Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2014
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, Frederick W.; Noe, Susan P.; Snead, Lance Lewis
2014-10-01
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the ORNL fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing DOE Office of Science fusion energy program while developing materials for fusion power systems. In doing so the programmore » continues to be integrated both with the larger U.S. and international fusion materials communities, and with the international fusion design and technology communities.« less
An Outlook on Lithium Ion Battery Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Manthiram, Arumugam
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along withmore » solid electrolytes and lithium metal anode are being intensively pursued. In conclusion, this article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies.« less
An Outlook on Lithium Ion Battery Technology
Manthiram, Arumugam
2017-09-07
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along withmore » solid electrolytes and lithium metal anode are being intensively pursued. In conclusion, this article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies.« less
An Outlook on Lithium Ion Battery Technology
2017-01-01
Lithium ion batteries as a power source are dominating in portable electronics, penetrating the electric vehicle market, and on the verge of entering the utility market for grid-energy storage. Depending on the application, trade-offs among the various performance parameters—energy, power, cycle life, cost, safety, and environmental impact—are often needed, which are linked to severe materials chemistry challenges. The current lithium ion battery technology is based on insertion-reaction electrodes and organic liquid electrolytes. With an aim to increase the energy density or optimize the other performance parameters, new electrode materials based on both insertion reaction and dominantly conversion reaction along with solid electrolytes and lithium metal anode are being intensively pursued. This article presents an outlook on lithium ion technology by providing first the current status and then the progress and challenges with the ongoing approaches. In light of the formidable challenges with some of the approaches, the article finally points out practically viable near-term strategies. PMID:29104922
Applications of XPS in the characterization of Battery materials
Shutthanandan, Vaithiyalingam; Nandasiri, Manjula; Zheng, Jianming; ...
2018-05-26
In this study, technological development requires reliable power sources where energy storage devices are emerging as a critical component. Wide range of energy storage devices, Redox-flow batteries (RFB), Lithium ion based batteries (LIB), and Lithium-sulfur (LSB) batteries are being developed for various applications ranging from grid-scale level storage to mobile electronics. Material complexities associated with these energy storage devices with unique electrochemistry are formidable challenge which needs to be address for transformative progress in this field. X-ray photoelectron spectroscopy (XPS) - a powerful surface analysis tool - has been widely used to study these energy storage materials because of itsmore » ability to identify, quantify and image the chemical distribution of redox active species. However, accessing the deeply buried solid-electrolyte interfaces (which dictates the performance of energy storage devices) has been a challenge in XPS usage. Herein we report our recent efforts to utilize the XPS to gain deep insight about these interfaces under realistic conditions with varying electrochemistry involving RFB, LIB and LSB.« less
Applications of XPS in the characterization of Battery materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shutthanandan, Vaithiyalingam; Nandasiri, Manjula; Zheng, Jianming
In this study, technological development requires reliable power sources where energy storage devices are emerging as a critical component. Wide range of energy storage devices, Redox-flow batteries (RFB), Lithium ion based batteries (LIB), and Lithium-sulfur (LSB) batteries are being developed for various applications ranging from grid-scale level storage to mobile electronics. Material complexities associated with these energy storage devices with unique electrochemistry are formidable challenge which needs to be address for transformative progress in this field. X-ray photoelectron spectroscopy (XPS) - a powerful surface analysis tool - has been widely used to study these energy storage materials because of itsmore » ability to identify, quantify and image the chemical distribution of redox active species. However, accessing the deeply buried solid-electrolyte interfaces (which dictates the performance of energy storage devices) has been a challenge in XPS usage. Herein we report our recent efforts to utilize the XPS to gain deep insight about these interfaces under realistic conditions with varying electrochemistry involving RFB, LIB and LSB.« less
ERIC Educational Resources Information Center
Tracey, Graham; Riha, James
2009-01-01
Managing business intelligence (BI) projects in higher education is a formidable responsibility that challenges even the most experienced technical project managers. Data source dependencies, uncertain data quality, changing information requirements, and urgency for actionable information are but a few examples among the multitude of challenges.…
Vinegar as a broadcast herbicide for spring-transplanted onions
USDA-ARS?s Scientific Manuscript database
The weed control challenges for onion production are formidable; however, these challenges are even greater for those considering organic crop production. Organic onion producers need additional organic herbicides that can effectively provide post-emergent weed control. Field research was conducted...
NASA Astrophysics Data System (ADS)
Fritze, Matthew D.
Fluid-structure interaction (FSI) modeling of spacecraft parachutes involves a number of computational challenges. The canopy complexity created by the hundreds of gaps and slits and design-related modification of that geometric porosity by removal of some of the sails and panels are among the formidable challenges. Disreefing from one stage to another when the parachute is used in multiple stages is another formidable challenge. This thesis addresses the computational challenges involved in disreefing of spacecraft parachutes and fully-open and reefed stages of the parachutes with modified geometric porosity. The special techniques developed to address these challenges are described and the FSI computations are be reported. The thesis also addresses the modeling and computation challenges involved in very early stages, where the sudden separation of a cover jettisoned to the spacecraft wake needs to be modeled. Higher-order temporal representations used in modeling the separation motion are described, and the computed separation and wake-induced forces acting on the cover are reported.
Rational material design for ultrafast rechargeable lithium-ion batteries.
Tang, Yuxin; Zhang, Yanyan; Li, Wenlong; Ma, Bing; Chen, Xiaodong
2015-10-07
Rechargeable lithium-ion batteries (LIBs) are important electrochemical energy storage devices for consumer electronics and emerging electrical/hybrid vehicles. However, one of the formidable challenges is to develop ultrafast charging LIBs with the rate capability at least one order of magnitude (>10 C) higher than that of the currently commercialized LIBs. This tutorial review presents the state-of-the-art developments in ultrafast charging LIBs by the rational design of materials. First of all, fundamental electrochemistry and related ionic/electronic conduction theories identify that the rate capability of LIBs is kinetically limited by the sluggish solid-state diffusion process in electrode materials. Then, several aspects of the intrinsic materials, materials engineering and processing, and electrode materials architecture design towards maximizing both ionic and electronic conductivity in the electrode with a short diffusion length are deliberated. Finally, the future trends and perspectives for the ultrafast rechargeable LIBs are discussed. Continuous rapid progress in this area is essential and urgent to endow LIBs with ultrafast charging capability to meet huge demands in the near future.
Impact of over-the-top broadcast applications of Racer® on onion weed control
USDA-ARS?s Scientific Manuscript database
The weed control challenges for onion production are formidable; however, these challenges are even greater for those considering organic crop production. Organic onion producers need organic herbicides that can effectively provide post-emergent weed control. Racer (registered trademark) is a poten...
Plural Societies and the Possibility of Shared Citizenship
ERIC Educational Resources Information Center
Merry, Michael S.
2012-01-01
As civilization pushes headlong into the twenty-first century, increasingly stringent demands for citizenship issue forth from governments around the world faced with a formidable assortment of challenges. Faced with these challenges, states are exploring ways to elicit civic attachments from their heterogeneous populations, but doing so is…
E-Learning and the Transformation of Social Interaction in Higher Education
ERIC Educational Resources Information Center
Slevin, James
2008-01-01
This article examines the way in which e-learning is transforming the nature of social interaction in higher education. In this new educational environment, radical societal transitions and the opportunities afforded by modern communication technologies together produce formidable challenges. Significant as these challenges may be, concentration…
A Grand Challenge for CMOS Scaling: Alternate Gate Dielectrics
NASA Astrophysics Data System (ADS)
Wallace, Robert M.
2001-03-01
Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.13 um complementary metal oxide semiconductor (CMOS) technology. The prospect of replacing SiO2 is a formidable task because the alternate gate dielectric must provide many properties that are, at a minimum, comparable to those of SiO2 yet with a much higher permittivity. A systematic examination of the required performance of gate dielectrics suggests that the key properties to consider in the selection an alternative gate dielectric candidate are (a) permittivity, band gap and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. We will review the performance requirements for materials associated with CMOS scaling, the challenges associated with these requirements, and the state-of-the-art in current research for alternate gate dielectrics. The requirements for process integration compatibility are remarkably demanding, and any serious candidates will emerge only through continued, intensive investigation.
Multiyear Program Plan for the High Temperature Materials Laboratory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arvid E. Pasto
2000-03-17
Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly,more » the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kong, Lingping; Liu, Gang; Gong, Jue
The organic-inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley-Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to -100% increase) under mild pressures at -0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing anymore » adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon-electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance.« less
HIV Infection among People Who Inject Drugs: The Challenge of Racial/Ethnic Disparities
ERIC Educational Resources Information Center
Des Jarlais, Don C.; McCarty, Dennis; Vega, William A.; Bramson, Heidi
2013-01-01
Racial/ethnic disparities in HIV infection, with minority groups typically having higher rates of infection, are a formidable public health challenge. In the United States, among both men and women who inject drugs, HIV infection rates are elevated among Hispanics and non-Hispanic Blacks. A meta-analysis of international research concluded that…
Futures research: A neglected dimension in environmental policy and planning
David N. Bengston
2012-01-01
The need for strategic foresight in an increasingly complex and rapidly changing world poses a formidable challenge to environmental planners and policy makers. Th is paper introduces futures research as an under used but fruitful set of approaches to addressing this challenge. Futures research is a transdisciplinary social science that uses a wide range of methods to...
FATIGUE OF BIOMATERIALS: HARD TISSUES
Arola, D.; Bajaj, D.; Ivancik, J.; Majd, H.; Zhang, D.
2009-01-01
The fatigue and fracture behavior of hard tissues are topics of considerable interest today. This special group of organic materials comprises the highly mineralized and load-bearing tissues of the human body, and includes bone, cementum, dentin and enamel. An understanding of their fatigue behavior and the influence of loading conditions and physiological factors (e.g. aging and disease) on the mechanisms of degradation are essential for achieving lifelong health. But there is much more to this topic than the immediate medical issues. There are many challenges to characterizing the fatigue behavior of hard tissues, much of which is attributed to size constraints and the complexity of their microstructure. The relative importance of the constituents on the type and distribution of defects, rate of coalescence, and their contributions to the initiation and growth of cracks, are formidable topics that have not reached maturity. Hard tissues also provide a medium for learning and a source of inspiration in the design of new microstructures for engineering materials. This article briefly reviews fatigue of hard tissues with shared emphasis on current understanding, the challenges and the unanswered questions. PMID:20563239
Dressed to kill? Visible markers of coalitional affiliation enhance conceptualized formidability.
Fessler, Daniel M T; Holbrook, Colin; Dashoff, David
2016-01-01
Displaying markers of coalitional affiliation is a common feature of contemporary life. In situations in which interaction with members of rival coalitions is likely, signaling coalitional affiliation may simultaneously constitute an implicit challenge to opponents and an objective commitment device, binding signalers to their coalitions. Individuals who invite conflict, and who cannot readily back out of conflict, constitute a greater threat than those who avoid conflict and preserve the option of feigning neutrality. As a consequence, the former should be viewed as more formidable than the latter. Recent research indicates that relative formidability is summarized using the envisioned physical size and strength of a potential antagonist. Thus, individuals who display markers of coalitional affiliation should be conceptualized as more physically imposing than those who do not. We tested this prediction in two experiments. In Study 1, conducted with U.S. university students, participants inspected images of sports fans' faces. In Study 2, conducted with U.S. Mechanical Turk workers, participants read vignettes depicting political partisans. In both studies, participants estimated the physical formidability of the target individuals and reported their own ability to defend themselves; in Study 2, participants estimated the target's aggressiveness. Consonant with predictions, targets depicted as signaling coalitional affiliation in situations of potential conflict were envisioned to be more physically formidable and more aggressive than were those not depicted as signaling thusly. Underscoring that the calculations at issue concern the possibility of violent conflict, participants' estimates of the protagonist's features were inversely correlated with their ability to defend themselves. © 2016 Wiley Periodicals, Inc.
A systematic way to assess compliance with human factors standards
DOT National Transportation Integrated Search
1996-01-01
Assessing the human factors : considerations associated : with the design or : evaluation of any major : new system can be a formidable challenge. : To make this more manageable, : the Federal Aviation Administrations : (FAA) Office of the Chief S...
Fusion Materials Research at Oak Ridge National Laboratory in Fiscal Year 2015
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiffen, F. W.; Katoh, Yutai; Melton, Stephanie G.
The realization of fusion energy is a formidable challenge with significant achievements resulting from close integration of the plasma physics and applied technology disciplines. Presently, the most significant technological challenge for the near-term experiments such as ITER, and next generation fusion power systems, is the inability of current materials and components to withstand the harsh fusion nuclear environment. The overarching goal of the Oak Ridge National Laboratory (ORNL) fusion materials program is to provide the applied materials science support and understanding to underpin the ongoing Department of Energy (DOE) Office of Science fusion energy program while developing materials for fusionmore » power systems. In doing so the program continues to be integrated both with the larger United States (US) and international fusion materials communities, and with the international fusion design and technology communities.This document provides a summary of Fiscal Year (FY) 2015 activities supporting the Office of Science, Office of Fusion Energy Sciences Materials Research for Magnetic Fusion Energy (AT-60-20-10-0) carried out by ORNL. The organization of this report is mainly by material type, with sections on specific technical activities. Four projects selected in the Funding Opportunity Announcement (FOA) solicitation of late 2011 and funded in FY2012-FY2014 are identified by “FOA” in the titles. This report includes the final funded work of these projects, although ORNL plans to continue some of this work within the base program.« less
ERIC Educational Resources Information Center
Hancock, Dawson R.; Muller, Ulrich
2009-01-01
In the United States and Germany, effective school leadership is pivotal to a school's success. Yet in each country, attracting and retaining qualified school leaders is a formidable challenge. This study compares the influence of possible motivators and inhibitors that impact teachers' decisions to become principals in the two countries. Survey…
Kong, Lingping; Liu, Gang; Gong, Jue; Hu, Qingyang; Schaller, Richard D.; Dera, Przemyslaw; Zhang, Dongzhou; Liu, Zhenxian; Yang, Wenge; Zhu, Kai; Tang, Yuzhao; Wang, Chuanyi; Wei, Su-Huai; Xu, Tao; Mao, Ho-kwang
2016-01-01
The organic–inorganic hybrid lead trihalide perovskites have been emerging as the most attractive photovoltaic materials. As regulated by Shockley–Queisser theory, a formidable materials science challenge for improvement to the next level requires further band-gap narrowing for broader absorption in solar spectrum, while retaining or even synergistically prolonging the carrier lifetime, a critical factor responsible for attaining the near-band-gap photovoltage. Herein, by applying controllable hydrostatic pressure, we have achieved unprecedented simultaneous enhancement in both band-gap narrowing and carrier-lifetime prolongation (up to 70% to ∼100% increase) under mild pressures at ∼0.3 GPa. The pressure-induced modulation on pure hybrid perovskites without introducing any adverse chemical or thermal effect clearly demonstrates the importance of band edges on the photon–electron interaction and maps a pioneering route toward a further increase in their photovoltaic performance. PMID:27444014
Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young
2014-04-08
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.
NASA Astrophysics Data System (ADS)
Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young
2014-04-01
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul
Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H 2 per litre inmore » the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. In conclusion, these multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.« less
Cho, Eun Seon; Ruminski, Anne M; Aloni, Shaul; Liu, Yi-Sheng; Guo, Jinghua; Urban, Jeffrey J
2016-02-23
Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H2 per litre in the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. These multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.
Kim, Ju-Myung; Park, Jang-Hoon; Lee, Chang Kee; Lee, Sang-Young
2014-01-01
As a promising power source to boost up advent of next-generation ubiquitous era, high-energy density lithium-ion batteries with reliable electrochemical properties are urgently requested. Development of the advanced lithium ion-batteries, however, is staggering with thorny problems of performance deterioration and safety failures. This formidable challenge is highly concerned with electrochemical/thermal instability at electrode material-liquid electrolyte interface, in addition to structural/chemical deficiency of major cell components. Herein, as a new concept of surface engineering to address the abovementioned interfacial issue, multifunctional conformal nanoencapsulating layer based on semi-interpenetrating polymer network (semi-IPN) is presented. This unusual semi-IPN nanoencapsulating layer is composed of thermally-cured polyimide (PI) and polyvinyl pyrrolidone (PVP) bearing Lewis basic site. Owing to the combined effects of morphological uniqueness and chemical functionality (scavenging hydrofluoric acid that poses as a critical threat to trigger unwanted side reactions), the PI/PVP semi-IPN nanoencapsulated-cathode materials enable significant improvement in electrochemical performance and thermal stability of lithium-ion batteries. PMID:24710575
Seven Steps for Success: Selecting IT Consultants
ERIC Educational Resources Information Center
Moriarty, Daniel F.
2004-01-01
Information technology (IT) presents community colleges with both powerful opportunities and formidable challenges. The prospects of expedited and more efficient business processes, greater student access through distance learning, improved communication, and strengthened relationships with students can embolden the most hesitant college…
Rapid stabilization of thawing soils For enhanced vehicle mobility: a field demonstration project
DOT National Transportation Integrated Search
1999-02-01
Thawing soil presents a formidable challenge for vehicle operations cross-country and on unsurfaced roads. To mitigate the problem, a variety of stabilization techniques were evaluated for their suitability for rapid employment to enhance military ve...
Advanced insider threat mitigation workshop instructional materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Philip; Larsen, Robert; O Brien, Mike
Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is a n update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios.
To defer or to stand up? How offender formidability affects third party moral outrage.
Jensen, Niels Holm; Petersen, Michael Bang
2011-03-16
According to models of animal behavior, the relative formidability of conspecifics determines the utility of deferring versus aggressing in situations of conflict. Here we apply and extend these models by investigating how the formidability of exploiters shapes third party moral outrage in humans. Deciding whether to defer to or stand up against a formidable exploiter is a complicated decision as there is both much to lose (formidable individuals are able and prone to retaliate) and much to gain (formidable individuals pose a great future threat). An optimally designed outrage system should, therefore, be sensitive to these cost- benefit trade-offs. To test this argument, participants read scenarios containing exploitative acts (trivial vs. serious) and were presented with head-shot photos of the apparent exploiters (formidable vs. non-formidable). As predicted, results showed that, compared to the non- formidable exploiter, the formidable exploiter activated significantly more outrage in male participants when the exploitative act was serious. Conversely, when it was trivial, the formidable exploiter activated significantly less outrage in male participants. However, these findings were conditioned by the exploiters' perceived trustworthiness. Among female participants, the results showed that moral outrage was not modulated by exploiter formidability.
ERIC Educational Resources Information Center
Suwaed, Hameda; Rahouma, Wesam
2015-01-01
Being a university teacher in the Libya is most of the time described as a challenge. In the case of the current unstable situation in Libya, the task is formidable in many cases. This paper investigates the challenges encountered by Alzawia university teachers in four colleges. It attempts to answer the following questions: what are the…
Evolutionary preferences for physical formidability in leaders.
Murray, Gregg R
2014-01-01
This research uses evolutionary theory to evaluate followers' preferences for physically formidable leaders and to identify conditions that stimulate those preferences. It employs a population-based survey experiment (N ≥ 760), which offers the advantages to internal validity of experiments and external validity of a highly heterogeneous sample drawn from a nationally representative subject pool. The theoretical argument proffered here is followers tend to prefer leaders with greater physical formidability because of evolutionary adaptations derived from humans' violent ancestral environment. In this environment, individuals who allied with and ultimately followed physically powerful partners were more likely to acquire and retain important resources necessary for survival and reproduction because the presence of the physically powerful partner cued opponents to avoid a challenge for the resources or risk a costly confrontation. This argument suggests and the results indicate that threatening (war) and nonthreatening (peace, cooperation, and control) stimuli differentially motivate preferences for physically formidable leaders. In particular, the findings suggest threatening conditions lead to preferences for leaders with more powerful physical attributes, both anthropometric (i.e., weight, height, and body mass index) and perceptual (i.e., attributes of being "physically imposing or intimidating" and "physically strong"). Overall, this research offers a theoretical framework from which to understand this otherwise seemingly irrational phenomenon. Further, it advances the emerging but long-neglected investigation of biological effects on political behavior and has implications for a fundamental process in democratic society, leader selection.
Elucidation of Adverse Bioactivity Profiles as Predictors of Toxicity Potential
Toxicity testing in vitro remains a formidable challenge due to lack of understanding of key molecular targets and pathways underlying many pathological events. The combination of genome sequencing and widespread application of high-throughput screening tools have provided the me...
Interactive Videodisc at California State University, Fullerton.
ERIC Educational Resources Information Center
Reisman, S.
In January 1987, California State University, Fullerton (CSUF), began to explore the potential of interactive videodisk (IVD) technology on its campus. The challenge of introducing an individualized instructional technology into a cost conscious and conventional teaching environment was formidable, considering the traditional orientation of…
Insider Threat Mitigation Workshop Instructional Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Philip; Larsen, Robert; O'Brien, Mike
Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt theft of nuclear materials. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing their effectiveness against a postulated insider threat.
Antimicrobial Resistance Gene Transfer in Drug Resistant Acinetobacter Species
USDA-ARS?s Scientific Manuscript database
Abstract: Antibiotic resistance is rapidly developing into one of the most formidable challenges for healthcare providers and researchers alike. To combat the rapid evolution of resistance, it will be important to uncover different mechanisms that bacteria use to acquire drug resistance genes. Acine...
ERIC Educational Resources Information Center
Rogers, Michael
2004-01-01
Living in the vast shadow cast by the spires of the Magic Kingdom presents special challenges for Orlando's Orange County Library System (OCLS), the most formidable of which is increasing its relatively small user base. The library additionally faces tension between the administration and staff, political strife on the board, and looming contract…
NASA Astrophysics Data System (ADS)
Lee, Sang-Young
2017-05-01
Forthcoming wearable/flexible electronics with compelling shape diversity and mobile usability have garnered significant attention as a kind of disruptive technology to drastically change our daily lives. From a power source point of view, conventional rechargeable batteries (represented by lithium-ion batteries) with fixed shapes and dimensions are generally fabricated by winding (or stacking) cell components (such as anodes, cathodes and separator membranes) and then packaging them with (cylindrical-/rectangular-shaped) metallic canisters or pouch films, finally followed by injection of liquid electrolytes. In particular, the use of liquid electrolytes gives rise to serious concerns in cell assembly, because they require strict packaging materials to avoid leakage problems and also separator membranes to prevent electrical contact between electrodes. For these reasons, the conventional cell assembly and materials have pushed the batteries to lack of variety in form factors, thus imposing formidable challenges on their integration into versatile-shaped electronic devices. Here, as a facile and efficient strategy to address the aforementioned longstanding challenge, we demonstrate a new class of printed solid-state Li-ion batteries and also all-inkjet-printed solid-state supercapacitors with exceptional shape conformability and aesthetic versatility which lie far beyond those achievable with conventional battery technologies.
Urban Pest Management of Ants in California
USDA-ARS?s Scientific Manuscript database
Keeping pace with the dynamic and evolving landscape of invasive ants in California presents a formidable challenge to the pest management industry. Pest management professionals (PMPs) are on the frontlines when it comes to battling these exotic ant pests, and are often the first ones to intercept ...
Xu, Fei; Tang, Zhiwei; Huang, Siqi; Chen, Luyi; Liang, Yeru; Mai, Weicong; Zhong, Hui; Fu, Ruowen; Wu, Dingcai
2015-01-01
Exceptionally large surface area and well-defined nanostructure are both critical in the field of nanoporous carbons for challenging energy and environmental issues. The pursuit of ultrahigh surface area while maintaining definite nanostructure remains a formidable challenge because extensive creation of pores will undoubtedly give rise to the damage of nanostructures, especially below 100 nm. Here we report that high surface area of up to 3,022 m2 g−1 can be achieved for hollow carbon nanospheres with an outer diameter of 69 nm by a simple carbonization procedure with carefully selected carbon precursors and carbonization conditions. The tailor-made pore structure of hollow carbon nanospheres enables target-oriented applications, as exemplified by their enhanced adsorption capability towards organic vapours, and electrochemical performances as electrodes for supercapacitors and sulphur host materials for lithium–sulphur batteries. The facile approach may open the doors for preparation of highly porous carbons with desired nanostructure for numerous applications. PMID:26072734
Analysing and Rationalising Molecular and Materials Databases Using Machine-Learning
NASA Astrophysics Data System (ADS)
de, Sandip; Ceriotti, Michele
Computational materials design promises to greatly accelerate the process of discovering new or more performant materials. Several collaborative efforts are contributing to this goal by building databases of structures, containing between thousands and millions of distinct hypothetical compounds, whose properties are computed by high-throughput electronic-structure calculations. The complexity and sheer amount of information has made manual exploration, interpretation and maintenance of these databases a formidable challenge, making it necessary to resort to automatic analysis tools. Here we will demonstrate how, starting from a measure of (dis)similarity between database items built from a combination of local environment descriptors, it is possible to apply hierarchical clustering algorithms, as well as dimensionality reduction methods such as sketchmap, to analyse, classify and interpret trends in molecular and materials databases, as well as to detect inconsistencies and errors. Thanks to the agnostic and flexible nature of the underlying metric, we will show how our framework can be applied transparently to different kinds of systems ranging from organic molecules and oligopeptides to inorganic crystal structures as well as molecular crystals. Funded by National Center for Computational Design and Discovery of Novel Materials (MARVEL) and Swiss National Science Foundation.
