ranger decisions for Duchesne, Roosevelt: Uintah Basin Standard Flaming Gorge District Ranger for... Register District Ranger decisions for Ashton, Dubois, Island Park, Palisades and Teton Basin: Post...: Idaho Mountain Express Sawtooth National Recreation Area: The Challis Messenger UINTA-WASATCH-CACHE...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-10
... Express District Ranger decisions for Duchesne, Roosevelt: Uintah Basin Standard Flaming Gorge District... Teton Basin: Post Register District Ranger decisions for Montpelier, Soda Springs and Westside: Idaho...: Idaho Mountain Express Sawtooth National Recreation Area: The Challis Messenger Uinta-Wasatch-Cache...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-07
... Express District Ranger decisions for Duchesne, Roosevelt: Uintah Basin Standard Flaming Gorge District... Teton Basin: Post Register District Ranger decisions for Montpelier, Soda Springs and Westside: Idaho... decisions: Idaho Mountain Express Sawtooth National Recreation Area: The Challis Messenger Uinta-Wasatch...
Station Magnitude Bias - Its Determination, Causes, and Effects
1977-04-29
TSK Tsukuba, Honshu, Japan TUC (W) Tucson, Arizona TUL (W) Tulsa, Oklahoma TVO Taravao, French Polynesia UBO* Uinta Basin , Utah VAH Vaihoa...8217 structures such as the western US, and lowest in stable regions such as shields and deep ocean basins . High attenuation further appears to be well
40 CFR 86.094-30 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Power Treton Valley State of Montana Beaverhead Deer Lodge Gallatin Jefferson Judith Basin Madison... Sweetwater Teton Uinta Washakie Weston (6) Catalyst-equipped vehicles, otherwise covered by a certificate...
40 CFR 86.094-30 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Power Treton Valley State of Montana Beaverhead Deer Lodge Gallatin Jefferson Judith Basin Madison... Sweetwater Teton Uinta Washakie Weston (6) Catalyst-equipped vehicles, otherwise covered by a certificate...
40 CFR 86.094-30 - Certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Power Treton Valley State of Montana Beaverhead Deer Lodge Gallatin Jefferson Judith Basin Madison... Sweetwater Teton Uinta Washakie Weston (6) Catalyst-equipped vehicles, otherwise covered by a certificate...
40 CFR 86.094-30 - Certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Power Treton Valley State of Montana Beaverhead Deer Lodge Gallatin Jefferson Judith Basin Madison... Sweetwater Teton Uinta Washakie Weston (6) Catalyst-equipped vehicles, otherwise covered by a certificate...
The First 75 Years: History of Hydraulics Engineering at the Waterways Experiment Station
2004-01-01
Report, 10-12. Gilsonite is a variety of asphalt that occurs in the Uinta Basin of northeastern Utah. Haydite is an expanded shale or clay...River Fish Mitigation: Gas Abatement." 76. John George i11terview. 77. "SCT Completes Mainstem Project Ranking," Columbia Basin Bulletin: Weekly...view of the Mississippi Basin Model looking toward the Gulf of Mexico. (Ohio River Basin in lower right foreground; Atchafalaya Basin in extreme
40 CFR 86.007-30 - Certification.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Treton Valley State of Montana Beaverhead Deer Lodge Gallatin Jefferson Judith Basin Madison Meagher Park... Uinta Washakie Weston (6) Catalyst-equipped vehicles, otherwise covered by a certificate, which are...
40 CFR 86.007-30 - Certification.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Treton Valley State of Montana Beaverhead Deer Lodge Gallatin Jefferson Judith Basin Madison Meagher Park... Uinta Washakie Weston (6) Catalyst-equipped vehicles, otherwise covered by a certificate, which are...
40 CFR 86.007-30 - Certification.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Treton Valley State of Montana Beaverhead Deer Lodge Gallatin Jefferson Judith Basin Madison Meagher Park... Uinta Washakie Weston (6) Catalyst-equipped vehicles, otherwise covered by a certificate, which are...
40 CFR 86.007-30 - Certification.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Treton Valley State of Montana Beaverhead Deer Lodge Gallatin Jefferson Judith Basin Madison Meagher Park... Uinta Washakie Weston (6) Catalyst-equipped vehicles, otherwise covered by a certificate, which are...
Tuttle, Michele L.W.
2009-01-01
For over half a century, the U.S. Geological Survey and collaborators have conducted stratigraphic and geochemical studies on the Eocene Green River Formation, which is known to contain large oil shale resources. Many of the studies were undertaken in the 1970s during the last oil shale boom. One such study analyzed the chemistry, mineralogy, and stable isotopy of the Green River Formation in the three major depositional basins: Piceance basin, Colo.; Uinta basin, Utah; and the Green River basin, Wyo. One depositional-center core from each basin was sampled and analyzed for major, minor, and trace chemistry; mineral composition and sulfide-mineral morphology; sulfur, nitrogen, and carbon forms; and stable isotopic composition (delta34S, delta15N, delta13C, and delta18O). Many of these data were published and used to support interpretative papers (see references herein). Some bulk-chemical and carbonate-isotopic data were never published and may be useful to studies that are currently exploring topics such as future oil shale development and the climate, geography, and weathering in the Eocene Epoch. These unpublished data, together with most of the U.S. Geological Survey data already published on these samples, are tabulated in this report.
1985-10-01
125 381.23 95 461.85 117 (Natrona County) Evanston, WY 519’.76 122 401.16 100 325.23 82 ( Uinta County) Lander/Riverton, WY 489.62 115 357.31 89 295.74...Index to $ Cheyenne Cheyenne, WY (Laramie County) $331.69 - Casper, WY (Natrona County) 365.12 110 Evanston, WY ( Uinta County) 330.41 100 Lander...area. The Burlington Northern Railroad operates class "A" north-south trackage from the Powder River coal basin near Gillette south to Denver and then
Research into Surface Wave Phenomena in Sedimentary Basins.
1981-12-31
150 km of the southerly extension of the Overthrust Belt, 350 km of the Green River Basin paralleling the Uinta Mountains and 150 km across the Front...WEIDLINGER ASSOCIATES O300 SAND HiLL ROAD BUILDING 4, SUITE 245 MENLO PARK, CALIFORNIA 9462 RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS BY...PARK, CALIFORNIA 94025 ! I RESEARCH INTO SURFACE WAVE PHENOMENA IN SEDIMENTARY BASINS I Dy G.L. Wojcik J. Isenberg F. Ma E. Richardson Prepared for
Coal-bed gas resources of the Rocky Mountain region
Schenk, C.J.; Nuccio, V.F.; Flores, R.M.; Johnson, R.C.; Roberts, S.B.; Collett, T.S.
2001-01-01
The Rocky Mountain region contains several sedimentary provinces with extensive coal deposits and significant accumulations of coal-bed gas. This summary includes coal-bed gas resources in the Powder River Basin (Wyoming and Montana), Wind River Basin (Wyoming), Southwest Wyoming (Greater Green River Basin of Wyoming, Colorado, and Utah), Uinta-Piceance Basin (Colorado and Utah), Raton Basin (Colorado and New Mexico), and San Juan Basin (Colorado and New Mexico). Other provinces in the Rocky Mountain region may contain significant coal-bed gas resources, but these resource estimates are not available at this time.
Delisting Process for Endangered Species and Relevance to Populations on Army Lands
2005-10-01
Tooth Cave spider Williamson County Commissioners Court 06-07-1993 Delist Negative (59 FR 11755) Uinta Basin hookless cactus National...distributed throughout the bottomlands and prairie woodlands of the lower Columbia, Willamette, and Umpqua River basins in Oregon and southern...proportion of plants that had been affected by OHVs was small primarily because drivers avoid vegetated basins due to the potential tire damage from woody
Pipiringos, G.N.; O'Sullivan, Robert Brett
1978-01-01
The Triassic and Jurassic rocks in Western Interior United States contain nine unconformities each of which was destroyed to some extent by a younger unconformity. Regardless of extent, all are useful for correlation of rock sequences in areas where fossils or age dates are lacking. The purpose of this report is to call attention to the presence, significance, and value for correlation of these unconformities. The Triassic unconformities are designated from oldest to youngest, Tr-1, Tr-2, and Tr-3; the Jurassic ones similarly are designated J-0, J-l, J-2, J-3, J-4, and J-5. Of these, the J-2 surface is the best preserved and most widespread. It extends throughout the Western Interior and truncates the older unconformities in different parts of this area. Consequently, the J-2 surface is discussed and illustrated in much more detail than the others. Identification of these unconformities throughout large areas where their presence hitherto had been unknown results in some new unexpected correlations and conclusions. Principal among these are: (1) The Red Draw Member of the Jelm Formation of southeastern Wyoming equals the lower part of the Crow Mountain Sandstone of central Wyoming. The Sips Creek Member of the Jelm Formation of southeastern Wyoming equals the upper part of the Crow Mountain Sandstone of central Wyoming and the Gartra Member of the Chinle Formation in the Uinta Mountains of northeastern Utah and northwestern Colorado. The Chinle Formation of the Colorado Plateau and the Uinta Mountains equals the upper part of the Crow Mountain plus the Popo Agie Formation of central Wyoming. (2) The Nugget Sandstone of northern Utah and southwestern Wyoming approximately equals the Glen Canyon Group of the Colorado Plateau. The Temple Cap Sandstone of southwestern Utah equals the Gypsum Spring Formation and the Gypsum Spring Member of the Twin Creek Limestone of Wyoming and the Nesson Formation of Nordquist in the subsurface of the Williston basin. The Sawtooth and Piper Formations at their type sections in Montana and the lower parts of the Twin Creek Limestone (including only the Sliderock, Rich, and Boundary Ridge Members) in western Wyoming and of the Carmel Formation in the Colorado Plateau, at their respective type localities, are equivalent, but none of these correlate with any part of the Gypsum Spring Formation of Wyoming. The Curtis Formation at its type locality in the San Rafael Swell, Utah, equals only the lower part of the Curtis Formation of the Uinta Mountains. The upper part of the Curtis in the Uinta Mountains and the Redwater Shale Member of the Sundance Formation of Wyoming and South Dakota are equivalent. Estimates of the length of time in millions of years (m.y.) required for uplift and erosion of an unconformity range from less than 1 to as much as 10 m.y.; the average is about 1.8 m.y. if the extremes in time are excluded. The length of time for burial of the surfaces by transgression ranges from less than 1 to about 10 m.y.; the average is less than 1 m.y. if the extremes in time are disregarded.
NASA Astrophysics Data System (ADS)
Matichuk, R.; Tonnesen, G.; Luecken, D.; Roselle, S. J.; Napelenok, S. L.; Baker, K. R.; Gilliam, R. C.; Misenis, C.; Murphy, B.; Schwede, D. B.
2015-12-01
The western United States is an important source of domestic energy resources. One of the primary environmental impacts associated with oil and natural gas production is related to air emission releases of a number of air pollutants. Some of these pollutants are important precursors to the formation of ground-level ozone. To better understand ozone impacts and other air quality issues, photochemical air quality models are used to simulate the changes in pollutant concentrations in the atmosphere on local, regional, and national spatial scales. These models are important for air quality management because they assist in identifying source contributions to air quality problems and designing effective strategies to reduce harmful air pollutants. The success of predicting oil and natural gas air quality impacts depends on the accuracy of the input information, including emissions inventories, meteorological information, and boundary conditions. The treatment of chemical and physical processes within these models is equally important. However, given the limited amount of data collected for oil and natural gas production emissions in the past and the complex terrain and meteorological conditions in western states, the ability of these models to accurately predict pollution concentrations from these sources is uncertain. Therefore, this presentation will focus on understanding the Community Multiscale Air Quality (CMAQ) model's ability to predict air quality impacts associated with oil and natural gas production and its sensitivity to input uncertainties. The results will focus on winter ozone issues in the Uinta Basin, Utah and identify the factors contributing to model performance issues. The results of this study will help support future air quality model development, policy and regulatory decisions for the oil and gas sector.
76 FR 71559 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-18
..., PROGRAMMATIC--Yakima River Basin Integrated Water Resource Management Plan, To Meet the Water Supply and... Mechanical Thinning, Uinta-Wasatch-Cache National Forest, Summit County, UT, Review Period Ends: 12/19/2011...
The extraction of bitumen from western oil sands: Volume 2. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oblad, A.G.; Dahlstrom, D.A.; Deo, M.D.
1997-11-26
The program is composed of 20 projects, of which 17 are laboratory bench or laboratory pilot scale processes or computer process simulations that are performed in existing facilities on the University of Utah campus in north-east Salt Lake City. These tasks are: (1) coupled fluidized-bed bitumen recovery and coked sand combustion; (2) water-based recovery of bitumen; (3) oil sand pyrolysis in a continuous rotary kiln reactor; (4) oil sand pyrolysis in a large diameter fluidized bed reactor; (5) oil sand pyrolysis in a small diameter fluidized bed reactor; (6) combustion of spent sand in a transport reactor; (7) recovery andmore » upgrading of oil sand bitumen using solvent extraction methods; (8) fixed-bed hydrotreating of Uinta Basin bitumens and bitumen-derived hydrocarbon liquids; (9) ebullieted bed hydrotreating of bitumen and bitumen derived liquids; (10) bitumen upgrading by hydropyrolysis; (11) evaluation of Utah`s major oil sand deposits for the production of asphalt, high-energy jet fuels and other specialty products; (12) characterization of the bitumens and reservoir rocks from the Uinta Basin oil sand deposits; (13) bitumen upgrading pilot plant recommendations; (14) liquid-solid separation and fine tailings thickening; (15) in-situ production of heavy oil from Uinta Basin oil sand deposits; (16) oil sand research and development group analytical facility; and (17) process economics. This volume contains reports on nine of these projects, references, and a bibliography. 351 refs., 192 figs., 65 tabs.« less
Gray, S.T.; Jackson, S.T.; Betancourt, J.L.
2004-01-01
Samples from 107 pin??on pines (Pinus edulis) at four sites were used to develop a proxy record of annual (June to June) precipitation spanning the 1226 to 2001 AD interval for the Uinta Basin Watershed of northeastern Utah. The reconstruction reveals significant precipitation variability at interannual to decadal scales. Single-year dry events before the instrumental period tended to be more severe than those after 1900. In general, decadal scale dry events were longer and more severe prior to 1900. In particular, dry events in the late 13th, 16th, and 18th Centuries surpass the magnitude and duration of droughts seen in the Uinta Basin after 1900. The last four decades of the 20th Century also represent one of the wettest periods in the reconstruction. The proxy record indicates that the instrumental record (approximately 1900 to the Present) underestimates the potential frequency and severity of severe, sustained droughts in this area, while over representing the prominence of wet episodes. In the longer record, the empirical probability of any decadal scale drought exceeding the duration of the 1954 through 1964 drought is 94 percent, while the probability for any wet event exceeding the duration of the 1965 through 1999 wet spell is only 1 percent. Hence, estimates of future water availability in the Uinta Basin and forecasts for exports to the Colorado River, based on the 1961 to 1990 and 1971 to 2000 "normal" periods, may be overly optimistic.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-12-09
...] Vernal RMP (2008) [cir] Uinta National Forest Revised Forest Plan (2003) (FS) Wyoming (please note that...] Bighorn Basin RMP revision [cir] Buffalo RMP revision (and existing 1985 Buffalo RMP) [cir] Casper RMP...] Thunder Basin National Grassland LMP (not included in BLM Wyoming Notice of Intent above) (FS) Within the...
Potential for Recoverable Coalbed Methane Resources on Navy Lands.
1985-06-01
into the Tertiary Period (up to 12 Ma). This deposition occurred in a series of basins in the west-central United States. These are the Piceance, Uinta ...14 5. Average Composition of Gas From Coalbeds, % ...................... 16 6. Gas Content and Rank of Coals From Several Major Coal Basins ...Industry Manual (Reference 2) indicates over 30 Army or Air Force installations that appear to lie within or adjacent to major coal basins . Therefore
6. 'ROCKFILLED CRIB 350 FEET LONG, REPAIRING DAMAGES CAUSED BY ...
6. 'ROCK-FILLED CRIB 350 FEET LONG, REPAIRING DAMAGES CAUSED BY FLOODS DURING SEASON OF 1927 TO THE DRY GULCH CANAL HEADING.' 1928 - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT
Atmospheric Science Data Center
2014-05-15
... title: Snow-Covered Peaks of the Wasatch and Uinta Mountains View Larger ... edge of the Rocky Mountains and eastern rim of the Great Basin. This early-winter image pair was acquired by the Multi-angle Imaging ...
75 FR 70917 - Environmental Impacts Statements; Notice Of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-19
... Augustin 651-290-5378. Amended Notices EIS No. 20100386, Draft EIS, BLM, UT, Uinta Basin Natural Gas Development Project, To Develop Oil and Natural Gas Resources within the Monument Butte-Red Wash and West...
77 FR 15750 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2012-03-16
...: Sharon Scott 406-449-5201. EIS No. 20120065, Final EIS, BLM, UT, Uinta Basin Natural Gas Development Project, To Develop Oil and Natural Gas Resources within the Monument Butte-Red Wash and West Tavaputs...
,
2011-01-01
The U.S. Geological Survey (USGS) recently completed a comprehensive assessment of in-place oil in oil shales in the Eocene Green River in the Greater Green River Basin, Wyoming, Colorado, and Utah. This CD-ROM includes reports, data, and an ArcGIS project describing the assessment. A database was compiled that includes about 47,000 Fischer assays from 186 core holes and 240 rotary drill holes. Most of the oil yield data were analyzed by the former U.S. Bureau of Mines oil shale laboratory in Laramie, Wyoming, and some analyses were made by private laboratories. Location data for 971 Wyoming oil-shale drill holes are listed in a spreadsheet and included in the CD-ROM. Total in-place resources for the three assessed units in the Green River Formation are: (1) Tipton Shale Member, 362,816 million barrels of oil (MMBO), (2) Wilkins Peak Member, 704,991 MMBO, and (3) LaClede Bed of the Laney Member, 377,184 MMBO, for a total of 1.44 trillion barrels of oil in place. This compares with estimated in-place resources for the Piceance Basin of Colorado of 1.53 trillion barrels and estimated in-place resources for the Uinta Basin of Utah and Colorado of 1.32 trillion barrels.
NASA Astrophysics Data System (ADS)
Norris, Richard D.; Jones, Lawrence S.; Corfield, Richard M.; Cartlidge, Julie E.
1996-05-01
Isotopic analysis of lacustrine carbonates from the Eocene Green River Formation suggests that lake waters were derived partly from snow melt. This evidence for cool climates is in marked contrast to paleontological and model evidence for mild temperatures in the continental interior. Oxygen isotope ratios of carbonates frequently reach -12‰ to nearly -16‰ (Peedee belemnite), which suggests that lake waters probably had δ18O of <-13‰ (standard mean ocean water). Consideration of the evaporative 18O enrichment that typically occurs in modern large saline lakes suggests that the source waters to the Green River basin had a δ18O of <-18‰. These ratios are consistent with snow melt and are too negative to be easily accounted for by distillation in the atmosphere during heavy rainfall. The Green River lakes formed in a closed basin encircled by large mountains; this suggests that the snow melt was locally produced. The mountains surrounding the lake must have been high enough to occasionally supply significant melt water to the much lower lake. Lapse rate calculations suggest minimum altitudes of >3000 m for the mountains encircling the Green River basin.
NASA Astrophysics Data System (ADS)
Johnson, B.; Cullis, P.; Schnell, R. C.; Oltmans, S. J.; Sterling, C. W.; Jordan, A. F.; Hall, E.
2016-12-01
Extreme high ozone mixing ratios, far exceeding U.S. National Air Quality Standards, were observed in the Uinta Basin in January-February 2013 under conditions highly favorable for wintertime ozone production. Hourly average ozone mixing ratios increased from regional background levels of 40-50 ppbv to >160 ppbv during several multi-day episodes of prolonged temperature inversions over snow-covered ground within air confining topography. Extensive surface and tethered balloon profile measurements of ozone, meteorology, CH4, CO2, NO2 and a suite of non-methane hydrocarbons (NMHCs) link emissions from oil and natural gas extraction with the strong ozone production throughout the Basin. High levels of NMHCs that were well correlated with CH4 showed that abundant O3 precursors were available throughout the Basin where high ozone mixing ratios extended from the surface to the top of the inversion layer at 200 m above ground level. This layer was at a nearly uniform height across the Basin even though there are significant terrain variations. Tethered balloon measurements rising above the elevated levels of ozone within the cold pool layer beneath the inversion measured regional background O3 concentrations. Surface wind and direction data from tethered balloons showed a consistent diurnal pattern in the Basin that moved air with the highest levels of CH4 and ozone precursor NMHC's from the gas fields of the east-central portion of the Basin to the edges during the day, before draining back into the Basin at night.
MAGNITUDE STUDIES CONDUCTED UNDER PROJECTS VT/5054 AND VT/5055.
statistical model for Blue Mountains Seismological Observatory, Cumberland Plateau Seismological Observatory, Tonto Forest Seismological Observatory, Uinta ... Basin Seismological Observatory, and Wichita Mountains Seismological Observatory. Azimuthal dependence of station correction is not established at any of
NASA Technical Reports Server (NTRS)
1980-01-01
The wetlands and water-related land use in the Uinta Basin were classified and mapped using photointerpretation of U-2 infrared photography and digital LANDSAT data. The digital maps were used to augment photointerpretations. A highly effective diagnostic tool emerged when the LANDSAT digital print was photoreduced to a film positive at the same scale as the U-2 film and overlain on the U-2 color film. As a result of this merging technique, cover types can be identified more accurately and probablistic statements can be made about the relative amounts of water being consumed in one pasture vs. another. The hazards to urban development on sensitive and unstable land in the foothills of Davis County were studied using NASA U-2 photography. Shoreline fluctuations were mapped in the Farmington Bay using LANDSAT digital data.
Freethey, Geoffrey W.
1988-01-01
Permits for disposing of salty oil-production water have been issued for 19 wells in the Greater Altamont-Bluebell field. During 1986 more than 500 million gallons of production water were injected into the Duchesne River, Uinta, and Green River Formations through 18 of these wells. The physical and chemical effects of injecting this water into aquifers containing potable water are poorly understood. Interfingering and the structural configuration of these formations add complexity to the description of the geometry and hydrogeology of the ground-water system.A preliminary assessment of the problem indicates that numerical modeling may offer a method of determining the effects of injection. Modeling possibilities include variable-density, three-dimensional flow, sectionaltransport, and areal-transport models. Data needed to develop these models can be derived from a synthesis of geologic, hydrologic, and hydrochemical data already available in the files of State and Federal agencies, oil companies, and private companies. Results from each modeling phase would contribute information for implementing the following phase. The result will be a better understanding of how water moves naturally through the groundwater system, the extent of alterations of both vertical and horizontal flow near the disposal wells, and an overall concept of the effects of deep injection on near-surface aquifers.
NASA Astrophysics Data System (ADS)
Oltmans, S. J.; Karion, A.; Schnell, R. C.; Pétron, G.; Sweeney, C.; Wolter, S.; Neff, D.; Montzka, S. A.; Miller, B. R.; Helmig, D.; Johnson, B. J.; Hueber, J.
2014-08-01
During the winter of 2012-2013 atmospheric surface ozone mole fractions exceeded the US 8 h standard of 75 ppb on 39 days in the Uinta Basin of Utah. As part of the Uinta Basin Winter Ozone Study (UBWOS) aircraft flights were conducted throughout the basin with continuous measurements of ozone (O3), methane (CH4), carbon dioxide (CO2), carbon monoxide (CO), nitrogen dioxide (NO2), and discrete whole air flask samples for determination of ∼50 trace gases including a number of non-methane hydrocarbons (NMHCs). During the course of seven flights conducted between 31 January and 7 February 2013, coinciding with strong, multi-day temperature inversions, O3 levels gradually built up in the shallow boundary layer from ∼45 ppb to ∼140 ppb. Near-surface CH4 mole fractions increased during the episode from near background levels of ∼2 ppm to over 10 ppm. Based on elevated levels of CH4 across the basin and high correlations of CH4 with NMHCs from the discrete air samples, O3 precursor NMHCs were also inferred to be elevated throughout the basin. Discrete plumes of high NO2 were observed in the gas production region of the basin suggesting that gas processing plants and compressor facilities were important point sources of reactive nitrogen oxides (NOx). Vertical profiles obtained during the flights showed that the high O3 mole fractions (as well as other elevated constituents) were confined to a shallow layer from near the ground to 300-400 m above ground level (m a.g.l.) capped by a strong temperature inversion. The highest mole fractions of the measured constituents during the study period were in an isothermal cold layer that varied from ∼300 m depth on 4 February to ∼150 m on 5 February. A gradient layer with declining mole fractions with altitude extended above the isothermal layer to ∼1900 m a.s.l. (300-400 m a.g.l.) indicative of some mixing of air out of the boundary layer. O3 mole fractions continued to increase within the basin as the high O3 episode developed over the course of a week. CH4 mole fractions, on the other hand, leveled off after several days. On several flights, the aircraft sampled the plume of a coal-fired power plant (located east of the main gas field) flowing above the inversion layer. These measurements ruled out the effluents of the power plant as a significant source of NOx for O3 production beneath the temperature inversion in the basin. The presence of elevated O3 precursors within the basin and the rapid daytime production of O3 in the atmosphere beneath the temperature inversion both indicated that O3 was being produced from precursors emitted within the basin beneath the temperature inversion. Although observations show that horizontal winds in the surface layer were relatively light during the high ozone event, they were sufficient to disperse precursors up to 80 km from primary sources in the main gas field in the southeast quadrant to the balance of the Uinta Basin.
Environmental Impact Statements: A Handbook for Writers and Reviewers
1973-08-01
expand the flood to include 16 additional injection wells in 1972, for a total of 46. Production at Red Wash began in 1951." "The Uinta Basin ...improvement of the entire river basin area--an area of some 2,400 square miles. The committee responsible for the plan was chaired by the U.S. Army Corps of...statements. Thus it mentions "future development planned both in the’ vicinity of the proposed I,, project and within the Uintah Basin " without stipulating
1981-09-01
respectively; the Klamath Mountains of Oregon and California; the Basin and Ranges of Nevada, the Teton Range of Wyoming; the Uinta Mountains of Utah...approximately 292,000 square miles, includes all of the Columbia River system in the United States and all other river basins in Idaho, Oregon, and...Central Valley and the Los Angeles Basin of California. The western valleys of the Pacific Northwest, the Denver-Cheyenne area along the Rockies’ eastern
8. 'THE ABOVE IS A PICTURE OF A DROP WHICH ...
8. 'THE ABOVE IS A PICTURE OF A DROP WHICH WAS CONSTRUCTED THIS SPRING ON THE MAIL CANAL OF THE U.S. DRY GULCH NEAR THE LOWER END.' 1930 - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT
The Geologic Story of the Uinta Mountains
Hansen, Wallace R.
1969-01-01
The opening of the West after the Civil War greatly stimulated early geologic exploration west of the 100th Meridian. One of the areas first studied, the Uinta Mountains region, gained wide attention as a result of the explorations of three Territorial Surveys, one headed by John Wesley Powell, one by Clarence King, and one by Ferdinand V. Hayden. Completion of the Union Pacific Railroad across southern Wyoming 100 years ago, in 1869, materially assisted geologic exploration, and the railheads at Green River and Rock Springs greatly simplified the outfitting of expeditions into the mountains. The overlap of the Powell, King, and Hayden surveys in the Uinta Mountains led to efforts that were less concerted than competitive and not without acrimony. Many parts of the area were seen by all three parties at almost the same time. Duplication was inevitable, of course, but all three surveys contributed vast quantities of new knowledge to the storehouse of geology, and many now-basic concepts arose from their observations. Powell's area of interest extended mainly southward from the Uinta Mountains to the Grand Canyon, including the boundless plateaus and canyons of southern Utah and northern Arizona. King's survey extended eastward from the High Sierra in California to Cheyenne, Wyoming, and encompassed a swath of country more than 100 miles wide. Hayden's explorations covered an immense region of mountains and basins from Yellowstone Park in Wyoming southeast throughout most of Colorado. Powell first entered the Uinta Mountains in the fall of 1868, having traveled north around the east end of the range from the White River country to Green River, Wyoming, then south over a circuitous route to Flaming Gorge and Browns Park, and finally back to the White River, where he spent the winter. In 1869, after reexamining much of the area visited the previous season, Powell embarked on his famous 'first boat trip' down the Green and Colorado Rivers. This trip was more exploratory than scientific; his second, more scientific trip was made 2 years later. Powell revisited the Uinta Mountains in 1874 and 1875 to complete the studies begun 6 years earlier. His classic 'Report on the Geology of the Eastern Portion of the Uinta Mountains and a Region of Country Adjacent Thereto' was published in 1876. King's survey?officially 'The United States Geological Exploration of the Fortieth Parallel'?is better known simply as the '40th Parallel Survey.' King began working eastward from California in 1867. The Uinta Mountains region, however, was mapped by S. F. Emmons, under the supervision of King, in the summers of 1869 and 1871. Emmons' work was monumental, and although he emphasized in his letter of transmittal to King the exploratory nature of the work?as the formal title of the report indicates?his maps, descriptions, and conclusions reflect a comprehensive understanding of the country and its rocks. The 40th Parallel report contains the best, most complete early descriptions of the Uinta Mountains. It, indeed, is a treasurechest of information and a landmark contribution to the emerging science of geology. Hayden visited the Uinta Mountains in 1870, descending the valley of Henrys Fork to Flaming Gorge in the fall after having earlier examined the higher part of the range to the west. Most of Hayden's observations were cursory, and he repeatedly expressed regret at having insufficient time for more detailed studies. In reference to the area between Clay Basin and Browns Park, he remarked (Hayden, 1871, p. 67) somewhat dryly that 'the geology of this portion of the Uinta range is very complicated and interesting. To have solved the problem to my entire satisfaction would have required a week or two.' Eighty-odd years later I spent several months there?looking at the same rocks. Powell was perhaps more creative?more intuitive?than either King or Hayden, and his breadth of interest in the fields of geology, physiography, ethnology, an
NASA Astrophysics Data System (ADS)
Törő, Balázs; Pratt, Brian R.
2016-10-01
Outcrops and cores from the top of the lacustrine Tipton Member and the base of the Wilkins Peak Member ( 51.5 Ma) of the Eocene Green River Formation, Bridger Basin in southwestern Wyoming yield a wide variety of sedimentary deformation features many of which are laterally extensive for more than 50 km. They include various types of folds, load structures, pinch-and-swell structures, microfaults, breccias and sedimentary dikes. In most cases deformation is represented by hybrid brittle-ductile structures exhibiting lateral variation in deformation style. These occur in low-energy, profundal organic-rich carbonate mudstones (oil shales), trona beds, tuffs, and profundal to sublittoral silty carbonate deposited in paleolake Gosiute. The deformation is not specific to the depositional environment because sedimentary units stratigraphically higher with similar facies show no deformation. The studied interval lacks any evidence for possible trigger mechanisms intrinsic to the depositional environment, such as strong wave action, rapid sediment loading, evaporite dissolution and collapse, or desiccation, so 'endogenic' causes are ruled out. Thus, the deformation features are interpreted as seismites, and change in deformation style and inferred increase in intensity towards the south suggest that the earthquakes were sourced from the nearby Uinta Fault System. The 22 levels exhibiting seismites recognized in cores indicate earthquakes with minimum magnitudes between 6 and 7, minimum epicentral intensity (MCS) of 9, and varying recurrence intervals in the seismic history of the Uinta Fault System, with a mean apparent recurrence period of 8.1 k.y. using average sedimentation rates and dated tuffs; in detail, however, there are two noticeably active periods followed by relative quiescence. The stratigraphic position of these deformed intervals also marks the transition between two distinct stages in lake evolution, from the balanced-filled Tipton Member to the overlying, underfilled Wilkins Peak Member. Thus, these seismites are evidence for regional-scale changes in lacustrine sedimentation of Eocene Lake Gosiute in response to syndepositional tectonic activity. Analysis of synsedimentary deformation features is, therefore, a promising yet under-utilized tool to trace the tectonic evolution of lacustrine deposits of the Green River Formation and other tectonically active marine and non-marine basins.
Tooker, Edwin W.
2005-01-01
The Oquirrh Mountains are located in north central Utah, in the easternmost part of the Basin and Range physiographic province, immediately south of the Great Salt Lake. The range consists of a northerly trending alignment of peaks 56 km long. Tooele and Rush Valleys flank the Oquirrh Mountains on the western side and Salt Lake and Cedar Valleys lie on the eastern side. The world class Bingham mine in the central part of the range hosts disseminated copper-bearing porphyry, skarn, base-and precious-metal vein and replacement ore deposits. The district includes the outlying Barneys Canyon disseminated-gold deposits. Disseminated gold in the Mercur mining district in the southern part of the range has become exhausted. The Ophir and Stockton base- and precious-metal mining districts in the range north of Mercur also are inactive. A geologic map of the range (Tooker and Roberts, 1998), available at a scale of 1:50,000, is a summation of U.S. Geological Survey (USGS) studies. Information about the range and its mining areas is scattered. This report summarizes map locations, new stratigraphic and structural data, and reexamined data from an extensive published record. Unresolved controversial geological interpretations are considered, and, for the first time, the complete geological evidence provides a consistent regional basis for the location of the ore deposits in the range. The geological setting and the siting of mineral deposits in the Oquirrh Mountains began with the formation of a Precambrian craton. Exposures of folded Proterozoic basement rocks of the craton, in the Wasatch Mountains east of Salt Lake City, were accreted and folded onto an Archean crystalline rock terrane. The accretion suture lies along the north flank of the Uinta Mountains. The western part of the accreted block was offset to northern Utah along a north-trending fault lying approximately along the Wasatch Front (Nelson and others, 2002), thereby creating a prominant basement barrier or buttress east of the Salt Lake area. The accretion suture along the north flank of the Uinta Anticline overlaps an earlier Precambrian east-west mobile zone, the Uinta trend (Erickson, 1976, Bryant and Nichols, 1988 and John, 1989), which extends westward across western Utah and into Nevada. A trace of the trend underlies the middle part of the Oquirrh Mountains. Its structure is recognized by disrupted Paleozoic stratigraphic units and fold and fault evidence of thrust faulting, intermittent local uplift and erosion, the alignment of Tertiary intrusives and associated ore deposits. Geologic readjustments along the trend continued intermittently through the Paleozoic, Cenozoic, Tertiary, and the development of clastic deposits along the shores of Pleistocene Lake Bonneville. Paleozoic sedimentary rocks were deposited on the craton platform shelf in westernmost Utah and eastern Nevada as the shelf subsided gradually and differentially. Debris was shed into two basins separated by the uplifted Uinta trend, the Oquirrh Basin on the south and Sublette Basin on the north. Sediments were derived from the craton to the east, the Antler orogenic zone on the west (Roberts, 1964), and locally from uplifted parts of the trend itself. Thick accumulations of clastic calcareous quartzite, shale, limestone, and dolomite of Lower and Upper Paleozoic ages are now exposed in the Oquirrh Mountains, the result of thrust faults. Evidence of decollement thrust faults in in the Wasatch Mountains during the Late Cretaceous Sevier orogeny, recognized by Baker and others (1949) and Crittenden (1961, is also recognized in the Oquirrh Mountains by Roberts and others (1965). During the late Cretaceous Sevier Orogeny, nappes were thrust sequentially along different paths from their western hinterland to the foreland. Five distinct nappes converged over the Uinta trend onto an uplifted west-plunging basement buttress east of the Oquirrh Mountains area: the Pass Canyon, Bingham,
Proceedings 43rd Stanford Geothermal Workshop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Stuart; Kirby, Stefan; Verplanck, Philip
Herein we summarize the results of an investigation dealing with the concentrations and inventories of strategic, critical and valuable materials (SCVM) in produced fluids from geothermal and hydrocarbon reservoirs (50-250° C) in Nevada and Utah. Water samples were collected from thirty-four production wells across eight geothermal fields, the Uinta Basin oil/gas province in northeast Utah, and the Covenant oil field in southwestern Utah; additional water samples were collected from six hot springs in the Sevier Thermal Belt in southwestern Utah. Most SCVM concentrations in produced waters range from <0.1 to 100 µg/kg; the main exception is lithium, which has concentrationsmore » that range from <1000 to 25,000 ug/kg. Relatively high concentrations of gallium, germanium, scandium, selenium, and tellurium are measured too. Geothermal waters contain very low concentrations of REEs, below analytical detections limits (0.01 µg/kg), but the concentrations of lanthanum, cerium, and europium range from 0.05 to 5 µg/kg in Uinta basin waters. Among the geothermal fields, the Roosevelt Hot Spring reservoir appears to have the largest inventories of germanium and lithium, and Patua appears to have the largest inventories of gallium, scandium, selenium, and tellurium. By comparison, the Uinta basin has larger inventories of gallium. The concentrations of gallium, germanium, lithium, scandium, selenium, and tellurium in produced waters appear to be partly related to reservoir temperature and concentrations of total dissolved salts. The relatively high concentration and large inventory of lithium occurring at Roosevelt Hot Springs may be related to granitic-gneissic crystalline rocks, which host the reservoir. Analyses of calcite scales from Dixie Valley indicate enrichments in cobalt, gallium, gold, palladium, selenium and tellurium, and these metals appear to be depositing at deep levels in production wells due to boiling. Comparisons with SCVM mineral deposits suggest that brines in sedimentary basins, or derived from lacustrine evaporites, enable aqueous transport of gallium, germanium, and lithium.« less
Johnson, Ronald C.; Birdwell, Justin E.; Mercier, Tracey J.
2016-01-01
The results from the recent U.S. Geological Survey assessment of in-place oil shale resources of the Eocene Green River Formation, based primarily on the Fischer assay method, are applied herein to define areas where the oil shale interval is depleted of some of its petroleum-generating potential along the deep structural trough of the basin and to make: (1) a general estimates of the amount of this depletion, and (2) estimate the total volume of petroleum generated. Oil yields (gallons of oil per ton of rock, GPT) and in-place oil (barrels of oil per acre, BPA) decrease toward the structural trough of the basin, which represents an offshore lacustrine area that is believed to have originally contained greater petroleum-generating potential than is currently indicated by measured Fischer assay oil yields. Although this interval is considered to be largely immature for oil generation based on vitrinite reflectance measurements, the oil shale interval is a likely source for the gilsonite deposits and much of the tar sands in the basin. Early expulsion of petroleum may have occurred due to the very high organic carbon content and oil-prone nature of the Type I kerogen present in Green River oil shale. In order to examine the possible sources and migration pathways for the tar sands and gilsonite deposits, we have created paleogeographic reconstructions of several oil shale zones in the basin as part of this study.
Mountain big sagebrush communities on the Bishop Conglomerate in the eastern Uinta Mountains
Sherel Goodrich; Allen Huber
2001-01-01
The Bishop Conglomerate forms broad, gently sloping pediments that include a mantle or veneer of coarse gravel and some cobble over underlying formations. These pediments cover large areas at the margins of the Uinta Mountains. Mountain big sagebrush (Artemisia tridentata var. pauciflora) communities cover rather large areas at the outer edge or lower end of these...
The Mid-Cretaceous Frontier Formation near the Moxa Arch, southwestern Wyoming
Mereweather, E.A.; Blackmon, P.D.; Webb, J.C.
1984-01-01
The Frontier Formation in the Green River Basin of Wyoming, Utah, and Colorado, consists of sandstone, siltstone, and shale, and minor conglomerate, coal, and bentonite. These strata were deposited in several marine and nonmarine environments during early Late Cretaceous time. At north-trending outcrops along the eastern edge of the overthrust belt, the Frontier is of Cenomanian, Turonian, and early Coniacian age, and commonly is about 610 m (2,000 ft) thick. The formation in that area conformably overlies the Lower Cretaceous Aspen Shale and is divided into the following members, in ascending order: Chalk Creek, Coalville, Allen Hollow, Oyster Ridge Sandstone, and Dry Hollow. In west-trending outcrops on the northern flank of the Uinta Mountains in Utah, the Frontier is middle and late Turonian, and is about 60 m (200 ft) thick. These strata disconformably overlie the Lower Cretaceous Mowry Shale. In boreholes on the Moxa arch, the upper part of the Frontier is of middle Turonian to early Coniacian age and unconformably overlies the lower part of the formation, which is early Cenomanian at the south end and probably Cenomanian to early Turonian at the north end. The Frontier on the arch thickens northward from less than 100 m (328 ft) to more than 300 m (984 ft) and conformably overlies the Mowry. The marine and nonmarine Frontier near the Uinta Mountains, marine and mnmarine beds in the upper part of the formation on the Moxa arch and the largely nonmarine Dry Hollow Member at the top of the Frontier in the overthrust belt are similar in age. Older strata in the formation, which are represented by the disconformable basal contact of the Frontier near the Uinta Mountains, thicken northward along the Moxa arch and westward between the arch and the overthrust belt. The large changes in thickness of the Frontier in the Green River Basin were caused mainly by differential uplift and truncation of the lower part of the formation during the early to middle Turonian and by the shoreward addition of progressively younger sandstone units at the top of the formation during the late Turonian and early Coniacian. The sandstone in cores of the Frontier, from boreholes on the Moxa arch and the northern plunge of the Rock Springs uplift, consists of very fine grained and fine-grained litharenites and sublitharenites that were deposited in deltaic and shallow-water marine environments. These rocks consist mainly of quartz, chert, rock fragments, mixed-layer illite-smectite, mica-illite, and chlorite. Samples of the sandstone have porosities of 4.7 to 23.0 percent and permeabilities of 0.14 to 6.80 millidarcies, and seem to represent poor to fair reservoir beds for oil and gas. The shale in cores of the Frontier Formation and the overlying basal Hilliard Shale, from the Moxa arch, Rock Springs uplift, and overthrust belt, was deposited in deltaic and offshore-marine environments. Samples of the shale are composed largely of quartz, micaillite, mixed-layer illite-smectite, kaolin, and chlorite. They also contain from 0.27 to 4.42 percent organic carbon, in humic and sapropelic organic matter. Most of the sampled shale units are thermally mature, in terms of oil generation, and a few probably are source rocks for oil and gas.
Critical Elements in Reservoir Rocks of Produced Fluids Nevada and Utah August 2017
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, Stuart
Critical and trace element data for drill cuttings from Beowawe, Dixie Valley, and Roosevelt Hot Springs-Blundell geothermal production fields, for drill cuttings from Uinta basin producing oil-gas wells, and from outcrops in the Sevier Thermal Anomaly-Utah.
Persinger, M A; Derr, J S
1985-02-01
A strong temporal correlation was found between the numbers of reports of UFOs (unidentified flying objects) and nearby seismic activity within the Uinta Basin for the year 1967. The numbers of UFO reports per month during this classic UFO flap were correlated 0.80 with the sum of the earthquake magnitudes per month for events within 150 km of the report area. Numbers of UFO reports were not correlated significantly with earthquake activity at distances greater than 150 km but less than 250 km away. The strongest correlation occurred between UFO reports and nearby seismic activity within the same month but not for previous or consequent months. Close scrutiny of daily shifts in epicenters and reports of UFOs indicate that they occurred when the locus of successive epicenters shifted across the area. These analyses were interpreted as support for the existence of strain fields whose movements generate natural phenomena that are reported as UFOs.
Architecture and Channel-Belt Clustering in the Fluvial lower Wasatch Formation, Uinta Basin, Utah
NASA Astrophysics Data System (ADS)
Pisel, J. R.; Pyles, D. R.; Bracken, B.; Rosenbaum, C. D.
2013-12-01
The Eocene lower Wasatch Formation of the Uinta Basin contains exceptional outcrops of low net-sand content (27% sand) fluvial strata. This study quantitatively documents the stratigraphy of a 7 km wide by 300 meter thick strike-oriented outcrop in order to develop a quantitative data base that can be used to improve our knowledge of how some fluvial systems evolve over geologic time scales. Data used to document the outcrop are: (1) 550 meters of decimeter to half meter scale resolution stratigraphic columns that document grain size and physical sedimentary structures; (2) detailed photopanels used to document architectural style and lithofacies types in the outcrop; (3) thickness, width, and spatial position for all channel belts in the outcrop, and (4) directional measurements of paleocurrent indicators. Two channel-belt styles are recognized: lateral and downstream accreting channel belts; both of which occur as either single or multi-story. Floodplain strata are well exposed and consist of overbank fines and sand-rich crevasse splay deposits. Key upward and lateral characteristics of the outcrop documented herein are the following. First, the shapes of 243 channels are documented. The average width, thickness and aspect ratios of the channel belts are 110 m, 7 m, and 16:1, respectively. Importantly, the size and shape of channel belts does not change upward through the 300 meter transect. Second, channels are documented to spatially cluster. 9 clusters are documented using a spatial statistic. Key upward patterns in channel belt clustering are a marked change from non-amalgamated isolated channel-belt clusters to amalgamated channel-belt clusters. Critically, stratal surfaces can be correlated from mudstone units within the clusters to time-equivalent floodplain strata adjacent to the cluster demonstrating that clusters are not confined within fluvial valleys. Finally, proportions of floodplain and channel belt elements underlying clusters and channel belts vary with the style of clusters and channel belts laterally and vertically within the outcrop.
1990-06-01
F34 S638 1989) Note: Thesis (Ph. D.)--Ohio State University, 1987. 507. Smith, Dwight G. Breeding ecology of raptors in the eastern Great Basin of...more chance at survival for the cloud runners." Smithsonian. 21(1): 88-100, April 1990. 315. Mosher, James A. "Raptors of the Uinta National Forest...Utah." Great Basin Naturalist. 38: 438-46, December 1978. 316. Mueller, Helmut C. "Prey selection in the American kestrel." Americai Naturalist. 111
National Waterways Study Overview of the Transportation Industry.
1981-08-01
Guard. The Corps has provided and maintained most of the channels, basins , dams, locks, breakwaters and jetties used as part of the navigation system...Producing Areas L 6AAX UXA*A 4. "T410~g IC.4 PIMMGCMU P’A M e.~ " .4 24 6mg -,41 )a%2," .4-. ifew All BasinIz2 ,1 Uinta "A’ SOURCE: A Technological...governments through such organizations as the river basin commissions established in accordance with Title II of the Water Resources Planning Act of 1965
75 FR 72705 - Approval and Promulgation of Implementation Plans; Idaho
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-26
... other states, WG relied on an additional study entitled the ``Uinta Basin Air Quality Study (UBAQS... of a modeling analysis to assess ozone impacts prior to authorizing oil and gas development projects... Agencies on assessing impacts of oil and gas development projects.\\18\\ WG questioned why EPA's...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Regenhardt, C.; Dean, J.; Hancock, J.
The purpose of this study was to determine the feasibility of the multi-drain well method in tight, lenticular formations. Although directional drilling is more costly than conventional vertical drilling, this practice could triple well production. The proposed drilling plan may be more cost efficient than drilling three separate wells with less than 320-acre spacing because it would save the costs of site surveys, rig setup, purchase of the surface lease area, and gas pipeline hookups for two additional well sites. This feasibility study was conducted on the Piceance Basin area, mainly because of the availability of geological information. The resultsmore » of this study will generally apply to other regions with tight, lenticular sand, depending upon the similarity in the total percentage of sand lenses in the area and the lens dimensions and orientations. Appendix A discusses the geology of the eastern Uinta Basin in eastern Utah, and the applicability of this study to the area. Appendix B provides calculation of expected production increase due to angle of drilling. 18 refs., 30 figs., 14 tabs.« less
Johnson, Ronald C.; Mercier, Tracy
2011-01-01
The recently completed assessment of in-place resources of the Eocene Green River Formation in the Piceance Basin, Colorado; the Uinta Basin, Utah and Colorado; and the Greater Green River Basin Wyoming, Colorado, and Utah and their accompanying ArcGIS projects will form the foundation for estimating technically-recoverable resources in those areas. Different estimates will be made for each of the various above-ground and in-situ recovery methodologies currently being developed. Information required for these estimates include but are not limited to (1) estimates of the amount of oil shale that exceeds various grades, (2) overburden calculations, (3) a better understanding of oil shale saline facies, and (4) a better understanding of the distribution of various oil shale mineral facies. Estimates for the first two are on-going, and some have been published. The present extent of the saline facies in all three basins is fairly well understood, however, their original extent prior to ground water leaching has not been studied in detail. These leached intervals, which have enhanced porosity and permeability due to vugs and fractures and contain significant ground water resources, are being studied from available core descriptions. A database of all available xray mineralogy data for the oil shale interval is being constructed to better determine the extents of the various mineral facies. Once these studies are finished, the amount of oil shale with various mineralogical and physical properties will be determined.
Methodological Preliminaries to the Development of an Expert System for Aerial Photo Interpretation.
1984-01-01
Region prl.7.2 Colorado Plateaus Province prl.7.2.1 High Plateaus of Utah Region prl.7.2.2 Uinta Basin Region prl.7.2.3 Canyon Lands Region prI.7.2.4...have a flat to undulating basin --does it?). If a majority of the questions generate negative answers some other hypothesis is sought. % (13) All...rf2.2 Lineaments rf2.3 Troughs -f2.4 Joints f2.5 Escarpments rf2.6 Gorges rfZ.7 Folds Rock Forms 3 Domes Rock Forms 4 Canyons Rock Forms 5 Basins
Aviation Turbine Fuels from Tar Sands Bitumen and Heavy Oils. Part 2. Laboratory Sample Production.
1987-07-01
tar sand bitumen from West Central Kentucky; and Sunnyside tar sand bitumen from the Uinta Basin , Utah. Each of the feedstocks had unique...fuel and about 50 volume percent heavy gas oil (600-1000°F). The Westken bitumen was overall the heaviest of the four feedstocks evaluated. K factors...was 40 weight percent and about 20 weight percent in the total crude. 3. San Ardo Heavy oil The San Ardo field is located in the Coastal basin of the
,
2002-01-01
The U.S. Geological Survey (USGS) recently completed an assessment of the undiscovered oil and gas potential of the UintaPiceance Province of northwestern Colorado and northeastern Utah (fig. 1). The assessment of the Uinta-Piceance Province is geology based and uses the Total Petroleum System concept. The geologic elements of Total Petroleum Systems include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy, petrophysical properties), and hydrocarbon traps (trap formation and timing). Using this geologic framework, the USGS defined five Total Petroleum Systems and 20 Assessment Units within these Total Petroleum Systems, and quantitatively estimated the undiscovered oil and gas resources within each Assessment Unit (table 1).
Discrimination of Earthquakes and Explosions at Regional Distances Using Complexity
1993-06-17
and Bennett and Murphy (1986) present several NTS explosion and near-NTS earthquake signals as recorded at single elements of the Tonto Forest, Uinta ... Basin , and Blue Mountain Vela Array Observatories (TFO, UBO, and BMO). As they point out, the S/N for Pn is poor (These authors therefore rested their
1982-02-05
McCo0ne Sheridan’"-M nSdHill Silver Dow Powder River Wibaux Jefferson Stillwater The following counties in Wyoming: Judith Basin Sweet Grass Albany...Sweetwater Lassen Sonoma Johnson Teton Misalera Stanislaus Lincoln Uinta Main Sutter Park Washakie Maripoaa Tehama"Sheridan Mendocino Trinity Merced
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deo, M.D.; Morgan, C.D.
1999-04-28
The objective of the project is to increase oil production and reserves by the use of improved reservoir characterization and completion techniques in the Uinta Basin, Utah. To accomplish this objective, a two-year geologic and engineering characterization of the Bluebell field was conducted. The study evaluated surface and subsurface data, currently used completion techniques, and common production problems. It was determined that advanced case- and open-hole logs could be effective in determining productive beds and that stage-interval (about 500 ft [150 m] per stage) and bed-scale isolation completion techniques could result in improved well performance. In the first demonstration wellmore » (Michelle Ute well discussed in the previous technical report), dipole shear anisotropy (anisotropy) and dual-burst thermal decay time (TDT) logs were run before and isotope tracer log was run after the treatment. The logs were very helpful in characterizing the remaining hydrocarbon potential in the well. But, mechanical failure resulted in a poor recompletion and did not result in a significant improvement in the oil production from the well.« less
Love, John David
1956-01-01
Thick sequences of silicate and carbonate rocks of sedimentary origin have been investigated in 64 areas in North America. The areas containing the thickest and most homogeneous stratigraphic sections more than 1,000 feet thick, buried at depths greater than 10,000 feet are: 1. Uinta Basin, Utah, where the Mancos shale is 1,300 to 5,000 feet thick, the Weber sandstone is 1,000 to 1,600 feet thick, and Mississippian limestones are 1,000 to 1,500 feet thick. 2. Washakie Basin, Wyoming, and Sand Wash Ba.sin, Colorado, where the Lewis shale is 1,000 to 2,000 feet thick and the Cody-Mancos shale is 4,500 to 5,500 feet thick. 3. Green River Basin, Wyoming, where the Cody-Hilliard-Baxter-Mancos shale sequence averages more than 3,000 feet, the siltstone and shale of the Chugwater formation totals 1,000 feet, and the Madison limestone ranges from 1,000 to 1,400 feet thick. 4. Red Desert (Great Divide) Basin, Wyoming, where the Cody shale is 4,000 feet thick. 5. Hanna Basin, Wyoming, where the Steele shale is 4,500 feet thick. 6. Wind River Basin, Wyoming, where the Cody shale is 3,600 to 5,000 feet thick. Geochemical characteristics of these rocks in these areas are poorly known but are being investigated. A summary of the most pertinent recent ana1yses is presented.
Predicting emissions from oil and gas operations in the Uinta Basin, Utah.
Wilkey, Jonathan; Kelly, Kerry; Jaramillo, Isabel Cristina; Spinti, Jennifer; Ring, Terry; Hogue, Michael; Pasqualini, Donatella
2016-05-01
In this study, emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin are predicted (with uncertainty estimates) from 2015-2019 using a Monte-Carlo model of (a) drilling and production activity, and (b) emission factors. Cross-validation tests against actual drilling and production data from 2010-2014 show that the model can accurately predict both types of activities, returning median results that are within 5% of actual values for drilling, 0.1% for oil production, and 4% for gas production. A variety of one-time (drilling) and ongoing (oil and gas production) emission factors for greenhouse gases, methane, and volatile organic compounds (VOCs) are applied to the predicted oil and gas operations. Based on the range of emission factor values reported in the literature, emissions from well completions are the most significant source of emissions, followed by gas transmission and production. We estimate that the annual average VOC emissions rate for the oil and gas industry over the 2010-2015 time period was 44.2E+06 (mean) ± 12.8E+06 (standard deviation) kg VOCs per year (with all applicable emissions reductions). On the same basis, over the 2015-2019 period annual average VOC emissions from oil and gas operations are expected to drop 45% to 24.2E+06 ± 3.43E+06 kg VOCs per year, due to decreases in drilling activity and tighter emission standards. This study improves upon previous methods for estimating emissions of ozone precursors from oil and gas operations in Utah's Uinta Basin by tracking one-time and ongoing emission events on a well-by-well basis. The proposed method has proven highly accurate at predicting drilling and production activity and includes uncertainty estimates to describe the range of potential emissions inventory outcomes. If similar input data are available in other oil and gas producing regions, then the method developed here could be applied to those regions as well.
Aeromagnetic maps of the Uinta and Piceance Basins and vicinity, Utah and Colorado
Grauch, V.J.S.; Plesha, Joseph L.
1989-01-01
In order to understand the evolution of sedimentary basins, it is important to understand their tectonic setting. In a U.S. Geological Survey (USGS) study of the Uinta and Piceance basins in Utah and Colorado, this understanding is approached through characterization of subsurface structure and lithology of a large region encompassing the basins. An important tool for interpreting these subsurface features is aeromagnetic data. Aeromagnetic anomalies represent variations in the strength and direction of the Earth's magnetic field that are produced by rocks containing a significant number of magnetic minerals (commonly magnetite). The shape and magnitude of an anomaly produced by one body of rock are complexly related to the amount of magnetic minerals present, the magnetic properties of those minerals (determined by a number of factors, including the history of the rock), and the shape of the rock body. In the study area, only crystalline basement rocks and volcanic rocks are likely to contain enough magnetic minerals to produce anomalies; sedimentary rocks and metasediments are generally so poor in magnetic minerals that their magnetic effects cannot be detected by the types of surveys presented in this report. Patterns of anomalies on aeromagnetic maps can reveal not only lithologic differences related to magnetite content, but structural features as well, such as faults that have juxtaposed crystalline rocks against sedimentary rocks, and upwarps of crystalline basement underlying sedimentary sequences. Tectonic features of regional extent may not become apparent until a number of aeromagnetic surveys have been compiled and plotted at the same scale. Commonly the compilation involves piecing together data from surveys that were flown at different times and have widely disparate flight specifications and data reduction procedures. The data may be compiled into a composite map, where all the pieces are plotted onto one map without regard to the differences in flight elevation and datum, or they may be compiled into a merged map, where all survey data are analytically reduced to a common flight elevation and datum, and then digitally merged at the survey boundaries. The composite map retains the original resolution of all survey data, but computer methods to enhance or model regional features crossing the survey boundaries cannot be applied. On the other hand, these computer methods can be applied to the merged data, but the resolution of the data may be somewhat diminished. This report presents both composite and merged aeromagnetic maps for a large region that includes the Uinta Basin in Utah and the Piceance basin in Colorado (fig. 1).
Rural areas with close proximity to oil and natural gas operations in Utah have experienced winter ozone levels that exceed EPA’s National Ambient Air Quality Standards (NAAQS). Through a collaborative effort, EPA Region 8 – Air Program, ORD, and OAQPS used the Commun...
9. 'CRIB DAM IN LAKE FORK RIVER AT HEADING OF ...
9. 'CRIB DAM IN LAKE FORK RIVER AT HEADING OF LAKE FORK CANAL, UINTAH PROJECT. TWO SLUICEWAYS TWENTY FEET WIDE HAVE BEEN LEFT IN THE DAM TO PASS BOULDERS DURING HIGH WATER. THESE SLUICEWAYS ARE CLOSED BY LOGS AND HAY DURING LOW WATER.' Date unknown - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT
7. 'FLOW IN CANAL NO. 1, A JOINTLY USED CANAL, ...
7. 'FLOW IN CANAL NO. 1, A JOINTLY USED CANAL, ON MAY 22 WHEN 210 SECOND FEET OF WATER WAS FLOWING. THIS WAS LATER INCREASED TO 240 SECOND FEET FOR A NUMBER OF DAYS TO SATISFY THE DEMANDS OF THE DRY GULCH COMPANY.' 1925 - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT
Thiros, Susan A.
2017-03-23
The U.S. Geological Survey (USGS), in cooperation with the Colorado River Basin Salinity Control Forum, studied trends in dissolved-solids loads at selected sites in and near the Uinta Basin, Utah. The Uinta Basin study area includes the Duchesne River Basin and the Middle Green River Basin in Utah from below Flaming Gorge Reservoir to the town of Green River.Annual dissolved-solids loads for water years (WY) 1989 through 2013 were estimated for 16 gaging stations in the study area using streamflow and water-quality data from the USGS National Water Information System database. Eight gaging stations that monitored catchments with limited or no agricultural land use (natural subbasins) were used to assess loads from natural sources. Four gaging stations that monitored catchments with agricultural land in the Duchesne River Basin were used to assess loads from agricultural sources. Four other gaging stations were included in the dissolved-solids load and trend analysis to help assess the effects of agricultural areas that drain to the Green River in the Uinta Basin, but outside of the Duchesne River Basin.Estimated mean annual dissolved-solids loads for WY 1989–2013 ranged from 1,520 tons at Lake Fork River above Moon Lake, near Mountain Home, Utah (UT), to 1,760,000 tons at Green River near Green River, UT. The flow-normalized loads at gaging stations upstream of agricultural activities showed no trend or a relatively small change. The largest net change in modeled flow-normalized load was -352,000 tons (a 17.8-percent decrease) at Green River near Green River, UT.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.Annual streamflow and modeled dissolved-solids loads at the gaging stations were balanced between upstream and downstream sites to determine how much water and dissolved solids were transported to the Duchesne River and a section of the Green River, and how much was picked up in each drainage area. Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites show that Green River near Jensen, UT, accounts for 64 percent of the load in the river at Green River, UT, while the Duchesne River and White River contribute 10 and 13 percent, respectively.The flow-normalized dissolved-solids loads estimated at Duchesne River near Randlett, UT, and White River near Watson, UT, decreased by 68,000 and 55,300 tons, or 27.8 and 20.8 percent respectively, when comparing 1989 to 2013. The drainage basins for both rivers have undergone salinity-control projects since the early 1980s to reduce the dissolved-solids load entering the Colorado River. Approximately 19 percent of the net change in flow-normalized load at Green River at Green River, UT, is from changes in load modeled at Duchesne River near Randlett, UT, and 16 percent from changes in load modeled at White River near Watson, UT. The net change in flow-normalized load estimated at Green River near Greendale, UT, for WY 1989–2013 accounts for about 45 percent of the net change estimated at Green River at Green River, UT.Mass-balance calculations of WY 1989–2013 mean annual dissolved-solids loads at the studied sites in the Duchesne River Basin show that 75,400 tons or 44 percent of the load at the Duchesne River near Randlett, UT, gaging station was not accounted for at any of the upstream gages. Most of this unmonitored load is derived from tributary inflow, groundwater discharge, unconsumed irrigation water, and irrigation tail water.A mass balance of WY 1989–2013 flow-normalized loads estimated at sites in the Duchesne River Basin indicates that the flow-normalized load of unmonitored inflow to the Duchesne River between the Myton and Randlett gaging stations decreased by 38 percent. The total net decrease in flow-normalized load calculated for unmonitored inflow in the drainage basin accounts for 94 percent of the decrease in WY 1989–2013 flow-normalized load modeled at the Duchesne River near Randlett, UT, gaging station. Irrigation improvements in the drainage basin have likely contributed to the decrease in flow-normalized load.Reductions in dissolved-solids load estimated by the Natural Resources Conservation Service (NRCS) and the Bureau of Reclamation (Reclamation) from on- and off-farm improvements in the Uinta Basin totaled about 135,000 tons in 2013 (81,900 tons from on-farm improvements and 53,300 tons from off-farm improvements). The reduction in dissolved-solids load resulting from on- and off-farm improvements facilitated by the NRCS and Reclamation in the Price River Basin from 1989 to 2013 was estimated to be 64,800 tons.The amount of sprinkler-irrigated land mapped in the drainage area or subbasin area for a gaging station was used to estimate the reduction in load resulting from the conversion from flood to sprinkler irrigation. Sprinkler-irrigated land mapped in the Uinta Basin totaled 109,630 acres in 2012. Assuming conversion to wheel-line sprinklers, a reduction in dissolved-solids load in the Uinta Basin of 95,800 tons in 2012 was calculated using the sprinkler-irrigation acreage and a pre-salinity-control project dissolved-solids yield of 1.04 tons per acre.A reduction of 72,800 tons in dissolved-solids load from irrigation improvements was determined from sprinkler-irrigated lands in the Ashley Valley and Jensen, Pelican Lake, and Pleasant Valley areas (mapped in 2012); and in the Price River Basin (mapped in 2011). This decrease in dissolved-solids load is 8,800 tons more than the decrease in unmonitored flow-normalized dissolved-solids load (-64,000 tons) determined for the Green River between the Jensen and Green River gaging stations.The net WY 1989–2013 change in flow-normalized dissolved-solids load at the Duchesne River near Randlett, UT, and the Green River between the Jensen and Green River, UT, gaging stations determined from mass-balance calculations was compared to reported reductions in dissolved-solids load from on- and off-farm improvements and estimated reductions in load determined from mapped sprinkler-irrigated areas in the Duchesne River Basin and the area draining to the Green River between the Jensen and Green River gaging stations. The combined NRCS and Reclamation estimates of reduction in dissolved-solids load from on- and off-farm improvements in the study area (200,000 tons) is more than the reduction in load estimated using the acreage with sprinkler improvements (136,000 tons) or the mass-balance of flow-normalized load (132,000 tons).
NASA Astrophysics Data System (ADS)
Mansfield, M. L.
2013-12-01
Natural seepage of methane from the lithosphere to the atmosphere occurs in regions with large natural gas deposits. According to some authors, it accounts for roughly 5% of the global methane budget. I explore a new approach to estimate methane fluxes based on the maturation of kerogen, which is the hydrocarbon polymer present in petroleum source rocks, and whose pyrolysis leads to the formation of oil and natural gas. The temporal change in the atomic H/C ratio of kerogen lets us estimate the total carbon mass released by it in the form of oil and natural gas. Then the time interval of active kerogen pyrolysis lets us estimate the average annual formation rate of oil and natural gas in any given petroleum system. Obviously, this is an upper bound to the average annual rate at which natural gas seeps into the atmosphere. After adjusting for bio-oxidation of natural gas, I conclude that the average annual seepage rate in the Uinta Basin of eastern Utah is not greater than (3100 × 900) tonne/y. This is (0.5 × 0.15)% of the total flux of methane into the atmosphere over the Basin, as measured during aircraft flights. I speculate about the difference between the regional 0.5% and the global 5% estimates.
2. 'THE ABOVE PICTURE SHOWS THE HEADGATE OF THE LAKEFORK ...
2. 'THE ABOVE PICTURE SHOWS THE HEADGATE OF THE LAKEFORK CANAL UNDER HIGH WATER DURING THE MONTH OF JUNE WITH MEN AT WORK REMOVING AN ACCUMULATION OF DRIFT WHICH FOR A SHORT TIME THREATENED THE DESTRUCTION OF THE HEADGATE DUE TO THE BACKING UP OF THE WATER.' 1930 - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT
Biewick, L.H.; Green, G.A.
1999-01-01
This Arc/Info coverage contains land status and Federal and State mineral ownership for approximately 25,900 square miles in northeastern Utah. The polygon coverage (which is also provided here as a shapefile) contains three attributes of ownership information for each polygon. One attribute indicates whether the surface is State owned, privately owned, consists of Tribal and Indian lands, or, if Federally owned, which Federal agency manages the land surface. Another attribute indicates where the Utah School and Institutional Trust Lands Administration (SITLA) maintains full or partial subsurface mineral rights. The third attribute indicates which energy minerals, if any, are owned by the Federal govenment. This coverage is based on land management status and Federal and State mineral ownership data compiled by the U.S. Geological Survey (USGS), the former U.S. Bureau of Mines (USBM), and the Utah School and Institutional Trust Lands Administration at a scale of 1:100,000. This coverage was compiled primarily to serve the USGS National Oil and Gas Resource Assessment Project in the Uinta-Piceance Basin Province and the USGS National Coal Resource Assessment Project in the Colorado Plateau.
NASA Astrophysics Data System (ADS)
Vernon, A. J.; Kendall, J. J.; Becker, T. P.; Patterson, P. E.; Reiners, P. W.; Kapp, J.
2010-12-01
The retrograde history of sedimentary basins is often poorly constrained by the study of subsidence, compaction, and thermal diffusion models. As part of industry/academic collaborative research on the fundamental processes active in convergent tectonics we combined multiple paleothermometers, paleobarometers, and thermochronometers on deep borehole samples with modern heat flow measurements to provide powerful constraint for estimating the exhumation history in an area. The Piceance basin (N.W. Colorado) lies east of the leading edge of the Cretaceous to early Eocene Sevier thrust belt, and is flanked by several basement-involved structures (Douglas Creek arch, White River dome, Uinta uplift, White River uplift) that exhibit growth from the Maastrichtian through the late Eocene. The youngest preserved strata within the Piceance basin are within the early Oligocene Uinta Formation, although there are deposits as young as Miocene locally preserved in the region that may have also capped the basin. The timing of uplift, river incision, and plateau-scale exhumation within this region fits into the larger context of the evolution of the Colorado River drainage system. A series of core, cutting, and surface samples were compiled to develop a synthetic well (or vertical section) of over 5000 m. Samples were collected from stratigraphic intervals ranging from the Jurassic to the Eocene and analyzed for apatite and zircon U-Th/He ages, as well as apatite fission track length distributions and ages. As the exhumation model was the unconstrained parameter, the timing and magnitude of the cooling associated with such an event was systematically varied. Thermal histories of each sampled interval were extracted from differing exhumation scenarios in the Piceance basin model (which tracks the temperature and pressure evolution during burial and denudation) and forward modeled using HeFTy. The combined use of several thermochronometers (apatite and zircon U-Th/He, apatite fission tracks), as well as vitrinite reflectance and multi-phase fluid inclusion thermometry and barometry yields a best-fit thermal history that corresponds to ~ 1.5 km of exhumation in the last 4 million years (~0.38 mm/yr). The timing of the thermal lapse associated with the epierogenic uplift of the western United States is not well constrained, but did figure into these estimates of exhumation timing in the Piceance basin region. Estimates of modern rates of denudation derived from suspended sediment yields are considerably lower than our datasets suggest (~0.011 mm/yr), which suggest a transient period of Plio-Pleistocene unroofing. The onset of volcanism and hydrothermal mineralization within the Colorado mineral belt may constitute an additional factor to consider within the plateau exhumation history.