Feasibility and Preliminary Outcomes of a Yoga and Mindfulness Intervention for School Teachers
ERIC Educational Resources Information Center
Ancona, Matthew R.; Mendelson, Tamar
2014-01-01
Many public school teachers face formidable challenges, including overcrowded classrooms, limited administrative resources, and high numbers of students with behavioral and emotional problems. Mindfulness-based strategies are a potentially promising means of reducing teachers' stress and enhancing their ability to handle job demands effectively.…
A Proposed Astronomy Learning Progression for Remote Telescope Observation
ERIC Educational Resources Information Center
Slater, Timothy F.; Burrows, Andrea C.; French, Debbie A.; Sanchez, Richard A.; Tatge, Coty B.
2014-01-01
Providing meaningful telescope observing experiences for students who are deeply urban or distantly rural place-bound--or even daylight time-bound--has consistently presented a formidable challenge for astronomy educators. For nearly 2 decades, the Internet has promised unfettered access for large numbers of students to conduct remote telescope…
Shared Geospatial Metadata Repository for Ontario University Libraries: Collaborative Approaches
ERIC Educational Resources Information Center
Forward, Erin; Leahey, Amber; Trimble, Leanne
2015-01-01
Successfully providing access to special collections of digital geospatial data in academic libraries relies upon complete and accurate metadata. Creating and maintaining metadata using specialized standards is a formidable challenge for libraries. The Ontario Council of University Libraries' Scholars GeoPortal project, which created a shared…
Is There a Critical Period for Semantics?
ERIC Educational Resources Information Center
Slabakova, Roumyana
2006-01-01
This article reviews recent research on the second language acquisition of meaning with a view of establishing whether there is a critical period for the acquisition of compositional semantics. It is claimed that the functional lexicon presents the most formidable challenge, while syntax and phrasal semantics pose less difficulty to learners.…
A repellent against the coffee berry borer (Coleoptera: Curculionidae: Scolytinae)
USDA-ARS?s Scientific Manuscript database
The coffee berry borer continues to pose a formidable challenge to coffee growers worldwide. Due to the cryptic life habit of the insect inside coffee berries, effective pest management strategies have been difficult to develop. A sesquiterpene, (E,E)-a-farnesene, produced by infested coffee berries...
The Function of Phenomenal States: Supramodular Interaction Theory
ERIC Educational Resources Information Center
Morsella, Ezequiel
2005-01-01
Discovering the function of phenomenal states remains a formidable scientific challenge. Research on consciously penetrable conflicts (e.g., "pain-for-gain" scenarios) and impenetrable conflicts (as in the pupillary reflex, ventriloquism, and the McGurk effect [H. McGurk & J. MacDonald, 1976]) reveals that these states integrate diverse kinds of…
What Beginning Special Educators Need to Know about Conducting Functional Behavioral Assessments
ERIC Educational Resources Information Center
Lewis, Timothy J.; Hatton, Heather L.; Jorgenson, Courtney; Maynard, Deanna
2017-01-01
New--and often veteran--teachers find managing significant inappropriate student behavior a formidable challenge. Although more severe inappropriate behaviors, such as aggression, often receive attention in the professional literature, survey research has shown that the high frequency of milder inappropriate behaviors (e.g., disruptions,…
Teacher Training in Afghanistan: Intersections of Need and Reality
ERIC Educational Resources Information Center
Husting, Sheila; Intili, Jo Ann; Kissam, Edward
2008-01-01
As post-Taliban Afghanistan moves toward the establishment of a viable educational system, key stakeholders and donors are faced with the formidable challenge of how to most rapidly implement teacher training within an environment of diverse, changing, and largely unassessed training needs. The current article explores the dilemmas inherent in…
Management of Early Carcinoma of the Ovary
Chapman, George W.
1988-01-01
Ovarian cancer represents a formidable challenge to physicians. Early symptoms are nonspecific, and are usually attributed to disorders of the upper gastrointestinal tract. Especially important is suspicion of this neoplasm in its early stage. This article discusses the epidemiology, clinical features, evaluation, and treatment of early carcinomas of the ovary. PMID:3071612
Restoring tropical forests on bauxite mined lands: lessons from the Brazilian Amazon
John A. Parrotta; Oliver H. Knowles
2001-01-01
Restoring self-sustaining tropical forest ecosystems on surface mined sites is a formidable challenge that requires the integration of proven reclamation techniques and reforestation strategies appropriate to specific site conditions, including landscape biodiversity patterns. Restorationists working in most tropical settings are usually hampered by lack of basic...
A systems approach for management of pests and pathogens of nursery crops
Jennifer L. Parke; Niklaus J. Grünwald
2012-01-01
Horticultural nurseries are heterogeneous and spatially complex agricultural systems, which present formidable challenges to management of diseases and pests. Moreover, nursery plants shipped interstate and internationally can serve as important vectors for pathogens and pests that threaten both agriculture and forestry. Current regulatory strategies to prevent this...
Axis I Screens and Suicide Risk in Jails: A Comparative Analysis
ERIC Educational Resources Information Center
Harrison, Kimberly S.; Rogers, Richard
2007-01-01
Mental health professionals conducting screenings in jail settings face formidable challenges in identifying inmates at risk for major depression and suicide. Psychologists often rely on correctional staff to provide initial appraisals of those inmates requiring further evaluation. In a sample of 100 jail detainees, the effectiveness of two…
Confirmation of the trials and tribulations of vaping.
Budney, Alan J; Sargent, James D; Lee, Dustin C
2015-11-01
Responses to our article indicate consensus on the need for expedited scientific and regulatory action related to vaping of cannabis and other substances to curtail untoward public health impact and identify potential benefits. How to speed up science, increase knowledge and enact responsible regulatory policy poses a formidable challenge.
Cho, Eun Seon; Ruminski, Anne M.; Aloni, Shaul; ...
2016-02-23
Interest in hydrogen fuel is growing for automotive applications; however, safe, dense, solid-state hydrogen storage remains a formidable scientific challenge. Metal hydrides offer ample storage capacity and do not require cryogens or exceedingly high pressures for operation. However, hydrides have largely been abandoned because of oxidative instability and sluggish kinetics. We report a new, environmentally stable hydrogen storage material constructed of Mg nanocrystals encapsulated by atomically thin and gas-selective reduced graphene oxide (rGO) sheets. This material, protected from oxygen and moisture by the rGO layers, exhibits exceptionally dense hydrogen storage (6.5 wt% and 0.105 kg H 2 per litre inmore » the total composite). As rGO is atomically thin, this approach minimizes inactive mass in the composite, while also providing a kinetic enhancement to hydrogen sorption performance. In conclusion, these multilaminates of rGO-Mg are able to deliver exceptionally dense hydrogen storage and provide a material platform for harnessing the attributes of sensitive nanomaterials in demanding environments.« less
Catalysis as an Enabling Science for Sustainable Polymers.
Zhang, Xiangyi; Fevre, Mareva; Jones, Gavin O; Waymouth, Robert M
2018-01-24
The replacement of current petroleum-based plastics with sustainable alternatives is a crucial but formidable challenge for the modern society. Catalysis presents an enabling tool to facilitate the development of sustainable polymers. This review provides a system-level analysis of sustainable polymers and outlines key criteria with respect to the feedstocks the polymers are derived from, the manner in which the polymers are generated, and the end-of-use options. Specifically, we define sustainable polymers as a class of materials that are derived from renewable feedstocks and exhibit closed-loop life cycles. Among potential candidates, aliphatic polyesters and polycarbonates are promising materials due to their renewable resources and excellent biodegradability. The development of renewable monomers, the versatile synthetic routes to convert these monomers to polyesters and polycarbonate, and the different end-of-use options for these polymers are critically reviewed, with a focus on recent advances in catalytic transformations that lower the technological barriers for developing more sustainable replacements for petroleum-based plastics.
Optimized Materials From First Principles Simulations: Are We There Yet?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Galli, G; Gygi, F
2005-07-26
In the past thirty years, the use of scientific computing has become pervasive in all disciplines: collection and interpretation of most experimental data is carried out using computers, and physical models in computable form, with various degrees of complexity and sophistication, are utilized in all fields of science. However, full prediction of physical and chemical phenomena based on the basic laws of Nature, using computer simulations, is a revolution still in the making, and it involves some formidable theoretical and computational challenges. We illustrate the progress and successes obtained in recent years in predicting fundamental properties of materials in condensedmore » phases and at the nanoscale, using ab-initio, quantum simulations. We also discuss open issues related to the validation of the approximate, first principles theories used in large scale simulations, and the resulting complex interplay between computation and experiment. Finally, we describe some applications, with focus on nanostructures and liquids, both at ambient and under extreme conditions.« less
The College Completion Agenda: State Policy Guide
ERIC Educational Resources Information Center
Stedron, Jennifer M.; Shah, Tajel; Bautsch, Brenda; Martin, Patricia; Deye, Sunny; Bailey, Lamar; Handel, Stephen J.; Vasavada, Natasha; Shen, Yilan; Exstrom, Michelle; Shelton, Sara; Santiago, Helen; Bell, Julie Davis; Quin, Bradley J.; Baum, Sandy; Bell, Julie Davis; Sturtevant, Anne; Bautsch, Brenda; Williams, Ronald; Kerouac, Pamela; Badolato, Vincent
2010-01-01
There are formidable challenges at every level of the system that confront students who aspire to enroll and succeed in college. In 2007, the College Board formed the Commission on Access, Admissions and Success in Higher Education to study the educational pipeline as a single continuum and identify solutions to increase the number of students who…
Aural Skills: At the Juncture of Research in Early Reading and Music Literacy
ERIC Educational Resources Information Center
Hansen, Dee; Milligan, Sarah A.
2012-01-01
Pressure on music educators to accommodate reading initiatives in their schools continues to challenge genuine music-learning experiences. Children are taken out of music classrooms for additional reading time, although mounting research informs us of the value of music as a formidable avenue for developing crucial auditory skills needed for…
L2 Willingness to Communicate (WTC) and International Posture in the Polish Educational Context
ERIC Educational Resources Information Center
Mystkowska-Wiertelak, Anna; Pietrzykowska, Agnieszka
2011-01-01
Speaking, the language skill whose mastering appears to be the ultimate aim of every attempt at learning a foreign language, constitutes a formidable challenge. Apart from involving the online interaction of complex processes of conceptualization, formulation, articulation and monitoring (Levelt, 1989), it appears prone to numerous psychological…
Dual Enrollment in Times of Financial Constraint: A Community College Perspective
ERIC Educational Resources Information Center
Hockley, Lori White
2013-01-01
Community college leaders today must contend with a formidable challenge: dwindling state funding and declining resources. Increased enrollments without proportional increases in state and local financial support have placed colleges in the unenviable position of needing to do more with less--or in some cases, simply do less. Despite the…
Fire management ramifications of Hurricane Hugo
J. M. Saveland; D. D. Wade
1991-01-01
Hurricane Hugo passed over the Francis Marion National Forest on September 22, 1989, removing almost 75 percent of the overstory. The radically altered fuel bed presented new and formidable challenges to fire managers. Tractor-plows, the mainstay of fire suppression, were rendered ineffective. The specter of wind-driven escaped burns with no effective means of ground...
Methicillin-Resistant "Staphylococcus aureus" on Campus: A New Challenge to College Health
ERIC Educational Resources Information Center
Weiner, H. Richard
2008-01-01
As new drugs to control bacterial pathogens are developed, the organisms evolve to survive. "Staphylococcus aureus", a common organism, has steadily developed resistance to antibiotics. For more than 40 years, resistant "S. aureus" presented a formidable problem to hospitalized patients; in the past decade, however, it has begun to appear outside…
ERIC Educational Resources Information Center
Johnson-Frey, Scott H.
2004-01-01
A key factor influencing reorganization of function in damaged neural networks of the adult brain is stimulation. How to stimulate motor areas of patients with paralyses is a formidable challenge. One possibility is to use internal movement simulations, or motor imagery, as an alternative to conventional therapeutic interventions that require…
On the Analysis of Indirect Proofs: Contradiction and Contraposition
ERIC Educational Resources Information Center
Jourdan, Nicolas; Yevdokimov, Oleksiy
2016-01-01
The paper explores and clarifies the similarities and differences that exist between proof by contradiction and proof by contraposition. The paper also focuses on the concept of contradiction, and a general model for this method of proof is offered. The introduction of mathematical proof in the classroom remains a formidable challenge to students…
The College Completion Agenda: 2011 Progress Report. Latino Edition
ERIC Educational Resources Information Center
Lee, John Michael, Jr.; Contreras, Frances; McGuire, Keon M.; Flores-Ragade, Adriana; Rawls, Anita; Edwards, Kelcey; Menson, Roxanna
2011-01-01
When the Commission on Access, Admissions and Success in Higher Education (subsequently referred to as the commission) convened in fall 2008, the educational landscape was facing a number of issues that the commission's members recognized as formidable challenges to those students who aspire to enroll and succeed in college. Summarizing the…
Integrating the Study of the Holocaust: One School's Triumph
ERIC Educational Resources Information Center
Ruder, Robert
2005-01-01
Integrating the study of the Holocaust into the middle school curriculum is a formidable challenge. This article describes the approach taken by Whitwell Middle School in Tennessee: When teachers found that students were having a difficult time comprehending the number of Jews and others killed by the Nazis, they decided to have the students…
Peer Mentoring to Support First-Generation Low-Income College Students
ERIC Educational Resources Information Center
Plaskett, Sean; Bali, Diksha; Nakkula, Michael J.; Harris, John
2018-01-01
Transitioning from high school to college can be a formidable challenge, especially for students who are the first in their family to attend college (first-generation) and/or are from low-income backgrounds. The authors' qualitative investigation of a college mentoring program illuminates the potential value of relatable peer mentors in helping…
High-throughput, lower-cost, in vitro toxicity testing is currently being evaluated for use in prioritization and eventually for predicting in vivo toxicity. Interpreting in vitro data in the context of in vivo human relevance remains a formidable challenge. A key component in us...
Promoting Student Transition Planning by Using a Self-Directed Summary of Performance
ERIC Educational Resources Information Center
Morgan, Robert L.; Kupferman, Scott; Jex, Eliza; Preece, Heidi; Williams, Shannon
2017-01-01
Youth and young adults with disabilities who make the transition out of secondary settings face formidable odds. For example, they confront challenges in regard to attaining employment and becoming involved in postsecondary education. In many cases, their efforts are unsuccessful. One way to support the transition from school to employment or…
Resilient Parenting of Preschool Children at Developmental Risk
ERIC Educational Resources Information Center
Ellingsen, R.; Baker, B. L.; Blacher, J.; Crnic, K.
2014-01-01
Background: Given the great benefits of effective parenting to child development under normal circumstances, and the even greater benefits in the face of risk, it is important to understand why some parents manage to be effective in their interactions with their child despite facing formidable challenges. This study examined factors that promoted…
Zhao, Hui; Wei, Yang; Qiao, Ruimin; Zhu, Chenhui; Zheng, Ziyan; Ling, Min; Jia, Zhe; Bai, Ying; Fu, Yanbao; Lei, Jinglei; Song, Xiangyun; Battaglia, Vincent S; Yang, Wanli; Messersmith, Phillip B; Liu, Gao
2015-12-09
High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87% when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. The combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.
ERIC Educational Resources Information Center
Dent, Bordon D., Ed.
The volume contains essays and classroom activities on a variety of U. S. and Canadian census materials. Designed to present census data in a less formidable manner than it is usually presented, it is intended for social studies teachers and college professors who want to introduce census materials in their classrooms. Essays treat various…
A Fundamental Study of Inorganic Clathrate and Other Open-Framework Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nolas, George
Due to formidable synthetic challenges, many materials of scientific and technological interest are first obtained as microcrystalline powders. High purity, high yield processing techniques are often lacking and thus care must be taken in interpretation of the observed structural, chemical, and physical properties of powder or polycrystalline materials, which can be strongly influenced by extrinsic properties. Furthermore, the preparation of high-quality single crystals for many materials by traditional techniques can be especially challenging in cases where the elemental constituents have greatly differing melting points and/or vapor pressures, when the desired compound is thermodynamically metastable, or where growth with participation ofmore » the melt is generally not possible. New processing techniques are therefore imperative in order to investigate the intrinsic properties of these materials and elucidate their fundamental physical properties. Intermetallic clathrates constitute one such class of materials. The complex crystal structures of intermetallic clathrates are characterized by mainly group 14 host frameworks encapsulating guest-ions in polyhedral cages. The unique features of clathrate structures are intimately related to their physical properties, offering ideal systems for the study of structure-property relationships in crystalline solids. Moreover, intermetallic clathrates are being actively investigated due to their potential for application in thermoelectrics, photovoltaics and opto-electronics, superconductivity, and magnetocaloric technologies. We have developed different processing techniques in order to synthesize phase-pure high yield clathrates reproducibly, as well as grow single crystals for the first time. We also employed these techniques to synthesize new “open-framework” compounds. These advances in materials processing and crystal growth allowed for the investigation of the physical properties of a variety of different clathrate compositions for the first time.« less
Atiyeh, B.; Masellis, A.; Conte, C.
2009-01-01
Summary The present review of the literature aims at analysing the challenges facing burn management in low- and middleincome countries (LMICs) and exploring probable modalities to optimize burn management in these countries. In Part 1, the epidemiology of burn injuries and the formidable challenges for proper management due to limited resources and inaccessibility to sophisticated skills and technologies in LMICs were presented. Part II will discuss the actual state of burn injuries management in LMICs. PMID:21991180
1988-12-31
research of Obadiah StoutI Bennett, an entreprenuer at the Chippewa townsite with an obvious knack for selling undeveloped lots to young women . Dr. Elden...proved a formidable challenge to settlement and agriculture. I The belief that former pine lands were of no value for farming (Anonymous 1894:12) did...cause him to slur his words and lose his train of thought. His was a challenging interview but well worth the time. Among the topics of conversation
ERIC Educational Resources Information Center
Campbell, Merle Wayne
2013-01-01
Intelligent decision systems have the potential to support and greatly amplify human decision-making across a number of industries and domains. However, despite the rapid improvement in the underlying capabilities of these "intelligent" systems, increasing their acceptance as decision aids in industry has remained a formidable challenge.…
ERIC Educational Resources Information Center
Leakey, Tricia; Lunde, Kevin B.; Koga, Karin; Glanz, Karen
2004-01-01
More Institutional Review Boards (IRBs) are requiring written parental consent in school health intervention trials. Because this requirement presents a formidable challenge in conducting large-scale research, it is vital for investigators to share effective strategies learned from completed trials. Investigators for the recently completed Project…
"Hiding Our Snickers": "Weekly Mail" Journalists' Indirect Resistance in Apartheid South Africa
ERIC Educational Resources Information Center
Trabold, Bryan
2006-01-01
In the mid- to late 1980s, the challenges facing the editors and journalists working for the South African antiapartheid newspaper, the "Weekly Mail," were formidable. In addition to the more than one hundred censorship laws already in place, the apartheid government had declared a series of states of emergency in a final and desperate…
How to Create "Thriller" PowerPoints[R] in the Classroom!
ERIC Educational Resources Information Center
Berk, Ronald A.
2012-01-01
PowerPoint[R] presentations in academia have a reputation for being less than engaging in this era of learner-centered teaching. The Net Generation also presents a formidable challenge to using PowerPoint[R]. Although the research on the basic elements is rather sparse, the multimedia elements of movement, music, and videos have a stronger…
Debating Life on Mars: The Knowledge Integration Environment (KIE) in Varied School Settings.
ERIC Educational Resources Information Center
Shear, Linda
Technology-enabled learning environments are beginning to come of age. Tools and frameworks are now available that have been shown to improve learning and are being deployed more widely in varied school settings. Teachers are now faced with the formidable challenge of integrating these promising new environments with the everyday context in which…
ERIC Educational Resources Information Center
Heystek, Jan
2015-01-01
A formidable challenge most school leaders in South Africa face is to improve the academic results in state schools. In terms of their contracts, principals are accountable for the academic results as reflected in examination and test results for their schools. The National Department of Education (currently the Department of Basic Education) has…
ERIC Educational Resources Information Center
Duncan, Ravit Golan
2007-01-01
Promoting the ability to reason generatively about novel phenomena and problems students may encounter in their everyday lives is a major goal of science education. This goal proves to be a formidable challenge in domains, such as molecular genetics, for which the accumulated scientific understandings are daunting in both amount and complexity. To…
Orthostatic hypotension: epidemiology, pathophysiology and management
NASA Technical Reports Server (NTRS)
Jacob, G.; Robertson, D.
1995-01-01
Orthostatic hypotension is characterized by low upright blood pressure levels and symptoms of cerebral hypoperfusion. Whereas orthostatic hypotension is heterogeneous, correct pathophysiologic diagnosis is important because of therapeutic and prognostic considerations. Although therapy is not usually curative, it can be extraordinarily beneficial if it is individually tailored. Management of the Shy-Drager syndrome (multiple-system atrophy) remains a formidable challenge.
ERIC Educational Resources Information Center
Schachter, Ron
2010-01-01
He's patrolled the streets of Chicago, kept the local trains running on time and become a player in the highest echelons of City Hall. But at age 38, Ron Huberman--born in Israel and raised just outside of Chicago--is facing his most formidable challenge. The new Chicago Public Schools (CPS) CEO, who took over from Arne Duncan after President…
Promises and challenges in solid-state lighting
NASA Astrophysics Data System (ADS)
Schubert, Fred
2010-03-01
Lighting technologies based on semiconductor light-emitting diodes (LEDs) offer unprecedented promises that include three major benefits: (i) Gigantic energy savings enabled by efficient conversion of electrical energy to optical energy; (ii) Substantial positive contributions to sustainability through reduced emissions of global-warming gases, acid-rain gases, and toxic substances such as mercury; and (iii) The creation of new paradigms in lighting driven by the unique controllability of solid-state lighting sources. Due to the powerful nature of these benefits, the transition from conventional lighting sources to solid-state lighting is virtually assured. This presentation will illustrate the new world of lighting and illustrate the pervasive changes to be expected in lighting, displays, communications, and biotechnology. The presentation will also address the formidable challenges that must be addressed to continue the further advancement of solid-state lighting technology. These challenges offer opportunities for research and innovation. Specific challenges include light management, carrier transport, and optical design. We will present some innovative approaches in order to solve known technical challenges faced by solid-state lighting. These approaches include the demonstration and use of new optical thin-film materials with a continuously tunable refractive index. These approaches also include the use of polarization-matched structures that reduce the polarization fields in GaInN LEDs and the hotly debated efficiency droop, that is, the decreasing LED efficiency at high currents.
Science education as a pathway to teaching language literacy: a critical book review
NASA Astrophysics Data System (ADS)
Tolbert, Sara
2011-03-01
In this paper, I present a critical review of the recent book, Science Education as a Pathway to Teaching Language Literacy, edited by Alberto J. Rodriguez. This volume is a timely collection of essays in which the authors bring to attention both the successes and challenges of integrating science instruction with literacy instruction (and vice versa). Although several themes in the book merit further attention, a central unifying issue throughout all of the chapters is the task of designing instruction which (1) gives students access to the dominant Discourses in science and literacy, (2) builds on students' lived experiences, and (3) connects new material to socially and culturally relevant contexts in both science and literacy instruction— all within the high stakes testing realities of teachers and students in public schools. In this review, I illustrate how the authors of these essays effectively address this formidable challenge through research that `ascends to the concrete'. I also discuss where we could build on the work of the authors to integrate literacy and science instruction with the purpose of `humanizing and democratizing' science education in K-12 classrooms.
Antiracism Education? A Study of an Antiracism Workshop in Finland
ERIC Educational Resources Information Center
Alemanji, Aminkeng Atabong; Mafi, Boby
2018-01-01
In doing antiracism education there is a risk that it can in effect reinforce the very racialisation it is supposed to fight against. This paradox becomes a formidable challenge given the ubiquity of race in contemporary ways of knowing and ways of being for both its subjects and its objects: more so in an era of "racism without race," a…
Using Speech Recognition Software to Improve Writing Skills
ERIC Educational Resources Information Center
Diaz, Felix
2014-01-01
Orthopedically impaired (OI) students face a formidable challenge during the writing process due to their limited or non-existing ability to use their hands to hold a pen or pencil or even to press the keys on a keyboard. While they may have a clear mental picture of what they want to write, the biggest hurdle comes well before having to tackle…
ERIC Educational Resources Information Center
Yu, Corrine M., Ed.; Taylor, William L., Ed.
In 1993 the Citizens' Commission on Civil Rights concluded that the election of Bill Clinton as President presented a new opportunity to work toward equal opportunity. In 1995, at the midpoint of his first term, the Commission identified the new and often formidable challenges his administration was facing in dealing with issues of equal…
Free Your Mind. The Book for Gay, Lesbian, and Bisexual Youth--and Their Allies.
ERIC Educational Resources Information Center
Bass, Ellen; Kaufman, Kate
Gay, lesbian, and bisexual youth face formidable challenges, but are beginning to proclaim their worth and power and to assert their rightful places in the world. Being lesbian or gay means that a person's primary romantic, emotional, physical, and sexual attractions are with someone of the same sex. Bisexual people have these attractions to both…
ERIC Educational Resources Information Center
Page-Shipp, Roy; van Niekerk, Caroline
2014-01-01
A sexagenarian retired physicist (the first author) set out, with the assistance of members of a university music department, to acquire some insight into Western music theory. For a lifelong singer and seasoned autodidact, this appeared to be a not too formidable challenge, yet he experienced significant difficulty in penetrating the music theory…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, Vladimir
The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centerpiece of the US domestic HEP program. Operation, upgrade and development of the accelerators for the near-term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators.
Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework
Peters, Aaron W.; Otake, Kenichi; Platero-Prats, Ana E.; ...
2018-04-19
Here, direct control over structure and location of catalytic species deposited on amorphous supports represents a formidable challenge in heterogeneous catalysis. In contrast, a structurally well-defined, crystalline metal–organic framework (MOF) can be rationally designed using post-synthetic techniques to allow for desired structural or locational changes of deposited metal ions. Herein, naphthalene dicarboxylate linkers are incorporated in the MOF, NU-1000, to block the small cavities where few-atom clusters of cobalt oxide preferentially grow, inducing catalyst deposition towards hither-to ill-favored grafting sites orientated toward NU-1000’s mesoporous channels. Despite the different cobalt oxide location, the resulting material is still an active propane oxidativemore » dehydrogenation catalyst at low temperature, reaching a turnover frequency of 0.68 ± 0.05 h –1 at 230 °C and confirming the utility of MOFs as crystalline supports to guide rational design of catalysts.« less
In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles
Li, Yingxuan; Zang, Ling; Jacobs, Daniel L.; Zhao, Jie; Yue, Xiu; Wang, Chuanyi
2017-01-01
Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi2Ta2O9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction–relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes. PMID:28194017
In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles
NASA Astrophysics Data System (ADS)
Li, Yingxuan; Zang, Ling; Jacobs, Daniel L.; Zhao, Jie; Yue, Xiu; Wang, Chuanyi
2017-02-01
Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi2Ta2O9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.
In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles.
Li, Yingxuan; Zang, Ling; Jacobs, Daniel L; Zhao, Jie; Yue, Xiu; Wang, Chuanyi
2017-02-13
Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi 2 Ta 2 O 9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.
Frequency domain optical parametric amplification
Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François
2014-01-01
Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968
Site-Directed Synthesis of Cobalt Oxide Clusters in a Metal–Organic Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peters, Aaron W.; Otake, Kenichi; Platero-Prats, Ana E.
Here, direct control over structure and location of catalytic species deposited on amorphous supports represents a formidable challenge in heterogeneous catalysis. In contrast, a structurally well-defined, crystalline metal–organic framework (MOF) can be rationally designed using post-synthetic techniques to allow for desired structural or locational changes of deposited metal ions. Herein, naphthalene dicarboxylate linkers are incorporated in the MOF, NU-1000, to block the small cavities where few-atom clusters of cobalt oxide preferentially grow, inducing catalyst deposition towards hither-to ill-favored grafting sites orientated toward NU-1000’s mesoporous channels. Despite the different cobalt oxide location, the resulting material is still an active propane oxidativemore » dehydrogenation catalyst at low temperature, reaching a turnover frequency of 0.68 ± 0.05 h –1 at 230 °C and confirming the utility of MOFs as crystalline supports to guide rational design of catalysts.« less
Fast normal mode computations of capsid dynamics inspired by resonance
NASA Astrophysics Data System (ADS)
Na, Hyuntae; Song, Guang
2018-07-01
Increasingly more and larger structural complexes are being determined experimentally. The sizes of these systems pose a formidable computational challenge to the study of their vibrational dynamics by normal mode analysis. To overcome this challenge, this work presents a novel resonance-inspired approach. Tests on large shell structures of protein capsids demonstrate that there is a strong resonance between the vibrations of a whole capsid and those of individual capsomeres. We then show how this resonance can be taken advantage of to significantly speed up normal mode computations.
Optical medical imaging: from glass to man
NASA Astrophysics Data System (ADS)
Bradley, Mark
2016-11-01
A formidable challenge in modern respiratory healthcare is the accurate and timely diagnosis of lung infection and inflammation. The EPSRC Interdisciplinary Research Collaboration (IRC) `Proteus' seeks to address this challenge by developing an optical fibre based healthcare technology platform that combines physiological sensing with multiplexed optical molecular imaging. This technology will enable in situ measurements deep in the human lung allowing the assessment of tissue function and characterization of the unique signatures of pulmonary disease and is illustrated here with our in-man application of Optical Imaging SmartProbes and our first device Versicolour.
Zhao, Hui; Wei, Yang; Qiao, Ruimin; ...
2015-11-24
High-tap-density silicon nanomaterials are highly desirable as anodes for lithium ion batteries, due to their small surface area and minimum first-cycle loss. However, this material poses formidable challenges to polymeric binder design. Binders adhere on to the small surface area to sustain the drastic volume changes during cycling; also the low porosities and small pore size resulting from this material are detrimental to lithium ion transport. This study introduces a new binder, poly(1-pyrenemethyl methacrylate-co-methacrylic acid) (PPyMAA), for a high-tap-density nanosilicon electrode cycled in a stable manner with a first cycle efficiency of 82%-a value that is further improved to 87%more » when combined with graphite material. Incorporating the MAA acid functionalities does not change the lowest unoccupied molecular orbital (LUMO) features or lower the adhesion performance of the PPy homopolymer. Our single-molecule force microscopy measurement of PPyMAA reveals similar adhesion strength between polymer binder and anode surface when compared with conventional polymer such as homopolyacrylic acid (PAA), while being electronically conductive. Finally, the combined conductivity and adhesion afforded by the MAA and pyrene copolymer results in good cycling performance for the high-tap-density Si electrode.« less
The adaptation challenge in the Arctic
NASA Astrophysics Data System (ADS)
Ford, James D.; McDowell, Graham; Pearce, Tristan
2015-12-01
It is commonly asserted that human communities in the Arctic are highly vulnerable to climate change, with the magnitude of projected impacts limiting their ability to adapt. At the same time, an increasing number of field studies demonstrate significant adaptive capacity. Given this paradox, we review climate change adaptation, resilience and vulnerability research to identify and characterize the nature and magnitude of the adaptation challenge facing the Arctic. We find that the challenge of adaptation in the Arctic is formidable, but suggest that drivers of vulnerability and barriers to adaptation can be overcome, avoided or reduced by individual and collective efforts across scales for many, if not all, climate change risks.
2012-10-01
medical license as long as care is delivered in a military facility.26 Hurdles—Liability Medical malpractice also presents a formidable challenge. In...AIR UNIVERSITY AIR WAR COLLEGE Achieving Medical Currency via Selected Staff Integration in Civilian and Veterans Administration... Medical Facilities THOMAS W. HARRELL Colonel, USAF, MC, SFS Air War College Maxwell Paper No. 68 Maxwell Air Force Base, Alabama
High-κ gate dielectrics: Current status and materials properties considerations
NASA Astrophysics Data System (ADS)
Wilk, G. D.; Wallace, R. M.; Anthony, J. M.
2001-05-01
Many materials systems are currently under consideration as potential replacements for SiO2 as the gate dielectric material for sub-0.1 μm complementary metal-oxide-semiconductor (CMOS) technology. A systematic consideration of the required properties of gate dielectrics indicates that the key guidelines for selecting an alternative gate dielectric are (a) permittivity, band gap, and band alignment to silicon, (b) thermodynamic stability, (c) film morphology, (d) interface quality, (e) compatibility with the current or expected materials to be used in processing for CMOS devices, (f) process compatibility, and (g) reliability. Many dielectrics appear favorable in some of these areas, but very few materials are promising with respect to all of these guidelines. A review of current work and literature in the area of alternate gate dielectrics is given. Based on reported results and fundamental considerations, the pseudobinary materials systems offer large flexibility and show the most promise toward successful integration into the expected processing conditions for future CMOS technologies, especially due to their tendency to form at interfaces with Si (e.g. silicates). These pseudobinary systems also thereby enable the use of other high-κ materials by serving as an interfacial high-κ layer. While work is ongoing, much research is still required, as it is clear that any material which is to replace SiO2 as the gate dielectric faces a formidable challenge. The requirements for process integration compatibility are remarkably demanding, and any serious candidates will emerge only through continued, intensive investigation.
Regenerative medicine in Brazil: small but innovative.
McMahon, Dominique S; Singer, Peter A; Daar, Abdallah S; Thorsteinsdóttir, Halla
2010-11-01
Although Brazil has received attention for conducting one of the world's largest stem cell clinical trials for heart disease, little has been published regarding Brazil's regenerative medicine (RM) sector. Here we present a comprehensive case study of RM in Brazil, including analysis of the current activity, the main motivations for engaging in RM and the remaining challenges to development in this field. Our case study is primarily based on semi-structured interviews with experts on RM in Brazil, including researchers, policymakers, clinicians, representatives of firms and regulators. Driven by domestic health needs and strategic government support, Brazil is producing innovative RM research, particularly for clinical research in cardiology, orthopedics, diabetes and neurology. We describe the main RM research currently taking place in Brazil, as well as some of the economic, regulatory and policy events that have created a favorable environment for RM development. Brazilian RM researchers need to overcome several formidable challenges to research: research funding is inconsistent, importation of materials is costly and slow, and weak linkages between universities, hospitals and industry impede translational research. Although Brazil's contribution to the RM sector is small, its niche emphasis on clinical applications may become of global importance, particularly if Brazil manages to address the challenges currently impinging on RM innovation.
ERIC Educational Resources Information Center
Bernstein, Larry; Edmunds, Julie; Fesler, Lily
2014-01-01
Students entering high school in 9th grade face a formidable challenge. The transition to high school from 8th grade brings with it increased risks for all students. For example, students in 9th grade are anywhere from three to five times more likely to fail a class than students in any other grade. Similarly, ninth grade retention rates are…
Team Problem Solving: Effects of Communication and Function Overlap
1987-03-01
group. At the very least, this concept helps to focus to some degree on the formidable complexity of the relationship between the available rosources... relationship with task load gains clarity, for a task load may be overwhelming to a group of limited capability, yet challenging or even gratifying to a...considered if othaer important resources were also missing. This behavior is consistent with predictions of social motivational theories such as
Coup Prevention: A Critical Ingredient of Nation-Building Operations
2010-03-01
Mozambique, to name a few.7 Peace and Security Development Humanitarian Relief Peace Building Right to Protect Rights Based A greater challenge lies ...because it was based “on the drifting nature of Mian Nawaz Sharif’s administration that lacked political stability, contrasted with unlimited desire...Court validated the coup and imprisoned Mian Nawaz Sharif for 25 years and, in essence, provided a formidable amount of judicial legitimacy. 7
Virtual Surgical Planning in Craniofacial Surgery
Chim, Harvey; Wetjen, Nicholas; Mardini, Samir
2014-01-01
The complex three-dimensional anatomy of the craniofacial skeleton creates a formidable challenge for surgical reconstruction. Advances in computer-aided design and computer-aided manufacturing technology have created increasing applications for virtual surgical planning in craniofacial surgery, such as preoperative planning, fabrication of cutting guides, and stereolithographic models and fabrication of custom implants. In this review, the authors describe current and evolving uses of virtual surgical planning in craniofacial surgery. PMID:25210509
Mental health services then and now.
Mechanic, David
2007-01-01
Over the past twenty-five years, psychiatric services have shifted from hospital to community. Managed care reinforces this trend. Mental illness is better understood and less stigmatized, and services are more commonly used. But many in need do not receive care consistent with evidence-based standards, or at all. Challenges are greatest for people with serious and persistent mental illnesses who depend on generic health and welfare programs and integrated services. Evidence-based rehabilitative care is often unavailable. Failures in community care lead to arrest; jail diversion and treatment are required. Despite progress, implementing an effective, patient-centered care system remains a formidable challenge.
Scalable production of mechanically tunable block polymers from sugar
Xiong, Mingyong; Schneiderman, Deborah K.; Bates, Frank S.; Hillmyer, Marc A.; Zhang, Kechun
2014-01-01
Development of sustainable and biodegradable materials is essential for future growth of the chemical industry. For a renewable product to be commercially competitive, it must be economically viable on an industrial scale and possess properties akin or superior to existing petroleum-derived analogs. Few biobased polymers have met this formidable challenge. To address this challenge, we describe an efficient biobased route to the branched lactone, β-methyl-δ-valerolactone (βMδVL), which can be transformed into a rubbery (i.e., low glass transition temperature) polymer. We further demonstrate that block copolymerization of βMδVL and lactide leads to a new class of high-performance polyesters with tunable mechanical properties. Key features of this work include the creation of a total biosynthetic route to produce βMδVL, an efficient semisynthetic approach that employs high-yielding chemical reactions to transform mevalonate to βMδVL, and the use of controlled polymerization techniques to produce well-defined PLA–PβMδVL–PLA triblock polymers, where PLA stands for poly(lactide). This comprehensive strategy offers an economically viable approach to sustainable plastics and elastomers for a broad range of applications. PMID:24912182
Size, skills, and suffrage: Motivated distortions in perceived formidability of political leaders
Blaker, Nancy M.; Pollet, Thomas V.
2017-01-01
Research shows that perception of physical size and status are positively associated. The current study was developed to replicate and extend earlier research on height perceptions of political leaders, indicating that supporters perceive their leaders as taller than non-supporters do, and winners are perceived as taller after the elections, while losers are perceived as shorter after the elections (winner/loser effects). Individuals use greater height and strength as indications of greater physical formidability. We hypothesized that in-group leaders’ height and strength, but not weight, would be overestimated more compared to out-group leaders’, and that this status-size association is not only driven by dominance, but also by prestige. We also tested whether previously found gender effects in estimates were due to using one’s own height as an anchor, and we used an improved methodological approach by relying on multiple measurements of physical formidability and a within-subject design for testing winner/loser effects. The results of a two-part longitudinal study (self-selected sample via voting advice website; NWave1 = 2,011; NWave2 = 322) suggest that estimated physical formidability of political leaders is affected by motivated perception, as prestige was positively associated with estimated formidability, and in-group leaders were estimated more formidable than out-group leaders. We conclude that distortions in judged formidability related to social status are the result of motivated social perception in order to promote group functioning and leadership. Although we did not replicate a winner-effect (greater estimations of formidability after winning the elections), we did find some evidence for a loser-effect. Earlier suggestions that men make larger estimations than women because of their own larger body size are not supported. Implications for theory and future research are discussed. PMID:29267275
1982-12-01
GEP/PH/82D-1O INVESTIGATION OF THE FEASIBILITY OF USING LASER INDUCED FLUORESCENCE FOR CONCENTRATION MEASUREMENTS OF DIATOMIC SULFUR THESIS AFIT/GEP...FEASIBILITY OF USING LASER INDUCED FLUORESCENCE FOR CONCENTRATION MEASUREMENTS OF DIATOMIC SULFUR THESIS Presented to the Faculty of the School of...December 1982 SPecial Approved for public release; distribution unlimited Preface This thesis presented a rare opportunity and a formidable challenge
Developing a Viable Approach for Effective Tiered Systems
2007-01-17
TERMS 16. SECURITY CLASSIFICATION OF: a. REPORT 19a. NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (include area code ) b. ABSTRACT c. THIS PAGE 18...is changing the world. Now deal with it” (New Scientist 2006). If true, this significant message is one that would extend well beyond the realm of...system-of-systems poses formidable challenges for the acquisitions bureaucracy and the defense industries” (Dombrowski et al. 2002). “TRLs
ERIC Educational Resources Information Center
Woolman, David C.
Although the Shah of Iran should be admired for his efforts to use education to deal with formidable social challenges, his goal of producing a modern state in a single generation was unrealistic. Entrenched traditional values and unpredicted economic changes such as the need in 1977 to slow down Iran's rate of growth in the face of runaway…
The Fundamental Issues Study within the British BMD Review
1998-02-01
also be considered. Nevertheless, how formidable a challenge is posed by the ascent release of submunitions is acknowledged by Richard Garwin on the...Arguably, the crunch came in February 1987 when Richard Perle, visiting London as US Assistant Secretary for Defense, extolled a strong SDI as the...resignation of Richard Perle. That year was also to see the departure from political office in the Pentagon of four other SDI stalwarts: Frank
Microneedles for intradermal and transdermal delivery
Tuan-Mahmood, Tuan-Mazlelaa; McCrudden, Maeliosa T.C.; Torrisi, Barbara M.; McAlister, Emma; Garland, Martin J; Singh, Thakur Raghu Raj; Donnelly, Ryan F
2014-01-01
The formidable barrier properties of the uppermost layer of the skin, the stratum corneum impose significant limitations for successful systemic delivery of a broad range of therapeutic molecules, particularly macromolecules and genetic material. Microneedle delivery has been proposed as a strategy to breach the SC barrier function in order to facilitate effective transport of molecules across the skin. This strategy involves the use of micron sized needles fabricated from different materials and using different geometries to create transient aqueous conduits across the skin. Microneedles in isolation, or in combination with other enhancing strategies, have been shown to dramatically enhance the skin permeability of numerous therapeutic molecules including biopharmaceuticals either in vitro, ex vivo or in vivo. Progress in the areas of microneedle design, development and manufacture have proven promising in terms of the potential use of this emerging delivery method in clinical applications such as insulin delivery, transcutaneous immunisations and cutaneous gene delivery. This review article focuses on recent and potential future developments in microneedle technologies. This will include the detailing of progress made in microneedle design, an exploration of the challenges faced in this field and potential forward strategies to embrace the exploitation of microneedle methodologies, while considering the inherent safety aspects of such therapeutic tools. PMID:23680534
Non-Fermi liquids in oxide heterostructures
NASA Astrophysics Data System (ADS)
Stemmer, Susanne; Allen, S. James
2018-06-01
Understanding the anomalous transport properties of strongly correlated materials is one of the most formidable challenges in condensed matter physics. For example, one encounters metal-insulator transitions, deviations from Landau Fermi liquid behavior, longitudinal and Hall scattering rate separation, a pseudogap phase, and bad metal behavior. These properties have been studied extensively in bulk materials, such as the unconventional superconductors and heavy fermion systems. Oxide heterostructures have recently emerged as new platforms to probe, control, and understand strong correlation phenomena. This article focuses on unconventional transport phenomena in oxide thin film systems. We use specific systems as examples, namely charge carriers in SrTiO3 layers and interfaces with SrTiO3, and strained rare earth nickelate thin films. While doped SrTiO3 layers appear to be a well behaved, though complex, electron gas or Fermi liquid, the rare earth nickelates are a highly correlated electron system that may be classified as a non-Fermi liquid. We discuss insights into the underlying physics that can be gained from studying the emergence of non-Fermi liquid behavior as a function of the heterostructure parameters. We also discuss the role of lattice symmetry and disorder in phenomena such as metal-insulator transitions in strongly correlated heterostructures.
Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems.
Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; Kestell, John D; Boscoboinik, Alejandro M; Kim, Taejin; Stacchiola, Dario J; Lu, Deyu; Boscoboinik, J Anibal
2017-07-17
The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. In this work, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, the permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. These findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.
Electrical 2π phase control of infrared light in a 350-nm footprint using graphene plasmons
NASA Astrophysics Data System (ADS)
Woessner, Achim; Gao, Yuanda; Torre, Iacopo; Lundeberg, Mark B.; Tan, Cheng; Watanabe, Kenji; Taniguchi, Takashi; Hillenbrand, Rainer; Hone, James; Polini, Marco; Koppens, Frank H. L.
2017-07-01
Modulating the amplitude and phase of light is at the heart of many applications such as wavefront shaping, transformation optics, phased arrays, modulators and sensors. Performing this task with high efficiency and small footprint is a formidable challenge. Metasurfaces and plasmonics are promising, but metals exhibit weak electro-optic effects. Two-dimensional materials, such as graphene, have shown great performance as modulators with small drive voltages. Here, we show a graphene plasmonic phase modulator that is capable of tuning the phase between 0 and 2π in situ. The device length of 350 nm is more than 30 times shorter than the 10.6 μm free-space wavelength. The modulation is achieved by spatially controlling the plasmon phase velocity in a device where the spatial carrier density profile is tunable. We provide a scattering theory for plasmons propagating through spatial density profiles. This work constitutes a first step towards two-dimensional transformation optics for ultracompact modulators and biosensing.
Market value of asteroidal precious metals in an age of diminishing terrestrial resources
Kargel, Jeffrey S.; ,
1996-01-01
In the next century Mankind may have to choose from two options for our supply and usage of some nonrenewable natural resources, such as gold, platinum metals, and fossil fuels: learn to live with diminishing supplies of these materials obtained at ever increasing economic and environmental cost, or reach into difficult places and develop new technologies to give us what we need to sustain economic growth. Either prospect faces formidable technological and economic challenges. Exploitation of asteroids for precious and strategic metals is a possible environmentally friendly remedy for impending shortages of some resources. Certain types of asteroids could completely replace terrestrial sources of platinum metals. Asteroid metal mining may become a 21st-century space industry worth ten to fifty billion dollars annually (1995 dollars). Asteroids could make the United States and other countries self sufficient in many strategic metals, and it could usher new technologies and increase our applications of existing technologies that depend on these metals.
Remote C-H Activation of Quinolines through Copper-Catalyzed Radical Cross-Coupling.
Xu, Jun; Shen, Chao; Zhu, Xiaolei; Zhang, Pengfei; Ajitha, Manjaly J; Huang, Kuo-Wei; An, Zhongfu; Liu, Xiaogang
2016-03-18
Achieving site selectivity in carbon-hydrogen (C-H) functionalization reactions is a formidable challenge in organic chemistry. Herein, we report a novel approach to activating remote C-H bonds at the C5 position of 8-aminoquinoline through copper-catalyzed sulfonylation under mild conditions. Our strategy shows high conversion efficiency, a broad substrate scope, and good toleration with different functional groups. Furthermore, our mechanistic investigations suggest that a single-electron-transfer process plays a vital role in generating sulfonyl radicals and subsequently initiating C-S cross-coupling. Importantly, our copper-catalyzed remote functionalization protocol can be expanded for the construction of a variety of chemical bonds, including C-O, C-Br, C-N, C-C, and C-I. These findings provide a fundamental insight into the activation of remote C-H bonds, while offering new possibilities for rational design of drug molecules and optoelectronic materials requiring specific modification of functional groups. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems
Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin; ...
2017-07-17
The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. Here, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, themore » permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. Our findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.« less
Modelling of thermal behaviour of iron oxide layers on boiler tubes
NASA Astrophysics Data System (ADS)
Angelo, J. D.; Bennecer, A.; Kaczmarczyk, S.; Picton, P.
2016-05-01
Slender boiler tubes are subject to localised swelling when they are expose to excessive heat. The latter is due to the formation of an oxide layer, which acts as an insulation barrier. This excessive heat can lead to microstructural changes in the material that would reduce the mechanical strength and would eventually lead to critical and catastrophic failure. Detecting such creep damage remains a formidable challenge for boiler operators. It involves a costly process of shutting down the plant, performing electromagnetic and ultrasonic non-destructive inspection, repairing or replacing damaged tubes and finally restarting the plant to resume its service. This research explores through a model developed using a finite element computer simulation platform the thermal behaviour of slender tubes under constant temperature exceeding 723 °K. Our simulation results demonstrate that hematite layers up to 15 μm thickness inside the tubes do not act as insulation. They clearly show the process of long term overheating on the outside of boiler tubes which in turn leads to initiation of flaws.
Immobilization of single argon atoms in nano-cages of two-dimensional zeolite model systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhong, Jian-Qiang; Wang, Mengen; Akter, Nusnin
The confinement of noble gases on nanostructured surfaces, in contrast to bulk materials, at non-cryogenic temperatures represents a formidable challenge. Here, individual Ar atoms are trapped at 300 K in nano-cages consisting of (alumino)silicate hexagonal prisms forming a two-dimensional array on a planar surface. The trapping of Ar atoms is detected in situ using synchrotron-based ambient pressure X-ray photoelectron spectroscopy. The atoms remain in the cages upon heating to 400 K. The trapping and release of Ar is studied combining surface science methods and density functional theory calculations. While the frameworks stay intact with the inclusion of Ar atoms, themore » permeability of gasses (for example, CO) through them is significantly affected, making these structures also interesting candidates for tunable atomic and molecular sieves. Our findings enable the study of individually confined noble gas atoms using surface science methods, opening up new opportunities for fundamental research.« less
Purchasing. School Business Management Handbook Number 5. Revised.