Elevated Wintertime Ozone in Utah's Uinta Basin
NASA Astrophysics Data System (ADS)
Martin, R. S.; Moore, K. D.; Hill, S.; Harper, K.
2011-12-01
Seemingly anomalous elevated wintertime ozone (O3) levels were first observed in Wyoming's Upper Green River Basin (UGRB) in 2005 and have been recorded most in subsequent winters. While research continues, it has been hypothesized that the unacceptable levels are a unique combination of stagnant meteorology, enhanced insolation due to relatively high elevations and snow increased albedo, and abundant precursor sources owing to the region's recent rapid expansion of oil and gas exploration and production. The UGRB area has over 4,700 recorded gas/oil wells and sits mostly in rural Sublette County which has an estimated population of 7,925, an area of 12,644 km2, and a basin floor elevation around 2200 m asl, surrounded on three sides with mountains up to 4,200 km asl. Similarly, the Uinta Basin in northeastern Utah is a rural area prone to frequent low-level wintertime inversion episodes and persistent snow cover, with an expanding economy significantly based on gas and oil development and production (approximately 11,500 wells, with an estimated 17,000 more planned in the future years). The Basin lies primarily in Duchesne and Uintah Counties which have a combined population of approximately 51,200 and an area of about 19,982 km2. The floor of the Basin has a typical elevation around 1,560 m asl and is surrounded by mountains up to 4,120 m asl. Ambient measurements at four sites in the winter of 2009-2010 found many instances of ozone concentrations well above the current U.S. National Ambient Air Quality Standard (NAAQS; 75 ppb, 8-hr average, 4th highest value). To more fully characterize the behavior and geographical extent of the Uinta Basin's wintertime O3 issue, the Uintah Impact Mitigation Special Service District (UIMSSD) funded a study which included deploying 10 portable O3 monitors (2B Technologies, Inc., Model 205, Dual Beam) throughout the Basin. Furthermore, cooperative partners including the USEPA, BLM, UDAQ, NPS, and Golder Associates provided access to an additional six monitoring locations within the Basin. The sites were operated from late December 2010 through mid-March 2011. Several stagnant, inversion episodes and associated periods of Basin-wide elevated ozone were captured. The highest 1-hr O3 concentration observed was 149.0 ppb, with 12 of the total 16 sites recording 1-hr values greater than 100 ppb. Of the 16 sites, only four were found not to exceed the current NAAQS regulation. The highest 8-hr averaged concentration recorded was 139.1 ppb. However, the U.S. standards specify that an area is regulated at the 4th highest values and the maximum value under this criterion during the observed winter period was 121.6 ppb. Two sites exceeded the NAAQS 25 days over the three month observation period, while five other locations exceed the NAAQS between 18 and 22 times. The sites with the highest O3 concentrations and the greatest number of daily exceedances were generally associated with the highest density of known oil and/or gas well locations. The sites with the fewest number of exceedances were at higher elevations or geographically peripheral locations.
1981-03-20
There are no croplands within the study area. Oil and gas leases are widely scattered in the area, and deep tests are currently being drilled. There...sightings from Uinta Basin in 1972 and 1975, from New Green River, Utah, in 1976, and from Rich and Emery counties in 1977 and 1978. The primary prey...located in a transitional area between the Great Basin and the Mojave Desert, and it contains vegeta- tion representative of both regions. Plant and
Geomorphology of the north flank of the Uinta Mountains
Bradley, W.H.
1936-01-01
beds now form hogbacks ranked along the sides of the fold. In places large faults, approximating the regional strike, cut these steeply inclined beds. Gently warped Tertiary sediments, mostly of Eocene age, fill the large Green River Basin, which lies north of the range, to a depth of several thousand feet and lap up on the flanks of the mountains, from which they were chiefly derived.
Lyman, Seth N; Watkins, Cody; Jones, Colleen P; Mansfield, Marc L; McKinley, Michael; Kenney, Donna; Evans, Jordan
2017-10-17
We measured fluxes of methane, nonmethane hydrocarbons, and carbon dioxide from natural gas well pad soils and from nearby undisturbed soils in eastern Utah. Methane fluxes varied from less than zero to more than 38 g m -2 h -1 . Fluxes from well pad soils were almost always greater than from undisturbed soils. Fluxes were greater from locations with higher concentrations of total combustible gas in soil and were inversely correlated with distance from well heads. Several lines of evidence show that the majority of emission fluxes (about 70%) were primarily due to subsurface sources of raw gas that migrated to the atmosphere, with the remainder likely caused primarily by re-emission of spilled liquid hydrocarbons. Total hydrocarbon fluxes during summer were only 39 (16, 97)% as high as during winter, likely because soil bacteria consumed the majority of hydrocarbons during summer months. We estimate that natural gas well pad soils account for 4.6 × 10 -4 (1.6 × 10 -4 , 1.6 × 10 -3 )% of total emissions of hydrocarbons from the oil and gas industry in Utah's Uinta Basin. Our undisturbed soil flux measurements were not adequate to quantify rates of natural hydrocarbon seepage in the Uinta Basin.
Origin and microfossils of the oil shale of the Green River formation of Colorado and Utah
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bradley, W.H.
1931-01-01
The Green River formation of Colorado and Utah is a series of lakebeds of middle Eocene age that occupy two broad, shallow, simple, structural basins--the Piceance Creek basin in northwestern Colorado and the Uinta basin in northeastern Utah. The ancient lakes served as a basin for the accumulation of tremendous quantities of aquatic organisms. The predominance of microscopic fresh-water algae and protozoa over the remains of land plants, pollens and spores suggests that the greater part of the organic matter was derived from microorganisms that grew in the lakes. The pollens and spores were carried into the lakes by wind.more » Fish, mollusks, crustaceans, and aquatic insect larvae were also plentiful; and turtles, crocodiles, birds, small camels, and insects may have contributed to the organic matter. The ancient lakes apparently were shallow and had a large area, compared with depth. The abundance of organisms and the decaying organic matter produced a strongly reducing environment. Mechanical and chemical action, such as the mastication and digestion of the organic material by bottom-living organisms, caused disintegration of the original organic matter. When the residue was reduced to a gelatinous condition, it apparently resisted further bacterial decay, and other organisms accidently entombed in the gel were protected from disintegration. An accumulation of inorganic material occurred simultaneously with the disintegration of the organic ooze, and the entire mass became lithified. After most of the oil shale was deposited, the lake reverted nearly to the conditions that prevailed during its early stage, when the marlstone and low-grade oil shale of the basal member were formed. The streams in the vicinity of the lake were rejuvenated and carried great quantities of medium- to coarse-grained sand into the basin and formed a thick layer over the lakebeds.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narr, W.; Currie, J.B.
The occurrence of natural fracture systems in subsurface rock can be predicted if careful evaluation is made of the ecologic processes that affect sedimentary strata during their cycle of burial, diagenesis, uplift, and erosional unloading. Variations in the state of stress within rock arise, for example, from changes in temperature, pore pressure, weight of overburden, or tectonic loading. Hence geologic processes acting on a sedimentary unit should be analyzed for their several contributions to the state of stress, and this information used to compute a stress history. From this stress history, predictions may be made as to when in themore » burial cycle to expect fracture (joint) formation, what type of fractures (extension or shear) may occur, and which geologic factors are most favorable to development of fractures. A stress history is computed for strata of the naturally fractured Altamont oil field in Utah's Uinta basin. Calculations suggest that fractures formed in extension, that the well-cemented rocks are those most likely to be fractured, that fractures began to develop only after stata were uplifted and denuded of overburden. Geologic evidence on fracture genesis and development is in accord with the stress history prediction. Stress history can be useful in evaluating a sedimentary basin for naturally fractured reservoir exploration plays.« less
Surficial deposits in the Bear Lake Basin
Reheis, Marith C.; Laabs, Benjamin J.C.; Forester, Richard M.; McGeehin, John P.; Kaufman, Darrell S.; Bright, Jordon
2005-01-01
Mapping and dating of surficial deposits in the Bear Lake drainage basin were undertaken to provide a geologic context for interpretation of cores taken from deposits beneath Bear Lake, which sometimes receives water and sediment from the glaciated Bear River and sometimes only from the small drainage basin of Bear Lake itself. Analyses of core sediments by others are directed at (1) constructing a high-resolution climate record for the Bear Lake area during the late Pleistocene and Holocene, and (2) investigating the sources and weathering history of sediments in the drainage basin. Surficial deposits in the upper Bear River and Bear Lake drainage basins are different in their overall compositions, although they do overlap. In the upper Bear River drainage, Quaternary deposits derived from glaciation of the Uinta Range contain abundant detritus weathered from Precambrian quartzite, whereas unglaciated tributaries downstream mainly contribute finer sediment weathered from much younger, more friable sedimentary rocks. In contrast, carbonate rocks capped by a carapace of Tertiary sediments dominate the Bear Lake drainage basin.
Chronology of the last glacial maximum in the upper Bear River Basin, Utah
Laabs, B.J.C.; Munroe, Jeffrey S.; Rosenbaum, J.G.; Refsnider, K.A.; Mickelson, D.M.; Singer, B.S.; Caffee, M.W.
2007-01-01
The headwaters of the Bear River drainage were occupied during the Last Glacial Maximum (LGM) by outlet glaciers of the Western Uinta Ice Field, an extensive ice mass (???685 km2) that covered the western slope of the Uinta Mountains. A well-preserved sequence of latero-frontal moraines in the drainage indicates that outlet glaciers advanced beyond the mountain front and coalesced on the piedmont. Glacial deposits in the Bear River drainage provide a unique setting where both 10Be cosmogenic surface-exposure dating of moraine boulders and 14C dating of sediment in Bear Lake downstream of the glaciated area set age limits on the timing of glaciation. Limiting 14C ages of glacial flour in Bear Lake (corrected to calendar years using CALIB 5.0) indicate that ice advance began at 32 ka and culminated at about 24 ka. Based on a Bayesian statistical analysis of cosmogenic surface-exposure ages from two areas on the terminal moraine complex, the Bear River glacier began its final retreat at about 18.7 to 18.1 ka, approximately coincident with the start of deglaciation elsewhere in the central Rocky Mountains and many other alpine glacial localities worldwide. Unlike valleys of the southwestern Uinta Mountains, deglaciation of the Bear River drainage began prior to the hydrologie fall of Lake Bonneville from the Provo shoreline at about 16 ka. ?? 2007 Regents of the University of Colorado.
Geochemistry and hydrodynamics of the Paradox Basin region, Utah, Colorado and New Mexico
Hanshaw, B.B.; Hill, G.A.
1969-01-01
The Paradox Basin region is approximately bounded by the south flank of the Uinta Basin to the north, the Uncompahgre uplift and San Juan Mountains to the east, the Four Corners structural platform to the southeast, the north rim of the Black Mesa Basin and the Grand Canyon to the south and southwest, and the Wasatch Plateau and Hurricane fault system to the west. Some of these geologic features are areas of ground-water recharge or discharge whereas others such as the Four Corners platform do not directly influence fluid movement. The aquifer systems studied were: (1) Mississippian rocks; (2) Pinkerton Trail Limestone of Wengerd and Strickland, 1954; (3) Paradox Member of the Hermosa Formation; (4) Honaker Trail Formation of Wengerd and Matheny, 1958; (5) Permian rocks. Recharge in the Paradox Basin occurs on the west flank of the San Juan Mountains and along the west side of the Uncompahgre uplift. The direction of ground-water movement in each analyzed unit is principally southwest-ward toward the topographically low outcrop areas along the Colorado River in Arizona. However, at any point in the basin, flow may be in some other direction owing to the influence of intrabasin recharge areas or local obstructions to flow, such as faults or dikes. A series of potentiometric surface maps was prepared for the five systems studied. Material used in construction of the maps included outcrop altitudes of springs and streams, drill-stem tests, water-well records, and an electric analog model of the entire basin. Many structurally and topographically high areas within the basin are above the regional potentiometric surface; recharge in these areas will drain rapidly off the high areas and adjust to the regional water level. With a few exceptions, most wells in formations above the Pennsylvanian contain fresh ( 35,000 mg/l T.D.S.) reported. Most water samples from strata below the Permian are brines of the sodium chloride type but with large amounts of calcium sulfate or calcium chloride type water commonly occurring. Because evaporite facies occur in the Paradox Member, this unit has brines with as much as 400,000 mg/l dissolved solids content. Previous analysis of the San Juan Basin has indicated the presence of an osmotic membrane system. The highly permeable Jurassic formations were postulated to be the outflow side of the membrane. It is also possible that the Upper Paleozoic units with known brines and with an otherwise inexplicably high potentiometric surface in the Four Corners area of New Mexico could be the outflow receptors of the San Juan membrane system. ?? 1969.
NASA Astrophysics Data System (ADS)
Sterling, C. W.; Johnson, B.; Schnell, R. C.; Oltmans, S. J.; Cullis, P.; Hall, E. G.; Jordan, A. F.; Windell, J.; McClure-Begley, A.; Helmig, D.; Petron, G.
2015-12-01
During the Uinta Basin Winter Ozone Study (UBWOS) in Jan - Feb 2013, 735 tethered ozonesonde profiles were obtained at 3 sites including during high wintertime photochemical ozone production events that regularly exceeded 125 ppb. High resolution profiles of ozone and temperature with altitude, measured during daylight hours, showed the development of approximately week long high ozone episodes building from background levels of ~40 ppb to >150 ppb. The topography of the basin combined with a strong temperature inversion trapped oil and gas production effluents in the basin and the snow covered surface amplified the sun's radiation driving the photochemical ozone production at rates up to 13 ppb/hour in a cold layer capped at 1600-1700 meters above sea level. Beginning in mid-morning, ozone mixing ratios throughout the cold layer increased until late afternoon. Ozone mixing ratios were generally constant with height indicating that ozone production was nearly uniform throughout the depth of the cold pool. Although there was strong diurnal variation, ozone mixing ratios increased during the day more than decreased during the night, resulting in elevated levels the next morning; an indication that nighttime loss processes did not compensate for daytime production. Even though the 3 tethersonde sites were at elevations differing by as much as 140 m, the top of the high ozone layer was nearly uniform in altitude at the 3 locations. Mobile van surface ozone measurements across the basin confirmed this capped structure of the ozone layer; the vehicle drove out of high ozone mixing ratios at an elevation of ~1900 meters above sea level, above which free tropospheric ozone mixing ratios of ~50 ppb were measured. Exhaust plumes from a coal-fired power plant in the eastern portion of the basin were intercepted by the tethersondes. The structure of the profiles clearly showed that effluents in the plumes were not mixed downward and thus did not contribute precursor nitrogen oxides to the observed ozone production in the boundary layer.
Forest resources of the Uinta National Forest
Renee A. O' Brien; Dennis Collins
1997-01-01
The 883,225 acres in the Uinta National Forest encompass 552,021 acres of forest land, made up of 68 percent (377,651 acres) "timberland" and 32 percent (174,370 acres) "woodland." The other 331,204 acres of the Uinta are nonforest (fig. 1). This report discusses forest land only. In the Uinta, 7 percent of the total area and 4 percent of...
Let your fingers do the walking: A simple spectral signature model for "remote" fossil prospecting.
Conroy, Glenn C; Emerson, Charles W; Anemone, Robert L; Townsend, K E Beth
2012-07-01
Even with the most meticulous planning, and utilizing the most experienced fossil-hunters, fossil prospecting in remote and/or extensive areas can be time-consuming, expensive, logistically challenging, and often hit or miss. While nothing can predict or guarantee with 100% assurance that fossils will be found in any particular location, any procedures or techniques that might increase the odds of success would be a major benefit to the field. Here we describe, and test, one such technique that we feel has great potential for increasing the probability of finding fossiliferous sediments - a relatively simple spectral signature model using the spatial analysis and image classification functions of ArcGIS(®)10 that creates interactive thematic land cover maps that can be used for "remote" fossil prospecting. Our test case is the extensive Eocene sediments of the Uinta Basin, Utah - a fossil prospecting area encompassing ∼1200 square kilometers. Using Landsat 7 ETM+ satellite imagery, we "trained" the spatial analysis and image classification algorithms using the spectral signatures of known fossil localities discovered in the Uinta Basin prior to 2005 and then created interactive probability models highlighting other regions in the Basin having a high probability of containing fossiliferous sediments based on their spectral signatures. A fortuitous "post-hoc" validation of our model presented itself. Our model identified several paleontological "hotspots", regions that, while not producing any fossil localities prior to 2005, had high probabilities of being fossiliferous based on the similarities of their spectral signatures to those of previously known fossil localities. Subsequent fieldwork found fossils in all the regions predicted by the model. Copyright © 2012 Elsevier Ltd. All rights reserved.
Ground water in the southeastern Uinta Basin, Utah and Colorado
Holmes, Walter F.; Kimball, Briant A.
1987-01-01
The potential for developing oil-shale resources in the southeastern Uinta Basin of Utah and Colorado has created the need for information on the quantity and quality of water available in the area. This report describes the availability and chemical quality of ground water, which might provide a source or supplement of water supply for an oil-shale industry. Ground water in the southeastern Uinta Basin occurs in three major aquifers. Alluvial aquifers of small areal extent are present i n val ley-f i 11 deposits of six major drainages. Consolidated-rock aquifers include the birds's-nest aquifer i n the Parachute Creek Member of the G reen River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer, which includes parts of the Douglas Creek Member of the Green River Formation and parts of the intertonguing Renegade Tongue of the Wasatch Formation; this aquifer underlies most of the study area.The alluvial aquifers are recharged by infiltration of streamflow and leakage from consolidated-rock aquifers. Recharge is estimated to average about 32,000 acre-feet per year. Discharge from alluvial aquifers, primarily by evapotranspiration, also averages about 32,000 acre-feet per year. The estimated volume of recoverable water in storage in alluvial aquifers is about 200,000 acre-feet. Maximum yields to individual wells are less than 1,000 gallons per minute.Recharge to the bird's-nest aquifer, primarily from stream infiltration and downward leakage from the overlying Uinta Formation, is estimated to average 670 acre-feet per year. Discharge from the bird's-nest aquifer, which is primarily by seepage to Bitter Creek and the White River, is estimated to be at 670 acre-feet per year. The estimated volume of recoverable water in storage in the bird's-nest aquifer is 1.9 million acre-feet. Maximum yields to individual wells in some areas may be as much as 5,000 gallons per minute. A digital-computer model of the flow system was used to evaluate the effects of oil-shale development on the bird's-nest aquifer at the Federal lease tracts Ua and Ub. Results of model simulations indicate that during construction of a vertical access shaft, a pumping rate of about 900 gallons per minute would be required to dewaterthe aquifer. The model also indicates that the construction of a proposed reservoir on the White River may raise water levels in the bird's-nest aquifer near the reservoir site by as much as 45 feet.The flow model was used to evaluate the potential ground-water supply available for oil-shale development in the vicinity of the Federal lease tracts Ua and Ub. The results of the simulation indicate that bird's-nest aquifer could supply about 10,000 acre-feet of water per year at that site, for a period of 20 years. Downdraw after 20 years of pumping would exceed 250 feet near the simulated well field. Based on the results of the model simulation, it is estimated that the aquifer could simultaneously supply another 10,000 acre-feet of water per year in the northern part of the study area, but some interference between well fields could be expected.The Douglas Creek aquifer is recharged by precipitation and stream infiltration at an average rate of about 20.000 acre-feet per year. Discharge is estimated to be about the same and is primarily through springs and diffuse seepage. The estimated volume of recoverable water in storage is 16 million acre-feet. Maximum yields to individual wells are estimated to be less than 500 gallons per minute.A model of the flow system in the Douglas Creek aquifer indicates that the aquifer could supply about 700 acre-feet of water per year for oil-shale development at Federal lease tracts Ua and Ub and at the TOSCO Corp. site. After 20 years of pumping, water levels in production wells would be near the base of the aquifer. Based on the results of the model simulation, it is estimated that the aquifer could supply another 700 acre-feet of water per year in the southern part of the modeled area, but some interference between wells could be expected. Chemical quality of the ground water in the southeastern Uinta Basin varies considerably. Water from alluvial wells ranges from about 440 to 27,800 milligrams per liter of dissolved solids. Water from two consolidated-rock aquifers has dissolved-solids concentrations ranging from 870 to 5,810 milligrams per liter in the bird's-nest aquifer, and from 640 to 6,100 milligrams per liter in the Douglas Creek aquifer. Water from alluvial wells generally is a sodium sulfate type, whereas water in both the consolidated-rock aquifers generally changes from a sodium sulfate type to a sodium bicarbonate type. All ground water is very alkaline, and the alluvial aquifers contain very hard water. None of the water is suitable for public supply, but all the water could be used for industrial purposes such as washing and cooling.Changes in chemical composition of the ground water can be attributed to several physiochemical processes, including mineral precipitation and dissolution, oxidation and reduction, mixing, ion exchange, and evaporative concentration. Mass-transfer modeling of these processes shows how they can account for the variability in the ground-water quality. The mass-transfer model of the Bitter Creek alluvial aquifer shows that evaporative concentration, combined with precipitation of calcite, dolomite, gypsum, and release of carbon dioxide to the atmosphere results in the documented changes in the pH and dissolved solids in the water. The water-quality changes in the consolidated-rock aquifers are a result of precipitation of calcium carbonate and perhaps dolomite (calcium magnesium carbonate) with the reduction of sulfate by organic carbon, as well as ion exchange of magnesium for sodium. These processes result in large values of pH and alkalinity in the water.
Morrison, Jean M.; Tuttle, Michele L.W.; Fahy, Juli W.
2015-08-06
The goal of this study was to establish a process-based understanding of salt, Se, and B behavior to address whether these contaminants can be better managed, or if uncontrollable natural processes will overwhelm any attempts to bring Pariette Draw into compliance with respect to recently established total maximum daily limits (TMDLs). We collected data to refine our knowledge about the role of rock weathering and soil formation in the transport and storage of salt in the watershed and to show how salt is cycled under irrigated and natural conditions. Our approach was to sample rock, soils, and sediment on irrigated and natural terrain for mineralogical analysis to determine the residence of salt and associated Se and B, classify minerals as primary (related to rock formation) or secondary weathering products, and characterize mineral dissolution kinetics. Mineral and chemical analyses and selective extractions of rocks and soils provide useful information in understanding solute movement and mineral dissolution/ formation. The resulting data are critical in determining residence of salt, Se, and B in weathered rock and soil and understanding the mobility during water-rock-soil interactions. This report summarizes our methods for sample and data collection and tabulates the mineral, chemical, and isotopic data collected.
Ford, Grace L.; David R. Pyles,; Dechesne, Marieke
2016-01-01
Two large-scale (member-scale) upward patterns are noted: Waltherian, and non-Waltherian. The upward successions in Waltherian progressions record progradation or retrogradation of a linked fluvial-lacustrine system across the area; whereas the upward successions in non-Waltherian progressions record large-scale changes in the depositional system that are not related to progradation or retrogradation of the ancient lacustrine shoreline. Four Waltherian progressions are noted: 1) the Flagstaff Limestone to lower Wasatch Formation member records the upward transition from lacustrine to fluvial—or shallowing-upward succession; 2) the upper Wasatch to Uteland Butte records the upward transition from fluvial to lacustrine—or a deepening upward succession; 3) the Uteland Butte to Renegade Tongue records the upward transition from lacustrine to fluvial—a shallowing-upward succession; and 4) the Renegade Tongue to Mahogany oil shale interval records the upward transition from fluvial to lacustrine—a deepening upward succession. The two non-Waltherian progressions in the study area are: 1) the lower to middle Wasatch, which records the abrupt shift from low to high net-sand content fluvial system, and 2) the middle to upper Wasatch, which records the abrupt shift from high to intermediate net-sand content fluvial system.
Mesoscale carbon sequestration site screening and CCS infrastructure analysis.
Keating, Gordon N; Middleton, Richard S; Stauffer, Philip H; Viswanathan, Hari S; Letellier, Bruce C; Pasqualini, Donatella; Pawar, Rajesh J; Wolfsberg, Andrew V
2011-01-01
We explore carbon capture and sequestration (CCS) at the meso-scale, a level of study between regional carbon accounting and highly detailed reservoir models for individual sites. We develop an approach to CO(2) sequestration site screening for industries or energy development policies that involves identification of appropriate sequestration basin, analysis of geologic formations, definition of surface sites, design of infrastructure, and analysis of CO(2) transport and storage costs. Our case study involves carbon management for potential oil shale development in the Piceance-Uinta Basin, CO and UT. This study uses new capabilities of the CO(2)-PENS model for site screening, including reservoir capacity, injectivity, and cost calculations for simple reservoirs at multiple sites. We couple this with a model of optimized source-sink-network infrastructure (SimCCS) to design pipeline networks and minimize CCS cost for a given industry or region. The CLEAR(uff) dynamical assessment model calculates the CO(2) source term for various oil production levels. Nine sites in a 13,300 km(2) area have the capacity to store 6.5 GtCO(2), corresponding to shale-oil production of 1.3 Mbbl/day for 50 years (about 1/4 of U.S. crude oil production). Our results highlight the complex, nonlinear relationship between the spatial deployment of CCS infrastructure and the oil-shale production rate.
Hawbaker, Todd J.
2012-01-01
The Wyoming Basin Ecoregion (Omernik 1987; U.S. Environmental Protection Agency, 1999) covers approximately 128,914 km2 (49,774 mi2) in Wyoming and parts of northwestern Colorado, northeastern Utah, southeastern Idaho, and southern Montana (fig. 1). The ecoregion is bounded on the east by the Northwestern Great Plains Ecoregion; on the south and east by the Southern Rockies Ecoregion; on the south by the Colorado Plateaus Ecoregion; on the south and west by the Wasatch and Uinta Mountains Ecoregion; and on the north by the Middle Rockies Ecoregion and parts of the Montana Valley and Foothill Prairies Ecoregion (fig. 1). The ecoregion generally consists of broad intermountain basins dominated by arid grasslands and shrublands, as well as isolated hills and low mountains that merge to the south into a dissected plateau.
Assessment of Uinta Basin Oil and Natural Gas Well Pad ...
In the fall of 2016, a field study was conducted in the Uinta Basin Utah to improve information on oil and natural gas well pad pneumatic controllers (PCs) and emission measurement methods. A total of 80 PC systems at five oil sites (supporting six wells) and three gas sites (supporting 12 wells) were surveyed, and emissions data were produced using a combination of measurements and engineering emission estimates. Ninety-six percent of the PCs surveyed were the low actuation frequency intermittent vent type. The overall whole gas emission rate for the study was estimated at 0.37 scfh with the majority of emissions occurring from three continuous vent PCs (1.0 scfh average) and eleven (14%) malfunctioning intermittent vent PC systems (1.6 scfh average). Oil sites employed, on average 10.3 PC systems per well compared to 1.5 for gas sites. Oil and gas sites had group average PC emission rates of 0.28 scfh and 0.67 scfh, respectively, with this difference due in part to site selection procedures. The PC system types encountered, the engineering emissions estimate approach, and comparisons to measurements are described. Survey methods included identification of malfunctioning PC systems and emission measurements with augmented high volume sampling and installed mass flow meters, each providing a somewhat different picture of emissions that are elucidated through example cases. This paper reports on an oil and natural gas well pad pneumatic controller emissions stud
Lacustrine Basal Ages Constrain the Last Deglaciation in the Uinta Mountains, Utah, USA
NASA Astrophysics Data System (ADS)
Munroe, Jeffrey; Laabs, Benjamin
2013-04-01
Basal radiocarbon ages from 21 high-elevation lakes limit the timing of final Pleistocene deglaciation in the Uinta Mountains of northeastern Utah, USA. The lakes are located in glacial valleys and cirques 5 to 20 km upstream from LGM terminal moraines at elevations from 2830 to 3475 m. Many are impounded behind recessional moraines. Cores were retrieved from a floating platform with a percussion corer driven to the point of refusal. All penetrated inorganic silty clay beneath gyttja. AMS radiocarbon analyses were made on terrestrial macrofossils, daphnia ephippia, pollen concentrates, and bulk sediment retrieved from the base of each core. No radiocarbon reservoir effect was observed when bulk dates were checked against terrestrial material. Radiocarbon results were converted to calendar years using the IntCal09 calibration curve in OxCal 4.1. Given the stratigraphy observed in the cores, these calibrated basal ages are considered close limits on the timing of the local deglaciation and lake formation. The oldest three lakes have basal radiocarbon ages that calibrate to a few centuries after the Bölling/Alleröd warming, indicating that the landscape was becoming ice free at this time. These are followed by an overlapping group of five lakes with basal ages between 13.5 and 13.0 ka BP. Five more cores, from four separate lakes, have basal ages tightly clustered between 13.0 and 12.5 ka BP. Three of these lakes are dammed by moraines, suggesting glacial activity during the early part of the Younger Dryas interval. The lone kettle lake in the study yielded a basal age of 12.3 ka BP, considerably younger than the basal age of 13.9 ka BP from a nearby lake filling a bedrock basin, indicating that buried ice may have been locally stable for more than a millennium after deglaciation. The remaining seven lakes have basal ages between 12.0 and 11.0 ka BP. Four of these lakes are also dammed by moraines. These two non-overlapping clusters of basal ages for moraine-dammed lakes, with maximum probabilities ca. 12.7 and 11.3 ka BP, suggest that active glaciers were present in the Uinta Mountains during the Younger Dryas, and that Younger Dryas glacier activity was concentrated in two separate intervals.
Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Spinti, Jennifer; Birgenheier, Lauren; Deo, Milind
This report summarizes the significant findings from the Clean and Secure Energy from Domestic Oil Shale and Oil Sands Resources program sponsored by the Department of Energy through the National Energy Technology Laboratory. There were four principle areas of research; Environmental, legal, and policy issues related to development of oil shale and oil sands resources; Economic and environmental assessment of domestic unconventional fuels industry; Basin-scale assessment of conventional and unconventional fuel development impacts; and Liquid fuel production by in situ thermal processing of oil shale Multiple research projects were conducted in each area and the results have been communicated viamore » sponsored conferences, conference presentations, invited talks, interviews with the media, numerous topical reports, journal publications, and a book that summarizes much of the oil shale research relating to Utah’s Uinta Basin. In addition, a repository of materials related to oil shale and oil sands has been created within the University of Utah’s Institutional Repository, including the materials generated during this research program. Below is a listing of all topical and progress reports generated by this project and submitted to the Office of Science and Technical Information (OSTI). A listing of all peer-reviewed publications generated as a result of this project is included at the end of this report; Geomechanical and Fluid Transport Properties 1 (December, 2015); Validation Results for Core-Scale Oil Shale Pyrolysis (February, 2015); and Rates and Mechanisms of Oil Shale Pyrolysis: A Chemical Structure Approach (November, 2014); Policy Issues Associated With Using Simulation to Assess Environmental Impacts (November, 2014); Policy Analysis of the Canadian Oil Sands Experience (September, 2013); V-UQ of Generation 1 Simulator with AMSO Experimental Data (August, 2013); Lands with Wilderness Characteristics, Resource Management Plan Constraints, and Land Exchanges (March, 2012); Conjunctive Surface and Groundwater Management in Utah: Implications for Oil Shale and Oil Sands Development (May, 2012); Development of CFD-Based Simulation Tools for In Situ Thermal Processing of Oil Shale/Sands (February, 2012); Core-Based Integrated Sedimentologic, Stratigraphic, and Geochemical Analysis of the Oil Shale Bearing Green River Formation, Uinta Basin, Utah (April, 2011); Atomistic Modeling of Oil Shale Kerogens and Asphaltenes Along with their Interactions with the Inorganic Mineral Matrix (April, 2011); Pore Scale Analysis of Oil Shale/Sands Pyrolysis (March, 2011); Land and Resource Management Issues Relevant to Deploying In-Situ Thermal Technologies (January, 2011); Policy Analysis of Produced Water Issues Associated with In-Situ Thermal Technologies (January, 2011); and Policy Analysis of Water Availability and Use Issues for Domestic Oil Shale and Oil Sands Development (March, 2010)« less
Lewan, M.D.; Ruble, T.E.
2002-01-01
This study compares kinetic parameters determined by open-system pyrolysis and hydrous pyrolysis using aliquots of source rocks containing different kerogen types. Kinetic parameters derived from these two pyrolysis methods not only differ in the conditions employed and products generated, but also in the derivation of the kinetic parameters (i.e., isothermal linear regression and non-isothermal nonlinear regression). Results of this comparative study show that there is no correlation between kinetic parameters derived from hydrous pyrolysis and open-system pyrolysis. Hydrous-pyrolysis kinetic parameters determine narrow oil windows that occur over a wide range of temperatures and depths depending in part on the organic-sulfur content of the original kerogen. Conversely, open-system kinetic parameters determine broad oil windows that show no significant differences with kerogen types or their organic-sulfur contents. Comparisons of the kinetic parameters in a hypothetical thermal-burial history (2.5 ??C/my) show open-system kinetic parameters significantly underestimate the extent and timing of oil generation for Type-US kerogen and significantly overestimate the extent and timing of petroleum formation for Type-I kerogen compared to hydrous pyrolysis kinetic parameters. These hypothetical differences determined by the kinetic parameters are supported by natural thermal-burial histories for the Naokelekan source rock (Type-IIS kerogen) in the Zagros basin of Iraq and for the Green River Formation (Type-I kerogen) in the Uinta basin of Utah. Differences in extent and timing of oil generation determined by open-system pyrolysis and hydrous pyrolysis can be attributed to the former not adequately simulating natural oil generation conditions, products, and mechanisms.
1980-12-22
National Forest in northeastern Nevada, and Lone Peak in the Uinta and Wasatch National Forest of central Utah. Each of these areas is more than 60 miles...natural landmarks was obtained from a compre- hensive study of the Great Basin (Bostick et al., 1975) and updated with information from DNL and Nevada...Montains~ 0 ALM :Battle Mtns) 35rks 42.000 .4% 53 I-- Iee -A~IMI Ditrc 10- - - 57 Se"lpeSes - - --- se Midle Img ie. Sle on. - --- 122 Gas . Fairvie
Lindskov, K.L.; Kimball, B.A.
1984-01-01
Proposed oil-shale mining in northeastern Utah is expected to impact the water resources of a 3,000-square-mile area. This report summarizes a comprehensive hydrologic investigation of the area which resulted in 13 published reports. Hydrologic information obtained during 1974-80 was used to evaluate the availability of water and to evaluate potential impacts of an oil-shale industry on the water resources.The study area is the southeastern part of the Uinta Basin, Utah and Colorado, where the hydrology is extremely variable. The normal annual precipitation averages 11 inches and varies with altitude. It ranges from less than 8 inches at altitudes below 5,000 feet along the White and Green Rivers to more than 20 inches where altitudes exceed 9,000 feet on the Roan Plateau.The White and Green Rivers are large streams that flow through the area. They convey an average flow of 4.3 million acre-feet per year from outside drainage areas of about 34,000 square miles, which is more than 150 times as much flow as that originating within the area. Streams originating in areas where precipitation is less than 10 inches are ephemeral. Mean annual runoff from the study area is about 28,000 acre-feet and ranges from less than 0.1 to 1.6 inches, depending on the location. At any given site, runoff varies greatly-from year to year and season to season. Potential evapotranspiration is large, exceeding precipitation in all years. Three major aquifers occur in the area. They are alluvial deposits of small areal extent along the major stream valleys; the bird's-nest aquifer of the Parachute Creek Member of the Green River Formation, which is limited to the central part of the study area; and the Douglas Creek aquifer of the Douglas Creek Member of the Green River Formation, which underlies most of the area. Total recoverable water in storage in the three aquifers is about 18 million acre-feet. Yields of individual wells and interference between wells limit the maximum practical withdrawal to about 20,000 acre-feet per year.An oil-shale industry in the southeastern Uinta Basin with a peak production of 400,000 barrels of oil per day would require a water supply of about 70,000 acre-feet per year. Sources of water supply considered for such an industry were: diversion from the natural flow of the White River, a proposed reservoir on the White River, diversion from the White River combined with proposed off-stream storage in Hells Hole Canyon, diversion from the Green River, and conjunctive use of ground and surface water.The proposed reservoir on the White River would trap about 90 percent of the sediment moving in the river and in turn would release almost sediment-free water. Possible impacts are changes in channel gradient in the downstream 18 miles of the White River and changes in bank stability. In some parts of the area, annual sheet-erosion rates are as great as 2.2 acre-feet per square mile but sediment yield to the White River is less than might be expected because the runoff is small. If process water from retort operations or water used in the construction of surface facilities is discharged into a normally dry streambed, increased channel erosion and sediment in tributary streams could result in increased sediment loads in the White River. In addition, sediment yields from retorted-shale piles with minimum slopes could exceed 0.1 acrefoot per square mile during a common storm. Thus, without safeguards, the useful life of any proposed reservoir or holding pond could be decreased considerably.Leachate water from retorted-shale piles has large concentrations of sodium and sulfate, and the chemical composition of retort waters differs considerably from that of the natural waters of the area. The retort waters contain a greater concentration of dissolved solids and more organic carbon and nutrients. Without proper disposal or impoundment of retort and leachate waters, the salinity of downstream waters in the Colorado River Basin would be increased.
Soulard, Christopher E.
2012-01-01
This chapter has been modified from original material published in Soulard (2006), entitled “Land-cover trends of the Central Basin and Range Ecoregion” (U.S. Geological Survey Scientific Investigations Report 2006–5288). The Central Basin and Range Ecoregion (Omernik, 1987; U.S. Environmental Protection Agency, 1997) encompasses approximately 343,169 km² (132,498 mi2) of land bordered on the west by the Sierra Nevada Ecoregion, on the east by the Wasatch and Uinta Mountains Ecoregion, on the north by the Northern Basin and Range and the Snake River Basin Ecoregions, and on the south by the Mojave Basin and Range and the Colorado Plateaus Ecoregions (fig. 1). Most of the Central Basin and Range Ecoregion is located in Nevada (65.4 percent) and Utah (25.1 percent), but small segments are also located in Idaho (5.6 percent), California (3.7 percent), and Oregon (0.2 percent). Basin-and-range topography characterizes the Central Basin and Range Ecoregion: wide desert valleys are bordered by parallel mountain ranges generally oriented northsouth. There are more than 33 peaks within the Central Basin and Range Ecoregion that have summits higher than 3,000 m (10,000 ft), but valleys in the ecoregion are also high, most having elevations above 1,200 m (4,000 ft) (Grayson, 1993).
Basin centered gas systems of the U.S.
Popov, Marin A.; Nuccio, Vito F.; Dyman, Thaddeus S.; Gognat, Timothy A.; Johnson, Ronald C.; Schmoker, James W.; Wilson, Michael S.; Bartberger, Charles E.
2001-01-01
Basin-center accumulations, a type of continuous accumulation, have spatial dimensions equal to or exceeding those of conventional oil and gas accumulations, but unlike conventional fields, cannot be represented in terms of discrete, countable units delineated by downdip hydrocarbon-water contacts. Common geologic and production characteristics of continuous accumulations include their occurrence downdip from water-saturated rocks, lack of traditional trap or seal, relatively low matrix permeability, abnormal pressures (high or low), local interbedded source rocks, large in-place hydrocarbon volumes, and low recovery factors. The U.S. Geological Survey, in cooperation with the U.S. Department of Energy, National Energy Technology Laboratory, Morgantown, West Virginia, is currently re-evaluating the resource potential of basin-center gas accumulations in the U.S. in light of changing geologic perceptions about these accumulations (such as the role of subtle structures to produce sweet spots), and the availability of new data. Better geologic understanding of basin-center gas accumulations could result in new plays or revised plays relative to those of the U.S. Geological Survey 1995 National Assessment (Gautier and others, 1995). For this study, 33 potential basin-center gas accumulations throughout the U.S. were identified and characterized based on data from the published literature and from well and reservoir databases (Figure 1). However, well-known or established basin-center accumulations such as the Green River Basin, the Uinta Basin, and the Piceance Basin are not addressed in this study.
Review of rare earth element concentrations in oil shales of the Eocene Green River Formation
Birdwell, Justin E.
2012-01-01
Concentrations of the lanthanide series or rare earth elements and yttrium were determined for lacustrine oil shale samples from the Eocene Green River Formation in the Piceance Basin of Colorado and the Uinta Basin of Utah. Unprocessed oil shale, post-pyrolysis (spent) shale, and leached shale samples were examined to determine if oil-shale processing to generate oil or the remediation of retorted shale affects rare earth element concentrations. Results for unprocessed Green River oil shale samples were compared to data published in the literature on reference materials, such as chondritic meteorites, the North American shale composite, marine oil shale samples from two sites in northern Tibet, and mined rare earth element ores from the United States and China. The Green River oil shales had lower rare earth element concentrations (66.3 to 141.3 micrograms per gram, μg g-1) than are typical of material in the upper crust (approximately 170 μg g-1) and were also lower in rare earth elements relative to the North American shale composite (approximately 165 μg g-1). Adjusting for dilution of rare earth elements by organic matter does not account for the total difference between the oil shales and other crustal rocks. Europium anomalies for Green River oil shales from the Piceance Basin were slightly lower than those reported for the North American shale composite and upper crust. When compared to ores currently mined for rare earth elements, the concentrations in Green River oil shales are several orders of magnitude lower. Retorting Green River oil shales led to a slight enrichment of rare earth elements due to removal of organic matter. When concentrations in spent and leached samples were normalized to an original rock basis, concentrations were comparable to those of the raw shale, indicating that rare earth elements are conserved in processed oil shales.
NASA Astrophysics Data System (ADS)
Power, M. J.; Rupper, S.; Codding, B.; Schaefer, J.; Hess, M.
2017-12-01
Alpine glaciers provide a valuable water source during prolonged drought events. We explore whether long-term climate dynamics and associated glacier changes within mountain drainage basins and adjacent landscapes ultimately influence how prehistoric human populations choose settlement locations. The Uinta Mountains of Utah, with a steep present-day precipitation gradient from the lowlands to the alpine zone of 20-100 cm per year, has a rich glacial history related to natural and anthropogenic climate variability. Here we examine how past climate variability has impacted glaciers and ultimately the availability of water over long timescales, and how these changes affected human settlement and subsistence decisions. Through a combination of geomorphologic evidence, paleoclimate proxies, and glacier and climate modelling, we test the hypothesis that glacier-charged hydrologic systems buffer prehistoric populations during extreme drought periods, facilitating long-term landscape management with fire. Initial field surveys suggest middle- and low-elevation glacial valleys contain glacially-derived sediment from meltwater and resulted in terraced river channels and outwash plains visible today. These terraces provide estimates of river discharge during varying stages of glacier advance and retreat. Archaeological evidence from middle- and high-elevations in the Uinta Mountains suggests human populations persisted through periods of dramatic climate change, possibly linked to the persistence of glacially-derived water resources through drought periods. Paleoenvironmental records indicate a long history of fire driven by the combined interaction of climatic variation and human disturbance. This research highlights the important role of moisture variability determining human settlement patterns and landscape management throughout time, and has direct relevance to the impacts of anthropogenic precipitation and glacier changes on vulnerable populations in the coming century, especially in drought-prone regions.
NASA Astrophysics Data System (ADS)
O'Keefe, S. S.; McElroy, R.; Munroe, J. S.
2016-12-01
Dust is increasingly recognized as an important component of biogeochemical cycling and ecosystem function in mountain environments. Previous work has shown that delivery of dust to the Uinta Mountains of northeastern Utah has influenced pedogenesis, soil nutrient status, and surface water chemistry. An array of passive and active samplers in the alpine zone of the Uintas provides detailed information about contemporary dust fluxes, along with physical and geochemical properties of modern dust. Reconstruction of changes in the dust system over time, however, requires continuous sedimentary archives sensitive to dust inputs. A radiocarbon-dated 3.5-m core (spanning 12.7 kyr) collected from subalpine Bald Lake may provide such a record. Passive dust collectors in the vicinity of the lake constrain the geochemical properties of modern dust, whereas samples of regolith constrain properties of the local surficial material within the watershed. Together, these represent two end member sources of clastic sediment to Bald Lake basin: allochthonous dust and autochthonous regolith. Ba and Eu are found in higher abundances in the dust than in the watershed regolith. Zr and Th are found to be lower in the dust than in the watershed. Geochemical analysis of the sediment core allows the relative contribution of exotic and local material to the lake to be considered as a time series covering the post-glacial interval when indicator elements are plotted. Findings suggest Bald Lake's dust record tracks regional aridity and corresponds to low-stands of large lakes in the southwestern United States. Spatial variability of elemental abundances in the watershed suggests there are more than two input sources contributing to the lake over time.
Bredehoeft, J.D.; Wesley, J.B.; Fouch, T.D.
1994-01-01
The Altamont oil field in the deep Uinta basin is known to have reservoir fluid pressures that approach lithostatic. One explanation for this high pore-fluid pressure is the generation of oil from kerogen in the Green River oil shale at depth. A three-dimensional simulation of flow in the basin was done to test this hypothesis.In the flow simulation, oil generation is included as a fluid source. The kinetics of oil generation from oil shale is a function of temperature. The temperature is controlled by (1) the depth of sediment burial and (2) the geothermal gradient.Using this conceptual model, the pressure buildup results from the trade-off between the rate of oil generation and the flow away from the source volume. The pressure increase depends primarily on (1) the rate of the oil-generation reaction and (2) the permeability of the reservoir rocks. A sensitivity analysis was performed in which both of these parameters were systematically varied. The reservoir permeability must be lower than most of the observed data for the pressure to build up to near lithostatic.The results of the simulations indicated that once oil generation was initiated, the pore pressure built up rapidly to near lithostatic. We simulated hydrofractures in that part of the system in which the pressures approach lithostatic by increasing both the horizontal and the vertical permeability by an order of magnitude. Because the simulated hydrofractures were produced by the high pore pressure, they were restricted to the Altamont field. A new flow system was established in the vicinity of the reservoir; the maximum pore pressure was limited by the least principal stress. Fluids moved vertically up and down and laterally outward away from the source of oil generation. The analysis indicated that, assuming that one is willing to accept the low values of permeability, oil generati n can account for the observed high pressures at Altamont field.
Forest ecology and biogeography of the Uinta Mountains, USA
John D. Shaw; James N. Long
2007-01-01
The Uinta Mountains form a crossroads of forests and woodlands in the central Rocky Mountains. Although no tree species is endemic to the area, all species characteristic of the central Rocky Mountains are found there, and the ranges of several other species terminate in the Uinta Mountains and the surrounding area. The peninsula-like shape, east-west orientation, and...
NASA Astrophysics Data System (ADS)
Cumming, Vivien M.; Selby, David; Lillis, Paul G.; Lewan, Michael D.
2014-08-01
Rhenium-osmium (Re-Os) geochronology of marine petroleum systems has allowed the determination of the depositional age of source rocks as well as the timing of petroleum generation. In addition, Os isotopes have been applied as a fingerprinting tool to correlate oil to its source unit. To date, only classic marine petroleum systems have been studied. Here we present Re-Os geochronology and Os isotope fingerprinting of different petroleum phases (oils, tar sands and gilsonite) derived from the lacustrine Green River petroleum system in the Uinta Basin, USA. In addition we use an experimental approach, hydrous pyrolysis experiments, to compare to the Re-Os data of naturally generated petroleum in order to further understand the mechanisms of Re and Os transfer to petroleum. The Re-Os geochronology of petroleum from the lacustrine Green River petroleum system (19 ± 14 Ma - all petroleum phases) broadly agrees with previous petroleum generation basin models (∼25 Ma) suggesting that Re-Os geochronology of variable petroleum phases derived from lacustrine Type I kerogen has similar systematics to Type II kerogen (e.g., Selby and Creaser, 2005a,b; Finlay et al., 2010). However, the large uncertainties (over 100% in some cases) produced for the petroleum Re-Os geochronology are a result of multiple generation events occurring through a ∼3000-m thick source unit that creates a mixture of initial Os isotope compositions in the produced petroleum phases. The 187Os/188Os values for the petroleum and source rocks at the time of oil generation vary from 1.4 to 1.9, with the mode at ∼1.6. Oil-to-source correlation using Os isotopes is consistent with previous correlation studies in the Green River petroleum system, and illustrates the potential utility of Os isotopes to characterize the spatial variations within a petroleum system. Hydrous pyrolysis experiments on the Green River Formation source rocks show that Re and Os transfer are mimicking the natural system. This transfer from source to bitumen to oil does not affect source rock Re-Os systematics or Os isotopic compositions. This confirms that Os isotope compositions are transferred intact from source to petroleum during petroleum generation and can be used as a powerful correlation tool. These experiments further confirm that Re-Os systematics in source rocks are not adversely affected by petroleum maturation. Overall this study illustrates that the Re-Os petroleum geochronometer and Os isotope fingerprinting tools can be used on a wide range of petroleum types sourced from variable kerogen types.
Cumming, Vivien M.; Selby, David; Lillis, Paul G.; Lewan, Michael D.
2014-01-01
Rhenium–osmium (Re–Os) geochronology of marine petroleum systems has allowed the determination of the depositional age of source rocks as well as the timing of petroleum generation. In addition, Os isotopes have been applied as a fingerprinting tool to correlate oil to its source unit. To date, only classic marine petroleum systems have been studied. Here we present Re–Os geochronology and Os isotope fingerprinting of different petroleum phases (oils, tar sands and gilsonite) derived from the lacustrine Green River petroleum system in the Uinta Basin, USA. In addition we use an experimental approach, hydrous pyrolysis experiments, to compare to the Re–Os data of naturally generated petroleum in order to further understand the mechanisms of Re and Os transfer to petroleum. The Re–Os geochronology of petroleum from the lacustrine Green River petroleum system (19 ± 14 Ma – all petroleum phases) broadly agrees with previous petroleum generation basin models (∼25 Ma) suggesting that Re–Os geochronology of variable petroleum phases derived from lacustrine Type I kerogen has similar systematics to Type II kerogen (e.g., Selby and Creaser, 2005a, Selby and Creaser, 2005b and Finlay et al., 2010). However, the large uncertainties (over 100% in some cases) produced for the petroleum Re–Os geochronology are a result of multiple generation events occurring through a ∼3000-m thick source unit that creates a mixture of initial Os isotope compositions in the produced petroleum phases. The 187Os/188Os values for the petroleum and source rocks at the time of oil generation vary from 1.4 to 1.9, with the mode at ∼1.6. Oil-to-source correlation using Os isotopes is consistent with previous correlation studies in the Green River petroleum system, and illustrates the potential utility of Os isotopes to characterize the spatial variations within a petroleum system. Hydrous pyrolysis experiments on the Green River Formation source rocks show that Re and Os transfer are mimicking the natural system. This transfer from source to bitumen to oil does not affect source rock Re–Os systematics or Os isotopic compositions. This confirms that Os isotope compositions are transferred intact from source to petroleum during petroleum generation and can be used as a powerful correlation tool. These experiments further confirm that Re–Os systematics in source rocks are not adversely affected by petroleum maturation. Overall this study illustrates that the Re–Os petroleum geochronometer and Os isotope fingerprinting tools can be used on a wide range of petroleum types sourced from variable kerogen types.
NASA Astrophysics Data System (ADS)
Warneke, C.; Geiger, F.; Edwards, P. M.; Dube, W.; Pétron, G.; Kofler, J.; Zahn, A.; Brown, S. S.; Graus, M.; Gilman, J.; Lerner, B.; Peischl, J.; Ryerson, T. B.; de Gouw, J. A.; Roberts, J. M.
2014-05-01
The emissions of volatile organic compounds (VOCs) associated with oil and natural gas production in the Uinta Basin, Utah were measured at a ground site in Horse Pool and from a NOAA mobile laboratory with PTR-MS instruments. The VOC compositions in the vicinity of individual gas and oil wells and other point sources such as evaporation ponds, compressor stations and injection wells are compared to the measurements at Horse Pool. High mixing ratios of aromatics, alkanes, cycloalkanes and methanol were observed for extended periods of time and short-term spikes caused by local point sources. The mixing ratios during the time the mobile laboratory spent on the well pads were averaged. High mixing ratios were found close to all point sources, but gas wells using dry-gas collection, which means dehydration happens at the well, were clearly associated with higher mixing ratios than other wells. Another large source was the flowback pond near a recently hydraulically re-fractured gas well. The comparison of the VOC composition of the emissions from the oil and natural gas wells showed that wet gas collection wells compared well with the majority of the data at Horse Pool and that oil wells compared well with the rest of the ground site data. Oil wells on average emit heavier compounds than gas wells. The mobile laboratory measurements confirm the results from an emissions inventory: the main VOC source categories from individual point sources are dehydrators, oil and condensate tank flashing and pneumatic devices and pumps. Raw natural gas is emitted from the pneumatic devices and pumps and heavier VOC mixes from the tank flashings.
Channel migration of the White River in the eastern Uinta Basin, Utah and Colorado
Jurado, Antonio; Fields, Fred K.
1978-01-01
The White River is the largest stream in the southeastern part of the Uinta Basin in Utah and Colorado. This map shows the changes that have occurred in the location of the main channel of the river from 1936 to 1974. The map indicated that certain reaches of the river are subject to different rates of channel migration. Also shown is the boundary of the flood plain, which is mapped at the point of abrupt break in slope. This map documents the position of the river channel prior to any withdrawals of water or alteration of the flow characteristics of the white river that may occur in order to meet water requirements principally associated with the proposed oil-shale industry or other development in the area.The channel locations were determined from aerial photographs taken at four different time periods for the following Federal agencies: In 1936, U.S. Soil Conservation Services; 1953, U.S. Corps of Engineers; 1965, U.S. Geological Survey; and in 1974, U.S. Bureau of Land Management. The 1936 delineation, which is actually based upon photographs that were taken in 1936 and 1937, was made by projection of the original photographs on a base map that was prepared from 1:24,000 scale topographic maps. The 1953, 1965, and 1974 delineations were produced from stereographic models. The 1965 delineation was compiled from photographs that were taken during 1962-65. The delineation is labeled as 1965 for simplicity, however, because the photographs for 1965 cover about 60 percent of the study read of the river, and because no changed were discernable in those areas of repetitive photographic coverage.
NASA Astrophysics Data System (ADS)
Ziarani, Ali S.; Aguilera, Roberto
2012-08-01
A new model is proposed for estimation of pore-throat aperture size from formation resistivity factor and permeability data. The model is validated with data from the Mesaverde sandstone using brine salinities ranging from 20,000 to 200,000 ppm. The data analyzed includes various basins such as Green River, Piceance, Sand Wash, Powder River, Uinta, Washakie and Wind River, available in the literature. For pore-throat radii analysis the methodology involves the use of log-log plots of pore-throat radius versus the product of formation resistivity factor and permeability (rT = a(FK)b + c). The model fits over 280 samples from the Mesaverde formation with coefficients of determination varying between 0.95 and 0.99 depending primarily on the type of model used for pore throat radius calculation. The brine salinity has some minor effects on the results. The model can provide better estimates of pore-throat radii if it is calibrated with experimental techniques such as mercury porosimetry. The results show pore-throat radii varying between 0.001 and 5 μm for the Mesaverde tight sandstone; however, most of the samples fall in a range between 0.01 and 1 μm. For tortuosity analysis, the calculation involves the use of product of formation factor and porosity data. Results indicate that the estimated tortuosity values range mainly between 1 and 5. For samples with lower porosities (< 5%), tortuosity values show a wider scatter (between 1 and 8); whereas for samples with larger porosities (> 15%), the scattering in tortuosity decreases significantly. In general, for tortuosity calculation in tight gas sandstone formations, a square root model with a parameter (bf) representing various types of connecting pores, i.e., sheet-like and tubular pores, is recommended.
NOGA Online: a USGS resource for energy GIS data and services
Biewick, Laura; Gunther, Greg L.
2003-01-01
The PowerPoint presentation in this report was given at the BLM Resource Management Tools Conference in Phoenix, Arizona, April, 2003. Some diagrams that appeared in the original presentation have been updated in this report. It informs that the U.S. Geological Survey (USGS) Central Energy Resources Team (CERT) in Denver, Colorado, is providing National Oil and Gas Assessment (NOGA) results online at http://energy.cr.usgs.gov/oilgas/noga/. Available at this site are recently completed assessments of the potential for undiscovered oil and natural gas resources of five priority provinces (Montana Thrust Belt, Powder River Basin, San Juan Basin, Southwestern Wyoming, Uinta-Piceance) to meet the requirements of the Energy Policy and Conservation Act of 2000 (EPCA 2000). High demand for current assessment results and for the entirely digital, 1995 NOGA results for other provinces, prompted CERT to develop an internet map application using ArcIMS to deliver geologic data to the public. CERT continues to work on assessing oil and natural gas resources of priority basins in the United States; assessment results and GIS layers are made available at this site on an ongoing basis.
NASA Astrophysics Data System (ADS)
Ballentine, C. J.; Zhou, Z.; Harris, N. B.
2015-12-01
The mass of hydrocarbons that have migrated through tight-gas-sandstone systems before the permeability reduces to trap the hydrocarbon gases provides critical information in the hydrocarbon potential analysis of a basin. The noble gas content (Ne, Ar, Kr, Xe) of the groundwater has a unique isotopic and elemental composition. As gas migrates through the water column, the groundwater-derived noble gases partition into the hydrocarbon phase. Determination of the noble gases in the produced hydrocarbon phase then provides a record of the type of interaction (simple phase equilibrium or open system Rayleigh fractionation). The tight-gas-sand reservoirs of the Rocky Mountains represent one of the most significant gas resources in the United States. The producing reservoirs are generally developed in low permeability (averaging <0.1mD) Upper Cretaceous fluvial to marginal marine sandstones and commonly form isolated overpressured reservoir bodies encased in even lower permeability muddy sediments. We present noble gas data from producing fields in the Greater Green River Basin, Wyoming; the the Piceance Basin, Colorado; and in the Uinta Basin, Utah. The data is consistent from all three basins. We show how in each basin the noble gases record open system gas migration through a water column at maximum basin burial. The data within an open system model indicates that the gas now in-place represents the last ~10% of hydrocarbon gas to have passed through the water column, most likely prior to permeability closedown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Alan Byrnes; Robert Cluff; John Webb
2008-06-30
Although prediction of future natural gas supply is complicated by uncertainty in such variables as demand, liquefied natural gas supply price and availability, coalbed methane and gas shale development rate, and pipeline availability, all U.S. Energy Information Administration gas supply estimates to date have predicted that Unconventional gas sources will be the dominant source of U.S. natural gas supply for at least the next two decades (Fig. 1.1; the period of estimation). Among the Unconventional gas supply sources, Tight Gas Sandstones (TGS) will represent 50-70% of the Unconventional gas supply in this time period (Fig. 1.2). Rocky Mountain TGS aremore » estimated to be approximately 70% of the total TGS resource base (USEIA, 2005) and the Mesaverde Group (Mesaverde) sandstones represent the principal gas productive sandstone unit in the largest Western U.S. TGS basins including the basins that are the focus of this study (Washakie, Uinta, Piceance, northern Greater Green River, Wind River, Powder River). Industry assessment of the regional gas resource, projection of future gas supply, and exploration programs require an understanding of reservoir properties and accurate tools for formation evaluation. The goal of this study is to provide petrophysical formation evaluation tools related to relative permeability, capillary pressure, electrical properties and algorithms for wireline log analysis. Detailed and accurate moveable gas-in-place resource assessment is most critical in marginal gas plays and there is need for quantitative tools for definition of limits on gas producibility due to technology and rock physics and for defining water saturation. The results of this study address fundamental questions concerning: (1) gas storage; (2) gas flow; (3) capillary pressure; (4) electrical properties; (5) facies and upscaling issues; (6) wireline log interpretation algorithms; and (7) providing a web-accessible database of advanced rock properties. The following text briefly discusses the nature of these questions. Section I.2 briefly discusses the objective of the study with respect to the problems reviewed.« less
Merrill, Matthew D.; Drake, Ronald M.; Buursink, Marc L.; Craddock, William H.; East, Joseph A.; Slucher, Ernie R.; Warwick, Peter D.; Brennan, Sean T.; Blondes, Madalyn S.; Freeman, Philip A.; Cahan, Steven M.; DeVera, Christina A.; Lohr, Celeste D.; Warwick, Peter D.; Corum, Margo D.
2016-06-02
The U.S. Geological Survey has completed an assessment of the potential geologic carbon dioxide storage resources in the onshore areas of the United States. To provide geological context and input data sources for the resources numbers, framework documents are being prepared for all areas that were investigated as part of the national assessment. This report, chapter M, is the geologic framework document for the Uinta and Piceance, San Juan, Paradox, Raton, Eastern Great, and Black Mesa Basins, and subbasins therein of Arizona, Colorado, Idaho, Nevada, New Mexico, and Utah. In addition to a summary of the geology and petroleum resources of studied basins, the individual storage assessment units (SAUs) within the basins are described and explanations for their selection are presented. Although appendixes in the national assessment publications include the input values used to calculate the available storage resource, this framework document provides only the context and source of the input values selected by the assessment geologists. Spatial-data files of the boundaries for the SAUs, and the well-penetration density of known well bores that penetrate the SAU seal, are available for download with the release of this report.
U.S. Geological Survey ground-water studies in Utah
Gates, Joseph S.
1988-01-01
Ground water is an important natural resource in Utah. In the basins west of the Wasatch Front, and in many other parts of Utah, ground water is the primary source of water. In many of the basins of the western desert and in parts of the Colorado Plateau, ground water is the only reliable source of water. Along the Wasatch Front to the north and south of Salt Lake City, in the Uinta Basin, and in the Sevier River drainage, surface water is the primary source of water. Ground-water sources supply about 20 percent of all water used in Utah and about 63 percent of the water for public supply. Of the total amount of ground water used, 44 percent is for irrigation, 35 percent is for public supply, 11 percent is for industry, 5 percent is for rural domestic supplies, and 5 percent is for livestock. The major issues related to ground water in Utah are: -Development of additional ground-water supplies while protecting existing water rights and minimizing effects on water levels, water quality, and streamflow, and-Protection of ground-water resources from contamination by pollutants from various types of land-use and waste-disposal practices.
76 FR 14372 - Uinta-Wasatch-Cache National Forest Resource Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-16
... Street, Salt Lake City, Utah. Written comments should be sent to Loyal Clark, Uinta-Wasatch-Cache... open to the public. The following business will be conducted: (1) Review Forest Service project approval letter, (2) discuss travel budget, and (3) review new proposals. Persons who wish to bring related...
NASA Astrophysics Data System (ADS)
Porinchu, D.; Reinemann, S.; Potito, A.; Moser, K.; MacDonald, G.; Munroe, J.; Mark, B.; Box, J.
2007-12-01
Subfossil midge analyses have been used to develop high-resolution (sub-decadal) reconstructions of 20th century temperature change in the Sierra Nevada, CA with success. Expansion of this earlier work to additional sites in the western United States suggests that a widespread increase in lake water temperatures has occurred in this region during the late 20th and early 21st centuries. Inference models for summer surface water temperature (SSWT) were developed combining midge abundance data from 56 lakes in the eastern Sierra Nevada, California, with subfossil midge remains from the Uinta Mountains, UT. The newly merged Sierra Nevada-Uinta Mountains calibration set contains a greater diversity of chironomid assemblages and spans a wider SSWT range than the previously published Sierra Nevada calibration set. The lakes in the merged calibration set spanned elevation, depth, and SSWT temperature ranges of 900 m, 12.7 m, and 11.3 °C, respectively. A robust inference model for SSWT (3-component WA-PLS), based on 90 lakes, had a high coefficient of determination (r2jack = 0.66) and a low RMSEP (1.4 °C). The midge-based SSWT inference model was applied to subfossil chironomid remains extracted from well-dated sediment sequences recovered from alpine and subalpine lakes in the Sierra Nevada, CA, Snake Range, NV and Uinta Mountains, UT. A close correspondence exists between the chironomid-inferred temperature profiles for the 20th and 21st centuries and mean July or summer temperatures measured at nearby meteorological stations. Application of this midge-based SSWT inference model to other intact, late Quaternary sedimentary sequences found in subalpine and alpine lakes in the Great Basin will help resolve the impact of late Quaternary and recent climate change in this region, improve our understanding of regional climate and aquatic ecosystem variability, and can be used to monitor the effects of climate change on aquatic ecosystems and establish 'baseline' conditions against which future biotic changes can be compared.
A yellowbrush/grass community type from the Uinta Mountains and Utah Plateaus
Sherel Goodrich; Robert M. Thompson; Allen Huber
2001-01-01
Ecological inventory and vegetation monitoring in the Uinta Mountains and Utah Plateaus on the Ashley National Forest and Manti-LaSal National Forest of the past several years suggest a community type in which yellowbrush (Chrysothamnus viscidiflorus ssp. lanceolatus), and slender wheatgrass (Elymus trachycaulus) are indicator species. This community type is common at...
,
2003-01-01
Many more details about the project and about individual chapters of this report are readily available in the very readable Chapter 2 of this volume, 'The Uinta-Piceance Province-Introduction to a geologic assessment of undiscovered oil and gas resources.' Use Acrobat Reader to access the PDF for this chapter.
The Influence of the Green River Lake System on the Local Climate During the Early Eocene Period
NASA Astrophysics Data System (ADS)
Elguindi, N.; Thrasher, B.; Sloan, L. C.
2006-12-01
Several modeling efforts have attempted to reproduce the climate of the early Eocene North America. However when compared to proxy data, General Circulation Models (GCMs) tend to produce a large-scale cold-bias. Although higher resolution Regional Climate Models (RCMs) that are able to resolve many of the sub-GCM scale forcings improve this cold bias, RCMs are still unable to reproduce the warm climate of the Eocene. From geologic data, we know that the greater Green River and the Uinta basins were intermontane basins with a large lake system during portions of the Eocene. We speculate that the lack of presence of these lakes in previous modeling studies may explain part of the persistent cold-bias of GCMs and RCMs. In this study, we utilize a regional climate model coupled with a 1D-lake model in an attempt to reduce the uncertainties and biases associated with climate simulations over Eocene western North American. Specifically, we include the Green River Lake system in our RCM simulation and compare climates with and without lakes to proxy data.
Stier, Michael P.
2012-01-01
The Colorado Plateaus Ecoregion covers approximately 129,617 km2 (50,045 mi2) within southern and eastern Utah, western Colorado, and the extreme northern part of Arizona (fig. 1). The terrain of this ecoregion is characterized by broad plateaus, ancient volcanoes, and deeply dissected canyons (Booth and others, 1999; fig. 2). The ecoregion is bounded on the east by the Wyoming Basin and Southern Rockies Ecoregions in Colorado and on the northwest by the Wasatch and Uinta Mountains Ecoregion in northern and central Utah. To the south, the ecoregion borders the Arizona/New Mexico Plateau Ecoregion, which has a higher elevation and more grasslands than the Colorado Plateaus Ecoregion (Omernik, 1987; U.S. Environmental Protection Agency, 1997).