ERIC Educational Resources Information Center
Clemens, Robert A.
Purchasing is a practical science and one of the most highly specialized activities of the school administration. Simply stated, it is the process of having the right material or service from the right source, in the right quantity, at the right place, at the right time, and at the right price. The purchasing agent is faced with a formidable task…
Atiyeh, B.; Masellis, A.; Conte, F.
2010-01-01
Summary The present review of the literature aims at analysing the challenges facing burn management in low- and middleincome countries and exploring probable modalities to optimize burn management in these countries. In Part I, epidemiology of burns injuries and the formidable challenges for proper management due to limited resources and inaccessibility to sophisticated skills and technologies in low- and middle income countries (LMICs) were presented. Part II discussed the actual state of burn injuries management in LMICs. In Part III of this review strategies for proper prevention and burn care in LMICs will be presented. PMID:21991190
NASA Astrophysics Data System (ADS)
Benini, Luca
2017-06-01
The "internet of everything" envisions trillions of connected objects loaded with high-bandwidth sensors requiring massive amounts of local signal processing, fusion, pattern extraction and classification. From the computational viewpoint, the challenge is formidable and can be addressed only by pushing computing fabrics toward massive parallelism and brain-like energy efficiency levels. CMOS technology can still take us a long way toward this goal, but technology scaling is losing steam. Energy efficiency improvement will increasingly hinge on architecture, circuits, design techniques such as heterogeneous 3D integration, mixed-signal preprocessing, event-based approximate computing and non-Von-Neumann architectures for scalable acceleration.
The role of physical formidability in human social status allocation.
Lukaszewski, Aaron W; Simmons, Zachary L; Anderson, Cameron; Roney, James R
2016-03-01
Why are physically formidable men willingly allocated higher social status by others in cooperative groups? Ancestrally, physically formidable males would have been differentially equipped to generate benefits for groups by providing leadership services of within-group enforcement (e.g., implementing punishment of free riders) and between-group representation (e.g., negotiating with other coalitions). Therefore, we hypothesize that adaptations for social status allocation are designed to interpret men's physical formidability as a cue to these leadership abilities, and to allocate greater status to formidable men on this basis. These hypotheses were supported in 4 empirical studies wherein young adults rated standardized photos of subjects (targets) who were described as being part of a white-collar business consultancy. In Studies 1 and 2, male targets' physical strength positively predicted ratings of their projected status within the organization, and this effect was mediated by perceptions that stronger men possessed greater leadership abilities of within-group enforcement and between-group representation. Moreover, (a) these same patterns held whether status was conceptualized as overall ascendancy, prestige-based status, or dominance-based status, and (b) strong men who were perceived as aggressively self-interested were not allocated greater status. Finally, 2 experiments established the causality of physical formidability's effects on status-related perceptions by manipulating targets' relative strength (Study 3) and height (Study 4). In interpreting our findings, we argue that adaptations for formidability-based status allocation may have facilitated the evolution of group cooperation in humans and other primates. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Wu, Jinpeng; Sallis, Shawn; Qiao, Ruimin; Li, Qinghao; Zhuo, Zengqing; Dai, Kehua; Guo, Zixuan; Yang, Wanli
2018-04-17
Energy storage has become more and more a limiting factor of today's sustainable energy applications, including electric vehicles and green electric grid based on volatile solar and wind sources. The pressing demand of developing high-performance electrochemical energy storage solutions, i.e., batteries, relies on both fundamental understanding and practical developments from both the academy and industry. The formidable challenge of developing successful battery technology stems from the different requirements for different energy-storage applications. Energy density, power, stability, safety, and cost parameters all have to be balanced in batteries to meet the requirements of different applications. Therefore, multiple battery technologies based on different materials and mechanisms need to be developed and optimized. Incisive tools that could directly probe the chemical reactions in various battery materials are becoming critical to advance the field beyond its conventional trial-and-error approach. Here, we present detailed protocols for soft X-ray absorption spectroscopy (sXAS), soft X-ray emission spectroscopy (sXES), and resonant inelastic X-ray scattering (RIXS) experiments, which are inherently elemental-sensitive probes of the transition-metal 3d and anion 2p states in battery compounds. We provide the details on the experimental techniques and demonstrations revealing the key chemical states in battery materials through these soft X-ray spectroscopy techniques.
Strategies for Enhanced Drug Delivery to the Central Nervous System
Dwibhashyam, V. S. N. M.; Nagappa, A. N.
2008-01-01
Treating central nervous system diseases is very challenging because of the presence of a variety of formidable obstacles that impede drug delivery. Physiological barriers like the blood-brain barrier and blood-cerebrospinal fluid barrier as well as various efflux transporter proteins make the entry of drugs into the central nervous system very difficult. The present review provides a brief account of the blood brain barrier, the P-glycoprotein efflux and various strategies for enhancing drug delivery to the central nervous system. PMID:20046703
Presidents and health reform: from Franklin D. Roosevelt to Barack Obama.
Morone, James A
2010-06-01
The health care reforms that President Barack Obama signed into law in March 2010 were seventy-five years in the making. Since Franklin D. Roosevelt, U.S. presidents have struggled to enact national health care reform; most failed. This article explores the highly charged political landscape in which Obama maneuvered and the skills he brought to bear. It contrasts his accomplishments with the experiences of his Oval Office predecessors. Going forward, implementation poses formidable challenges for Democrats, Republicans, and the political process itself.
FERMILAB ACCELERATOR R&D PROGRAM TOWARDS INTENSITY FRONTIER ACCELERATORS : STATUS AND PROGRESS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shiltsev, Vladimir
2016-11-15
The 2014 P5 report indicated the accelerator-based neutrino and rare decay physics research as a centrepiece of the US domestic HEP program at Fermilab. Operation, upgrade and development of the accelerators for the near- term and longer-term particle physics program at the Intensity Frontier face formidable challenges. Here we discuss key elements of the accelerator physics and technology R&D program toward future multi-MW proton accelerators and present its status and progress. INTENSITY FRONTIER ACCELERATORS
Profiling of Sugar Nucleotides.
Rejzek, Martin; Hill, Lionel; Hems, Edward S; Kuhaudomlarp, Sakonwan; Wagstaff, Ben A; Field, Robert A
2017-01-01
Sugar nucleotides are essential building blocks for the glycobiology of all living organisms. Detailed information on the types of sugar nucleotides present in a particular cell and how they change as a function of metabolic, developmental, or disease status is vital. The extraction, identification, and quantification of sugar nucleotides in a given sample present formidable challenges. In this chapter, currently used techniques for sugar nucleotide extraction from cells, separation from complex biological matrices, and detection by optical and mass spectrometry methods are discussed. © 2017 Elsevier Inc. All rights reserved.
Oral rehabilitation of the cancer patient: A formidable challenge.
Petrovic, Ivana; Rosen, Evan B; Matros, Evan; Huryn, Joseph M; Shah, Jatin P
2018-05-03
Rehabilitation of oral functions following surgery on the jaws is a goal that is often difficult to achieve. Removable dentures supported by remaining teeth or gum are often unstable and seldom satisfactory. On the other hand, endosseous (dental) implants offer a mechanism to provide stability to the dentures. This review, discusses factors related to the tumor, patient, treatment, and physicians which impact upon the feasibility and success of dental implants in patients with oral cancer. © 2018 Wiley Periodicals, Inc.
Impact of Ultraviolet Light on Vitiligo.
Singh, Rasnik K
2017-01-01
Vitiligo is a disorder of the melanocytes that results in a dynamic spectrum of skin depigmentation. Its etiology is complex and multifactorial, with data supporting several different hypotheses. Given its prominent phenotype, vitiligo has a significant negative impact on quality of life. Coupled with the chronic and incurable nature of the disease, this presents a formidable treatment challenge. Several treatment modalities have been instituted over the years, with varying efficacy. This chapter focuses on the use of ultraviolet light in vitiligo as an established therapeutic option.
Challenging the ‘Big G’ measurement with atoms and light
NASA Astrophysics Data System (ADS)
Rosi, Gabriele
2016-10-01
The measurement of the Newtonian gravity constant G is a formidable task. Starting from the first determination made by Henry Cavendish in 1798, several attempts have been made in order to improve knowledge of its value. Nevertheless, despite these efforts, its uncertainty has decreased only by a factor of ten per century. Cold atom interferometry represents a conceptually different technique to challenge the G measurement, a feature that is crucial in order to identify discrepancies among previous measurements. In this review paper, after a short introduction on the traditional measurement techniques, I will describe and discuss past and ongoing G determination based on atom interferometry, highlighting for each of them the most significant aspects.
An insight into burns in a developing country: a Sri Lankan experience.
Lau, Y S
2006-10-01
Burn injuries represent a diverse and varied challenge to medical and paramedical staff. The management of burns and their sequelae in a well-equipped, modern burns unit remains demanding despite advances in surgical techniques and development of tissue-engineered biomaterials; in a developing country, these difficulties are amplified many times. Sri Lanka has a high incidence of burn-related injuries annually due to a combination of adverse social, economic and cultural factors. The management of burn injuries remains a formidable public health problem. The epidemiology of burns, challenges faced in their management and effective strategies specific to Sri Lanka, such as the Safe Bottle Lamp campaign, are highlighted in this paper.
Plank, G; Prassl, AJ; Augustin, C
2014-01-01
Despite the evident multiphysics nature of the heart – it is an electrically controlled mechanical pump – most modeling studies considered electrophysiology and mechanics in isolation. In no small part, this is due to the formidable modeling challenges involved in building strongly coupled anatomically accurate and biophyically detailed multi-scale multi-physics models of cardiac electro-mechanics. Among the main challenges are the selection of model components and their adjustments to achieve integration into a consistent organ-scale model, dealing with technical difficulties such as the exchange of data between electro-physiological and mechanical model, particularly when using different spatio-temporal grids for discretization, and, finally, the implementation of advanced numerical techniques to deal with the substantial computational. In this study we report on progress made in developing a novel modeling framework suited to tackle these challenges. PMID:24043050
Coupling EELS/EFTEM Imaging with Environmental Fluid Cell Microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Unocic, Raymond R; Baggetto, Loic; Veith, Gabriel M
2012-01-01
Insight into dynamically evolving electrochemical reactions and mechanisms encountered in electrical energy storage (EES) and conversion technologies (batteries, fuel cells, and supercapacitors), materials science (corrosion and oxidation), and materials synthesis (electrodeposition) remains limited due to the present lack of in situ high-resolution characterization methodologies. Electrochemical fluid cell microscopy is an emerging in-situ method that allows for the direct, real-time imaging of electrochemical processes within a fluid environment. This technique is facilitated by the use of MEMS-based biasing microchip platforms that serve the purpose of sealing the highly volatile electrolyte between two electron transparent SiNx membranes and interfacing electrodes to anmore » external potentiostat for controlled nanoscale electrochemislly experiments [!]. In order to elucidate both stmctural and chemical changes during such in situ electrochemical experiments, it is impmtant to first improve upon the spatial resolution by utilizing energy-filtered transmission electron microscopy (EFTEM) (to minimize chromatic aben ation), then to detennine the chemical changes via electron energy loss spectroscopy (EELS). This presents a formidable challenge since the overall thickness through which electrons are scattered through the multiple layers of the cell can be on the order of hundreds of nanometers to microns, scattering through which has the deleterious effect of degrading image resolution and decreasing signal-to noise for spectroscopy [2].« less
Wardrip, Nathaniel C; Arnusch, Christopher J
2016-02-13
Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes.
Wardrip, Nathaniel C.; Arnusch, Christopher J.
2016-01-01
Minimization and management of membrane fouling is a formidable challenge in diverse industrial processes and other practices that utilize membrane technology. Understanding the fouling process could lead to optimization and higher efficiency of membrane based filtration. Here we show the design and fabrication of an automated three-dimensionally (3-D) printed microfluidic cross-flow filtration system that can test up to 4 membranes in parallel. The microfluidic cells were printed using multi-material photopolymer 3-D printing technology, which used a transparent hard polymer for the microfluidic cell body and incorporated a thin rubber-like polymer layer, which prevents leakages during operation. The performance of ultrafiltration (UF), and nanofiltration (NF) membranes were tested and membrane fouling could be observed with a model foulant bovine serum albumin (BSA). Feed solutions containing BSA showed flux decline of the membrane. This protocol may be extended to measure fouling or biofouling with many other organic, inorganic or microbial containing solutions. The microfluidic design is especially advantageous for testing materials that are costly or only available in small quantities, for example polysaccharides, proteins, or lipids due to the small surface area of the membrane being tested. This modular system may also be easily expanded for high throughput testing of membranes. PMID:26968008
Can post-eradication laboratory containment of wild polioviruses be achieved?
Dowdle, Walter R.; Gary, Howard E.; Sanders, Raymond; van Loon, Anton M.
2002-01-01
The purpose of containment is to prevent reintroduction of wild polioviruses from laboratories into polio-free communities. In order to achieve global commitment to laboratory containment the rationale should be clear and compelling; the biosafety levels should be justified by the risks; and the objectives should be realistic. Absolute containment can never be assured. Questions of intentional or unintentional non-compliance can never be wholly eliminated. Effective laboratory containment is, however, a realistic goal. Prevention of virus transmission through contaminated laboratory materials is addressed by WHO standards for biosafety. The principal challenge is to prevent transmission through unrecognized infectious laboratory workers. Such transmission is possible only if the following conditions occur: infectious and potentially infectious materials carrying wild poliovirus are present in the laboratory concerned; a laboratory operation exposes a worker to poliovirus; a worker is susceptible to an infection that results in the shedding of poliovirus; and the community is susceptible to poliovirus infections. At present it is difficult to envisage the elimination of any of these conditions. However, the risks of the first three can be greatly reduced so as to create a formidable barrier against poliovirus transmission to the community. Final biosafety recommendations must await post-eradication immunization policies adopted by the international community. PMID:12075368
Bodily attractiveness and egalitarianism are negatively related in males.
Price, Michael E; Brown, Stuart; Dukes, Amber; Kang, Jinsheng
2015-02-09
Ancestrally, relatively attractive individuals and relatively formidable males may have had reduced incentives to be egalitarian (i.e., to act in accordance with norms promoting social equality). If selection calibrated one's egalitarianism to one's attractiveness/formidability, then such people may exhibit reduced egalitarianism ("observed egalitarianism") and be perceived by others as less egalitarian ("perceived egalitarianism") in modern environments. To investigate, we created 3D body models of 125 participants to use both as a source of anthropometric measurements and as stimuli to obtain ratings of bodily attractiveness and perceived egalitarianism. We also measured observed egalitarianism (via an economic "dictator" game) and indices of political egalitarianism (preference for socialism over capitalism) and "equity sensitivity." Results indicated higher egalitarianism levels in women than in men, and moderate-to-strong negative relationships between (a) attractiveness and observed egalitarianism among men, (b) attractiveness and perceived egalitarianism among both sexes, and (c) formidability and perceived egalitarianism among men. We did not find support for two previously-reported findings: that observed egalitarianism and formidability are negatively related in men, and that wealth and formidability interact to explain variance in male egalitarianism. However, this lack of support may have been due to differences in variable measurement between our study and previous studies.
Global Antimicrobial Stewardship: A Closer Look at the Formidable Implementation Challenges
Tiong, John J. L.; Loo, Jason S. E.; Mai, Chun-Wai
2016-01-01
Antimicrobial stewardship (AMS) has been touted as one of the key strategies required in tackling worldwide escalation of antibiotic resistance. Although AMS has optimized antibiotic usage and reduced the incidence of resistance development in some regions, its full global potential has been curtailed by various AMS-impeding factors. This article seeks to highlight in a detailed perspective, the key challenges that hamper global AMS endeavors, some of which include the paucity of effective implementation strategies that cater for the challenging settings of developing nations, the slow response of governments, uncoordinated AMS activities as well as implementation fragmentation across different sectors and countries. The authors of this article call upon all stakeholders to pay attention to these seemingly obvious but often under-addressed problems. If left unresolved, this may render all current and future AMS initiatives pointless. PMID:27899924
Holbrook, Colin; Fessler, Daniel M T; Pollack, Jeremy
2016-01-01
The imagined support of benevolent supernatural agents attenuates anxiety and risk perception. Here, we extend these findings to judgments of the threat posed by a potentially violent adversary. Conceptual representations of bodily size and strength summarize factors that determine the relative threat posed by foes. The proximity of allies moderates the envisioned physical formidability of adversaries, suggesting that cues of access to supernatural allies will reduce the envisioned physical formidability of a threatening target. Across two studies, subtle cues of both supernatural and earthly social support reduced the envisioned physical formidability of a violent criminal. These manipulations had no effect on the perceived likelihood of encountering non-conflictual physical danger, raising the possibility that imagined supernatural support leads participants to view themselves not as shielded from encountering perilous situations, but as protected should perils arise. Copyright © 2015 Elsevier B.V. All rights reserved.
Functions of an engineered barrier system for a nuclear waste repository in basalt
NASA Astrophysics Data System (ADS)
Coons, W. E.; Moore, E. L.; Smith, M. J.; Kaser, J. D.
1980-01-01
The functions of components selected for an engineered barrier system for a nuclear waste repository in basalt are defined providing a focal point for barrier material research and development by delineating the purpose and operative lifetime of each component of the engineered system. A five component system (comprised of waste form, canister, buffer, overpack, and tailored backfill) is discussed. Redundancy is provided by subsystems of physical and chemical barriers which act in concert with the geology to provide a formidable barrier to transport of hazardous materials to the biosphere. The barrier system is clarified by examples pertinent to storage in basalt, and a technical approach to barrier design and material selection is proposed.
Protocol for the Synthesis of Ortho-trifluoromethoxylated Aniline Derivatives
Feng, Pengju; Ngai, Ming-Yu
2016-01-01
Molecules bearing trifluoromethoxy (OCF3) group often show desired pharmacological and biological properties. However, facile synthesis of trifluoromethoxylated aromatic compounds remains a formidable challenge in organic synthesis. Conventional approaches often suffer from poor substrate scope, or require use of highly toxic, difficult-to-handle, and/or thermally labile reagents. Herein, we report a user-friendly protocol for the synthesis of methyl 4-acetamido-3-(trifluoromethoxy)benzoate using 1-trifluoromethyl-1,2-benziodoxol-3(1H)-one (Togni reagent II). Treating methyl 4-(N-hydroxyacetamido)benzoate (1a) with Togni reagent II in the presence of a catalytic amount of cesium carbonate (Cs2CO3) in chloroform at RT afforded methyl 4-(N-(trifluoromethoxy)acetamido)benzoate (2a). This intermediate was then converted to the final product methyl 4-acetamido-3-(trifluoromethoxy)benzoate (3a) in nitromethane at 120 °C. This procedure is general and can be applied to the synthesis of a broad spectrum of ortho-trifluoromethoxylated aniline derivatives, which could serve as useful synthetic building blocks for the discovery and development of new pharmaceuticals, agrochemicals, and functional materials. PMID:26862864
NASA Technical Reports Server (NTRS)
Gillies, D. C.; Lehoczky, S. L.; Szofran, F. R.; Watring, D. A.; Alexander, H. A.; Jerman, G. A.
1996-01-01
As a solid solution semiconductor having, a large separation between liquidus and solidus, mercury cadmium telluride (MCT) presents a formidable challenge to crystal growers desiring an alloy of high compositional uniformity. To avoid constitutional supercooling during Bridgman crystal growth it is necessary to solidify slowly in a high temperature gradient region. The necessary translation rate of less than 1 mm/hr results in a situation where fluid flow induced by gravity on earth is a significant factor in material transport. The Advanced Automated Directional Solidification Furnace (AADSF) is equipped to provide the stable thermal environment with a high gradient, and the required slow translation rate needed. Ground based experiments in AADSF show clearly the dominance of flow driven transport. The first flight of AADSF in low gravity on USMP-2 provided an opportunity to test theories of fluid flow in MCT and showed several solidification regimes which are very different from those observed on earth. Residual acceleration vectors in the orbiter during the mission were measured by the Orbital Acceleration Research Experiment (OARE), and correlated well with observed compositional differences in the samples.
Workshop on Measurement Needs for Local-Structure Determination in Inorganic Materials
Levin, Igor; Vanderah, Terrell
2008-01-01
The functional responses (e.g., dielectric, magnetic, catalytic, etc.) of many industrially-relevant materials are controlled by their local structure—a term that refers to the atomic arrangements on a scale ranging from atomic (sub-nanometer) to several nanometers. Thus, accurate knowledge of local structure is central to understanding the properties of nanostructured materials, thereby placing the problem of determining atomic positions on the nanoscale—the so-called “nanostructure problem”—at the center of modern materials development. Today, multiple experimental techniques exist for probing local atomic arrangements; nonetheless, finding accurate comprehensive, and robust structural solutions for the nanostructured materials still remains a formidable challenge because any one of these methods yields only a partial view of the local structure. The primary goal of this 2-day NIST-sponsored workshop was to bring together experts in the key experimental and theoretical areas relevant to local-structure determination to devise a strategy for the collaborative effort required to develop a comprehensive measurement solution on the local scale. The participants unanimously agreed that solving the nanostructure problem—an ultimate frontier in materials characterization—necessitates a coordinated interdisciplinary effort that transcends the existing capabilities of any single institution, including national laboratories, centers, and user facilities. The discussions converged on an institute dedicated to local structure determination as the most viable organizational platform for successfully addressing the nanostructure problem. The proposed “institute” would provide an intellectual infrastructure for local structure determination by (1) developing and maintaining relevant computer software integrated in an open-source global optimization framework (Fig. 2), (2) connecting industrial and academic users with experts in measurement techniques, (3) developing and maintaining pertinent databases, and (4) providing necessary education and training. PMID:27096131
Advanced Insider Threat Mitigation Workshop Instructional Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbs, Philip; Larsen, Robert; O'Brien, Mike
Insiders represent a formidable threat to nuclear facilities. This set of workshop materials covers methodologies to analyze and approaches to mitigate the threat of an insider attempting abrupt and protracted theft of nuclear materials. This particular set of materials is an update of a January 2008 version to add increased emphasis on Material Control and Accounting and its role with respect to protracted insider nuclear material theft scenarios. This report is a compilation of workshop materials consisting of lectures on technical and administrative measures used in Physical Protection (PP) and Material Control and Accounting (MC&A) and methods for analyzing theirmore » effectiveness against a postulated insider threat. The postulated threat includes both abrupt and protracted theft scenarios. Presentation is envisioned to be through classroom instruction and discussion. Several practical and group exercises are included for demonstration and application of the analysis approach contained in the lecture/discussion sessions as applied to a hypothetical nuclear facility.« less
SWOT analysis and revelation in traditional Chinese medicine internationalization.
Tang, Haitao; Huang, Wenlong; Ma, Jimei; Liu, Li
2018-01-01
Traditional Chinese medicine (TCM) is currently the best-preserved and most influential traditional medical system with the largest number of users worldwide. In recent years, the trend of TCM adoption has increased greatly, but the process of TCM internationalization has suffered from a series of setbacks for both internal and external reasons. Thus, the process of TCM internationalization faces formidable challenges, although it also has favourable opportunities. Using SWOT analysis, this paper investigates the strengths, weaknesses, opportunities and threats for TCM. These findings can serve as references for TCM enterprises with global ambitions.
Taming Big Data Variety in the Earth Observing System Data and Information System
NASA Technical Reports Server (NTRS)
Lynnes, Christopher; Walter, Jeff
2015-01-01
Although the volume of the remote sensing data managed by the Earth Observing System Data and Information System is formidable, an oft-overlooked challenge is the variety of data. The diversity in satellite instruments, science disciplines and user communities drives cost as much or more as the data volume. Several strategies are used to tame this variety: data allocation to distinct centers of expertise; a common metadata repository for discovery, data format standards and conventions; and services that further abstract the variations in data.
1997-10-01
loss of human life - both theirs and ours - their initiatives present a formidable challenge to long-term national security. Even a small nation with...the chemical release killed a dozen people, well over 5,000 were injured and the release had the potential for far more devastating loss of life. In...individuals or groups to produce major damage and loss of life exists today. Events that we have already witnessed could well have resulted in far graver
1978-01-01
Analytical Test Methodology Sampling and analysis of thermal decomposition products are formidable tasks (Rasbash, 1967; Gaskill, 1973; Bankston ...by a flowing solution. A Sample Gas Inlet B Alkali Solution Inlet C Gas and Solution Outlet D Specific Ion Electrode E Reference Electrode E D 1 0 1 2...of radiant heat (Zinn, Powell, Cassanova and Bankston , 1977) ° Seader and Ou have recently proposed a theory relating optical density to particulate
Materials science. Modeling strain hardening the hard way.
Gumbsch, Peter
2003-09-26
The plastic deformation of metals results in strain hardening, that is, an increase in the stress with increasing strain. Materials engineers can provide a simple approximate description of such deformation and hardening behavior. In his perspective, Gumbsch discusses work by Madec et al. who have undertaken the formidable task of computing the physical basis for the development of strain hardening by individually following the fate of all the dislocations involved. Their simulations show that the collinear dislocation interaction makes a substantial contribution to strain hardening. It is likely that such simulations will play an important role in guiding the development of future engineering descriptions of deformation and hardening.
Physics and technological aspects of nanofluidics.
Bocquet, Lyderic; Tabeling, Patrick
2014-09-07
From a physical perspective, nanofluidics represents an extremely rich domain. It hosts many mechanisms acting on the nanoscale, which combine together or interact with the confinement to generate new phenomena. Superfast flows in carbon nanotubes, nonlinear electrokinetic transport, slippage over smooth surfaces, nanobubble stability, etc. are the most striking phenomena that have been unveiled over the past few years, and some of them are still awaiting an explanation. One may anticipate that new nanofluidic effects will be discovered in the future, but at the moment, the technological barrier is high. Fabrication of nanochannels is most often a tour de force, slow and costly. However, with the accumulation of technological skills along with the use of new nanofluidic materials (like nanotubes), nanofluidics is becoming increasingly accessible to experimentalists. Among the technological challenges faced by the field, fabricating devices mimicking natural nanometric systems, such as aquaporins, ionic pumps or kidney osmotic filtering, seems the most demanding in terms of groundbreaking ideas. Nanoflow characterization remains delicate, although considerable progress has been achieved over the past years. The targeted application of nanofluidics is not only in the field of genomics and membrane science--with disruptive developments to be expected for water purification, desalination, and energy harvesting--but also for oil and gas production from unconventional reservoirs. Today, in view of the markets that are targeted, nanofluidics may well impact the industry more than microfluidics; this would represent an unexpected paradox. These successes rely on using a variety of materials and technologies, using state-of-the-art nanofabrication, or low-tech inexpensive approaches. As a whole, nanofluidics is a fascinating field that is facing considerable challenges today. It possesses a formidable potential and offers much space for creative groundbreaking ideas.
Biomaterial-based technologies for brain anti-cancer therapeutics and imaging.
Orive, G; Ali, O A; Anitua, E; Pedraz, J L; Emerich, D F
2010-08-01
Treating malignant brain tumors represents one of the most formidable challenges in oncology. Contemporary treatment of brain tumors has been hampered by limited drug delivery across the blood-brain barrier (BBB) to the tumor bed. Biomaterials are playing an increasingly important role in developing more effective brain tumor treatments. In particular, polymer (nano)particles can provide prolonged drug delivery directly to the tumor following direct intracerebral injection, by making them physiochemically able to cross the BBB to the tumor, or by functionalizing the material surface with peptides and ligands allowing the drug-loaded material to be systemically administered but still specifically target the tumor endothelium or tumor cells themselves. Biomaterials can also serve as targeted delivery devices for novel therapies including gene therapy, photodynamic therapy, anti-angiogenic and thermotherapy. Nanoparticles also have the potential to play key roles in the diagnosis and imaging of brain tumors by revolutionizing both preoperative and intraoperative brain tumor detection, allowing early detection of pre-cancerous cells, and providing real-time, longitudinal, non-invasive monitoring/imaging of the effects of treatment. Additional efforts are focused on developing biomaterial systems that are uniquely capable of delivering tumor-associated antigens, immunotherapeutic agents or programming immune cells in situ to identify and facilitate immune-mediated tumor cell killing. The continued translation of current research into clinical practice will rely on solving challenges relating to the pharmacology of nanoparticles but it is envisioned that novel biomaterials will ultimately allow clinicians to target tumors and introduce multiple, pharmaceutically relevant entities for simultaneous targeting, imaging, and therapy in a unique and unprecedented manner. Copyright 2010 Elsevier B.V. All rights reserved.
Preterm labor: one syndrome, many causes.
Romero, Roberto; Dey, Sudhansu K; Fisher, Susan J
2014-08-15
Preterm birth is associated with 5 to 18% of pregnancies and is a leading cause of infant morbidity and mortality. Spontaneous preterm labor, a syndrome caused by multiple pathologic processes, leads to 70% of preterm births. The prevention and the treatment of preterm labor have been long-standing challenges. We summarize the current understanding of the mechanisms of disease implicated in this condition and review advances relevant to intra-amniotic infection, decidual senescence, and breakdown of maternal-fetal tolerance. The success of progestogen treatment to prevent preterm birth in a subset of patients at risk is a cause for optimism. Solving the mystery of preterm labor, which compromises the health of future generations, is a formidable scientific challenge worthy of investment. Copyright © 2014, American Association for the Advancement of Science.
Lei, Bin; Zhu, Mingshan; Chen, Penglei; Chen, Chuncheng; Ma, Wanhong; Li, Tiesheng; Liu, Minghua
2014-03-26
The fabrication of microstructures/nanostructures of a uniform yet well-defined morphology has attracted broad interest from a variety of fields of advanced functional materials, especially catalysts. Most of the conventional methods generally suffer from harsh synthesis conditions, requirement of bulky apparatus, or incapability of scalable production, etc. To meet these formidable challenges, it is strongly desired to develop a facile, cost-effective, scalable method to fulfill a morphology purification. By a precipitation reaction between AgNO3 and KI, we report that irregular AgI structures, or their mixture with towerlike AgI architectures could be fabricated. Compared to the former, the mixed structures exhibit enhanced catalytic reactivity toward the photodegradation of Methyl Orange pollutant. However, its catalytic durability, which is one of the most crucial criteria that are required by superior catalysts, is poor. We further show that the irregular structures could be facilely removed from the mixture via a KI-assisted chemical dissolution, producing AgI of a uniform towerlike morphology. Excitingly, after such simple morphology purification, our towerlike AgI displays not only a boosted catalytic durability but also an enhanced catalytic reactivity. Our chemical dissolution-based morphology purification protocol might be extended to other systems, wherein high-quality advanced functional materials of desired properties might be developed.
Multiple Fault Isolation in Redundant Systems
NASA Technical Reports Server (NTRS)
Pattipati, Krishna R.; Patterson-Hine, Ann; Iverson, David
1997-01-01
Fault diagnosis in large-scale systems that are products of modern technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.
Multiple Fault Isolation in Redundant Systems
NASA Technical Reports Server (NTRS)
Pattipati, Krishna R.
1997-01-01
Fault diagnosis in large-scale systems that are products of modem technology present formidable challenges to manufacturers and users. This is due to large number of failure sources in such systems and the need to quickly isolate and rectify failures with minimal down time. In addition, for fault-tolerant systems and systems with infrequent opportunity for maintenance (e.g., Hubble telescope, space station), the assumption of at most a single fault in the system is unrealistic. In this project, we have developed novel block and sequential diagnostic strategies to isolate multiple faults in the shortest possible time without making the unrealistic single fault assumption.
Management of Lung Cancer Invading the Superior Sulcus.
Kratz, Johannes R; Woodard, Gavitt; Jablons, David M
2017-05-01
Superior sulcus tumors have posed a formidable therapeutic challenge since their original description by Pancoast and Tobias in the early twentieth century. Initial therapeutic efforts with radiotherapy were associated with high rates of relapse and mortality. Bimodality therapy with complete surgical resection in the 1960s paved the way for trimodality therapy as the current standard of care in the treatment of superior sulcus tumors. The evolution of treatment approaches over time has provided outcomes that come increasingly closer to rivaling those of similarly staged nonapical lung cancer. Copyright © 2017 Elsevier Inc. All rights reserved.
Family Planning in the Democratic Republic of the Congo: Encouraging Momentum, Formidable Challenges
Kwete, Dieudonné; Binanga, Arsene; Mukaba, Thibaut; Nemuandjare, Théophile; Mbadu, Muanda Fidele; Kyungu, Marie-Thérèse; Sutton, Perri; Bertrand, Jane T
2018-01-01
Momentum for family planning in the Democratic Republic of the Congo (DRC) is evident in multiple ways: strong political will, increasing donor support, a growing number of implementing organizations, innovative family planning programming, and a cohesive family planning stakeholder group. Between 2013 and 2017, the modern contraceptive prevalence rate (mCPR) in the capital city of Kinshasa increased from 18.5% to 26.7% among married women, but as of 2013–14, it was only 7.8% at the national level. The National Multisectoral Strategic Plan for Family Planning: 2014–2020 calls for achieving an mCPR of 19.0% by 2020, an ambitious goal in light of formidable challenges to family planning in the DRC. Of the 16,465 health facilities reporting to the national health information system in 2017, only 40% offer family planning services. Key challenges include uncertainty over the political situation, difficulties of ensuring access to family planning services in a vast country with a weak transportation infrastructure, funding shortfalls for procuring adequate quantities of contraceptives, weak contraceptive logistics and supply chain management, strong cultural norms that favor large families, and low capacity of the population to pay for contraceptive services. This article describes promising initiatives designed to address these barriers, consistent with the World Health Organization's framework for health systems strengthening. For example, the national family planning coordinating mechanism is being replicated at the provincial level to oversee the expansion of family planning service delivery. Promising initiatives are being implemented to improve the supply and quality of services and generate demand for family planning, including social marketing of subsidized contraceptives at both traditional and non-traditional channels and strengthening of services in military health facilities. To expand contraceptive access, family planning is being institutionalized in nursing schools, allowing students to operate as community-based distributors. While major challenges remain, significant progress in family planning has been made in the DRC, which should be judged not in comparison with sub-Saharan African countries with high mCPR and mature programs, but rather with those starting from much further behind. PMID:29602865
Kwete, Dieudonné; Binanga, Arsene; Mukaba, Thibaut; Nemuandjare, Théophile; Mbadu, Muanda Fidele; Kyungu, Marie-Thérèse; Sutton, Perri; Bertrand, Jane T
2018-03-21
Momentum for family planning in the Democratic Republic of the Congo (DRC) is evident in multiple ways: strong political will, increasing donor support, a growing number of implementing organizations, innovative family planning programming, and a cohesive family planning stakeholder group. Between 2013 and 2017, the modern contraceptive prevalence rate (mCPR) in the capital city of Kinshasa increased from 18.5% to 26.7% among married women, but as of 2013-14, it was only 7.8% at the national level. The National Multisectoral Strategic Plan for Family Planning: 2014-2020 calls for achieving an mCPR of 19.0% by 2020, an ambitious goal in light of formidable challenges to family planning in the DRC. Of the 16,465 health facilities reporting to the national health information system in 2017, only 40% offer family planning services. Key challenges include uncertainty over the political situation, difficulties of ensuring access to family planning services in a vast country with a weak transportation infrastructure, funding shortfalls for procuring adequate quantities of contraceptives, weak contraceptive logistics and supply chain management, strong cultural norms that favor large families, and low capacity of the population to pay for contraceptive services. This article describes promising initiatives designed to address these barriers, consistent with the World Health Organization's framework for health systems strengthening. For example, the national family planning coordinating mechanism is being replicated at the provincial level to oversee the expansion of family planning service delivery. Promising initiatives are being implemented to improve the supply and quality of services and generate demand for family planning, including social marketing of subsidized contraceptives at both traditional and non-traditional channels and strengthening of services in military health facilities. To expand contraceptive access, family planning is being institutionalized in nursing schools, allowing students to operate as community-based distributors. While major challenges remain, significant progress in family planning has been made in the DRC, which should be judged not in comparison with sub-Saharan African countries with high mCPR and mature programs, but rather with those starting from much further behind. © Kwete et al.
Right-Handed Helical Foldamers Consisting of De Novo d -AApeptides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Teng, Peng; Ma, Ning; Cerrato, Darrell Cole
New types of foldamer scaffolds are formidably challenging to design and synthesize, yet highly desirable as structural mimics of peptides/proteins with a wide repertoire of functions. In particular, the development of peptidomimetic helical foldamers holds promise for new biomaterials, catalysts, and drug molecules. Unnatural l-sulfono-γ-AApeptides were recently developed and shown to have potential applications in both biomedical and material sciences. However, d-sulfono-γ-AApeptides, the enantiomers of l-sulfono-γ-AApeptides, have never been studied due to the lack of high-resolution three-dimensional structures to guide structure-based design. Herein, we report the first synthesis and X-ray crystal structures of a series of 2:1 l-amino acid/d-sulfono-γ-AApeptide hybridmore » foldamers, and elucidate their folded conformation at the atomic level. Single-crystal X-ray crystallography indicates that this class of oligomers folds into well-defined right-handed helices with unique helical parameters. The helical structures were consistent with data obtained from solution 2D NMR, CD studies, and molecular dynamics simulations. Our findings are expected to inspire the structure-based design of this type of unique folding biopolymers for biomaterials and biomedical applications.« less
Predictive models for moving contact line flows
NASA Technical Reports Server (NTRS)
Rame, Enrique; Garoff, Stephen
2003-01-01
Modeling flows with moving contact lines poses the formidable challenge that the usual assumptions of Newtonian fluid and no-slip condition give rise to a well-known singularity. This singularity prevents one from satisfying the contact angle condition to compute the shape of the fluid-fluid interface, a crucial calculation without which design parameters such as the pressure drop needed to move an immiscible 2-fluid system through a solid matrix cannot be evaluated. Some progress has been made for low Capillary number spreading flows. Combining experimental measurements of fluid-fluid interfaces very near the moving contact line with an analytical expression for the interface shape, we can determine a parameter that forms a boundary condition for the macroscopic interface shape when Ca much les than l. This parameter, which plays the role of an "apparent" or macroscopic dynamic contact angle, is shown by the theory to depend on the system geometry through the macroscopic length scale. This theoretically established dependence on geometry allows this parameter to be "transferable" from the geometry of the measurement to any other geometry involving the same material system. Unfortunately this prediction of the theory cannot be tested on Earth.
Quantification of Soil Pore Structure Based on Minkowski-Functions
NASA Astrophysics Data System (ADS)
Vogel, H.; Weller, U.; Schlüter, S.
2009-05-01
The porous structure in soils and other geologic media is typically a complex 3-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to this structure which can be directly observed using non-invasive techniques as e.g. X-ray tomography. It is an old dream and still a formidable challenge to related structural features of porous media to their physical properties. In this contribution we present a scale-invariant concept to quantify pore structure based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on pore size, pore surface area and pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the structure of an arable topsoil obtained by X-ray micro tomography. We also discuss the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale.
Final Report, DOE-BES grant DE-FG02-06ER46315
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clay, Rudolf Torsten; Mazumdar, Sumit
Determination of the mechanism of correlated-electron superconductivity (SC) has turned out to be the hardest problem in condensed matter physics. After nearly three decades of intense investigation of the high-T c cuprates it now appears that one key idea, viz., - weak doping of Mott-Hubbard semiconductors leads to SC -may not be correct, or is at least incomplete. This conclusion is arrived from recent experiments that have clearly indicated that the pseudogap state in the cuprates, separated by a thermodynamic phase transition from the undoped antiferromagnet, is significantly more complicated than thought before. Buried inside it there is a distinct charge-ordered (CO) state. Understanding the complete set of competing and coexisting phases in the pseudogap state is thus a formidable challenge. It follows that research on other correlated superconductors, which have also been known for a long time, may be able to give much needed fresh insight. It is with this motivation in this project we pursued theoretical research to understand the unconventional SC that is found in an apparently completely separate family of materials, the organic charge-transfer solids (CTS). A unique feature of the CTS is that SC there universally occurs at the carrier concentrationmore » $$\\rho$$ of 0.5 per organic molecule, rather than under carrier doping as in the cuprates. Our work in this project focused on the correlated physics of the organic CTS as well as other inorganic materials with the same carrier density, $$\\rho$$=0.5. This project resulted in several theoretical advances in understanding these materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
Sulfur is an appealing cathode material for establishing advanced lithium batteries as it offers a high theoretical capacity of 1675 mA h g -1 at low material and operating costs. However, the lithium–sulfur (Li–S) electrochemical cells face several formidable challenges arising from both the materials chemistry (e.g., low electrochemical utilization of sulfur and severe polysulfide diffusion) and battery chemistry (e.g., dynamic and static instability and low sulfur loadings). Here in this study, we present the design of a core–shell cathode with a pure sulfur core shielded within a conductive shell-shaped electrode. The new electrode configuration allows Li–S cells to loadmore » with a high amount of sulfur (sulfur loadings of up to 30 mg cm -2 and sulfur content approaching 70 wt%). The core–shell cathodes demonstrate a superior dynamic and static electrochemical stability in Li–S cells. The high-loading cathodes exhibit (i) a high sulfur utilization of up to 97% at C/20–C/2 rates and (ii) a low self-discharge during long-term cell storage for a three-month rest period and at different cell-storage conditions. Finally, a polysulfide-trap cell configuration is designed to evidence the eliminations of polysulfide diffusion and to investigate the relationship between the electrode configuration and electrochemical characteristics. Finally, the comprehensive analytical results based on the high-loading cathodes suggest that (i) the core–shell cathode is a promising solution for designing highly reversible Li–S cells and (ii) the polysulfide-trap cell configuration is a viable approach to qualitatively evaluating the presence or absence of polysulfide diffusion.« less
NASA Astrophysics Data System (ADS)
Hauck Newman, Amy; Katz, Jonathan L.
The dopamine transporter (DAT) has been a primary target for cocaine abuse/addiction medication discovery. However predicted addiction liability and limited clinical evaluation has provided a formidable challenge for development of these agents for human use. The unique and atypical pharmacological profile of the benztropine (BZT) class of dopamine uptake inhibitors, in preclinical models of cocaine effects and abuse, has encouraged further development of these agents. Moreover, in vivo studies have challenged the original DAT hypothesis and demonstrated that DAT occupancy and subsequent increases in dopamine produced by BZT analogues are significantly delayed and long lasting, as compared to cocaine. These important and distinctive elements are critical to the lack of abuse liability among BZT analogues, and improve their potential for development as treatments for cocaine abuse and possibly other neuropsychiatric disorders.
CAR T Cell Therapy for Glioblastoma: Recent Clinical Advances and Future Challenges.
Bagley, Stephen J; Desai, Arati S; Linette, Gerald P; June, Carl H; O'Rourke, Donald M
2018-03-02
In patients with certain hematologic malignancies, the use of autologous T cells genetically modified to express chimeric antigen receptors (CARs) has led to unprecedented clinical responses. Although progress in solid tumors has been elusive, recent clinical studies have demonstrated the feasibility and safety of CAR T cell therapy for glioblastoma. In addition, despite formidable barriers to T cell localization and effector function in glioblastoma, signs of efficacy have been observed in select patients. In this review, we begin with a discussion of established obstacles to systemic therapy in glioblastoma and how these may be overcome by CAR T cells. We continue with a summary of previously published CAR T cell trials in GBM, and end by outlining the key therapeutic challenges associated with the use of CAR T cells in this disease.
Supplemental Journal Article Materials: A progress report on an information industry initiative
NASA Astrophysics Data System (ADS)
Schwarzman, A. B.
2011-12-01
Who could possibly quibble with the idea of publishing supplemental materials to a journal article? Making them available makes it possible for the Earth and space scientists to demonstrate supporting evidence, such as multimedia, computer programs, and datasets; gives the authors the opportunity to present in-depth studies that would not otherwise be available; and enables the readers to replicate experiments and verify their results. However, the scholarly publishing ecosystem is now being threatened by a veritable tsunami of supplemental materials that have to be peer reviewed, identified, described, and made discoverable and citeable; such materials also have to be archived, preserved, and perpetually converted to the contemporary formats to be available to a future researcher. Moreover, the readers often have no clear indication of how critical a particular supplemental material is to the scientific conclusions of the article and thus are not sure whether they should spend their time reading/viewing/running it. In some cases it is not even clear what the material actually supplements. While one segment of the research community argues that even more supplemental materials should be made available, another segment increasingly voices its concern stating categorically that a research article is not a data dump or an FTP site. From the publisher's perspective, dealing with supplemental materials in a responsible fashion is becoming an increasingly costly proposition. Faced with formidable challenges of managing supplemental materials, the information profession community in 2010 formed a joint NISO/NFAIS Working Group to develop Recommended Practices for curating supplemental materials during their life cycle, including but not limited to their selection, peer review, editing, production, presentation, providing context, identification, linking, citing, hosting, discovery, metadata and markup, packaging, accessibility, and preservation. The Recommended Practices also intend to address roles and responsibilities of authors, editors, peer reviewers, publishers, libraries, abstracting and indexing services, and official data centers and institutional repositories. Finally, the document is going to contain broad principles and detailed technical implementation related to metadata, linking, packaging, and accessibility of supplemental materials. In this presentation, a co-chair of the NISO/NFAIS Working Group will report on the Group's latest progress in developing the Recommended Practices for Supplemental Journal Article Materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, N. E.; Ketchen, E. E.; Porter, W. E.
For large industrial and research operations, maintaining reasonable control of all toxic materials used in their operations can be a formidable task. A system utilizing cards has been developed that serves a dual purpose, informing the user regarding hazards of a particular material and also facilitating appropriate workplace surveillance during its use. Selected data, including threshold limit values, routes of absorption, symptoms of exposure, chronic effects, and emergency first-aid procedures, are printed on the card. A portion of the card contains the label that the user detaches and affixes to the container. This label classifies the material according to flammability,more » toxicity, reactivity, and special properties on a 0 through 4 hazard rating system. This report describes the development and use of such cards, contains the associated Toxic Material Data Sheets that provide full backup data for the labels, and furnishes a glossary of biomedical terms used in the Data Sheets.« less
Space Shuttle Strategic Planning Status
NASA Technical Reports Server (NTRS)
Henderson, Edward M.; Norbraten, Gordon L.
2006-01-01
The Space Shuttle Program is aggressively planning the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Implementing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA s Crew Exploration Vehicle (CEV) and Crew and Cargo Launch Vehicles (CLV). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the President s "Vision for Space Exploration," and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.
Space Shuttle Strategic Planning Status
NASA Technical Reports Server (NTRS)
Norbraten, Gordon L.; Henderson, Edward M.
2007-01-01
The Space Shuttle Program is aggressively flying the Space Shuttle manifest for assembling the International Space Station and servicing the Hubble Space Telescope. Completing this flight manifest while concurrently transitioning to the Exploration architecture creates formidable challenges; the most notable of which is retaining critical skills within the Shuttle Program workforce. The Program must define a strategy that will allow safe and efficient fly-out of the Shuttle, while smoothly transitioning Shuttle assets (both human and facility) to support early flight demonstrations required in the development of NASA's Crew Exploration Vehicle (Orion) and Crew and Cargo Launch Vehicles (Ares I). The Program must accomplish all of this while maintaining the current level of resources. Therefore, it will be necessary to initiate major changes in operations and contracting. Overcoming these challenges will be essential for NASA to fly the Shuttle safely, accomplish the Vision for Space Exploration, and ultimately meet the national goal of maintaining a robust space program. This paper will address the Space Shuttle Program s strategy and its current status in meeting these challenges.
Metallized gelled monopropellants
NASA Technical Reports Server (NTRS)
Nieder, Erin G.; Harrod, Charles E.; Rodgers, Frederick C.; Rapp, Douglas C.; Palaszewski, Bryan A.
1992-01-01
Thermochemical calculations of seven metallized monopropellants were conducted to quantify theoretical specific impulse and density specific impulse performance. On the basis of theoretical performance, commercial availability of formulation constituents, and anticipated viscometric behavior, two metallized monopropellants were selected for formulation characterization: triethylene glycol dinitrate, ammonium perchlorate, aluminum and hydrogen peroxide, aluminum. Formulation goals were established, and monopropellant formulation compatibility and hazard sensitivity were experimentally determined. These experimental results indicate that the friction sensitivity, detonation susceptibility, and material handling difficulties of the elevated monopropellant formulations and their constituents pose formidable barriers to their future application as metallized monopropellants.
Bolin, Jane; Gamm, Larry; Kash, Bita; Peck, Mitchell
2005-03-01
Successful implementation of disease management (DM) is based on the ability of an organization to overcome a variety of barriers to deliver timely, appropriate care of chronic illnesses. Such programs initiate DM services to patient populations while initiating self-management education among medication-resistant patients who are chronically ill. Despite formidable challenges, rural health care providers have been successful in initiating DM programs and have discovered several ways in which these programs benefit their organizations. This research reports on six DM programs that serve large rural and underserved populations and have demonstrated that DM can be successfully implemented in such areas.