Janine Rice; Tim Bardsley; Pete Gomben; Dustin Bambrough; Stacey Weems; Sarah Leahy; Christopher Plunkett; Charles Condrat; Linda A. Joyce
2017-01-01
Watersheds on the Uinta-Wasatch-Cache and Ashley National Forests provide many ecosystem services, and climate change poses a risk to these services. We developed a watershed vulnerability assessment to provide scientific information for land managers facing the challenge of managing these watersheds. Literature-based information and expert elicitation is used to...
Water resources of Dinosaur National Monument, Colorado and Utah
Sumsion, C.T.
1976-01-01
Dinosaur National Monument, partly in the Rocky Mountain System and partly in the Colorado Plateaus physiographic province, covers an area of 322 square miles (834 square kilometres) in northwestern Colorado and northeastern Utah. The climate is generally cool and pleasant in May, early June, September, and October; winters are cold. Normal annual precipitation ranges from less than 8 to more than 16 inches (203 to 406 millimetres).Geologic formations in the monument range in age from upper Precambrian to Holocene, but not all ages are represented. The monument is on the south limb of the east-trending regional fold representing the Uinta Mountains. Faults and subsidary folds on the south slope of the Uinta Mountains complicate the geology and hydrology of the area.None of the surface streams in the monument are diverted for public supply, but the Green and Yampa Rivers are a recreational resource for boaters. The flow of the Green River is regulated by Flaming Gorge Reservoir; however, flood potentials are estimated for the Yampa River and three smaller streams. Facilities in the monument are not endangered by probable mean annual floods, but may sustain some damage to facilities by the 25- or 50-year floods.Major aquifers in the monument are sandstone and limestone formations, but these formations are drained in the higher areas. Alluvium along the major stream channels yields small amounts of water to wells, but some of the water is not of suitable chemical quality for public supply. All public water supplies in 1971 were obtained from wells, and the use of water during 1970 was estimated to be 15 million gallons (46 acre-feet or 0.057 cubic hectometres). Most of the ground water obtained from sandstone and limestone is of suitable chemical quality for public supply.
Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho
Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.
2009-01-01
Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake levels have decreased from as high as 1830 m to 1806 m above sea level since the early Pleistocene due to episodic downcutting by the Bear River. The oldest exposed lacustrine sediments in Bear Lake Valley are probably of Pliocene age. Several high-lake phases during the early and middle Pleistocene were separated by episodes of fluvial incision. Threshold incision was not constant, however, because lake highstands of as much as 8 m above bedrock threshold level resulted from aggradation and possibly landsliding at least twice during the late-middle and late Pleistocene. Abandoned stream channels within the low-lying, fault-bounded region between Bear Lake and the modern Bear River show that Bear River progressively shifted northward during the Holocene. Several factors including faulting, location of the fluvial fan, and channel migration across the fluvial fan probably interacted to produce these changes in channel position. Late Quaternary slip rates on the east Bear Lake fault zone are estimated by using the water-level history of Bear Lake, assuming little or no displacement on dated deposits on the west side of the valley. Uplifted lacustrine deposits representing Pliocene to middle Pleistocene highstands of Bear Lake on the footwall block of the east Bear Lake fault zone provide dramatic evidence of long-term slip. Slip rates during the late Pleistocene increased from north to south along the east Bear Lake fault zone, consistent with the tectonic geomorphology. In addition, slip rates on the southern section of the fault zone have apparently decreased over the past 50 k.y. Copyright ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Smith, M. E.; Carroll, A. R.
2011-12-01
Tectonic lake basins are windows into the co-evolution of terrestrial climate and topography, but the stratigraphic responses to these drivers are complex and incompletely understood. Coring Quaternary lake basins has provided excellent temporal resolution, but is limited to one-dimensional archives of relatively short duration. Conversely, outcrop-based studies of older deposits can elucidate complex lateral facies relationships and longer time periods, but temporal resolution is often poor due to the lack of marine fossils. However, recent advances in radioisotopic dating have produced highly-resolved records of older lacustrine strata, provided volcanic ash beds are present. The Eocene Green River Formation in Wyoming, Colorado, and Utah is such a record, containing numerous 40Ar/39Ar-dated ash horizons with c.a. ±200 ky 2σ uncertainties. At the scale of individual Members of the Green River Formation (100-400 m), lithofacies and faunas differentiate five distinct lake-type intervals: Luman-Scheggs (fluviolacustrine), Rife (saline), Wilkins Peak (hypersaline-alluvial), Lower LaClede (saline), and Upper LaClede (fluviolacustrine). Although published explanations implicate tectonic and/or climatic control of these changes, both lack significant correlation to bulk lithofacies. While stratal geometries imply that the Uinta Mountains were the principle Eocene driver of flexural subsidence for the Greater Green River Basin (GGRB), conglomerate compositions reveal progressive Paleocene through Eocene unroofing rather than a discreet Early Eocene pulse of Laramide tectonism. Similarly, paleofloral evidence for climatic changes is equivocal. Instead, regional provenance and paleoflow patterns suggest that lake-type changes resulted from progressive hydrologic isolation of the GGRB from orogenic highlands to the west, hydrologic closure, then subsequent integration. From ~53 to ~51.5 Ma, Lake Gosiute expanded from a restricted freshwater to expansive saline lake. Abrupt diversion of a stream originating from the Cordilleran divide at ~51.5 Ma led to alternating deposition of the evaporative Wilkins Peak Member. Another Cordilleran stream carrying debris from the Challis Volcanic Field was subsequently redirected into the GGRB between 49.5 and 49 Ma, allowing the lake to reach its most expansive state, overflow, then progressively infill with volcaniclastic alluvium (Bridger and Washakie Formations) from 49 to 48 Ma. The most convincing example in the Green River Formation of the influence of climate-driven changes occurs at the "bed" scale. Cyclic repetitions of facies, long interpreted to reflect the influence of orbital periodicities, are most pronounced in the evaporative Wilkins Peak Member, where the most prominent periodicity is 10-20 meter scale alternations between lacustrine and alluvial strata. Lacustine intervals contain organic-rich micritic carbonates and bedded evaporates, and alluvial intervals are comprised of fine-grained siliciclastic alluvium with vertebrate traces, incipient pedogenesis, and no evaporite minerals. Interpolation between seven 40Ar/39Ar-dated ash beds indicates that these alternations have a well defined ~100 ky periodicity, a good fit for short eccentricity.
McCaffery, Rebecca M.; Reisor, Rita; Irvine, Kathryn M.; Brunson, Jessi
2014-01-01
Energy development, in combination with other environmental stressors, poses a persistent threat to rare species endemic to the energy-producing regions of the Western United States. Demographic analyses of monitored populations can provide key information on the natural dynamics of threatened plant and animal populations, and how they might be affected by ongoing and future development. In the Uinta Basin in Utah and Colorado, Graham’s beardtongue (Penstemon grahamii) and White River beardtongue (Penstemon scariosus var. albifluvis) are two rare endemic wildflowers that persist on oil shale habitats heavily impacted by current energy exploration and development, and slated for expanded traditional drilling and oil shale development. We described demographic characteristics and population viability for two populations of each species that have been monitored since 2004. First, we measured population size, survival rates, transitions between life stages, and recruitment using individually marked plants at the four study areas. Then, we used matrix population models to determine stochastic population growth rates (λ) and the probability that each population would persist 50 years into the future, given current conditions. The two P. grahamii study plots had small populations averaging 70 adult plants, and relatively constant and high survival in both vegetative and flowering plants. The two P. scariosus var. albifluvis study plots had populations that averaged 120 adult plants, with high and stable survival in flowering plants and variable survival in vegetative plants. Recruitment of new seedlings into all populations was low and variable, with most recruitment occurring in one or two years. Both P. grahamii populations had λ near 1.0 (stable). One P. scariosus var. albifluvis population appeared to be declining (λ=0.97), while the other was increasing (λ=1.16). Our analyses reveal populations that appear relatively stable, but that are susceptible to declines now and into the future. Increases in environmental variability, deterministic changes in habitat conditions or stressors, or a single catastrophic event could all have immediately deleterious impacts on the long-term growth trajectory of these populations.
NASA Astrophysics Data System (ADS)
Hecker, S.; Schwartz, D. P.
2017-12-01
The Bear River normal fault is located on the eastern margin of basin and range extension in the Rocky Mountains of Utah and Wyoming. Interpretation of paleoseismic data from three sites supports the conclusion of an earlier study (West, 1993) that the fault, which appears to have reactivated a thrust ramp in the Sevier orogenic belt, first ruptured to the surface in the late Holocene. Our observations provide evidence and additional age control for two previously identified large earthquakes ( 4500 and 3000 yr B.P.) and for a newly recognized earthquake that occurred c. 200-300 yr B.P. (after development of a topsoil above a deposit with a date of A.D. 1630 and before the beginning of the historical period in 1850). These earthquakes, which were likely high-stress-drop events, cumulatively produced about 6-8 m of net vertical displacement on a zone 40 km long and up to 5 km wide. The complexity and evolution of rupture at the south end of the fault, mapped in detail using airborne lidar imagery, is strongly influenced by interaction with the Uinta arch, an east-west-trending (orthogonal) basement-cored uplift. The relatively rapid flurry of strain release and high slip rate ( 2 mm/yr), which make the Bear River fault one of the most active in the Basin and Range, occurred in a region of low crustal extension (geodetic velocity of <1 mm/yr relative to North America). We postulate that this behavior, which is a clear example of nonuniform strain release (Wallace, 1987), is a consequence of mechanical buttressing of the nascent Bear River fault against and below the strong Uinta arch. This may have implications for the earthquake behavior of other immature faults affected by structural or geometric impediments. In addition, the sudden initiation of faulting in an area of no prior late Cenozoic extension has implications for the size of background earthquakes (M>7) that should be considered for seismic hazard analysis.
NASA Astrophysics Data System (ADS)
Silliphant, Laura J.; Engelder, Terry; Gross, Michael R.
2002-01-01
Transected joints (i.e. systematic joints that strike at an angle to the present fold axis trend) occur on the flanks of Split Mountain, a Laramide anticline near the eastern end of the Uinta Mountains, Utah. The common orientation on both flanks for these WNW-striking joints is inconsistent with joints driven by a syn-folding stretch normal to the direction of highest curvature. A smaller dispersion of the poles to these transected joints occurs when they are rotated with bedding to their 'pre-fold' orientation. This dispersion of poles is inconsistent with a post-fold genesis in a regional stress field but permits the possibility that these WNW joints propagated as a systematic set prior to Laramide folding. A pre-fold interpretation is substantiated by a regional WNW-striking joint set within Cretaceous and older rocks in the surrounding Piceance, Uinta, and southeastern Sand Wash basins. During tilting accompanying the upfolding of Split Mountain, most joints of this WNW-striking regional set remain locked without slipping under a shear stress. Fracture toughness and frictional strength are two rock properties that serve to lock a joint until a critical resolved shear stress is achieved. A gravity load caused down-dip slip on some joints that were tilted to a dip of about 62°. This suggests that a local principal stress remained roughly vertical during bedding rotation. Assuming fracture strength and friction prevented slip on most joints during tilting, the ratio of least horizontal, Sh, to vertical stress, Sv, at the critical tilt angle was approximately 0.55.
Montane wetland water chemistry, Uinta Mountains, Utah
NASA Astrophysics Data System (ADS)
Severson, K. S.; Matyjasik, M.; Ford, R. L.; Hernandez, M. W.; Welsh, S. B.; Summers, S.; Bartholomew, L. M.
2009-12-01
This study attempts to determine the relationship between surface and groundwater chemistry and wetland characteristics within the Reader Lakes watershed, Uinta Mountains. The dominant rock type in the study area is quartz sandstone of the Hades Pass formation, Unita Mountain Group (Middle Proterozoic). Minor amounts of interbedded arkose and illite-bearing shale are also present. Water chemistry data have been collected from more than one hundred locations during the 2008 and 2009 summer seasons. The Reader Creek watershed is approximately 9.8 km long and about 3.5 km wide in the central portion of the basin. Direct precipitation is the primary source of groundwater recharge and the area is typically covered by snow from November until May. Four distinct wetland complexes, designated as the upper, middle, lower and the sloping fen, constitute the major wetland environments in the study area. The chemistry of the melt water from the high-elevation snowfield is affected by weathering of incorporated atmospheric dust and surface rocks. Total dissolved solids in both years were between 7 and 9 mg/L. Major anions include HCO3 (averaging 4.0 mg/L), SO4 (1.3 mg/L), NO3 (0.9 mg/L), Cl (0.8 mg/L), F (0.07 mg/L), PO4 (0.03 mg/L), and Br(0.015 mg/L). Major cations include Na (1.1 mg/L), Ca (1.0 mg/L), K (0.28 mg/L), and Mg (0.15 mg/L). Groundwater concentrations in the lower meadow, as measured in piezomters, are distinctly different, with the following maximum concentrations of anions: HCO3 (36.7 mg/L), SO4 (5.0 mg/L), Cl (3.4 mg/L), NO3 (0.9 mg/L), PO4 (0.28 mg/L), F (0.23 mg/L), Br (0.12 mg/L), and cations: Ca (22 mg/L), Na (4.6 mg/L), Mg (3.4 mg/L), and K (1.8 mg/L)- with a maximum value of 83 mg/L for total dissolved solids. Waters in Reader Creek, the main trunk channel, are typically sodium-potassium and sodium -potassium bicarbonate, with some calcium-bicarbonate, mostly in the middle part of the watershed. Groundwater from springs is sodium-potassium in the upper part of the watershed, gradually changing to bicarbonate in the lower part of the watershed. The creek water also show a relatively small increase in total dissolved solids from 10 mg/L in the upper basin to 18 mg/L in the lower basin. Dissolved oxygen, potassium, and chlorides also decrease along the creek flow path, while calcium and sulfates increase. Values of pH fluctuate more along the length of the channel as the creek receives water discharging from the wetlands. An interesting geomorphic characteristic of these montane wetlands is a distinctive compartmentalization by a system of peaty flarks and strings, typically oriented perpendicular to the direction of surface-water flow. Water samples collected from piezometers contain much higher concentrations of all ions compared to surface-water samples from the flarks. It is believed that deeper portions of the peat work as highly isolated flow cells, storing water for an extended period of time, resulting in locally increased ionic concentrations. Future work will attempt to clarify and test this hypothesis.
NASA Astrophysics Data System (ADS)
Dutchak, A. R.
2010-12-01
Raven Ridge straddles the Colorado-Utah border on the northeastern edge of the Uinta Basin and consists of intertonguing units of the fluvial Colton and lacustrine Green River Formations. Fossil vertebrate localities along the ridge have produced a diverse mammalian fauna comprising 64 genera in 34 families. Included are the index taxa Smilodectes, Omomys, Heptodon, and Lambdotherium which suggest an age range of mid-Wasatchian (Wa5, ~53.5mya) through mid Bridgerian (Br2, ~48.5mya) for the Raven Ridge fauna. Others have shown that this time interval coincides with the onset, peak, and decline of the Early Eocene Climatic Optimum (EECO), an extended interval of globally warm temperatures following the Paleocene-Eocene Thermal Maximum (PETM) that is coincident with a large negative carbon excursion. The Raven Ridge fauna provides an excellent opportunity to investigate the effects of a lengthy interval of global warmth on mammalian diversity and ecosystem structure. To study changes in the mammalian fauna that occurred during the EECO, it was necessary to constrain the onset, peak, and decline of the EECO at Raven Ridge through chemostratigraphic correlation with established marine isotope curves. This was accomplished by analysis of approximately 300 sediment samples for Total Organic Carbon (TOC) content. TOC has been used successfully in the Bighorn Basin to identify the stratigraphic occurrence of the Carbon Isotope Excursion (CIE) associated with the PETM, which has roughly the same amplitude as the negative excursion associated with the EECO. The Raven Ridge TOC data show a large negative carbon excursion that starts during the Wa6 biochron, peaks during the Wa7 biochron, and is followed by a positive excursion near the Wa-Br boundary. This terrestrial δ13C pattern is consistent with results seen in established marine isotope curves across the EECO interval. The minimum δ13C value of the negative excursion is -29.67‰, which is comparable to the Bighorn CIE values, and the maximum δ13C value of the positive excursion is -20.51‰. The Raven Ridge mammalian fauna shows a gradual increase in generic diversity from Wa5, when the fauna was dominated by terrestrially-adapted ischyromyid rodents and the condylarth Hyopsodus, through the Wa6 and Wa7 biochrons when arboreal primates including microsyopids, omomyids, and adapids, increased in diversity and relative abundance. These results are consistent with diversity trends seen in meta-analyses of North American mammalian diversity during the EECO. The diversity increase at Raven Ridge is mirrored by a change in ranked familial abundance from a skewed distribution during Wa5 to more even distributions during Wa6-Br1 time, an interval which is shown by previous studies in Wyoming to coincide with a significant increase in floral diversity. One interpretation of these patterns is that there was a floral shift associated with the EECO in central North America, with the relatively open habitats of the mid-Wasatchian being replaced by more densely forested canopy systems, with increased niche space allowing for diversification and increased abundance of arboreal taxa, during the late Wasatchian and early Bridgerian.
Potential Hydrogeomechanical Impacts of Geological CO2 Sequestration
NASA Astrophysics Data System (ADS)
McPherson, B. J.; Haerer, D.; Han, W.; Heath, J.; Morse, J.
2006-12-01
Long-term sequestration of anthropogenic "greenhouse gases" such as CO2 is a proposed approach to managing climate change. Deep brine reservoirs in sedimentary basins are possible sites for sequestration, given their ubiquitous nature. We used a mathematical sedimentary basin model, including coupling of multiphase CO2-groundwater flow and rock deformation, to evaluate residence times in possible brine reservoir storage sites, migration patterns and rates away from such sites, and effects of CO2 injection on fluid pressures and rock strain. Study areas include the Uinta and Paradox basins of Utah, the San Juan basin of New Mexico, and the Permian basin of west Texas. Regional-scale hydrologic and mechanical properties, including the presence of fracture zones, were calibrated using laboratory and field data. Our initial results suggest that, in general, long-term (~100 years or more) sequestration in deep brine reservoirs is possible, if guided by robust structural and hydrologic data. However, specific processes must be addressed to characterize and minimize risks. In addition to CO2 migration from target sequestration reservoirs into other reservoirs or to the land surface, another environmental issue is displacement of brines into freshwater aquifers. We evaluated the potential for such unintended aquifer contamination by displacement of brines out of adjacent sealing layers such as marine shales. Results suggest that sustained injection of CO2 may incur significant brine displacement out of adjacent sealing layers, depending on the injection history, initial brine composition, and hydrologic properties of both reservoirs and seals. Model simulations also suggest that as injection-induced overpressures migrate, effective stresses may follow this migration under some conditions, as will associated rock strain. Such "strain migration" may lead to induced or reactivated fractures or faults, but can be controlled through reservoir engineering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morgan, C.D.; Allison, M.L.
The Bluebell field is productive from the Tertiary lower Green River and Wasatch Formations of the Uinta Basin, Utah. The productive interval consists of thousands of feet of interbedded fractured clastic and carbonate beds deposited in a fluvial-dominated lacustrine environment. Wells in the Bluebell field are typically completed by perforating 40 or more beds over 1,000 to 3,000 vertical feet (300-900 m), then stimulating the entire interval. This completion technique is believed to leave many potentially productive beds damaged and/or untreated, while allowing water-bearing and low-pressure (thief) zones to communicate with the wellbore. Geologic and engineering characterization has been usedmore » to define improved completion techniques. A two-year characterization study involved detailed examination of outcrop, core, well logs, surface and subsurface fractures, produced oil-field waters, engineering parameters of the two demonstration wells, and analysis of past completion techniques and effectiveness. The characterization study resulted in recommendations for improved completion techniques and a field-demonstration program to test those techniques. The results of the characterization study and the proposed demonstration program are discussed in the second annual technical progress report. The operator of the wells was unable to begin the field demonstration this project year (October 1, 1995 to September 20, 1996). Correlation and thickness mapping of individual beds in the Wasatch Formation was completed and resulted in a. series of maps of each of the individual beds. These data were used in constructing the reservoir models. Non-fractured and fractured geostatistical models and reservoir simulations were generated for a 20-square-mile (51.8-km{sup 2}) portion of the Bluebell field. The modeling provides insights into the effects of fracture porosity and permeability in the Green River and Wasatch reservoirs.« less
NASA Astrophysics Data System (ADS)
Grogan, D. S.; Whiteside, J. H.; Musher, D.; Rosengard, S. Z.; Vankeuren, M. A.; Pancost, R. D.
2010-12-01
The lacustrine Green River Formation is known to span ≥15 million years through the early-middle Eocene, and recent work on radioisotopic dating has provided a framework on which to build ties to the orbitally-tuned marine Eocene record. Here we present a spliced stack of Fischer assay data from drilled cores of the Green River Formation that span both an East-West and a North-South transect of the Uinta Basin of Utah. Detailed work on two cores demonstrate that Fischer assay measurements covary with total organic carbon and bulk carbon isotopes, allowing us to use Fisher assay results as a representative carbon cycling proxy throughout the stack. We provide an age model for this core record by combining radioisotopic dates of tuff layers with frequency analysis of Fischer assay measurements. Identification of orbital frequencies tied directly to magnetochrons through radioisotopic dates allows for a direct comparison of the terrestrial to the marine Eocene record. Our analysis indicates that the marker beds used to correlate the stack cores represent periods of enhanced lake productivity and extreme carbon burial; however, unlike the hyperthermal events that are clearly marked in the marine Eocene record, the hydrocarbon-rich "Mahogany Bed" period of burial does not correspond to a clear carbon isotope excursion. This suggests that the terrestrial realm may have experienced extreme ecological responses to relatively small perturbations in the carbon cycle during the Early Eocene Climatic Optimum. To investigate the ecological responses to carbon cycle perturbations through the hydrocarbon rich beds, we analyzed a suite of microbial biomarkers, finding evidence for cyanobacteria, dinoflagellates, and potentially green sulfur bacteria. These taxa indicate fluctuating oxic/anoxic conditions in the lake during abrupt intervals of carbon burial, suggesting a lake biogeochemical regime with no modern analogues.
What measurements tell us about air composition and emissions in three US oil and gas fields
NASA Astrophysics Data System (ADS)
Petron, G.; Miller, B. R.; Montzka, S. A.; Dlugokencky, E. J.; Kofler, J.; Sweeney, C.; Karion, A.; Frost, G. J.; Helmig, D.; Hueber, J.; Schnell, R. C.; Conley, S. A.; Tans, P. P.
2013-12-01
In 2012 and 2013, the NOAA Global Monitoring Division and several collaborators conducted intensive airborne and ground campaigns in three US oil and gas plays to study emissions of methane and surface ozone precursors. In this presentation we will focus on the multiple species analysis in discrete air samples collected with the NOAA Mobile Laboratory (ML) and the light aircraft in the Uinta Basin (Utah), Denver Julesburg Basin (Colorado) and Barnett Shale (Texas). Hydrocarbon ratios in samples collected with the ML downwind of specific sources show significantly more variability than the aircraft samples. These surface samples provide some useful information about the composition of various sources in each region. Ratios of the non-methane hydrocarbons on the ground and higher in the boundary layer show some differences between the plays, which could be explained by the different composition of the raw gas being produced or by different mixes of sources contributions. Understanding the speciation of atmospheric emissions is critical to identify emission vectors and to assess their potential air quality and climate impacts. Our measurement results will be compared with data from other studies, including emission inventories.
HIGH UINTAS PRIMITIVE AREA, UTAH.
Crittenden, Max D.; Sheridan, Michael J.
1984-01-01
Mineral surveys in the High Uintas Primitive Area, Utah and the additions subsequently proposed concluded that the area has little promise for mineral resources. Of the areas around the fringes, a strip along the north flank fault can be classed as having probable energy-resource potential for oil and gas. The oil and gas potential could be tested by additional seismic studies followed by drilling. Much of the necessary information probably could be obtained without drilling within the primitive area itself.
NASA Astrophysics Data System (ADS)
Westgate, James W.
1988-11-01
A newly discovered vertebrate fossil assemblage, the Casa Blanca local fauna, comes from the Laredo Formation, Claiborne Group, of Webb County, Texas, and is the first reported Eocene land-mammal fauna from the coastal plain of North America. The mammalian fauna is correlated with the Serendipity and Candelaria local faunas of west Texas, the Uinta C faunas of the Rocky Mountains, the Santiago Formation local fauna of southern California, and the Swift Current Creek local fauna of Saskatchewan. The vertebrate-bearing deposit lies about 32 m above a horizon containing the marine gastropod Turritella cortezi, which ranges from east Texas to northeast Mexico in the lower half of the Cook Mountain and Laredo Formations and is a guide fossil to the Hurricane Lentil in the Cook Mountain Formation. Nannoplankton found in these middle Eocene formations belong to the upper half of Nannoplankton Zone I6 and allow correlation with European beds of late Lutetian to early Bartonian age.
Energy map of southwestern Wyoming, Part B: oil and gas, oil shale, uranium, and solar
Biewick, Laura R.H.; Wilson, Anna B.
2014-01-01
The U.S. Geological Survey (USGS) has compiled Part B of the Energy Map of Southwestern Wyoming for the Wyoming Landscape Conservation Initiative (WLCI). Part B consists of oil and gas, oil shale, uranium, and solar energy resource information in support of the WLCI. The WLCI represents the USGS partnership with other Department of the Interior Bureaus, State and local agencies, industry, academia, and private landowners, all of whom collaborate to maintain healthy landscapes, sustain wildlife, and preserve recreational and grazing uses while developing energy resources in southwestern Wyoming. This product is the second and final part of the Energy Map of Southwestern Wyoming series (also see USGS Data Series 683, http://pubs.usgs.gov/ds/683/), and encompasses all of Carbon, Lincoln, Sublette, Sweetwater, and Uinta Counties, as well as areas in Fremont County that are in the Great Divide and Green River Basins.
NASA Astrophysics Data System (ADS)
Thomson, M. J.; MacDonald, G. M.
2016-12-01
We present the results of a computational crop modeling experiment for ancient Fremont Native American Zea mays farming in the Uinta Basin, Utah, at the Medieval Climate Anomaly to Little Ice Age (MCA-LIA) transition, ca. 850-1450 CE. This period coincides with the rapid disappearance of complex Native American cultures from the American Southwest. The crop model (the Environment Policy Impact Calculator, EPIC) was driven by statistically downscaled precipitation, temperature and shortwave radiative flux from the Community Earth System Model Last Millennium Ensemble (CESM LME). We found that maize yield responded to changes in the model-reconstructed temperature and precipitation; and periods of reduced maize yields corresponded to the abandonment of higher elevation Fremont 14C-dated archaeological sites. EPIC produces good agreement between modeled and historically reported maize yields for the 19th century.
Land and federal mineral ownership coverage for northwestern Colorado
Biewick, L.H.; Mercier, T.J.; Levitt, Pam; Deikman, Doug; Vlahos, Bob
1999-01-01
This Arc/Info coverage contains land status and Federal mineral ownership for approximately 26,800 square miles in northwestern Colorado. The polygon coverage (which is also provided here as a shapefile) contains two attributes of ownership information for each polygon. One attribute indicates where the surface is State owned, privately owned, or, if Federally owned, which Federal agency manages the land surface. The other attribute indicates which minerals, if any, are owned by the Federal govenment. This coverage is based on land status and Federal mineral ownership data compiled by the U.S. Geological Survey (USGS) and three Colorado State Bureau of Land Management (BLM) former district offices at a scale of 1:24,000. This coverage was compiled primarily to serve the USGS National Oil and Gas Resource Assessment Project in the Uinta-Piceance Basin Province and the USGS National Coal Resource Assessment Project in the Colorado Plateau.
Respiratory health status of gilsonite workers.
Keimig, D G; Castellan, R M; Kullman, G J; Kinsley, K B
1987-01-01
Gilsonite, a solidified hydrocarbon used in the manufacture of automotive body seam sealers, is mined only in the Uinta Basin of Eastern Utah and Western Colorado. Health effects of gilsonite dust exposure have not previously been published and exposure to gilsonite dust is not regulated. To examine potential respiratory health effects associated with gilsonite dust exposures, this cross-sectional study surveyed the 100 current male employees who had been exposed to gilsonite dust at 3 existing gilsonite companies. Total dust exposures up to 28 times the nuisance dust standard were found, and 5 of 99 (5%) workers had chest radiographs consistent with pneumoconiosis of low profusion. Increased prevalences of cough and phlegm were found in workers with high-exposure jobs, but no evidence for dust-related pulmonary function impairment was noted. To prevent pulmonary health effects, we recommend reducing dust exposures for those workers in jobs currently characterized by relatively high dust exposures.
Analysis of Geologic CO2 Sequestration at Farnham Dome, Utah, USA
NASA Astrophysics Data System (ADS)
Lee, S.; Han, W.; Morgan, C.; Lu, C.; Esser, R.; Thorne, D.; McPherson, B.
2008-12-01
The Farnham Dome in east-central Utah is an elongated, Laramide-age anticline along the northern plunge of the San Rafael uplift and the western edge of the Uinta Basin. We are helping design a proposed field demonstration of commercial-scale geologic CO2 sequestration, including injection of 2.9 million tons of CO2 over four years time. The Farnham Dome pilot site stratigraphy includes a stacked system of saline formations alternating with low-permeability units. Facilitating the potential sequestration demonstration is a natural CO2 reservoir at depth, the Jurassic-age Navajo formation, which contains an estimated 50 million tons of natural CO2. The sequestration test design includes two deep formations suitable for supercritical CO2 injection, the Jurassic-age Wingate sandstone and the Permian-age White Rim sandstone. We developed a site-specific geologic model based on available geophysical well logs and formation tops data for use with numerical simulation. The current geologic model is limited to an area of approximately 6.5x4.5 km2 and 2.5 km thick, which contains 12 stacked formations starting with the White Rim formation at the bottom (>5000 feet bgl) and extending to the Jurassic Curtis formation at the top of the model grid. With the detail of the geologic model, we are able to estimate the Farnham Dome CO2 capacity at approximately 36.5 million tones within a 5 mile radius of a single injection well. Numerical simulation of multiphase, non- isothermal CO2 injection and flow suggest that the injected CO2 plume will not intersect nearby fault zones mapped in previous geologic studies. Our simulations also examine and compare competing roles of different trapping mechanisms, including hydrostratigraphic, residual gas, solubility, and mineralization trapping. Previous studies of soil gas flux at the surface of the fault zones yield no significant evidence of CO2 leakage from the natural reservoir at Farnham Dome, and thus we use these simulations to evaluate what factors make this natural reservoir so effective for CO2 storage. Our characterization and simulation efforts are producing a CO2 sequestration framework that incorporates production and capacity estimation, area-of-review, injectivity, and trapping mechanisms. Likewise, mitigation and monitoring strategies have been formulated from the site characterization and modeling results.
Mesoscale variability of the Upper Colorado River snowpack
Ling, C.-H.; Josberger, E.G.; Thorndike, A.S.
1996-01-01
In the mountainous regions of the Upper Colorado River Basin, snow course observations give local measurements of snow water equivalent, which can be used to estimate regional averages of snow conditions. We develop a statistical technique to estimate the mesoscale average snow accumulation, using 8 years of snow course observations. For each of three major snow accumulation regions in the Upper Colorado River Basin - the Colorado Rocky Mountains, Colorado, the Uinta Mountains, Utah, and the Wind River Range, Wyoming - the snow course observations yield a correlation length scale of 38 km, 46 km, and 116 km respectively. This is the scale for which the snow course data at different sites are correlated with 70 per cent correlation. This correlation of snow accumulation over large distances allows for the estimation of the snow water equivalent on a mesoscale basis. With the snow course data binned into 1/4?? latitude by 1/4?? longitude pixels, an error analysis shows the following: for no snow course data in a given pixel, the uncertainty in the water equivalent estimate reaches 50 cm; that is, the climatological variability. However, as the number of snow courses in a pixel increases the uncertainty decreases, and approaches 5-10 cm when there are five snow courses in a pixel.
1,000 Years of Climatic Variability in the Upper Colorado River Basin, USA
NASA Astrophysics Data System (ADS)
Tingstad, A. H.; MacDonald, G. M.
2008-12-01
The Upper Colorado River Basin (UCRB) is an essential water resource region in the United States. Seven western U.S. states, including water-hungry California, depend on water originating in the UCRB to support rising populations, agriculture, and infrastructure. Predictions that drought and depletion of water resources will intensify in the next several decades due to human-induced climate warming makes it essential that the natural patterns and causes of drought in the UCRB are understood. In particular, droughts that occurred during the Medieval Period (~ A.D. 900-1200) are of interest because temperatures are known to have been elevated during this time. We present a new 1,000-year tree-ring reconstruction for part of the UCRB using Pinus edulis (two-needle Pinyon) samples from northeastern Utah. We evaluate variability in the summer (JJA) and annual Palmer Drought Severity Index (PDSI) for the Uinta Mountains region, and use wavelet and other analyses to determine the importance of the El Niño-Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO) in determining the timing and duration of droughts in the region. We conclude that while intense droughts did occur during the Medieval Period and throughout the record, water shortages may not be spatially and temporally uniform throughout the UCRB and the western U.S.
Milankovitch Cyclicity in the Eocene Green River Formation of Colorado and Wyoming
NASA Astrophysics Data System (ADS)
Machlus, M.; Olsen, P. E.; Christie-Blick, N.; Hemming, S. R.
2001-12-01
The Eocene Green River Formation is a classic example of cyclic lacustrine sediments. Following Bradley (1929, U.S.G.S. Prof. Paper 158-E), many descriptive studies suggested precession and eccentricity as the probable climatic forcing to produce the cyclic pattern. Here we report spectral analysis results that confirm this hypothesis. Furthermore, we have identified the presence of a surprisingly large amplitude obliquity cycle, the long-period eccentricity cycle (400 k.y.) and the long period modulators of obliquity. Spectral analyses of data from Colorado were undertaken on an outcrop section and core data using two different proxies for lake depth. In a section measured in the west Piceance Creek basin, three lithologies (ranks) were used as a proxy for relative water depth, from relatively shallow to deep water: laminated marlstones; microlaminated, light-colored oil-shales; and microlaminated black oil shales. A multi-tapered spectrum of the 190-m-thick record in the depth domain shows significant peaks at periods of 2.1, 3.4, 12 and 39 m. These are interpreted as the precession, obliquity and eccentricity cycles. The precession cycle confirms Bradley's independent estimate of 2.4 m per 20 k.y. cycle, based on varve counts at the same location. A high-amplitude, continuous 3.4 m (obliquity) cycle exists in the evolutive spectrum of this record. A second spectral analysis of an oil-shale-yield record was made on a 530 m core near the basin depocenter. This record includes the time-equivalent of the outcrop section, spans a longer interval of time, and has a higher sedimentation rate. Peaks are found at 5, 10, 25 and 79 m. Again, the probable obliquity peak, at 10 m, is continuous along the record. Initial tuning of this record to a 39.9 k.y. cosine wave improves the resolution of the precession, short and long eccentricity cycles. Spectral analysis of oil shale yield and sonic velocity data of cores from the Green River basin, Wyoming, gives similar results. Spectral peaks at 6, 13, 31 and 122 m appear mainly in the Tipton and the Wilkins Peak members. The correlation between oil shale yield, lithology and relative water depth was examined in the upper part of the Wilkins Peak Member and the Lower part of the Laney Member. The succession from microlaminated black oil shale to laminated micrite corresponds with documented lateral changes in facies from deep to shallow environments, thus confirming the use of these facies as relative water-depth proxies. Furthermore, the upsection record of oil shale yields correlates with these facies, with higher yields corresponding to deeper water facies. This correlation supports the use of the oil shale yield record as a proxy for short-term lake-level changes, and therefore a proxy for climate. The spectral analysis results from both basins show the importance of the obliquity cycle in these continental records. This cycle cannot be identified by cycle-counting, and therefore was not previously recognized. Earlier published attempts at spectral analysis of short records from the Piceance Creek and Uinta basins misinterpreted the observed cycles. This is the first time both the obliquity cycle and the long-term eccentricity cycle have been identified in the Green River and Piceance Creek basins.
Mansfield, Marc L; Tran, Huy N Q; Lyman, Seth N; Bowers, Richard L; Smith, Ann P; Keslar, Cara
2018-06-15
A common method for treating the aqueous phase (produced water) brought to the surface along with oil and natural gas is to discharge it into surface impoundments, also known as produced water ponds. Here we analyze data on the concentration of organic compounds in the water and on the flux of the same compounds into the atmosphere. Flux data extending from about 5 × 10 -2 to 10 +3 mg m -2 h -1 are consistent with mass-transfer laws given by the WATER9 semi-empirical algorithm, although empirical data display a noise level of about one order of magnitude and predictions by WATER9 are biased high. The data suggest partitioning between hydrocarbons in aqueous solution and in suspension, especially at higher overall concentrations. Salinity of the produced water does not have a detectable effect on hydrocarbon fluxes. Recently impounded waters are stronger emitters of hydrocarbons, while emissions of older waters are dominated by CO 2 . This aging effect can be explained by assuming, first, poor vertical mixing in the ponds, and second, gradual oxidation of hydrocarbons to CO 2 . Our measurements account for about 25% of the produced water ponds in the Uinta Basin, Eastern Utah, and when extrapolated to all ponds in the basin, account for about 4% to 14% of all organic compound emissions by the oil and natural gas sector of the basin, depending on the emissions inventory, and about 13% and 58%, respectively, of emissions of aromatics and alcohols. Copyright © 2018 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Picard, M.D.
1977-01-01
The combination stratigraphic and structural traps in the Morgan Formation of Pennsylvanian age of Church Buttes, Butcher Knife, and Bruff that produce gas and condensate are directly related to folding of the Church Buttes Arch in SW. Wyoming and NE. Utah. Present knowledge indicates that the Morgan gas and condensate originated in source beds in the lower Morgan formation west of the present Church Buttes Arch and were trapped mainly in porous barrier deposits in the Morgan. Folding of the Church Buttes Arch liberated these accumulations and they migrated updip in their present traps. This work summarizes the sedimentary petrographymore » of the productive beds in the Morgan Formation at the Church Buttes Unit No. 19 (SEC. 8, T 16 N, R 112 W), Uinta County, Wyoming. The stratigraphy is outlined for the whole region and the productive interval at Church Buttes is correlated with other rock units. Nearly all of the rocks studied are dolomite, which is difficult to interpret because of pronounced diagenesis. 33 references.« less
Yellow Canary uranium deposits, Daggett County, Utah
Wilmarth, Verl Richard
1953-01-01
The Yellow Canary uranium deposit is on the west side of Red Creek Canyon in the northern part of the Uinta Mountains, Daggett County, Utah. Two claims have been developed by means of an adit, three opencuts, and several hundred feet of bulldozer trenches. No uranium ore has been produced from this deposit. The deposit is in the pre-Cambrian Red Creek quartzite. This formation is composed of intercalated beds of quartzite, hornblendite, garnet schist, staurolite schist, and quartz-mica schist and is intruded by dioritic dikes. A thick unit of highly fractured white quartzite near the top of the formation contains tyuyamunite as coatings on fracture surfaces. The tyuyamunite is associated with carnotite, volborthite, iron oxides, azurite, malachite, brochantite, and hyalite. The uranium and vanadium minerals are probably alteration products of primary minerals. The uranium content of 15 samples from this property ranged from 0.000 to 0.57 percent.
NASA Astrophysics Data System (ADS)
Snyder, H.; Leva-Lopez, J.
2017-12-01
During the late Campanian age in North America fluvial systems drained the highlands of the Sevier orogenic belt and travelled east towards the Western Interior Seaway. One of such systems deposited the Canyon Creek Member (CCM) of the Ericson Formation in south-western Wyoming. At this time the fluvial system was being partially controlled by laterally variable subsidence caused by incipient Laramide uplifts. These uplifts rather than real topographic features were only areas of reduced subsidence at the time of deposition of the CCM. Surface expression at that time must have been minimum, only minute changes in slope and accommodation. Outcrops around these Laramide structures, in particular both flanks of the Rock Springs Uplift, the western side of the Rawlins uplift and the north flank of the Uinta Mountains, have been sampled to study the petrography, grain size, roundness and sorting of the CCM, which along with the cross-bed thickness and bar thickness allowed calculation of the hydraulic parameters of the rivers that deposited the CCM. This study reveals how the fluvial system evolved and responded to the very small changes in subsidence and slope. Furthermore, the petrography will shed light on the provenance of these sandstones and on the relative importance of Sevier sources versus Laramide sources. This work is framed in a larger study that shows how incipient Laramide structural highs modified the behavior, style and architecture of the fluvial system, affecting its thickness, facies characteristics and net-to-gross both down-dip and along strike across the basin.
Thermal Cracking to Improve the Qualification of the Waxes
NASA Astrophysics Data System (ADS)
He, B.; Agblevor, F. A.; Chen, C. G.; Feng, J.
2018-05-01
Thermal cracking of waxes at mild conditions (430-500°C) has been reconsidered as a possible refining technology for the production of fuels and chemicals. In this study, the more moderate thermal cracking was investigated to process Uinta Basin soft waxes to achieve the required pour point so that they can be pumped to the refineries. The best thermal cracking conditions were set 420°C and 20 minutes. The viscosity and density of the final liquid product were respectively achieved as 2.63 mP•s and 0.784 g/cm3 at 40°C. The result of FT-IR analysis of the liquid product indicated that the unsaturated hydrocarbons were produced after thermal cracking, which was corroborated by the 13C NMR spectrum. The GC analysis of the final gas product indicated that the hydrogen was produced; the dehydrogenation reaction was also proved by the elemental analysis and HHV results. The pour point of the final liquid product met the requirement.
NASA Astrophysics Data System (ADS)
Maslova, I.; Ticlavilca, A. M.; McKee, M.
2012-12-01
There has been an increased interest in wavelet-based streamflow forecasting models in recent years. Often overlooked in this approach are the circularity assumptions of the wavelet transform. We propose a novel technique for minimizing the wavelet decomposition boundary condition effect to produce long-term, up to 12 months ahead, forecasts of streamflow. A simulation study is performed to evaluate the effects of different wavelet boundary rules using synthetic and real streamflow data. A hybrid wavelet-multivariate relevance vector machine model is developed for forecasting the streamflow in real-time for Yellowstone River, Uinta Basin, Utah, USA. The inputs of the model utilize only the past monthly streamflow records. They are decomposed into components formulated in terms of wavelet multiresolution analysis. It is shown that the model model accuracy can be increased by using the wavelet boundary rule introduced in this study. This long-term streamflow modeling and forecasting methodology would enable better decision-making and managing water availability risk.
Boom, Doom and Rocks - The Intersection of Physics, Video Games and Geology
NASA Astrophysics Data System (ADS)
McBride, J. H.; Keach, R. W.
2008-12-01
Geophysics is a field that incorporates the rigor of physics with the field methods of geology. The onset and rapid development of the computer games that students play bring new hardware and software technologies that significantly improve our understanding and research capabilities. Together they provide unique insights to the subsurface of the earth in ways only imagined just a few short years ago. 3D geological visualization has become an integral part of many petroleum industry exploration efforts. This technology is now being extended to increasing numbers of universities through grants from software vendors. This talk will explore 3D visualization techniques and how they can be used for both teaching and research. Come see examples of 3D geophysical techniques used to: image the geology of ancient river systems off the coast of Brazil and in the Uinta Basin of Utah, guide archaeological excavations on the side of Mt. Vesuvius, Italy, and to study how volcanoes were formed off the coast of New Zealand.
NASA Astrophysics Data System (ADS)
Moore, K. D.; Martin, R. S.; Hill, S.; Shorthill, H.
2011-12-01
Recent measurements found high winter ozone (O3) at several locations in northeastern Utah's Uinta Basin. Similar to Wyoming's Upper Green River Basin, the area has seen recent growth in the gas/oil sector. As a part of a more comprehensive project, a study was conducted examining the relationships between O3, volatile organic compounds (VOCs), nitrogen oxides (NOx), fine particulate matter (PM2.5), and meteorology during an inversion episode. The study took place February 21-25, 2011 at the area's population center (Vernal) and at an area within the gas/oil fields (Red Wash). At both sites, O3 and NOx, displayed expected diurnal behaviors. The 1-hr O3 concentrations ranged from 10-90 ppb at Vernal and 34-107 ppb at Red Wash. Average diurnal O3 maximums (±95% CI) were 70.4±12.1 ppb and 76.8±12.6 ppb at Vernal and Red Wash, respectively. The Red Wash average O3 diurnal curve was broader than that at Vernal and did not titrate out as rapidly in the evening and morning hours. In contrast, higher NOx was observed at Vernal, with hourly averaged values ranging from 4.5-80.2 ppb, compared to 1.5-29.7 ppb at Red Wash. The NOx tended to follow traffic patterns at both sites, with morning maximum 1-hr averages of 40.8±12.1 ppb and 20.2±8.7 ppb, respectively. A portable O3 monitor attached to a tethered balloon found high ground level O3 (70-80 ppb) and a decrease to relatively constant levels (50-60 ppb) by 150 m agl. Methane and non-methane hydrocarbons (NHMC) were collected at least twice per day using whole vial and sorbent cartridges, followed by GC-FID and GC-MS analysis. The gas/oil field samples (Red Wash) found significantly higher CH4 levels (2.71±0.32 ppm) compared to the Vernal samples (1.82±0.14 ppm). The NMHC were likewise higher at the Red Wash location. Calculation of the maximum incremental reactivity (MIR) estimated that methane, ethane, propane, acetylene, remaining alkanes, alkenes, and aromatics accounted for 7.9%, 18.5%, 4.7%, 1.0%, 20.6%, 46.7%, and 0.6%, respectively, of the Vernal ozone formation potential. For the Red Wash site, the equivalent MIRs were 7.0%, 10.9%, 4.7%, 0.5%, 32.4%, 39.6%, and 4.8%. Five collocated AirMetrics MiniVol samplers measured 23-hr average PM2.5 concentrations at each site. Collocation allowed various analyses for compositional determination. The PM2.5 levels averaged 16.4±3.9 at Vernal and 8.9±0.3 μg/m3 Red Wash. At both sites, carbonaceous material made up around 80% of the PM2.5. Elemental carbon accounted for 13.4% and 12.8% of the PM2.5 and organic carbon contributed 64.1% and 69.6%, at Vernal and Red Wash, respectively. Vertical meteorology was examined through the use of tethersondes. The period was characterized by a stagnant high pressure system until the final day of the study when an active storm system moved through the area. Vertical temperature profiles showed strong temperature inversions from the ground to >350 m agl and a very stable atmosphere throughout the study. Winds were almost always light (≤2 m/s) and changed direction through the vertical profile. Diurnal variation in the height of the surface layer was observed varied from 20-80 m agl.
The glacial/deglacial history of sedimentation in Bear Lake, Utah and Idaho
Rosenbaum, J.G.; Heil, C.W.
2009-01-01
Bear Lake, in northeastern Utah and southern Idaho, lies in a large valley formed by an active half-graben. Bear River, the largest river in the Great Basin, enters Bear Lake Valley ???15 km north of the lake. Two 4-m-long cores provide a lake sediment record extending back ???26 cal k.y. The penetrated section can be divided into a lower unit composed of quartz-rich clastic sediments and an upper unit composed largely of endogenic carbonate. Data from modern fluvial sediments provide the basis for interpreting changes in provenance of detrital material in the lake cores. Sediments from small streams draining elevated topography on the east and west sides of the lake are characterized by abundant dolomite, high magnetic susceptibility (MS) related to eolian magnetite, and low values of hard isothermal remanent magnetization (HIRM, indicative of hematite content). In contrast, sediments from the headwaters of the Bear River in the Uinta Mountains lack carbonate and have high HIRM and low MS. Sediments from lower reaches of the Bear River contain calcite but little dolomite and have low values of MS and HIRM. These contrasts in catchment properties allow interpretation of the following sequence from variations in properties of the lake sediment: (1) ca. 26 cal ka-onset of glaciation; (2) ca. 26-20 cal ka-quasicyclical, millennial-scale variations in the concentrations of hematite-rich glacial fl our derived from the Uinta Mountains, and dolomite- and magnetite-rich material derived from the local Bear Lake catchment (reflecting variations in glacial extent); (3) ca. 20-19 cal ka-maximum content of glacial fl our; (4) ca. 19-17 cal ka-constant content of Bear River sediment but declining content of glacial fl our from the Uinta Mountains; (5) ca. 17-15.5 cal ka-decline in Bear River sediment and increase in content of sediment from the local catchment; and (6) ca. 15.5-14.5 cal ka-increase in content of endogenic calcite at the expense of detrital material. The onset of glaciation indicated in the Bear Lake record postdates the initial rise of Lake Bonneville and roughly corresponds to the Stansbury shoreline. The lake record indicates that maximum glaciation occurred as Lake Bonneville reached its maximum extent ca. 20 cal ka and that deglaciation was under way while Lake Bonneville remained at its peak. The transition from siliciclastic to carbonate sedimentation probably indicates increasingly evaporative conditions and may coincide with the climatically driven fall of Lake Bonneville from the Provo shoreline. Although lake levels fluctuated during the Younger Dryas, the Bear Lake record for this period is more consistent with drier conditions, rather than cooler, moister conditions interpreted from many studies from western North America. Copyright ?? 2009 The Geological Society of America.
Paleomagnetism and environmental magnetism of GLAD800 sediment cores from Bear Lake, Utah and Idaho
Heil, C.W.; King, J.W.; Rosenbaum, J.G.; Reynolds, R.L.; Colman, Steven M.
2009-01-01
A ???220,000-year record recovered in a 120-m-long sediment core from Bear Lake, Utah and Idaho, provides an opportunity to reconstruct climate change in the Great Basin and compare it with global climate records. Paleomagnetic data exhibit a geomagnetic feature that possibly occurred during the Laschamp excursion (ca. 40 ka). Although the feature does not exhibit excursional behavior (???40?? departure from the expected value), it might provide an additional age constraint for the sequence. Temporal changes in salinity, which are likely related to changes in freshwater input (mainly through the Bear River) or evaporation, are indicated by variations in mineral magnetic properties. These changes are represented by intervals with preserved detrital Fe-oxide minerals and with varying degrees of diagenetic alteration, including sulfidization. On the basis of these changes, the Bear Lake sequence is divided into seven mineral magnetic zones. The differing magnetic mineralogies among these zones reflect changes in deposition, preservation, and formation of magnetic phases related to factors such as lake level, river input, and water chemistry. The occurrence of greigite and pyrite in the lake sediments corresponds to periods of higher salinity. Pyrite is most abundant in intervals of highest salinity, suggesting that the extent of sulfidization is limited by the availability of SO42-. During MIS 2 (zone II), Bear Lake transgressed to capture the Bear River, resulting in deposition of glacially derived hematite-rich detritus from the Uinta Mountains. Millennial-scale variations in the hematite content of Bear Lake sediments during the last glacial maximum (zone II) resemble Dansgaard-Oeschger (D-O) oscillations and Heinrich events (within dating uncertainties), suggesting that the influence of millennial-scale climate oscillations can extend beyond the North Atlantic and influence climate of the Great Basin. The magnetic mineralogy of zones IV-VII (MIS 5, 6, and 7) indicates varying degrees of post-depositional alteration between cold and warm substages, with greigite forming in fresher conditions and pyrite in the more saline conditions. Copyright ?? 2009 The Geological Society of America.
NASA Astrophysics Data System (ADS)
Wang, M.
2017-12-01
The foreland basin records important clues of tectonic and sedimentary process of mountain-building, thus to explore its dynamic mechanism on the formation is an important issue of the mountain-basin interaction. The Longmen Shan fold-and-thrust belt and its adjacent Sichuan basin located in the eastern margin of Tibetan Plateau, are one of the most-concerned regions of studying modern mountain-building and seismic process, and are also a natural laboratory of studying the dynamics of the formation and development of foreland basin. However, it still need further explore on the mechanics of the development of the Cenozoic foreland basin and thrust-belts in the western Sichuan Basin. The Longmen Shan thrust belt has experienced multi-stages of tectonics evolution, foreland basin formation and topography growth since Late Triassic, and whether the early formed basin architecture and large Mesozoic sedimentary basin taper can influence the formation and development of the Cenozoic foreland basin and thrust belts? To solve these issues, this project aim to focus on the Cenozoic foreland basin and internal crustal shortening structures in the western Sichuan basin, on the basis of growth critical wedge taper theory. We will reconstruct the shape of multi-phases of sedimentary basin tapers, the temporal-spatial distribution of crustal shortening and thrusting sequences, and analyze the control mechanism of Mesozoic sedimentary basin taper on the formation of Cenozoic foreland basins, and final explore the interaction between the tectonics geomorphology, stress field and dynamic propagation of foreland basin.
Characterization of Petroleum Residue in the Entrada Sandstone, Colorado National Monument
Lillis, Paul G.; King, J. David
2007-01-01
Introduction As part of the U.S. Geological Survey's (USGS) petroleum resource assessment of the Uinta-Piceance Province, Colorado and Utah, in 2000 (USGS Uinta-Piceance Assessment Team, 2003), some 170 oils, oil stains, and oil seeps were geochemically characterized and divided into genetic types (Lillis and others, 2003). Recognized oil types include Minturn, Phosphoria, Grassy Trail Creek, Mancos, Mesaverde, and Green River. Subsequent to that study, the existence and general locality of petroleum residue in the Middle Jurassic Entrada Sandstone in Colorado National Monument (CNM) was brought to the attention of the authors (Scott and others, 2001). Because the analysis of such non-commercial petroleum deposits commonly yields valuable regional resource-trend information, we collected and characterized the reported CNM petroleum residue and compared the results with identified oil types in the Uinta-Piceance Province. Three samples of Entrada Sandstone with petroleum residue were collected near Little Park Road along the south edge of the CNM in sec.20, T.12S., R.101W. The approximate extent of the petroleum staining was determined by field testing with solvent, and the stains appear to be restricted to the upper part of the 'board beds' unit (informal name, Scott and others, 2001) of the Entrada Sandstone between the two fault traces of the Glade Park fault.
NASA Astrophysics Data System (ADS)
Rella, Chris; Winkler, Renato; Sweeney, Colm; Karion, Anna; Petron, Gabrielle; Crosson, Eric
2014-05-01
Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of carbon dioxide emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the isotopic carbon signature to distinguish between natural gas and landfills or ruminants. We present measurements of methane using a mobile spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Performance of the CRDS isotope analyzer is presented, including precision, calibration, stability, and the potential for measurement bias due to other atmospheric constituents. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to arrive at an overall isotope ratio for the region.
Lambert, P.M.; Marston, T.; Kimball, B.A.; Stolp, B.J.
2011-01-01
Roosevelt City, Utah, asserts a need for an additional supply of water to meet municipal demands and has identified a potential location for additional groundwater development at the Sprouse well field near the West Channel of the Uinta River. Groundwater is commonly hydraulically linked to surface water and, under some conditions, the pumpage of groundwater can deplete water in streams and other water bodies. In 2008, the U.S. Geological Survey, in cooperation with Roosevelt City, the Utah Department of Natural Resources, and the Ute Indian Tribe, began a study to improve understanding of the local interconnection between groundwater and surface water and to assess the potential for streamflow depletion from future groundwater withdrawals at a potential Roosevelt City development location—the Sprouse well field near the West Channel of the Uinta River.In the study, streamflow gains and losses at the river/aquifer boundary near the well field and changes in those conditions over time were assessed through (1) synoptic measurement of discharge in the stream at multiple sites using tracer-dilution methods, (2) periodic measurement of the vertical hydraulic gradient across the streambed, and (3) continuous measurement of stream and streambed water temperature using heat as a tracer of flow across the streambed. Although some contradictions among the results of the three assessment methods were observed, results of the approaches generally indicated (1) losing streamflow conditions on the West Channel of the Uinta River north of and upstream from the Sprouse well field within the study area, (2) gaining streamflow conditions south of and downstream from the well field, and (3) some seasonal changes in those conditions that correspond with seasonal changes in stream stage and local water-table altitudes.A numerical groundwater flow model was developed on the basis of previously reported observations and observations made during this study, and was used to estimate potential streamflow depletion that might result from future groundwater withdrawals at the Sprouse well field. The model incorporates concepts of transient groundwater flow conditions including fluctuations in groundwater levels and storage, and the distribution of and temporal variations in gains to and losses from streamflow in the West Channel of the Uinta River near the Sprouse well field. Two predictive model simulations incorporated additional future discharge from the Sprouse well field totaling 325 acre-feet annually and biennially during summer months. Results of the predictive model simulations indicate that the water withdrawn by the additional pumping was derived initially from aquifer storage and then, with time, predominantly from streamflow depletion. By the 10th year of the predictive simulation incorporating annual summer pumping from an additional public-supply well in the Sprouse well field, the simulation results indicate that 89 percent of a future annual 325 acre-feet of discharge is derived from depletion of streamflow in the West Channel of the Uinta River. A similar result was observed in a predictive model simulating the same discharge rate but with the new well being pumped every other year.
Impact-Basin Formation on Mercury: Current Observations and Outstanding Questions
NASA Astrophysics Data System (ADS)
Baker, D. M. H.; Head, J. W.; Fassett, C. I.
2018-05-01
Mercury provides an important laboratory for understanding impact-basin formation on planetary bodies. MESSENGER observations improved our understanding, but much is still unknown about the formation and evolution of basin features.
Mechanics of monoclinal systems in the Colorado Plateau during the Laramide orogeny
NASA Astrophysics Data System (ADS)
Yin, An
1994-11-01
Monoclines developed in the Colorado Plateau region during the Laramide orogeny are divided into western and eastern groups by a broad NNW trending antiform through the central part of the plateau. In the western group the major monoclines verge to the east, whereas in the eastern group the major monoclines verge to the west. Paleogeographic reconstruction based on paleocurrent indicators and sedimentary facies distribution suggests that the broad antiform was developed during the Laramide orogeny and was coeval with the formation of the monoclines in the plateau. This relationship implies that the monoclines were drag folds verging towards the center of the plateau as a response to the antiformal warping of the plateau. To simulate the warping of the plateau region and the stress distribution that produced the variable trends of the monoclines, an elastic thin plate model considering in-plane stress was developed. This model assumes that (1) sedimentation in the Laramide basins provided vertical loading along the edge of the plateau region, (2) frictional sliding was operating along the Laramide faults on the northern and eastern boundaries, and (3) the greatest regional compressive stress was oriented in the N 60 deg E direction and was applied uniformly along the western and southwestern sides of the plateau. Buoyancy due to instantaneous isostatic adjustment of crustal thickening or magmatic addition was also considered. The result of the model suggests that the frictional strength of the Uinta thrust system on the northern side of the plateau is at least 2 times greater than that along the Park Range and Sangre de Cristo thrust systems on the eastern side of the plateau in order to explain the observed monoclinal trends and the warping pattern within the plateau during the Laramide orogeny.
The uranium deposit at the Yellow Canary claims, Daggett County, Utah
Wilmarth, V.R.; Vickers, R.C.; McKeown, F.A.; Beroni, E.P.
1952-01-01
The Yellow Canary claims uranium deposit is on the west side of Red Creek Canyon in the northern part of the Uinta Mountains, Daggett County, Utah. The claims have been developed by two adits, three open cuts, and several hundred deep of bulldozer trenches. No uranium ore has been produced from this deposit. The uranium deposit at the Yellow Canary claims is in the Red Creek quartzite of pre-Cambrian age. The formation is composed of intercalated beds of quartzite, hornblendite, garnet schist, staurolite schist, and quartz-mica schist and is intruded by diorite dikes. A thick unit of highly fractured white quatrzite at the top of the formation contains tyutamunite as coatings on fracture surfaces. The tyutamunite is associated with carnotite, volborthite, iron oxides, azurite, malachite, brochantite, and hyalite. The secondary uranium and vanadium minerals are believed to be alteration products of primary minerals. The uranium content of 15 samples from this property ranged from 0.000 to 0.57 percent.
NASA Astrophysics Data System (ADS)
Head, James; Smith, David; Zuber, Maria; Neumann, Gregory; Fassett, Caleb; Whitten, Jennifer; Garrick-Bethell, Ian
2010-05-01
The 920 km diameter Orientale basin is the youngest and most well-preserved large multi-ringed impact basin on the Moon; it has not been significantly filled with mare basalts, as have other lunar impact basins, and thus the basin interior deposits and ring structures are very well-exposed and provide major insight into the formation and evolution of planetary multi-ringed impact basins. We report here on the acquisition of new altimetry data for the Orientale basin from the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar Reconnaissance Orbiter. Pre-basin structure had a major effect on the formation of Orientale; we have mapped dozens of impact craters underlying both the Orientale ejecta (Hevelius Formation-HF) and the unit between the basin rim (Cordillera ring-CR) and the Outer Rook ring (OR) (known as the Montes Rook Formation-MRF), ranging up in size to the 630 km diameter Mendel-Rydberg basin just to the south of Orientale; this crater-basin topography has influenced the topographic development of the basin rim (CR), sometimes causing the basin rim to lie at a topographically lower level than the inner basin rings (OR and Inner Rook-IR). In contrast to some previous interpretations, the distribution of these features supports the interpretation that the OR ring is the closest approximation to the basin excavation cavity. The total basin interior topography is highly variable and typically ranges ~6-7 km below the surrounding pre-basin surface, with significant variations in different quadrants. The inner basin depression is about 2-4 km deep below the IR plateau. These data aid in the understanding of the transition from peak-ring to multi-ringed basins and permit the quantitative assessment of post-basin-formation thermal response to impact energy input and uplifted isotherms. The Maunder Formation (MF) consists of smooth plains (on the inner basin depression walls and floor) and corrugated deposits (on the IR plateau); also observed are depressions interpreted to be due to local drainage, and cracks related to cooling and solidification. This configuration supports the interpretation that the MF consists of different facies of impact melt. The location of vents, the altimetric distribution, and the slopes of mare basalts of different ages permit an assessment of basin controls on mare basalt emplacement. The inner depression is floored by tilted mare basalt deposits surrounding a central pre-mare high of several hundred meters elevation and deformed by wrinkle ridges with similar topographic heights; these data permit the assessment of basin loading by mare basalts and ongoing basin thermal evolution. LOLA data for the Orientale basin thus provide new insight into models of multi-ring basin formation, important information on their early thermal evolution, and new data on the initial stages of mare basalt flooding of multi-ringed basins.
Muldoon, Kathleen M; Gunnell, Gregg F
2002-10-01
Recent fieldwork in the Gardnerbuttean (earliest Bridgerian) sediments along the northeastern edge of the Green River Basin at South Pass, Wyoming, has yielded a large and diverse sample of omomyid (tarsiiform) primates. This assemblage includes two species each of Artimonius gen. nov., Washakius, and Omomys, one species of Anaptomorphus, Trogolemur and Uintanius, and a new, primitive species of the rare omomyine genus,Utahia. Utahia is known elsewhere only from its type locality in the Uinta Basin and its phylogenetic position is poorly understood. Utahia carina sp. nov. allows for re-evaluation of the affinities of this genus relative to other omomyines. In most characters, such as a lesser degree of molar trigonid compression, more widely open talonid notches, and a lack of molar talonid crenulation, the new species is more primitive than U. kayi. The dental anatomy of U. carina also indicates that Utahia is morphologically intermediate between washakiins and omomyins, although the balance of anatomical features places Utahia as the sister taxon to a broadly defined "Ourayini" clade. Morphological similarity between U. carina, Loveina zephyri, and primitive Washakius suggests that while the omomyin and washakiin clades may have diverged by the middle Wasatchian, substantial morphological distinctions are first evidenced only in the early Bridgerian. This may be due either to a lack of appropriate faunal samples from older sediments, or, more likely, because ecological circumstances in the early Bridgerian favored omomyine diversification and subsequent replacement of previously occurring taxa. This hypothesis is further supported by the stratigraphic co-occurrence of U. carina, W. izetti, and a primitive variant of W. insignis at South Pass, a marginal area. Basin margins have been hypothesized to provide heterogeneous habitats conducive to the production of evolutionary innovation. Basin margin samples have also been cited as evidence that anaptomorphines were relegated to upland refugia as omomyine taxa began to appear in the later part of the early Eocene. Another possible explanation for the unusual co-occurrence of species at South Pass relates to fluctuating lake levels in the Green River Basin, which intermittently would have made lowland environments inhospitable for arboreal fauna. This would have created a situation whereby species which would normally be allopatric become sympatric at South Pass.
Extreme Seasonality During Early Eocene Hyperthermals
NASA Astrophysics Data System (ADS)
Plink-Bjorklund, P.; Birgenheier, L.
2012-12-01
An outcrop multi-proxy dataset from the Uinta Basin, Utah, US indicates that extreme seasonality occurred repeatedly during the Early Eocene transient global warming events (hyperthermals), during the Palaeocene-Eocene Thermal Maximum (PETM) as well as during the six consequent younger hyperthermals. In this multi-proxy analysis we have investigated the precipitation distribution and peakedness changes during Early Eocene hyperthermals. This dataset is different from previously published terrestrial climate proxy analyses, in that we fully utilize the sedimentary record itself, and especially the hydrodynamic indicators within the river strata. We combine these high-resolution sedimentologic-stratigraphic analyses, with analyses of terrestrial burrowing traces, and the conventional palaeosol and stable carbon isotope analyses. With this approach, we are able to better document hydroclimatologic changes, and identify climate seasonality changes, rather than just long-term mean humidity/aridity and temperature trends. For this study we analyzed over 1000 m of Palaeocene and Early Eocene river and lake strata in the Uinta Basin, Utah, US (Figs. 1 and 2). The sedimentologic-stratigraphic analyses of outcrops included measuring detailed stratigraphic sections, analyzing photopanels, a spatial GPS survey, and lateral walk-out of stratigraphic packages across an area of 300 km2, with additional data across an area of ca 6000 km2 (Fig. 2). Continental burrowing traces and palaeosols were analyzed along the measured sections. For geochemical analysis 196 samples of mudrock facies were collected along the measured sections and analyzed for total organic carbon (Corg), total nitrogen (Ntot), and δ13C values of bulk organic matter. Biostratigraphy (25), radiometric dates, and carbon isotope stratigraphy, using bulk δ13C of organic matter in floodplain siltstones confirm the position of the PETM and the 6-8 post-PETM hyperthermals in the studied strata The seasonality intensification is seen as short intense rain seasons alternating with prolonged droughts. Such seasonality intensification had a profound effect on landscape morphology as well as on vegetation. River systems changed from braided streams to highly seasonal fluvial megafans with tens of meters deep channels. River channels staid dry through most of the prolonged droughts, as witnessed by intra-channel insect burrows and paleosols. The intense wet seasons caused extremely high water discharge in channels, resulting in high rates of erosion, sediment transport and deposition. As a result, the channels were filled locally by up to 10s of meters of sediment, causing rapid river course changes and terrestrial flooding. Particulate organic matter content is extremely low in these sediments. This is in contrast to river sediments that were deposited during less intense seasonality. The dataset was compared to other datasets from intermontane basins in the Western Interior and also Europe (Spain), where similar seasonality changes are indicated to have occurred during the PETM. This is in great contrast to intermontane Early Eocene river systems documented in Norwegian Arctic (e.g. Spitsbergen) and in tropics (e.g. Venezuela), where no seasonality intensification has been documented. Thus the seasonality intensification seems to have been confined to (northern) mid-latitudes and subtropics.
Hydrocarbon potential assessment of Ngimbang formation, Rihen field of Northeast Java Basin
NASA Astrophysics Data System (ADS)
Pandito, R. H.; Haris, A.; Zainal, R. M.; Riyanto, A.
2017-07-01
The assessment of Ngimbang formation at Rihen field of Northeast Java Basin has been conducted to identify the hydrocarbon potential by analyzing the response of passive seismic on the proven reservoir zone and proposing a tectonic evolution model. In the case of petroleum exploration in Northeast Java basin, the Ngimbang formation cannot be simply overemphasized. East Java Basin has been well known as one of the mature basins producing hydrocarbons in Indonesia. This basin was stratigraphically composed of several formations from the old to the young i.e., the basement, Ngimbang, Kujung, Tuban, Ngerayong, Wonocolo, Kawengan and Lidah formation. All of these formations have proven to become hydrocarbon producer. The Ngrayong formation, which is geologically dominated by channels, has become a production formation. The Kujung formation that has been known with the reef build up has produced more than 102 million barrel of oil. The Ngimbang formation so far has not been comprehensively assessed in term its role as a source rock and a reservoir. In 2013, one exploratory well has been drilled at Ngimbang formation and shown a gas discovery, which is indicated on Drill Stem Test (DST) reading for more than 22 MMSCFD of gas. This discovery opens new prospect in exploring the Ngimbang formation.
NASA Astrophysics Data System (ADS)
López-Gamundí, O. R.; Rossello, E. A.
As integral parts of du Toit's (1927) ``Samfrau Geosyncline'', the Sauce Grande basin-Ventana foldbelt (Argentina) and Karoo basin-Cape foldbelt (South Africa) share similar paleoclimatic, paleogeographic, and paleotectonic aspects related to the Late Paleozoic tectono-magmatic activity along the Panthalassan continental margin of Gondwanaland. Late Carboniferou-earliest Permian glacial deposits were deposited in the Sauce Grande (Sauce Grande Formation) and Karoo (Dwyka Formation) basins and Falkland-Malvinas Islands (Lafonia Formation) during an initial (sag) phase of extension. The pre-breakup position of the Falkland (Malvinas) Islands on the easternmost part of the Karoo basin (immediately east of the coast of South Africa) is supported by recent paleomagnetic data, lithofacies associations, paleoice flow directions and age similarities between the Dwyka and the Lafonia glacial sequences. The desintegration of the Gondwanan Ice Sheet (GIS) triggered widespread transgressions, reflected in the stratigraphic record by the presence of inter-basinally correlatable, open marine, fine-grained deposits (Piedra Azul Formation in the Sauce Grande basin, Prince Albert Formation in the Karoo basin and Port Sussex Formation in the Falkland Islands) capping glacial marine sediments. These early postglacial transgressive deposits, characterised by fossils of the Eurydesma fauna and Glossopteris flora, represent the maximum flooding of the basins. Cratonward foreland subsidence was triggered by the San Rafael orogeny (ca. 270 Ma) in Argentina and propogated along the Gondwanan margin. This subsidence phase generated sufficient space to accommodate thick synorogenic sequences derived from the orogenic flanks of the Sauce Grande and Karoo basins. Compositionally, the initial extensional phase of these basins was characterized by quartz-rich, craton-derived detritus and was followed by a compressional (foreland) phase characterized by a paleocurrent reversal and dominance of arc/foldbelt-derived material. In the Sauce Grande basin, tuffs are interbedded in the upper half of the synorogenic, foldbelt-derived Tunas Formation (Early-early Late? Permian). Likewise, the first widespread appearance of tuffs in the Karoo basin is in the Whitehill Formation, of late Early Permian (260 Ma) age. Silicic volcanism along the Andes and Patagonia (Choiyoi magmatic province) peaked between the late Early Permian and Late Permian. A link between these volcanics and the consanguineous airborne tuffs present in the Sauce Grande and Karoo basins is suggested on the basis of their similar compositions and ages.
NASA Astrophysics Data System (ADS)
Selby, D.
2011-12-01
Geochronology is fundamental to understand the age, rates and durations of Earth processes. This concerned Arthur Holmes who, for much of his career, attempted to define a geological time scale. This is a topic still important to Earth Scientists today, specifically the chronostratigraphy of sedimentary rocks. Here I explore the Re-Os geochronology of marine and lacustrine sedimentary rocks and its application to yield absolute time constraints for stratigraphy. The past decade has seen the pioneering research of Re-Os organic-rich sedimentary rock geochronology blossom into a tool that can now to be used to accurately and precisely determine depositional ages of organic-rich rock units that have experienced up to low grade greenschist metamorphism. This direct dating of sedimentary rocks is critical where volcanic horizons are absent. As a result, this tool has been applied to timescale calibration, basin correlation, formation duration and the timing of key Earth events (e.g., Neoproterozoic glaciations). The application of Re-Os chronometer to the Devonian-Mississippian boundary contained within the Exshaw Formation, Canada, determined an age of 361.3 ± 2.4 Ma. This age is in accord with U-Pb dates of interbedded tuff horizons and also U-Pb zircon date for the type Devonian-Mississippian Hasselbachtal section, Germany. The agreement of the biostratigraphic and U-Pb constraints of the Exshaw Formation with the Re-Os date illustrated the potential of the Re-Os chronometer to yield age determinations for sedimentary packages, especially in the absence of interbedd tuff horizons and biozones. A Re-Os date for the proposed type section of the Oxfordian-Kimmeridgian boundary, Staffin Bay, Isle of Skye, U.K., gave an age of 154.1 ± 2.2 Ma. This Re-Os age presents a 45 % (1.8 Ma) improvement in precision for the basal Kimmeridgian. It also demonstrated that the duration of the Kimmeridgian is nominally 3.3 Ma and thus is 1.6 Ma shorter than previously indicated. In addition to these examples, several studies have presented precise dates for Phanerozoic marine organic-rich units that are in excellent agreement with biostratigraphic determinations. A recent Re-Os study of the Woodford Shale (that was deposited throughout the Frasnian and Famennian) has provided important time markers as well as suggesting that the sedimentation rate of the Formation was relatively constant for ~20 Ma. To date only marine organic-rich sedimentary rocks have been utilized for Re-Os geochronology. However, lacustrine sedimentary rocks provide an invaluable archive of continental geological processes responding to tectonic, climatic and magmatic influences. Correlating these rocks to global geological phenomena requires accurate geochronological frameworks. The organic-rich lacustrine sedimentary units of the Eocene Green River Formation are enriched is Re and Os comparable to that of marine units. The Re-Os dates for the Green River Formation from the Uinta basin are 48.5 ± 0.6 Ma and 49.2 ± 1.0 Ma. These dates are in excellent agreement with Ar/Ar and U/Pb dates of interbedded tuffs in the GRF, therefore demonstrating that lacustrine units can be used for Re-Os geochronology in addition to marine organic-rich units.
NASA Technical Reports Server (NTRS)
Head, J. W.
1974-01-01
The lunar Orientale basin is a 900 km diam circular topographic depression covering an area of over 700,000 sq km on the western limb of the moon. Three major rings surround the central Mare Orientale. Orientale basin structures are considered along with Orientale basin deposits and the sequence of formation of structures and deposits. It is found that the structures and facies are related in time and mode of origin to the formation of a major impact crater approximately 620 km in diam. The study suggests that the Orientale basin configuration is very nearly the same as its geometry at its time of formation. The formation of multiringed basins such as Orientale provides a mechanism for an instantaneous production of tremendous volumes of melted lunar crystal material.
NASA Astrophysics Data System (ADS)
Shipilov, E. V.
2008-03-01
Chronological succession in the formation of spreading basins is considered in the context of reconstruction of breakdown of Wegener’s Pangea and the development of the geodynamic system of the Arctic Ocean. This study made it possible to indentify three temporally and spatially isolated generations of spreading basins: Late Jurassic-Early Cretaceous, Late Cretaceous-Early Cenozoic, and Cenozoic. The first generation is determined by the formation, evolution, and extinction of the spreading center in the Canada Basin as a tectonic element of the Amerasia Basin. The second generation is connected to the development of the Labrador-Baffin-Makarov spreading branch that ceased to function in the Eocene. The third generation pertains to the formation of the spreading system of interrelated ultraslow Mohna, Knipovich, and Gakkel mid-ocean ridges that has functioned until now in the Norwegian-Greenland and Eurasia basins. The interpretation of the available geological and geophysical data shows that after the formation of the Canada Basin, the Arctic region escaped the geodynamic influence of the Paleopacific, characterized by spreading, subduction, formation of backarc basins, collision-related processes, etc. The origination of the Makarov Basin marks the onset of the oceanic regime characteristic of the North Atlantic (intercontinental rifting, slow and ultraslow spreading, separation of continental blocks (microcontinents), extinction of spreading centers of primary basins, spreading jumps, formation of young spreading ridges and centers, etc., are typical) along with retention of northward propagation of spreading systems both from the Pacific and Atlantic sides. The aforesaid indicates that the Arctic Ocean is in fact a hybrid basin or, in other words, a composite heterogeneous ocean in respect to its architectonics. The Arctic Ocean was formed as a result of spatial juxtaposition of two geodynamic systems different in age and geodynamic style: the Paleopacific system of the Canada Basin that finished its evolution in the Late Cretaceous and the North Atlantic system of the Makarov and Eurasia basins that came to take the place of the Paleopacific system. In contrast to traditional views, it has been suggested that asymmetry of the northern Norwegian-Greenland Basin is explained by two-stage development of this Atlantic segment with formation of primary and secondary spreading centers. The secondary spreading center of the Knipovich Ridge started to evolve approximately at the Oligocene-Miocene transition. This process resulted in the breaking off of the Hovgard continental block from the Barents Sea margin. Thus, the breakdown of Wegener’s Pangea and its Laurasian fragments with the formation of young spreading basins was a staged process that developed nearly from opposite sides. Before the Late Cretaceous (the first stage), the Pangea broke down from the side of Paleopacific to form the Canada Basin, an element of the Amerasia Basin (first phase of ocean formation). Since the Late Cretaceous, destructive pulses came from the side of the North Atlantic and resulted in the separation of Greenland from North America and the development of the Labrador-Baffin-Makarov spreading system (second phase of ocean formation). The Cenozoic was marked by the development of the second spreading branch and the formation of the Norwegian-Greenland and Eurasia oceanic basins (third phase of ocean formation). Spreading centers of this branch are functioning currently but at an extremely low rate.
75 FR 36386 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-25
..., Revised Draft EIS, USFS, 00, Uinta National Forest Oil and Gas Leasing, Implementation, Identify National Forest Systems Lands with Federal Mineral Rights, Wasatch, Utah, Juab, Tooele, and Sanpete Counties, UT...
76 FR 12108 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-04
..., Uinta National Forest Oil and Gas Leasing, Implementation, Identify National Forest Systems Lands with Federal Mineral Rights, Wasatch, Utah, Juab, Tooele, and Sanpete Counties, UT, Review Period Ends: 04/04...
75 FR 5890 - Suspension of Community Eligibility
Federal Register 2010, 2011, 2012, 2013, 2014
2010-02-05
...; May 19, 1992, Reg; February 17, 2010, Susp. Ross, Township of, 260624 July 24, 1975, ......do Do.... Evanston, City of, Uinta 560054 March 23, 1977, ......do Do. County. Emerg; January 15, 1988, Reg; February...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hogle, D.G.; Jones, R.W.
1989-03-01
A detailed stratigraphic study of over 6000 m of Upper Cretaceous through lower Eocene sedimentary rocks in the Wind River basin. Wyoming, has refined and expanded previous work and conclusions. A much larger data base than previously available was assembled to include a correlation net of 325 geophysical well logs, 36 drill holes with palynological age dates, lithology logs of drill hoes, and limited surface exposures. The most significant results and conclusions from this study are summarized below. (1) The lower part of the Mesaverde Formation intertongues with marine sandstones and shales of the upper Cody Shale to the eastmore » and with marine sandstones of the lower Mesaverde Formation in the Big Horn basin to the north. (2) An unconformity between the Mesaverde and Fort Union Formations in the southwestern part of the basin can be traced into the subsurface. (3) During the latest Cretaceous and Paleocene, over 2100 m of Lance Formation and over 2700 m of Fort Union Formation were deposited in the northeastern part of the basin. Ponding during the Paleocene is demonstrated by correlation and subsurface mapping of over 900 m of shale and siltstone in the Waltman Shale Member of the Fort Union Formation. (4) The Lance and Fort Union Formations can be mapped in the subsurface throughout much of the basin. The Lance Formation pinches out in the western part of the basin. (5) Coal beds can be traced for short distances in the subsurface; coal bed occurrence is documented for the Mesaverde, lower Fort Union, and Meeteetse Formations in the southwestern, northern and central, and northwestern parts of the basin, respectively.« less
NASA Astrophysics Data System (ADS)
Bristow, Thomas F.; Kennedy, Martin J.; Morrison, Keith D.; Mrofka, David D.
2012-08-01
The mineralogical, compositional and stable isotopic variability of lacustrine carbonates are frequently used as proxies for ancient paleoenvironmental change in continental settings, under the assumption that precipitated carbonates reflect conditions and chemistry of ancient lake waters. In some saline and alkaline lake systems, however, authigenic clay minerals, forming at or near the sediment water interface, are a major sedimentary component. Often these clays are rich in Mg, influencing the geochemical budget of lake waters, and are therefore expected to influence the properties of contemporaneous authigenic carbonate precipitates (which may also contain Mg). This paper documents evidence for a systematic feedback between clay mineral and carbonate authigenesis through multiple precessionally driven, m-scale sedimentary cycles in lacustrine oil-shale deposits of the Eocene Green River Formation from the Uinta Basin (NE Utah). In the studied section, authigenic, Mg-rich, trioctahedral smectite content varies cyclically between 9 and 39 wt.%. The highest concentrations occur in oil-shales and calcareous mudstones deposited during high lake level intervals that favored sedimentary condensation, lengthening the time available for clay diagenesis and reducing dilution by other siliciclastic phases. An inverse relation between dolomite percentage of carbonate and trioctahedral smectite abundance suggests the Mg uptake during clay authigenesis provides a first order control on carbonate mineralogy that better explains carbonate mineralogical trends than the possible alternative controls of (1) variable Mg/Ca ratios in lake water and (2) degree of microbial activity in sediments. We also observe that cyclical change in carbonate mineralogy, believed to be induced by clay authigenesis, also causes isotopic covariation between δ13CPDB and δ18OPDB of bulk sediments because of differences in the equilibrium fractionation factors of dolomite and calcite (˜2‰ and ˜2.6%, respectively). This provides an alternative mechanism for the common pattern of isotopic covariation, which is typically attributed to the effect of simultaneous changes in water balance and biological activity on the carbon and oxygen isotopic composition of lake waters. These findings may help improve paleoenvironmental reconstructions based on lacustrine carbonate records by adding to the factors known to influence the mineralogical, compositional and stable isotopic signals recorded by lacustrine carbonates.
NASA Astrophysics Data System (ADS)
Rella, C.; Crosson, E.; Petron, G.; Sweeney, C.; Karion, A.
2013-12-01
Fugitive emissions of methane into the atmosphere are a major concern facing the natural gas production industry. Because methane is more energy-rich than coal per kg of CO2 emitted into the atmosphere, it represents an attractive alternative to coal for electricity generation, provided that the fugitive emissions of methane are kept under control. A key step in assessing these emissions in a given region is partitioning the observed methane emissions between natural gas fugitive emissions and other sources of methane, such as from landfills or agricultural activities. One effective method for assessing the contribution of these different sources is stable isotope analysis, using the δ13CH4 signature to distinguish between natural gas and landfills or ruminants. We present measurements of mobile field δ13CH4 using a spectroscopic stable isotope analyzer based on cavity ringdown spectroscopy, in three intense natural gas producing regions of the United States: the Denver-Julesburg basin in Colorado, the Uintah basin in Utah, and the Barnett Shale in Texas. Mobile isotope measurements of individual sources and in the nocturnal boundary layer have been combined to establish the fraction of the observed methane emissions that can be attributed to natural gas activities. The fraction of total methane emissions in the Denver-Julesburg basin attributed to natural gas emissions is 78 +/- 13%. In the Uinta basin, which has no other significant sources of methane, the fraction is 96% +/- 15%. In addition, results from the Barnett shale are presented, which includes a major urban center (Dallas / Ft. Worth). Methane emissions in this region are spatially highly heterogeneous. Spatially-resolved isotope and concentration measurements are interpreted using a simple emissions model to arrive at an overall isotope ratio for the region. (left panel) Distribution of oil and gas well pads (yellow) and landfills (blue) in the Dallas / Ft. Worth area. Mobile nocturnal measurements of methane are shown in red, indicating a strong degree of source heterogeneity. (right panel) Histogram of individual isotopic source signatures, showing distinct signatures for landfills (red) and oil and gas sources (green).
Marra, Kristen R.; Gaswirth, Stephanie B.; Schenk, Christopher J.; Leathers-Miller, Heidi M.; Klett, Timothy R.; Mercier, Tracey J.; Le, Phuong A.; Tennyson, Marilyn E.; Finn, Thomas M.; Hawkins, Sarah J.; Brownfield, Michael E.
2017-05-15
Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean resources of 4.2 billion barrels of oil and 3.1 trillion cubic feet of gas in the Spraberry Formation of the Midland Basin, Permian Basin Province, Texas.
Wallace, Alan R.
2003-01-01
Freshwater diatomite deposits are present in all of the Western United States, including the Great Basin and surrounding regions. These deposits are important domestic sources of diatomite, and a better understanding of their formation and geologic settings may aid diatomite exploration and land-use management. Diatomite deposits in the Great Basin are the products of two stages: (1) formation in Late Cenozoic lacustrine basins and (2) preservation after formation. Processes that favored long-lived diatom activity and diatomite formation range in decreasing scale from global to local. The most important global process was climate, which became increasingly cool and dry from 15 Ma to the present. Regional processes included tectonic setting and volcanism, which varied considerably both spatially and temporally in the Great Basin region. Local processes included basin formation, sedimentation, hydrology, and rates of processes, including diatom growth and accumulation; basin morphology and nutrient and silica sources were important for robust activity of different diatom genera. Only optimum combinations of these processes led to the formation of large diatomite deposits, and less than optimum combinations resulted in lakebeds that contained little to no diatomite. Postdepositional processes can destroy, conceal, or preserve a diatomite deposit. These processes, which most commonly are local in scale, include uplift, with related erosion and changes in hydrology; burial beneath sedimentary deposits or volcanic flows and tuffs; and alteration during diagenesis and hydrothermal activity. Some sedimentary basins that may have contained diatomite deposits have largely been destroyed or significantly modified, whereas others, such as those in western Nevada, have been sufficiently preserved along with their contained diatomite deposits. Future research on freshwater diatomite deposits in the Western United States and Great Basin region should concentrate on the regional and local processes that led to the formation and preservation of the deposits. Major questions that need to be answered include (1) why were some basins favorable for diatomite formation, whereas others were not; (2) what post-depositional conditions are needed for diatomite preservation; and (3) what were the optimum process combinations that led to the formation and preservation of economic diatomite deposits?
Carbonate platform, slope, and basinal deposits of Upper Oligocene, Kalimantan, Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Armin, R.A.; Cutler, W.G.; Mahadi, S.
1987-05-01
Upper Oligocene platform carbonates (Berai Formation) occur extensively on the Barito shelf in southeastern Kalimantan (Borneo) and are flanked northward by coeval slope and basinal deposits (Bongan Formation) which accumulated in the southwestern part of the Kutei basin. Isolated carbonate buildups equivalent to the Berai Formation also occur within the Kutei basin and were probably deposited on basement highs. The distribution of these facies is fairly well constrained by the study of outcrops, wells, and seismic profiles. The Berai Formation consists of diverse limestone types with a wide range of textures and with dominant skeletal components of large foraminifera, redmore » algae, and corals. Deposition of the Berai Formation occurred in moderate- and high-energy shallow-marine conditions. Slope and basin facies occur in extensional basins adjacent to the shelfal carbonates and peripheral to isolated carbonate buildups. Slope deposits consist of hemipelagic claystone, debris-flow conglomerate, calciturbidite, and volcaniclastic intervals. syndepositional downslope transport of slope deposits was an important process, as indicated by intervals containing redeposited debris flows, intraformational truncation surfaces, slide blocks, and associated shear planes. Recurrent movement on basin-margin faults and local volcanism probably perpetuated instability of slope deposits. Basinal deposits consist of calcareous claystone with intercalated thin, distal calciturbidite and volcaniclastic beds.« less
NASA Astrophysics Data System (ADS)
Goswami, Shreerup; Saxena, Anju; Singh, Kamal Jeet; Chandra, Shaila; Cleal, Christopher J.
2018-05-01
The Ib-River Basin situated in the east coastal area of India, in Odisha State is a south-eastern part of the Mahanadi Master Basin. A large number of plant macrofossils belonging to the Glossopteris flora were described and documented between 2006 and 2010 from various localities of the Barakar and Lower Kamthi formations of this basin. The floral components representing leaves, roots and fructifications in these assemblages belong to the Lycopodiales, Equisetales, Sphenophyllales, Filicales, Cordaitales, Cycadales, Ginkgoales, Coniferales and Glossopteridales. In the present study, all the available data pertaining to the biological remains, petrological analyses as well as the geology of this basin are reviewed and analyzed to deduce and reconstruct the biostratigraphy, palaeoclimate, palaeoenvironment and the landscape of this basin during Permian time in general and during the deposition of Barakar (Artinskian - Kungurian) and Lower Kamthi (Lopingian) formations in particular. The floral composition suggests the prevalence of a temperate climate with a slight change from warm moist to warm dry conditions during the deposition of the Barakar Formation and warm and humid during the deposition of Lower Kamthi sediments. Distribution of various plant groups in the Barakar and Lower Kamthi formations have been shown to depict the biodiversity trends. Vegetational reconstructions during the deposition of the Barakar and Lower Kamthi formations around the Ib-River Basin have also been attempted based on all the fossil records from this area. The status of unclassified Barakar and Kamthi formations has been redefined. Apart from megafloristics, the palynology of the basin is also discussed. Possible marine incursions and marine marginal environment in the Ib-Basin during Permian are overtly summarized on the basis of records of acritarchs, typical marine ichnofossils and evidences of wave activity in Lower Gondwana sediments of this Basin.
Stratigraphic Signatures of Forearc Basin Formation Mechanisms
NASA Astrophysics Data System (ADS)
Mannu, U.; Ueda, K.; Gerya, T.; Willett, S.; Strasser, M.
2014-12-01
Forearc basins are loci of active sedimentation above the landward portion of accretionary prisms. Although these basins typically remain separated from the frontal prism by a forearc high, their evolution has a significant impact on the structure and deformation of the entire wedge. Formation of forearc basins has been proposed as a consequence of changes in wedge stability due to an increase of slab dip in subduction zones. Another hypothesis attributes this to higher hinterland sedimentation, which causes the rear of the wedge to stabilize and eventually develop a forearc basin. Basin stratigraphic architecture, revealed by high-resolution reflection seismic data and borehole data allows interpretation of structural development of the accretionary prism and associated basins with the goal of determining the underlying driving mechanism(s) of basin formation. In this study we supplement data interpretation with thermo-mechanical numerical models including high-resolution isochronal surface tracking to visualize the developing stratigraphy of basins that develop in subduction zone and wedge dynamic models. We use a dynamic 2D thermo mechanical model incorporating surface processes, strain weakening and sediment subduction. The model is a modification of I2VIS model, which is based on conservative, fully staggered finite differences and a non-diffusive marker- in-cell technique capable of modelling mantle convection. In the model different driving mechanisms for basin formation can be explored. Stratigraphic simulations obtained by isochronal surface tracking are compared to reflection pattern and stratigraphy of seismic and borehole data, respectively. Initial results from a model roughly representing the Nankai Trough Subduction Zone offshore Japan are compared to available seismic and Integrated Ocean Drilling (IODP) data. A calibrated model predicting forearc basin stratigraphy will be used to discern the underlying process of basins formation and wedge dynamics.
NASA Astrophysics Data System (ADS)
Head, J. W.; Smith, D. E.; Zuber, M. T.; Neumann, G. A.; Fassett, C.; Mazarico, E.; Torrence, M. H.; Dickson, J.
2009-12-01
The 920 km diameter Orientale basin is the youngest and most well-preserved large multi-ringed impact basin on the Moon; it has not been significantly filled with mare basalts, as have other lunar impact basins, and thus the basin interior deposits and ring structures are very well-exposed and provide major insight into the formation and evolution of planetary multi-ringed impact basins. We report here on the acquisition of new altimetry data for the Orientale basin from the Lunar Orbiter Laser Altimeter (LOLA) on board the Lunar Reconnaissance Orbiter. Pre-basin structure had a major effect on the formation of Orientale; we have mapped dozens of impact craters underlying both the Orientale ejecta (Hevelius Formation-HF) and the unit between the basin rim (Cordillera ring-CR) and the Outer Rook ring (OR) (known as the Montes Rook Formation-MRF), ranging up in size to the Mendel-Rydberg basin just to the south of Orientale; this crater-basin topography has influenced the topographic development of the basin rim (CR), sometimes causing the basin rim to lie at a topographically lower level than the inner basin rings (OR and Inner Rook-IR). In contrast to some previous interpretations, the distribution of these features supports the interpretation that the OR ring is the closest approximation to the basin excavation cavity. The total basin interior topography is highly variable and typically ranges ~6-7 km below the surrounding pre-basin surface, with significant variations in different quadrants. The inner basin depression is about 2-4 km deep below the IR plateau and these data permit the quantitative assessment of post-basin-formation thermal response to impact energy input and uplifted isotherms. The Maunder Formation (MF) consists of smooth plains (on the inner basin depression walls and floor) and corrugated deposits (on the IR plateau); this topographic configuration supports the interpretation that the MF consists of different facies of impact melt. The inner depression is floored by tilted mare basalt deposits surrounding a central pre-mare high of several hundred meters elevation and the mare is deformed by wrinkle ridges with similar topographic heights; these data permit the assessment of basin loading by mare basalts and ongoing basin thermal evolution. The depth of the 55 km diameter post-Orientale Maunder crater, located at the edge of the inner depression, is in excess of 3 km; this depth permits the quantitative assessment of the nature of the deeper sub-Orientale material sampled by the crater. New LOLA data show that the pre-Orientale Mendel-Rydberg basin just to the south may be larger, younger, fresher, and more comparable in size to Orientale than previously suspected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jarvie, D.M.; Elsinger, R.J.; Inden, R.F.
1996-06-01
Recent successes in the Lodgepole Waulsortian Mound play have resulted in the reevaluation of the Williston Basin petroleum systems. It has been postulated that hydrocarbons were generated from organic-rich Bakken Formation source rocks in the Williston Basin. However, Canadian geoscientists have indicated that the Lodgepole Formation is responsible for oil entrapped in Lodgepole Formation and other Madison traps in portions of the Canadian Williston Basin. Furthermore, geoscientists in the U.S. have recently shown oils from mid-Madison conventional reservoirs in the U.S. Williston Basin were not derived from Bakken Formation source rocks. Kinetic data showing the rate of hydrocarbon formation frommore » petroleum source rocks were measured on source rocks from the Lodgepole, False Bakken, and Bakken Formations. These results show a wide range of values in the rate of hydrocarbon generation. Oil prone facies within the Lodgepole Formation tend to generate hydrocarbons earlier than the oil prone facies in the Bakken Formation and mixed oil/gas prone and gas prone facies in the Lodgepole Formation. A comparison of these source rocks using a geological model of hydrocarbon generation reveals differences in the timing of generation and the required level of maturity to generate significant amounts of hydrocarbons.« less
NASA Technical Reports Server (NTRS)
Goforth, T. T.; Rasmussen, R. K.
1974-01-01
Seismic data recorded at the Tonto Forest Seismological Observatory in Arizona and the Uinta Basin Seismological Observatory in Utah were used to compare the frequency of occurrence, severity, and spectral content of ground motions resulting from earthquakes, and other natural and man-made sources with the motions generated by sonic booms. A search of data recorded at the two observatories yielded a classification of over 180,000 earthquake phase arrivals on the basis of frequency of occurrence versus maximum ground velocity. The majority of the large ground velocities were produced by seismic surface waves from moderate to large earthquakes in the western United States, and particularly along the Pacific Coast of the United States and northern Mexico. A visual analysis of raw film seismogram data over a 3-year period indicates that local and regional seismic events, including quarry blasts, are frequent in occurrence, but do not produce ground motions at the observatories comparable to either the large western United States earthquakes or to sonic booms. Seismic data from the Nevada Test Site nuclear blasts were used to derive magnitude-distance-sonic boom overpressure relations.
Major Oil Plays In Utah And Vicinity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thomas Chidsey
2007-12-31
Utah oil fields have produced over 1.33 billion barrels (211 million m{sup 3}) of oil and hold 256 million barrels (40.7 million m{sup 3}) of proved reserves. The 13.7 million barrels (2.2 million m3) of production in 2002 was the lowest level in over 40 years and continued the steady decline that began in the mid-1980s. However, in late 2005 oil production increased, due, in part, to the discovery of Covenant field in the central Utah Navajo Sandstone thrust belt ('Hingeline') play, and to increased development drilling in the central Uinta Basin, reversing the decline that began in the mid-1980s.more » The Utah Geological Survey believes providing play portfolios for the major oil-producing provinces (Paradox Basin, Uinta Basin, and thrust belt) in Utah and adjacent areas in Colorado and Wyoming can continue this new upward production trend. Oil plays are geographic areas with petroleum potential caused by favorable combinations of source rock, migration paths, reservoir rock characteristics, and other factors. The play portfolios include descriptions and maps of the major oil plays by reservoir; production and reservoir data; case-study field evaluations; locations of major oil pipelines; identification and discussion of land-use constraints; descriptions of reservoir outcrop analogs; and summaries of the state-of-the-art drilling, completion, and secondary/tertiary recovery techniques for each play. The most prolific oil reservoir in the Utah/Wyoming thrust belt province is the eolian, Jurassic Nugget Sandstone, having produced over 288 million barrels (46 million m{sup 3}) of oil and 5.1 trillion cubic feet (145 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the depositionally heterogeneous Nugget is also extensively fractured. Hydrocarbons in Nugget reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and gypsiferous beds in the Jurassic Twin Creek Limestone, or a low-permeability zone at the top of the Nugget. The Nugget Sandstone thrust belt play is divided into three subplays: (1) Absaroka thrust - Mesozoic-cored shallow structures, (2) Absaroka thrust - Mesozoic-cored deep structures, and (3) Absaroka thrust - Paleozoic-cored shallow structures. Both of the Mesozoic-cored structures subplays represent a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in the shallow Mesozoic subplay produce crude oil and associated gas; fields in the deep subplay produce retrograde condensate. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplays. It represents a very continuous and linear, hanging wall, ramp anticline where the Nugget is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in these subplays consist of long, narrow, doubly plunging anticlines. Prospective drilling targets are delineated using high-quality, two-dimensional and three-dimensional seismic data, forward modeling/visualization tools, and other state-of-the-art techniques. Future Nugget Sandstone exploration could focus on more structurally complex and subtle, thrust-related traps. Nugget structures may be present beneath the leading edge of the Hogsback thrust and North Flank fault of the Uinta uplift. The Jurassic Twin Creek Limestone play in the Utah/Wyoming thrust belt province has produced over 15 million barrels (2.4 million m{sup 3}) of oil and 93 billion cubic feet (2.6 billion m{sup 3}) of gas. Traps form on discrete subsidiary closures along major ramp anticlines where the low-porosity Twin Creek is extensively fractured. Hydrocarbons in Twin Creek reservoirs were generated from subthrust Cretaceous source rocks. The seals for the producing horizons are overlying argillaceous and clastic beds, and non-fractured units within the Twin Creek. The Twin Creek Limestone thrust belt play is divided into two subplays: (1) Absaroka thrust-Mesozoic-cored structures and (2) Absaroka thrust - Paleozoic-cored structures. The Mesozoic-cored structures subplay represents a linear, hanging wall, ramp anticline parallel to the leading edge of the Absaroka thrust. Fields in this subplay produce crude oil and associated gas. The Paleozoic-cored structures subplay is located immediately west of the Mesozoic-cored structures subplay. It represents a very continuous and linear, hanging wall, ramp anticline where the Twin Creek is truncated against a thrust splay. Fields in this subplay produce nonassociated gas and condensate. Traps in both subplays consist of long, narrow, doubly plunging anticlines.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2012-06-11
... individuals and organizations who have submitted specific written comments related to the proposed action... the draft EIS will be eligible to file an objection under the Healthy Forests Restoration Act. The...
Magnetic Signature of Glacial Flour in Sediments From Bear Lake, Utah/Idaho
NASA Astrophysics Data System (ADS)
Rosenbaum, J. G.; Dean, W. E.; Colman, S. M.; Reynolds, R. L.
2002-12-01
Variations in magnetic properties within an interval of Bear Lake sediments correlative with oxygen isotope stage 2 (OIS 2) and OIS 3 provide a record of glacial flour production for the Uinta Mountains. Like sediments of the same age from Upper Klamath Lake (OR), these Bear Lake sediments have high magnetic susceptibilities (MS) relative to non-glacial-age sediments and contain well-defined millennial-scale variations in magnetic properties. In contrast to glacial flour derived from volcanic rocks surrounding Upper Klamath Lake, glacial flour derived from the Uinta Mountains and deposited in Bear Lake by the Bear River has low magnetite content but high hematite content. The relatively low MS values of younger and older non-glacial-age sediments are due entirely to dilution by non-magnetic endogenic carbonate and to the effects of sulfidic alteration of detrital Fe-oxides. Analysis of samples from streams entering Bear Lake and from along the course of the Bear River demonstrates that, in comparison to other areas of the catchment, sediment derived from the Uinta Mountains is rich in hematite (high HIRM) and aluminum, and poor in magnetite (low MS) and titanium. Within the glacial-age lake sediments, there are strong positive correlations among HIRM, Al/Ti, and fine sediment grain size. MS varies inversely with theses three variables. These relations indicate that the observed millennial-scale variations in magnetic and chemical properties arise from varying proportions of two detrital components: (1) very fine-grained glacial flour derived from Proterozoic metasedimentary rocks in the Uinta Mountains and characterized by high HIRM and low MS, and (2) somewhat coarser material, characterized by higher MS and lower HIRM, derived from widespread sedimentary rocks along the course of the Bear River and around Bear Lake. Measurement of glacial flour incorporated in lake sediments can provide a continuous history of alpine glaciation, because the rate of accumulation of glacial flour probably varies closely with the areal extent of glaciation. In the absence of post-depositional alteration of magnetic minerals, magnetic measurements can provide a highly sensitive tool for assessing variations in glacial flour content if glacial and non-glacial materials have contrasting magnetic properties. For Bear Lake, the required contrast is produced by differences in bedrock underlying glaciated and unglaciated areas.
NASA Technical Reports Server (NTRS)
Fassett, Caleb I.; Head, James W.; Baker, David M. H.; Zuber, Maria T.; Neumann, Gregory A.; Solomon, Sean C.; Klimczak, Christian; Strom, Robert G.; Chapman, Clark R.; Prockter, Louise M.;
2012-01-01
The formation of large impact basins (diameter D greater than or equal to 300 km) was an important process in the early evolution of Mercury and influenced the planet's topography, stratigraphy, and crustal structure. We catalog and characterize this basin population on Mercury from global observations by the MESSENGER spacecraft, and we use the new data to evaluate basins suggested on the basis of the Mariner 10 flybys. Forty-two certain or probable impact basins are recognized a few additional basins that may have been degraded to the point of ambiguity are plausible on the basis of new data but are classified as uncertain. The spatial density of large basins (D greater than or equal to 500 km) on Mercury is lower than that on the Moon. Morphological characteristics of basins on Mercury suggest that on average they are more degraded than lunar basins. These observations are consistent with more efficient modification, degradation, and obliteration of the largest basins on Mercury than on the Moon. This distinction may be a result of differences in the basin formation process (producing fewer rings), greater relaxation of topography after basin formation (subduing relief), and/or higher rates of volcanism during the period of heavy bombardment on Mercury compared to the Moon (burying basin rings and interiors).
Quality and petrographic characteristics of Paleocene coals from the Hanna basin, Wyoming
Pierce, B.S.
1996-01-01
Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.Coal beds from the Ferris and Hanna Formations, in the Hanna basin, south-central Wyoming, exhibit distinct differences in ash yield, sulfur content, and petrographic and palynologic constituents. These differences are interpreted to be controlled by tectonic changes of the Hanna basin and adjoining uplifts during evolutionary development, which, in turn, controlled mire chemistry and sedimentation. These conditions created two very different settings under which the peats developed during deposition of the Ferris and the Hanna Formations. In addition, there appears to be a geographic (latitudinal) and/or climatic control on the coal characteristics manifested by major differences of Paleocene coals in the Hanna basin compared to those in the Raton basin in Colorado and New Mexico and the Powder River basin in Wyoming.
Palynology and age of some Cretaceous nonmarine deposits in Mongolia and China
Nichols, D.J.; Matsukawa, M.; Ito, M.
2006-01-01
To provide biostratigraphic and paleoecologic data for a major international project studying dinosaur trackways in eastern Asia, samples were collected for palynological analysis from the Choyr Basin of southeastern Mongolia and the Yanji Basin, Jilin Province, northeastern China. Palynologically productive samples from the Choyr Basin are from strata previously identified as either the Shinekhudag Formation or the Zuunbayan Formation but recently renamed the Khuren Dukh Formation; productive samples from the Yanji Basin are from the Tongfosi Formation. The biostratigraphically most important palynomorphs from both units are angiosperm pollen. The Khuren Dukh Formation is determined to be middle to late Albian in age. The Tongfosi Formation is determined to be early Cenomanian in age. These results conflict with some previously published interpretations of the ages of these units. Lacustrine depositional environments are indicated for both units by the presence of freshwater algae in both deposits. ?? 2006 Elsevier Ltd. All rights reserved.
Paleographic and sedimentologic significance of Mississippian sequence at Mt. Darby, Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dejarnett, J.
1985-05-01
Mississippian strata at Mt. Darby comprise the Madison Group and the overlying Humbug Formation. This sequence, although initially transgressive, exhibits an overall regressive character produced by progradation of platform carbonates in response to sea level fluctuations related to Antler orogenic events. The Paine Member of the Lodgepole Limestone, the basal formation of the Madison Group, consists of relatively deep-water carbonates including a possible Waulsortian-type carbonate bank that accumulated on a Kinderhookian foreslope. At least five shoaling-upward grainstone cycles are recognizable in the Woodhurst Member of the Lodgepole Limestone. These cycles record Osagean deposition in shallow agitated environments that developed highmore » on a clinoform ramp. Shelf-margin and platform carbonates dominate the Mission Canyon Limestone, the upper formation of the Madison Group. this unit consists of two asymmetric deposition cycles, each with a thick regressive phase, capped by an evaporite solution breccia and an overlying thin transgressive phase. The Humbug Formation, a sequence of fine-grained carbonates and sandstones, represents part of a deltaic complex that developed offshore from the Meramecian karst plain. Humbug sediments were transported northward to the Mt. Darby area from the area of the present Uinta Mountains, or another deltaic system formed there. Deposition in the study area was apparently continuous upward from the Madison carbonates into the Humbug. The middle Meramecian shoreline trended northwest between the present locations of Mt. Darby and Haystack Peak.« less
NASA Astrophysics Data System (ADS)
Cromwell, G.; Sweetkind, D. S.; O'leary, D. R.
2017-12-01
The San Antonio Creek Groundwater Basin is a rural agricultural area that is heavily dependent on groundwater to meet local water demands. The U.S. Geological Survey (USGS) is working cooperatively with Santa Barbara County and Vandenberg Air Force Base to assess the quantity and quality of the groundwater resources within the basin. As part of this assessment, an integrated hydrologic model that will help stakeholders to effectively manage the water resources in the basin is being developed. The integrated hydrologic model includes a conceptual model of the subsurface geology consisting of stratigraphy and variations in lithology throughout the basin. The San Antonio Creek Groundwater Basin is a relatively narrow, east-west oriented valley that is structurally controlled by an eastward-plunging syncline. Basin-fill material beneath the valley floor consists of relatively coarse-grained, permeable, marine and non-marine sedimentary deposits, which are underlain by fine-grained, low-permeability, marine sedimentary rocks. To characterize the system, surficial and subsurface geohydrologic data were compiled from geologic maps, existing regional geologic models, and lithology and geophysical logs from boreholes, including two USGS multiple-well sites drilled as part of this study. Geohydrologic unit picks and lithologic variations are incorporated into a three-dimensional framework model of the basin. This basin (model) includes six geohydrologic units that follow the structure and stratigraphy of the area: 1) Bedrock - low-permeability marine sedimentary rocks; 2) Careaga Formation - fine to coarse grained near-shore sandstone; 3) Paso Robles Formation, lower portion - sandy-gravely deposits with clay and limestone; 4) Paso Robles Formation, middle portion - clayey-silty deposits; 5) Paso Robles Formation, upper portion - sandy-gravely deposits; and 6) recent Quaternary deposits. Hydrologic data show that the upper and lower portions of the Paso Robles Formation are the primary groundwater-bearing units within the basin, and that the fine-grained layer within this Formation locally restricts vertical groundwater flow.
Tectonothermal modeling of hydrocarbon maturation, Central Maracaibo Basin, Venezuela
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manske, M.C.
1996-08-01
The petroliferous Maracaibo Basin of northwestern Venezuela and extreme eastern Colombia has evolved through a complex geologic history. Deciphering the tectonic and thermal evolution is essential in the prediction of hydrocarbon maturation (timing) within the basin. Individual wells in two areas of the central basin, Blocks III and V, have been modeled to predict timing of hydrocarbon generation within the source Upper Cretaceous La Luna Formation, as well as within interbedded shales of the Lower-Middle Eocene Misoa Formation reservoir sandstones. Tectonic evolution, including burial and uplift (erosional) history, has been constrained with available well data. The initial extensional thermal regimemore » of the basin has been approximated with a Mackenzie-type thermal model, and the following compressional stage of basin development by applying a foreland basin model. Corrected Bottom Hole Temperature (BHT) measurements; from wells in the central basin, along with thermal conductivity measurements of rock samples from the entire sedimentary sequence, resulted in the estimation of present day heat flow. An understanding of the basin`s heat flow, then, allowed extrapolation of geothermal gradients through time. The relation of geothermal gradients and overpressure within the Upper Cretaceous hydrocarbon-generating La Luna Formation and thick Colon Formation shales was also taken into account. Maturation modeling by both the conventional Time-Temperature Index (TTI) and kinetic Transformation Ratio (TR) methods predicts the timing of hydrocarbon maturation in the potential source units of these two wells. These modeling results are constrained by vitrinite reflectance and illite/smectite clay dehydration data, and show general agreement. These results also have importance regarding the timing of structural formation and hydrocarbon migration into Misoa reservoirs.« less
Application of the precipitation-runoff model in the Warrior coal field, Alabama
Kidd, Robert E.; Bossong, C.R.
1987-01-01
A deterministic precipitation-runoff model, the Precipitation-Runoff Modeling System, was applied in two small basins located in the Warrior coal field, Alabama. Each basin has distinct geologic, hydrologic, and land-use characteristics. Bear Creek basin (15.03 square miles) is undisturbed, is underlain almost entirely by consolidated coal-bearing rocks of Pennsylvanian age (Pottsville Formation), and is drained by an intermittent stream. Turkey Creek basin (6.08 square miles) contains a surface coal mine and is underlain by both the Pottsville Formation and unconsolidated clay, sand, and gravel deposits of Cretaceous age (Coker Formation). Aquifers in the Coker Formation sustain flow through extended rainless periods. Preliminary daily and storm calibrations were developed for each basin. Initial parameter and variable values were determined according to techniques recommended in the user's manual for the modeling system and through field reconnaissance. Parameters with meaningful sensitivity were identified and adjusted to match hydrograph shapes and to compute realistic water year budgets. When the developed calibrations were applied to data exclusive of the calibration period as a verification exercise, results were comparable to those for the calibration period. The model calibrations included preliminary parameter values for the various categories of geology and land use in each basin. The parameter values for areas underlain by the Pottsville Formation in the Bear Creek basin were transferred directly to similar areas in the Turkey Creek basin, and these parameter values were held constant throughout the model calibration. Parameter values for all geologic and land-use categories addressed in the two calibrations can probably be used in ungaged basins where similar conditions exist. The parameter transfer worked well, as a good calibration was obtained for Turkey Creek basin.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McVey, D.E.; Huff, W.D.
1993-03-01
During the Taconic Orogeny (Middle and Late Ordovician), the eastern continental margin of North America developed several foreland basins as a result of the collision of one or more island arc/microplate complexes. These collisions occurred along a subduction zone characterized by a string of explosively eruptive volcanoes which produced widespread K-bentonite beds. Volcanism coincided with the filling of thick accumulations of sediment in two of the basins: the Blount (southern Appalachians) and the Martinsburg (central Appalachians). Two prominent K-bentonites, the Deicke and Millbrig, have been correlated across the two basins in this study. These two K-bentonites are stratigraphically significant becausemore » they are excellent time lines since they represent short-term events in geologic history. The foreland basins developed by the Taconic Orogeny become successively younger to the north due to a shift in the focus of collision (Read, 1980). The Blount basin was nearly filled with sediment by the time the Martinsburg basin began to form. This coincides with previous suggestions that the Taconic Orogeny was not one climactic event but a series of events where the collisions migrated northward like the closing of a zipper. The Deicke and Millbrig K-bentonites occur within the platform carbonates of the Eggleston and Liberty Hall formations and the red bed clastic facies of the Bays formation in the Blount basin, and they occur within the slope carbonates of the New Enterprise Member of the Salona formation and the black shale and turbidite facies of the Martinsburg formation in the Martinsburg basin. This correlation establishes a more precise time framework for the formation of the two foreland basins.« less
78 FR 758 - Notice of Proposed Reinstatement of Terminated Oil and Gas Lease WYW172559, Wyoming
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-04
..., LLC, for competitive oil and gas lease WYW172559 for land in Uinta County, Wyoming. The petition was... law. FOR FURTHER INFORMATION CONTACT: Bureau of Land Management, Julie L. Weaver, Chief, Fluid...
Drenth, Benjamin J.; Turner, Kenzie J.; Thompson, Ren A.; Grauch, V. J.; Cosca, Michael A.; Lee, John
2011-01-01
New interpretations of the nature of the Rio Grande rift and pre-existing rocks in the northeast Tusas Mountains region are derived from new and existing gravity and aeromagnetic data. 12-15 mGal amplitude gravity lows are interpreted to mainly reflect large thicknesses of the upper Oligocene to upper Miocene, syn-rift Los Pinos Formation and possibly significant amounts of the Eocene El Rito Formation. The Broke Off Mountain sub basin, named after the location of its greatest inferred depth, is interpreted to be a ~40 km long and ~13 km wide structure elongated in a northwest trend at the western margin of the San Luis Basin. The sub basin is interpreted to contain a maximum combined thickness of 900-2300 m of the Los Pinos Formation and El Rito Formation, with the Los Pinos Formation constituting the majority of the section. Sub basin age is constrained to be older than 21.6 ± 1.4 Ma, the age of a Hinsdale Formation basalt flow that caps the Los Pinos Formation section at Broke Off Mountain. This age constraint and surface geology indicate a pre- and early-rift age. The structural fabric of the northeast Tusas Mountains region is dominated by northwest-trending normal faults, as indicated by geologic mapping and interpretation of aeromagnetic data. Preliminary analysis of the aeromagnetic data suggests that lineaments, possibly reflecting faulting, trend through volcanic rocks as young as Pliocene in age. If correct, these interpretations challenge commonly held beliefs regarding two stages in the structural style of rifting, where early (Oligocene-Miocene) rifting was characterized by broad, shallow basins bounded by northwest-trending faults and later (Miocene-Pliocene) rifting was characterized by deep, narrow basins bounded by north-trending faults. The Broke Off Mountain sub basin is a counter example of a pre- and early-rift, deep and narrow basin. We hypothesize that the Broke Off Mountain sub basin may represent a southward extension of the Monte Vista graben in Colorado, based on similarities in geophysical expression, stratigraphy, and its position at the western portion of the San Luis Basin
Kellogg, K.S.; Minor, S.A.
2005-01-01
The "Big Bend" of the San Andreas fault in the western Transverse Ranges of southern California is a left stepping flexure in the dextral fault system and has long been recognized as a zone of relatively high transpression compared to adjacent regions. The Lockwood Valley region, just south of the Big Bend, underwent a profound change in early Pliocene time (???5 Ma) from basin deposition to contraction, accompanied by widespread folding and thrusting. This change followed the recently determined initiation of opening of the northern Gulf of California and movement along the southern San Andreas fault at about 6.1 Ma, with the concomitant formation of the Big Bend. Lockwood Valley occupies a 6-km-wide, fault-bounded structural basin in which converging blocks of Paleoproterozoic and Cretaceous crystalline basement and upper Oligocene and lower Miocene sedimentary rocks (Plush Ranch Formation) were thrust over Miocene and Pliocene basin-fill sedimentary rocks (in ascending order, Caliente Formation, Lockwood Clay, and Quatal Formation). All the pre-Quatal sedimentary rocks and most of the Pliocene Quatal Formation were deposited during a mid-Tertiary period of regional transtension in a crustal block that underwent little clockwise vertical-axis rotation as compared to crustal blocks to the south. Ensuing Pliocene and Quaternary transpression in the Big Bend region began during deposition of the poorly dated Quatal Formation and was marked by four converging thrust systems, which decreased the areal extent of the sedimentary basin and formed the present Lockwood Valley structural basin. None of the thrusts appears presently active. Estimated shortening across the center of the basin was about 30 percent. The fortnerly defined eastern Big Pine fault, now interpreted to be two separate, oppositely directed, contractional reverse or thrust faults, marks the northwestern structural boundary of Lockwood Valley. The complex geometry of the Lockwood Valley basin is similar to other Tertiary structural basins in southern California, such those that underlie Cuyama Valley, the Ridge basin, and the east Ventura basin.
NASA Astrophysics Data System (ADS)
Grasby, Stephen E.; Rod Smith, I.; Bell, Trevor; Forbes, Donald L.
2013-06-01
Two informally named basins (Mirabilite Basins 1 and 2) along a submergent coastline on Banks Island, Canadian Arctic Archipelago, host up to 1 m-thick accumulations of mirabilite (Na2SO4·10H2O) underlying stratified water bodies with basal anoxic brines. Unlike isostatically uplifting coastlines that trap seawater in coastal basins, these basins formed from freshwater lakes that were transgressed by seawater. The depth of the sill that separates the basins from the sea is shallow (1.15 m), such that seasonal sea ice formation down to 1.6 m isolates the basins from open water exchange through the winter. Freezing of seawater excludes salts, generating dense brines that sink to the basin bottom. Progressive freezing increases salinity of residual brines to the point of mirabilite saturation, and as a result sedimentary deposits of mirabilite accumulate on the basin floors. Brine formation also leads to density stratification and bottom water anoxia. We propose a model whereby summer melt of the ice cover forms a temporary freshwater lens, and rather than mixing with the underlying brines, it is exchanged with seawater once the ice plug that separates the basins from the open sea melts. This permits progressive brine development and density stratification within the basins.
Ridgley, Jennie L.
1983-01-01
In the Chama Basin a wequence of conglomerate, sandstone, and red, gray-green, and pale-purple mudstone occurs stratigraphically between the Upper Jurassic Morrison Formation and Upper Cretaceous Dakota Sandstone. This stratigraphic interval has been called the Burro Canyon Formation by several workers (Craig and others, 1959; Smith and others, 1961; Saucier, 1974). Although similarities in lithology and stratigraphic position exist between this unit and the Burro Canyon Formation in Colorado, no direct correlation has been made between the two. For this reason the unit in the Chama Basin is called the Burro Canyon(?) Formation.
NASA Astrophysics Data System (ADS)
Baker, D. M. H.; Head, J. W., III
2016-12-01
Impact basins provide windows into the subsurface and through time on a planetary body. However, meaningful geologic interpretations rely on a detailed understanding of their formation and the origin of basin materials. Data from the Lunar Reconnaissance Orbiter (LRO) have been critical to advancing our understanding of the formation of impact basins. We present a number of recent observations, including measurements of basin morphometry, mineralogy, and gravity anomalies, which provide a framework for constraining current formation models. Image data from the LRO Wide Angle Camera (WAC) and altimetry data from the Lunar Orbiter Laser Altimeter (LOLA) were used to refine the recognition of both fresh and degraded impact basins, including their ring structures. Analyses of gravity anomalies from the GRAIL mission show that mantle uplifts confined within the inner basin rings are characteristics that basins acquire from the onset. We used LOLA data to also make new measurements of basin morphometry. Small basins possessing two concentric rings ("peak-ring basins") have unique topographic signatures, consisting of inner depressions bounded by a peak ring and a higher annulus that grades to steeper wall material. LRO Narrow Angle Camera (NAC) images and Diviner rock abundance maps were used to identify boulder-rich outcrops in basin rings, which focused mineralogical analyses using Moon Mineralogy Mapper hyperspectral data. Crystalline plagioclase and candidate shock plagioclase outcrops were found to be abundant within basins of all sizes. These observations combined with crater scaling laws and lunar crustal thickness constrain the depth of origin of basin peak rings to be near the maximum depth of excavation. Comparisons between iSALE numerical models and observations show important consistencies and inconsistencies that can help to refine current models. In particular, improvements in the match between observed and modeled morphometry of craters transitional between complex craters with central peaks and peak-ring basins are needed. Models of the predicted gravity signature for a range of basin sizes could also benefit from additional comparisons with those observed. This work also provides a framework for understanding the degraded impact-basin record on Earth, including the Chicxulub basin.
Comparison of the petroleum systems of East Venezuela in their tectonostratigraphic context
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stronach, N.J.; Kerr, H.M.; Scotchmer, J.
1996-08-01
The Maturin and Guarico subbasins of East Venezuela record the transition from Cretaceous passive margin to Tertiary foreland basin with local post-orogenic transtensional basins. Petroleum is reservoired in several units ranging from Albian (El Cantil Formation) to Pliocene (Las Piedras Formation) age. Source rocks are principally in the Upper Cretaceous (Querecual Formation), and Miocene (Carapita Formation) in the Maturin subbasin and in the Upper Cretaceous (Tigre Formation) and Oligocene (Roblecito and La Pascua Formations) in the Guarico subbasin. An extensive well database has been used to address the distribution and provenance of hydrocarbons in the context of a tectonostratigraphic modelmore » for the evolution of the East Venezuela basin. Nine major plays have been described, comprising thirteen petroleum systems. The principal factors influencing the components of individual petroleum systems are as follows: (1) structural controls on Upper Cretaceous source rock distribution, relating to block faulting on the proto-Caribbean passive margin; (2) paleoenvironmental controls on source rock development within the Oligocene-Miocene foreland basin; and (3) timing of subsidence and maturation within the Oligocene-Upper Miocene foreland basin and the configuration of the associated fold and thrust belt, influencing long range and local migration routes (4) local development of Pliocene post-orogenic transtensional basins, influencing hydrocarbon generation, migration and remigration north of the Pirital High.« less
Crysdale, B.L.
1991-01-01
This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 2,429 of these wells that penetrate the Minnelusa Formation and equivalents.
Peculiarities of high-altitude landscapes formation in the Small Caucasus mountains
NASA Astrophysics Data System (ADS)
Trifonova, Tatiana
2014-05-01
Various mountain systems differ in character of landscapes and soil. Basic problem of present research: conditions and parameters determining the development of various landscapes and soils in mountain areas. Our research object is the area of Armenia where Small Caucasus, a part of Armenian upland is located. The specific character of the area is defined by the whole variety of all mountain structures like fold, block folding mountain ridges, volcanic upland, individual volcanoes, and intermountain depressions. As for the climate, the area belongs to dry subtropics. We have studied the peculiarities of high-altitude landscapes formation and mountain river basins development. We have used remote sensing data and statistic database of climatic parameters in this research. Field observations and landscape pictures analysis of space images allow distinguishing three types of mountain geosystems clearly: volcanic massifs, fold mountainous structures and closed high mountain basins - area of the lakes. The distribution of precipitation according to altitude shows some peculiarities. It has been found that due to this factor the investigated mountain area may be divided into three regions: storage (fold) mountainous area; Ararat volcanic area (southern macro exposure); closed high mountainous basin-area of the lake Sevan. The mountainous nature-climatic vertical landscapes appear to be horizontally oriented and they are more or less equilibrium (stable) geosystems, where the stable functional relationship between the landscape components is formed. Within their limits, definite bioclimatic structure of soil is developed. Along the slopes of fold mountains specific landscape shapes like litho-drainage basins are formed. They are intensively developing like relatively independent vertical geosystems. Mechanism of basin formation is versatile resulting in formation of the polychronous soil mantle structure. Landscapes and soils within the basin are of a different age, since the permanent exogenic processes favor regular rejuvenation of the slope soils. The basin structure determines the soilscape, and morphological elements of the basin are also different. The factors playing the significant part in the formation of soil-mantle composition in the basin can be identified. It is shown that landscapes formation and soil structure in mountains are controlled by two superimposed natural processes, i.e. the formation of vertical zonality and the development of river lithodrainage basins. References Trifonova T.A., 2008. River drainage basin as self-regulated natural geosistem. Izv. Russian of Academy of Sciences, Series on geography, 1: 28-36. Trifonova T.A., 2005. Development of basin approach in pedological and ecological studies. Eurasian Soil Science, 9: 931-937
Geologic framework for the coal-bearing rocks of the Central Appalachian Basin
Chesnut, D.R.
1996-01-01
Coal production has been an important economic factor in the Central Appalachian Basin. However, regional stratigraphic and structural relationships of the coal-bearing rocks of the basin have been poorly understood due to numerous separate nomenclatural schemes employed by various states. In order to estimate coal resources and understand mechanisms controlling the distribution of coal within the basin, a reliable geologic framework is necessary. Seven detailed cross sections across the Central Appalachian Basin were constructed in order to examine the stratigraphic and structural framework of the coal-bearing rocks in the basin. The cross sections were based on more than 1000 oil and gas well logs, measured sections, and borehole information from Kentucky, Ohio, Tennessee, Virginia and West Virginia. The cross sections revealed three main points discussed here: southeast thickening of the Pennsylvanian strata, unconformable northwestward onlapping relationship of Lower Pennsylvanian strata over underlying Lower Pennsylvanian and Mississippian strata and regional continuity of beds. The cross sections, geologic mapping, coal-resource studies, extensive new highway exposures and the occurrence of tonstein beds indicate that many coal beds and marine strata are laterally extensive, albeit locally variable across the basin. Certain quartzose sandstone bodies are also extensive over large areas of the basin. Existing stratigraphic nomenclature schemes obscured the geologic framework of the basin, so a new unified nomenclature scheme was devised to better describe stratigraphic features of the basin. The new stratigraphic nomenclature, now only formalized for Kentucky, was based on key stratigraphic units that proved to be extensive across the basin. Lower and Middle Pennsylvanian rocks are now recognized as the Breathitt Group (the Breathitt Formation was elevated to group rank). The Breathitt Group was subdivided into eight coal-bearing formations by relatively thick marine strata, and, in the lower part of the Breathitt Group, by quartzose sandstone formations. The new coal-bearing units are formally ranked as formations and, in ascending order, are the Pocahontas, Bottom Creek, Alvy Creek, Grundy, Pikeville, Hyden, Four Corners and Princess Formations. The quartzose sandstone units are also formally ranked as formations and are, in ascending order, the Warren Point, Sewanee, Bee Rock and Corbin Sandstones. The sandstone formations were previously recognized units in some states, but have been extended (formally in Kentucky) across the basin. The key stratigraphic marine units are formally ranked as members, and are, in ascending order, the Betsie Shale Member, the Kendrick Shale Member, Magoffin Member and Stoney Fork Member.
Rudine, S.F.; Wardlaw, B.R.; Rohr, D.M.; Grant, R.E.
2000-01-01
The Guadalupian rocks of the northern Del Norte Mountains were deposited in a foreland basin between land of the Marathon orogen and a carbonate shoal established on the geanticline separating the foreland basin from the Delaware basin. Deposition was alternately influenced by coarse clastic input from the orogen and carbonate shoal, which interrupted shallow basinal siltstone depletion. Relatively deeper-water deposition is characterized by carbonate input from the shoal, and relatively shallow-water deposition is characterized by sandstone input from the orogen. Deposition was in five general transgressive-regressive packages that include (1) the Road Canyon Formation and the first siltstone member and first sandstone member of the Word Formation, (2) the second siltstone member, Appel Ranch Member, and limy sandy siltstone member of the Word Formation, (3) the Vidrio Formation, (4) the lower and part of the middle members of the Altuda Formation, and (5) part of the middle and upper members of the Altuda Formation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bambang, P.; Hardjono, M.; Silalahi, L.
1996-08-01
Tarakan basin is one of the basins in East Kalimantan having a complicated geological condition. Tectonic repetition developed in this area constructed various stratigraphic traps. Sedimentary development in log data shows continuous regression in Meliat and Tabul Formations (Middle Meocene), Santul Formation (Late Miocene), Tarakan Formation (Pliocene) and Bunyu Formation (Pleistocene), Supported by seismic data, stratigraphic sequence in the basin is obvious, especially in Sembakung-Bangkudulis area. The sequence boundaries, mainly {open_quotes}lowstand{close_quotes} distribution as good prospective trap, can be mapped by applying tract systems and studying wavelet extract as seismic expression character of a reservoir. Subtle changes in pattern of stratigraphicmore » sequences can become a hint of sedimentary environment and its lithology content, supporting both exploration and exploitation planning.« less
Emissions of organic compounds from produced water ponds I: Characteristics and speciation.
Lyman, Seth N; Mansfield, Marc L; Tran, Huy N Q; Evans, Jordan D; Jones, Colleen; O'Neil, Trevor; Bowers, Ric; Smith, Ann; Keslar, Cara
2018-04-01
We measured fluxes of methane, a suite of non-methane hydrocarbons (C2-C11), light alcohols, and carbon dioxide from oil and gas produced water storage and disposal ponds in Utah (Uinta Basin) and Wyoming (Upper Green River Basin) United States during 2013-2016. In this paper, we discuss the characteristics of produced water composition and air-water fluxes, with a focus on flux chamber measurements. In companion papers, we will (1) report on inverse modeling methods used to estimate emissions from produced water ponds, including comparisons with flux chamber measurements, and (2) discuss the development of mass transfer coefficients to estimate emissions and place emissions from produced water ponds in the context of all regional oil and gas-related emissions. Alcohols (made up mostly of methanol) were the most abundant organic compound group in produced water (91% of total volatile organic concentration, with upper and lower 95% confidence levels of 89 and 93%) but accounted for only 34% (28 to 41%) of total organic compound fluxes from produced water ponds. Non-methane hydrocarbons, which are much less water-soluble than methanol and less abundant in produced water, accounted for the majority of emitted organics. C6-C9 alkanes and aromatics dominated hydrocarbon fluxes, perhaps because lighter hydrocarbons had already volatilized from produced water prior to its arrival in storage or disposal ponds, while heavier hydrocarbons are less water soluble and less volatile. Fluxes of formaldehyde and other carbonyls were low (1% (1 to 2%) of total organic compound flux). The speciation and magnitude of fluxes varied strongly across the facilities measured and with the amount of time water had been exposed to the atmosphere. The presence or absence of ice also impacted fluxes. Copyright © 2017 Elsevier B.V. All rights reserved.
Rise and Demise of a Southern Laramide Hinterland Plateau, US-Mexico Border Region
NASA Astrophysics Data System (ADS)
Lawton, T. F.; Clinkscales, C. A.; Jennings, G. R.
2011-12-01
New U-Pb geochronology and stratigraphic data sets suggest that an elevated, altiplano-like plateau existed in the backarc region of what is now southern Arizona and southern New Mexico during Late Cretaceous through Paleogene (~28 Ma) time, and indicate that the Laramide province of the US was thus flanked on both its western and southern sides by hinterland plateaus. The Laramide stratigraphic record of southwestern New Mexico and southeastern Arizona formed during a short time period spanning 75-70 Ma, as indicated by numerous, newly-dated, interbedded tuff beds. The Laramide deposits (Fort Crittenden Formation of Arizona, Ringbone and Skunk Ranch Formations of Arizona, Cabullona Group of Sonora), which contain growth strata developed adjacent to steep thrust faults, accumulated in lake and lake-margin fan-delta and alluvial-fan settings on the northern margin of a volcanic arc whose main magmatic locus lay in northeastern Sonora and northwestern Chihuahua. By the end of basin development, the arc had migrated northward to occupy the former depocenters, such that intermediate volcanic rocks interfinger with and overlie the lacustrine deposits, and subvolcanic plutons, one with an age of 69 Ma, intrude and cross-cut thrust faults. Laramide strata unconformably overlie lowermost Upper Cretaceous (~97 Ma) strata and contractional structures are unconformably truncated beneath Oligocene (~33 Ma) volcaniclastic rocks. Detritus derived from the Cretaceous arc is abundant in Campanian fluvial strata (Kaiparowits Formation and Mesaverde Group) of the southern Colorado Plateau. East-west normal faults with as much as 3 km of displacement and a related array of conjugate NW- and NE-striking normal faults, many of these previously interpreted as reverse and transcurrent faults, are widespread in ranges of southern New Mexico and southeastern Arizona. These faults post-date Laramide contractional structures and are in turn cut by Neogene N-S normal faults. The east-west normal faults are occupied by regionally widespread granitic and rhyolitic dikes ranging 34-27 Ma, yet the Oligocene volcaniclastic rocks are cut by the faults, indicating that the fault system was active during earliest-early late Oligocene magmatism. From the newly assembled data, we infer the presence of a high-standing plateau along the US-Mexico border that was backed by a magmatic arc in northern Mexico. The plateau was supported by lithosphere thickened during backarc contraction, which began in the interval 97-75 Ma. Although the depositional elevation of the Laramide lakes is not yet known, rivers flowed northward from the hinterland plateau toward the Uinta Basin as early as 80 Ma and corroborate the existence of a southern source area. The plateau was thus a long-lived feature with a longevity of as much as 40-50 m.y. It collapsed during Paleogene N-S extension triggered by some combination of thermal weakening by Oligocene magmatism, gravitational failure, and/or retrograde motion of the Farallon slab. The southern Laramide plateau was evidently linked both geographically and temporally to the Cordilleran hinterland plateau ("Nevadaplano") of Nevada and western Utah and thus constituted an important component of the greater Laramide orogen.
Challenge for Mesozoic hydrocarbon exploration in the Eastern Indonesia
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdullah, S.; Rukmiati, M.G.; Sitompul, N.
1996-12-31
The eastern part of Indonesia covers approximately 3 million square kilometers, 35 percent being landmass and 65 percent covered by ocean. Only three of 38 sedimentary basins are producing hydrocarbon (Salawati, Bintuni, and Seram Basins). Oil and gas have discovered in the Lariang, Bone, Timor, Banggai, Sula and Biak Basins, however the discoveries have not developed yet. Hydrocarbon systems in Northern Australia and Papua New Guinea give the major contributions to the geological idea of Pre-Tertiary section in the less explored area in the Eastern Indonesia. The Triassic-Middle Jurassic marine carbonaceous shale sequences are the main hydrocarbon source rock inmore » the Irian Jaya and surrounding area (Buton, gula and Seram basins). The main Mesozoic reservoir are the Kembelangan Formation in the Bintuni Basin of Irian Jaya and Bobong Formation in the North Sula Region. Exploration play types in the Eastern Indonesia can be divided into five types: 1 - Peri Cratonic, 2 - Marginal Rift Graben, 3 - Thrust Fold Belt Island Arc, 4 - Early Collision and 5 -Microcontinental Block - Advanced Collision. Recent discoveries through Mesozoic section in Eastern Indonesia are: Roabiba-1 (1990) in Bintuni Basin-Irian Jaya (Kambelangan Formation); Loku- 1 (1990) in North Sula region (Pre-Tertiary sediments); Oseil-1 (1993/94) in Bula-Seram Basin (Jurassic Manusela Formation); Elang-1 (1 994); Kakaktua-1 (1994) and Laminaria-1 in North Bonaparte Basin (Upper Jurassic Sands).« less
NASA Technical Reports Server (NTRS)
2002-01-01
With its myriad of canyons, unusual rock formations and ancient lakebeds, Utah is a geologist's playground. This true-color image of Utah was acquired on June 20, 2000, by the Moderate-resolution Imaging Spectroradiometer (MODIS), flying aboard NASA's Terra spacecraft. The dark aquamarine feature in the northern part of the state is the Great Salt Lake. Fourteen thousand years ago, the Great Salt Lake was part of Lake Bonneville, which covered much of northern and western Utah. The extent of the lakebed can be seen in light tan covering much of northern and western Utah and extending into Idaho. (Click for more details on the history of Lake Bonneville.) Other remnants of Lake Bonneville include the Great Salt Lake Desert (the white expanse to the left of the Great Salt Lake) and Lake Utah (the lake to the south of Salt Lake City). The white color of the Great Salt Lake Desert is due to the mineral deposits left by Lake Bonneville as it drained out into the Snake River and then proceeded to dry up. The dark bands running through the center and northeastern part of the state are the western edge of the Rockies. The dark color is likely due to the coniferous vegetation that grows along the range. The tallest mountains in the Utah Rockies are the Uinta Mountains, which can be seen in the northeastern corner of the state bordering Colorado and Wyoming. The white fishbone pattern in the center of the Uinta Mountains is snow that hadn't yet melted. To the southeast, one can see the reddish-orange rocks of the northernmost section of the Colorado Plateau. Utah's well-known desert attractions, including Arches National Park, Canyonlands National Park, and Glen Canyon, are located in this region. The long, narrow lake is Lake Powell, created after the construction of Glen Canyon Dam in the 1950s. Image courtesy NASA MODIS Science Team
Ridgley, Jennie L.