NASA Technical Reports Server (NTRS)
Stehura, Aaron; Rozek, Matthew
2013-01-01
The complexity of the Mars Science Laboratory (MSL) mission presented the Entry, Descent, and Landing systems engineering team with many challenges in its Verification and Validation (V&V) campaign. This paper describes some of the logistical hurdles related to managing a complex set of requirements, test venues, test objectives, and analysis products in the implementation of a specific portion of the overall V&V program to test the interaction of flight software with the MSL avionics suite. Application-specific solutions to these problems are presented herein, which can be generalized to other space missions and to similar formidable systems engineering problems.
File formats commonly used in mass spectrometry proteomics.
Deutsch, Eric W
2012-12-01
The application of mass spectrometry (MS) to the analysis of proteomes has enabled the high-throughput identification and abundance measurement of hundreds to thousands of proteins per experiment. However, the formidable informatics challenge associated with analyzing MS data has required a wide variety of data file formats to encode the complex data types associated with MS workflows. These formats encompass the encoding of input instruction for instruments, output products of the instruments, and several levels of information and results used by and produced by the informatics analysis tools. A brief overview of the most common file formats in use today is presented here, along with a discussion of related topics.
Literacy in Brazil: from Rights to Reality
NASA Astrophysics Data System (ADS)
Ireland, Timothy D.
2008-11-01
At a time when some 24% of the Brazilian population of 182 million are functionally illiterate, the author shows how illiteracy is concentrated in traditionally poor and disadvantaged social and ethnic groups as well as in certain regions of the country. He surveys the changes in legislation, policies and attitudes relating to literacy over the past few decades and describes how literacy is increasingly seen as a continuous process rather than a short-term, low-cost intervention. While there is still a lack of a broad, coordinated policy and adequate funding in this area, and while the challenges remain formidable, the author concludes that Brazil is moving slowly in the right direction.
Aggregate measures of ecosystem services: Can we take the pulse of nature?
Meyerson, L.A.; Baron, Jill S.; Melillo, J.M.; Naiman, R.J.; O'Malley, R.I.; Orians, G.; Palmer, Margaret A.; Pfaff, Alexander S.P.; Running, S.W.; Sala, O.E.
2005-01-01
National scale aggregate indicators of ecosystem services are useful for stimulating and supporting a broad public discussion about trends in the provision of these services. There are important considerations involved in producing an aggregate indicator, including whether the scientific and technological capacity exists, how to address varying perceptions of the societal importance of different services, and how to communicate information about these services to both decision makers and the general public. Although the challenges are formidable, they are not insurmountable. Quantification of ecosystem services and dissemination of information to decision makers and the public is critical for the responsible and sustainable management of natural resources.
Varied presentations of missile emboli in military combat.
Aidinian, Gilbert; Fox, Charles J; Rasmussen, Todd E; Gillespie, David L
2010-01-01
Fragment embolization is a rare phenomenon in trauma patients. Although surgical and endovascular management of vascular injuries have evolved significantly, the detection and management of fragment emboli remain a formidable challenge. We reviewed our experience with this entity from December 2001 to March 2008. During this time period, four (1.1%) of 346 US soldiers evacuated to Walter Reed with arterial or venous injuries were discovered to have suffered missile emboli. Venous emboli were treated with anticoagulation and arterial emboli were treated with standard embolectomy techniques with good result. The presentation, diagnosis, and surgical management of these cases are described. Published by Mosby, Inc.
Sivakumar, Indumathi; Arunachalam, Kuthalingam Subbiah; Sajjan, Suresh; Ramaraju, Alluri Venkata; Rao, Bheemalingeshwara; Kamaraj, Bindu
2014-06-01
Contemporary research in acrylic denture base materials focuses on the development of a novel poly(methyl methacrylate) (PMMA) resin with antimicrobial properties. Although PMMA resin has fulfilled all the requirements of an ideal denture base material, its susceptibility to microbial colonization in the oral environment is a formidable concern to clinicians. Many mechanisms including the absence of ionic charge in the methyl methacrylate resins, hydrophobic interactions, electrostatic interactions, and mechanical attachment have been found to contribute to the formation of biofilm. The present article outlines the basic categories of potential antimicrobial polymer (polymeric biocides) formulations (modified PMMA resins) and considers their applicability, biological status, and usage potential over the coming years. © 2013 by the American College of Prosthodontists.
Materials safety data sheets the basis for control of toxic chemicals. Volume II
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolton, N. E.; Ketchen, E. E.; Porter, W. E.
For large industrial and research operations, maintaining reasonable control of all toxic materials used in their operations can be a formidable task. A system utilizing cards has been developed that serves a dual purpose, informing the user regarding hazards of a particular material and also facilitating appropriate workplace surveillance during its use. Selected data, including threshold limit values, routes of absorption, symptoms of exposure, chronic effects, and emergency first-aid procedures, are printed on the card. A portion of the card contains the label that the user detaches and affixes to the container. This label classifies the material according to flammability,more » toxicity, reactivity, and special properties on a 0 through 4 hazard rating system. This report describes the development and use of such cards, contains the associated Toxic Material Data Sheets that provide full backup data for the labels, and furnishes a glossary of biomedical terms used in the Data Sheets.« less
Commercial viability of CNS drugs: balancing the risk/reward profile.
Johnson, Ginger S
2014-01-01
CNS has historically been a formidable therapeutic area in which to innovate owing to biological (e.g., complex neurobiology, difficulty reaching the target), as well as clinical (e.g., subjective clinical endpoints, high placebo response, lack of biomarkers) challenges. In the current market where many of the larger diseases are dominated by a generic standard of care, commercial challenges now make the triple threat of scientific-clinical-commercial risk too much for many players to tackle. However, opportunities do exist for smaller biotech companies to concentrate on narrowly focused patient populations associated with high unmet need for which risk can be tightly defined. In CNS, there are two major areas to balance the risk/reward profile and create commercially viable opportunities: To realize value, all companies (start-ups and big players) must define, measure and quantify clear and meaningful value to all stakeholders: physicians, patients, caregivers and payers. © 2013.
Single crystal growth of 67%BiFeO 3 -33%BaTiO 3 solution by the floating zone method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rong, Y.; Zheng, H.; Krogstad, M. J.
The growth conditions and the resultant grain morphologies and phase purities from floating-zone growth of 67%BiFeO3-33%BaTiO3 (BF-33BT) single crystals are reported. We find two formidable challenges for the growth. First, a low-melting point constituent leads to a pre-melt zone in the feed-rod that adversely affects growth stability. Second, constitutional super-cooling (CSC), which was found to lead to dendritic and columnar features in the grain morphology, necessitates slow traveling rates during growth. Both challenges were addressed by modifications to the floating-zone furnace that steepened the temperature gradient at the melt-solid interfaces. Slow growth was also required to counter the effects ofmore » CSC. Single crystals with typical dimensions of hundreds of microns have been obtained which possess high quality and are suitable for detailed structural studies.« less
O'Donnell, Clifford R; Tharp, Roland G
2012-03-01
Cultural and community psychology share a common emphasis on context, yet their leading journals rarely cite each other's articles. Greater integration of the concepts of culture and community within and across their disciplines would enrich and facilitate the viability of cultural community psychology. The contextual theory of activity settings is proposed as one means to integrate the concepts of culture and community in cultural community psychology. Through shared activities, participants develop common experiences that affect their psychological being, including their cognitions, emotions, and behavioral development. The psychological result of these experiences is intersubjectivity. Culture is defined as the shared meanings that people develop through their common historic, linguistic, social, economic, and political experiences. The shared meanings of culture arise through the intersubjectivity developed in activity settings. Cultural community psychology presents formidable epistemological challenges, but overcoming these challenges could contribute to the transformation and advancement of community psychology.
Pricing and reimbursement frameworks in Central Eastern Europe: a decision tool to support choices.
Kolasa, Katarzyna; Kalo, Zoltan; Hornby, Edward
2015-02-01
Given limited financial resources in the Central Eastern European (CEE) region, challenges in obtaining access to innovative medical technologies are formidable. The objective of this research was to develop a decision tree that supports decision makers and drug manufacturers from CEE region in their search for optimal innovative pricing and reimbursement scheme (IPRSs). A systematic literature review was performed to search for published IPRSs, and then ten experts from the CEE region were interviewed to ascertain their opinions on these schemes. In total, 33 articles representing 46 unique IPRSs were analyzed. Based on our literature review and subsequent expert input, key decision nodes and branches of the decision tree were developed. The results indicate that outcome-based schemes are better suited to deal with uncertainties surrounding cost effectiveness, while non-outcome-based schemes are more appropriate for pricing and budget impact challenges.
Spectral signatures for RDX-based explosives in the 3 micron region
NASA Astrophysics Data System (ADS)
Osborn, Tabetha; Kaimal, Sindhu; Reeve, Scott W.; Burns, William
2008-04-01
Explosive compounds such as RDX, and HMX present significant challenges to optically based sensors. This difficulty is due in part to the low vapor pressures these compounds possess. One approach for sensing explosives that circumvents the low explosive vapor pressure problem, involves focusing on the trace amounts of relatively high vapor pressure impurities that will be present in the vapor signature. In order to effectively detect these volatile impurities, the spectral signature databases must be readily available. One of our goals therefore, is the generation of a database of high resolution spectral signatures for these volatile organic impurities. Some rather formidable spectroscopic measurement challenges have been encountered while working to extend the spectral signature effort to the 3 micron region. Here we will outline progress to date, with a focus on the volatile organic compounds formaldehyde, acetaldehyde, nitromethane, acetone, isobutene, and cyclohexanone.
Challenges for semilocal density functionals with asymptotically nonvanishing potentials
NASA Astrophysics Data System (ADS)
Aschebrock, Thilo; Armiento, Rickard; Kümmel, Stephan
2017-08-01
The Becke-Johnson model potential [A. D. Becke and E. R. Johnson, J. Chem. Phys. 124, 221101 (2006), 10.1063/1.2213970] and the potential of the AK13 functional [R. Armiento and S. Kümmel, Phys. Rev. Lett. 111, 036402 (2013), 10.1103/PhysRevLett.111.036402] have been shown to mimic features of the exact Kohn-Sham exchange potential, such as step structures that are associated with shell closings and particle-number changes. A key element in the construction of these functionals is that the potential has a limiting value far outside a finite system that is a system-dependent constant rather than zero. We discuss a set of anomalous features in these functionals that are closely connected to the nonvanishing asymptotic potential. The findings constitute a formidable challenge for the future development of semilocal functionals based on the concept of a nonvanishing asymptotic constant.
Single crystal growth of 67%BiFeO3-33%BaTiO3 solution by the floating zone method
NASA Astrophysics Data System (ADS)
Rong, Y.; Zheng, H.; Krogstad, M. J.; Mitchell, J. F.; Phelan, D.
2018-01-01
The growth conditions and the resultant grain morphologies and phase purities from floating-zone growth of 67%BiFeO3-33%BaTiO3 (BF-33BT) single crystals are reported. We find two formidable challenges for the growth. First, a low-melting point constituent leads to a pre-melt zone in the feed-rod that adversely affects growth stability. Second, constitutional super-cooling (CSC), which was found to lead to dendritic and columnar features in the grain morphology, necessitates slow traveling rates during growth. Both challenges were addressed by modifications to the floating-zone furnace that steepened the temperature gradient at the melt-solid interfaces. Slow growth was also required to counter the effects of CSC. Single crystals with typical dimensions of hundreds of microns have been obtained which possess high quality and are suitable for detailed structural studies.
A core–shell electrode for dynamically and statically stable Li–S battery chemistry
Chung, Sheng-Heng; Chang, Chi-Hao; Manthiram, Arumugam
2016-08-17
Sulfur is an appealing cathode material for establishing advanced lithium batteries as it offers a high theoretical capacity of 1675 mA h g -1 at low material and operating costs. However, the lithium–sulfur (Li–S) electrochemical cells face several formidable challenges arising from both the materials chemistry (e.g., low electrochemical utilization of sulfur and severe polysulfide diffusion) and battery chemistry (e.g., dynamic and static instability and low sulfur loadings). Here in this study, we present the design of a core–shell cathode with a pure sulfur core shielded within a conductive shell-shaped electrode. The new electrode configuration allows Li–S cells to loadmore » with a high amount of sulfur (sulfur loadings of up to 30 mg cm -2 and sulfur content approaching 70 wt%). The core–shell cathodes demonstrate a superior dynamic and static electrochemical stability in Li–S cells. The high-loading cathodes exhibit (i) a high sulfur utilization of up to 97% at C/20–C/2 rates and (ii) a low self-discharge during long-term cell storage for a three-month rest period and at different cell-storage conditions. Finally, a polysulfide-trap cell configuration is designed to evidence the eliminations of polysulfide diffusion and to investigate the relationship between the electrode configuration and electrochemical characteristics. Finally, the comprehensive analytical results based on the high-loading cathodes suggest that (i) the core–shell cathode is a promising solution for designing highly reversible Li–S cells and (ii) the polysulfide-trap cell configuration is a viable approach to qualitatively evaluating the presence or absence of polysulfide diffusion.« less
Polymeric CO: A new class of High Energy Density Material
NASA Astrophysics Data System (ADS)
Lipp, Magnus
2005-03-01
Covalently bonded extended phases of molecular solids made of first- and second-row elements at high pressures are a new class of material with advanced optical, mechanical and energetic properties. The existence of such extended solids has recently been demonstrated using diamond anvil cells in several systems, including N2, CO2, and CO. However, the microscopic quantities produced at the formidable high-pressure/temperature conditions have limited the characterization of their predicted novel properties including high-energy content. Here we present the first experimental evidence that these extended low-Z solids are indeed high energy density materials via milligram-scale high-pressure synthesis, recovery and characterization of polymeric CO (p-CO). This work was performed under the auspices of the U.S. Department of Energy by the University of California, Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.
Fessler, Daniel M T; Holbrook, Colin
2013-05-01
In situations of potential violent conflict, deciding whether to fight, flee, or try to negotiate entails assessing many attributes contributing to the relative formidability of oneself and one's opponent. Summary representations can usefully facilitate such assessments of multiple factors. Because physical size and strength are both phylogenetically ancient and ontogenetically recurrent contributors to the outcome of violent conflicts, these attributes provide plausible conceptual dimensions that may be used by the mind to summarize the relative formidability of opposing parties. Because the presence of allies is a vital factor in determining victory, we hypothesized that men accompanied by male companions would therefore envision a solitary foe as physically smaller and less muscular than would men who were alone. We document the predicted effect in two studies, one using naturally occurring variation in the presence of male companions and one employing experimental manipulation of this factor.
Environmental controls on food web regimes: A fluvial perspective
NASA Astrophysics Data System (ADS)
Power, Mary E.
2006-02-01
Because food web regimes control the biomass of primary producers (e.g., plants or algae), intermediate consumers (e.g., invertebrates), and large top predators (tuna, killer whales), they are of societal as well as academic interest. Some controls over food web regimes may be internal, but many are mediated by conditions or fluxes over large spatial scales. To understand locally observed changes in food webs, we must learn more about how environmental gradients and boundaries affect the fluxes of energy, materials, or organisms through landscapes or seascapes that influence local species interactions. Marine biologists and oceanographers have overcome formidable challenges of fieldwork on the high seas to make remarkable progress towards this goal. In river drainage networks, we have opportunities to address similar questions at smaller spatial scales, in ecosystems with clear physical structure and organization. Despite these advantages, we still have much to learn about linkages between fluxes from watershed landscapes and local food webs in river networks. Longitudinal (downstream) gradients in productivity, disturbance regimes, and habitat structure exert strong effects on the organisms and energy sources of river food webs, but their effects on species interactions are just beginning to be explored. In fluid ecosystems with less obvious physical structure, like the open ocean, discerning features that control the movement of organisms and affect food web dynamics is even more challenging. In both habitats, new sensing, tracing and mapping technologies have revealed how landscape or seascape features (e.g., watershed divides, ocean fronts or circulation cells) channel, contain or concentrate organisms, energy and materials. Field experiments and direct in situ observations of basic natural history, however, remain as vital as ever in interpreting the responses of biota to these features. We need field data that quantify the many spatial and temporal scales of functional relationships that link environments, fluxes and food web interactions to understand how they will respond to intensifying anthropogenic forcing over the coming decades.
Petascale Many Body Methods for Complex Correlated Systems
NASA Astrophysics Data System (ADS)
Pruschke, Thomas
2012-02-01
Correlated systems constitute an important class of materials in modern condensed matter physics. Correlation among electrons are at the heart of all ordering phenomena and many intriguing novel aspects, such as quantum phase transitions or topological insulators, observed in a variety of compounds. Yet, theoretically describing these phenomena is still a formidable task, even if one restricts the models used to the smallest possible set of degrees of freedom. Here, modern computer architectures play an essential role, and the joint effort to devise efficient algorithms and implement them on state-of-the art hardware has become an extremely active field in condensed-matter research. To tackle this task single-handed is quite obviously not possible. The NSF-OISE funded PIRE collaboration ``Graduate Education and Research in Petascale Many Body Methods for Complex Correlated Systems'' is a successful initiative to bring together leading experts around the world to form a virtual international organization for addressing these emerging challenges and educate the next generation of computational condensed matter physicists. The collaboration includes research groups developing novel theoretical tools to reliably and systematically study correlated solids, experts in efficient computational algorithms needed to solve the emerging equations, and those able to use modern heterogeneous computer architectures to make then working tools for the growing community.
Extra-metabolic energy use and the rise in human hyper-density
NASA Astrophysics Data System (ADS)
Burger, Joseph R.; Weinberger, Vanessa P.; Marquet, Pablo A.
2017-03-01
Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth’s ’energetic equivalence rule’ supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet.
Extra-metabolic energy use and the rise in human hyper-density.
Burger, Joseph R; Weinberger, Vanessa P; Marquet, Pablo A
2017-03-02
Humans, like all organisms, are subject to fundamental biophysical laws. Van Valen predicted that, because of zero-sum dynamics, all populations of all species in a given environment flux the same amount of energy on average. Damuth's 'energetic equivalence rule' supported Van Valen´s conjecture by showing a tradeoff between few big animals per area with high individual metabolic rates compared to abundant small species with low energy requirements. We use metabolic scaling theory to compare variation in densities and individual energy use in human societies to other land mammals. We show that hunter-gatherers occurred at densities lower than the average for a mammal of our size. Most modern humans, in contrast, concentrate in large cities at densities up to four orders of magnitude greater than hunter-gatherers, yet consume up to two orders of magnitude more energy per capita. Today, cities across the globe flux greater energy than net primary productivity on a per area basis. This is possible by importing enormous amounts of energy and materials required to sustain hyper-dense, modern humans. The metabolic rift with nature created by modern cities fueled largely by fossil energy poses formidable challenges for establishing a sustainable relationship on a rapidly urbanizing, yet finite planet.
Continuous centrifuge decelerator for polar molecules.
Chervenkov, S; Wu, X; Bayerl, J; Rohlfes, A; Gantner, T; Zeppenfeld, M; Rempe, G
2014-01-10
Producing large samples of slow molecules from thermal-velocity ensembles is a formidable challenge. Here we employ a centrifugal force to produce a continuous molecular beam with a high flux at near-zero velocities. We demonstrate deceleration of three electrically guided molecular species, CH3F, CF3H, and CF3CCH, with input velocities of up to 200 m s(-1) to obtain beams with velocities below 15 m s(-1) and intensities of several 10(9) mm(-2) s(-1). The centrifuge decelerator is easy to operate and can, in principle, slow down any guidable particle. It has the potential to become a standard technique for continuous deceleration of molecules.
Catalog of 174 Binary Black Hole Simulations for Gravitational Wave Astronomy
NASA Astrophysics Data System (ADS)
Mroué, Abdul H.; Scheel, Mark A.; Szilágyi, Béla; Pfeiffer, Harald P.; Boyle, Michael; Hemberger, Daniel A.; Kidder, Lawrence E.; Lovelace, Geoffrey; Ossokine, Serguei; Taylor, Nicholas W.; Zenginoğlu, Anıl; Buchman, Luisa T.; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A.
2013-12-01
This Letter presents a publicly available catalog of 174 numerical binary black hole simulations following up to 35 orbits. The catalog includes 91 precessing binaries, mass ratios up to 8∶1, orbital eccentricities from a few percent to 10-5, black hole spins up to 98% of the theoretical maximum, and radiated energies up to 11.1% of the initial mass. We establish remarkably good agreement with post-Newtonian precession of orbital and spin directions for two new precessing simulations, and we discuss other applications of this catalog. Formidable challenges remain: e.g., precession complicates the connection of numerical and approximate analytical waveforms, and vast regions of the parameter space remain unexplored.
Toward a multiscale modeling framework for understanding serotonergic function
Wong-Lin, KongFatt; Wang, Da-Hui; Moustafa, Ahmed A; Cohen, Jeremiah Y; Nakamura, Kae
2017-01-01
Despite its importance in regulating emotion and mental wellbeing, the complex structure and function of the serotonergic system present formidable challenges toward understanding its mechanisms. In this paper, we review studies investigating the interactions between serotonergic and related brain systems and their behavior at multiple scales, with a focus on biologically-based computational modeling. We first discuss serotonergic intracellular signaling and neuronal excitability, followed by neuronal circuit and systems levels. At each level of organization, we will discuss the experimental work accompanied by related computational modeling work. We then suggest that a multiscale modeling approach that integrates the various levels of neurobiological organization could potentially transform the way we understand the complex functions associated with serotonin. PMID:28417684
In Search of Grid Converged Solutions
NASA Technical Reports Server (NTRS)
Lockard, David P.
2010-01-01
Assessing solution error continues to be a formidable task when numerically solving practical flow problems. Currently, grid refinement is the primary method used for error assessment. The minimum grid spacing requirements to achieve design order accuracy for a structured-grid scheme are determined for several simple examples using truncation error evaluations on a sequence of meshes. For certain methods and classes of problems, obtaining design order may not be sufficient to guarantee low error. Furthermore, some schemes can require much finer meshes to obtain design order than would be needed to reduce the error to acceptable levels. Results are then presented from realistic problems that further demonstrate the challenges associated with using grid refinement studies to assess solution accuracy.
File Formats Commonly Used in Mass Spectrometry Proteomics*
Deutsch, Eric W.
2012-01-01
The application of mass spectrometry (MS) to the analysis of proteomes has enabled the high-throughput identification and abundance measurement of hundreds to thousands of proteins per experiment. However, the formidable informatics challenge associated with analyzing MS data has required a wide variety of data file formats to encode the complex data types associated with MS workflows. These formats encompass the encoding of input instruction for instruments, output products of the instruments, and several levels of information and results used by and produced by the informatics analysis tools. A brief overview of the most common file formats in use today is presented here, along with a discussion of related topics. PMID:22956731
GABBARD, GLEN O.
1995-01-01
When psychotherapists accused of sexual misconduct are referred for personal psychotherapy, formidable challenges are presented to the clinician designated as the psychotherapist. The author outlines common transference-countertransference themes and discusses them in terms of their psychodynamic underpinnings and optimal management. These themes include the therapist as a law enforcement agent, the therapist as a corruptible object, the therapist as a love object, the therapist as a rescuer and absolver, the therapist as an authoritarian parent, and the therapist as a voyeur. A common thread in all of these transference-counter-transference paradigms involves the discomfort experienced by the treating psychotherapists when they recognize aspects of themselves in the accused professional. PMID:22700209
Catalog of 174 binary black hole simulations for gravitational wave astronomy.
Mroué, Abdul H; Scheel, Mark A; Szilágyi, Béla; Pfeiffer, Harald P; Boyle, Michael; Hemberger, Daniel A; Kidder, Lawrence E; Lovelace, Geoffrey; Ossokine, Serguei; Taylor, Nicholas W; Zenginoğlu, Anıl; Buchman, Luisa T; Chu, Tony; Foley, Evan; Giesler, Matthew; Owen, Robert; Teukolsky, Saul A
2013-12-13
This Letter presents a publicly available catalog of 174 numerical binary black hole simulations following up to 35 orbits. The catalog includes 91 precessing binaries, mass ratios up to 8∶1, orbital eccentricities from a few percent to 10(-5), black hole spins up to 98% of the theoretical maximum, and radiated energies up to 11.1% of the initial mass. We establish remarkably good agreement with post-Newtonian precession of orbital and spin directions for two new precessing simulations, and we discuss other applications of this catalog. Formidable challenges remain: e.g., precession complicates the connection of numerical and approximate analytical waveforms, and vast regions of the parameter space remain unexplored.