1983-01-01
In the Chama Basin a wequence of conglomerate, sandstone, and red, gray-green, and pale-purple mudstone occurs stratigraphically between the Upper Jurassic Morrison Formation and Upper Cretaceous Dakota Sandstone. This stratigraphic interval has been called the Burro Canyon Formation by several workers (Craig and others, 1959; Smith and others, 1961; Saucier, 1974). Although similarities in lithology and stratigraphic position exist between this unit and the Burro Canyon Formation in Colorado, no direct correlation has been made between the two. For this reason the unit in the Chama Basin is called the Burro Canyon(?) Formation.
NASA Astrophysics Data System (ADS)
Sardar Abadi, Mehrdad; Kulagina, Elena I.; Voeten, Dennis F. A. E.; Boulvain, Frédéric; Da Silva, Anne-Christine
2017-03-01
The Lower Carboniferous Mobarak Formation records the development of a storm-sensitive pervasive carbonate factory on the southern Paleo-Tethyan passive margin following the opening of the Paleo-Tethys Ocean into the Alborz Basin along the northern margin of Gondwana. Its depositional facies encompass inner ramp peritidal environments, peloidal to crinoidal shoals, storm to fair-weather influenced mid-ramps, proximal to distal shell beds and low energy outer ramps. Sedimentological analyses and foraminiferal biostratigraphy reveal four events affecting carbonate platform evolution in the Alborz Basin during the Lower Carboniferous: (1) A transgression following global temperature rise in the Early Tournaisian (middle Hastarian) caused the formation of thick-bedded argillaceous limestones. This interval correlates with Early Tournaisian nodular to argillaceous limestones in the Moravia Basin (Lisen Formation, Czech Republic), the Dinant Basin (Pont d'Arcole Formation, Belgium), and at the Rhenish Slate Mountains (Lower Alum shale, Germany). (2) Late Hastarian-early Ivorian glaciations previously identified in Southern Gondwana but had not yet recognized in Northern Gondwana were recorded through a sequence boundary. (3) During the Late Tournaisian-Early Visean?, a differential block faulting regime along the basin's margin caused uplift of the westernmost parts of the Alborz Basin and resulted in subsidence in the eastern part of the central basin. This tectonically controlled shift in depositional regime caused vast sub-aerial exposure and brecciation preserved in the top of the Mobarak Formation in the western portion of the Central Alborz Basin. (4) Tectonic activity coinciding with a progressive, multiphase sea level drop caused indirectly by the Viséan and Serpukhovian glaciations phases ultimately led to the stagnation of the carbonate factory. Paleothermometry proxies, the presence of foraminiferal taxa with a northern Paleo-Tethyan affinity and evidence for arid conditions in the terrestrial hinterland place the Alborz Basin at lower latitudes than the approximately 45ο-50ο southern paleolatitude reported thus far.
Lasemi, Y.; Ghomashi, M.; Amin-Rasouli, H.; Kheradmand, A.
2008-01-01
The Lower Triassic Sorkh Shale Formation is a dominantly red colored marginal marine succession deposited in the north-south trending Tabas Basin of east central Iran. It is correlated with the unconformity-bounded lower limestone member of the Elika Formation of the Alborz Mountains of northern Iran. The Sorkh Shale is bounded by the pre-Triassic and post-Lower Triassic interregional unconformities and consists mainly of carbonates, sandstones, and evaporites with shale being a minor constituent. Detailed facies analysis of the Sorkh Shale Formation resulted in recognition of several genetically linked peritidal facies that are grouped into restricted subtidal, carbonate tidal flat, siliciclastic tidal flat, coastal plain and continental evaporite facies associations. These were deposited in a low energy, storm-dominated inner-ramp setting with a very gentle slope that fringed the Tabas Block of east central Iran and passed northward (present-day coordinates) into deeper water facies of the Paleotethys passive margin of northern Cimmerian Continent. Numerous carbonate storm beds containing well-rounded intraclasts, ooids and bioclasts of mixed fauna are present in the Sorkh Shale Formation of the northern Tabas Basin. The constituents of the storm beds are absent in the fair weather peritidal facies of the Sorkh Shale Formation, but are present throughout the lower limestone member of the Elika Formation. The Tabas Block, a part of the Cimmerian continent in east central Iran, is a rift basin that developed during Early Ordovician-Silurian Paleotethys rifting. Facies and sequence stratigraphic analyses of the Sorkh Shale Formation has revealed additional evidence supporting the Tabas Block as a failed rift basin related to the Paleotethys passive margin. Absence of constituents of the storm beds in the fair weather peritidal facies of the Sorkh Shale Formation, presence of the constituents of the storm beds in the fair weather facies of the Elika Formation (the Sorkh Shale equivalent in the Alborz Paleotethys margin) and southward paleocurrent directions of carbonate storm beds suggest that the low topographic gradient of the ramp in the Tabas failed rift basin was facing the Paleotethys Ocean, where the storms were generated. In addition, northward paleocurrent directions of the fair weather facies and northward increase in carbonate content of the Sorkh Shale sequence further indicate that the Tabas Basin was tectonically a part of the Paleotethys passive margin. It is apparent that relative sea level, basin geometry and tectonic movements along the bounding faults played significant roles during deposition of the Sorkh Shale Formation by controlling accommodation space and facies variations along the Tabas failed rift basin.
NASA Astrophysics Data System (ADS)
Pinet, Nicolas; Dietrich, Jim; Duchesne, Mathieu J.; Hinds, Steve J.; Brake, Virginia
2018-07-01
The Maritimes Basin is an upper Paleozoic sedimentary basin centered in the Gulf of St. Lawrence (Canada). Early phases of basin formation included the development of partly connected sub-basins bounded by high-angle faults, in an overall strike-slip setting. Interpretation of reprocessed seismic reflection data indicates that a low-angle detachment contributed to the formation of a highly asymmetric sub-basin. This detachment was rotated toward a lower angle and succeeded by high-angle faults that sole into the detachment or cut it. This model bears similarities to other highly extended terranes and appears to be applicable to strike-slip and/or transtensional settings.
78 FR 70014 - Notice of Proposed New Fee Sites
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-22
.... Whittekiend, Forest Supervisor, Uinta-Wasatch-Cache National Forest, 857 W. South Jordan Parkway, South Jordan, UT 84095. FOR FURTHER INFORMATION CONTACT: Charles Rosier, Cabin Rental program manager, 801-999-2103... Federal Recreation Lands Enhancement Act (Title VII, Pub. L. 108-447) directed the Secretary of...
Improved forest change detection with terrain illumination corrected landsat images
USDA-ARS?s Scientific Manuscript database
An illumination correction algorithm has been developed to improve the accuracy of forest change detection from Landsat reflectance data. This algorithm is based on an empirical rotation model and was tested on the Landsat imagery pair over Cherokee National Forest, Tennessee, Uinta-Wasatch-Cache N...
76 FR 19772 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-08
... Barker 208-735-2072. EIS No. 20110101, Final EIS, USFS, CO, Big Moose Vegetation Management Project... Salvage Project, Proposal to Treat Timer Harvest, Prescribe Fire, and Mechanical Thinning, Uinta-Wasatch... No. 20110107, Final EIS, FHWA, IL, Illinois 336 Corridor Project, (Federal Aid Primary Route 315...
78 FR 2655 - Uinta-Wasatch-Cache National Forest; Utah; Ogden Travel Plan Project
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-14
...-Wasatch-Cache National Forest; Utah; Ogden Travel Plan Project AGENCY: Forest Service, USDA. ACTION... prepare a supplement to the Ogden Travel Plan Revision Final Supplemental Environmental Impact Statement (FSEIS). The Ogden Travel Plan Revision FSEIS evaluated six alternatives for possible travel management...
NASA Astrophysics Data System (ADS)
Moser, K. A.; Hundey, E. J.; Porinchu, D. F.
2007-12-01
Aquatic systems in alpine and sub-alpine areas of the western United States are potentially impacted by atmospheric pollution and climate change. Because these mountainous regions are an important water resource for the western United States, it is critical to monitor and protect these systems. The Uinta Mountains are an east- west trending mountain range located on the border between Utah, Wyoming and Colorado and downwind of the Wasatch Front, Utah, which is characterized by a rapidly expanding population, as well as mining and industry. This alpine area provides water to many areas in Utah, and contributes approximately nine percent of the water supply to the Upper Colorado River. Our research is focused on determining the impacts of climate change and pollution on alpine lakes in the Uinta Mountains. The results presented here are based on limnological measurements made at 64 Uinta Mountain lakes spanning a longitude gradient of one degree and an elevation gradient of 3000 feet. At each lake maximum depth, conductivity, salinity, pH, Secchi depth, temperature, alkalinity, and concentrations of major anions, cations and trace metals were measured. Principal Components Analysis (PCA) was performed to determine relationships between these variables and to examine the variability of the values of these variables. Our results indicate that steep climate gradients related to elevation and longitude result in clear differences in limnological properties of the study sites, with high elevation lakes characterized by greater amounts of nitrate and nitrite compared to low elevation sites. As well, diatoms in these lakes indicate that many high elevation sites are mesotrophic to eutrophic, which is unexpected for such remote aquatic ecosystems. We hypothesize that elevated nitrate and nitrite levels at high elevation sites are related to atmospherically derived nitrogen, but are being exacerbated relative to lower elevation sites by greater snow cover and reduced plant cover. Paleolimnological analyses of well dated sediments from selected lakes indicate that some of these high elevation sites have undergone rapid and dramatic change beginning in the late 1800s to early 1900s. Many of these lakes have become more productive as indicated by loss-on-ignition and diatom analyses. Although the exact mechanism of these changes is uncertain, the timing closely follows recent increases in air and chironomid-inferred surface water temperatures, and increased fossil fuel burning in the region. Regardless of the exact mechanism, our results clearly indicate dramatic changes at these high elevation sites, which threaten critical water resources.
NASA Astrophysics Data System (ADS)
Lopez-Gamundi, O. R.; Conaghan, P. J.; Rossello, E. A.; Cobbold, P. R.
1995-04-01
The Tunas Formation, extensively exposed in the Sierras Australes foldbelt of eastern central Argentina, completes the sedimentation of the Gondwanan (Late Carboniferous-Permian) sequence, locally known as the Pillahuincó Group. The underlying units of the Group show an integrated depositional history which can be explained in terms of glaciomarine sedimentation (Sauce Grande Formation) and postglacial transgression (Piedra Azul and Bonete Formations). This succession also has a rather uniform quartz-rich, sand-sized composition indicative of a cratonic provenance from the Tandilia Massif to the northeast. Early to Late Permian deformation folded and thrusted the southwestern basin margin (Sierras Australes) and triggered the deposition of a 1,500 m — thick, synorogenic prograding wedge, the Tunas Formation, in the adjacent foreland basin (Sauce Grande or Claromecó Basin). Sandstone detrital modes for the Tunas deposits show moderate to low contents of quartz and abundant lithics, mostly of volcanic and metasedimentary origin. Paleocurrents are consistently from the SW. Tuffs interbedded with sandstones in the upper half of Tunas Formation (Early — early Late? Permian) are interpreted as being derived from volcanic glass-rich tuffs settled in a body of water. Extensive rhyolitic ignimbrites and consanguineous airborne tuffaceous material erupted in the northern Patagonian region during that period. The age constraints and similarities in composition between these volcanics and the tuffaceous horizons present in the Sauce Grande, Parana and Karoo Basins suggest a genetic linkage between these two episodes. The intimate relationship between volcanic activity inboard of the paleo-Pacific margin, deformation in the adjacent orogenic belt and subsidence and sedimentation in the contiguous foreland basin constitutes a common motif in the Sauce Grande and Karoo Basins of southwestern Gondwana.
Peters, Kenneth E.; Magoon, Leslie B.; Valin, Zenon C.; Lillis, Paul G.
2007-01-01
Source-rock thickness and organic richness are important input parameters required for numerical modeling of the geohistory of petroleum systems. Present-day depth and thickness maps for the upper Miocene Monterey Formation, Eocene Tumey formation of Atwill (1935), Eocene Kreyenhagen Formation, and Cretaceous-Paleocene Moreno Formation source rocks in the San Joaquin Basin were determined using formation tops data from 266 wells. Rock-Eval pyrolysis and total organic carbon data (Rock-Eval/TOC) were collected for 1,505 rock samples from these source rocks in 70 wells. Averages of these data for each well penetration were used to construct contour plots of original total organic carbon (TOCo) and original hydrogen index (HIo) in the source rock prior to thermal maturation resulting from burial. Sufficient data were available to construct plots of TOCo and HIo for all source-rock units except the Tumey formation of Atwill (1935). Thick, organic-rich, oil-prone shales of the upper Miocene Monterey Formation occur in the Tejon depocenter in the southern part of the basin with somewhat less favorable occurrence in the Southern Buttonwillow depocenter to the north. Shales of the upper Miocene Monterey Formation generated most of the petroleum in the San Joaquin Basin. Thick, organic-rich, oil-prone Kreyenhagen Formation source rock occurs in the Buttonwillow depocenters, but it is thin or absent in the Tejon depocenter. Moreno Formation source rock is absent from the Tejon and Southern Buttonwillow depocenters, but thick, organic-rich, oil-prone Moreno Formation source rock occurs northwest of the Northern Buttonwillow depocenter adjacent to the southern edge of Coalinga field.
NASA Astrophysics Data System (ADS)
Li, Shun; Guilmette, Carl; Ding, Lin; Xu, Qiang; Fu, Jia-Jun; Yue, Ya-Hui
2017-10-01
The Bangong-Nujiang suture zone, separating the Lhasa and Qiangtang blocks of the Tibetan Plateau, is marked by remnants of the Bangong-Nujiang oceanic basin. In the Gaize area of central Tibet, Mesozoic sedimentary strata recording the evolution of the basin and subsequent collision between these two blocks include the Upper Triassic-Lower Jurassic turbidites of the Mugagangri Group, the Upper Jurassic-Lower Cretaceous sandstone-dominated Wuga and Shamuluo formations, and the Upper Cretaceous molasse deposits of the Jingzhushan Formation. The Shamuluo and Jingzhushan formations rest unconformably on the underlying Mugagangri Group and Wuga Formation, respectively. In this contribution, we analyze petrographic components of sandstones and U-Pb-Hf isotopic compositions of detrital zircons from the Wuga and Jingzhushan formations for the first time. Based on the youngest detrital zircon ages, the maximum depositional ages of the Wuga and Jingzhushan formations are suggested to be ∼147-150 Ma and ∼79-91 Ma, respectively. Petrographic and isotopic results indicate that sediments in the Wuga Formation were mainly sourced from the accretionary complex (preserved as the Mugagangri Group) in the north, while sediments in the Jingzhushan Formation have mixed sources from the Lhasa block, the Qiangtang block and the intervening suture zone. Provenance analysis, together with regional data, suggests that the Upper Jurassic-Lower Cretaceous Wuga and Shamuluo formations were deposited in a peripheral foreland basin and a residual-sea basin, respectively, in response to the Lhasa-Qiangtang collision, whereas the Upper Cretaceous Jingzhushan Formation reflects continental molasse deposition during the post-collisional stage. The development of the peripheral foreland basin evidenced by deposition of the Wuga Formation reveals that the age of the initial Lhasa-Qiangtang collision might be the latest Jurassic (∼150 Ma).
NASA Astrophysics Data System (ADS)
Davis, J. K.; Lawver, L. A.; Norton, I. O.; Gahagan, L.
2015-12-01
The Somali Basin, found between the Horn of Africa and Madagascar was formed during the rifting of East and West Gondwana. Understanding the evolution of the basin has historically been hindered by enigmatic seafloor fabric and an apparent paucity of magnetic anomaly data. Recent iterations of satellite gravity data have revealed nearly complete fracture zones as well as a distinct extinct spreading ridge within the basin. Through a thorough compilation of available Somali Basin shiptrack profiles, we have been able to successfully model and interpret magnetic anomalies with exceptional detail. This complication is unrivaled in completeness and provides unprecedented insight into basin formation. Using this high quality data, we have interpreted magnetic anomalies M0r (120.8 Ma) to M24Bn (152.43 Ma) about the extinct ridge. The interpreted Somali Basin spreading rate and spreading direction, through anomaly M15n (135.76 Ma), are similar to those observed in the neighboring coeval Mozambique Basin. This similarity suggests that East Gondwana separated from West Gondwana as a cohesive unit, and that the internal rifting of East Gondwana began later around 135 Ma. Our magnetic anomaly interpretations have been combined with additional magnetic interpretations from around the Indian Ocean to build a regionally consistent plate model of Gondwana breakup and early Indian Ocean formation. This plate model will be crucial for future efforts unraveling a precise history of East Gondwana fragmentation and constraining the formation of the Enderby Basin offshore East Antarctica and Bay of Bengal offshore East India.
NASA Astrophysics Data System (ADS)
Guo, Zhi-Xin; Shi, Yuan-Peng; Yang, Yong-Tai; Jiang, Shuan-Qi; Li, Lin-Bo; Zhao, Zhi-Gang
2018-04-01
A significant transition in tectonic regime from extension to compression occurred throughout East Asia during the mid-Cretaceous and has stimulated much attention. However, the timing and driving mechanisms of the transition remain disputed. The Erlian Basin, a giant late Mesozoic intracontinental petroliferous basin located in the Inner Mongolia, Northeast China, contains important sedimentary and structural records related to the mid-Cretaceous compressional event. The stratigraphical, sedimentological and structural analyses reveal that a NW-SE compressional inversion occurred in the Erlian Basin between the depositions of the Lower Cretaceous Saihan and Upper Cretaceous Erlian formations, causing intense folding of the Saihan Formation and underlying strata, and the northwestward migration of the depocenters of the Erlian Formation. Based on the newly obtained detrital zircon U-Pb data and previously published paleomagnetism- and fossil-based ages, the Saihan and Erlian formations are suggested as latest Aptian-Albian and post-early Cenomanian in age, respectively, implying that the inversion in the Erlian Basin occurred in the early Late Cretaceous (Cenomanian time). Apatite fission-track thermochronological data record an early Late Cretaceous cooling/exhuming event in the basin, corresponding well with the aforementioned sedimentary, structural and chronological analyses. Combining with the tectono-sedimentary evolutions of the neighboring basins of the Erlian Basin, we suggest that the early Late Cretaceous inversional event in the Erlian Basin and the large scale tectonic transition in East Asia shared the common driving mechanism, probably resulting from the Okhotomorsk Block-East Asia collisional event at about 100-89 Ma.
Condon, Steven M.
1997-01-01
The Cutler Formation is composed of thick, arkosic, alluvial sandstones shed southwestward from the Uncompahgre highlands into the Paradox Basin. Salt tectonism played an important role in deposition of the Cutler in some areas. In the northeast part of the basin, more than 8,000 ft, and as much as 15,000 ft, of arkose was trapped between rising salt anticlines - this arkose is thin to absent over the crests of some anticlines. In the western and southern parts of the basin, the Cutler is recognized as a Group consisting of, in ascending order: the lower Cutler beds, Cedar Mesa Sandstone, Organ Rock Formation, White Rim Sandstone, and De Chelly Sandstone. The aggregate thickness of these formations is less than 2,000 ft. The formations of the Cutler Group were deposited in a complex system of alluvial, eolian, and marine environments characterized by abrupt vertical and lateral lithologic changes. The basal Cutler is Pennsylvanian in age, but the bulk of the Group was deposited during the Permian. The Cutler is conformably underlain by the Pennsylvanian Hermosa Group across most of the basin. It is overlain unconformably by the Permian Kaibab Limestone in the western part of the Paradox Basin. The Cutler or Kaibab are overlain unconformably by the Triassic Moenkopi or Chinle Formations.
The structure and evolution of ancient impact basins on Mars
NASA Technical Reports Server (NTRS)
Schultz, P. H.; Schultz, R. A.; Rogers, J.
1982-01-01
It is pointed out that characteristic styles of degradation and modification of obvious Martian basins make it possible to recognize more subtle expressions. This approach is seen as providing not only additional basins to the existing inventory but also fundamental clues for initial impact basin structure and stratigraphy. It also reveals the long-lasting influence of basin formation on the crust of Mars in spite of extensive erosion and resurfacing. Consideration is given to five clear examples of modified impact basins, and regions around each that have undergone similar processes (fracturing, collapse, channeling) are delineated. These processes among the different basins are then compared, and similar zones of modification are correlated with concentric basin rings. Consideration is then given to the implications of these observations for current models of basin formation and to the role of impact basins in controlling regional tectonics. The results indicate that large multiring impact scars leave a major but sometimes subtle imprint on the geologic structure of stable crustal regions on Mars.
Crysdale, B.L.
1990-01-01
This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 1,480 of these wells that penetrate the Minnelusa Formation and equivalents.
Crysdale, B.L.
1990-01-01
This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 1,480 of these wells that penetrate the Minnelusa Formation and equivalents.
Johnson, Ronald C.
2007-01-01
Detailed measured sections and regional stratigraphic cross sections are used to reconstruct facies maps and interpret paleogeographic settings for the interval from the base of Upper Cretaceous Mesaverde Formation to top of lower member of the Paleocene Fort Union Formation in the Wind River Basin, Wyoming. The Mesaverde Formation spans the time during which the Upper Cretaceous seaway retreated eastward out of central Wyoming in Campanian time and the initial stages of the Lewis transgression in earliest Maastrichtian time. This retreat stalled for a considerable period of time during deposition of the lower part of the Mesaverde, creating a thick buildup of marginal marine sandstones and coaly coastal plain deposits across the western part of the basin. The Lewis sea transgressed into the northeast part of Wind River Basin, beginning in early Maastrichtian time during deposition of the Teapot Sandstone Member of the Mesaverde Formation. The Meeteetse Formation, which overlies the Teapot, was deposited in a poorly-drained coastal plain setting southwest of the Lewis seaway. The Lewis seaway, at maximum transgression, covered much of the northeast half of the Wind River Basin area but was clearly deflected around the present site of the Wind River Range, southwest of the basin, providing the first direct evidence of Laramide uplift on that range. Uplift of the Wind River Range continued during deposition of the overlying Maastrichtian Lance Formation. The Granite Mountains south of the basin also became a positive feature during this time. A rapidly subsiding trough during the Maastrichtian time formed near the presentday trough of the Wind River Basin in which more than 6,000 feet of Lance was deposited. The development of this trough appears to have begun before the adjacent Owl Creek Mountains to the north started to rise; however, a muddy facies in the upper part of Lance in the deep subsurface, just to the south, might be interpreted to indicate that the Cretaceous Cody Shale was being eroded off a rising Owl Creek Mountains in latest Cretaceous time. The Paleocene Fort Union Formation unconformably overlies older units but with only slight angular discordance around much of the margins of the Wind River Basin. Pre-Fort Union erosion was most pronounced toward the Wind River Range to the southwest, where the Fort Union ultimately overlies strata as old as the upper part of the Cretaceous Cody Shale. The unconformity appears to die out toward the basin center. Coal-forming mires developed throughout the western part of the basin near the beginning of the Paleocene. River systems entering the basin from the Wind River Range to the southwest and the Granite Mountains to the south produced areas of sandy fluvial deposition along mountain fronts. A major river system appears to have entered the basin from about the same spot along the Wind River Range throughout much of the Paleocene, probably because it became incised and could not migrate laterally. The muddy floodplain facies that developed along the deep basin trough during latest Cretaceous time, expanded during the early part of the Paleocene. Coal-forming mires that characterize part of the lower Fort Union Formation reached maximum extent near the beginning of the late Paleocene and just prior to the initial transgression of Lake Waltman. From the time of initial flooding, Lake Waltman expanded rapidly, drowning the coal-forming mires in the central part of the basin and spreading to near basin margins. Outcrop studies along the south margin of the basin document that once maximum transgression was reached, the lake was rapidly pushed basinward and replaced by fluvial environments.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-06
... to prepare an environmental impact statement. SUMMARY: The Ashley National Forest in cooperation with... analysis must be received by August 5, 2010. The draft environmental impact statement is expected February 2011 and the final environmental impact statement is expected June 2011. ADDRESSES: Send written...
NASA Astrophysics Data System (ADS)
Çiner, A.; Kosun, E.
2003-04-01
The Miocene Sivas Basin is located within a collision zone, forming one of the largest basins in Central Turkey that developed unconformably on a foundered Paleozoic-Mesozoic basement and Eocene-Oligocene deposits. The time and space relationships of sedimentary environments and depositional evolution of Lower to Middle Miocene rocks exposed between Zara and Hafik towns is studied. A 4 km thick continuous section is subdivided into the Agilkaya and Egribucak Formations. Each formation shows an overall fining upward trend and contains three members. Although a complete section is present at the western part (near Hafik) of the basin, to the east the uppermost two members (near Zara) are absent. The lower members of both formations are composed of fluvial sheet-sandstone and red mudstone that migrate laterally on a flood basin within a semi-arid fan system. In the Agilkaya Formation that crops out near Zara, alluvial fans composed of red-pink volcanic pebbles are also present. The middle members are composed of bedded to massive gypsum and red-green mudstone of a coastal and/or continental sabkha environment. While the massive gypsum beds reach several 10’s of m in Hafik area, near Zara, they are only few m thick and alternate with green mudstones. In Hafik, bedded gypsums are intercalated with lagoonal dolomitic limestone and bituminous shale in the Agilkaya Formation and with fluvial red-pink sandstone-red mudstone in the Egribucak Formation. The upper members are made up of fossiliferous mudstone and discontinuous sandy limestone beds with gutter casts, HCS, and 3-D ripples. They indicate storm-induced sedimentation in a shallow marine setting. The disorganized accumulations of ostreid and cerithiid shells, interpreted as coquina bars, are the products of storm generated reworking processes in brackish environments. Rapid vertical and horizontal facies changes and the facies associations in both formations reflect the locally subsiding nature of this molassic basin.
Johnson, Craig A.; Dumoulin, Julie A.; Burruss, Robert A.; Slack, John F.
2015-01-01
Water column redox conditions, degree of restriction of the depositional basin, and other paleoenvironmental parameters have been determined for the Mississippian Kuna Formation of northwestern Alaska from stratigraphic profiles of Mo, Fe/Al, and S isotopes in pyrite, C isotopes in organic matter, and N isotopes in bulk rock. This unit is important because it hosts the Red Dog and Anarraaq Zn-Pb-Ag ± barite deposits, which together constitute one of the largest zinc resources in the world. The isotopic and chemical proxies record a deep basin environment that became isolated from the open ocean, became increasingly reducing, and ultimately became euxinic. The basin was ventilated briefly and then became isolated again just prior to its demise as a discrete depocenter with the transition to the overlying Siksikpuk Formation. Ventilation corresponded approximately to the initiation of bedded barite deposition in the district, whereas the demise of the basin corresponded approximately to the formation of the massive sulfide deposits. The changes in basin circulation during deposition of the upper Kuna Formation may have had multiple immediate causes, but the underlying driver was probably extensional tectonic activity that also facilitated fluid flow beneath the basin floor. Although the formation of sediment-hosted sulfide deposits is generally favored by highly reducing conditions, the Zn-Pb deposits of the Red Dog district are not found in the major euxinic facies of the Kuna basin, nor did they form during the main period of euxinia. Rather, the deposits occur where strata were permeable to migrating fluids and where excess H2S was available beyond what was produced in situ by decomposition of local sedimentary organic matter. The known deposits formed mainly by replacement of calcareous strata that gained H2S from nearby highly carbonaceous beds (Anarraaq deposit) or by fracturing and vein formation in strata that produced excess H2S by reductive dissolution of preexisting barite (Red Dog deposits).
NASA Astrophysics Data System (ADS)
Rodríguez-Méndez, Lidia; Cuevas, Julia; Tubía, José María
2016-03-01
The Anayet Basin, in the central Pyrenees, records a Stephanian-Permian continental succession including three Permian volcanic episodes. The absolute chronology of these rocks has allowed us to better constrain the early post-Variscan evolution of the Pyrenees. The transtensional regime responsible for the formation of the pull-apart Anayet Basin began at least in Stephanian times, the age of the first post-Variscan deposits in the area, and lasted until Late Permian. During Middle Eocene times, the Alpine Orogeny inverted the Anayet Basin and led to the formation of south-vergent chevron folds and axial plane penetrative cleavage.
Crysdale, B.L.
1991-01-01
This map is one in a series of U.S. Geological Survey Miscellaneous Field Studies (MF) maps showing computer-generated structure contours, isopachs, and cross sections of selected formations in the Powder River basin, Wyoming and Montana. The map and cross sections were constructed from information stored in a U.S. Geological Survey Evolution of Sedimentary Basins data base. This data base contains picks of geologic formation and (or) unit tops and bases determined from electric resistivity and gamma-ray logs of 8,592 wells penetrating Tertiary and older rocks in the Powder River basin. Well completion cards (scout tickets) were reviewed and compared with copies of all logs, and formation or unit contacts determined by N. M. Denson, D.L. Macke, R. R. Schumann and others. This isopach map is based on information from 4,926 of these wells that penetrate the Minnelusa Formation and equivalents.
Marra, Kristen R.
2017-10-24
In 2017, the U.S. Geological Survey (USGS) completed an updated assessment of undiscovered, technically recoverable oil and gas resources in the Spraberry Formation of the Midland Basin (Permian Basin Province) in southwestern Texas (Marra and others, 2017). The Spraberry Formation was assessed using both the standard continuous (unconventional) and conventional methodologies established by the USGS for three assessment units (AUs): (1) Lower Spraberry Continuous Oil Trend AU, (2) Middle Spraberry Continuous Oil Trend AU, and (3) Northern Spraberry Conventional Oil AU. The revised assessment resulted in total estimated mean resources of 4,245 million barrels of oil, 3,112 billion cubic feet of gas, and 311 million barrels of natural gas liquids. The purpose of this report is to provide supplemental documentation of the input parameters used in the USGS 2017 Spraberry Formation assessment.
Dissolution of Permian salt and Mesozoic depositional trends, Powder River basin, Wyoming
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasmussen, D.L.; Bean, D.W.
1983-08-01
Salt deposits in the Powder River basin of Wyoming occur in the Late Permian Ervay Member of the Goose Egg Formation which was deposited in a redbed-evaporite trend extending from the Williston basin of North Dakota to the Alliance basin of Nebraska and Wyoming. However, only remnants of the once extensive Ervay salt remain in the Powder River basin, with major salt dissolution events occurring during Late Jurassic and Early Cretaceous. Subsidence and deposition at the surface were contemporaneous with subsurface salt dissolution except in areas where uplift and erosion were occurring. Earliest dissolution of the Ervay salt occurred inmore » the Jurassic, during regional uplift and erosion of the overlying Triassic Chugwater Formation in the present Hartville uplift and southeastern Powder River basin areas. Thickness variations of the Canyon Springs and Stockade Beaver members of the early Late Jurassic Sundance Formation, which unconformably overlie the deeply eroded Chugwater Formation, may be related in part to dissolution of the Ervay salt. Extensive salt dissolution, synsubsidence, and syndeposition occurred throughout most of the Powder River basin during the latest Jurassic and Early Cretaceous. Many producing fields from the Mowry, Muddy, and Dakota formations exhibit either rapid stratigraphic changes syndepositional to salt collapse or fracture-enhanced reservoir quality due to postdepositional salt collapse. Major Muddy accumulations occurring in areas of local Ervay salt collapse include Kitty, Hilight, Fiddler Creek, and Clareton which have produced jointly over 172 million bbl of oil. The relationship of Ervay salt dissolution to Lower Cretaceous deposition can be exploited as an effective exploration tool.« less
Kiilsgaard, Thor H.; Van Noy, Ronald M.
1984-01-01
A mineral survey of the Jack Creek basin area in Montana revealed that phosphate rock underlies the basin. The phosphate rock is in thin beds that dip steeply and are broken and offset by faults. These features plus the rugged topography of the region would make mining difficult; however, this study finds the area to have a probable mineral-resource potential for phosphate. Sedimentary rock formations favorable for oil and gas also underlie the basin. No oil or gas has been produced from the basin or from nearby areas in southwestern Montana, but oil and gas have been produced from the same favorable formations elsewhere in Montana. The possibility of oil and gas being produced from the basin is slight but it cannot be ignored.
Geomechanical Characterization and Modeling of the Newark Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Daniel; Goldberg, Dave; Zakharova, Natalia
Many effective techniques for evaluation if in-situ stress and geomechanical formation properties have been developed over the years but detailed understanding of these parameters in-situ, and standard characterization and monitoring protocols for carbon dioxide storage sites are lacking. A case study is performed in the northern Newark Basin, a candidate carbon dioxide-storage site located near the New York Metropolitan area. Possible impacts of seismic hazard and carbon dioxide leakage are particularly important due to a high population density across the basin. As one of the best-studied Mesozoic rift basins, the Newark Basin represents a great type locality for similar basinsmore » along the east coast and the results established in this project provide a robust tool for comparison to other Mesozoic basin data sets and locations (e.g., Georgia Rift Basin), where similar comprehensive core data sets and well testing results are not available. The project leveraged existing core samples to characterize and measure the strength of a series of differing lithologies and formations in the basin, with 28 samples fully tested. The orientation and magnitude of in-situ stresses were measured in an existing test well using a novel wireline tool set-up. This new methodology employed a “pre-stress” packer module to attempt to create an initial formation break using the force of the packer itself against the borehole wall. This enhancement in the testing methodology can be used in places where traditional methods are insufficient to break down a formation. Following the pre-stress packer sets, the improved Schlumberger Modular Formation Dynamics Tester tool-string was then used to perform traditional straddled formation breakdown testing of selected intervals. Testing indicated that formation breakdown was successfully achieved at two of the six test intervals, with an additional two tests sets indicating re-opening and propagation of pre-existing breaks out into the formation. New laboratory strength data acquired by this project, coupled with an updated basin-specific compressional acoustic velocity to unconfined compressional strength (Vp-UCS) relationship, was used for evaluation of the state of stress in the northern Newark Basin. Formation breakdown testing in the Lamont-Doherty Earth Observatory Test Well No. 3 allows for the determination of the full stress field at this location. The evaluation indicates that the natural fractures in the depth range of 244 to 457 meters (800 to 1,500 feet) are not critically stressed, however, they are close to their failure limit. Therefore, they likely could not withstand significant pore pressure increases anticipated with industrial scale geologic carbon sequestration. Failure modeling with the updated formation strength data shows that in-situ stresses must be at the frictional failure limit in the reverse-faulting stress regime at all depths in the northern portion of the basin, where borehole breakouts are observed. The disappearance of breakouts below a depth of 1,372 meters (4,500 feet) in the northern portion of the basin coincides with a significant increase in formation strength. In this deeper section, the apparent higher stress gradient would place existing fractures further away from their failure limit, making them more suitable for injection. Forward modeling of the effective stresses under increased pore pressure conditions suggest that a mere 2,758 kPa (400 psi) change in pore pressure could bring select fractures to failure. This is a fairly small-change in expected pore pressure increases at industrial scale injection operations. Therefore, given the presence of nearly critically stressed fractures located just a few hundred meters above these depths, large-volume fluid injections appear to increase geological risk in the northern portion of the Newark Basin.« less
Exploration in Ordovician of central Michigan Basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fisher, J.H.; Barratt, M.W.
1985-12-01
Deep wells in the central Michigan basin have provided sufficient data to define two new mappable formations - the Foster Formation and the Bruggers Formation. Recent conodont studies have corrected the age assignments of the strata containing these formations. Previously, the lower section (Foster) was classified as mostly Cambrian, and the upper unit (Bruggers) was identified as Early Ordovician. Conodont identifications indicate an Early and Middle Ordovician age for the Foster Formation and a Middle Ordovician age for the Bruggers Formation. The Michigan basin existed in embryonic form in the Late Cambrian, but the full outline of the present-day basinmore » did not develop until Early Ordovician. Gas and condensate are produced from the Bruggers Formation as deep as 11,252 ft (3429 m). Geothermal investigations suggest that gas production is possible to the base of the Paleozoic section in the central basin (17,000 ft or 5181 m). Paleotemperatures were higher during the Paleozoic owing to 3000-4000 ft (914-1291 m) of additional sedimentary cover. Five wells are producing from the Bruggers Formation. All are deeper tests in anticlines producing from Devonian reservoirs discovered earlier. The structures are the result of vertical movements of basement fault blocks activated by regional stresses. 12 figures, 2 tables.« less
Roberts, Laura N.R.; Finn, Thomas M.; Lewan, Michael D.; Kirschbaum, Mark A.
2008-01-01
Burial history, thermal maturity, and timing of oil and gas generation were modeled for seven key source-rock units at eight well locations throughout the Bighorn Basin in Wyoming and Montana. Also modeled was the timing of cracking to gas of Phosphoria Formation-sourced oil in the Permian Park City Formation reservoirs at two well locations. Within the basin boundary, the Phosphoria is thin and only locally rich in organic carbon; it is thought that the Phosphoria oil produced from Park City and other reservoirs migrated from the Idaho-Wyoming thrust belt. Other petroleum source rocks include the Cretaceous Thermopolis Shale, Mowry Shale, Frontier Formation, Cody Shale, Mesaverde and Meeteetse Formations, and the Tertiary (Paleocene) Fort Union Formation. Locations (wells) selected for burial history reconstructions include three in the deepest parts of the Bighorn Basin (Emblem Bench, Red Point/Husky, and Sellers Draw), three at intermediate depths (Amoco BN 1, Santa Fe Tatman, and McCulloch Peak), and two at relatively shallow locations (Dobie Creek and Doctor Ditch). The thermal maturity of source rocks is greatest in the deep central part of the basin and decreases to the south, east, and north toward the basin margins. The Thermopolis and Mowry Shales are predominantly gas-prone source rocks, containing a mix of Type-III and Type-II kerogens. The Frontier, Cody, Mesaverde, Meeteetse, and Fort Union Formations are gas-prone source rocks containing Type-III kerogen. Modeling results indicate that in the deepest areas, (1) the onset of petroleum generation from Cretaceous rocks occurred from early Paleocene through early Eocene time, (2) peak petroleum generation from Cretaceous rocks occurred during Eocene time, and (3) onset of gas generation from the Fort Union Formation occurred during early Eocene time and peak generation occurred from late Eocene to early Miocene time. Only in the deepest part of the basin did the oil generated from the Thermopolis and Mowry Shales start generating gas from secondary cracking, which occurred in the late Eocene to Miocene. Also, based on modeling results, gas generation from the cracking of Phosphoria oil reservoired in the Park City Formation began in the late Eocene in the deep part of the basin but did not anywhere reach peak generation.
Geometrical constraint on the localization of deep water formation
NASA Astrophysics Data System (ADS)
Ferreira, D.; Marshall, J.
2008-12-01
That deep water formation occurs in the North Atlantic and not North Pacific is one of the most notable features of the present climate. In an effort to build a system able to mimic such basic aspects of climate using a minimal description, we study here the influence of ocean geometry on the localization of deep water formation. Using the MIT GCM, two idealized configurations of an ocean-atmosphere-sea ice climate system are studied: Drake and Double-Drake. In Drake, one narrow barrier extends from the North Pole to 35°S while, in Double-Drake, two such barriers set 90° apart join at the North Pole to delimit a Small and a Large basin. Despite the different continental configurations, the two climates are strikingly similar in the zonal average (almost identical heat and fresh water transports, and meridional overturning circulation). However, regional circulations in the Small and Large basins exhibit distinctive Atlantic-like and Pacific-like characteristics: the Small basin is warmer and saltier than the Large one, concentrates dense water formation and deep overturning circulation and achieve the largest fraction of the northward ocean heat transport. We show that the warmer temperature and higher evaporation over the Small basin is not its distinguishing factor. Rather, it is the width of the basin in relation to the zonal fetch of the precipitation pattern. This generates a deficit/excess of precipitation over the Small/Large basin: a fraction of the moisture evaporated from the Small basin is transported zonally and rains out over the Large basin. This creates a salt contrast between the 2 basins, leading to the localization of deep convection in the salty Small basin. Finally, given on the broad similarities between the Double-Drake and real World, we suggest that many gross features that define the present climate are a consequence of 2 asymmetries: a meridional asymmetry (a zonally unblocked southern/blocked northern ocean) and a zonal one (a small and a large basin in the northern hemisphere).
Naturally fractured tight gas reservoir detection optimization. Quarterly report, April--June 1994
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1994-07-01
Geologic assessment of the basin during the third quarter possessed several major objectives. The first task was to test the validity of the gas-centered basin model for the Piceance Basin. The second objective was to define the location and variability of gas-saturated zones within the Williams Fork and Iles Formation reservoir horizons. A third objective was to prepare an updated structure map of the Piceance Basin on the top of the Iles Formation (Rollins Sandstone) to take advantage of new data provided by ten years of drilling activity throughout the basin. The first two objectives formed the core of themore » ARI poster session presented at the AAPG annual meeting in Denver. The delineation of the gas and water-saturated zone geometries for the Williams Fork and Iles Formations in the basin was presented in the form of a poster session at the AAPG Annual meeting held in Denver in mid-June. The poster session outlined the nature of the gas-centered basin geometry and demonstrated the gas and water-saturated conditions for the Williams Fork, Cozzette and Corcoran reservoir horizons throughout the basin. Initial and cumulative production data indicate that these reservoir horizons are gas-saturated in most of the south-central and eastern basin. The attached report summarizes the data and conclusions of the poster session.« less
Plate tectonic history of the Arctic
NASA Technical Reports Server (NTRS)
Burke, K.
1984-01-01
Tectonic development of the Arctic Ocean is outlined, and geological maps are provided for the Arctic during the mid-Cenozoic, later Cretaceous, late Jurassic, early Cretaceous, early Jurassic and late Devonian. It is concluded that Arctic basin history is moulded by the events of the following intervals: (1) continental collision and immediately subsequent rifting and ocean formation in the Devonian, and continental rifting ocean formation, rapid rotation of microcontinents, and another episode of collision in the latest Jurassic and Cretaceous. It is noted that Cenozoic Arctic basin formation is a smaller scale event superimposed on the late Mesozoic ocean basin.
NASA Technical Reports Server (NTRS)
Head, J. W.; Ivanov, M. A.
1995-01-01
On Venus, global topography shows the presence of highs and lows including regional highly deformed plateaus (tesserae), broad rifted volcanic rises, linear lows flanking uplands, and more equidimensional lowlands (e.g. Lavinia and Atalanta planitiae) Each of these terrain types on Venus has relatively distinctive characteristics, but origins are uncertain in terms of mode of formation, time of formation, and potential evolutionary links. There is a high level of uncertainty about the formation and evolution of lowlands on Venus. We have undertaken the mapping of a specific lowlands region of Venus to address several of these major questions. Using geologic mapping we have tried to establish: What is the sequence of events in the formation and evolution of large-scale equidimensional basins on Venus? When do the compressional features typical of basin interiors occur? What is the total volume of lava that occurs in the basins and is this similar to other non-basin areas? How much subsidence and downwarping has occurred after the last major plains units? WE have undertaken an analysis of the geology of the V55 Lavinia Planitia quadrangle in order to address many of these issues and we report on the results here.
Tectonic Evolution of the Çayirhan Neogene Basin (Ankara), Central Turkey
NASA Astrophysics Data System (ADS)
Behzad, Bezhan; Koral, Hayrettin; İşb&idot; l, Duygu; Karaaǧa; ç, Serdal
2016-04-01
Çayırhan (Ankara) is located at crossroads of the Western Anatolian extensional region, analogous to the Basin and Range Province, and suture zone of the Neotethys-Ocean, which is locus of the North Anatolian Transform since the Late Miocene. To the north of Çayırhan (Ankara), a Neogene sedimentary basin comprises Lower-Middle Miocene and Upper Miocene age formations, characterized by swamp, fluvial and lacustrine settings respectively. This sequence is folded and transected by neotectonic faults. The Sekli thrust fault is older than the Lower-Middle Miocene age formations. The Davutoǧlan fault is younger than the Lower-Middle Miocene formations and is contemporaneous to the Upper Miocene formation. The Çatalkaya fault is younger than the Upper Miocene formation. The sedimentary and tectonic features provide information on mode, timing and evolution of this Neogene age sedimentary basin in Central Turkey. It is concluded that the region underwent a period of uplift and erosion under the influence of contractional tectonics prior to the Early-Middle Miocene, before becoming a semi-closed basin under influence of transtensional tectonics during the Early-Middle Miocene and under influence of predominantly extensional tectonics during the post-Late Miocene times. Keywords: Tectonics, Extension, Transtension, Stratigraphy, Neotectonic features.
Asymmetric Distribution of Lunar Impact Basins Caused by Variations in Target Properties
NASA Technical Reports Server (NTRS)
Miljkovic, Katarina; Wieczorek, Mark A.; Collins, Gareth S.; Laneuville, Matthieu; Neumann, Gregory A.; Melosh, H. Jay; Solomon, Sean C.; Phillips, Roger J.; Smith, David E.; Zuber, Maria T.
2014-01-01
Maps of crustal thickness derived from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission revealed more large impact basins on the nearside hemisphere of the Moon than on its farside. The enrichment in heat-producing elements and prolonged volcanic activity on the lunar nearside hemisphere indicate that the temperature of the nearside crust and upper mantle was hotter than that of the farside at the time of basin formation. Using the iSALE-2D hydrocode to model impact basin formation, we found that impacts on the hotter nearside would have formed basins up to two times larger than similar impacts on the cooler farside hemisphere. The size distribution of lunar impact basins is thus not representative of the earliest inner Solar system impact bombardment.
NASA Technical Reports Server (NTRS)
Miljkovic, Katarina; Wieczorek, Mark; Collins, Gareth S.; Laneuville, Matthieu; Neumann, Gregory A.; Melosh, H. Jay; Solomon, Sean C.; Phillips, Roger J.; Smith, David E.; Zuber, Maria T.
2014-01-01
Maps of crustal thickness derived from NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission revealed more large impact basins on the nearside hemisphere of the Moon than on its farside. The enrichment in heat-producing elements and prolonged volcanic activity on the lunar nearside hemisphere indicate that the temperature of the nearside crust and uppermantle was hotter than that of the farside at the time of basin formation. Using the iSALE-2D hydrocode to model impact basin formation, we found that impacts on the hotter nearside would have formed basins up to two times larger than similar impacts on the cooler farside hemisphere. The size distribution of lunar impact basins is thus not representative of the earliest inner Solar system impact bombardment
Formation of the Orientale lunar multiring basin.
Johnson, Brandon C; Blair, David M; Collins, Gareth S; Melosh, H Jay; Freed, Andrew M; Taylor, G Jeffrey; Head, James W; Wieczorek, Mark A; Andrews-Hanna, Jeffrey C; Nimmo, Francis; Keane, James T; Miljković, Katarina; Soderblom, Jason M; Zuber, Maria T
2016-10-28
Multiring basins, large impact craters characterized by multiple concentric topographic rings, dominate the stratigraphy, tectonics, and crustal structure of the Moon. Using a hydrocode, we simulated the formation of the Orientale multiring basin, producing a subsurface structure consistent with high-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft. The simulated impact produced a transient crater, ~390 kilometers in diameter, that was not maintained because of subsequent gravitational collapse. Our simulations indicate that the flow of warm weak material at depth was crucial to the formation of the basin's outer rings, which are large normal faults that formed at different times during the collapse stage. The key parameters controlling ring location and spacing are impactor diameter and lunar thermal gradients. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Stingl, K.
1994-12-01
The Eibiswald Bucht is a small subbasin of the Western Styrian Basin exposing sediments of Lower Miocene age. In the past the entire sequence exposed in the Eibiswalder Bucht has been interpreted as being of fluvial/lacustrine origin; here, results are presented of detailed sedimentological investigations that lead to a revision of this concept. The lowermost siliciclastic sedimentary unit of the Eibiswalder Bucht sequence is the Radl Formation. It is overlain by the Eibiswald Beds, which are subdivided into the Lower, Middle and Upper Eibiswald Beds. The Radl Formation and the Lower Eibiswald Beds are interpreted as a fan delta complex deposited along NNW-SSE striking faults. Based on the sedimentary facies this fan delta can be subdivided into a subaerial alluvial fan facies group, a proximal delta facies group and a distal delta/prodelta facies group. The Radl Formation comprises the alluvial fan and proximal delta facies groups, the Lower Eibiswald Beds the distal delta/prodelta facies group. The alluvial fan and the proximal delta consist of diverse deposits of gravelly flows. The distal delta/prodelta consists of wave-reworked, bioturbated, low density turbidites intercalated with minor gravelly mass flows. The prodelta can be regarded as as the basin facies of the small and shallow Eibiswalder Bucht, where marine conditions prevailed. The basin was probably in part connected with the Eastern Styrian Basin, the contemporary depositional environment of the Styrian Schlier (mainly turbiditic marine offshore sediments in the Eastern Styrian Basin). Analysis of the clast composition, in conjunction with the paleotransport direction of the coarse delta mass flows of the Radl Formation, shows that the source rocks were exclusively crystalline rocks ranging from greenschists to eclogites.
75 FR 65295 - Uinta-Wasatch-Cache National Forest Resource Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-22
.... 110-343) and in compliance with the Federal Advisory Committee Act. The purpose is to continue the....fed.us , via facsimile to 801-342- 5144. All comments, including names and addresses when provided... North, Provo, Utah 84601; 801-342-5117; [email protected]us . SUPPLEMENTARY INFORMATION: The meeting is...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-07
... mapped, is anticipated to involve approximately 3.1 miles of new specified road construction, approximately 10.7 miles of temporary road construction, approximately 6.7 miles of additional temporary road use on the existing road prism, and approximately 2.6 miles of road reconstruction. Approximately 3.8...
Organizational factors in fire prevention: roles, obstacles, and recommendations
John R. Christiansen; William S. Folkman; Keith W. Warner; Michael L. Woolcott
1976-01-01
Problems being encountered in implementing fire prevention programs were explored by studying the organization for fire prevention at the Fish Lake, Uinta, and Wasatch National Forests in Utah. The study focused on role congruency in fire prevention activities and on the social and organizational obstacles to effective programs. The problems identified included lack of...
77 FR 53169 - Uinta-Wasatch-Cache National Forest Resource Advisory Committee
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-31
... Secure Rural Schools and Community Self-Determination Act (Pub. L. 112-141) (the Act) and operates in... relationships and to provide advice and recommendations to the Forest Service concerning projects and funding... review and recommend projects authorized under Title II of the Act. DATES: The meeting will be held via...
Visitor perception of wilderness recreation carrying capacity
George H. Stankey
1973-01-01
Presents results of a study of wilderness users in the Bob Marshall, Bridger, High Uintas, and the Boundary Waters Canoe Area (BWCA) to determine their perception of, and reaction to, problems such as crowding, littering, and conflicts between user groups, and to management actions to alleviate such problems. Definitions of crowding included references to conflicts...
The Effect of Sedimentary Basins on Through-Passing Short-Period Surface Waves
NASA Astrophysics Data System (ADS)
Feng, L.; Ritzwoller, M. H.
2017-12-01
Surface waves propagating through sedimentary basins undergo elastic wave field complications that include multiple scattering, amplification, the formation of secondary wave fronts, and subsequent wave front healing. Unless these effects are accounted for accurately, they may introduce systematic bias to estimates of source characteristics, the inference of the anelastic structure of the Earth, and ground motion predictions for hazard assessment. Most studies of the effects of basins on surface waves have centered on waves inside the basins. In contrast, we investigate wave field effects downstream from sedimentary basins, with particular emphasis on continental basins and propagation paths, elastic structural heterogeneity, and Rayleigh waves at 10 s period. Based on wave field simulations through a recent 3D crustal and upper mantle model of East Asia, we demonstrate significant Rayleigh wave amplification downstream from sedimentary basins in eastern China such that Ms measurements obtained on the simulated wave field vary by more than a magnitude unit. We show that surface wave amplification caused by basins results predominantly from elastic focusing and that amplification effects produced through 3D basin models are reproduced using 2D membrane wave simulations through an appropriately defined phase velocity map. The principal characteristics of elastic focusing in both 2D and 3D simulations include (1) retardation of the wave front inside the basins; (2) deflection of the wave propagation direction; (3) formation of a high amplitude lineation directly downstream from the basin bracketed by two low amplitude zones; and (4) formation of a secondary wave front. Finally, by comparing the impact of elastic focusing with anelastic attenuation, we argue that on-continent sedimentary basins are expected to affect surface wave amplitudes more strongly through elastic focusing than through the anelastic attenuation.
Spencer, J.E.; Pearthree, P.A.; House, P.K.
2008-01-01
The upper Miocene to lower Pliocene Bouse Formation in the lower Colorado River trough of the American Southwest was deposited in three basins - from north to south, the Mohave, Havasu, and Blythe Basins - that were formed by extensional fault ing in the early to middle Miocene. Fossils of marine, brackish, and freshwater organ isms in the Bouse Formation have been interpreted to indicate an estuarine environment associated with early opening of the nearby Gulf of California. Regional uplift since 5 Ma is required to position the estuarine Bouse Formation at present elevations as high as 555 m, where greater uplift is required in the north. We present a compilation of Bouse Formation elevations that is consistent with Bouse deposition in lakes, with an abrupt 225 m northward increase in maximum Bouse elevations at Topock gorge north of Lake Havasu. Within Blythe and Havasu Basins, maximum Bouse elevations are 330 m above sea level in three widely spaced areas and reveal no evidence of regional tilting. To the north in Mohave Basin, numerous Bouse outcrops above 480 m elevation include three widely spaced sites where the Bouse Formation is exposed at 536-555 m. Numerical simulations of initial Colorado River inflow to a sequence of closed basins along the lower Colorado River corridor model a history of lake filling, spilling, evaporation and salt concentration, and outflow-channel incision. The simulations support the plausibility of evaporative concentration of Colorado River water to seawater-level salinities in Blythe Basin and indicate that such salinities could have remained stable for as long as 20-30 k.y. We infer that fossil marine organ isms in the Bouse Formation, restricted to the southern (Blythe) basin, reflect coloniza tion of a salty lake by a small number of species that were transported by birds.
NASA Astrophysics Data System (ADS)
Zhang, Chengcheng; Muirhead, James D.; Wang, Hua; Chen, Si; Liao, Yuantao; Lu, Zongsheng; Wei, Jun
2018-01-01
Development of fan deltas alongside intrabasinal structural highs has been overlooked compared to those forming on basin margins. However, these fan deltas may provide important clues regarding the tectonic and climatic controls on deposition during rift development. This paper documents fan delta deposition alongside an intrabasinal structural high within the Early Cretaceous Xiagou Formation of the Jiuquan Basin, China, using subsurface geological and geophysical data. Deposits observed in drill core support fan delta deposition occurring almost exclusively through subaerial and subaqueous gravity flows. Subsurface mapping reveals a consistent decrease in the areal extent of fan deltas from lowstand to highstand system tracts, suggesting that deposition alongside the structural high is sensitive to lake-level changes. The temporal and spatial distribution of the fan deltas display retrogradational stacking patterns, where fan deltas exhibit a decreasing lateral extent up-sequence until fan delta deposition terminated and was replaced by deposition of fine-grained lacustrine deposits. The retrogradational stacking patterns observed alongside the intrabasinal structural high are not observed in fan deltas along the basin margin in the lower parts of the Xiagou Formation. Subsidence profiles also show differential subsidence across the basin during the earliest stages of this formation, likely resulting from border fault movements. These data suggest that non-uniform stacking patterns in the lower parts of the Xiagou Formation reflect basin-scale tectonic movements as the dominant control on synrift deposition patterns. However, later stages of Xiagou Formation deposition were characterized by uniform subsidence across the basin, and uniform retrogradational stacking patterns for fan deltas alongside the intrabasinal structural high and border fault. These observations suggest that basin-scale tectonic movements played a relatively limited role in controlling sediment deposition, and imply a potential change to regional-scale processes affecting fan delta deposition during later synrift stages. Climate change is favored here as the region-scale control on the uniform retrogradational fan delta stacking patterns. This assertion is supported by pollen assemblages, isotope signatures, and organic geochemical analyses, which collectively suggest a change from a humid to semi-arid environment during later synrift stages. We suggest that variations in stacking patterns between different fan delta systems can provide insights into the basin- and regional-scale processes that control rift basin deposition.
Oligocene Fluvio-Deltaic Depositional Environments Salin Sub-Basin, Central Myanmar
NASA Astrophysics Data System (ADS)
Gough, A.; Hall, R.
2017-12-01
A recent increase in accessibility for research in Myanmar has allowed rapid advancements in the understanding of the geology of the country. Evolving depositional environments can be reconstructed in largely unstudied Oligocene deposits of the Salin sub-basin, of the Central Myanmar Basin. Data has been collected through a fieldwork campaign to target well-exposed sediments along the western margin of the basin. The studied outcrops span approximately one hundred kilometres from north to south, and a series of sedimentary logs, palaeocurrent data, 2D panel diagrams, and samples for petrographical analysis have been collected and interpreted. The Oligocene formations studied include the Shwezetaw, Paduang, and Okhmintaung, each of which show a broadly southwards-trending fluvio-deltaic environment of deposition. Towards the north, the lower Rupelian Shwezetaw Formation comprises thick fluviatile sandstones which grade southwards through macrotidal-dominated fluvio-deltaic interbedded siltstones and rare sandstones, into marine sandstones. Overlying this, the upper Rupelian Paduang Formation grades rapidly from rare fluvial sandstones towards the north of the basin into deltaic and marine interbedded sandstones and siltstones to the south. This formation is more marine in nature, suggesting a minor transgression throughout the lower Oligocene. By the time of deposition of the Okhmintaung Formation in the Chattian the observed deposits solely represent a tidally-influenced deltaic depositional environment, with very little temporal variation, suggesting a stable sea level. Despite the relatively unchanging depositional environment, the formations are approximately 4000 m thick, suggesting that sedimentation kept pace with relatively rapid subsidence. This current study, which will combine depositional environment reconstruction, provenance, and sediment routing analysis, will provide important insights into both the tectonic setting and the huge sediment accumulation of the poorly understood Central Myanmar Basin.
Lillis, Paul G.; Magoon, Leslie B.
2007-01-01
New analyses of 120 oil samples combined with 139 previously published oil analyses were used to characterize and map the distribution of oil types in the San Joaquin Basin, California. The results show that there are at least four oil types designated MM, ET, EK, and CM. Most of the oil from the basin has low to moderate sulfur content (less than 1 weight percent sulfur), although a few unaltered MM oils have as much as 1.2 weight percent sulfur. Reevaluation of source rock data from the literature indicate that the EK oil type is derived from the Eocene Kreyenhagen Formation, and the MM oil type is derived, in part, from the Miocene to Pliocene Monterey Formation and its equivalent units. The ET oil type is tentatively correlated to the Eocene Tumey formation of Atwill (1935). Previous studies suggest that the CM oil type is derived from the Late Cretaceous to Paleocene Moreno Formation. Maps of the distribution of the oil types show that the MM oil type is restricted to the southern third of the San Joaquin Basin Province. The composition of MM oils along the southern and eastern margins of the basin reflects the increased contribution of terrigenous organic matter to the marine basin near the Miocene paleoshoreline. EK oils are widely distributed along the western half of the basin, and ET oils are present in the central and west-central areas of the basin. The CM oil type has only been found in the Coalinga area in southwestern Fresno County. The oil type maps provide the basis for petroleum system maps that incorporate source rock distribution and burial history, migration pathways, and geologic relationships between hydrocarbon source and reservoir rocks. These petroleum system maps were used for the 2003 U.S. Geological Survey resource assessment of the San Joaquin Basin Province.
NASA Astrophysics Data System (ADS)
Silva-Romo, Gilberto; Mendoza-Rosales, Claudia Cristina; Campos-Madrigal, Emiliano; Hernández-Marmolejo, Yoalli Bianii; de la Rosa-Mora, Orestes Antonio; de la Torre-González, Alam Israel; Bonifacio-Serralde, Carlos; López-García, Nallely; Nápoles-Valenzuela, Juan Ivan
2018-04-01
In the central sector of the Sierra Madre del Sur in Southern Mexico, between approximately 36 and 16 Ma ago and in the west to east direction, a diachronic process of the formation of ∼north-south trending fault-bounded basins occurred. No tectono-sedimentary event in the period between 25 and 20 Ma is recognized in the study region. A period during which subduction erosion truncated the continental crust of southern Mexico has been proposed. The chronology, geometry and style of the formation of the Eocene Miocene fault-bounded basins are more congruent with crustal truncation by the detachment of the Chortís block, thus bringing into question the crustal truncation hypothesis of the Southern Mexico margin. Between Taxco and Tehuacán, using seven new Laser Ablation- Inductively-coupled plasma mass spectrometry (LA-ICP-MS) U-Pb ages in magmatic zircons, we refine the stratigraphy of the Tepenene, Tehuitzingo, Atzumba and Tepelmeme basins. The analyzed basins present similar tectono-sedimentary evolutions as follows: Stage 1, depocenter formation and filling by clastic rocks accumulated as alluvial fans and Stage 2, lacustrine sedimentation characterized by calcareous and/or evaporite beds. Based on our results, we propose the following hypothesis: in Southern Mexico, during Eocene-Miocene times, the diachronic formation of fault-bounded basins with general north-south trend occurred within the framework of the convergence between the plates of North and South America, and once the Chortís block had slipped towards the east, the basins formed in the cortical crust were recently left behind. On the other hand, the beginning of the basins' formation process related to left strike slip faults during Eocene-Oligocene times can be associated with the thermomechanical maturation cortical process that caused the brittle/ductile transition level in the continental crust to shallow.
Cenozoic stratigraphy and geologic history of the Tucson Basin, Pima County, Arizona
Anderson, S.R.
1987-01-01
This report was prepared as part of a geohydrologic study of the Tucson basin conducted by the U.S. Geological Survey in cooperation with the city of Tucson. Geologic data from more than 500 water supply and test wells were analyzed to define characteristics of the basin sediments that may affect the potential for land subsidence induced by groundwater withdrawal. The Tucson basin is a structural depression within the Basin and Range physiographic province. The basin is 1,000 sq mi in units area and trends north to northwest. Three Cenozoic stratigraphic unit--the Pantano Formation of Oligocene age, the Tinaja beds (informal usage) of Miocene and Pliocene age, and the Fort Lowell Formation of Pleistocene age--fill the basin. The Tinaja beds include lower, middle, and upper unconformable units. A thin veneer of stream alluvium of late Quaternary age overlies the Fort Lowell Formation. The Pantano Formation and the lower Tinaja beds accumulated during a time of widespread continental sedimentation, volcanism, plutonism, uplift, and complex faulting and tilting of rock units that began during the Oligocene and continued until the middle Miocene. Overlying sediments of the middle and upper Tinaja beds were deposited in response to two subsequent episodes of post-12-million-year block faulting, the latter of which was accompanied by renewed uplift. The Fort Lowell Formation accumulated during the Quaternary development of modern through-flowing the maturation of the drainage. The composite Cenozoic stratigraphic section of the Tucson basin is at least 20,000 ft thick. The steeply tilted to flat-lying section is composed of indurated to unconsolidated clastic sediments, evaporites, and volcanic rocks that are lithologically and structurally complex. The lithology and structures of the section was greatly affected by the uplift and exhumation of adjacent metamorphic core-complex rocks. Similar Cenozoic geologic relations have been identified in other parts of southern Arizona. (Author 's abstract)
National Uranium Resource Evaluation: Aztec quadrangle, New Mexico and Colorado
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, M.W.
1982-09-01
Areas and formations within the Aztec 1/sup 0/ x 2/sup 0/ Quadrangle, New Mexico and Colorado considered favorable for uranium endowment of specified minimum grade and tonnage include, in decreasing order of favorability: (1) the Early Cretaceous Burro Canyon Formation in the southeastern part of the Chama Basin; (2) the Tertiary Ojo Alamo Sandstone in the east-central part of the San Juan Basin; and (3) the Jurassic Westwater Canyon and Brushy Basin Members of the Morrison Formation in the southwestern part of the quadrangle. Favorability of the Burro Canyon is based on the presence of favorable host-rock facies, carbonaceous materialmore » and pyrite to act as a reductant for uranium, and the presence of mineralized ground in the subsurface of the Chama Basin. The Ojo Alamo Sandstone is considered favorable because of favorable host-rock facies, the presence of carbonaceous material and pyrite to act as a reductant for uranium, and the presence of a relatively large subsurface area in which low-grade mineralization has been encountered in exploration activity. The Morrison Formation, located within the San Juan Basin adjacent to the northern edge of the Grants mineral belt, is considered favorable because of mineralization in several drill holes at depths near 1500 m (5000 ft) and because of favorable facies relationships extending into the Aztec Quadrangle from the Grants mineral belt which lies in the adjacent Albuquerque and Gallup Quadrangles. Formations considered unfavorable for uranium deposits of specified tonnage and grade include the remainder of sedimentary and igneous formations ranging from Precambrian to Quaternary in age. Included under the unfavorable category are the Cutler Formation of Permian age, and Dakota Sandstone of Late Cretaceous age, and the Nacimiento and San Jose Formations of Tertiary age.« less
Pollen and spores date origin of rift basins from Texas to nova scotia as early late triassic.
Traverse, A
1987-06-12
Palynological studies of the nonmarine Newark Supergroup of eastern North America and of rift basins in the northern Gulf of Mexico facilitate correlation with well-dated marine sections of Europe. New information emphasizes the chronological link between the Newark basins and a Gulf of Mexico basin and their common history in the rifting of North America from Pangea. Shales from the subsurface South Georgia Basin are shown to be of late Karnian age (early Late Triassic). The known time of earliest sedimentation in the Culpeper Basin is extended from Norian (late Late Triassic) to mid-Karnian, and the date of earliest sedimentation in the Richmond and Deep River basins is moved to at least earliest Karnian, perhaps Ladinian. The subsurface Eagle Mills Formation in Texas and Arkansas has been dated palynologically as mid- to late Karnian. The oldest parts of the Newark Supergroup, and the Eagle Mills Formation, mostly began deposition in precursor rift basins that formed in Ladinian to early Karnian time. In the southern Newark basins, sedimentation apparently ceased in late Karnian but continued in the northern basins well into the Jurassic, until genesis of the Atlantic ended basin sedimentation.
Foraminiferal stratigraphy of Ranikot (Paleocene) of Pakistan
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kureshy, A.A.