Farrell, Dorothy; Ptak, Krzysztof; Panaro, Nicholas J; Grodzinski, Piotr
2011-02-01
The new generation of nanotechnology-based drug formulations is challenging the accepted ways of cancer treatment. Multi-functional nanomaterial constructs have the capability to be delivered directly to the tumor site and eradicate cancer cells selectively, while sparing healthy cells. Tailoring of the nano-construct design can result in enhanced drug efficacy at lower doses as compared to free drug treatment, wider therapeutic window, and lower side effects. Nanoparticle carriers can also address several drug delivery problems which could not be effectively solved in the past and include reduction of multi-drug resistance effects, delivery of siRNA, and penetration of the blood-brain-barrier. Although challenges in understanding toxicity, biodistribution, and paving an effective regulatory path must be met, nanoscale devices carry a formidable promise to change ways cancer is diagnosed and treated. This article summarizes current developments in nanotechnology-based drug delivery and discusses path forward in this field. The discussion is done in context of research and development occurring within the NCI Alliance for Nanotechnology in Cancer program.
Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges
2017-01-01
Infectious diseases are a significant burden on public health and economic stability of societies all over the world. They have for centuries been among the leading causes of death and disability and presented growing challenges to health security and human progress. The threat posed by infectious diseases is further deepened by the continued emergence of new, unrecognized, and old infectious disease epidemics of global impact. Over the past three and half decades at least 30 new infectious agents affecting humans have emerged, most of which are zoonotic and their origins have been shown to correlate significantly with socioeconomic, environmental, and ecological factors. As these factors continue to increase, putting people in increased contact with the disease causing pathogens, there is concern that infectious diseases may continue to present a formidable challenge. Constant awareness and pursuance of effective strategies for controlling infectious diseases and disease emergence thus remain crucial. This review presents current updates on emerging and neglected infectious diseases and highlights the scope, dynamics, and advances in infectious disease management with particular focus on WHO top priority emerging infectious diseases (EIDs) and neglected tropical infectious diseases. PMID:28286767
Teleretinal Imaging to Screen for Diabetic Retinopathy in the Veterans Health Administration
Cavallerano, Anthony A.; Conlin, Paul R.
2008-01-01
Diabetes is the leading cause of adult vision loss in the United States and other industrialized countries. While the goal of preserving vision in patients with diabetes appears to be attainable, the process of achieving this goal poses a formidable challenge to health care systems. The large increase in the prevalence of diabetes presents practical and logistical challenges to providing quality care to all patients with diabetes. Given this challenge, the Veterans Health Administration (VHA) is increasingly using information technology as a means of improving the efficiency of its clinicians. The VHA has taken advantage of a mature computerized patient medical record system by integrating a program of digital retinal imaging with remote image interpretation (teleretinal imaging) to assist in providing eye care to the nearly 20% of VHA patients with diabetes. We describe this clinical pathway for accessing patients with diabetes in ambulatory care settings, evaluating their retinas for level of diabetic retinopathy with a teleretinal imaging system, and prioritizing their access into an eye and health care program in a timely and appropriate manner. PMID:19885175
Emerging and Neglected Infectious Diseases: Insights, Advances, and Challenges.
Nii-Trebi, Nicholas Israel
2017-01-01
Infectious diseases are a significant burden on public health and economic stability of societies all over the world. They have for centuries been among the leading causes of death and disability and presented growing challenges to health security and human progress. The threat posed by infectious diseases is further deepened by the continued emergence of new, unrecognized, and old infectious disease epidemics of global impact. Over the past three and half decades at least 30 new infectious agents affecting humans have emerged, most of which are zoonotic and their origins have been shown to correlate significantly with socioeconomic, environmental, and ecological factors. As these factors continue to increase, putting people in increased contact with the disease causing pathogens, there is concern that infectious diseases may continue to present a formidable challenge. Constant awareness and pursuance of effective strategies for controlling infectious diseases and disease emergence thus remain crucial. This review presents current updates on emerging and neglected infectious diseases and highlights the scope, dynamics, and advances in infectious disease management with particular focus on WHO top priority emerging infectious diseases (EIDs) and neglected tropical infectious diseases.
Groundwater and human development: challenges and opportunities in livelihoods and environment.
Shah, T
2005-01-01
At less than 1000 km3/year, the world's annual use of groundwater is 1.5% of renewable water resource but contributes a lion's share of water-induced human welfare. Global groundwater use however has increased manifold in the past 50 years; and the human race has never had to manage groundwater use on such a large scale. Sustaining the massive welfare gains groundwater development has created without ruining the resource is a key water challenge facing the world today. In exploring this challenge, we have focused a good deal on conditions of resource occurrence but less so on resource use. I offer a typology of five groundwater demand systems as Groundwater Socio-ecologies (GwSE), each embodying a unique pattern of interactions between socio-economic and ecological variables, and each facing a distinct groundwater governance challenge. During the past century, a growing corpus of experiential knowledge has accumulated in the industrialized world on managing groundwater in various uses and contexts. A daunting global groundwater issue today is to apply this knowledge intelligently to by far the more formidable challenge that has arisen in developing regions of Asia and Africa, where groundwater irrigation has evolved into a colossal anarchy supporting billions of livelihoods but threatening the resource itself.
NASA Astrophysics Data System (ADS)
Ye, Zhou; Nain, Amrinder S.; Behkam, Bahareh
2016-06-01
Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10-7 m2 s-1) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b1.5 ~ D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features.Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10-7 m2 s-1) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b1.5 ~ D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features. Electronic supplementary information (ESI) available: SWAN lithography on silicon; comparison of SWAN lithography and state-of-the-art nanopatterning methods; replica molding using SWAN lithography fabricated template; PDMS nanofluidic device, gold nanopattern characterization. See DOI: 10.1039/c6nr03323g
The Dragonian Subsurface Abyss and Submarine Force’s Ability to Counter the Rising Threat
2013-05-23
large expanse of the Pacific while helping to turn China’s navy into one of the world’s most formidable blue water forces. Planned reductions in...most formidable blue water forces. While the U.S. joint force operates many platforms that can contend with various elements of China’s anti...shores of Chinese claimed territory. With a long-term vision in mind, Beijing has openly affirmed intentions to shift to a global, blue -water navy
Spider orb webs rely on radial threads to absorb prey kinetic energy
Sensenig, Andrew T.; Lorentz, Kimberly A.; Kelly, Sean P.; Blackledge, Todd A.
2012-01-01
The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank among the toughest known biomaterials. The large number of silk threads composing a web suggests that aerodynamic dissipation may also play an important role in stopping prey. Here, we quantify energy dissipation in orb webs spun by diverse species of spiders using data derived from high-speed videos of web deformation under prey impact. By integrating video data with material testing of silks, we compare the relative contributions of radial silk, the capture spiral and aerodynamic dissipation. Radial silk dominated energy absorption in all webs, with the potential to account for approximately 100 per cent of the work of stopping prey in larger webs. The most generous estimates for the roles of capture spirals and aerodynamic dissipation show that they rarely contribute more than 30 per cent and 10 per cent of the total work of stopping prey, respectively, and then only for smaller orb webs. The reliance of spider orb webs upon internal energy absorption by radial threads for prey capture suggests that the material properties of the capture spirals are largely unconstrained by the selective pressures of stopping prey and can instead evolve freely in response to alternative functional constraints such as adhering to prey. PMID:22431738
Spider orb webs rely on radial threads to absorb prey kinetic energy.
Sensenig, Andrew T; Lorentz, Kimberly A; Kelly, Sean P; Blackledge, Todd A
2012-08-07
The kinetic energy of flying insect prey is a formidable challenge for orb-weaving spiders. These spiders construct two-dimensional, round webs from a combination of stiff, strong radial silk and highly elastic, glue-coated capture spirals. Orb webs must first stop the flight of insect prey and then retain those insects long enough to be subdued by the spiders. Consequently, spider silks rank among the toughest known biomaterials. The large number of silk threads composing a web suggests that aerodynamic dissipation may also play an important role in stopping prey. Here, we quantify energy dissipation in orb webs spun by diverse species of spiders using data derived from high-speed videos of web deformation under prey impact. By integrating video data with material testing of silks, we compare the relative contributions of radial silk, the capture spiral and aerodynamic dissipation. Radial silk dominated energy absorption in all webs, with the potential to account for approximately 100 per cent of the work of stopping prey in larger webs. The most generous estimates for the roles of capture spirals and aerodynamic dissipation show that they rarely contribute more than 30 per cent and 10 per cent of the total work of stopping prey, respectively, and then only for smaller orb webs. The reliance of spider orb webs upon internal energy absorption by radial threads for prey capture suggests that the material properties of the capture spirals are largely unconstrained by the selective pressures of stopping prey and can instead evolve freely in response to alternative functional constraints such as adhering to prey.
Beam tests of beampipe coatings for electron cloud mitigation in Fermilab Main Injector
Backfish, Michael; Eldred, Jeffrey; Tan, Cheng Yang; ...
2015-10-26
Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Dedicated tests have shown beampipe coatings dramatically reduce the density of electron cloud in particle accelerators. In this work, we evaluate the performance of titanium nitride, amorphous carbon, and diamond-like carbon as beampipe coatings for the mitigation of electron cloud in the Fermilab Main Injector. Altogether our tests represent 2700 ampere-hours of proton operation spanning five years. Three electron cloud detectors, retarding field analyzers, are installed in a straight section and allow a direct comparisonmore » between the electron flux in the coated and uncoated stainless steel beampipe. We characterize the electron flux as a function of intensity up to a maximum of 50 trillion protons per cycle. Each beampipe material conditions in response to electron bombardment from the electron cloud and we track the changes in these materials as a function of time and the number of absorbed electrons. Contamination from an unexpected vacuum leak revealed a potential vulnerability in the amorphous carbon beampipe coating. We measure the energy spectrum of electrons incident on the stainless steel, titanium nitride and amorphous carbon beampipes. We find the electron cloud signal is highly sensitive to stray magnetic fields and bunch-length over the Main Injector ramp cycle. In conclusion, we conduct a complete survey of the stray magnetic fields at the test station and compare the electron cloud signal to that in a field-free region.« less
Microperforations significantly enhance diffusion across round window membrane.
Kelso, Catherine M; Watanabe, Hirobumi; Wazen, Joseph M; Bucher, Tizian; Qian, Zhen J; Olson, Elizabeth S; Kysar, Jeffrey W; Lalwani, Anil K
2015-04-01
Introduction of microperforations in round window membrane (RWM) will allow reliable and predictable intracochlear delivery of pharmaceutical, molecular, or cellular therapeutic agents. Reliable delivery of medications into the inner ear remains a formidable challenge. The RWM is an attractive target for intracochlear delivery. However, simple diffusion across intact RWM is limited by what material can be delivered, size of material to be delivered, difficulty with precise dosing, timing, and precision of delivery over time. Further, absence of reliable methods for measuring diffusion across RWM in vitro is a significant experimental impediment. A novel model for measuring diffusion across guinea pig RWM, with and without microperforation, was developed and tested: cochleae, sparing the RWM, were embedded in 3D-printed acrylic holders using hybrid dental composite and light cured to adapt the round window niche to 3 ml Franz diffusion cells. Perforations were created with 12.5-μm-diameter needles and examined with light microscopy. Diffusion of 1 mM Rhodamine B across RWM in static diffusion cells was measured via fluorescence microscopy. The diffusion cell apparatus provided reliable and replicable measurements of diffusion across RWM. The permeability of Rhodamine B across intact RWM was 5.1 × 10(9-) m/s. Manual application of microperforation with a 12.5-μm-diameter tip produced an elliptical tear removing 0.22 ± 0.07% of the membrane and was associated with a 35× enhancement in diffusion (P < 0.05). Diffusion cells can be applied to the study of RWM permeability in vitro. Microperforation in RWM is an effective means of increasing diffusion across the RWM.
A Route to Dirac Liquid Theory: A Fermi Liquid Description for Dirac Materials
NASA Astrophysics Data System (ADS)
Gochan, Matthew; Bedell, Kevin
Since the pioneering work developed by L.V. Landau sixty years ago, Fermi Liquid Theory has seen great success in describing interacting Fermi systems. While much interest has been generated over the study of non-Fermi Liquid systems, Fermi Liquid theory serves as a formidable model for many systems and offers a rich amount of of results and insight. The recent classification of Dirac Materials, and the lack of a unifying theoretical framework for them, has motivated our study. Dirac materials are a versatile class of materials in which an abundance of unique physical phenomena can be observed. Such materials are found in all dimensions, with the shared property that their low-energy fermionic excitations behave as massless Dirac fermions and are therefore governed by the Dirac equation. The most popular Dirac material, graphene, is the focus of this work. We present our Fermi Liquid description of Graphene. We find many interesting results, specifically in the transport and dynamics of the system. Additionally, we expand on previous work regarding the Virial Theorem and its impact on the Fermi Liquid parameters in graphene. Finally, we remark on viscoelasticity of Dirac Materials and other unusual results that are consequences of AdS-CFT.
Recovery of large carnivores in Europe's modern human-dominated landscapes.
Chapron, Guillaume; Kaczensky, Petra; Linnell, John D C; von Arx, Manuela; Huber, Djuro; Andrén, Henrik; López-Bao, José Vicente; Adamec, Michal; Álvares, Francisco; Anders, Ole; Balčiauskas, Linas; Balys, Vaidas; Bedő, Péter; Bego, Ferdinand; Blanco, Juan Carlos; Breitenmoser, Urs; Brøseth, Henrik; Bufka, Luděk; Bunikyte, Raimonda; Ciucci, Paolo; Dutsov, Alexander; Engleder, Thomas; Fuxjäger, Christian; Groff, Claudio; Holmala, Katja; Hoxha, Bledi; Iliopoulos, Yorgos; Ionescu, Ovidiu; Jeremić, Jasna; Jerina, Klemen; Kluth, Gesa; Knauer, Felix; Kojola, Ilpo; Kos, Ivan; Krofel, Miha; Kubala, Jakub; Kunovac, Saša; Kusak, Josip; Kutal, Miroslav; Liberg, Olof; Majić, Aleksandra; Männil, Peep; Manz, Ralph; Marboutin, Eric; Marucco, Francesca; Melovski, Dime; Mersini, Kujtim; Mertzanis, Yorgos; Mysłajek, Robert W; Nowak, Sabina; Odden, John; Ozolins, Janis; Palomero, Guillermo; Paunović, Milan; Persson, Jens; Potočnik, Hubert; Quenette, Pierre-Yves; Rauer, Georg; Reinhardt, Ilka; Rigg, Robin; Ryser, Andreas; Salvatori, Valeria; Skrbinšek, Tomaž; Stojanov, Aleksandar; Swenson, Jon E; Szemethy, László; Trajçe, Aleksandër; Tsingarska-Sedefcheva, Elena; Váňa, Martin; Veeroja, Rauno; Wabakken, Petter; Wölfl, Manfred; Wölfl, Sybille; Zimmermann, Fridolin; Zlatanova, Diana; Boitani, Luigi
2014-12-19
The conservation of large carnivores is a formidable challenge for biodiversity conservation. Using a data set on the past and current status of brown bears (Ursus arctos), Eurasian lynx (Lynx lynx), gray wolves (Canis lupus), and wolverines (Gulo gulo) in European countries, we show that roughly one-third of mainland Europe hosts at least one large carnivore species, with stable or increasing abundance in most cases in 21st-century records. The reasons for this overall conservation success include protective legislation, supportive public opinion, and a variety of practices making coexistence between large carnivores and people possible. The European situation reveals that large carnivores and people can share the same landscape. Copyright © 2014, American Association for the Advancement of Science.
Type 1 diabetes: prospective cohort studies for identification of the environmental trigger.
Rønningen, Kjersti S
2013-12-01
Type 1 diabetes (T1D) is one of the most common chronic diseases with childhood onset, and the disease incidence has increased two to fivefold over the past half century by as yet unknown means. T1D occurs when the body's immune system turns against itself, destroying in a very specific and targeted way-the pancreatic β-cells. T1D results from poorly defined interactions between susceptibility genes and environmental determinants. In contrast to the rapid progress in finding T1D genes, identification and confirmation of environmental determinants remain a formidable challenge. This review article will give an overview of ongoing prospective cohort studies aiming to identify the environmental trigger(s) causing T1D.
Guns, Mental Illness, and the Law: Introduction to This Issue.
Swanson, Jeffrey W; Felthous, Alan R
2015-06-01
Firearm violence is a top-tier public health problem in the U.S., killing 33,563 and injuring an additional 81,396 people in 2012 (Centers for Disease Control and Prevention, CDC, ). Given constitutional protection and the cultural entrenchment of private gun ownership in the U.S., it is likely that guns will remain widely accessible--and largely unrestricted--for the foreseeable future. Therefore, most policies and laws intended to reduce firearm violence focus selectively on preventing "dangerous people" from having access to guns. That is a formidable challenge. How do we think productively about guns and mental illness in this context, and about the role of law in lessening the toll of gun violence? Copyright © 2015 John Wiley & Sons, Ltd.
Hematopoietic stem cell engineering at a crossroads.
Rivière, Isabelle; Dunbar, Cynthia E; Sadelain, Michel
2012-02-02
The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead.
Low-latency situational awareness for UxV platforms
NASA Astrophysics Data System (ADS)
Berends, David C.
2012-06-01
Providing high quality, low latency video from unmanned vehicles through bandwidth-limited communications channels remains a formidable challenge for modern vision system designers. SRI has developed a number of enabling technologies to address this, including the use of SWaP-optimized Systems-on-a-Chip which provide Multispectral Fusion and Contrast Enhancement as well as H.264 video compression. Further, the use of salience-based image prefiltering prior to image compression greatly reduces output video bandwidth by selectively blurring non-important scene regions. Combined with our customization of the VLC open source video viewer for low latency video decoding, SRI developed a prototype high performance, high quality vision system for UxV application in support of very demanding system latency requirements and user CONOPS.
Frisse, Mark E
2016-04-01
New mobile devices, social networks, analytics, and communications technologies are emerging at an unparalleled rate. As a result, academic health centers will face both new opportunities and formidable challenges. Unlike previous transitions from paper-based systems to networked computer systems, these new technologies are the product of new entrepreneurial and commercial interests driven by consumers. As these new commercial products and services are more widely adopted, the likelihood grows that data will be used in unanticipated ways inconsistent with societal norms. Academic health centers will have to understand the implications of these technologies and engage more actively in processes governing the collection, aggregation, and use of health data produced in a new era of consumer-driven health care technology. Maintaining public trust should be a paramount concern.
Don't blame the 'bio'--blame the 'ethics': varieties of (bio)ethics and the challenge of pluralism.
Charlesworth, Max
2005-01-01
We tend to think that the difficulties in bioethics spring from the novel and alarming issues that arise due to discoveries in the new biosciences and biotechnologies. But many of the crucial difficulties in bioethics arise from the assumption we make about ethics. This paper offers a brief overview of bioethics, and relates ethical 'principlism' to 'ethical fundamentalism.' It then reviews some alternative approaches that have emerged during the second phase of bioethics and argues for a neo-Aristotelian approach. Misconceptions about ethical principles and ethical reasoning not only distort our views of the business of bioethics, but they also prevent us from facing up to the formidable problems posed by ethical pluralism in so-called liberal societies.
Tuning near field radiative heat flux through surface excitations with a metal insulator transition.
van Zwol, P J; Ranno, L; Chevrier, J
2012-06-08
The control of heat flow is a formidable challenge due to lack of good thermal insulators. Promising new opportunities for heat flow control were recently theoretically discovered for radiative heat flow in near field, where large heat flow contrasts may be achieved by tuning electronic excitations on surfaces. Here we show experimentally that the phase transition of VO2 entails a change of surface polariton states that significantly affects radiative heat transfer in near field. In all cases the Derjaguin approximation correctly predicted radiative heat transfer in near field, but it underestimated the far field limit. Our results indicate that heat flow contrasts can be realized in near field that can be larger than those obtained in far field.
Liu, Zhaohong; Li, Qiangqiang; Liao, Peiqiu; Bi, Xihe
2017-04-06
The [2+1] cycloaddition of alkynes with diazo compounds represents one of the most powerful and reliable methods for the construction of cyclopropenes. However, it remains a formidable challenge to accomplish the cyclopropenation of alkynes with non-stabilized diazoalkanes, owing to the fact that such compounds are unstable and prone to detonation. Herein, we report a general silver-catalyzed cyclopropenation reaction of alkynes with unstable diazoalkanes, by for the first time the discovery and application of N-nosylhydrazones as room-temperature decomposiable diazo surrogates. This method allows for the efficient assembly a wide variety of cyclopropene derivatives that are otherwise difficult to access by conventional methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Adult Literacy in Africa: The Push and Pull Factors
NASA Astrophysics Data System (ADS)
Omolewa, Michael
2008-11-01
This paper examines the question of why Africa has made such slow progress towards the goal of eradicating illiteracy, and why it remains an exceptionally disadvantaged region in this respect. The article surveys the history of the development of literacy in Africa from colonial times to the present day, focusing on the role of adult education in pursuing the goal of universal literacy. The author seeks to identify both the "push" factors (those favouring the pursuit of this goal) and the "pull" factors (the obstacles and hindrances), examining these factors at the local, national and international levels. The author concludes that, while the literacy challenge in Africa remains a formidable one, there are examples of successful initiatives that give hope for the future.
Stray light rejection in giant externally-occulted solar coronagraphs: experimental developments
NASA Astrophysics Data System (ADS)
Venet, M.; Bazin, C.; Koutchmy, S.; Lamy, P.
2017-11-01
The advent of giant, formation-flight, externally-occulted solar coronagraphs such as ASPIICS (Association de Satellites Pour l'Imagerie et l'Interférométrie de la Couronne Solaire [1,2,3,4]) selected by the European Space Agency (ESA) for its third PROBA (Project for On-Board Autonomy) mission of formation flying demonstration (presently in phase B) and Hi-RISE proposed in the framework of ESA Cosmic Vision program, presents formidable challenges for the study and calibration of instrumental stray light. With distances between the external occulter (EO) and the optical pupil (OP) exceeding hundred meters and occulter sizes larger than a meter, it becomes impossible to perform tests at the real scale. The requirement to limit the over-occultation to less than 1.05 Rsun, orders of magnitude to what has been achieved so far in past coronagraphs, further adds to the challenge. We are approaching the problem experimentally using reduced scale simulators and present below a progress report of our work.
Williams, Alex H; Kim, Tony Hyun; Wang, Forea; Vyas, Saurabh; Ryu, Stephen I; Shenoy, Krishna V; Schnitzer, Mark; Kolda, Tamara G; Ganguli, Surya
2018-06-27
Perceptions, thoughts, and actions unfold over millisecond timescales, while learned behaviors can require many days to mature. While recent experimental advances enable large-scale and long-term neural recordings with high temporal fidelity, it remains a formidable challenge to extract unbiased and interpretable descriptions of how rapid single-trial circuit dynamics change slowly over many trials to mediate learning. We demonstrate a simple tensor component analysis (TCA) can meet this challenge by extracting three interconnected, low-dimensional descriptions of neural data: neuron factors, reflecting cell assemblies; temporal factors, reflecting rapid circuit dynamics mediating perceptions, thoughts, and actions within each trial; and trial factors, describing both long-term learning and trial-to-trial changes in cognitive state. We demonstrate the broad applicability of TCA by revealing insights into diverse datasets derived from artificial neural networks, large-scale calcium imaging of rodent prefrontal cortex during maze navigation, and multielectrode recordings of macaque motor cortex during brain machine interface learning. Copyright © 2018 Elsevier Inc. All rights reserved.
Complete attenuation of genetically engineered Plasmodium falciparum sporozoites in human subjects.
Kublin, James G; Mikolajczak, Sebastian A; Sack, Brandon K; Fishbaugher, Matt E; Seilie, Annette; Shelton, Lisa; VonGoedert, Tracie; Firat, Melike; Magee, Sara; Fritzen, Emma; Betz, Will; Kain, Heather S; Dankwa, Dorender A; Steel, Ryan W J; Vaughan, Ashley M; Noah Sather, D; Murphy, Sean C; Kappe, Stefan H I
2017-01-04
Immunization of humans with whole sporozoites confers complete, sterilizing immunity against malaria infection. However, achieving consistent safety while maintaining immunogenicity of whole parasite vaccines remains a formidable challenge. We generated a genetically attenuated Plasmodium falciparum (Pf) malaria parasite by deleting three genes expressed in the pre-erythrocytic stage (Pf p52 - /p36 - /sap1 - ). We then tested the safety and immunogenicity of the genetically engineered (Pf GAP3KO) sporozoites in human volunteers. Pf GAP3KO sporozoites were delivered to 10 volunteers using infected mosquito bites with a single exposure consisting of 150 to 200 bites per subject. All subjects remained blood stage-negative and developed inhibitory antibodies to sporozoites. GAP3KO rodent malaria parasites engendered complete, protracted immunity against infectious sporozoite challenge in mice. The results warrant further clinical testing of Pf GAP3KO and its potential development into a vaccine strain. Copyright © 2017, American Association for the Advancement of Science.