1983-03-01
The sedimentary deposits of Pakistan are divided into three distinct basins: the Lower Indus basin, the Upper Indus basin, and the Baluchistan basin. The Lower Indus basin is further divided into two parts; the northern part is the Sulaiman Province, and the southern part is known as Kirthar Province. The tertiary stratigraphy of Kirthar Province is conspicuous for its characteristic lithostratigraphic units. The Paleocene deposits of Kirthar Province are designated as Ranikot Group. The Ranikot Group was divided by Cheema et al in 1977 into three distinct lithostratigraphic units: the Khadro formation (Cardita beaumonti beds), Bara formation (Lower Ranikot), andmore » Lakhra formation (Upper Ranikot). The Khadro and Lakhra formations are marine, characterized by foraminiferal assemblages. The characteristic planktonic forms are: Globigerina triloculinoides Plummer, Globorotalia pseudobulloids (Plummer), G. compressa (Plummer), G. valascoensis (Cushman), and G. pseudomenardii Bolli. The diagnostic forms of larger foraminifera are: Nummulites nuttalli Davies, Miscellanea (d'Archiac and Haime), Kathina major Smout, and Lockartia conditii (Nuttall). The planktonic foraminifera were assigned to Globorotali trinidadensis, G. pseudomenardii, and G. velasoensis zones of Kureshy in 1977, and larger foraminifera were assigned to Nummulities nuttalli zones of Kureshy in 1978.« less
NASA Astrophysics Data System (ADS)
Izart, Alain; Tahiri, Abdelfatah; El Boursoumi, Abdou; Vachard, Daniel; Saidi, Mariam; Chèvremont, Philippe; Berkhli, Mostafa
2001-02-01
New Visean formations and biozones of foraminifera were defined on the Bouqachmir map. The new biozonation concerns the Moroccan biozone, Cfm1, which is subdivided into two subzones, Cfm1a and Cfm1b. This map exhibited, from north-west to south-east, the Tilouine, Bouqachmir-Tougouroulmès and Fourhal turbiditic basins. The first one, from Tournaisian to Late Visean, was the equivalent of the Sidi Bettache basin, located westwards. The second extended the Tilouine basin eastwards during the Visean. The third was a basin from Visean to Westphalian. They were separated by the Zaer-Oulmes and El Hammam horsts, else emerged or immersed, bordered by faults and with materials feeding chaotic deposits.
King, Thomas L; Clyburne, Jason A C; Lee, Kenneth; Robinson, Brian J
2013-06-15
Test facilities such as lab basins and wave tanks are essential when evaluating the use of chemical dispersants to treat oil spills at sea. However, these test facilities have boundaries (walls) that provide an ideal environment for surface (interfacial) film formation on seawater. Surface films may form from surfactants naturally present in crude oil as well as dispersant drift/overspray when applied to an oil spill. The objective of this study was to examine the impact of surface film formation on oil spreading rates in a small scale lab basin and on dispersant effectiveness conducted in a large scale wave tank. The process of crude oil spreading on the surface of the basin seawater was influenced in the presence of a surface film as shown using a 1st order kinetic model. In addition, interfacial film formation can greatly influence chemically dispersed crude oil in a large scale dynamic wave tank. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.
Hydrocarbon source rock potential of the Karoo in Zimbabwe
NASA Astrophysics Data System (ADS)
Hiller, K.; Shoko, U.
1996-07-01
The hydrocarbon potential of Zimbabwe is tied to the Karoo rifts which fringe the Zimbabwe Craton, i.e. the Mid-Zambezi basin/rift and the Mana Pools basin in the northwest, the Cabora Bassa basin in the north and the Tuli-Bubye and Sabi-Runde basins in the south. Based on the geochemical investigation of almost one thousand samples of fine clastic Karoo sediments, a concise source rock inventory has been established showing the following features. No marine source rocks have been identified. In the Mid-Zambezi area and Cabora Bassa basin, the source rocks are gas-prone, carbonaceous to coaly mudstones and coal of Lower Karoo age. In the Cabora Bassa basin, similar gas-prone source rocks occur in the Upper Karoo (Angwa Alternations Member). These kerogen type III source rocks are widespread and predominantly immature to moderately mature. In the southern basins, the Lower Karoo source rocks are gas-prone; in addition some have a small condensate potential. Most of the samples are, however, overmature due to numerous dolerite intrusions. Samples with a mixed gas, condensate and oil potential (mainly kerogen types II and III) were identified in the Lower Karoo (Coal Measure and Lower Madumabisa Mudstone Formations) of the Mid-Zambezi basin, and in the Louver Karoo (Mkanga Formation) and Upper Karoo (Upper Angwa Alternations Member Formation) of the Cabora Bassa basin. The source rocks, with a liquid potential, are also immature to moderately mature and were deposited in swamp, paludal and lacustrine environments of limited extent.
NASA Astrophysics Data System (ADS)
Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.
2017-08-01
High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.
NASA Technical Reports Server (NTRS)
Petro, N. E.
2012-01-01
The South Pole-Aitken Basin (SPA) is the largest, deepest, and oldest identified basin on the Moon and contains surfaces that are unique due to their age, composition, and depth of origin in the lunar crust [1-3] (Figure 1). SPA has been a target of interest as an area for robotic sample return in order to determine the age of the basin and the composition and origin of its interior [3-6]. As part of the investigation into the origin of SPA materials there have been several efforts to estimate the likely provenance of regolith material in central SPA [5, 6]. These model estimates suggest that, despite the formation of basins and craters following SPA, the regolith within SPA is dominated by locally derived material. An assumption inherent in these models has been that the locally derived material is primarily SPA impact-melt as opposed to local basement material (e.g. unmelted lower crust). However, the definitive identification of SPA derived impact melt on the basin floor, either by remote sensing [2, 7] or via photogeology [8] is extremely difficult due to the number of subsequent impacts and volcanic activity [3, 4]. In order to identify where SPA produced impact melt may be located, it is important to constrain both how much melt would have been produced in a basin forming impact and the likely source of such melted material. Models of crater and basin formation [9, 10] present clear rationale for estimating the possible volumes and sources of impact melt produced during SPA formation. However, if SPA formed as the result of an oblique impact [11, 12], the volume and depth of origin of melted material could be distinct from similar material in a vertical impact [13].
Response of the South China Sea to Forcing by Tropical Cyclone Ernie (1996)
1998-03-01
complicated. Wide continental shelves appear in the northwest and southwest of the basin and steep slopes in the central portion, framing a deep, bowl...bottom topography of the SCS basin provides a favorable condition for the formation of anticyclonic eddies in the central SCS during the spring. From...cyclone is produced. This cyclonic wind stress then generates Ekman upwelling in the central basin and the formation of a cold pool. Again, through
NASA Astrophysics Data System (ADS)
Zhou, T. Q.; Wu, C.; Zhu, W.
2017-12-01
Being a vital component of foreland basin of Central-western China, Southern Junggar Basin has observed solid evidences of oil and gas in recent years without a considerable advancement. The key reason behind this is the lack of systematic study on sedimentary provenance analysis of the Southern Junggar basin. Three parts of the Southern Junggar basin, including the western segment (Sikeshu Sag), the central segment (Qigu Fault-Fold Belt) and the eastern segment (Fukang Fault Zone), possess varied provenance systems, giving rise to difficulties for oil-gas exploration. In this study, 3468 heavy minerals data as well as the sedimentary environment analysis of 10 profiles and 7 boreholes were used to investigate the provenances of the deposits in the southern Junggar basin . Based on this research, it reveals that: Sikeshu sag initially shaped the foreland basin prototype in the Triassic and its provenance area of the sediments from the Sikeshu sag has primarily been situated in zhongguai uplift-chepaizi uplift depositional systems located in the northwestern margin of the Junggar Basin. From the early Jurassic, the key sources were likely to be late Carboniferous to early Permain post-collisional volcanic rocks from the North Tian Shan block to Centrao Tian Shan. In the Xishanyao formation, Abundant lithic metamorphic, epidote and garnet that suggests the source rocks were possibly late Carboniferous subduction-related arc volcanic rocks of the Central Tian Shan. In the Toutunhe formation, Bogda Mountains began uplifting and gradually becoming the major provenance. Moreover, the sedimentary boundaries of Junggar basin have also shifted towards the North Tian Shan again. In the late Jurassic, the conglomerates of the Kalazha formation directly overlie the fine-grained red beds of Qigu formation, which throw light on the rapid tectonic uplift of the North Tian Shan. In the eastern segment, meandering river delta and shore-lacustrine environments were fully developed in Badaowan formation indicating that the provenance of sediments mainly derived from the Kelameili Mountains. During the late Jurassic, the rapid uplift of Bogda Mountains could result into the distinct difference in heavy mineral assemblages between the eastern segment and the central segments.
Petroleum geology and resources of the West Siberian Basin, Russia
Ulmishek, Gregory F.
2003-01-01
The West Siberian basin is the largest petroleum basin in the world covering an area of about 2.2 million km2. The basin occupies a swampy plain between the Ural Mountains and the Yenisey River. On the north, the basin extends offshore into the southern Kara Sea. On the west, north, and east, the basin is surrounded by the Ural, Yenisey Ridge, and Turukhan-Igarka foldbelts that experienced major deformations during the Hercynian tectonic event and the Novaya Zemlya foldbelt that was deformed in early Cimmerian (Triassic) time. On the south, the folded Caledonian structures of the Central Kazakhstan and Altay-Sayan regions dip northward beneath the basin?s sedimentary cover. The basin is a relatively undeformed Mesozoic sag that overlies the Hercynian accreted terrane and the Early Triassic rift system. The basement is composed of foldbelts that were deformed in Late Carboniferous?Permian time during collision of the Siberian and Kazakhstan continents with the Russian craton. The basement also includes several microcontinental blocks with a relatively undeformed Paleozoic sedimentary sequence. The sedimentary succession of the basin is composed of Middle Triassic through Tertiary clastic rocks. The lower part of this succession is present only in the northern part of the basin; southward, progressively younger strata onlap the basement, so that in the southern areas the basement is overlain by Toarcian and younger rocks. The important stage in tectono-stratigraphic development of the basin was formation of a deep-water sea in Volgian?early Berriasian time. The sea covered more than one million km2 in the central basin area. Highly organic-rich siliceous shales of the Bazhenov Formation were deposited during this time in anoxic conditions on the sea bottom. Rocks of this formation have generated more than 80 percent of West Siberian oil reserves and probably a substantial part of its gas reserves. The deep-water basin was filled by prograding clastic clinoforms during Neocomian time. The clastic material was transported by a system of rivers dominantly from the eastern provenance. Sandstones within the Neocomian clinoforms contain the principal oil reservoirs. The thick continental Aptian?Cenomanian Pokur Formation above the Neocomian sequence contains giant gas reserves in the northern part of the basin. Three total petroleum systems are identified in the West Siberian basin. Volumes of discovered hydrocarbons in these systems are 144 billion barrels of oil and more than 1,300 trillion cubic feet of gas. The assessed mean undiscovered resources are 55.2 billion barrels of oil, 642.9 trillion cubic feet of gas, and 20.5 billion barrels of natural gas liquids. The largest known oil reserves are in the Bazhenov-Neocomian total petroleum system that includes Upper Jurassic and younger rocks of the central and southern parts of the basin. Oil reservoirs are mainly in Neocomian and Upper Jurassic clastic strata. Source rocks are organic-rich siliceous shales of the Bazhenov Formation. Most discovered reserves are in structural traps, but stratigraphic traps in the Neocomian clinoform sequence are pro-ductive and are expected to contain much of the undiscovered resources. Two assessment units are identified in this total petroleum system. The first assessment unit includes all conventional reservoirs in the stratigraphic interval from the Upper Jurassic to the Cenomanian. The second unit includes unconventional (or continuous), self-sourced, fractured reservoirs in the Bazhenov Formation. This unit was not assessed quantitatively. The Togur-Tyumen total petroleum system covers the same geographic area as the Bazhenov-Neocomian system, but it includes older, Lower?Middle Jurassic strata and weathered rocks at the top of the pre-Jurassic sequence. A Callovian regional shale seal of the Abalak and lower Vasyugan Formations separates the two systems. The Togur-Tyumen system is oil-prone; gas reserves are insignificant. The principal o
Tuttle, M.L.; Dean, W.E.; Parduhn, N.L.
1983-01-01
The Parachute Creek Member of the lacustrine Green River Formation contains thick sequences of rich oil-shale. The richest sequence and the richest oil-shale bed occurring in the member are called the Mahogany zone and the Mahogany bed, respectively, and were deposited in ancient Lake Uinta. The name "Mahogany" is derived from the red-brown color imparted to the rock by its rich-kerogen content. Geochemical abundance and distribution of eight major and 18 trace elements were determined in the Mahogany zone sampled from two cores, U. S. Geological Survey core hole CR-2 and U. S. Bureau of Mines core hole O1-A (Figure 1). The oil shale from core hole CR-2 was deposited nearer the margin of Lake Uinta than oil shale from core hole O1-A. The major- and trace-element chemistry of the Mahogany zone from each of these two cores is compared using elemental abundances and Q-mode factor modeling. The results of chemical analyses of 44 CR-2 Mahogany samples and 76 O1-A Mahogany samples are summarized in Figure 2. The average geochemical abundances for shale (1) and black shale (2) are also plotted on Figure 2 for comparison. The elemental abundances in the samples from the two cores are similar for the majority of elements. Differences at the 95% probability level are higher concentrations of Ca, Cu, La, Ni, Sc and Zr in the samples from core hole CR-2 compared to samples from core hole O1-A and higher concentrations of As and Sr in samples from core hole O1-A compared to samples from core hole CR-2. These differences presumably reflect slight differences in depositional conditions or source material at the two sites. The Mahogany oil shale from the two cores has lower concentrations of most trace metals and higher concentrations of carbonate-related elements (Ca, Mg, Sr and Na) compared to the average shale and black shale. During deposition of the Mahogany oil shale, large quantities of carbonates were precipitated resulting in the enrichment of carbonate-related elements and dilution of most trace elements as pointed out in several previous studies. Q-mode factor modeling is a statistical method used to group samples on the basis of compositional similarities. Factor end-member samples are chosen by the model. All other sample compositions are represented by varying proportions of the factor end-members and grouped as to their highest proportion. The compositional similarities defined by the Q-mode model are helpful in understanding processes controlling multi-element distributions. The models for each core are essentially identical. A four-factor model explains 70% of the variance in the CR-2 data and 64% of the O1-A data (the average correlation coefficients are 0. 84 and 0. 80, respectively). Increasing the number of factors above 4 results in the addition of unique instead of common factors. Table I groups the elements based on high factor-loading scores (the amount of influence each element has in defining the model factors). Similar elemental associations are found in both cores. Elemental abundances are plotted as a function of core depth using a five-point weighted moving average of the original data to smooth the curve (Figure 3 and 4). The plots are grouped according to the four factors defined by the Q-mode models and show similar distributions for elements within the same factor. Factor 1 samples are rich in most trace metals. High oil yield and the presence of illite characterize the end-member samples for this factor (3, 4) suggesting that adsorption of metals onto clay particles or organic matter is controlling the distribution of the metals. Precipitation of some metals as sulfides is possible (5). Factor 2 samples are high in elements commonly associated with minerals of detrital or volcanogenic origin. Altered tuff beds and lenses are prevalent within the Mahogany zone. The CR-2 end-member samples for this factor contain analcime (3) which is an alteration product within the tuff beds of the Green River Formation. Th
NASA Astrophysics Data System (ADS)
Chiu, Tzu-Hsuan; Tien-Shun Lin, Andrew; Chi, Wen-Rong; Wang, Shih-Wei
2017-04-01
Lithofacies and paleo-environmental analyses of the Pliocene-Pleistocene deposits of Taiwan provide a framework to understand the stratigraphic development of foreland basin to the west of the orogenic belt. In this study, we performed lithofacies analyses and biostratigraphic studies on calcareous nannofossils in two areas in south-central Taiwan, the Jhuoshuei River, and the Hushan Reservoir, respectively. The studied lithostratigraphic units are the Chinshui Shale, the Cholan Formation, and the Toukoshan Formation, in an ascending order, with a total stratigraphic thickness more than 3500 m in central Taiwan. Sixteen lithofacies and four lithofacies associations are identified, pertaining to tide-dominated deltaic systems bordering a shallow marine setting in the foreland basin. A few wide-spread layers of thickly-bedded sandstones featuring ball-and-pillow structures are interpreted as resulting from earthquake shaking (i.e., seismites). In addition, the vertical facies change shows a coarsening and shallowing-upward succession, indicating the gradually filling up of the foreland basin by sediment progradation. The progradation is interpreted to result from westward migrating orogenic belt and an increase in sediment supply. The top 2000-m thick foreland succession (i.e., the uppermost part of the Cholan Formation, and the Toukoshan Formation) is dominantly fluvial deposits with occasional intercalations of shoreface sediments, indicating an extremely rapid and balanced rate of basin subsidence and sediment supply for the past 1.5 Ma. Vertebrate fossils of deer and elephants are identified in the upper Cholan Formation deposited in coastal to fluvial settings. Keywords: Pliocene-Pleistocene Epoch, lithofacies, foreland basin, Taiwan
NASA Astrophysics Data System (ADS)
Bordy, Emese M.; Segwabe, Tebogo; Makuke, Bonno
2010-08-01
The Mosolotsane Formation (Lebung Group, Karoo Supergroup) in the Kalahari Karoo Basin of Botswana is a scantly exposed, terrestrial red bed succession which is lithologically correlated with the Late Triassic to Early Jurassic Molteno and Elliot Formations (Karoo Supergroup) in South Africa. New evidence derived from field observations and borehole data via sedimentary facies analysis allowed the assessment of the facies characteristics, distribution and thickness variation as well as palaeo-current directions and sediment composition, and resulted in the palaeo-environmental reconstruction of this poorly known unit. Our results show that the Mosolotsane Formation was deposited in a relatively low-sinuosity meandering river system that drained in a possibly semi-arid environment. Sandstone petrography revealed mainly quartz-rich arenites that were derived from a continental block provenance dominated by metamorphic and/or igneous rocks. Palaeo-flow measurements indicate reasonably strong, unidirectional current patterns with mean flow directions from southeast and east-southeast to northwest and west-northwest. Regional thickness and facies distributions as well as palaeo-drainage indicators suggest that the main depocenter of the Mosolotsane Formation was in the central part of the Kalahari Karoo Basin. Separated from this main depocenter by a west-northwest - east-southeast trending elevated area, an additional depocenter was situated in the north-northeast part of the basin and probably formed part of the Mid-Zambezi Karoo Basin. In addition, data also suggests that further northeast-southwest trending uplands probably existed in the northwest and east, the latter separating the main Kalahari Karoo depocenter from the Tuli Basin.
Some Cenozoic hydrocarbon basins on the continental shelf of Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dien, P.T.
1994-07-01
The formation of the East Vietnam Sea basins was related to different geodynamic processes. The pre-Oligocene basement consists of igneous, metamorphic, and metasediment complexes. The Cretaceous-Eocene basement formations are formed by convergence of continents after destruction of the Tethys Ocean. Many Jurassic-Eocene fractured magmatic highs of the Cuulong basin basement constitute important reservoirs that are producing good crude oil. The Paleocene-Eocene formations are characterized by intramountain metamolasses, sometimes interbedded volcanic rocks. Interior structures of the Tertiary basins connect with rifted branches of the widened East Vietnam Sea. Bacbo (Song Hong) basin is predominated by alluvial-rhythmic clastics in high-constructive deltas, whichmore » developed on the rifting and sagging structures of the continental branch. Petroleum plays are constituted from Type III source rocks, clastic reservoirs, and local caprocks. Cuulong basin represents sagging structures and is predominated by fine clastics, with tidal-lagoonal fine sandstone and shalestone in high-destructive deltas that are rich in Type II source rocks. The association of the pre-Cenozoic fractured basement reservoirs and the Oligocene-Miocene clastic reservoir sequences with the Oligocene source rocks and the good caprocks is frequently met in petroleum plays of this basin. Nan Conson basin was formed from complicated structures that are related to spreading of the oceanic branch. This basin is characterized by Oligocene epicontinental fine clastics and Miocene marine carbonates that are rich in Types I, II, and III organic matter. There are both pre-Cenozoic fractured basement reservoirs, Miocene buildup carbonate reservoir rocks and Oligocene-Miocene clastic reservoir sequences, in this basin. Pliocene-Quaternary sediments are sand and mud carbonates in the shelf facies of the East Vietnam Sea back-arc basin. Their great thickness provides good conditions for maturation and trapping.« less
NASA Astrophysics Data System (ADS)
Chen, Liuqin; Steel, Ronald J.; Guo, Fusheng; Olariu, Cornel; Gong, Chenglin
2017-02-01
Late Cretaceous continental redbeds, the Guifeng Group of the Yongchong Basin in SE China have been investigated to conduct detailed fan facies description and interpretation. Tectonic activities determined the alluvial fan development along the basin margin, but the alluvial facies was linked with paleoclimate changes. The Guifeng Group is divided into the Hekou, Tangbian and Lianhe formations in ascending order. The Hekou conglomerates are typically polymict, moderately sorted with erosional bases, cut-and-fill features, normal grading and sieve deposits, representing dominant stream-flows on alluvial fans during the initial opening stage of the basin infill. The Tangbian Formation, however, is characterized by structureless fine-grained sediments with dispersed coarse clasts, and couplets of conglomerate and sandstone or siltstone and mudstone, recording a change to a playa and ephemeral lake environments with occasional stream flooding, thus indicating a basin expanding stage. The hallmark of the Lianhe Formation is disorganized, poorly sorted conglomerates lack of erosional bases, and a wide particle-size range from clay to boulders together reflect mud-rich debris-flows accumulating on fans, likely related to reactivation of faulting along the northwestern mountain fronts during a post-rift stage. The depositional system changes from stream-flows up through playa with ephemeral streams to debris-flows during the accumulation of the three formations are thus attributed to different source rocks and climatic conditions. Therefore, the fluvial-dominated fans of the Hekou Formation recorded a subhumid paleoclimate (Coniacian-Santonian Age). The dominant semiarid climate during the Campanian Age produced abundant fine-grained sediments in the playa and ephemeral lake environments of the Tangbian Formation. A climatic change towards more humidity during the late stage of the Guifeng Group (Maastrichtian Age) probably yielded high deposition rate of coarse clasts in debris-flow dominated fans of the Lianhe Formation. Thus the Late Cretaceous climate changes are inferred to have influenced and preserved signals in the alluvial stratigraphy of the Yongchong Basin.
NASA Technical Reports Server (NTRS)
Long, D. G. F.
1992-01-01
The post-'event' fill of the Paleoproterozoic Sudbury Basin consists of at least 600 m of deep-water mudrocks of the Onwatin Formation, overlain by 850 m of lithic-arkosic muddy sandstones in the Chelmsford Formation. While mudstones of the Onwatin reflect deposition in a deep-water, anoxic setting, there is no clear evidence of local breccias, conglomerates, or sand bodies to support the concept that the basin was protected by the steep walls of an impact crater. Carbonates in the basal, Vermillion Member are of sedimentary exhalitive origin and were not derived from a shallow marine shelf. Turbidites in the Chelmsford Formation show no evidence of centripetal fill as might be expected from a restricted, circular basin. They appear to have been emplaced by predominantly southwesterly flowing turbidity currents, which showed little to no deflection along the depositional axis of an elongate foreland basin that developed in front of the rising Penokean mountain chain. While the presence of minor sandstone-filled fractures in parts of the Chelmsford Formation suggests the presence of north- or south-directed paleoslopes, no evidence is seen to support the existence of subbasins or a central uplift within the Sudbury Basin. While tilt-corrected paleocurrent orientations are ambiguous, due to postdepositional shortening of strata during cleavage development, strain correction of the observations makes little difference to the net, south-southwest-directed paleoflow.
Newsom, Horton E.; Barber, C.A.; Hare, T.M.; Schelble, R.T.; Sutherland, V.A.; Feldman, W.C.
2003-01-01
The hematite deposit in Meridiani Planum was selected for a Mars Exploration Rover (MER) landing site because water could be involved in the formation of hematite, and water is a key ingredient in the search for life. Our discovery of a chain of paleolake basins and channels along the southern margin of the hematite deposits in Meridiani Planum with the presence of the strongest hematite signature adjacent to a paleolake basin, supports the possible role of water in the formation of the hematite and the deposition of other layered materials in the region. The hematite may have formed by direct precipitation from lake water, as coatings precipitated from groundwater, or by oxidation of preexisting iron oxide minerals. The paleolake basins were fed by an extensive channel system, originating from an area larger than Texas and located south of the Schiaparelli impact basin. On the basis of stratigraphic relationships, the formation of channels in the region occurred over much of Mars' history, from before the layered materials in Meridiani Planum were deposited until recently. The location of the paleolake basins and channels is connected with the impact cratering history of the region. The earliest structure identified in this study is an ancient circular multiringed basin (800-1600 km diameter) that underlies the entire Meridiani Planum region. The MER landing site is located on the buried northern rim of a later 150 km diameter crater. This crater is partially filled with layered deposits that contained a paleolake in its southern portion. Copyright 2003 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Bromley, Michael H.
1991-09-01
Fluvial sandstones of the Kayenta Formation were analyzed using architectural element analysis. Paleocurrent trends, the distribution of lacustrine facies and local silcrete development indicate that synsedimentary movement of evaporites in the underlying Paradox Basin created an unstable basin floor beneath the Kayenta fluvial system. This instability resulted in deflection of fluvial axes, local basin development and local areas of interrupted fluvial deposition with eolian dunes. Paleocurrent trends in the Kayenta system reflect periodic interruptions of southwesterly flow. Salt migrating laterally out of a rim syncline into an adjacent salt anticline resulted in a rim syncline of slight topographic relief. The resulting basin was probably rapidly filled, allowing the resumption of southwesterly flow. Differential movement of salt (incipient solution collapse features (?)) resulted in the formation of small centripetal basins in which playa mudstones formed. A laterally extensive resistant ledge underlies a horizontal surface, suggestive of deflation to the water table of an exposed section of valley fill. A channel scour in the top of one of these surfaces has margins much steeper ( > 60°) than the angle of repose for unconsolidated sand. Early cementation of the exposed floodplain could account for this resistance.
The purpose of this study is to discuss the use of gas and co-produced formation water geochemistry for identifying the source of natural gas and present gas geochemistry for the northern Appalachian Basin.
Ahlbrandt, Thomas S.
2002-01-01
Since the first discovery of petroleum in Yemen in 1984, several recent advances have been made in the understanding of that countrys geologic history and petroleum systems. The total petroleum resource endowment for the combined petroleum provinces within Yemen, as estimated in the recent U.S. Geological Survey world assessment, ranks 51st in the world, exclusive of the United States, at 9.8 BBOE, which includes cumulative production and remaining reserves, as well as a mean estimate of undiscovered resources. Such undiscovered petroleum resources are about 2.7 billion barrels of oil, 17 trillion cubic feet (2.8 billion barrels of oil equivalent) of natural gas and 1 billion barrels of natural gas liquids. A single total petroleum system, the Jurassic Madbi Amran/Qishn, dominates petroleum generation and production; it was formed in response to a Late Jurassic rifting event related to the separation of the Arabian Peninsula from the Gondwana supercontinent. This rifting resulted in the development of two petroleum-bearing sedimentary basins: (1) the western MaRibAl Jawf / Shabwah basin, and (2) the eastern Masila-Jeza basin. In both basins, petroleum source rocks of the Jurassic (Kimmeridgian) Madbi Formation generated hydrocarbons during Late Cretaceous time that migrated, mostly vertically, into Jurassic and Cretaceous reservoirs. In the western MaRibAl Jawf / Shabwah basin, the petroleum system is largely confined to syn-rift deposits, with reservoirs ranging from deep-water turbidites to continental clastics buried beneath a thick Upper Jurassic (Tithonian) salt. The salt initially deformed in Early Cretaceous time, and continued halokinesis resulted in salt diapirism and associated salt withdrawal during extension. The eastern Masila-Jeza basin contained similar early syn-rift deposits but received less clastic sediment during the Jurassic; however, no salt formed because the basin remained open to ocean circulation in the Late Jurassic. Thus, Madbi Formation-sourced hydrocarbons migrated vertically into Lower Cretaceous estuarine, fluvial, and tidal sandstones of the Qishn Formation and were trapped by overlying impermeable carbonates of the same formation. Both basins were formed by extensional forces during Jurassic rifting; how-ever, another rifting event that formed the Red Sea and Gulf of Aden during Oligocene and Miocene time had a strong effect on the eastern Masila-Jeza basin. Recurrent movement of basement blocks, particularly during the Tertiary, rather than halokinesis, was critical to the formation of traps.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samson, S.D.; Andersen, C.B.
1994-03-01
The influence of outboard tectonostratigraphic terranes as a source of sediment to Ordovician foreland basins is unknown. To determine if there were changes in provenance, or changes in the importance of a given source region, the authors have analyzed shales from two foreland basins, the Tactonic Foreland basin of central New York and the Sevier Foreland basin of Tennessee, for their Nd isotopic compositions. Shales from the Taconic basin include those from the lower portion of Utica shale, Corynoides americanus graptolite Zone, and the uppermost portion of the Utica shale, including the Geniculograptus pygmaeus graptolite Zone. Initial [epsilon][sub Nd] valuesmore » for the oldest Taconic basin shales are [minus]12. Initial [epsilon][sub Nd] values for the younger Taconic basin shales range from [minus]9.7 to [minus]8.4. This increase in [epsilon][sub Nd] may reflect an increased influence of terranes outboard of the Laurentian margin. Samples from the Sevier basin include those from the Blockhouse and Tellico Formations. A sample of the lower Blockhouse Fm. has an initial [epsilon][sub Nd] of [minus]9.4, while mid-formation levels have [epsilon][sub Nd] = [minus]8.8. Initial [epsilon][sub Nd] ranges from [minus]8.0 to [minus]7.2 from Tellico Formation shales. Thus a trend towards increasing [epsilon][sub Nd] with decreasing age is also seen in the Sevier basin. This again suggests the possibility of an increasing influence from nearby terranes. The fact that the [epsilon][sub Nd] values are higher in the Sevier basin than in the Taconic basin indicates that the Sevier shales received detritus with a less evolved isotopic composition. This may reflect fundamentally different sources, such as a more juvenile terrane as an important source of Sevier basin shales.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-09
...-mile-long pipeline route in two locations to address concerns by General Chemical (Soda Ash) Partners... Uinta and Sweetwater Counties, Wyoming. This EA will be used by the Commission in its decision-making... type of filing you are making. A comment on a particular project is considered a ``Comment on a Filing...
Sherel Goodrich
2008-01-01
A small prescribed fire near the mouth of Trout Creek in Strawberry Valley, Wasatch County, Utah, on the Uinta National Forest provided an opportunity to compare production and vascular plant composition in unburned and burned areas. At four years post burn, production of herbaceous plants was about four times greater in the burned area than in the unburned area. Most...
NASA Technical Reports Server (NTRS)
Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.
2017-01-01
High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sari, A.; Geze, Y.
The studied area is a lake basin located in Bolu basin in Turkey. In the basin, from Upper Cretaceous to Upper Miocene 3,000-m thickness sediments were deposited. Upper Miocene Himmetoglu formation consisted of sandstone, claystone, and marl. To the middle level of the formation are located coal, bituminous limestone, and bituminous shales. In the basin, there are two coal beds whose thicknesses range from 1 to 13 m. The coals are easily breakable and black in color. In the coal beds exists some bituminous limestone and bituminous shales, and their thicknesses are between 5 and 45 cm. The amount ofmore » organic matter of the bituminous rocks from the Upper Miocene Himmetoglu formation are between 6.83 and 56.34 wt%, and the amount of organic matter of the bituminous limestone from the formation are between 13.58 and 57.16 wt%. These values indicate that these rocks have very good source potential. According to hydrogen index (HI), S2/S3, HI-T{sub max}, and HI-OI (oxygen index) parameters, kerogen types of the bituminous rocks and coals belonging to Upper Miocene Himmetoglu formation are Type I, Type II, and Type III. In accordance with HI, S2/S3, HI-T{sub max}, and HI-OI parameters, the bituminous rocks and coals from the Upper Miocene Himmetoglu formation are mostly immature.« less
NASA Astrophysics Data System (ADS)
Nugraha, A. M. S.; Widiarti, R.; Kusumah, E. P.
2017-12-01
This study describes a deep-water slump facies shale of the Early Miocene Jatiluhur/Cibulakan Formation to understand its potential as a source rock in an active tectonic region, the onshore West Java. The formation is equivalent with the Gumai Formation, which has been well-known as another prolific source rock besides the Oligocene Talang Akar Formation in North West Java Basin, Indonesia. The equivalent shale formation is expected to have same potential source rock towards the onshore of Central Java. The shale samples were taken onshore, 150 km away from the basin. The shale must be rich of organic matter, have good quality of kerogen, and thermally matured to be categorized as a potential source rock. Investigations from petrography, X-Ray diffractions (XRD), and backscattered electron show heterogeneous mineralogy in the shales. The mineralogy consists of clay minerals, minor quartz, muscovite, calcite, chlorite, clinopyroxene, and other weathered minerals. This composition makes the shale more brittle. Scanning Electron Microscope (SEM) analysis indicate secondary porosities and microstructures. Total Organic Carbon (TOC) shows 0.8-1.1 wt%, compared to the basinal shale 1.5-8 wt%. The shale properties from this outcropped formation indicate a good potential source rock that can be found in the subsurface area with better quality and maturity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solomon, S.C.
1979-04-10
The spatial and temporal relationships of linear rilles and mare ridges in the Serenitatis basin region of the moon are explained by a combination of lithospheric flexure in response to basin loading by basalt fill and a time-dependent global stress due to the thermal evolution of the lunar interior. The pertinent tectonic observations are the radial distance of basin concentric rilles or graben from the mare center; the location and orientation of mare ridges, interpreted as compressive features; and the restriction of graben formation to times older than 3.6 +- 0.2 b.y. ago, while ridge formation continued after emplacement ofmore » the youngest mare basalt unit (approx.3 b.y. ago). The locations of the graben are consistent with the geometry of the mare basalt load expected from the dimensions of multiring basins for values of the thickness of the elastic lithosphere beneath Serenitatis in the range 25--50 km at 3.6--3.8 b.y. ago. The locations and orientations of mare ridges are consistent with the load inferred from surface mapping and subsurface radar reflections for values of the elastic lithosphere thickness near 100 km at 3.0--3.4 b.y. ago. The thickening of the lithosphere beneath a major basin during the evolution of mare volcanism is thus clearly evident in the tectonics. The cessation of rille formation and the prolonged period of ridge formation are attributed to a change in the global horizontal thermal stress from extension to compression as the moon shifted from net expansion to overall cooling and contraction. Severe limits as placed on the range of possible lunar thermal histories. The zone of horizontal extensional stresses peripheral to mare loads favors the edge of mare basins as the preferred sites for mare basalt magma eruption in the later stages of mare fill, although subsidence may lead to accumulation of such young lavas in basin centers.« less
Waddell, K.M.; Freethey, G.W.; Susong, D.D.; Pyper, G.E.
1991-01-01
Problem: Questions have been raised concerning the adequacy of available water to fulfill the needs of storage, exchanges, diversions, and instream flows, pursuant to existing water rights in the Provo River drainage basin part of the Bonneville Unit. Also, concern has been expressed about the potential for seepage of water from Jordanelle Reservoir to underground mines. The Utah Congressional Delegation requested that the U.S. Geological Survey (USGS) review the results of analyses performed by and for the USBR.Purpose and Scope: The purpose of this report is to present the results of the USGS review of (1) the hydrologic data, techniques, and model used by the USBR in their hydrologic analyses of the Provo River drainage basin and (2) the results of a study of the potential for seepage from the Jordanelle Reservoir to nearby underground mines.The USGS reviewed USBR-supplied water demands, water utilization studies, and models of seepage from Jordanelle Reservoir. The USBR estimated that about 90 percent of the water supply for Jordanelle Reservoir will be water from Strawberry Reservoir exchanged for water from the Provo River stored in Utah Lake. If the Utah State Engineer allows the USBR to claim an estimated 19,700 acre-feet of return flows from the CUP, only about 77 percent of the supply would be derived from exchange of existing water rights in Utah Lake. The USGS assumed that planned importations of water from the Uinta Basin will be available and deliverable to fulfill the proposed exchanges.Water rights and demands are important for determining water availability. The USGS did not conduct an independent review of water rights and demands. The USSR and Utah Division of Water Rights use different methods in some areas for determining stress on the system based on past records. The USSR used "historical observed diversions" and the Utah Division of Water Rights use "diversion entitlements", which may not be equal to the historical diversions. The USGS based its review upon water demands used by the USSR. The Utah Division of Water Rights has responsibility for granting and enforcing water rights, and the final decisions on how the rights will be adjudicated lies with the Utah Division of Water Rights and with the courts. The USGS review did not consider the draft water distribution plan for the Utah Lake drainage basin proposed by the Utah State Engineer (written commun., October 15,1991). This plan, when finalized, may have an effect on water availability to the CUP.
NASA Astrophysics Data System (ADS)
Thompson, J. A.; Giles, K. A.; Rowan, M. G.; Hearon, T. E., IV
2016-12-01
The Paradox Basin in southeastern Utah and southwestern Colorado is a foreland basin formed in response to flexural loading by the Pennsylvanian-aged Uncompaghre uplift during the Ancestral Rocky Mountain orogen. Thick sequences of evaporites (Paradox Formation) were deposited within the foreland basin, which interfinger with clastic sediments in the foredeep and carbonates around the basin margin. Differential loading of the Pennsylvanian-Jurassic sediments onto the evaporites drove synsedimentary halokinesis, creating a series of salt walls and adjacent minibasins within the larger foreland basin. The growing salt walls within the basin influenced patterns of sediment deposition from the Pennsylvanian through the Cretaceous. By integrating previously published mapping with recent field observations, mapping, and subsurface interpretations of well logs and 2D seismic lines, we present interpretations of the timing, geometry, and nature of halokinesis within the Paradox Basin, which record the complex salt tectonic history in the basin. Furthermore, we present recent work on the relationships between the local passive salt history and the formation of syndepositional counter-regional extensional fault systems within the foreland. These results will be integrated into a new regional salt-tectonic and stratigraphic framework of the Paradox Basin, and have broader implications for interpreting sedimentary records in other basins with a mobile substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, David; Ellett, Kevin; Leetaru, Hannes
The Cambro-Ordovician strata of the Midwest of the United States is a primary target for potential geological storage of CO2 in deep saline formations. The objective of this project is to develop a comprehensive evaluation of the Cambro-Ordovician strata in the Illinois and Michigan Basins above the basal Mount Simon Sandstone since the Mount Simon is the subject of other investigations including a demonstration-scale injection at the Illinois Basin Decatur Project. The primary reservoir targets investigated in this study are the middle Ordovician St Peter Sandstone and the late Cambrian to early Ordovician Knox Group carbonates. The topic of thismore » report is a regional-scale evaluation of the geologic storage resource potential of the St Peter Sandstone in both the Illinois and Michigan Basins. Multiple deterministic-based approaches were used in conjunction with the probabilistic-based storage efficiency factors published in the DOE methodology to estimate the carbon storage resource of the formation. Extensive data sets of core analyses and wireline logs were compiled to develop the necessary inputs for volumetric calculations. Results demonstrate how the range in uncertainty of storage resource estimates varies as a function of data availability and quality, and the underlying assumptions used in the different approaches. In the simplest approach, storage resource estimates were calculated from mapping the gross thickness of the formation and applying a single estimate of the effective mean porosity of the formation. Results from this approach led to storage resource estimates ranging from 3.3 to 35.1 Gt in the Michigan Basin, and 1.0 to 11.0 Gt in the Illinois Basin at the P10 and P90 probability level, respectively. The second approach involved consideration of the diagenetic history of the formation throughout the two basins and used depth-dependent functions of porosity to derive a more realistic spatially variable model of porosity rather than applying a single estimate of porosity throughout the entire potential reservoir domains. The second approach resulted in storage resource estimates of 3.0 to 31.6 Gt in the Michigan Basin, and 0.6 to 6.1 Gt in the Illinois Basin. The third approach attempted to account for the local-scale variability in reservoir quality as a function of both porosity and permeability by using core and log analyses to calculate explicitly the net effective porosity at multiple well locations, and interpolate those results throughout the two basins. This approach resulted in storage resource estimates of 10.7 to 34.7 Gt in the Michigan Basin, and 11.2 to 36.4 Gt in the Illinois Basin. A final approach used advanced reservoir characterization as the most sophisticated means to estimating storage resource by defining reservoir properties for multiple facies within the St Peter formation. This approach was limited to the Michigan Basin since the Illinois Basin data set did not have the requisite level of data quality and sampling density to support such an analysis. Results from this approach led to storage resource estimates of 15.4 Gt to 50.1 Gt for the Michigan Basin. The observed variability in results from the four different approaches is evaluated in the context of data and methodological constraints, leading to the conclusion that the storage resource estimates from the first two approaches may be conservative, whereas the net porosity based approaches may over-estimate the resource.« less
NASA Astrophysics Data System (ADS)
Dishron, Joseph B.
2011-12-01
The Delaware Basin of the Permian Basin is a classic intra-cratonic basin of West Texas and Southeast New Mexico. Hydrocarbon exploration and production have occurred in the region since the early 1920s, and, as a result, the formations related to these oil and gas reserves have been studied in great detail. Some formations in the Delaware Basin, however, have not been studied in such detail, and this thesis examines one, lesser-known unit that could have economic potential. The Lamar Limestone (Lamar Lime) of the Bell Canyon Formation has commonly been dismissed as a production interval; rather, it has been described as a source and seal rock for the Ramsey Sand of the lower Bell Canyon Formation. However, recent studies found that the Lamar Lime was contributing to production, and it has been described by Trentham (2006) as a potentia "mini Barnett" reservoir. The depths of these deposits are in a range that is ideal for oil accumulation. This study made use of data from wells and test holes drilled in the western Delaware Basin, Culberson County, Texas. Many oil and gas wells have been drilled in the western Delaware Basin, but they are concentrated in the north and east portions of Culberson County. In addition, sulfur wells were drilled in the area in the late 1960s and early 1970s. Analyses of the well logs of these wells and of core and outcrop studies were completed to gain a better understanding of the distribution and economic potential of the Lamar. Both datasets were combined to provide information not readily available in the oil and gas dataset. The Lamar Lime is an excellent marker bed because it underlies thick evaporites. The evaporite sequences are Ochoan in age, and, therefore, the contact of the Lamar Lime (Bell Canyon Formation) and the Castile Formation is the approximate boundary for the Guadalupian-Ochoan Series. The Castile Formation, the Salado Formation, and the Rustler Formation (from oldest to youngest) are the evaporite units that consist of halite, gypsum, and anhydrite and are discussed herein. The boundary also marks a significant faunal-extinction event. The high organic content found in the Lamar Lime helps to evaluate the economic potential. Updated isopach and structural contour maps extend the knowledge of the Lamar Lime more to the western Delaware Basin.
Ryder, Robert T.; Swezey, Christopher S.; Trippi, Michael H.; Lentz, Erika E.; Avary, K. Lee; Harper, John A.; Kappel, William M.; Rea, Ronald G.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
Although the TOC analyses in this study indicate that good to very good source rocks are present in the Salina Group and Wills Creek Formation of southwestern Pennsylvania and northern West Virginia, data are insufficient to propose a new Silurian total petroleum system in the Appalachian basin. However, the analytical results of this investigation are encouraging enough to undertake more systematic studies of the source rock potential of the Salina Group, Wills Creek Formation, and perhaps the Tonoloway Formation (Limestone) and McKenzie Limestone (or Member).
Haneef, Mohammad; Rohr, D.M.; Wardlaw, B.R.
2000-01-01
The Altuda Formation (Capitanian) in the northwestern Glass Mountains is comprised of thin, even bedded limestones, dolostones, mixed clastic-carbonates, and silt/sandstones interbedded with basin-ward dipping wedge-shaped clinoforms of the Captian Limestone. The formation is characterized by graded bedding, planar laminations, flame structures, contorted/convolute bedding, horizontal branching burrows, and shelf-derived normal marine fauna. A detailed study of the Altuda Formation north of Old Blue Mountain, Glass Mountains, reveals that the formation in this area was deposited by turbidity currents in slope to basinal settings.
NASA Astrophysics Data System (ADS)
Zakharova, N. V.; Goldberg, D.
2017-12-01
Acoustic/sonic velocity (Vp) provides one of the best proxies for formation strength, which is essential for geomechanical modeling and formation evaluation. Vp-strength relations need to be built empirically for specific basins and/or rock types. Since velocity is stress- and frequency-dependent, such relations can be very sensitive to experimental conditions; therefore, it is important to quantify their effect on velocity values. In this study, we present confined velocity and strength measurements for over 70 samples from the Newark Rift basin, a candidate site for carbon sequestration, and one of the largest in a series of the Mesozoic rift basins on the eastern North-American coast. Acoustic velocity measurements were obtained for a range of confining pressures from 0 to 6,000 psi, roughly corresponding to in situ confining pressure range. Although, overall, Vp values tend to increase with increasing pressure, the degree of Vp response to stress varies dramatically from sample to sample, and does not appear to correlate directly to lithology or porosity. Select samples exhibit near-zero change in Vp with increasing confining pressure, while others are characterized by up to 15% Vp change with 3,000 psi increase in confining pressure. Compared to sonic logs, the low-stress Vp values usually underestimate sonic velocities, while high-stress values tend to overestimate them. Therefore, a systematic frequency-dependent core-log difference is not observed in these rift basin formations, but accounting for Vp dependence on confining pressure is important. We quantify the Vp-pressure dependence using laboratory acoustic measurements, and develop depth-dependent Vp-strength relation, which could be used with sonic logs for geomechanical analysis in similar Mesozoic rift basin formations.
Potential for deep basin-centered gas accumulation in Hanna Basin, Wyoming
Wilson, Michael S.; Dyman, Thaddeus S.; Nuccio, Vito F.
2001-01-01
The potential for a continuous-type basin-centered gas accumulation in the Hanna Basin in Carbon County, Wyoming, is evaluated using geologic and production data including mud-weight, hydrocarbon-show, formation-test, bottom-hole-temperature, and vitrinite reflectance data from 29 exploratory wells. This limited data set supports the presence of a hypothetical basin-centered gas play in the Hanna Basin. Two generalized structural cross sections illustrate our interpretations of possible abnormally pressured compartments. Data indicate that a gas-charged, overpressured interval may occur within the Cretaceous Mowry, Frontier, and Niobrara Formations at depths below 10,000 ft along the southern and western margins of the basin. Overpressuring may also occur near the basin center within the Steele Shale and lower Mesaverde Group section at depths below 18,000 to 20,000 ft. However, the deepest wells drilled to date (12,000 to 15,300 ft) have not encountered over-pressure in the basin center. This overpressured zone is likely to be relatively small (probably 20 to 25 miles in diameter) and is probably depleted of gas near major basement reverse faults and outcrops where gas may have escaped. Water may have invaded reservoirs through outcrops and fracture zones along the basin margins, creating an extensive normally pressured zone. A zone of subnormal pressure also may exist below the water-saturated, normal-pressure zone and above the central zone of overpressure. Subnormal pressures have been interpreted in the center of the Hanna Basin at depths ranging from 10,000 to 25,000 ft based on indirect evidence including lost-circulation zones. Three wells on the south side of the basin, where the top of the subnormally pressured zone is interpreted to cut across stratigraphic boundaries, tested the Niobrara Formation and recovered gas and oil shows with very low shut-in pressures.
NASA Astrophysics Data System (ADS)
López-Gamundí, Oscar; Fildani, Andrea; Weislogel, Amy; Rossello, Eduardo
2013-08-01
New SHRIMP radiogenic isotope dating on zircons in tuffs (280.8 ± 1.9 Ma) confirms the Early Permian (Artinskian) age of the uppermost section of the Tunas Formation. Tuff-rich levels in the Tunas Formation are exposed in the Ventana foldbelt of central Argentina; they are part of a deltaic to fluvial section corresponding to the late overfilled stage of the Late Paleozoic Sauce Grande foreland basin. Recent SHRIMP dating of zircons from the basal Choiyoi volcanics exposed in western Argentina yielded an age of 281.4 ± 2.5 Ma (Rocha-Campos et al., 2011). The new data for the Tunas tuffs suggest that the volcanism present in the Sauce Grande basin can be considered as the distal equivalent of the earliest episodes of the Choiyoi volcanism of western Argentina. From the palaeoclimatic viewpoint the new Tunas SHRIMP age confirms that by early Artinskian glacial conditions ceased in the Sauce Grande basin and, probably, in adajacent basins in western Gondwana.
Using 3D dynamic cartography and hydrological modelling for linear streamflow mapping
NASA Astrophysics Data System (ADS)
Drogue, G.; Pfister, L.; Leviandier, T.; Humbert, J.; Hoffmann, L.; El Idrissi, A.; Iffly, J.-F.
2002-10-01
This paper presents a regionalization methodology and an original representation of the downstream variation of daily streamflow using a conceptual rainfall-runoff model (HRM) and the 3D visualization tools of the GIS ArcView. The regionalization of the parameters of the HRM model was obtained by fitting simultaneously the runoff series from five sub-basins of the Alzette river basin (Grand-Duchy of Luxembourg) according to the permeability of geological formations. After validating the transposability of the regional parameter values on five test basins, streamflow series were simulated with the model at ungauged sites in one medium size geologically contrasted test basin and interpolated assuming a linear increase of streamflow between modelling points. 3D spatio-temporal cartography of mean annual and high raw and specific discharges are illustrated. During a severe flooding, the propagation of the flood waves in the different parts of the stream network shows an important contribution of sub-basins lying on impervious geological formations (direct runoff) compared with those including permeable geological formations which have a more contrasted hydrological response. The effect of spatial variability of rainfall is clearly perceptible.
40 CFR 147.2555 - Aquifer exemptions since January 1, 1999.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 1, 1999 Formation Approximate depth (feet belowground surface) Location Powder River Basin, only approximately 0.4 square miles of the Lance Formation which is less than 0.005% of the Basin at indicated depths... Christensen respectively, and radius of 1,320 feet. Both wells are located in the Christensen Ranch, in...
40 CFR 147.2555 - Aquifer exemptions since January 1, 1999.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 1, 1999 Formation Approximate depth (feet belowground surface) Location Powder River Basin, only approximately 0.4 square miles of the Lance Formation which is less than 0.005% of the Basin at indicated depths... Christensen respectively, and radius of 1,320 feet. Both wells are located in the Christensen Ranch, in...
40 CFR 147.2555 - Aquifer exemptions since January 1, 1999.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 1, 1999 Formation Approximate depth (feet belowground surface) Location Powder River Basin, only approximately 0.4 square miles of the Lance Formation which is less than 0.005% of the Basin at indicated depths... Christensen respectively, and radius of 1,320 feet. Both wells are located in the Christensen Ranch, in...
Klett, Timothy R.; Schenk, Christopher J.; Brownfield, Michael E.; Leathers-Miller, Heidi M.; Mercier, Tracey J.; Pitman, Janet K.; Tennyson, Marilyn E.
2016-11-10
Using a geology-based assessment methodology, the U.S. Geological Survey estimated mean continuous resources of 12 billion barrels of oil and 75 trillion cubic feet of gas in the Bazhenov Formation of the West Siberian Basin Province, Russia.
NASA Astrophysics Data System (ADS)
Jirásek, Jakub; Otava, Jiří; Matýsek, Dalibor; Sivek, Martin; Schmitz, Mark D.
2018-03-01
The Březina Formation represents the initiation of siliciclastic flysch turbidite sedimentation at the eastern margin of Bohemian Massif or within the Rhenohercynian foreland basin. Its deposition started after drowning of the Devonian carbonate platform during Viséan (Mississippian) times, resulting in a significant interval of black siliceous shale and variegated fossiliferous shale deposition in a starved basin. Near the top of the Březina Formation an acidic volcanoclastic layer (tuff) of rhyolitic composition has been dated with high precision U-Pb zircon chemical abrasion isotope dilution method at 337.73 ± 0.16 Ma. This new radiometric age correlates with the previously inferred stratigraphic age of the locality and the current calibration of the Early Carboniferous geologic time scale. Shales of the Březina Formation pass gradually upwards into the siliciclastics of the Rozstání Formation of the Drahany culm facies. Thus our new age offers one of the few available radioisotopic constraints on the time of onset of siliciclastic flysch turbidites in the Rhenohercynian foreland basin of the European Variscides.
NASA Astrophysics Data System (ADS)
McHarge, J. L.; Hajek, E. A.; Heller, P. L.
2007-12-01
Allogenic processes are considered a prime control on the stratigraphic distribution of channel bodies, however, recent studies have indicated that autogenic stratigraphic organization may occur within fluvial systems on basin- filling time scales (105-106 years). Groupings or clusters of closely-spaced channel bodies can be produced by several different mechanisms, including both allogenic and autogenic processes. Commonly, sand- dominated intervals in stratigraphic successions are interpreted as incised-valley fills produced by base-level changes. In contrast, long-timescale organization of river avulsion can generate similar stratigraphic patterns. For example, sand-dominated intervals in the fluvial Lance Formation (Maastrichtian; Bighorn Basin, WY) have been interpreted as incised-valley fills formed during sea-level lowstand. However, closely-spaced sand bodies in the Ferris Formation (Lance equivalent; Hanna Basin, WY) are interpreted as aggradational in origin, and have been compared to autogenic avulsion stratigraphy produced in experimental basins. We evaluate the Lance Formation in the southern Bighorn Basin in an effort to determine whether these sand-dominated intervals are truly incised- valley fills resulting from sea-level changes, or if they were generated by autogenic processes. The Lance Formation crops out in the western and southern margins of the basin, exposing relatively proximal and distal portions of the system. By comparing alluvial architecture between exposures, we evaluate similarities and differences from upstream to downstream and look for evidence of intrinsic and extrinsic controls on deposition. In both localities, the Lance Formation comprises multi-story sheet sandstones and smaller, single-story sandstones. Observed changes from upstream to downstream in the system include: 1) increasing paleoflow depths (from ~30-60 cm to ~70-120 cm); 2) decreasing preservation of fine-grained material within channel bodies; 3) increasing proportion of amalgamated, multi-story sand bodies; and 4) increasing lateral continuity of multi-story sand bodies. These results indicate that upstream, channel-body spacing is dominantly controlled by aggradational processes and may be the result of autogenic avulsion clustering, whereas downstream, evidence of incision and amalgamation indicate that base-level may have limited and controlled sand-body architecture.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, R.X.; Li, Y.Z.; Gao, Y.W.
2007-05-15
The Bohai Gulf basin is the largest petroliferous basin in China. Its Carboniferous-Permian deposits are thick (on the average, ca. 600 m) and occur as deeply as 5000 m. Coal and carbonaceous shale of the Carboniferous Taiyuan Formation formed in inshore plain swamps. Their main hydrocarbon-generating macerals are fluorescent vitrinite, exinite, alginite, etc. Coal and carbonaceous shale of the Permian Shanxi Formation were deposited in delta-alluvial plain. Their main hydrocarbon-generating macerals are vitrinite, exinite, etc. The carbonaceous rocks of these formations are characterized by a high thermal maturity, with the vitrinite reflectance R{sub 0} > 2.0%. The Bohai Gulf basinmore » has been poorly explored so far, but it is highly promising for natural gas.« less
Mechanics of Formation of Forearc Basins of Indonesia and Alaska
NASA Astrophysics Data System (ADS)
Cassola, T.; Willett, S.; Kopp, H.
2010-12-01
In this study, the mechanics of forearc basins will be the object of a numerical investigation to understand the relationships between the wedge deformation and forearc basin formation. The aim of this work is to gain insight into the dynamics of the formation of the forearc basin on top of a deforming accretionary wedge, including the mechanism of formation of accommodation space and preservation of basin stratigraphy. Our tool is a two-dimensional numerical model that includes the rheological properties of the rock, including effective internal friction angle, effective basal friction angle, thermally-activated viscosity and strain softening. We also simulate different sedimentation rates in the basin, to study the influence of underfilled and overfilled basin conditions on wedge deformation. The stratigraphy in the basin is simulated, because, as noted in earlier studies, underfilled conditions incourage tectonic deformation in the inner wedge. We compare the numerical model to basins along the Sunda-Java Trench and the Alaskan margin. The Sunda-Java Trench shows a variety of structural and basin styles including underfilled and overfilled basins and different wedge geometries along the same trench. We interprete and document these structural styles, using depth migrated seismic sections of the Sunda Trench, obtained in three surveys, GINCO (11/98 - 01/99), MERAMEX (16/09/04 - 7/10/04) and SINDBAD (9/10/06 - 9/11/06) and made available by the IFM-GEOMAR group in Kiel and the Bundesanstalt für Geowissenschaften and Rohstoffe (BGR) in Hannover. On the Alaska margin we focus on the Kenai Peninsula, Kodiak Island plateau. This segment of the margin has one of the largest accretionary wedge - forearc basin systems in the world. It also exhibits a double forearc basin system with an interior basin (Cook inlet) and an outer basin, outboard of Kodiak Island, which is a prime candidate for a negative-alpha basin, as described by Fuller et al., (Geology, 2006). A number of studies of the Alaska margin were conducted in the 1990s based out of GEOMAR. One important aspect of these margins is the presence of a dynamic backstop, characterized by older accreted material, that, although deformed during and after accretion, later becomes a stable part of the upper plate. We argue that, following critical wedge theory, it entered into the stability field of a wedge either by steepening or weakening of the underlying detachment. As a stable wedge, this older segment of the wedge acts as a mechanical backstop for the frontal deforming wedge. This dynamic backstop moves seaward in time, in response to isostatic loading by the growing wedge, or due to seaward retreat of the slab with a consequent steepening of the base of the wedge.
Recharge and Groundwater Flow Within an Intracratonic Basin, Midwestern United States.
Panno, Samuel V; Askari, Zohreh; Kelly, Walton R; Parris, Thomas M; Hackley, Keith C
2018-01-01
The conservative nature of chloride (Cl - ) in groundwater and the abundance of geochemical data from various sources (both published and unpublished) provided a means of developing, for the first time, a representation of the hydrogeology of the Illinois Basin on a basin-wide scale. The creation of Cl - isocons superimposed on plan view maps of selected formations and on cross sections across the Illinois Basin yielded a conceptual model on a basin-wide scale of recharge into, groundwater flow within and through the Illinois Basin. The maps and cross sections reveal the infiltration and movement of freshwater into the basin and dilution of brines within various geologic strata occurring at basin margins and along geologic structures. Cross-formational movement of brines is also seen in the northern part of the basin. The maps and cross sections also show barriers to groundwater movement created by aquitards resulting in areas of apparent isolation/stagnation of concentrated brines within the basin. The distribution of Cl - within the Illinois Basin suggests that the current chemical composition of groundwater and distribution of brines within the basin is dependent on five parameters: (1) presence of bedrock exposures along basin margins; (2) permeability of geologic strata and their distribution relative to one another; (3) presence or absence of major geologic structures; (4) intersection of major waterways with geologic structures, basin margins, and permeable bedrock exposures; and (5) isolation of brines within the basin due to aquitards, inhomogeneous permeability, and, in the case of the deepest part of the basin, brine density effects. © 2017, National Ground Water Association.
NASA Astrophysics Data System (ADS)
Tanner, L. H.; Kyte, F. T.
2015-12-01
To date, elevated Ir levels in continental sediments proximal to the Triassic-Jurassic boundary (TJB) have been reported only from Upper Triassic strata of the Newark and Fundy basins, below the basal extrusive units of the Central Atlantic Magmatic Province. We report here the first occurrence of elevated Ir above the oldest volcanic units, as well as additional horizons of Ir enrichment from other basins of the Newark Supergroup. In the Fundy Basin (Nova Scotia, Canada), lacustrine sediments of the Scots Bay Member of the McCoy Brook Formation that directly overlie the North Mountain Basalt contain Ir up to 413 pg/g in fish-bearing strata very close to the palynological TJB. Higher in the formation the strata lack significant Ir enrichment. Similarly, sedimentary strata from between flows of North Mount Basalt show no Ir appreciable enrichment. The Deerfield Basin (Massachusetts) extension of the Hartford Basin contains only one CAMP extrusive unit, the Lower Jurassic Deerfield Basalt. Very modest Ir enrichment, up to 90 pg/g, occurs in the Fall River Beds of the Sugarloaf Formation, several meters below the basalt, and up to 70 pg/g in the Turners Falls Formation less than 2 meters above the basalt. The uppermost New Haven Formation (Upper Triassic) at the Silver Ridge locality (Guilford, CT) in the Hartford Basin contains abundant plant debris, but no evidence of elevated Ir. At the Clathopteris locality to the north (Holyoke, MA), potentially correlative strata that are fine grained and rich in plant remains have Ir enriched to 542 pg/g, an order of magnitude higher than in the coarser-grained strata in direct stratigraphic contact. The high-Ir beds also have elevated REEs relative to other Hartford Basin samples, although there is no evidence of HREE enrichment. We consider the basalts of the Central Atlantic Magmatic Province, widely accepted as the driver of Late Triassic extinctions, as the origin of the elevated Ir levels in the Newark Supergroup.
Bouse Formation in the Bristol basin near Amboy, California, USA
Miller, David M.; Reynolds, Robert E.; Bright, Jordan E.; Starratt, Scott W.
2014-01-01
Limestone beds underlain and overlain by alluvial fan conglomerate near Amboy, California, are very similar in many respects to parts of the Bouse Formation, suggesting that an arm of the Pliocene Bouse water body extended across a wide part of the southern Mojave Desert. The deposits are north of the town of Amboy at and below an elevation of 290 m, along the northern piedmont of the Bristol “dry” Lake basin. The Amboy outcrops contain the Lawlor Tuff (4.83 Ma), which is also found in an outcrop of the Bouse Formation in the Blythe basin near Buzzards Peak in the Chocolate Mountains, 180 km southeast of Amboy. Bouse exposures near Amboy are ∼3.4 m thick, white, distinctly bedded, with limestone and calcareous sandstone as well as stromatolite mounds; we interpret these as nearshore deposits. The Bouse at Amboy contains ostracodes, diatoms, and mollusks that indicate saline lake or estuarine environments with an admixture of fresh-water forms. Along with wading bird tracks and a spine from a marine fish, these fossils suggest that the deposits formed in saline waters near a fresh-water source such as a perennial stream. Beds of the outcrop dip southward and are 113 m above the surface of Bristol Playa, where similar age sediments are buried 270+ m deep, indicating significant faulting and vertical tectonics in this part of the Eastern California Shear Zone during the past 5 m.y. Confirmation of the Bouse Formation at Amboy strengthens previous assignments to the Bouse Formation for mudstones in driller logs at Danby “dry” Lake, California, and suggests that areally extensive arms of the Bouse water body were west of the Blythe basin. The Bristol basin arm of the lower Bouse basin probably was restricted from the main water body by narrow passages, but Bouse sediment there is similar to that in the Blythe basin, suggesting generally similar water chemistry and environmental conditions. Examining the degree to which Bouse deposits in the western arms differed from Bouse deposits in the Blythe basin offers an approach to test whether the southernmost Bouse water body was deposited in an estuarine or lacustrine setting.
Syn-Rift Systems of East Godavari Sub Basin: Its Evolution and Hydrocarbon Prospectivity
NASA Astrophysics Data System (ADS)
Dash, J., Jr.; Zaman, B.
2014-12-01
Krishna Godavari (K.G.) basin is a passive margin basin developed along the Eastern coast of India. This basin has a polyhistoric evolution with multiple rift systems. Rift basin exploration has provided the oil and gas industry with almost one third of discovered global hydrocarbon resources. Understanding synrift sequences, their evolution, depositional styles and hydrocarbon prospectivity has become important with recent discovery of the wells, G-4-6,YS-AF and KG-8 in the K.G. offshore basin. The East Godavari subbasin is a hydrocarbon producing basin from synrift and pre-rift sediments, and hence this was selected as the study area for this research. The study has been carried out by utilizing data of around 58 wells (w1-w58) drilled in the study area 25 of which are hydrocarbon bearing with organic thickness varying from 200 m to 600 m. Age data generated by palaentology and palynology studies have been utilized for calibration of key well logs to differentiate between formations within prerift and synrift sediments. The electrologs of wells like resistivity, gamma ray, neutron, density and sonic logs have been utilized for correlation of different formations in all the drilled wells. The individual thicknesses of sand, shale and coal in the formations have been calculated and tabulated. For Golapalli formation, the isopach and isolith maps were generated which revealed that there were four depocentres with input from the north direction. Schematic geological cross sections were prepared using the well data and seismic data to understand the facies variation across the basin. The sedimentological and petrophysical analysis reports and electro log suites were referred to decipher the environment of deposition, the reservoir characteristics, and play types. The geochemical reports [w4 (Tmax)= 455-468 °C; w1 (Tmax) = 467-514 °C; w4(VRO)= 0.65-0.85; w1(VRO)= 0.83-1.13] revealed the source facies, its maturation and migration timings i.e. the petroleum systems. It was concluded these fluvial channel systems constitute the main hydrocarbon play for the Mandapeta and Gollapalli formations and these channel systems if found at a structurally advantageous positions should prove to be good hydrocarbon targets.
NASA Astrophysics Data System (ADS)
Beukes, N. J.; Smith, A.
2013-12-01
Archean to Early Paleoproterozoic ocean basins are commonly, although not exclusively, depicted as rather static systems; either permanently stratified with shallow mixed oxygenated water overlying anoxic deep water or with a totally anoxic water column. The anoxic water columns are considered enriched in dissolved ferrous iron derived from hydrothermal plume activity. These sourced deposition of iron formations through precipitation of mainly ferrihydrite via reaction with free oxygen in the stratified model or anaerobic iron oxidizing photoautotrophs in the anoxic model. However, both these models face a simple basic problem if detailed facies reconstructions of deepwater microbanded iron formations (MIFs) are considered. In such MIFs it is common that the deepest water and most distal facies is hematite rich followed shoreward by magnetite, iron silicate and siderite facies iron formation. Examples of such facies relations are known from jaspilitic iron formation of the ~3,2 Ga Fig Tree Group (Barberton Mountainland), ~ 2,95 Ga iron formations of the Witwatersrand-Mozaan basin and the ~2,5 Ga Kuruman Iron Formation, Transvaal Supergroup, South Africa. Facies relations of these MIFs with associated siliciclastics or carbonates also indicate that the upper water columns of the basins, down to below wave base, were depleted in iron favoring anoxic-oxic stratification rather than total anoxia. In the MIFs it can be shown that hematite in the distal facies represents the earliest formed diagenetic mineral; most likely crystallized from primary ferrihydrite. The problem is one of how ferrihydrite could have been preserved on the ocean floor if it was in direct contact with reducing ferrous deep bottom water. Rather dissolved ferrous iron would have reacted with ferrihydrite to form diagenetic magnetite. This dilemma is resolved if in the area of deepwater hematite MIF deposition, the anoxic ferrous iron enriched plume was detached from the basin floor due to buoyancy in slightly oxygenated cold deep ocean water. Ferrihydrite, precipitated along the oxic-anoxic interface along the bottom of the buoyant plume could then settle to the floor of the basin without interference of dissolved ferrous iron. This model requires that oxygen, derived from photosynthesis in shallow water, circulated down to deep water creating a slightly oxygenated ocean basin system invaded by buoyant anoxic ferrous plumes. In areas where these plumes came in contact with the basin floor, magnetite and/or carbonate facies iron formation formed; the latter in areas of highest organic carbon influx. Extensive glacial diamictites in the Witwatersrand-Mozaan basin argues for climatic zonation in the Mesoarchean driving deep ocean currents. This model may explain why the rise of oxygen in the atmosphere was so long delayed after development of oxygenic photosynthesis; simply because in the dynamic ocean system oxygen could come into contact with much larger volumes of reduced species in the water column and along the ocean floor than in a static stratified system. It also impacts on reconstruction of microbial communities in Archean oceans.
NASA Astrophysics Data System (ADS)
Boekhout, F.; Reitsma, M. J.; Spikings, R.; Rodriguez, R.; Ulianov, A.; Gerdes, A.; Schaltegger, U.
2018-03-01
The tectonic evolution of the western Gondwana margin during Pangaea amalgation is recorded in variations in the Permo-Carboniferous back-arc basin sedimentation of Peru. This study provides the first radiometric age constraints on the volcanic and sedimentary sequences of south-central eastern Peru up to the western-most tip of Bolivia, and now permits the correlation of lateral facies variations to the late Paleozoic pre-Andean orogenic cycle. The two phases of Gondwanide magmatism and metamorphism at c. 315 Ma and c. 260 Ma are reflected in two major changes in this sedimentary environment. Our detrital U-Pb zircon ages demonstrate that the timing of Ambo Formation deposition corroborates the Late Mississipian age estimates. The transition from the Ambo to the Tarma Formation around the Middle Pennsylvanian Early Gondwanide Orogeny (c. 315 Ma) represents a relative deepening of the basin. Throughout the shallow marine deposits of the Tarma Formation evidence for contemporaneous volcanism becomes gradually more pronounced and culminates around 312 - 309 Ma. Continuous basin subsidence resulted in a buildup of platform carbonates of the Copacabana Formation. Our data highlights the presence of a previously unrecognized phase of deposition of mainly fluvial sandstones and localized volcanism (281-270 Ma), which we named ´Oqoruro Formation'. This sedimentary succession was previously miss-assigned to the so-called Mitu Group, which has recently been dated to start deposition in the Middle Triassic (∼245-240 Ma). The emersion of this marine basin coincides with the onset of a major plutonic pulse related to the Late Gondwanide Orogeny (c. 260). Exhumation lead to the consequent retreat of the epeiric sea to the present-day sub-Andean region, and the coeval accumulation of the fluvial Oqoruro Formation in south eastern Peru. These late Paleozoic palaeoenvironmental changes in the back-arc basins along the western Gondwana margin of southern reflect changes in tectonic plate reorganization in a long-lived Paleozoic accretionary orogeny.
Pliocene-Pleistocene coastal events and history along the western margin of Australia
Kendrick, G.W.; Wyrwoll, K.-H.; Szabo, B. J.
1991-01-01
Coastal deposits along the western coastal margin of Australia, a region of relative tectonic stability, record Plio-Pleistocene events and processes affecting the inner shelf and adjacent hinterland. Tectonic deformation of these deposits is more apparent in the Carnarvon Basin, and rather less so in the Perth Basin. The most complete record comes from the Perth Basin, where units of Pliocene and Pleistocene ages are well represented. In the Perth Basin, the predominantly siliciclastic Yoganup Formation, Ascot Formation and Bassendean Sand represent a complex of shoreline, inner shelf and regressive-dune facies equivalents, the deposition of which began at an undetermined stage of the Pliocene, through to the Early Pleistocene. The deposition of this sequence closed with a major regression and significant faunal extinction. Bioclastic carbonates characterize the Middle and Late Pleistocene of the Perth and Carnarvon basins. Fossil assemblages include a distinct subtropical element, unknown from the Ascot Formation and suggesting a strengthening of the Leeuwin Current. The estuarine arcoid bivalve Anadara trapezia characterizes assemblages of Oxygen Isotope Stages 5 and 7 in the Perth and Carnarvon basins, where it is now extinct. Deposits of Substage 5e (Perth Basin) also record a southerly expansion of warm-water corals and other fauna consistent with shelf temperatures warmer than present. New uranium-series ages on corals from marine sequences of the Tantabiddi Member, of the Bundera Calcarenite of the western Cape Range are consistent with the 'double peak' hypothesis for levels of Substage 5e but the evidence remains less than conclusive. Initial uranium-series dates from the Bibra and Dampier formations of Shark Bay indicate that both derive from the Late Pleistocene. These numerical ages contradict previous interpretations of relative ages obtained from field studies. The age relationship of the units requires further investigation. ?? 1991.
The Sedimentary History of Southern Central Crete: Implications for Neogene Uplift
NASA Astrophysics Data System (ADS)
Kröger, K.; Brachert, T. C.; Reuter, M.
2003-04-01
The tectonic setting of Crete was largely extensional since Lower Miocene uplift and exhumation of HP/LT rocks. Erosion of uplifted areas resulted in the deposition of terrestrial to marine sediments in the Messara and Iraclion Basins. There are several concurring models that discuss Late Neogene uplift of the basinal margins. Neogene near shore sediments in the south of the Messara Basin record fault movements contemporaneous to sedimentation and sedimentary input from the hinterland. Therefore they provide information on the paleogeographic situation and the resulting amount of subsidence and uplift of mountain areas since the Upper Miocene. The studied sediments consist of terrestrial to shallow marine, floodplain related sediments of the Upper Miocene Ambelouzos Formation that are overlain by platform limestones of the Upper Miocene Varvara Formation. In the Messara Basin these units are overlain by the Pliocene Kourtes Formation. The stratigraphic architecture of these deposits indicates fragmentation of the basinal margin. Proximal boulder conglomerates and reworked blocks of the Ambelouzos formation indicate fault activity during the deposition of the Varvara Formation. Contents of terrigenous clastics, provided by rivers and distributed by longshore currents, are high in the Ambelouzos and the lower Varvara Formations but decrease rapidly upsection within the Varvara Formation. This indicates drowning of the fault bounded blocks and little topography of the hinterland (Asteroussia Mountains) at that time. The Pliocene marls at the southern margin of the Messara Basin contain lithoclasts of the Upper Miocene limestones and thus indicate uplift of the carbonate platform. The modern topographic elevation of formerly drowned fault bounded blocks requires a minimum uplift of 400m. Main uplift occurred at approximately orthogonal NW-SE and SW-NE striking normal to oblique faults. The present elevation of the Asteroussia Mountains indicates net uplift of at least 1000m since the Early Pliocene. At the Central Iraklion Ridge that separates the Messara and Iraclion Basins a similar history is indicated for the Psiloritis Mountains by fault movements within Neogene near shore sediments and their subsequent drowning. A structural model of the Neogene evolution of Crete therefore has to explain successive phases of uplift and subsidence in an over all extensional setting only slightly oblique to the modern direction of convergence between Africa and the Aegean microplate.
Rymer, Michael J.; Roth, Barry; Bradbury, J. Platt; Forester, Richard M.
1988-01-01
We describe the depositional environments of the Cache, Lower Lake, and Kelseyville Formations in light of habitat preferences of recovered mollusks, ostracodes, and diatoms. Our reconstruction of paleoenvironments for these late Cenozoic deposits provides a framework for an understanding of basin evolution and deposition in the Clear Lake region. The Pliocene and Pleistocene Cache Formation was deposited primarily in stream and debris flow environments; fossils from fine-grained deposits indicate shallow, fresh-water environments with locally abundant aquatic vegetation. The fine-grained sediments (mudstone and siltstone) were probably deposited in ponds in abandoned channels or shallow basins behind natural levees. The abandoned channels and shallow basins were associated with the fluvial systems responsible for deposition of the bulk of the technically controlled Cache Formation. The Pleistocene Lower Lake Formation was deposited in a water mass large enough to contain a variety of local environments and current regimes. The recovered fossils imply a lake with water depths of 1 to 5 m. However, there is strong support from habitat preferences of the recovered fossils for inferring a wide range of water depths during deposition of the Lower Lake Formation; they indicate a progressively shallowing system and the culmination of a desiccating lacustrine system. The Pleistocene Kelseyville Formation represents primarily lacustrine deposition with only minor fluvial deposits around the margins of the basin. Local conglomerate beds and fossil tree stumps in growth position within the basin indicate occasional widespread fluvial incursions and depositional hiatuses. The Kelseyville strata represent a large water mass with a muddy and especially fluid substrate having permanent or sporadic periods of anoxia. Central-lake anoxia, whether permanent or at irregular intervals, is the simplest way to account for the low numbers of benthic organisms recovered from the Kelseyville Formation. Similar low-oxygen conditions for benthic life are represented throughout the sedimentary history of Clear Lake. Water depths for the Kelseyville Formation of 10 to 30 m and 12 m near the margins of the basin are inferred both before and after fluvial incursions. These water-depth fluctuations cannot be correlated with major climatic changes as indicated by pollen and fossil leaves and cones; they may be due to faulting in this technically active region.
Rio Grande/Rio Bravo Basin Coalition
Sarah Kotchian
1999-01-01
In June 1994, one hundred people gathered for the first Uniting the Basin Conference in El Paso to discuss the state of their basin and to explore ways to improve its sustainability for future generations. One of the recommendations of that conference was the formation of an international non-governmental coalition of groups throughout the Basin to share information...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Olea, Ricardo A., E-mail: olea@usgs.gov; Cook, Troy A.; Coleman, James L.
2010-12-15
The Greater Natural Buttes tight natural gas field is an unconventional (continuous) accumulation in the Uinta Basin, Utah, that began production in the early 1950s from the Upper Cretaceous Mesaverde Group. Three years later, production was extended to the Eocene Wasatch Formation. With the exclusion of 1100 non-productive ('dry') wells, we estimate that the final recovery from the 2500 producing wells existing in 2007 will be about 1.7 trillion standard cubic feet (TSCF) (48.2 billion cubic meters (BCM)). The use of estimated ultimate recovery (EUR) per well is common in assessments of unconventional resources, and it is one of themore » main sources of information to forecast undiscovered resources. Each calculated recovery value has an associated drainage area that generally varies from well to well and that can be mathematically subdivided into elemental subareas of constant size and shape called cells. Recovery per 5-acre cells at Greater Natural Buttes shows spatial correlation; hence, statistical approaches that ignore this correlation when inferring EUR values for untested cells do not take full advantage of all the information contained in the data. More critically, resulting models do not match the style of spatial EUR fluctuations observed in nature. This study takes a new approach by applying spatial statistics to model geographical variation of cell EUR taking into account spatial correlation and the influence of fractures. We applied sequential indicator simulation to model non-productive cells, while spatial mapping of cell EUR was obtained by applying sequential Gaussian simulation to provide multiple versions of reality (realizations) having equal chances of being the correct model. For each realization, summation of EUR in cells not drained by the existing wells allowed preparation of a stochastic prediction of undiscovered resources, which range between 2.6 and 3.4 TSCF (73.6 and 96.3 BCM) with a mean of 2.9 TSCF (82.1 BCM) for Greater Natural Buttes. A second approach illustrates the application of multiple-point simulation to assess a hypothetical frontier area for which there is no production information but which is regarded as being similar to Greater Natural Buttes.« less
Beikman, Helen M.
1962-01-01
The Powder River Basin is a structural and topographic basin occupying an area of about 20,000 square miles in northeastern Wyoming arid southeastern Montana. The Basin is about 230 miles long in a northwest-southeast direction and is about 100 miles wide. It is bounded on three sides by mountains in which rocks of Precambrian age are exposed. The Basin is asymmetrical with a steep west limb adjacent to the Bighorn Mountains and a gentle east limb adjacent to the Black Hills. Sedimentary rocks within the Basin have a maximum thickness of about 18,000 feet and rocks of every geologic period are represented. Paleozoic rocks are about 2,500 feet thick and consist of marine bonate rocks and sandstone; Mesozoic rocks are about 9,500 feet thick and consist of both marine and nonmarine siltstone and sandstone; and Cenozoic rocks are from 4,000 to 6,000 feet thick and consist of coal-bearing sandstone and shale. Radioactive waste could be stored in the pore space of permeable sandstone or in shale where space could be developed. Many such rock units that could be used for storing radioactive wastes are present within the Powder River Basin. Permeable sandstone beds that may be possible reservoirs for storage of radioactive waste are present throughout the Powder River Basin. These include sandstone beds in the Flathead Sandstone and equivalent strata in the Deadwood Formation, the Tensleep Sandstone and equivalent strata in the Minnelusa Formation and the Sundance Formation in rocks of pre-Cretaceous age. However, most of the possible sandstone reservoirs are in rocks of Cretaceous age and include sandstone beds in the Fall River, Lakota, Newcastle, Frontier, Cody, and Mesaverde Formations. Problems of containment of waste such as clogging of pore space and chemical incompatibility would have to be solved before a particular sandstone unit could be selected for waste disposal. Several thick sequences of impermeable shale such as those in the Skull Creek, Mowry, Frontier, Belle Fourche, Cody, Lewis, and Pierre Formations, occur in rocks of Cretaceous age in the Basin. Limited storage space for liquid waste might be developed in impermeable shale by fracturing the shale and space for calcined or fused waste could be developed by mining cavities.
Sherel Goodrich; Allen Huber; Brian Monroe
2008-01-01
Photography and notes on file at the Supervisors Office, Ashley National Forest make it possible to date many fires in mountain big sagebrush (Artemisia tridentata ssp. vaseyana) communities on this National Forest. Crown cover of mountain big sagebrush and other shrubs was measured in repeat visits to many burned sites. Burned...
Snow in Southwest United States
NASA Technical Reports Server (NTRS)
2002-01-01
In late December, the Southwest was blanketed with snow, and this scence was captured by MODIS on December 27, 2001. The white drape contrasts sharply with the red rock of the Colorado Plateau, a geologic region made up of a succession of plateaus and mesas composed mostly of sedimentary rock, whose reddish hues indicate the presence of oxidized iron. The Plateau covers the Four Corners area of the Southwest, including (clockwise from upper left) southern Utah, Colorado, New Mexico, and Arizona. The region gets its name from the Colorado River, seen most prominently as a dark ribbon running southwest through southern Utah. At the upper left of the image, a bank of low clouds partially obscures Utah's Great Salt Lake, but its faint outline is still visible. To the east and southeast of the lake, some high peaks of the Wasatch Mountain range break free of the clouds. The Park City area, one of the 2002 Winter Olympic venues, can be seen poking through the cloud deck about 75km southeast of the lake. Farther east, the dark Uinta Mountains follow the border between Colorado and Wyoming. The Uinta are one of the rare east-west running ranges of the Rocky Mountains.
Gravity Field of the Orientale Basin from the Gravity Recovery and Interior Laboratory Mission
NASA Technical Reports Server (NTRS)
Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.;
2016-01-01
The Orientale basin is the youngest and best-preserved major impact structure on the Moon. We used the Gravity Recovery and Interior Laboratory (GRAIL) spacecraft to investigate the gravitational field of Orientale at 3- to 5-kilometer (km) horizontal resolution. A volume of at least (3.4 +/- 0.2) × 10(exp 6) cu km of crustal material was removed and redistributed during basin formation. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be inferred to be between 320 and 460 km. The gravity field resolves distinctive structures of Orientale's three rings and suggests the presence of faults associated with the outer two that penetrate to the mantle. The crustal structure of Orientale provides constraints on the formation of multiring basins.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Elmore, R.D.; Sutherland, P.K.; White, P.B.
1990-09-01
Recurrent uplift of the Ouachita fold belt in Oklahoma coincided with the disruption of the Arkoma basin following the deposition of the Boggy Formation (early Desmoinesian time). The Boggy, composed of sandstone-shale sequences that record southerly progradation of coal-bearing, fluvially dominated deltaic complexes into the Arkoma basin, was folded at the time of uplift of the Ouachita fold belt. The uplift ended the progressive subsidence of the Arkoma basin and shifted the depocenter to the northwest. Subsequently, the Thurman Formation (middle Desmoinesian), which had a source in the southeast, was deposited in the smaller resurgent foreland basin over the foldedmore » and eroded surface of the Boggy. Chert-pebble conglomerates in the Thurman were derived from the erosion of newly elevated Ordovician and Devonian cherts in the core of the Ouachita foldbelt. Sandstone-shale packages are found in both formations. The origin of the coal-bearing cycles in the Boggy are enigmatic, but they probably were controlled by a combination of factors such as glacio-eustatic changes in sea level and delta-lobe abandonment. In contrast, cycles in the Thurman probably were strongly influenced by episodic thrust faulting and uplift in the Ouachitas.« less
Chloride control and monitoring program in the Wichita River Basin, Texas, 1996-2009
Haynie, M.M.; Burke, G.F.; Baldys, Stanley
2011-01-01
Water resources of the Wichita River Basin in north-central Texas are vital to the water users in Wichita Falls, Tex., and surrounding areas. The Wichita River Basin includes three major forks of the Wichita River upstream from Lake Kemp, approximately 50 miles southwest of Wichita Falls, Tex. The main stem of the Wichita River is formed by the confluence of the North Wichita River and Middle Fork Wichita River upstream from Truscott Brine Lake. The confluence of the South Wichita River with the Wichita River is northwest of Seymour, Tex. (fig. 1). Waters from the Wichita River Basin, which is part of the Red River Basin, are characterized by high concentrations of chloride and other salinity-related constituents from salt springs and seeps (hereinafter salt springs) in the upper reaches of the basin. These salt springs have their origins in the Permian Period when the Texas Panhandle and western Oklahoma areas were covered by a broad shallow sea. Over geologic time, evaporation of the shallow seas resulted in the formation of salt deposits, which today are part of the geologic formations underlying the area. Groundwater in these formations is characterized by high chloride concentrations from these salt deposits, and some of this groundwater is discharged by the salt springs into the Wichita River.
USDA-ARS?s Scientific Manuscript database
This study provides new parameterizations for applying the Rangeland Hydrology and Erosion Model (RHEM) on the highly erosive, rangeland saline soils of the Mancos Shale formation in the Price-San Rafael River Basin in east central Utah. Calibrated hydrologic parameters (Kss and K') values are gener...
ERIC Educational Resources Information Center
Seitov, Nassipkali; Tulegenova, Gulmira P.
2016-01-01
This article addresses the problems of tectonic zoning and determination of geodynamical nature of the formation of jointed tectonic structures within the North Caspian oil and gas basin, represented by Caspian Depression of Russian platform of East European Pre-Cambrian Craton and plate ancient Precambrian Platform stabilization and Turan…
Tennyson, Marilyn E.; Charpentier, Ronald R.; Klett, Timothy R.; Brownfield, Michael E.; Pitman, Janet K.; Gaswirth, Stephanie B.; Hawkins, Sarah J.; Le, Phuong A.; Lillis, Paul G.; Marra, Kristen R.; Mercier, Tracey J.; Leathers-Miller, Heidi M.; Schenk, Christopher J.
2016-07-08
Using a geology-based assessment methodology, the U.S. Geological Survey assessed technically recoverable mean resources of 13 million barrels of oil, 22 billion cubic feet of gas, and 1 million barrels of natural gas liquids in the Monterey Formation of the Los Angeles Basin Province, California.
Keefer, W.R.; Johnson, R.C.
1993-01-01
The Cody Shale and the Mesaverde, Meeteetse, and Lance Formations of Late Cretaceous age and the Fort Union Formation of Paleocene age within the Wind River Reservation contain strata that were deposited during the final major regression of the Cretaceous epicontinental sea eastward across central Wyoming and the ensuing initial stages of mountain-building and basin subsidence of the Laramide orogeny. The Reservation spans several major structural elements in the western part of the Wind River Basin, but the feature of primary importance to evaluations of future petroleum resource potential is the western end of the deep basin syncline, which occupies the east-central and southeastern parts of the Reservation where many thousands of feet of synorogenic deposits accumulated.The Cody Shale is characterized by 3,300-4,000 ft of marine shale and sandstone, the latter rock type predominating in the upper part of the formation and grading upward into the basal, regressive sandstone units of the Mesaverde Formation. The Mesaverde, Meeteetse, Lance, and Fort Union Formations are primarily of fluvial origin, and consist mostly of interbedded sandstone and shale with various amounts of carbonaceous shale and thin coal beds. Maximum thicknesses of these formations are 2,150 ft, 1,370 ft, 2,900 ft, and 6,200 ft, respectively. Some parts of the full sequence may be partially or totally cut out beneath erosional unconformities at the base of either the Lance or Fort Union Formations, or at the base of the lower Eocene rocks, near the basin margins.All of the uppermost Cretaceous and Paleocene rocks have yielded commercial quantities of hydrocarbons (chiefly natural gas), primarily from closed anticlines such as the Pavillion and Muddy Ridge fields, but in part from apparent stratigraphic traps formed by the updip pinchouts of lenticular sandstones along the west and southwest margins of the basin syncline as well as within the basin proper. Drilling is sparse in these areas, and the potential for stratigraphic entrapment has yet to be explored in extensive parts of the Reservation.
The Itajaí foreland basin: a tectono-sedimentary record of the Ediacaran period, Southern Brazil
NASA Astrophysics Data System (ADS)
Basei, M. A. S.; Drukas, C. O.; Nutman, A. P.; Wemmer, K.; Dunyi, L.; Santos, P. R.; Passarelli, C. R.; Campos Neto, M. C.; Siga, O.; Osako, L.
2011-04-01
The Itajaí Basin located in the southern border of the Luís Alves Microplate is considered as a peripheral foreland basin related to the Dom Feliciano Belt. It presents an excellent record of the Ediacaran period, and its upper parts display the best Brazilian example of Precambrian turbiditic deposits. The basal succession of Itajaí Group is represented by sandstones and conglomerates (Baú Formation) deposited in alluvial and deltaic-fan systems. The marine upper sequences correspond to the Ribeirão Carvalho (channelized and non-channelized proximal silty-argillaceous rhythmic turbidites), Ribeirão Neisse (arkosic sandstones and siltites), and Ribeirão do Bode (distal silty turbidites) formations. The Apiúna Formation felsic volcanic rocks crosscut the sedimentary succession. The Cambrian Subida leucosyenogranite represents the last felsic magmatic activity to affect the Itajaí Basin. The Brusque Group and the Florianópolis Batholith are proposed as source areas for the sediments of the upper sequence. For the lower continental units the source areas are the Santa Catarina, São Miguel and Camboriú complexes. The lack of any oceanic crust in the Itajaí Basin suggests that the marine units were deposited in a restricted, internal sea. The sedimentation started around 600 Ma and ended before 560 Ma as indicated by the emplacement of rhyolitic domes. The Itajaí Basin is temporally and tectonically correlated with the Camaquã Basin in Rio Grande do Sul and the Arroyo del Soldado/Piriápolis Basin in Uruguay. It also has several tectono-sedimentary characteristics in common with the African-equivalent Nama Basin.
NASA Astrophysics Data System (ADS)
Cao, R.; Knapp, J. H.
2016-12-01
Integration of new 2-D seismic reflection profile with existing wells and potential field data from southeastern Georgia, USA provide exciting discovery of a new stratigraphic unit associated with the post-rift phase of the South Georgia Rift (SGR) basins. These data document an apparent reversal of rift basin asymmetry across the Warner Robins Transfer Zone, and the apparent presence of a new sub-horizontal stratigraphic unit (informally named the Hazlehurst Formation) which overlies with angular unconformity an inferred Triassic rift basin (Valdosta Basin), and sits below the regional Coastal Plain unconformity. Triassic rifting of the supercontinent Pangea left behind numerous extensional basins on what is now the eastern North American margin. The SGR is thought to be the most regionally extensive and best preserved of these basins, which were capped by thick basalt -flows of the Central Atlantic Magmatic Province (CAMP) and later buried beneath the Cretaceous and younger Coastal Plain section. Because it is buried beneath the Coastal Plain, the SGR is only known through relatively sparse drilling and geophysical methods. With these new seismic data acquired in 2013 near Hazlehurst, Georgia, we are able to put more constraints into the tectonic history of the basin. We test several hypotheses related to the SGR: (1) the "Transfer Zone" had to exist to transmit extensional strain between rift sub-basins with reverse polarities; (2) the newly identified sub-horizontal stratigraphic interval ("Hazlehurst Formation"), with a possible Jurassic age may represent a post-rift phase of regional subsidence; (3) the extent of this new unit appears to cover most of the coastal plain from eastern Mississippi to South Carolina. The result of this study suggests the previous inferred extent of the might need revision.
NASA Astrophysics Data System (ADS)
Ma, Anlin; Hu, Xiumian; Garzanti, Eduardo; Han, Zhong; Lai, Wen
2017-07-01
The Mesozoic stratigraphic record of the southern Qiangtang basin in central Tibet records the evolution and closure of the Bangong-Nujiang ocean to the south. The Jurassic succession includes Toarcian-Aalenian shallow-marine limestones (Quse Formation), Aalenian-Bajocian feldspatho-litho-quartzose to feldspatho-quartzo-lithic sandstones (shallow-marine Sewa Formation and deep-sea Gaaco Formation), and Bathonian outer platform to shoal limestones (Buqu Formation). This succession is truncated by an angular unconformity, overlain by upper Bathonian to lower Callovian fan-delta conglomerates and litho-quartzose to quartzo-lithic sandstones (Biluoco Formation) and Callovian shoal to outer platform limestones (Suowa Formation). Sandstone petrography coupled with detrital-zircon U-Pb and Hf isotope analysis indicate that the Sewa and Gaaco formations contain intermediate to felsic volcanic detritus and youngest detrital zircons (183-170 Ma) with ɛHf(t) ranging widely from +13 to -25, pointing to continental-arc provenance from igneous rocks with mixed mantle and continental-crust contributions. An arc-trench system thus developed toward the end of the Early Jurassic, with the southern Qiangtang basin representing the fore-arc basin. Above the angular unconformity, the Biluoco Formation documents a change to dominant sedimentary detritus including old detrital zircons (mainly >500 Ma ages in the lower part of the unit) with age spectra similar to those from Paleozoic strata in the central Qiangtang area. A major tectonic event with intense folding and thrusting thus took place in late Bathonian time (166 ± 1 Ma), when the Qiangtang block collided with another microcontinental block possibly the Lhasa block.
NASA Astrophysics Data System (ADS)
Rostron, B. J.
2010-12-01
The regional groundwater flow-system in the Williston Basin (Canada-USA) is one of the best examples of a mega-scale confined aquifer-system in the world. With its well-defined recharge and discharge areas separated by approximately 1000 km horizontal and 1 km vertical distance, the basin is an ideal natural laboratory to study regional groundwater flow and hydrochemistry. Springs and shallow water wells in the recharge and discharge areas, along with deeper oil and gas wells, allow for detailed mapping of formation-pressures. Further, these wells provide access for sampling and geochemical analyses of formation waters along flow paths. Basin-scale hydrogeological and hydrochemical mapping combined with newly obtained geochemical and isotopic data from more than 2000 wells across the basin provide new insights into the present and paleohydrogeology of the basin. Results indicate: 1) the hydrogeology and hydrochemistry of the basin must be mapped on hydrogeological (not political) boundaries; 2) many aquifers have similar water chemistries, yet unique isotopic fingerprints; 3) stable isotope distributions provide insight(s) into regional fluid flow patterns; 4) analysis of bromine concentrations and stable isotopic compositions provide evidence that at least some of the brine in the basin owes its origin to evaporated seawater and not just dissolved evaporites as previously thought; 5) regional patterns of stable isotopes and halogens can be used to trace different flow "events" in the basin's history; 6) calcium-rich brines in the center of the basin may be associated with relict calcium-rich seawaters; 7) hydrocarbon migration pathways have been variably impacted by evolving hydrodynamic conditions; and 8) there is strong evidence of past glacially-driven recharge in the current discharge area of the basin. These observations show that the hydrogeology and hydrochemistry of the basin is more complex than previously thought. Portions of the basin appear to respond rapidly to changes in boundary conditions including: the recharge areas; midline areas that have experienced extensive salt dissolution; and present discharge areas that appear to show evidence of glacially-driven recharge. Other portions of the basin appear to have had little to no fluid-flow despite being continuous and highly-permeable. Mixing, and not depth, appears to control water compositions. Insights gained from regional hydrogeology and hydrochemical provide an improved understanding the present and past mega-scale fluid migration in the Williston Basin.
Hydrocarbon Source Rocks in the Deep River and Dan River Triassic Basins, North Carolina
Reid, Jeffrey C.; Milici, Robert C.
2008-01-01
This report presents an interpretation of the hydrocarbon source rock potential of the Triassic sedimentary rocks of the Deep River and Dan River basins, North Carolina, based on previously unpublished organic geochemistry data. The organic geochemical data, 87 samples from 28 drill holes, are from the Sanford sub-basin (Cumnock Formation) of the Deep River basin, and from the Dan River basin (Cow Branch Formation). The available organic geochemical data are biased, however, because many of the samples collected for analyses by industry were from drill holes that contained intrusive diabase dikes, sills, and sheets of early Mesozoic age. These intrusive rocks heated and metamorphosed the surrounding sediments and organic matter in the black shale and coal bed source rocks and, thus, masked the source rock potential that they would have had in an unaltered state. In places, heat from the intrusives generated over-mature vitrinite reflectance (%Ro) profiles and metamorphosed the coals to semi-anthracite, anthracite, and coke. The maximum burial depth of these coal beds is unknown, and depth of burial may also have contributed to elevated thermal maturation profiles. The organic geochemistry data show that potential source rocks exist in the Sanford sub-basin and Dan River basin and that the sediments are gas prone rather than oil prone, although both types of hydrocarbons were generated. Total organic carbon (TOC) data for 56 of the samples are greater than the conservative 1.4% TOC threshold necessary for hydrocarbon expulsion. Both the Cow Branch Formation (Dan River basin) and the Cumnock Formation (Deep River basin, Sanford sub-basin) contain potential source rocks for oil, but they are more likely to have yielded natural gas. The organic material in these formations was derived primarily from terrestrial Type III woody (coaly) material and secondarily from lacustrine Type I (algal) material. Both the thermal alteration index (TAI) and vitrinite reflectance data (%Ro) indicate levels of thermal maturity suitable for generation of hydrocarbons. The genetic potential of the source rocks in these Triassic basins is moderate to high and many source rock sections have at least some potential for hydrocarbon generation. Some data for the Cumnock Formation indicate a considerably higher source rock potential than the basin average, with S1 + S2 data in the mid-20 mg HC/g sample range, and some hydrocarbons have been generated. This implies that the genetic potential for all of these strata may have been higher prior to the igneous activity. However, the intergranular porosity and permeability of the Triassic strata are low, which makes fractured reservoirs more attractive as drilling targets. In some places, gravity and magnetic surveys that are used to locate buried intrusive rock may identify local thermal sources that have facilitated gas generation. Alternatively, awareness of the distribution of large intrusive igneous bodies at depth may direct exploration into other areas, where thermal maturation is less than the limits of hydrocarbon destruction. Areas prospective for natural gas also contain large surficial clay resources and any gas discovered could be used as fuel for local industries that produce clay products (principally brick), as well as fuel for other local industries.
Neogene sequence stratigraphy, Nam Con Son Basin, offshore Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillen, K.J.; Do Van Luu; Lee, E.K.
1996-12-31
An integrated well log, biostratigraphic, and seismic stratigraphic study of Miocene to Recent deltaic sediments deposited in the Nam Con Son Basin offshore from southern Vietnam shows the influence of eustacy and tectonics on sequence development. Sediments consist of Oligocene non-marine rift-basin fill (Cau Formation), early to middle Miocene tide-dominated delta plain to delta front sediments (TB 1.5 to TB 2.5, Due and Thong Formations), and late Miocene to Recent marine shelf sediments (TB. 2.6 to TB 3.1 0, Mang Cau, Nam Con Son, and Bien Dong Formations). Eustacy controlled the timing of key surfaces and sand distribution in themore » tectonically-quiet early Miocene. Tectonic effects on middle to late Miocene sequence development consist of thick transgressive systems tracts due to basin-wide subsidence and transgression, sand distribution in the basin center, and carbonate sedimentation on isolated fault blocks within the basin. Third-order sequence boundaries (SB) are identified by spore peaks, sand stacking patterns, and channel incision. In the basin center, widespread shale beds with coal occur above sequence boundaries followed by transgressive sandstone units. These TST sandstones merge toward the basin margin where they lie on older HST sandstones. Maximum flooding surfaces (MFS) have abundant marine microfossils and mangrove pollen, a change in sand stacking pattern, and often a strong seismic reflection with downlap. Fourth-order genetic-type sequences are also interpreted. The MFS is the easiest marker to identify and correlate on well logs. Fourth-order SB occur within these genetic units but are harder to identify and correlate.« less
Neogene sequence stratigraphy, Nam Con Son Basin, offshore Vietnam
DOE Office of Scientific and Technical Information (OSTI.GOV)
McMillen, K.J.; Do Van Luu; Lee, E.K.
1996-01-01
An integrated well log, biostratigraphic, and seismic stratigraphic study of Miocene to Recent deltaic sediments deposited in the Nam Con Son Basin offshore from southern Vietnam shows the influence of eustacy and tectonics on sequence development. Sediments consist of Oligocene non-marine rift-basin fill (Cau Formation), early to middle Miocene tide-dominated delta plain to delta front sediments (TB 1.5 to TB 2.5, Due and Thong Formations), and late Miocene to Recent marine shelf sediments (TB. 2.6 to TB 3.1 0, Mang Cau, Nam Con Son, and Bien Dong Formations). Eustacy controlled the timing of key surfaces and sand distribution in themore » tectonically-quiet early Miocene. Tectonic effects on middle to late Miocene sequence development consist of thick transgressive systems tracts due to basin-wide subsidence and transgression, sand distribution in the basin center, and carbonate sedimentation on isolated fault blocks within the basin. Third-order sequence boundaries (SB) are identified by spore peaks, sand stacking patterns, and channel incision. In the basin center, widespread shale beds with coal occur above sequence boundaries followed by transgressive sandstone units. These TST sandstones merge toward the basin margin where they lie on older HST sandstones. Maximum flooding surfaces (MFS) have abundant marine microfossils and mangrove pollen, a change in sand stacking pattern, and often a strong seismic reflection with downlap. Fourth-order genetic-type sequences are also interpreted. The MFS is the easiest marker to identify and correlate on well logs. Fourth-order SB occur within these genetic units but are harder to identify and correlate.« less
Petroleum geology of the Southern Bida Basin, Nigeria
DOE Office of Scientific and Technical Information (OSTI.GOV)
Braide, S.P.
1990-05-01
The Southern Bida basin is located in central Nigeria and is a major sedimentary area with a 3.5-km-thick sedimentary fill. However, it is the least understood of Nigeria's sedimentary basins because serious oil and gas exploration has not been undertaken in the basin. The surrounding Precambrian basement rocks experienced severe deformation during the Late Panafrican phase (600 {plus minus} 150 m.y.), and developed megashears that were reactivated during the Late Campanian-Maestrichtian. The ensuing wrenchfault tectonics formed the basin. The sedimentary fill, which comprises the Lokoja Formation are chiefly, if not wholly, nonmarine clastics. These have been characterized into facies thatmore » rapidly change from basin margin to basin axis, and have undergone only relatively mild tectonic distortion. Subsurface relations of the Lokoja Formation are postulated from outcrop study. The potential source rocks are most likely within the basinal axis fill and have not been deeply buried based on vitrinite reflectance of <0.65%. These findings, with the largely nonmarine depositional environment, suggest gas and condensate are the most likely hydrocarbons. Alluvial fans and deltaic facies that interfinger with lacustrine facies provide excellent reservoir capabilities. Potential traps for hydrocarbon accumulation were formed by a northwest-southeast-trending Campanian-Maestrichtian wrench system with associated northeast-southwest-oriented normal faults. The traps include strata in alluvial fans, fractured uplifted basement blocks, and arched strata over uplifted blocks. However, the size of hydrocarbon accumulations could be limited to some extent by a lack of effective hydrocarbon seal, because the dominant seals in the formation are unconformities.« less
Gravity Field of the Orientale Basin from the Gravity Recovery and Interior Laboratory Mission
NASA Technical Reports Server (NTRS)
Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Goossens, Sander; Andrews-Hanna, Jeffrey C.; Head, James W.; Kiefer, Walter S.; Asmar, Sami W.; Konopliv, Alexander S.; Lemoine, Frank G.;
2016-01-01
Tracking by the GRAIL spacecraft has yielded a model of the gravitational field of the Orientale basin at 3-5-km horizontal resolution. The diameter of the basin excavation cavity closely matches that of the Inner Depression. A volume of at least (3.4 +/- 0.2) x10(exp 6) cu km of crustal material was removed and redistributed during basin formation; the outer edges of the zone of uplifted mantle slope downward and outward by 20deg-25deg. There is no preserved evidence of the transient crater that would reveal the basin's maximum volume, but its diameter may now be calculated from the observed structure to be between the diameters of the Inner Depression and Inner Rook ring. The model resolves distinctive structures of Orientale's three rings, including their azimuthal variations, and suggests the presence of faults that penetrate the crust. The crustal structure of Orientale provides constraints in the third dimension on models for the formation of multi-ring basins.
Caribbean basin framework, 3: Southern Central America and Colombian basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolarsky, R.A.; Mann, P.
1991-03-01
The authors recognize three basin-forming periods in southern Central America (Panama, Costa Rica, southern Nicaragua) that they attempt to correlate with events in the Colombian basin (Bowland, 1984): (1) Early-Late Cretaceous island arc formation and growth of the Central American island arc and Late Cretaceous formation of the Colombian basin oceanic plateau. During latest Cretaceous time, pelagic carbonate sediments blanketed the Central American island arc in Panama and Costa Rica and elevated blocks on the Colombian basin oceanic plateau; (2) middle Eocene-middle Miocene island arc uplift and erosion. During this interval, influx of distal terrigenous turbidites in most areas ofmore » Panama, Costa Rica, and the Colombian basin marks the uplift and erosion of the Central American island arc. In the Colombian basin, turbidites fill in basement relief and accumulate to thicknesses up to 2 km in the deepest part of the basin. In Costa Rica, sedimentation was concentrated in fore-arc (Terraba) and back-arc (El Limon) basins; (3) late Miocene-Recent accelerated uplift and erosion of segments of the Central American arc. Influx of proximal terrigenous turbidites and alluvial fans in most areas of Panama, Costa Rica, and the Colombian basin marks collision of the Panama arc with the South American continent (late Miocene early Pliocene) and collision of the Cocos Ridge with the Costa Rican arc (late Pleistocene). The Cocos Ridge collision inverted the Terraba and El Limon basins. The Panama arc collision produced northeast-striking left-lateral strike-slip faults and fault-related basins throughout Panama as Panama moved northwest over the Colombian basin.« less
NASA Astrophysics Data System (ADS)
Steel, E.; Simkins, L. M.; Reynolds, L.; Fidler, M. K.
2017-12-01
The Cenozoic Fish Creek - Vallecito Basin formed through extension and transtention associated with the localization of the Pacific-North American plate boundary in the Salton Trough region of Southern California. The exhumation of this basin along the hanging wall of the West Salton Detachment Fault since 1 Ma exposed a well-preserved sedimentary sequence that records an abrupt shift from the alluvial and fluvial deposits of the Elephant Trees Formation to the marine turbidites of the Latrania Formation. This transition marks the rapid marine incursion into the Gulf of California at 6.3 Ma (Dorsey et al., 2011). The Elephant Trees Formation is, therefore, a key transitional unit for understanding environmental change during the early stages of basin formation and the initial opening of the Gulf of California. Here, we present a detailed investigation of the characteristics of the Elephant Trees Formation, including bed thickness, clast size, paleoflow indicators, sedimentary structures, and sorting to understand the changing depositional environments associated with the onset of relative plate motion in the Gulf of California - Salton Trough corridor. This study aims to answer key questions regarding both regional tectonics and the dynamics of alluvial fan progradation, including 1) Does the Elephant Trees Formation record initiation of rapid basin subsidence and basinward progradation of alluvial fans? And 2) if so, what insights can the Elephant Trees Formation provide regarding the dynamics of debris flows and alluvial fan evolution? Our results improve understanding of proximal to distal facies variations within alluvial fan deposits and further refine the paleogeography during time of deposition of the Elephant Trees Formation ( 6.3 - 8.0 Ma) leading up to the timing of rapid marine incursion.
Chemometric differentiation of crude oil families in the San Joaquin Basin, California
Peters, Kenneth E.; Coutrot, Delphine; Nouvelle, Xavier; Ramos, L. Scott; Rohrback, Brian G.; Magoon, Leslie B.; Zumberge, John E.
2013-01-01
Chemometric analyses of geochemical data for 165 crude oil samples from the San Joaquin Basin identify genetically distinct oil families and their inferred source rocks and provide insight into migration pathways, reservoir compartments, and filling histories. In the first part of the study, 17 source-related biomarker and stable carbon-isotope ratios were evaluated using a chemometric decision tree (CDT) to identify families. In the second part, ascendant hierarchical clustering was applied to terpane mass chromatograms for the samples to compare with the CDT results. The results from the two methods are remarkably similar despite differing data input and assumptions. Recognized source rocks for the oil families include the (1) Eocene Kreyenhagen Formation, (2) Eocene Tumey Formation, (3–4) upper and lower parts of the Miocene Monterey Formation (Buttonwillow depocenter), and (5–6) upper and lower parts of the Miocene Monterey Formation (Tejon depocenter). Ascendant hierarchical clustering identifies 22 oil families in the basin as corroborated by independent data, such as carbon-isotope ratios, sample location, reservoir unit, and thermal maturity maps from a three-dimensional basin and petroleum system model. Five families originated from the Eocene Kreyenhagen Formation source rock, and three families came from the overlying Eocene Tumey Formation. Fourteen families migrated from the upper and lower parts of the Miocene Monterey Formation source rocks within the Buttonwillow and Tejon depocenters north and south of the Bakersfield arch. The Eocene and Miocene families show little cross-stratigraphic migration because of seals within and between the source rocks. The data do not exclude the possibility that some families described as originating from the Monterey Formation actually came from source rock in the Temblor Formation.
The Lunar-wide Effects of the Formation of Basins on the Megaregolith
NASA Technical Reports Server (NTRS)
Petro, . E.; Pieters, C. M.
2005-01-01
The surface of the Moon underwent an intense bombardment during the first approx.700 my of it s history (e.g. [1]). During this time at least 43 basins [1,2] and countless smaller craters were formed across the entire surface [1,3]. A quantitative assessment of the regolith as formed and modified by basins is discussed here. The formation of the basins (craters >300km in diameter) caused a significant amount of material to be excavated and redistributed across the surface of the Moon [4,5,6,7]. The material excavated by each individual basin was deposited and laterally mixed with the surrounding surface. This resulted in the development of a lunar-wide mixed zone of fragmented material, several kilometers thick [5,8,9]. This mixed zone was developed further by subsequent impacts resulting in a fragmental zone 1-2km thick called the megaregolith [10]. The initial zone of mixed material formed by the basins is not expected to be uniform across the surface of the Moon because of the varied size and random distribution of the basins. The main topographic ring of the 43 basins discussed by Wilhelms and Spudis [1,2] are illustrated in Figure 1.
Tectonic evolution of the Salton Sea inferred from seismic reflection data
Brothers, D.S.; Driscoll, N.W.; Kent, G.M.; Harding, A.J.; Babcock, J.M.; Baskin, R.L.
2009-01-01
Oblique extension across strike-slip faults causes subsidence and leads to the formation of pull-apart basins such as the Salton Sea in southern California. The formation of these basins has generally been studied using laboratory experiments or numerical models. Here we combine seismic reflection data and geological observations from the Salton Sea to understand the evolution of this nascent pull-apart basin. Our data reveal the presence of a northeast-trending hinge zone that separates the sea into northern and southern sub-basins. Differential subsidence (10 mm yr 1) in the southern sub-basin suggests the existence of northwest-dipping basin-bounding faults near the southern shoreline, which may control the spatial distribution of young volcanism. Rotated and truncated strata north of the hinge zone suggest that the onset of extension associated with this pull-apart basin began after 0.5 million years ago. We suggest that slip is partitioned spatially and temporally into vertical and horizontal domains in the Salton Sea. In contrast to previous models based on historical seismicity patterns, the rapid subsidence and fault architecture that we document in the southern part of the sea are consistent with experimental models for pull-apart basins. ?? 2009 Macmillan Publishers Limited.
NASA Astrophysics Data System (ADS)
Colombi, Carina E.; Limarino, Carlos O.; Alcober, Oscar A.
2017-12-01
The Upper Triassic Ischigualasto Formation in NW Argentina was deposited in a fluvial system during the synrift filling of the extensional Ischigualasto-Villa Unión Basin. The expansive exposures of the fluvial architecture and paleosols provide a framework to reconstruct the paleoenvironmental evolution of this basin during the Upper Triassic using continental sequence stratigraphy. The Ischigualasto Formation deposition can be divided into seven sequential sedimentary stages: the 1) Bypass stage; 2) Confined low-accommodation stage; 3) Confined high accommodation stage; 4) Unstable-accommodation stage; 5) Unconfined high-accommodation stage; 6) Unconfined low-accommodation stage; and finally, 7) Unconfined high-accommodation stage. The sedimentary evolution of the Ischigualasto Formation was driven by different allogenic controls such as rises and falls in lake levels, local tectonism, subsidence, volcanism, and climate, which also produced modifications of the equilibrium profile of the fluvial systems. All of these factors result in different accommodations in central and flank areas of the basin, which led to different architectural configurations of channels and floodplains. Allogenic processes affected not only the sequence stratigraphy of the basin but also the vertebrate and plant taphocenosis. Therefore, the sequence stratigraphy can be used not only as a predictive tool related to fossil occurrence but also to understand the taphonomic history of the basin at each temporal interval.
The Pliocene-Pleistocene sedimentary tectonic history of NW California
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stone, L.; Moley, K.; Aalto, K.R.
1993-04-01
A thick sequence of Late Miocene to Pleistocene sediments thought to represent deposition in a Neogene forearc basin are preserved in the structural basin referred to as the Eel River basin' located offshore of NW California and SE Oregon. The southern portion of this structural basin comes on land in the vicinity of Eureka where the marine and fluvial Wildcat Group is exposed. Basal Wildcat Group sediments are fluvial and littorial. Marine sandstones of the Wildcat Group contain K-spar concentrations of 5.5% and are believed to represent a fresh source. [sup 40]Ar/[sup 39]Ar laser probe analyses of Wildcat Group micasmore » yield dates of 52--57, 66--75, 128.5 and 299--303 Ma. The presence of Idaho detritus throughout the Neogene Wildcat Group indicates that the Klamath Mountains remained low during the Pliocene and early Pleistocene. Younger fluvial sediments in this region contain primarily locally derived detritus indicating local uplift of the Klamath Mountains. To the north, at Crescent City, thin remnants of the near-shore Saint George Formation and the eastern estuarine and fluvial Wimer Formation are lowermost Pliocene in age (5 ma). The presence of the highly erodible Wilmer Formation on uplifted plateaus in an area of extreme rainfall suggest that these sediments represent only the lowermost portion of an originally much thicker sequence. Consequently, the sediments confined to the present day Eel River basin do not represent the lateral extent of the original forearc basin. Sandstones and conglomerates of the Saint George and Wimer Formation indicate a local Klamath provenance derivation.« less
Willard, D.A.; Phillips, T.L.
1993-01-01
Late Pennsylvanian coal swamps of the Illinois Basin were dominated by Psarnius tree ferns with a spatially heterogeneous distribution of medullosan pteridosperms (subdominant), calamites, sigillarian lycopsids, and cordaites. Miospore and coal-ball plant assemblages from the Missourian-age Bristol Hill Coal Member (Mattoon Formation) of southeastern Illinois were quantified to analyze vegetational patterns in Late Pennsylvanian peat swamps and to compare vegetational composition of the coals. -from Authors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lorenz, J.C.
1997-03-01
The Molina Member of the Wasatch Formation produces natural gas from several fields along the Colorado River in the Piceance Basin, northwestern Colorado. The Molina Member is a distinctive sandstone that was deposited in a unique fluvial environment of shallow-water floods. This is recorded by the dominance of plane-parallel bedding in many of the sandstones. The Molina sandstones crop out on the western edge of the basin, and have been projected into the subsurface and across the basin to correlate with thinner sandy units of the Wasatch Formation at the eastern side of the basin. Detailed study, however, has shownmore » that the sedimentary characteristics of the type-section Molina sandstones are incompatible with a model in which the eastern sandstones are its distal facies equivalent. Rather, the eastern sandstones represent separate and unrelated sedimentary systems that prograded into the basin from nearby source-area highlands. Therefore, only the subsurface {open_quotes}Molina{close_quotes} reservoirs that are in close proximity to the western edge of the basin are continuous with the type-section sandstones. Reservoirs in the Grand Valley and Rulison gas fields were deposited in separate fluvial systems. These sandstones contain more typical fluvial sedimentary structures such as crossbeds and lateral accretion surfaces. Natural fractures play an important role in enhancing the conductivity and permeability of the Molina and related sandstones of the Wasatch Formation.« less
Paleozoic shale gas resources in the Sichuan Basin, China
Potter, Christopher J.
2018-01-01
The Sichuan Basin, China, is commonly considered to contain the world’s most abundant shale gas resources. Although its Paleozoic marine shales share many basic characteristics with successful United States gas shales, numerous geologic uncertainties exist, and Sichuan Basin shale gas production is nascent. Gas retention was likely compromised by the age of the shale reservoirs, multiple uplifts and orogenies, and migration pathways along unconformities. High thermal maturities raise questions about gas storage potential in lower Paleozoic shales. Given these uncertainties, a new look at Sichuan Basin shale gas resources is advantageous. As part of a systematic effort to quantitatively assess continuous oil and gas resources in priority basins worldwide, the US Geological Survey (USGS) completed an assessment of Paleozoic shale gas in the Sichuan Basin in 2015. Three organic-rich marine Paleozoic shale intervals meet the USGS geologic criteria for quantitative assessment of shale gas resources: the lower Cambrian Qiongzhusi Formation, the uppermost Ordovician Wufeng through lowermost Silurian Longmaxi Formations (currently producing shale gas), and the upper Permian Longtan and Dalong Formations. This study defined geologically based assessment units and calculated probabilistic distributions of technically recoverable shale gas resources using the USGS well productivity–based method. For six assessment units evaluated in 2015, the USGS estimated a mean value of 23.9 tcf (677 billion cubic meters) of undiscovered, technically recoverable shale gas. This result is considerably lower than volumes calculated in previous shale gas assessments of the Sichuan Basin, highlighting a need for caution in this geologically challenging setting.
Geometry and Dynamics of the Mesopotamian Foreland Basin
NASA Astrophysics Data System (ADS)
Pirouz, M.; Avouac, J. P.; Gualandi, A.; Hassanzadeh, J.; Sternai, P.
2016-12-01
We have constrained the geometry of the Zagros foreland basin along the entire northern edge of the Arabian plate using subsurface data from Iran, Iraq and Syria. We use the Oligo-Miocene marine Asmari Formation and its equivalents in the region to reconstruct high resolution foreland basin geometry. This extensive carbonate platform limestone unit separates pre-collisional passive margin marine sediments from the Cenozoic foreland deposits dominated by continental sources; and therefore it can be used as a measure of post-collisional deflection. The 3D reconstructed Asmari Formation shows along-strike thickness variations of the foreland basin deposits from 1 to 6 km. The deepest part of the foreland basin coincides with the Dezful embayment in Iran, and its depth decreases on both sides. In principle the basin geometry should reflect the loading resulted from overthrusting in the Zagros fold-thrust belt, the sediment fill and dynamic stresses due to lithospheric and upper mantle deformation. To estimate these various sources of loads we analyze the basin geometry in combination with gravity, free air anomaly, and Moho depths determined from seismological observations. Our analysis suggests in particular that redistribution of surface load by surface processes is a primary controlling factor of the basin geometry. The wavelength of a foreland basin may bear little information on the elastic flexural rigidity of the lithosphere.
MPF model ages of the Rembrandt basin and scarp system, Mercury.
NASA Astrophysics Data System (ADS)
Ferrari, Sabrina; Massironi, Matteo; Marchi, Simone; Byrne, Paul K.; Klimczak, Christian; Cremonese, Gabriele
2013-04-01
The 715-km-diameter Rembrandt basin is the largest well-preserved impact feature of the southern hemisphere of Mercury [1] (Fig. 1), and was imaged for the first time during the second flyby of the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) mission [2]. Much of the basin interior is covered by smooth, high-reflectance plains interpreted to be of volcanic origin [1-3] that host sets of contractional and extensional tectonic structures. Notably, Rembrandt basin and its smooth plains are cross-cut by a 1,000-km-long reverse fault system [1-5] that trends ~E-W, bending toward the north within the basin. The individual faults of this system accommodated crustal shortening that resulted from global contraction as Mercury's interior cooled [1]. The current shape of the reverse fault system may have been influenced by the formation of the Rembrandt basin [5]. The emplacement of the interior smooth plains predates both the basin-related tectonism and the final development of the giant scarp, which is suggestive of either short-lived volcanic activity immediately after basin formation or a later volcanic phase set against prolonged tectonic activity. In order to quantify the duration of volcanic and tectonic activity in and around Rembrandt basin, we determined the crater count-derived ages of the involved terrains by means of the Model Production Function (MPF) chronology of Mercury [6-8], which is rely on the knowledge of the impactors flux on the planet. Crater chronology allowed us to constrain the Rembrandt basin formation to the early Calorian period and a widespread resurfacing up to 3.5 Ga ago. The volcanic activity affected both the basin and its surroundings, but ended prior to some basin-related and regional faulting. Hence, if the giant scarp begun to develop even before the basin formation (as suggested by its length-displacement profile across the basin itself, [5]) the regional tectonic activity along this structure might have started even before the Late Heavy Bombardment period and lasted for more than 300 Ma, when the volcanic activity in this part of hermean surface was already accomplished. [1] Watters T. R. et al. (2009) Science, 324, 618. [2] Solomon S. C. et al. (2008) Science, 321, 59. [3] Denevi B. W. et al. (2009) Science, 324, 613. [4] Byrne P. K. et al. (2012) LPS, 43, abstract 1722. [5] Ferrari S. et al. (2012) EPSC, 7, abstract 2012-874. [6] Marchi S. et al. (2009) The Astron. Jour., 137, 4936. [7] Massironi M. et al. (2009) Geophys. Res. Lett., 36, L21204. [8] Marchi S. et al. (2011) Plaet. Space Sci., 59, 1968.
NASA Astrophysics Data System (ADS)
Ahmadov, R.; McKeen, S.; Trainer, M.; Banta, R.; Brewer, A.; Brown, S.; Edwards, P. M.; de Gouw, J. A.; Frost, G. J.; Gilman, J.; Helmig, D.; Johnson, B.; Karion, A.; Koss, A.; Langford, A.; Lerner, B.; Olson, J.; Oltmans, S.; Peischl, J.; Pétron, G.; Pichugina, Y.; Roberts, J. M.; Ryerson, T.; Schnell, R.; Senff, C.; Sweeney, C.; Thompson, C.; Veres, P. R.; Warneke, C.; Wild, R.; Williams, E. J.; Yuan, B.; Zamora, R.
2015-01-01
Recent increases in oil and natural gas (NG) production throughout the western US have come with scientific and public interest in emission rates, air quality and climate impacts related to this industry. This study uses a regional-scale air quality model (WRF-Chem) to simulate high ozone (O3) episodes during the winter of 2013 over the Uinta Basin (UB) in northeastern Utah, which is densely populated by thousands of oil and NG wells. The high-resolution meteorological simulations are able qualitatively to reproduce the wintertime cold pool conditions that occurred in 2013, allowing the model to reproduce the observed multi-day buildup of atmospheric pollutants and the accompanying rapid photochemical ozone formation in the UB. Two different emission scenarios for the oil and NG sector were employed in this study. The first emission scenario (bottom-up) was based on the US Environmental Protection Agency (EPA) National Emission Inventory (NEI) (2011, version 1) for the oil and NG sector for the UB. The second emission scenario (top-down) was based on estimates of methane (CH4) emissions derived from in situ aircraft measurements and a regression analysis for multiple species relative to CH4 concentration measurements in the UB. Evaluation of the model results shows greater underestimates of CH4 and other volatile organic compounds (VOCs) in the simulation with the NEI-2011 inventory than in the case when the top-down emission scenario was used. Unlike VOCs, the NEI-2011 inventory significantly overestimates the emissions of nitrogen oxides (NOx), while the top-down emission scenario results in a moderate negative bias. The model simulation using the top-down emission case captures the buildup and afternoon peaks observed during high O3 episodes. In contrast, the simulation using the bottom-up inventory is not able to reproduce any of the observed high O3 concentrations in the UB. Simple emission reduction scenarios show that O3 production is VOC sensitive and NOx insensitive within the UB. The model results show a disproportionate contribution of aromatic VOCs to O3 formation relative to all other VOC emissions. The model analysis reveals that the major factors driving high wintertime O3 in the UB are shallow boundary layers with light winds, high emissions of VOCs from oil and NG operations compared to NOx emissions, enhancement of photolysis fluxes and reduction of O3 loss from deposition due to snow cover.
Part 1: The geomorphic evolution of Eastern Margaritifer Sinus, Mars
NASA Technical Reports Server (NTRS)
Grant, John A., III
1987-01-01
Geomorphic mapping, crater counts on selected surfaces, and a detailed study of drainage basins, were used to trace the geologic evolution of Margaritifer Sinus Quandrangle. The oldest dated surface covering these basins evolved during the period of intense bombardment. Since that time four resurfacing events have occurred. The first three were all of regional extent, while the fourth, occurred locally, filling basins. Valley networks, incised in the third event unit, are always buried by the fourth event unit when present. A peak in geomorphic activity occurred from 10,000 to 5000. Events during this period included the formation of Uzboi/Ladon Valles with deposition in Ladon Basin, and the formation of Samara and Parana/Loire Valles in MC19SE. Flow out of Ladon Basin and to a lesser extent Samara and Parana/Loire Valles created etched terrain at their confluence that was synchronous with initiation of Margaritifer and Iani Chaos. The range of dates for the chaos may be due to periodic collapse. The extensive, well integrted nature of Samara and Parana/Loire Valles requires the existence of a long period of favorable climatic conditions to allow their formation. Development of these two systems was probably through sapping processes.
Daddow, Pamela B.
1986-01-01
Previous water level maps of shallow aquifers in the Powder River structural basin in Wyoming were based on water levels from wells completed in different stratigraphic intervals within thick sequences of sedimentary rocks. A potentiometric surface using water levels from a single aquifer had never been mapped throughout the basin. The sandstone aquifers in the Fort Union Formation of Paleocene age and the Wasatch Formation of Eocene age are discontinuous and lenticular, and do not extend even short distances. Coal aquifers are more continuous and the Wyodak-Anderson coal bed, in the Fort Union Formation, has been mapped in much of the Powder River structural basin in Wyoming. Water level altitudes in the Wyodak-Anderson coal bed and other stratigraphically equivalent coal beds were mapped to determine if they represent a continuous potentiometric surface in the Powder River structural basin. The potentiometric surface, except in the vicinity of the Wyodak mine east of Gillette, represents a premining condition as it was based on water level measurements made during 1973-84 that were not significantly affected by mining. The map was prepared in cooperation with the U.S. Bureau of Land Management. (Lantz-PTT)
,
2006-01-01
The purpose of the U.S. Geological Survey's (USGS) National Oil and Gas Assessment is to develop geologically based hypotheses regarding the potential for additions to oil and gas reserves in priority areas of the United States. The USGS recently completed an assessment of undiscovered oil and gas potential of the Cotton Valley Group and Travis Peak and Hosston Formations in the East Texas Basin and Louisiana-Mississippi Salt Basins Provinces in the Gulf Coast Region (USGS Provinces 5048 and 5049). The Cotton Valley Group and Travis Peak and Hosston Formations are important because of their potential for natural gas resources. This assessment is based on geologic principles and uses the total petroleum system concept. The geologic elements of a total petroleum system include hydrocarbon source rocks (source rock maturation, hydrocarbon generation and migration), reservoir rocks (sequence stratigraphy and petrophysical properties), and hydrocarbon traps (trap formation and timing). The USGS used this geologic framework to define one total petroleum system and eight assessment units. Seven assessment units were quantitatively assessed for undiscovered oil and gas resources.
Evolution of the Rembrandt impact basin on Mercury.
Watters, Thomas R; Head, James W; Solomon, Sean C; Robinson, Mark S; Chapman, Clark R; Denevi, Brett W; Fassett, Caleb I; Murchie, Scott L; Strom, Robert G
2009-05-01
MESSENGER's second Mercury flyby revealed a ~715-kilometer-diameter impact basin, the second-largest well-preserved basin-scale impact structure known on the planet. The Rembrandt basin is comparable in age to the Caloris basin, is partially flooded by volcanic plains, and displays a unique wheel-and-spoke-like pattern of basin-radial and basin-concentric wrinkle ridges and graben. Stratigraphic relations indicate a multistaged infilling and deformational history involving successive or overlapping phases of contractional and extensional deformation. The youngest deformation of the basin involved the formation of a approximately 1000-kilometer-long lobate scarp, a product of the global cooling and contraction of Mercury.
Bartow, J. Alan
1974-01-01
The Simmler and Vaqueros Formations in the Caliente Range-Carrizo Plain area make up a large part of the thick Tertiary sedimentary sequence that was .deposited in a basin which lay along the southwest side of the present-day San Andreas fault. The evolution of this basin during Oligocene and early Miocene time and the relationship of its sedimentary record to the tectonic history is an important chapter in the Tertiary history of California. The Simmler Formation, of provincial Oligocene to early Miocene age, unconformably overlies basement rocks and an Upper Cretaceous-lower Tertiary marine sequence. It consists of a sandstone facies, which is mostly a variegated sequence of sandstone and mudstone occurring in fining-upward cycles, and a conglomerate facies, which occurs around the southwest and southeast margins of the basin. The conformably overlying Vaqueros Formation, of provincial early to middle Miocene age, is subdivided from base upward ,into the Quail Canyon Sandstone, Soda Lake Shale, and Painted Rock Sandstone Members. The Vaqueros intertongues eastward, southeastward, and northward with the continental Caliente Formation and is conformably overlain by the Monterey Shale. In the Caliente Range, northeast of major thrust faults, the Vaqueros may reach a thickness of 8,700 feet (2,650 m). Around the margin of the basin, the formation is much thinner--locally only 200 feet (60 m) thick--and is generally undivided. The Quail Canyon Sandstone Member is composed of cross-bedded or planar-stratified sandstone. The Soda Lake Shale Member consists mostly of siltstone and platy shale with a few thin sandstone interbeds. The Painted Rock Sandstone Member, the thickest and coarsest member, consists mostly of large lenticular bodies of thick-bedded coarse-grained sandstone and thinner units of siltstone. Petrology and paleocurrent studies indicate that, in a given subarea, the Simmler and Vaqueros Formations were derived from the same source terrane and that the sediments were usually transported in the same general direction. Crystalline basement terranes to the north and south were the primary sources, but the Upper Cretaceous-lower Tertiary marine sequence made substantial contributions along the southwest side of the basin. The sandstone facies of the Simmler Formation is interpreted as an alluvial plain depositional complex formed by through-flowing low-sinuosity streams, and the conglomerate facies is interpreted as alluvial fan deposits. The Vaqueros Formation in the Caliente Range forms a transgressive-regressive sequence. The Quail Canyon Sandstone and lowermost Soda Lake Shale Members represent the transgressive phase, are interpreted as beach-nearshore and offshore deposits, and are locally the marine equivalents of the upper part of the Simmler conglomerate facies. The remainder of the Soda Lake Shale Member and the Painted Rock Sandstone Member represent the regressive phase and are interpreted as a complex of deltaic and shelf-slope deposits that prograded over basinal shales and turbidites. The reconstructed basin history began in the Oligocene with alluvial plain sedimentation in an area of relatively low relief. This was interrupted in the early Miocene (ca. 25 m.y. B.P.) by the beginning of a period of crustal extension, probably related to the first interaction of the Pacific and North American plates, resulting in the formation of a rapidly subsiding marine basin. This crustal extension was followed by a period of north-south compression in the Pliocene and Pleistocene, which caused the thick accumulation of sediments in the basin to be folded and thrust over the thinner basin-margin section. The Red Hills-Chimineas-Russell fault trend, along which Cretaceous granitic and Precambrian(?) gneissic rocks had been juxtaposed in Cretaceous time, was reactivated in the Pliocene, when 8 to 9 miles (13-14.5 km) of additional right-lateral slip occurred, The pattern of north-south thrusting and rig
Brent H. McBeth
1995-01-01
A joint effort between three National Forests in northern Utah was begun to provide a uniform process for establishing fees at developed recreation sites, based upon the "cost approach" method. This method can be adapted for other National Forest and District use and can be modified to reflect "comparable fees" and updated periodically to meet local...
Janine Rice; Tim Bardsley; Pete Gomben; Dustin Bambrough; Stacey Weems; Allen Huber; Linda A. Joyce
2017-01-01
Aspen ecosystems are valued because they add biodiversity and ecological value to the landscape. They provide rich and productive habitats and increase aesthetic value. Climate change poses the risk of altering and disrupting these ecosystems, and it may worsen the effects of non-climate stressors. To provide scientific information for land managers facing the...
NASA Astrophysics Data System (ADS)
Palzer, Markus; Knierzinger, Wolfgang; Wagreich, Michael; Meszar, Maria E.; Gier, Susanne; Soliman, Ali; -Elena Kallanxhi, Mǎdǎlina
2016-04-01
The eastern Austrian Molasse Basin is situated between the Bohemian Massif, the Waschberg-Zone and the Alps. There, sands of the Lower Miocene (Upper Ottnangian) Traisen Formation represent a clastic interval at the top of pelitic Schlier successions, which is correlated with the global sea level drop Bur3 (Burdigalian). North of the Danube River, the continuation of the Traisen-Formation is overlain by the Karpatian Laa-Formation. Drill cores from OMV-wells predominantly from the continuation of the Traisen Formation in deep parts in the NE of the basin show hundreds of meters of pelites with intersections of sands. Contrary to the exposed, mainly brackish TF, a turbiditic and predominantly fully marine deep-water environment is inferred from the cores. Profiles of carbonate content, XRD, XRF, whole rock chemistry, clay minerals, calcareous nannoplankton and dinoflagellate cysts of 7 wells were investigated representing a NE-SW transect through the LAMB. Based on these data, a new stratigraphy for the Burdigalian distal parts of the LAMB can be defined and correlated with the proximal units. The Traisen Formation and its equivalents are characterized at their base by an increased clastic input in the south and by increasing mica content in the northern parts. The complete interval is characterized by the decreased carbonate content. The XRD data show strongly reduced calcite contents which goe hand in hand with the absence of nannoplankton. Whether the signal is related to a crisis in primary production or to carbonate dissolution remains unclear. The absence of dinoflagellate cysts and the chemical data (reduced B/Al* ratios indicate reduced salinity) are considered as an argument for an environmental crisis. However, the absence of resedimented Cretaceous to Paleocene nannofossils, which usually occur together with the autochthonous NN4-nannofossils, indicates carbonate dissolution. These results enable us to define a basinal interval as equivalent to the proximal Traisen Formation which may serve as a key section for the stratigraphy of the deep basinal part. Sediments of this section were influenced by a low salinity crisis that was caused by the closure of the connection to the Upper Austrian Molasse Basin. This led to a partly or completely isolated basin in Lower Austria with a probably strongly reduced water circulation and strong freshwater influence. The closure is probably connected to the Miocene lateral extrusion of the Alps, the fast uplift of the Northern Calcareous Alps and accelerated sediment input from the south. This isolation may be terminated by the deepening of the Vienna Basin during Karpatian/Badenian times.
NASA Astrophysics Data System (ADS)
Roma, Maria; Vidal-Royo, Oskar; McClay, Ken; Ferrer, Oriol; Muñoz, Josep Anton
2017-04-01
The formation of hagingwall syncline basins is basically constrained by the geometry of the basement-involved fault, but also by salt distribution . The formation of such basins is common around the Iberian Peninsula (e.g. Lusitanian, Parentis, Basque-Cantabian, Cameros and Organyà basins) where Upper Triassic (Keuper) salt governed their polyphasic Mesozoic extension and their subsequent Alpine inversion. In this scenario, a precise interpretation of the sub-salt faults geometry and a reconstruction of the initial salt thickness are key to understand the kinematic evolution of such basins. Using an experimental approach (sandbox models) and these Mesozoic basins as natural analogues, the aim of this work is to: 1) investigate the main parameters that controlled the formation and evolution of hagingwall syncline basins analyzing the role of syn-kinematic salt during extension and subsequent inversion; and 2) quantify the deformation and salt mobilization based on restoration of analog model cross sections. The experimental results demonstrate that premature welds are developed by salt deflation with consequent upward propagation of the basal fault in salt-bearing rift systems with a large amount of extension,. In contrast, thicker salt inhibits the upward fault propagation, which results into a further salt migration and development of a hagingwall syncline basins flanked by salt walls. The inherited extensional architecture as well as salt continuity dramatically controlled subsequent inversion. Shortening initially produced the folding and the uplift of the synclinal basins. Minor reverse faults form as a consequence of overtightening of welded diapir stems. However, no trace of reverse faulting is found around diapirs stems, as ductile unit is still available for extrusion, squeezing and accommodation of shortening. Restoration of the sandbox models has demonstrated that this is a powerful tool to unravel the complex structures in the models and this may similarly be applied to the seismic interpretation of the natural complex salt structures.
Susquehanna River Basin Flood Control Review Study
1980-08-01
22 Archeological and Historial Resources 25 Biological Resources 25 Social -Economic History 28 Contemporary Social -Economic Setting 29 Development and... social needs of the people. The study was initiated in 1963 with the formation of the Susquehanna River Basin Coordinating Committee consisting of...the basin. Social -Economic History The early history of the Susquehanna River Basin was influenced by the Susquehanna River as a source of
Anderson, H.R.; Ogilbee, William
1973-01-01
The Sokoto Basin of northwestern Nigeria lies in the sub-Saharan Sudan belt of west Africa in a zone of savannah-type vegetation. Rainfall, averaging about 30 inches annually in much of the basin, occurs chiefly in a wet season which lasts from May to October. A prolonged dry season extending from October to April is dominated by dusty harmattan winds from the northeast. April and May are the hottest months, when temperatures occasionally reach 105?F. Flow in streams of the Sokoto Basin is mostly overland runoff. Only in a few reaches, fed by ground-water discharge from the sedimentary rocks, are streams perennial. In the River Zamfara basin, ground-water discharge contributes almost 1 inch of the average 3.33 inches of total annual runoff. In the vicinity of Sokoto, the River Rima flows throughout the year sustained by spring discharge from perched ground water in limestone of the Kalambaina Formation. On the crystalline terrane where most of the streams rise, total annual runoff may exceed 5 inches, very little of which is ground-water discharge. The sedimentary rocks of the basin range in age from Cretaceous to Tertiary and are composed mostly of interbedded sand, clay, and some limestone; the beds dip gently toward the northwest. Alluvium of Quaternary age underlies the lowlands of the River Sokoto (now Sokoto) and its principal tributaries. These rocks contain three important artesian aquifers, in addition to regional unconfined ground-water bodies in all the principal outcron areas, and a perched water body in the outcrop of the Kalambaina Formation. Artesian aquifers occur at depth in the Gundumi Formation, the Rima Group, and the Gwandu Formation and are separated from one another by clay beds in the lower part of the Rima Group and the Dange Formation. In outcrop, clay in the Dange Formation also supports the perched water of the Kalambaina Formation. The Gundumi Formation, resting on the basement complex, is composed of varicolored clay, sand, and gravel and attains a thickness of 800 to 1,000 feet in its downdip extensions. Most of the formation is thin bedded and clayey and therefore does not yield large quantities of water to boreholes; the average yield is 2,700 gph (gallons per hour). (All gallons are imperial gallons.) Nevertheless, the upper part of the formation is sandy and more permeable and forms a regional artesian aquifer from which yields of as much as 6,600 gph are obtained from single boreholes. Clay in the lower part of the Rima Group confines the Gundumi aquifer downdip, so that at Rabah and Sokoto, for example, in the River Sokoto fadama (valley floor), artesian flow is found in boreholes screened in the Gundumi. Aquifer tests indicate low transmissivities, ranging from 300 to 5,000 gpd per ft (gallons per day per foot) in the lower part of the Gundumi Formation; but in the upper sandy zone the transmissivities are much higher, reaching 66,000 gpd per ft. In the western part of the Sokoto Basin, more productive aquifers with higher heads usually lie above the Gundumi aquifer so that it is not attractive for development, except in the River Sokoto fadama where artesian flow is possible. The Illo Group, which is in part contemporaneous with the Gundumi Formation, includes interbedded varicolored clay and grit in the southern part of the Sokoto Basin. The upper part of the Illo is known to be water-bearing; however, except for the test borehole at Mungadi, little is known of its subsurface extent and water-yielding potential. Overlying the Gundumi Formation in the central and northern part of the Sokoto Basin are interbedded fine gray sand and dark gray clay of the Wurno and Taloka Formations, separated in the extreme north by clay shale of the Dukamaje Formation. Collectively known as the Rima Group, these sediments attain a thickness of more than 1,000 feet near the Niger border. At depth and downdip the clayey beds practically disappear; the sandy beds become thicker and coar
NASA Astrophysics Data System (ADS)
Bousquet, Romain; Nalpas, Thierry
2017-04-01
Many large-scale dynamic processes, from continental rifting to plate subduction, are intimately linked to metamorphic reactions. This close relation between geodynamic processes and metamorphic reactions is, in spite of appearances, yet poorly understood. For example, during extension processes, rocks will be exposed to important temperature, pressures and stress changes. Meanwhile less attention has been paid to other important aspects of the metamorphic processes. When reacting rocks expand and contract, density and volume changes will set up in the surrounding material. While several tectonic models are proposed to explain the formation of extensive basins and passive margins ( simple shear detachment mantle exhumation .... ) a single thermal model (McKenzie, 1978), as a kind of dogma, is used to understanding and modeling the formation and evolution of sedimentary basins. The study of the thermal evolution, coupled with other tectonic models, and its consequences have never been studied in detail, although the differences may be significant. And it is clear that the petrological changes associated with changes in temperature conditions, influence changes reliefs. Constrained by the new field data of north Pyrenean basins on thermal evolution of pre-rift and syn-rift sediments, we explore the petrological changes associated to different thermal evolution and the consequences on the subsidence of the basins. We will also present numerical models quantifying mineralogical and physical changes inside the whole lithosphere during rifting processes. In the light of these models, we discuss the consequences of different thermal evolution on the subsidence processes as well as on gravimetry and seismic velocities signature of passive margins. We are able to distinguish two types of margins according to their thermal evolution: - An Alpine-type basin in which the temperature rise is 50 to 100 Ma older than the tectonic extension, leading to the "cold" opening of the ocean. - A Pyrenean type basin in which temperature changes are synchronous with basin formation, leading to a crustal boudignage and to the formation of a "anomalous" geophysical layer at the OCT
NASA Astrophysics Data System (ADS)
Rogers, Raymond R.; Rogers, Kristina Curry; Munyikwa, Darlington; Terry, Rebecca C.; Singer, Bradley S.
2004-10-01
Karoo-equivalent rocks in the Tuli Basin of Zimbabwe are described, with a focus on the dinosaur-bearing Mpandi Formation, which correlates with the Elliot Formation (Late Triassic-Early Jurassic) in the main Karoo Basin. Isolated exposures of the Mpandi Formation along the banks of the Limpopo River consist of red silty claystones and siltstones that preserve root traces, small carbonate nodules, and hematite-coated prosauropod bones. These fine-grained facies accumulated on an ancient semi-arid floodplain. Widespread exposures of quartz-rich sandstone and siltstone representing the upper Mpandi Formation crop out on Sentinel Ranch. These strata preserve carbonate concretions and silicified root casts, and exhibit cross-bedding indicative of deposition via traction currents, presumably in stream channels. Prosauropod fossils are also preserved in the Sentinel Ranch exposures, with one particularly noteworthy site characterized by a nearly complete and articulated Massospondylus individual. An unconformity caps the Mpandi Formation in the study area, and this stratigraphically significant surface rests on a laterally-continuous zone of pervasive silicification interpreted as a silcrete. Morphologic, petrographic, and geochemical data indicate that the Mpandi silcrete formed by intensive leaching near the ground surface during prolonged hiatus. Chert clasts eroded from the silcrete are intercalated at the base of the overlying Samkoto Formation (equivalent to the Clarens Formation in the main Karoo Basin), which in turn is overlain by the Tuli basalts. These basalts, which are part of the Karoo Igneous Province, yield a new 40Ar/ 39Ar plateau age of 186.3 ± 1.2 Ma.
A new model for the initiation, crustal architecture, and extinction of pull-apart basins
NASA Astrophysics Data System (ADS)
van Wijk, J.; Axen, G. J.; Abera, R.
2015-12-01
We present a new model for the origin, crustal architecture, and evolution of pull-apart basins. The model is based on results of three-dimensional upper crustal numerical models of deformation, field observations, and fault theory, and answers many of the outstanding questions related to these rifts. In our model, geometric differences between pull-apart basins are inherited from the initial geometry of the strike-slip fault step which results from early geometry of the strike-slip fault system. As strike-slip motion accumulates, pull-apart basins are stationary with respect to underlying basement and the fault tips may propagate beyond the rift basin. Our model predicts that the sediment source areas may thus migrate over time. This implies that, although pull-apart basins lengthen over time, lengthening is accommodated by extension within the pull-apart basin, rather than formation of new faults outside of the rift zone. In this aspect pull-apart basins behave as narrow rifts: with increasing strike-slip the basins deepen but there is no significant younging outward. We explain why pull-apart basins do not go through previously proposed geometric evolutionary stages, which has not been documented in nature. Field studies predict that pull-apart basins become extinct when an active basin-crossing fault forms; this is the most likely fate of pull-apart basins, because strike-slip systems tend to straighten. The model predicts what the favorable step-dimensions are for the formation of such a fault system, and those for which a pull-apart basin may further develop into a short seafloor-spreading ridge. The model also shows that rift shoulder uplift is enhanced if the strike-slip rate is larger than the fault-propagation rate. Crustal compression then contributes to uplift of the rift flanks.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Drzewiecki, P.A.; Simo, T.; Moline, G.
1991-03-01
The Middle to Late Ordovician St. Peter Sandstone of the Michigan basin is a fine- to medium-grained quartz sandstone. Extensive stylolitization and intergranular pressure solution have been major factors in reducing the porosity of certain horizons within the St. Peter, resulting in pressure compartmentation of the reservoir. Pressure versus depth data for various Michigan basin wells indicate that the basin contains compartments that are overpressured by as much as 500 psi. Horizons bounding these compartments are often affected by intense stylolitization (or intergranular pressure solution) and quartz cementation and have been correlated with zones of low porosity and permeability ({phi}more » = 0-3%, k = <50 {mu}d). These tight zones can be correlated within single gas fields, and some may extend across the Michigan basin. The St. Peter Sandstone has been buried to depths of about 3,500 m in the central part of the basin and 1,500 m at the margins. Intensely stylolitized zones are found at all depths throughout the basin and do not appear to change in abundance or style with depths. Factors that influence the formation, morphology, and abundance of stylolites in the St. Peter include (1) clay intraclasts, (2) intergranular clay, and (3) fine-grained, feldspar-rich sand. Stylolites also occur at contacts between quartz-cemented and carbonate-cemented zones and within well-cemented sands. Intergranular pressure solution and stylolites may be responsible for the formation of a compartment seal. Understanding their genesis can allow prediction of variations in porosity in Michigan basin well cores.« less
Geology and hydrocarbon potential of the Hartford-Deerfield Basin, Connecticut and Massachusetts
Coleman, James
2016-01-01
The Hartford-Deerfield basin, a Late Triassic to Early Jurassic rift basin located in central Connecticut and Massachusetts, is the northernmost basin of the onshore Mesozoic rift basins in the eastern United States. The presence of asphaltic petroleum in outcrops indicates that at least one active petroleum system has existed within the basin. However, to-date oil and gas wells have not been drilled in the basin to test any type of petroleum trap. There are good to excellent quality source rocks (up to 3.8% present day total organic carbon) within the Jurassic East Berlin and Portland formations. While these source rock intervals are fairly extensive and at peak oil to peak gas stages of maturity, individual source rock beds are relatively thin (typically less than 1 m) based solely on outcrop observations. Potential reservoir rocks within the Hartford-Deerfield basin are arkosic conglomerates, pebbly sandstones, and finer grained sandstones, shales, siltstones, and fractured igneous rocks of the Triassic New Haven and Jurassic East Berlin and Portland formations (and possibly other units). Sandstone porosity data from 75 samples range from less than 1% to 21%, with a mean of 5%. Permeability is equally low, except around joints, fractures, and faults. Seals are likely to be unfractured intra-formational shales and tight igneous bodies. Maturation, generation, and expulsion likely occurred during the late synrift period (Early Jurassic) accentuated by an increase in local geothermal gradient, igneous intrusions, and hydrothermal fluid circulation. Migration pathways were likely along syn- and postrift faults and fracture zones. Petroleum resources, if present, are probably unconventional (continuous) accumulations as conventionally accumulated petroleum is likely not present in significant volumes.
Estimate of subsurface formation temperature in the Tarim basin, northwest China
NASA Astrophysics Data System (ADS)
Liu, Shaowen; Lei, Xiao; Feng, Changge; Hao, Chunyan
2015-04-01
Subsurface formation temperature in the Tarim basin, the largest sedimentary basin in China, is significant for its hydrocarbon generation, preservation and geothermal energy potential assessment, but till now is not well understood, due to poor data coverage and a lack of highly accurate temperature data. Here, we combined recently acquired steady-state temperature logging data, drill stem test temperature data and measured rock thermal properties, to investigate the geothermal regime, and estimate the formation temperature at specific depths in the range 1000~5000 m in this basin. Results show that the heat flow of the Tarim basin ranges between 26.2 and 66.1 mW/m2, with a mean of 42.5±7.6 mW/m2; geothermal gradient at the depth of 3000 m varies from 14.9 to 30.2 °C/km, with a mean of 20.7±2.9 °C/km. Formation temperature at the depth of 1000 m is estimated to be between 29 °C and 41°C, with a mean of 35°C; whilst the temperature at 2000 m ranges from 46~71°C with an average of 59°C; 63~100°C is for that at the depth of 3000 m, and the mean is 82°C; the temperature at 4000 m varies from 80 to 130°C, with a mean of 105°C; 97~160°C is for the temperature at 5000 m depth. In addition, the general pattern of the subsurface formation temperatures at different depths is basically similar and is characterized by high temperatures in the uplift areas and low temperatures in the sags. Basement structure and lateral variations in thermal properties account for this pattern of the geo-temperature field in the Tarim basin.
NASA Astrophysics Data System (ADS)
DiMaggio, E.; Arrowsmith, R.; Campisano, C. J.; Johnson, R. A.; Deino, A. L.; Warren, M.; Fisseha, S.; Cohen, A. S.
2014-12-01
Sedimentary deposits in Pliocene extensional rift basins in the Afar Depression, Ethiopia chronicle the evolution and paleoenvironmental context of early humans. In the lower Awash Valley, the long-studied Hadar Basin still lacks constraints on basin development during the onset and termination of Hadar Formation (~3.8 - 2.94 Ma) sedimentation. Here we present new mapping and analysis of tephra deposits from a 26 meter-thick section of sediments exposed in the central Ledi-Geraru project area at Gulfaytu, including 20 m of sediments and tephras conformably overlying a 2.94 Ma tephra marker bed (BKT-2U) that previously served as the uppermost dated tephra of the Hadar Formation. Within the overlying 20 meters of primarily lacustrine strata, we identified eight post-BKT-2U tuffs; four were suitable for geochemical characterization, and one yielded an 40Ar/39Ar age of 2.931 ± 0.034 Ma. Based on regional sedimentation rates and the tephra 40Ar/39Ar age, we infer that the newly mapped Hadar Formation at Gulfaytu represents ca. 20 kyr of post-BKT-2 sedimentation. An erosional surface marked by a conglomerate truncates the strata at Gulfaytu, and shows similarities to the well-documented Busidima unconformity surface to the southwest, suggesting that structural changes after 2.93 Ma also affected basin conditions in central Ledi-Geraru. Furthermore, subsurface geophysical investigations support a model whereby deposition rates and the stratigraphic thickness of paleo-Lake Hadar sediments are greatest in the central Ledi-Geraru, ~20 km northeast of the well-exposed lacustrine-dominated sediments of the Hadar Formation. In addition to preserving a record of post-BKT-2 strata, the central Ledi Geraru hosts the thickest subsurface lacustrine sedimentary record within the Hadar Basin hitherto described, making central Ledi-Geraru an ideal location for collecting a continuous core by the Hominin Sites and Paleolakes Drilling Project (HSPDP).
Hydrogeochemical signatures of thermal springs compared to deep formation water of North Germany
NASA Astrophysics Data System (ADS)
Bozau, Elke; van Berk, Wolfgang
2014-05-01
Thermal springs and hot deep formation waters can be used for geothermal energy production. Depending on the chemical composition of the used waters, geothermal power plants have to deal with scaling and corrosion effects. Therefore, the understanding of the hydrogeochemical behaviour of such waters can be helpful to enhance the efficiency of the energy production. This study is comparing hydrogeochemical characteristics of thermal springs in the Harz Mountains (North Germany) and deep formation water of the North German Basin. The Harz Mountains consist of uplifted Palaeozoic rocks, whereas the North German Basin consists of sedimentary layers of Permian, Mesozoic and Cenozoic age. Volcanic rocks are included in the Permian layers. The thickness of the sedimentary basin varies between 2 km and more than 8 km. The deep aquifers of the North German Basin are mostly not involved in the recent meteoric water cycle. Their waters have contents of Total Dissolved Solids (TDS) up to about 400 g/L. Thermal springs of the Harz Mountains are situated close to the main fracture system of the region. These springs are connected to the meteoric water cycle and display lower contents of TDS (< 25 g/L). In both geological systems the TDS content is increasing with depth and temperature. The elemental ratios of the waters (e.g., Na/Cl, Cl/Br, Na/Ca) indicate similar hydrogeochemical formation processes in the Harz Mountains and the North German Basin. The concentrations of calcium, sodium, and chloride differ due to salt dissolution and feldspar transformation (albitisation) in the thermal springs as well as in the deep formation waters. Based on today's knowledge hydrochemical and stratigraphical data from the North German Basin can be used to elucidate the geological origin of the thermal springs in the Harz Mountains. Acknowledgements. The presented data are results of the collaborative research program "gebo" (Geothermal energy and high performance drilling), financed by the Ministry of Science and Culture of the State of Lower Saxony and the company Baker Hughes.
NASA Astrophysics Data System (ADS)
Castellanos, H. A.; Mann, P.
2005-12-01
The Bohai basin of eastern China covers an area of about 200,000 km2 and forms one of a family of basins that record Cenozoic extension along the eastern margin of Asia from Viet Nam to northeastern Russia. Two very different deformational mechanisms have been proposed for the Cenozoic formation of the Bohai basin. The first model proposes a two-stage extension model consisting of Paleogene rifting in a WNW-ESE direction followed by Neogene thermal subsidence that controlled overlying and less deformed sag basins above the rifted section (Ye et al., 1985). The mechanism for two-stage rifting is generally attributed to rollback of the subducted Pacific plate beneath the Asian continent, lithospheric extension of the overriding continental plate, and thermally-driven, regional subsidence. A second model invokes a more localized Cenozoic pull-apart basin formed at a right-step in a right-lateral shear system parallel to the Asian continental margin (Allen et al., 1997). Earthquakes and GPS data indicate that right-lateral strike-slip faulting continues to the present-day in a pattern consistent with the regional-scale "lazy-Z" map pattern of the Cenozoic Bohai depocenter. Allen et al. (1997) propose the subsurface of the large pull-apart structure contains diffuse, sub-parallel strike-slip faults offset by smaller-scale, intrabasinal stepovers. In order to better distinguish the timing and mechanism for the formation of the Bohai basin, we have interpreted 1400 km of offshore 2D seismic data, a 3D seismic volume, and integrated lithostratigraphic data from 6 wells that are tied to these reflection data. Three major units were identified and mapped on a basin-wide scale: basement, a syn-rift unit, and a post-rift sag unit. Thickening trends and ages indicate the syn-rift phase occurred from late Paleocene to late Oligocene. Basin opening occurred on a series of half-grabens trending NNE-SSW. Rifting ended during the late Oligocene when a regional uplift and erosional event affected the basin. The Miocene to recent was marked by the formation of sag basins deformed by widely-spaced strike-slip faults. These active strike-slip faults are commonly localized on earlier normal faults. Given these observations a three stage basin history is proposed: 1) Eocene-late Oligocene basin opening across a diffuse set of half-grabens; the pattern of rifts supports a regional extension possibly related to subduction rollback of the Pacific plate; 2) a late Oligocene uplift and erosional event of unknown origin; and 3) late Oligocene to recent strike-slip faulting; the regional-scale "lazy-Z" map pattern of Bohai depocenter indicates the importance of right-stepping pull-apart control on the younger sag section.
NASA Astrophysics Data System (ADS)
Conrad, Georges; Lappartient, Jean-René
The 'Continental Terminal' in the Senegalo-Mauritanian basin is a Cenozoic and detrital formation, presenting signs of an intense ferralitic alteration with formation of ferruginous concretions and crustings, neo-formation of kaolinite and significant silica movements. Sedimentary structures are generally obliterated by alteration in the formation's summit. However, some fossil layers which have undergone epigenesis by geothite make it possible to establish the sea origin of the eocene and miocene deposits in this 'Continental Terminal'. A better idea of Cenozoic transgressions and regressions can be achieved by a reconstitution of fossil river beds through alterations on the edge of the African continent. The new elements in the 'Continental Terminal' and the Senegalo-Mauritanian Cenozoic paleoclimates are: The 'Continental Terminal' clearly represents an alteration fringe developed at the expense of marine formations (Tessier et al. 1975 Actes 9ème Congr. Int. Sédim., Nice, pp. 207-211), but this concept cannot be generalized to all of the coastal Cenozoic or interior Iullemmeden Nigerian basins. The ferrallitic alterations mostly occurred in the Pliocene period after the sinking of the basin, as in the Miocene margino-littoral facies, and are still highly dominant. The ferruginous crusting can be seen in this period and also during the lower Pleistocene, because of the latitudinal migration of the basin northwards starting from the upper Cretaceous period.
Formation of the Sputnik Planum basin and the thickness of Pluto's subsurface ocean
NASA Astrophysics Data System (ADS)
Johnson, Brandon C.; Bowling, Timothy J.; Trowbridge, Alexander J.; Freed, Andrew M.
2016-10-01
We simulate the formation of the large elliptical impact basin associated with Pluto's Sputnik Planum (SP; informal name). The location of SP suggests that it represents a large positive mass anomaly. To find the conditions necessary for SP to have a positive mass anomaly, we consider impacts into targets with a range of thermal states and ocean thicknesses. Assuming the basin evolves to its current-day configuration, we calculate the mass and gravity anomalies associated with SP. We find that SP can only achieve a large positive mass anomaly if Pluto has a more than 100 km thick salty ocean. This conclusion may help us better understand the composition and thermal evolution of Pluto. Furthermore, our work supports the hypothesis that SP basin has an impact origin.
Miller, David M.; Leslie, Shannon R.; Hillhouse, John W.; Wooden, Joseph L.; Vazquez, Jorge A.; Reynolds, R.E.
2010-01-01
Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Barstovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages indicate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 million years to form one or two large middle Miocene lake basins.
Miller, D.M.; Leslie, S.R.; Hillhouse, J.W.; Wooden, J.L.; Vazquez, J.A.; Reynolds, R.E.
2010-01-01
Early to middle Miocene lacustrine strata of the Barstow Formation are well dated in just a few places, limiting our ability to infer basin evolution and regional tectonics. At the type section in the Mud Hills, previous studies have shown that the lacustrine interval of the Barstow Formation is between ~16.3 Ma and ~13.4 Ma. Elsewhere, lake beds of the Barstow Formation have yielded vertebrate fossils showing the Hemingfordian/Bartovian transition at ~16 Ma but are otherwise poorly dated. In an attempt to clarify the age and depositional environments of the lake deposits, we are mapping the Barstow Formation and dating zircons from interbedded tuffs, as well as testing ash-flow tuffs for the distinctive remanent magnetization direction of the widespread Peach Spring Tuff. Thus far, our new U-Pb zircon ages inficate that the Barstow lake beds contain tuff beds as old as 19.1 Ma and as young as 15.3 Ma. At Harvard Hill, Barstow lake beds contain a thick tuff dated at 18.7 Ma. On the basis of zircon ages, mineralogy, zircon chemistry, and paleomagnetic results, we consider the thick tuff to be a lacustrine facies of the Peach Spring Tuff. We have identified the Peach Spring Tuff by similar methods at eight localities over a broad area, providing a timeline for several fluvial and lacustrine sections. The new dates indicate that long-lived lacustrine systems originated before 19 Ma and persisted to at least 15 Ma. The onset of lacustrine conditions predates the Peach Spring Tuff in most Barstow Formation sections and may be older than 19.5 Ma in some places. The new data indicate that the central Mojave Desert contained narrow to broad lake basins during and after extension, and that Barstow lacustrine deposits did not exclusively postdate extensional tectonics. At present, it is unclear whether several separate, small lake basins coexisted during the early to middle Miocene, or if instead several small early Miocene basins gradually coalesced over about 6 millions years to form one or two large middle Miocene lake basins.
Ketner, Keith B.
2008-01-01
An area between the towns of Winnemucca and Battle Mountain in northwestern Nevada, termed the arkosic triangle, includes the type areas of the middle to upper Paleozoic Inskip Formation and Havallah sequence, the Upper Devonian to Mississippian Harmony Formation, the Sonoma orogeny, and the Golconda thrust. According to an extensive body of scientific literature, the Havallah sequence, a diverse assemblage of oceanic rocks, was obducted onto the continent during the latest Permian or earliest Triassic Sonoma orogeny by way of the Golconda thrust. This has been the most commonly accepted theory for half a century, often cited but rarely challenged. The tectonic roles of the Inskip and Harmony Formations have remained uncertain, and they have never been fully integrated into the accepted theory. New, and newly interpreted, data are incompatible with the accepted theory and force comprehensive stratigraphic and tectonic concepts that include the Inskip and Harmony Formations as follows: middle to upper Paleozoic strata, including the Inskip, Harmony, and Havallah, form an interrelated assemblage that was deposited in a single basin on an autochthonous sequence of Cambrian, Ordovician, and lowest Silurian strata of the outer miogeocline. Sediments composing the Upper Devonian to Permian sequence entered the basin from both sides, arkosic sands, gravel, limestone olistoliths, and other detrital components entered from the west, and quartz, quartzite, chert, and other clasts from the east. Tectonic activity was expressed as: (1) Devonian uplift and erosion of part of the outer miogeocline; (2) Late Devonian depression of the same area, forming a trough, probably fault-bounded, in which the Inskip, Harmony, and Havallah were deposited; (3) production of intraformational and extrabasinal conglomerates derived from the basinal rocks; and (4) folding or tilting of the east side of the depositional basin in the Pennsylvanian. These middle to upper Paleozoic deposits were compressed in the Jurassic, causing east-verging thrusts in the eastern part of the depositional basin (Golconda thrust) and west-verging thrusts and folds in the western part. Hypotheses involving a far-traveled allochthon that was obducted from an ocean or back-arc basin are incompatible with modern observations and concepts.
Houser, Brenda B.; Peters, Lisa; Esser, Richard P.; Gettings, Mark E.
2004-01-01
The Tucson Basin is a relatively large late Cenozoic extensional basin developed in the upper plate of the Catalina detachment fault in the southern Basin and Range Province, southeastern Arizona. In 1972, Exxon Company, U.S.A., drilled an exploration well (Exxon State (32)-1) near the center of the Tucson Basin that penetrated 3,658 m (12,001 ft) of sedimentary and volcanic rocks above granitoid basement. Detailed study of cuttings and geophysical logs of the Exxon State well has led to revision of the previously reported subsurface stratigraphy for the basin and provided new insight into its depositional and tectonic history. There is evidence that detachment faulting and uplift of the adjacent Catalina core complex on the north have affected the subsurface geometry of the basin. The gravity anomaly map of the Tucson Basin indicates that the locations of subbasins along the north-trending axis of the main basin coincide with the intersection of this axis with west-southwest projections of synforms in the adjacent core complex. In other words, the subbasins overlie synforms and the ridges between subbasins overlie antiforms. The Exxon State well was drilled near the center of one of the subbasins. The Exxon well was drilled to a total depth of 3,827 m (12,556 ft), and penetrated the following stratigraphic section: Pleistocene(?) to middle(?) Miocene upper basin-fill sedimentary rocks (0-908 m [0-2,980 ft]) lower basin-fill sedimentary rocks (908-1,880 m [2,980-6,170 ft]) lower Miocene and upper Oligocene Pantano Formation (1,880-2,516 m [6,170-8,256 ft]) upper Oligocene to Paleocene(?) volcanic and sedimentary rocks (2,516-3,056 m [8,256-10,026 ft]) Lower Cretaceous to Upper Jurassic Bisbee Group (3,056-3,658 m [10,026-12,001 ft]) pre-Late Jurassic granitoid plutonic rock (3,658-3,827 m [12,001- 12,556 ft]). Stratigraphy and Tectonic History of the Tucson Basin, Pima County, Arizona, Based on the Exxon State (32)-1 Well The 1,880 m (6,170 ft) of basin-fill sedimentary rocks consist of alluvial-fan, alluvial-plain, and playa facies. The uppermost unit, a 341-m-thick (1,120-ft) lower Pleistocene and upper Pliocene alluvial-fan deposit (named the Cienega Creek fan in this study), is an important aquifer in the Tucson basin. The facies change at the base of the alluvial fan may prove to be recognizable in well data throughout much of the basin. The well data show that a sharp boundary at 908 m (2,980 ft) separates relatively unconsolidated and undeformed upper basin fill from denser, significantly faulted lower basin fill, indicating that there were two stages of basin filling in the Tucson basin as in other basins of the region. The two stages apparently occurred during times of differing tectonic style in the region. In the Tucson area the Pantano Formation, which contains an andesite flow dated at about 25 Ma, fills a syntectonic basin in the hanging wall of the Catalina detachment fault, reflecting middle Tertiary extension on the fault. The formation in the well is 636 m thick (2,086 ft) and consists of alluvial-fan, playa, and lacustrine sedimentary facies, a lava flow, and rock- avalanche deposits. Analysis of the geophysical logs indicates that a K-Ar date of 23.4 Ma reported previously for the Pantano interval of the well was obtained on selected cuttings collected from a rock-avalanche deposit near the base of the unit and, thus, does not date the Pantano Formation. The middle Tertiary volcanic and sedimentary rocks have an aggregate thickness of 540 m (1,770 ft). We obtained a new 40Ar/ 39Ar age of 26.91+0.18 Ma on biotite sampled at a depth of 2,584-2,609 m (8,478-8,560 ft) from a 169-m-thick (554-ft) silicic tuff in this interval. The volcanic rocks probably correlate with other middle Tertiary volcanic rocks of the area, and the sedimentary rocks may correlate with the Cloudburst and Mineta Formations exposed on the flanks of the San Pedro Basin to the northeast. The Bisbee Group in the Exxon well is 602 m (1,975 f
NASA Astrophysics Data System (ADS)
Head, James W.; Murchie, Scott; Mustard, John F.; Pieters, Carle M.; Neukum, Gerhard; McEwen, Alfred; Greeley, Ronald; Nagel, Engelbert; Belton, Michael J. S.
1993-09-01
Compositional aspects of impact basin materials can be analyzed using multispectral image data acquired by the Galileo solid state imaging (SSI) experiment during the December 1990 lunar encounter. These data provide important information on the spectral properties of the western lunar limb and parts of the far side. The SSI images cover the wavelength range 0.4-1.0 μm, allowing measurement of spectral slope and estimation of the strength of the 1 μm absorption due to iron in the mafic minerals olivine and pyroxene. Among deposits of the 930-km-diameter Orientale basin, exterior ejecta comprising the Hevelius Formation is relatively homogeneous and spectrally similar to mature Apollo 16 soils, suggesting an upper crustal source. The centrally located Maunder Formation is distinct from the younger mare basalts but comparable to the Hevelius Formation in its spectral reflectance properties, supporting an interpretation as basin impact melt. The Montes Rook Formation, located in an annulus between the Maunder and the Hevelius, shows a slightly stronger mafic absorption and may be the deepest crustal material excavated. The distal Orientale deposits show local mafic enhancements (in the Schiller-Schickard and Mendel-Rydberg regions) interpreted to represent pre-Orientale mare deposits, or cryptomaria, intermixed with overlying basin ejecta. In this case, maria of sizes comparable to those presently observed were widespread in this region before the Orientale impact. Mixing-model analyses are consistent with the ballistic erosion and sedimentation model for ejecta emplacement in the distal regions beyond the continuous ejecta deposit. On the southern lunar farside, a high area with an enhanced mafic absorption corresponds to the interior and rim of the pre-Nectarian South Pole-Aitken impact basin, 2000-2500 km in diameter. The anomaly is interpreted to be due to several factors, including excavation into the more mafic lower crust, and the presence of extensive early volcanic fill (cryptomare), similar to that seen in ancient basins such as Smythii and Australe. These results show that although basin-forming events are an important factor in producing lateral heterogeneities in crustal composition, and in modifying preexisting deposits (such as cryptomaria), the majority of material in even the largest basins was excavated from mixed crustal layer of anorthosite, basin ejecta, and cryptomaria deposits (generally corresponding to the megaregolith), an upper crustal layer of anorthosite, and a lower more noritic layer. Many of the basic questions remaining from this study could be addressed by global high-resolution geochemical and mineralogical data obtained by polar orbiting spacecraft.
Sedimentary rocks of the coast of Liberia
White, Richard William
1969-01-01
Two basins containing sedimentary rocks o# probable Cretaceous age have been recognized near the coast of Liberia in the area between Monrovia and Buchanan; geophysical evidence suggests that similar though larger basins exist on the adjacent continental shelf. The oldest sedimentary unit recognized, the Paynesville Sandstone of possible early to middle Paleozoic age, is intruded by dikes and sills of diabase of early Jurassic age and lies unconformably on crystalline rocks of late Precambrian age. Dips in the Paynesville Sandstone define a structural basin centered south of Roberts International Airport (formerly called Roberts Field) about 25 miles east of Monrovla. Wackes and conglomerates of Cretaceous age, herein named the Farmington River Formation, unconformably overlie the Paynesville Sandstone and constitute the sedimentary fill in the Roberts basin. The Bassa basin lies to the southeast of the Roberts basin and is separated from it by an upwarp of crystalline rocks. The basin is occupied by wackes and conglomerates of the Farmington River Formation, which apparently lie directly on the crystalline basement. Both basins are bounded on the northeast by northwest-trending dip-slip faults. The best potential for petroleum deposits that exists in Liberia is beneath the adjacent continental shelf and slope. Geophysical exploration and drilling will be required to evaluate this potential.
Pollastro, R.M.; Roberts, L.N.R.; Cook, T.A.; Lewan, M.D.
2008-01-01
The U.S. Geological Survey (USGS) has completed an assessment of the undiscovered oil and associated gas resources of the Upper Devonian to Lower Mississippian Bakken Formation in the U.S. portion of the Williston Basin of Montana and North Dakota and within the Williston Basin Province. The assessment is based on geologic elements of a total petroleum system (TPS), which include (1) source-rock distribution, thickness, organic richness, maturation, petroleum generation, and migration; (2) reservoir-rock type (conventional or continuous), distribution, and quality; and (3) character of traps and time of formation with respect to petroleum generation and migration. Framework studies in stratigraphy and structural geology and modeling of petroleum geochemistry, combined with historical exploration and production analyses, were used to estimate the undiscovered, technically recoverable oil resource of the Bakken Formation. Using this framework, the USGS defined a Bakken-Lodgepole TPS and seven assessment units (AU) within the system. For the Bakken Formation, the undiscovered oil and associated gas resources were quantitatively estimated for six of these AUs.
Impact basin relaxation on Rhea and Iapetus and relation to past heat flow
NASA Astrophysics Data System (ADS)
White, Oliver L.; Schenk, Paul M.; Dombard, Andrew J.
2013-04-01
Evidence for relaxation of impact crater topography has been observed on many icy satellites, including those of Saturn, and the magnitude of relaxation can be related to past heat flow (e.g. Moore, J.M., Schenk, P.M., Bruesch, L.S., Asphaug, E., McKinnon, W.B. [2004]. Icarus 171, 421-443; Dombard, A.J., McKinnon, W.B. [2006]. J. Geophys. Res. 111, E01001. http://dx.doi.org/10.1029/2005JE002445). We use new global digital elevation models of the surfaces of Rhea and Iapetus generated from Cassini data to obtain crater depth/diameter data for both satellites and topographic profiles of large basins on each. In addition to the factor of three lower amplitude of global topography on Rhea compared to Iapetus, we show that basins on Iapetus >100 km in diameter show little relaxation compared to similar sized basins on Rhea. Because of the similar gravities of Rhea and Iapetus, we show that Iapetus basin morphologies can be used to represent the initial, unrelaxed morphologies of the Rhea basins, and we use topographic profiles taken across selected basins to model heat flow on both satellites. We find that Iapetus has only experienced radiogenic heat flow since formation, whereas Rhea must have experienced heat flow reaching a few tens of mW m-2, although this heat flow need only be sustained for as little as several million years in order to achieve the observed relaxation magnitudes. Rhea experienced a different thermal history from Iapetus, which we consider to be primarily related to their different formation mechanisms and locations within the saturnian system. A recent model for the formation of Saturn's mid-sized icy satellites interior to and including Rhea (Charnoz, S. et al. [2011]. Icarus 216, 535-550) describes how Rhea's orbit would have expanded outwards after its accretion from a giant primordial ring, which would have instigated early heating through rapid despinning and tidal interaction with Saturn and other satellites. Rhea's basins would therefore be required to have formed within the first few tens of Myr of Rhea's formation in order to relax due of this heating, and if so may provide an important anchor point for Saturn system chronology. None of these heating mechanisms are viable for Iapetus in its isolated position far from Saturn, and as such it has remained dynamically inert since formation, confirming conclusions based on thermal modeling of Iapetus' interior. Rapid and complete relaxation and subsequent erosion by bombardment of a 'first generation' of large basins on Rhea is regarded as an explanation for the lower counts of large basins on Rhea relative to Iapetus, and the overall lower amplitude of topography on Rhea compared to Iapetus.
Aqua-planet simulations of the formation of the South Atlantic convergence zone
NASA Technical Reports Server (NTRS)
Nieto Ferreira, Rosana; Chao, Winston C.
2013-01-01
The impact of Amazon Basin convection and cold fronts on the formation and maintenance of the South Atlantic convergence zone (SACZ) is studied using aqua-planet simulations with a general circulation model. In the model, a circular patch of warm sea-surface temperature (SST) is used to mimic the effect of the Amazon Basin on South American monsoon convection. The aqua-planet simulations were designed to study the effect of the strength and latitude of Amazon Basin convection on the formation of the SACZ. The simulations indicate that the strength of the SACZ increases as the Amazon convection intensifies and is moved away from the equator. Of the two controls studied here, the latitude of the Amazon convection exerts the strongest effect on the strength of the SACZ. An analysis of the synoptic-scale variability in the simulations shows the importance of frontal systems in the formation of the aqua-planet SACZ. Composite time series of frontal systems that occurred in the simulations show that a robust SACZ occurs when fronts penetrate into the subtropics and become stationary there as they cross eastward of the longitude of the Amazon Basin. Moisture convergence associated with these frontal systems produces rainfall not along the model SACZ region and along a large portion of the northern model Amazon Basin. Simulations in which the warm SST patch was too weak or too close to the equator did not produce frontal systems that extended into the tropics and became stationary, and did not form a SACZ. In the model, the SACZ forms as Amazon Basin convection strengthens and migrates far enough southward to allow frontal systems to penetrate into the tropics and stall over South America. This result is in agreement with observations that the SACZ tends to form after the onset of the monsoon season in the Amazon Basin.
NASA Astrophysics Data System (ADS)
He, Dengfa
2016-04-01
Junggar Basin is located in the central part of the Central Asian Orogenic Belt (CAOB). Its basement nature is a highly controversial scientific topic, involving the basic style and processes of crustal growth. Some researchers considered the basement of the Junggar Basin as a Precambrian continental crust, which is not consistent with the petrological compositions of the adjacent orogenic belts and the crust isotopic compositions revealed by the volcanic rocks in the basin. Others, on the contrary, proposed an oceanic crust basement model that does not match with the crustal thickness and geophysical characteristics of the Junggar area. Additionally, there are several viewponits, such as the duplex basement with the underlying Precambrian crystalline rocks and the overlying pre-Carboniferous folded basement, and the collaged basement by the Precambrian micro-continent block in the central part and the Hercynian accretionary folded belts circling it. Anyway, it is necessary to explain the property of basement rock, its strong inhomogeneous compositions as well as the geophysical features. In this paper, based on the borehole data from more than 300 industry wells drilled into the Carboniferous System, together with the high-resolution gravity and magnetic data (in a scale of 1:50,000), we made a detailed analysis of the basement structure, formation timing and processes and its later evolution on a basis of core geochemical and isotopic analysis. Firstly, we defined the Mahu Pre-Cambrian micro-continental block in the juvenile crust of Junggar Basin according to the Hf isotopic analysis of the Carboniferous volcanic rocks. Secondly, the results of the tectonic setting and basin analysis suggest that the Junggar area incorporates three approximately E-W trending island arc belts (from north to south: Yemaquan- Wulungu-Chingiz, Jiangjunmiao-Luliang-Darbut and Zhongguai-Mosuowan- Baijiahai-Qitai island arcs respectively) and intervened three approximately E-W trending retro-arc or inter-arc basin belts from north to south, such as Santanghu-Suosuoquan-Emin, Wucaiwan-Dongdaohaizi-Mahu (Mahu block sunk as a bathyal basin during this phase) and Fukang-western well Pen1 sag accordingly. Thirdly, the closure of these retro-arc or inter-arc basins migrating gradually toward the south led to the collision and amalgamation between the above-mentioned island arcs during the Carboniferous, constituting the basic framework of the Junggar 'block'. Fourthly, the emplacement of large-scale mantle-derived magmas occurred in the latest Carboniferous to Early Permian. For instance, the well Mahu 5 penetrate the latest Carboniferous basalts with a thickness of over 20 m, and these mantle-derived magmas consolidated the above-mentioned island arc-collaged blocks. Therefore, the Junggar basin basement mainly comprises pre-Carboniferous collaged basement, and its formation is characterized by two-stage growth model, involving the Carboniferous lateral growth of island arcs and the latest Carboniferous to Early Permian vertical crustal growth related to emplacement and underplating of the mantle-derived magmas. In the Middle Permian, the Junggar Basin is dominated by a series of stable intra-continental sag basins from west to east, such as Mahu, Shawan, western Well Pen1, Dongdaohaizi-Wucaiwan-Dajing, Fukang-Jimusaer sag lake-basins and so on. The Middle Permian (e.g., Lower Wu'erhe, Lucaogou, and Pingdiquan Formations) thick source rocks developed in these basins, suggesting that the Junggar Basin had been entered 'intra-cratonic sag' basin evolution stage. Since then, no strong thermal tectonic event could result in crust growth. The present crustal thickness of Junggar Basin is 45-52 km, which was mainly formed before the latest Early Permian. Subsequently, the Junggar Basin experienced a rapid cooling process during the Late Permian to Triassic. These events constrain the formation timing of the Junggar basin basement to be before the latest Early Permian. It is inferred that the crustal thickness of Carboniferous island arc belts and associated back-arc basins is of 30-35 km or less. The latest Carboniferous to Early Permian vertical crust growth should have a thickness of 15-20 km or more. Viewed from the deep seismic refection profile across the basin, the Junggar crust does not contain the large-scale imbricate thrust systems, but shows well-layered property. Thus, the vertical growth rate reached 0.75~1 km/Ma in the latest Carboniferous to Early Permian time, a period approximately of 20Ma. It indicates a very rapid crustal growth style which could be named as the Junggar-type vertical growth of continental crust. Its formation mechanism and geodynamic implications need to be further explored later.
Phan, Thai T.; Capo, Rosemary C; Stewart, Brian W.; Macpherson, Gwen; Rowan, Elisabeth L.; Hammack, Richard W.
2015-01-01
In Greene Co., southwest Pennsylvania, the Upper Devonian sandstone formation waters have δ7Li values of + 14.6 ± 1.2 (2SD, n = 25), and are distinct from Marcellus Shale formation waters which have δ7Li of + 10.0 ± 0.8 (2SD, n = 12). These two formation waters also maintain distinctive 87Sr/86Sr ratios suggesting hydrologic separation between these units. Applying temperature-dependent illitilization model to Marcellus Shale, we found that Li concentration in clay minerals increased with Li concentration in pore fluid during diagenetic illite-smectite transition. Samples from north central PA show a much smaller range in both δ7Li and 87Sr/86Sr than in southwest Pennsylvania. Spatial variations in Li and δ7Li values show that Marcellus formation waters are not homogeneous across the Appalachian Basin. Marcellus formation waters in the northeastern Pennsylvania portion of the basin show a much smaller range in both δ7Li and 87Sr/86Sr, suggesting long term, cross-formational fluid migration in this region. Assessing the impact of potential mixing of fresh water with deep formation water requires establishment of a geochemical and isotopic baseline in the shallow, fresh water aquifers, and site specific characterization of formation water, followed by long-term monitoring, particularly in regions of future shale gas development.
Campisano, Christopher J.; Kirk, E. Christopher; Townsend, K. E. Beth; Deino, Alan L.
2014-01-01
The Whistler Squat Quarry (TMM 41372) of the lower Devil’s Graveyard Formation in Trans-Pecos Texas is a middle Eocene fossil locality attributed to Uintan biochronological zone Ui1b. Specimens from the Whistler Squat Quarry were collected immediately above a volcanic tuff with prior K/Ar ages ranging from ∼47–50 Ma and below a tuff previously dated to ∼44 Ma. New 40Ar/39Ar analyses of both of the original tuff samples provide statistically indistinguishable ages of 44.88±0.04 Ma for the lower tuff and 45.04±0.10 Ma for the upper tuff. These dates are compatible with magnetically reversed sediments at the site attributable to C20r (43.505–45.942 Ma) and a stratigraphic position above a basalt dated to 46.80 Ma. Our reanalysis of mammalian specimens from the Whistler Squat Quarry and a stratigraphically equivalent locality significantly revises their faunal lists, confirms the early Uintan designation for the sites, and highlights several biogeographic and biochronological differences when compared to stratotypes in the Bridger and Uinta Formations. Previous suggestions of regional endemism in the early Uintan are supported by the recognition of six endemic taxa (26% of mammalian taxa) from the Whistler Squat Quarry alone, including three new taxa. The revised faunal list for the Whistler Squat Quarry also extends the biostratigraphic ranges of nine non-endemic mammalian taxa to Ui1b. PMID:24988115
Abnormal pressure study in the Malay and Penyu Basins: A regional understanding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kader, M.S.; Leslie, W.
1994-07-01
A majority of wells drilled in the Malay and Penyu basins were terminated due to abnormal pressure. Blowouts and the subsequent loss of technical data have always been a concern during drilling operations. This study employs data from 94 exploratory wells spread throughout the Malay and Penyu basins. The postdrill abnormal pressure predictive method used is pressure vs. depth plots of data obtained from Repeat Formation tester (RFT) readings. The study results indicate that abnormal pressure occurs in a progressively older stratigraphic unit toward the basin margins. The margins of the Malay and the entire Penyu basins tend to bemore » normally pressured. The onset of abnormal pressure appears to be abrupt in the northern portion and more gradual in the southern part of the Malay Basin. Abnormal pressure in the Malay Basin is found to be neither depth dependent nor age related. Many factors can cause the abnormal formation pressures. In some areas, a combination of factors prevails. Rapid deposition of the middle to late Miocene siliciclastic sediments appears to be a dominant cause particularly in the center of the Malay Basin. A low sand:shale ratio coupled with a high geothermal gradient is also found to be a local cause near the axis of the basin. This phenomenon is crucial to the understanding of hydrocarbon migration and will enable the planning of safe and efficient drilling campaigns.« less
NASA Astrophysics Data System (ADS)
Cassola, Teodoro; Willett, Sean D.; Kopp, Heidrun
2010-05-01
In this study, the mechanics of forearc basins will be the object of a numerical investigation to understand the relationships between wedge deformation and forearc basin formation. The aim of this work is to gain an insight into the dynamics of the formation of the forearc basin, in particular the mechanism of formation of accommodation space and the preservation of basin stratigraphy. Our tool is a two-dimensional numerical model that includes the rheological properties of the rock, including effective internal friction angle, effective basal friction angle and thermally-dependent viscosity. We also simulate different sedimentation rates in the basin, to study the influence of underfilled and overfilled basin conditions on wedge deformation. The stratigraphy of the basin will also be studied, because in underfilled conditions the sediments are more likely to undergo tectonic deformation due to inner wedge deformation. We compare the numerical model with basins along the Sunda-Java Trench. This margin shows a variety of structural-settings and basin types including underfilled and overfilled basins and different wedge geometries. We interpret and document these structural styles, using depth migrated seismic sections of the Sunda Trench, obtained in three surveys, GINCO (11/98 - 01/99), MERAMEX (16/09/04 - 7/10/04) and SINDBAD (9/10/06 - 9/11/06) and made available through the IFM-GEOMAR and the Bundesanstalt für Geowissenschaften and Rohstoffe (BGR). One important aspect of these margins that we observe is the presence of a dynamic backstop, characterized by older accreted material, that, although deformed during and after accretion, later becomes a stable part of the upper plate. We argue that, following critical wedge theory, it entered into the stable field of a wedge either by steepening or weakening of the underlying detachment. As a stable wedge, this older segment of the wedge acts as a mechanical backstop for the frontal deforming wedge. This dynamic backstop moves seaward in time, in response to isostatic loading by the growing wedge, or due to seaward retreat of the slab with a consequent steepening of the base of the wedge.
Petroleum Systems of the Nigerian Sector of Chad Basin: Insights from Field and Subsurface Data
NASA Astrophysics Data System (ADS)
Suleiman, A. A.; Nwaobi, G. O.; Bomai, A.; Dauda, R.; Bako, M. D.; Ali, M. S.; Moses, S. D.
2017-12-01
A.A. Suleiman, A. Bomai, R. Dauda, O.G. NwaobiNigerian National Petroleum CorporationAbstract:Formation of the West and Central African Rift systems (WCARS) reflects intra-plate deformation linked to the Early to Late Cretaceous opening of South Atlantic Ocean. From an economic point of view, the USGS (2010) estimated Chad Basin, which is part of WCARS rift system to contain, up to 2.32 BBO and 14.62 TCF. However, there has been no exploration success in the Nigerian sector of the Chad Basin principally because of a poor understanding of the basin tectono-stratigraphic evolution and petroleum system development. In this study, we use 3D seismic, geochemical and field data to construct a tectono-stratigraphic framework of the Nigerian sector of Chad Basin; within this framework we then investigate the basins petroleum system development. Our analysis suggests two key plays exist in the basin, Lower and Upper Cretaceous plays. Pre-Bima lacustrine shale and the Gongila Formation constitute the prospective source rocks for the Lower Cretaceous play, whereas the Fika Shale may provide the source, for the Upper Cretaceous play. Source rock hydrocarbon modeling indicates possible oil and gas generation and expulsion from the lacustrine shales and Fika Shale in Cretaceous and Tertiary times respectively. Bima Sandstone and weathered basement represent prospective reservoirs for the Lower Cretaceous play and intra-Fika sandstone beds for the Upper Cretaceous play. We identify a range of trapping mechanisms such as inversion-related anticlines. Shales of the Gongila Formation provide the top sealing for the Lower Cretaceous play. Our field observations have proved presence of the key elements of the petroleum system in the Nigerian Sector of the Chad Basin. It has also demonstrated presence of igneous intrusions in the stratigraphy of the basin that we found to influence the hydrocarbon potential of the basin through source rock thermal maturity and degradation. Our study indicates that Nigerian sector of the Chad Basin is affected by igneous activity and basin inversion both of which impact its petroleum system development. Therefore, a detailed study of the tectono-stratigraphic framework of a rift basin is crucial to investigate the development of its petroleum system and hydrocarbon prospectivity.
Flores, Romeo M.; Spear, Brianne D.; Purchase, Peter A.; Gallagher, Craig M.
2010-01-01
Described in this report is an updated subsurface stratigraphic framework of the Paleocene Fort Union Formation and Eocene Wasatch Formation in the Powder River Basin (PRB) in Wyoming and Montana. This framework is graphically presented in 17 intersecting west-east and north-south cross sections across the basin. Also included are: (1) the dataset and all associated digital files and (2) digital files for all figures and table 1 suitable for large-format printing. The purpose of this U.S. Geological Survey (USGS) Open-File Report is to provide rapid dissemination and accessibility of the stratigraphic cross sections and related digital data to USGS customers, especially the U.S. Bureau of Land Management (BLM), to facilitate their modeling of the hydrostratigraphy of the PRB. This report contains a brief summary of the coal-bed correlations and database, and is part of a larger ongoing study that will be available in the near future.
NASA Astrophysics Data System (ADS)
Hayes, A. G., Jr.; Birch, S.; Corlies, P.; Poggiali, V.; Dietrich, W. E.; Howard, A. D.; Kirk, R. L.; Mastrogiuseppe, M.; Malaska, M.; Moore, J. M.; Mitchell, K. L.
2017-12-01
The topographic information provided by Cassini RADAR Altimetry, SAR Topography, and stereo photogrammetry has opened new doors for Titan research by allowing the quantitative analysis of morphologic form as well as relative measurements of liquid elevation. Herein, we investigate the relative elevation of liquid bodies and the three-dimensional morphology of Titan's lacustrine basins in order to provide observables that will constrain connectivity and plausible formation mechanisms. Using delay-Dopler processed altimetry measurements we show that the liquid elevations of Titan's Mare are the same to within measurement error, consistent with an equipotential surface. The liquid elevation of several smaller lakes, however, are found to be several hundreds above this sea level, suggesting that they exist in isolated or perched basins. Within a given topographic basin, the floor elevations of empty lakes are typically higher than the local liquid elevation, suggesting either the presence of an impermeable boundary or local subsurface connectivity. Basins with floors closer to the local phreatic surface appear brighter to both nadir and off-nadir microwave observations than those that are more elevated, indicating a potential change in composition. The majority of Titan's lakes reside in sharp edged depressions whose planform curvature suggests expansion through uniform scarp retreat. Many, but not all, of these basins exhibit flat floors and hundred-meter scale steep-sided raised rims that present a challenge to formation models. Raised rims are found on 57% of all the lakes in our study, including for all lakes >500 km2 in area. With super-resolution altimetry profiles, the raised rims can also be correlated directly with SAR image data, allowing for the identification of raised rims on other lakes, even when they lack topographic data coverage.. The basins are often topographically closed with no evidence for inflow or flow channels at the 300 m resolution of Cassini SAR images. The implications of these observations will be discussed in the context of common basin formation models. We conclude that sublimation and dissolution mechanisms can best match the observed constraints, but that challenges still exist in their implementation.
NASA Astrophysics Data System (ADS)
Yassin, Mohamed; Abdullatif, Osman; Hariri, Mustafa
2017-04-01
Sufyan Sub-basin is an East-West trending Sub-basin located in the northwestern part of the Muglad Basin (Sudan), in the eastern extension of the West and Central Africa Rift System (WCARS). The Early Cretaceous Abu Gabra Formation considered as the main source rock in the Muglad Basin. In Sufyan Sub-basin the Early Cretaceous Upper Abu Gabra Formation is the main oil-producing reservoir. It is dominated by sandstone and shales deposited in fluvio-deltaic and lacustrine environment during the first rift cycle in the basin. Depositional and post-depositional processes highly influenced the reservoir quality and architecture. This study investigates different scales of reservoir heterogeneities from macro to micro scale. Subsurface facies analysis was analyzed based on the description of six conventional cores from two wells. Approaches include well log analysis, thin sections and scanning electron microscope (SEM) investigations, grain-size, and X-ray diffraction (XRD) analysis of the Abu Gabra sandstone. The cores and well logs analyses revealed six lithofacies representing fluvio-deltaic and lacustrine depositional environment. The sandstone is medium to coarse-grained, poorly to moderately sorted and sub-angular to subrounded, Sub-feldspathic arenite to quartz arenite. On macro-scale, reservoir quality varies within Abu Gabra reservoir where it shows progressive coarsening upward tendencies with different degrees of connectivity. The upper part of the reservoir showed well connected and amalgamated sandstone bodies, the middle to lower parts, however, have moderate to low sandstone bodies' connectivity and amalgamation. On micro-scale, sandstone reservoir quality is directly affected by textures and diagenesis.The XRD and SEM analyses show that kaolinite and chlorite clay are the common clay minerals in the studied samples. Clay matrix and quartz overgrowth have significantly reduced the reservoir porosity and permeability, while the dissolution of feldspars during the diagenetic process increase it. The estimated porosity in Abu Gabra Formation ranges from 10 to 21% with an average of 15%; while permeability varies from 200 to 400 md. The results of this study might contribute to better understanding of reservoir heterogeneities and help in reservoir quality prediction, therefore enhancing the hydrocarbon productivity.
Diagenetic controls on reservoir heterogeneity in St. Peter Sandstone, deep Michigan basin
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, D.A.; Turmelle, T.M.; Adam, R.
1989-03-01
The St. Peter Sandstone is a highly productive gas and condensate reservoir throughout the central part of the Michigan basin. Production occurs in several intervals: a laterally continuous zone at the top of the formation typified in the Woodville, Falmouth, and Rose City fields and less continuous intervals lower in the formation typified in the Ruwe Gulf zone of the Reed City field. Porosity is not limited to hydrocarbon productive zones, however. Diagenesis has dramatically modified primary mineralogy and textures in the formation. Dominant diagenetic components are quartz, dolomite, and clay authigenic cements, extensive chemical compaction, and pervasive mineral leaching.more » Their model for sandstone diagenesis is consistent throughout the basin. Variation in the significance of these diagenetic components is strongly templated by stratigraphically predictable facies variations within the St. Peter Sandstone.« less
Dunagan, S.P.; Turner, C.E.
2004-01-01
During deposition of the Upper Jurassic Morrison Formation, water that originated as precipitation in uplands to the west of the Western Interior depositional basin infiltrated regional aquifers that underlay the basin. This regional groundwater system delivered water into the otherwise dry continental interior basin where it discharged to form two major wetland/lacustrine successions. A freshwater carbonate wetland/lacustrine succession formed in the distal reaches of the basin, where regional groundwater discharged into the Denver-Julesburg Basin, which was a smaller structural basin within the more extensive Western Interior depositional basin. An alkaline-saline wetland/lacustrine complex (Lake T'oo'dichi') formed farther upstream, where shallower aquifers discharged into the San Juan/Paradox Basin, which was another small structural basin in the Western Interior depositional basin. These were both wetlands in the sense that groundwater was the major source of water. Input from surface and meteoric water was limited. In both basins, lacustrine conditions developed during episodes of increased input of surface water. Inclusion of wetlands in our interpretation of what had previously been considered largely lacustrine systems has important implications for paleohydrology and paleoclimatology. The distal carbonate wetland/lacustrine deposits are well developed in the Morrison Formation of east-central Colorado, occupying a stratigraphic interval that is equivalent to the "lower" Morrison but extends into the "upper" Morrison Formation. Sedimentologic, paleontologic, and isotopic evidence indicate that regional groundwater discharge maintained shallow, hydrologically open, well oxygenated, perennial carbonate wetlands and lakes despite the semi-arid climate. Wetland deposits include charophyte-rich wackestone and green mudstone. Lacustrine episodes, in which surface water input was significant, were times of carbonate and siliciclastic deposition in scarce deltaic and shoreline deposits. Marginal lacustrine deposits include ooid and skeletal packstone-grainstone, siltstone, and sandstone. Distal lacustrine units are skeletal mudstone-wackestone, microbialites, and laminated (siliciclastic) mudstone. Differentiation between wetlands and distal lacustrine units is not always possible. Palustrine features, Magadi-type chert (MTC), and evaporites record episodes of increased aridity and exposure. Farther upstream, during deposition of the upper part of the Brushy Basin Member, the ancestral Uncompahgre Uplift imposed a barrier to shallow, eastward-flowing groundwater that discharged into the San Juan/Paradox Basin on the upstream side of the uplift. This created the closed hydrologic setting necessary for development of an alkaline-saline wetland/lacustrine complex ("Lake" T'oo'dichi'). Silicic volcanic ash, delivered by prevailing winds from calderas west and southwest of the basin, contributed to the pore-water evolution in the sediments. A distinctive lateral hydrogeochemical gradient, reflecting increasing salinity and alkalinity in the pore waters, altered the ash to a variety of authigenic minerals that define concentric zones within the basin. The basinward progression of diagenetic mineral zones is smectite???clinoptilolite???analcime ??potassium feldspar???albite. The groundwater-fed wetlands were shallow and frequently evaporated to dryness. Scarce laminated gray mudstone beds record distinct episodes of freshwater lacustrine deposition that resulted from intermittent streams that carried detritus well out into the basin. ?? 2004 Elsevier B.V. All rights reserved.
Miocene non-marine diatoms from the western Cordillera basins of northern Peru
Fourtanier, E.; Gasse, F.; Bellier, O.; Bonhomme, M.G.; Robles, I.
1993-01-01
Diatom assemblages are documented from diatomite layers of two Miocene fluvio-lacustrine units from the basins of the western Cordillera of northern Peru: the Namora Formation and the Cajabamba Formation. Emphasis is given to taxa of particular stratigraphic interest. The diatom assemblages indicate for the Namora Formation the occurrence of swampy conditions with very dilute, low alkalinity water. The diatom assemblages of the Cajabamba Formation reflect the occurrence of fresh, slightly alkaline, eutrophic lakes with deep water in some samples, and swampy conditions with relatively high salt content in other samples. The Namora formation is late Miocene in age based on the diatom assemblages and radiometric analyses. The diatom layers of the Cajabamba Formation are dated as late middle to early late Miocene. -from Authors
Eocene Unification of Peruvian and Bolivian Altiplano Basin Depocenters
NASA Astrophysics Data System (ADS)
Saylor, J.; Sundell, K. E.; Perez, N.; Karsky, N.; Lapen, T. J.; Cárdenas, J.
2017-12-01
Paleogene evolution of the Altiplano basin has been characterized as a flexural foreland basin which developed in response to magmatic and thrust loading along its western margin. Research focused in southern Peru and Bolivia points to broadly synchronous foredeep deposition in a basin assumed to be have been contiguous from at least 14°-23°S. We investigated Paleogene strata exposed on the southwestern margin of Lake Titicaca near the Peru/Bolivia border in order to establish sediment dispersal systems, sediment sources, and the chronology of deposition. A data set of >1,000 paleocurrent measurements throughout the section consistently indicates a western sediment source. The results of detrital zircon mixture modeling are consistent with derivation from Cretaceous volcanic sources, and Cretaceous and Ordovician sedimentary strata exposed in the Western Cordillera. These results confirm previous models in which sedimentary sources for the Altiplano basin are dominated by the Western Cordillera throughout the Paleogene. The detrital zircon signatures from strata in this stratigraphic section where paleocurrent orientation is well constrained provide a benchmark for future research seeking to determine sediment sources for the Altiplano basin. However, refined chronologies based on detrital zircon U-Pb maximum depositional ages (MDAs) point to development of at least two Paleocene depocenters in Peru and Bolivia separated by a zone of nondeposition or erosion in southern Peru. The basal Muñani Formation in southern Peru yields MDAs of 36.9-40.2 Ma, which requires revision of the previously determined middle Paleocene onset of deposition. The Muñani Formation overlies the Vilquechico Group which has been biostratigraphically determined to range from Campanian-Maastrichtian (or possibly Paleocene, 60 Ma). The revised chronology for the Muñani Formation requires a disconformity of at least 20 Myr during which deposition continued in both the Peruvian and Bolivian depocenters of the Paleogene Altiplano foreland basin. This requires that the Altiplano basin initiated as separate basins, and only unified at 36-40 Ma.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ellis, L.C.; Balph, D.F.
Male Uinta ground squirrels (Spermophilus armatus) were sacrificed from a free-living population during the breeding season, which immediately followed emergence from hibernation; after the reproductive season; and just prior to aestivation/hibernation. HIOMT activity of the pineal gland was assayed and related to the ability of the gonads to synthesize and metabolize testosterone. Older squirrels had higher HIOMT activity than did the younger animals. The activity of this enzyme was lowest in squirrels during the breeding season. HIOMT activity increased after the breeding season to its highest level just before the squirrels enter aestivation/hibernation. At this time, testicular weight increased concomitantmore » with an apparent increase in HIOMT activity. Testicular size and weight were largest at the time of emergence of the animals from hibernation. Androgen synthesis was also greatest during the breeding season. As would be expected, both decreased rapidly thereafter. The testes formed little 17..cap alpha..,20..cap alpha..-dihydroxyprogesterone during or after the breeding season, contrary to what has been reported for rats and house sparrows. The older squirrels demonstrated a greater capacity for testosterone metabolism during the breeding season than did the younger animals.« less
The Paleozoic ichthyofauna of the Amazonas and Parnaíba basins, Brazil
NASA Astrophysics Data System (ADS)
Figueroa, Rodrigo Tinoco; Machado, Deusana Maria da Costa
2018-03-01
The Brazilian Paleozoic ichthyofauna from the Parnaíba and Amazonas basins regard a sparsely known diversity, including chondrichthyans and acanthodians, besides some osteichthyan remains. This work proposes a revision of the fossil material from these two sedimentary basins and synthesizes the morphological aspect of such material trying to understand the influences of those fossils to the paleontology of the region, comparing the Brazilian fossils with other gondwanan faunas. The Brazilian Paleozoic fish fauna shows great resemblance to those of Bolivia, especially during the Devonian. Many of the Acanthodian spines from the Manacapuru Formation (Amazonas Basin), and the Pimenteira Formation (Parnaíba Basin), are comparable to the taxa found in Bolivia. The lack of more Placoderm remains in the Brazilian outcrops is similar to the low diversity of this group in Bolivia, when compared to other South American and Euramerican localities. The most diverse Brazilian ichthyofauna is encountered in the Permian Pedra de Fogo Formation where numerous chondrichthyans and 'paleopterygians' remains are found, together with dipnoans and actinistians. Despite the apparent lack of more representative Paleozoic ichthyofaunas in Brazil, the available material that ranges from Lower Devonian to early Permian from Brazil bears important taxa that could address valuable taxonomic and biogeographic informations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
May, J.A.; Stonecipher, S.A.; Steinmetz, J.C.
1991-03-01
The correct interpretation of intercalated Miocene siliciclastics and evaporites of Gemsa basin is crucial for understanding early rift tectonics of the Gulf of Suez, pinpointing the timing of isolation of the Gulf from the Mediterranean, and developing exploration plays. Evaporites of the Kareem Formation comprise celestites and massive, 'chicken-wire,' and laminated anhydrites. Although previously interpreted as sabkha deposits; sedimentologic, petrographic, and paleontologic analyses indicate these evaporites more likely formed in a submarine setting. Marls that encase the evaporites contain a diverse and abundant assemblage of nannoplankton, planktonic foraminifera, diatoms, pteropods, and fish scales indicative of basinal deposition. Associated turbidites alsomore » denote deep-water sedimentation. The paucity of benthic diatoms and foraminifera, plus the presence of unburrowed shales, phosphate nodules, early ferroan carbonate cements, and authigenic pyrite, suggest periodic anoxic, or at least disaerobic, bottom waters. These sequences probably represent partial isolation of the Gulf of Suez by middle Miocene, producing periodic basin restriction and evaporative drawdown. Episodes of increasing salinity likely caused the progressive decreases in foram abundance and diversity in marls beneath the anhydrites, culminating in subaqueous evaporite formation. Diverse, indigenous nannoplankton assemblages from shale seams within the anhydrites suggest Gemsa basin was stratified; shallow open-marine conditions coexisted with anhydrite crystallization from deeper hypersaline waters.« less