A research agenda for aging in China in the 21st century
Fang, Evandro Fei; Scheibye-Knudsen, Morten; Jahn, Heiko J.; Li, Juan; Ling, Li; Guo, Hongwei; Zhu, Xinqiang; Preedy, Victor; Lu, Huiming; Bohr, Vilhelm A.; Chan, Wai Yee; Liu, Yuanli; Ng, Tzi Bun
2016-01-01
China is encountering formidable healthcare challenges brought about by the problem of aging. By 2050, there will be 400 million Chinese citizens aged 65+, 150 million of whom will be 80+. The undesirable consequences of the one-child policy, rural-to-urban migration, and expansion of the population of ‘empty nest ’ elders are eroding the traditional family care of the elders, further exacerbating the burden borne by the current public healthcare system. The challenges of geriatric care demand prompt attention by proposing strategies for improvement in several key areas. Major diseases of the elderly that need more attention include chronic non-communicable diseases and mental health disorders. We suggest the establishment of a home care-dominated geriatric care system, and a proactive role for researchers on aging in reforming geriatric care through policy dialogs. We propose ideas for preparation of the impending aging burden and the creation of a nurturing environment conducive to healthy aging in China. PMID:26304837
Nugus, Peter; Désalliers, Julie; Morales, Juana; Graves, Lisa; Evans, Andrea; Macaulay, Ann C
2018-04-01
This participatory research study examines the tensions and opportunities in accessing allopathic medicine, or biomedicine, in the context of a cervical cancer screening program in a rural indigenous community of Northern Ecuador. Focusing on the influence of social networks, the article extends research on "re-appropriation" of biomedicine. It does so by recognizing two competing tensions expressed through social interactions: suspicion of allopathic medicine and the desire to maximize one's health. Semistructured individual interviews and focus groups were conducted with 28 women who had previously participated in a government-sponsored cervical screening program. From inductive thematic analysis, the article traces these women's active agency in navigating coherent paths of health. Despite drawing on social networks to overcome formidable challenges, the participants faced enduring system obstacles-the organizational effects of the networks of allopathic medicine. Such obstacles need to be understood to reconcile competing knowledge systems and improve health care access in underresourced communities.
Transparent data service with multiple wireless access
NASA Technical Reports Server (NTRS)
Dean, Richard A.; Levesque, Allen H.
1993-01-01
The rapid introduction of digital wireless networks is an important part of the emerging digital communications scene. The introduction of Digital Cellular, LEO and GEO Satellites, and Personal Communications Services poses both a challenge and an opportunity for the data user. On the one hand wireless access will introduce significant new portable data services such as personal notebooks, paging, E-mail, and fax that will put the information age in the user's pocket. On the other hand the challenge of creating a seamless and transparent environment for the user in multiple access environments and across multiple network connections is formidable. A summary of the issues associated with developing techniques and standards that can support transparent and seamless data services is presented. The introduction of data services into the radio world represents a unique mix of RF channel problems, data protocol issues, and network issues. These problems require that experts from each of these disciplines fuse the individual technologies to support these services.
Datta, Rakesh; Khanna, Sangeeta
2017-10-01
Commanding a military multinational and multilingual healthcare facility can be a formidable task with very little margin for error. The authors were in leadership positions of UNIFIL Hospital, unique in its diversity of both staff and clientele. Experience about the challenges faced and methods adopted to overcome them will be shared. Troops from diverse backgrounds differ in their competency, and also in their attitudinal approach to situations. It is imperative for the medical commanders to identify these differences, and work towards harnessing individual strengths to form a cohesive unit. Frequent rotation of team members and thereby difficulty in adapting to new environment makes the tasks more challenging. Challenges can be broadly categorized in those dealing with functional roles (providing medical support) and command and control issues. Linguistic challenges especially in situations where professionals have to work as a coordinated unit remains a major challenge. The threat of medical errors arising out of misunderstandings is very real. Gender sensitization is essential to avoid potential unpleasant situations. Interpersonal conflict can easily go out of hand. The leadership has to be more direct and deliberate relying less on hierarchy and more on direct communication. A strict enforcement of UN standards for equipment and competence, frequent joint medical drills help to overcome interoperability issues and develop mutual confidence. Leadership in multinational UN hospitals is a demanding task with its peculiar set of challenges. A systematic and deliberate approach focused on mutual respect, flexibility and direct leadership can help medical commanders in such situations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Du, Qiang
The rational design of materials, the development of accurate and efficient material simulation algorithms, and the determination of the response of materials to environments and loads occurring in practice all require an understanding of mechanics at disparate spatial and temporal scales. The project addresses mathematical and numerical analyses for material problems for which relevant scales range from those usually treated by molecular dynamics all the way up to those most often treated by classical elasticity. The prevalent approach towards developing a multiscale material model couples two or more well known models, e.g., molecular dynamics and classical elasticity, each of whichmore » is useful at a different scale, creating a multiscale multi-model. However, the challenges behind such a coupling are formidable and largely arise because the atomistic and continuum models employ nonlocal and local models of force, respectively. The project focuses on a multiscale analysis of the peridynamics materials model. Peridynamics can be used as a transition between molecular dynamics and classical elasticity so that the difficulties encountered when directly coupling those two models are mitigated. In addition, in some situations, peridynamics can be used all by itself as a material model that accurately and efficiently captures the behavior of materials over a wide range of spatial and temporal scales. Peridynamics is well suited to these purposes because it employs a nonlocal model of force, analogous to that of molecular dynamics; furthermore, at sufficiently large length scales and assuming smooth deformation, peridynamics can be approximated by classical elasticity. The project will extend the emerging mathematical and numerical analysis of peridynamics. One goal is to develop a peridynamics-enabled multiscale multi-model that potentially provides a new and more extensive mathematical basis for coupling classical elasticity and molecular dynamics, thus enabling next generation atomistic-to-continuum multiscale simulations. In addition, a rigorous studyof nite element discretizations of peridynamics will be considered. Using the fact that peridynamics is spatially derivative free, we will also characterize the space of admissible peridynamic solutions and carry out systematic analyses of the models, in particular rigorously showing how peridynamics encompasses fracture and other failure phenomena. Additional aspects of the project include the mathematical and numerical analysis of peridynamics applied to stochastic peridynamics models. In summary, the project will make feasible mathematically consistent multiscale models for the analysis and design of advanced materials.« less
Current aspects in reconstructive surgery for nasal cavity and paranasal sinus cancer
NASA Astrophysics Data System (ADS)
Shtin, V. I.; Novikov, V. A.; Gjunter, V. E.; Choinzonov, E. L.; Ryabova, A. I.; Sirkashev, V. A.; Surkova, P. V.; Vasilev, R. V.; Menkova, E. N.
2017-09-01
Tumors of the nasal cavity and paranasal sinuses present a challenge to treat them. A combination of surgery and radiation therapy can improve treatment outcomes in 49-56% [1, 2] of the patients with locally advanced nasal cavity and paranasal sinus cancer. The midface reconstruction poses a formidable challenge to the reconstructive surgeon due to the region's complex skeletal and soft-tissue anatomy. The rehabilitation program including the reconstruction of the resected orbital walls using the porous and mesh implants from titanium nickelid (TiNi) was developed at the Cancer Research institute jointly with the Research Institute of Medical Materials. The technique was proven effective, allowing the natural position of the eye and visual function to be preserved in 90% [1-3] of the patients. A long period of reparative processes and risk of developing inflammation in the implant area, as well as the need to decrease length of surgery, contributed to the development of a novel approach to repairing the midface bone structures using the implant based on the microporous wire and TiNi mesh. Eighteen patients with nasal cavity and paranasal sinus cancer were treated using the combined thin implants. The novel technique allowed the time of the implant installation to be reduced to 5-10 min. The structure of the implant contributed to prevention of inflammatory processes in 97% [1, 2] of cases. Thus, the natural position of the eyeball and visual function were preserved in 100% [1, 3, 4] of patients. The use of the TiNi implants in reconstructive surgery for patients with nasal cavity and paranasal sinus cancer led to reduced time of surgery and rehabilitation, increased level of social adaptation of patients and improved cosmetic and functional results.
Tabachnick, W J
2010-03-15
Vector-borne pathogens cause enormous suffering to humans and animals. Many are expanding their range into new areas. Dengue, West Nile and Chikungunya have recently caused substantial human epidemics. Arthropod-borne animal diseases like Bluetongue, Rift Valley fever and African horse sickness pose substantial threats to livestock economies around the world. Climate change can impact the vector-borne disease epidemiology. Changes in climate will influence arthropod vectors, their life cycles and life histories, resulting in changes in both vector and pathogen distribution and changes in the ability of arthropods to transmit pathogens. Climate can affect the way pathogens interact with both the arthropod vector and the human or animal host. Predicting and mitigating the effects of future changes in the environment like climate change on the complex arthropod-pathogen-host epidemiological cycle requires understanding of a variety of complex mechanisms from the molecular to the population level. Although there has been substantial progress on many fronts the challenges to effectively understand and mitigate the impact of potential changes in the environment on vector-borne pathogens are formidable and at an early stage of development. The challenges will be explored using several arthropod-borne pathogen systems as illustration, and potential avenues to meet the challenges will be presented.
NASA Astrophysics Data System (ADS)
de Boer, D. H.; Hassan, M. A.; MacVicar, B.; Stone, M.
2005-01-01
Contributions by Canadian fluvial geomorphologists between 1999 and 2003 are discussed under four major themes: sediment yield and sediment dynamics of large rivers; cohesive sediment transport; turbulent flow structure and sediment transport; and bed material transport and channel morphology. The paper concludes with a section on recent technical advances. During the review period, substantial progress has been made in investigating the details of fluvial processes at relatively small scales. Examples of this emphasis are the studies of flow structure, turbulence characteristics and bedload transport, which continue to form central themes in fluvial research in Canada. Translating the knowledge of small-scale, process-related research to an understanding of the behaviour of large-scale fluvial systems, however, continues to be a formidable challenge. Models play a prominent role in elucidating the link between small-scale processes and large-scale fluvial geomorphology, and, as a result, a number of papers describing models and modelling results have been published during the review period. In addition, a number of investigators are now approaching the problem by directly investigating changes in the system of interest at larger scales, e.g. a channel reach over tens of years, and attempting to infer what processes may have led to the result. It is to be expected that these complementary approaches will contribute to an increased understanding of fluvial systems at a variety of spatial and temporal scales. Copyright
Forrey, Christopher; Saylor, David M; Silverstein, Joshua S; Douglas, Jack F; Davis, Eric M; Elabd, Yossef A
2014-10-14
Diffusion of small to medium sized molecules in polymeric medical device materials underlies a broad range of public health concerns related to unintended leaching from or uptake into implantable medical devices. However, obtaining accurate diffusion coefficients for such systems at physiological temperature represents a formidable challenge, both experimentally and computationally. While molecular dynamics simulation has been used to accurately predict the diffusion coefficients, D, of a handful of gases in various polymers, this success has not been extended to molecules larger than gases, e.g., condensable vapours, liquids, and drugs. We present atomistic molecular dynamics simulation predictions of diffusion in a model drug eluting system that represent a dramatic improvement in accuracy compared to previous simulation predictions for comparable systems. We find that, for simulations of insufficient duration, sub-diffusive dynamics can lead to dramatic over-prediction of D. We present useful metrics for monitoring the extent of sub-diffusive dynamics and explore how these metrics correlate to error in D. We also identify a relationship between diffusion and fast dynamics in our system, which may serve as a means to more rapidly predict diffusion in slowly diffusing systems. Our work provides important precedent and essential insights for utilizing atomistic molecular dynamics simulations to predict diffusion coefficients of small to medium sized molecules in condensed soft matter systems.
Ab initio Investigation of Helium in Vanadium Oxide Nanoclusters
NASA Astrophysics Data System (ADS)
Danielson, Thomas; Tea, Eric; Hin, Celine
Nanostructured ferritic alloys (NFAs) are strong candidate materials for the next generation of fission reactors and future fusion reactors. They are characterized by a large number density of oxide nanoclusters dispersed throughout a BCC iron matrix, where current oxide nanoclusters are primarily comprised of Y-Ti-O compounds. The oxide nanoclusters provide the alloy with high resistance to neutron irradiation, high yield strength and high creep strength at the elevated temperatures of a reactor environment. In addition, the oxide nanoclusters serve as trapping sites for transmutation product helium providing substantially increased resistance to catastrophic cracking and embrittlement. Although the mechanical properties and radiation resistance of the existing NFAs is promising, the problem of forming large scale reactor components continues to present a formidable challenge due to the high hardness and unpredictable fracture behavior of the alloys. An alternative alloy has been previously proposed and fabricated where vanadium is added in order to form vanadium oxide nanoclusters that serve as deflection sites for crack propagation. Although experiments have shown evidence that the fracture behavior of the alloys is improved, it is unknown whether or not the vanadium oxide nanoclusters are effective trapping sites for helium. We present results obtained using density functional theory investigating the thermodynamic stability of helium with the vanadium oxide matrix to make a comparison of trapping effectiveness to traditional Y-Ti-O compounds.
Tissue polarimetry: concepts, challenges, applications, and outlook.
Ghosh, Nirmalya; Vitkin, I Alex
2011-11-01
Polarimetry has a long and successful history in various forms of clear media. Driven by their biomedical potential, the use of the polarimetric approaches for biological tissue assessment has also recently received considerable attention. Specifically, polarization can be used as an effective tool to discriminate against multiply scattered light (acting as a gating mechanism) in order to enhance contrast and to improve tissue imaging resolution. Moreover, the intrinsic tissue polarimetry characteristics contain a wealth of morphological and functional information of potential biomedical importance. However, in a complex random medium-like tissue, numerous complexities due to multiple scattering and simultaneous occurrences of many scattering and polarization events present formidable challenges both in terms of accurate measurements and in terms of analysis of the tissue polarimetry signal. In order to realize the potential of the polarimetric approaches for tissue imaging and characterization/diagnosis, a number of researchers are thus pursuing innovative solutions to these challenges. In this review paper, we summarize these and other issues pertinent to the polarized light methodologies in tissues. Specifically, we discuss polarized light basics, Stokes-Muller formalism, methods of polarization measurements, polarized light modeling in turbid media, applications to tissue imaging, inverse analysis for polarimetric results quantification, applications to quantitative tissue assessment, etc.
Manson, Joseph H.; Gervais, Matthew M.; Fessler, Daniel M. T.; Kline, Michelle A.
2014-01-01
The determinants of conversational dominance are not well understood. We used videotaped triadic interactions among unacquainted same-sex American college students to test predictions drawn from the theoretical distinction between dominance and prestige as modes of human status competition. Specifically, we investigated the effects of physical formidability, facial attractiveness, social status, and self-reported subclinical psychopathy on quantitative (proportion of words produced), participatory (interruptions produced and sustained), and sequential (topic control) dominance. No measure of physical formidability or attractiveness was associated with any form of conversational dominance, suggesting that the characteristics of our study population or experimental frame may have moderated their role in dominance dynamics. Primary psychopathy was positively associated with quantitative dominance and (marginally) overall triad talkativeness, and negatively associated (in men) with affect word use, whereas secondary psychopathy was unrelated to conversational dominance. The two psychopathy factors had significant opposing effects on quantitative dominance in a multivariate model. These latter findings suggest that glibness in primary psychopathy may function to elicit exploitable information from others in a relationally mobile society. PMID:25426962
Manson, Joseph H; Gervais, Matthew M; Fessler, Daniel M T; Kline, Michelle A
2014-01-01
The determinants of conversational dominance are not well understood. We used videotaped triadic interactions among unacquainted same-sex American college students to test predictions drawn from the theoretical distinction between dominance and prestige as modes of human status competition. Specifically, we investigated the effects of physical formidability, facial attractiveness, social status, and self-reported subclinical psychopathy on quantitative (proportion of words produced), participatory (interruptions produced and sustained), and sequential (topic control) dominance. No measure of physical formidability or attractiveness was associated with any form of conversational dominance, suggesting that the characteristics of our study population or experimental frame may have moderated their role in dominance dynamics. Primary psychopathy was positively associated with quantitative dominance and (marginally) overall triad talkativeness, and negatively associated (in men) with affect word use, whereas secondary psychopathy was unrelated to conversational dominance. The two psychopathy factors had significant opposing effects on quantitative dominance in a multivariate model. These latter findings suggest that glibness in primary psychopathy may function to elicit exploitable information from others in a relationally mobile society.
Liquid Nitrogen Removal of Critical Aerospace Materials
NASA Technical Reports Server (NTRS)
Noah, Donald E.; Merrick, Jason; Hayes, Paul W.
2005-01-01
Identification of innovative solutions to unique materials problems is an every-day quest for members of the aerospace community. Finding a technique that will minimize costs, maximize throughput, and generate quality results is always the target. United Space Alliance Materials Engineers recently conducted such a search in their drive to return the Space Shuttle fleet to operational status. The removal of high performance thermal coatings from solid rocket motors represents a formidable task during post flight disassembly on reusable expended hardware. The removal of these coatings from unfired motors increases the complexity and safety requirements while reducing the available facilities and approved processes. A temporary solution to this problem was identified, tested and approved during the Solid Rocket Booster (SRB) return to flight activities. Utilization of ultra high-pressure liquid nitrogen (LN2) to strip the protective coating from assembled space shuttle hardware marked the first such use of the technology in the aerospace industry. This process provides a configurable stream of liquid nitrogen (LN2) at pressures of up to 55,000 psig. The performance of a one-time certification for the removal of thermal ablatives from SRB hardware involved extensive testing to ensure adequate material removal without causing undesirable damage to the residual materials or aluminum substrates. Testing to establish appropriate process parameters such as flow, temperature and pressures of the liquid nitrogen stream provided an initial benchmark for process testing. Equipped with these initial parameters engineers were then able to establish more detailed test criteria that set the process limits. Quantifying the potential for aluminum hardware damage represented the greatest hurdle for satisfying engineers as to the safety of this process. Extensive testing for aluminum erosion, surface profiling, and substrate weight loss was performed. This successful project clearly demonstrated that the liquid nitrogen jet possesses unique strengths that align remarkably well with the unusual challenges that space hardware and missile manufacturers face on a regular basis. Performance of this task within the confines of a critical manufacturing facility marks a milestone in advanced processing.
Hematopoietic stem cell engineering at a crossroads
Rivière, Isabelle; Dunbar, Cynthia E.
2012-01-01
The genetic engineering of hematopoietic stem cells is the basis for potentially treating a large array of hereditary and acquired diseases, and stands as the paradigm for stem cell engineering in general. Recent clinical reports support the formidable promise of this approach but also highlight the limitations of the technologies used to date, which have on occasion resulted in clonal expansion, myelodysplasia, or leukemogenesis. New research directions, predicated on improved vector designs, targeted gene delivery or the therapeutic use of pluripotent stem cells, herald the advent of safer and more effective hematopoietic stem cell therapies that may transform medical practice. In this review, we place these recent advances in perspective, emphasizing the solutions emerging from a wave of new technologies and highlighting the challenges that lie ahead. PMID:22096239
Biomimetic Chemistry of Iron, Nickel, Molybdenum, and Tungsten in Sulfur-Ligated Protein Sites†
Groysman, Stanislav; Holm, R. H.
2009-01-01
Biomimetic inorganic chemistry has as its primary goal the synthesis of molecules that approach or achieve the structures, oxidation states, and electronic and reactivity features of native metal-containing sites of variant nuclearity. Comparison of properties of accurate analogues and these sites ideally provides insight into the influence of protein structure and environment on intrinsic properties as represented by the analogue. For polynuclear sites in particular, the goal provides a formidable challenge for, with the exception of iron-sulfur clusters, all such site structures have never been achieved and few even closely approximated by chemical synthesis. This account describes the current status of the synthetic analogue approach as applied to the mononuclear sites in certain molybdoenzymes and the polynuclear sites in hydrogenases, nitrogenase, and carbon monoxide dehydrogenases. PMID:19206188
Validation of the Spanish SIRS with monolingual Hispanic outpatients.
Correa, Amor A; Rogers, Richard; Hoersting, Raquel
2010-09-01
Psychologists are faced with formidable challenges in making their assessment methods relevant to growing numbers of Hispanic clients for whom English is not the primary or preferred language. Among other clinical issues, the determination of malingering has profound consequences for clients. In this investigation, we evaluated a Spanish translation of the Structured Interview of Reported Symptoms (SIRS; Rogers, Bagby, & Dickens, 1992) with 80 Spanish-speaking Hispanic American outpatients. Using a between-subjects simulation design, the Spanish SIRS was found to produce reliable results with small standard errors of measurement. Regarding validity, very large effect sizes (mean Cohen's d= 2.00) were observed between feigners and honest responders for the SIRS primary scales. We consider the potential role of the Spanish SIRS with reference to Spanish translations for other assessment instruments.
Blood brain barrier: a challenge for effectual therapy of brain tumors.
Bhowmik, Arijit; Khan, Rajni; Ghosh, Mrinal Kanti
2015-01-01
Brain tumors are one of the most formidable diseases of mankind. They have only a fair to poor prognosis and high relapse rate. One of the major causes of extreme difficulty in brain tumor treatment is the presence of blood brain barrier (BBB). BBB comprises different molecular components and transport systems, which in turn create efflux machinery or hindrance for the entry of several drugs in brain. Thus, along with the conventional techniques, successful modification of drug delivery and novel therapeutic strategies are needed to overcome this obstacle for treatment of brain tumors. In this review, we have elucidated some critical insights into the composition and function of BBB and along with it we have discussed the effective methods for delivery of drugs to the brain and therapeutic strategies overcoming the barrier.
Polymer waveguides for electro-optical integration in data centers and high-performance computers.
Dangel, Roger; Hofrichter, Jens; Horst, Folkert; Jubin, Daniel; La Porta, Antonio; Meier, Norbert; Soganci, Ibrahim Murat; Weiss, Jonas; Offrein, Bert Jan
2015-02-23
To satisfy the intra- and inter-system bandwidth requirements of future data centers and high-performance computers, low-cost low-power high-throughput optical interconnects will become a key enabling technology. To tightly integrate optics with the computing hardware, particularly in the context of CMOS-compatible silicon photonics, optical printed circuit boards using polymer waveguides are considered as a formidable platform. IBM Research has already demonstrated the essential silicon photonics and interconnection building blocks. A remaining challenge is electro-optical packaging, i.e., the connection of the silicon photonics chips with the system. In this paper, we present a new single-mode polymer waveguide technology and a scalable method for building the optical interface between silicon photonics chips and single-mode polymer waveguides.
Moving Contact Lines: Linking Molecular Dynamics and Continuum-Scale Modeling.
Smith, Edward R; Theodorakis, Panagiotis E; Craster, Richard V; Matar, Omar K
2018-05-17
Despite decades of research, the modeling of moving contact lines has remained a formidable challenge in fluid dynamics whose resolution will impact numerous industrial, biological, and daily life applications. On the one hand, molecular dynamics (MD) simulation has the ability to provide unique insight into the microscopic details that determine the dynamic behavior of the contact line, which is not possible with either continuum-scale simulations or experiments. On the other hand, continuum-based models provide a link to the macroscopic description of the system. In this Feature Article, we explore the complex range of physical factors, including the presence of surfactants, which governs the contact line motion through MD simulations. We also discuss links between continuum- and molecular-scale modeling and highlight the opportunities for future developments in this area.
Numerical Simulation of Metallic Uranium Sintering
NASA Astrophysics Data System (ADS)
Berry, Bruce
Conventional ceramic oxide nuclear fuels are limited in their thermal and life-cycle properties. The desire to operate at higher burnups as is required by current utility economics has proven a formidable challenge for oxide fuel designs. Metallic formulations have superior thermal performance but are plagued by volumetric swelling due to fission gas buildup. In this study, we consider a number of specific microstructure configurations that have been experimentally shown to exhibit considerable resistance to porosity loss. Specifically, a void sizing that is bimodally distributed was shown to resist early pore loss and could provide collection sites for fission gas buildup. We employ the phase field model of Cahn and Hilliard, solved via the finite element method using the open source Multi-User Object Oriented Simulation Environment (MOOSE) developed by INL.
NASA Astrophysics Data System (ADS)
Krishnan, Gopi; Verheijen, Marcel A.; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.
2013-05-01
Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge. Hence, we present here a general methodology for gas phase synthesis of bimetallic NPs with distinctively different structural motifs ranging at a single particle level from a fully mixed alloy to core-shell, to onion (multi-shell), and finally to a Janus/dumbbell, with the same overall particle composition. These concepts are illustrated for Mo-Cu NPs, where the precise control of the bimetallic NPs with various degrees of chemical ordering, including different shapes from spherical to cube, is achieved by tailoring the energy and thermal environment that the NPs experience during their production. The initial state of NP growth, either in the liquid or in the solid state phase, has important implications for the different structural motifs and shapes of synthesized NPs. Finally we demonstrate that we are able to tune the alloying regime, for the otherwise bulk immiscible Mo-Cu, by achieving an increase of the critical size, below which alloying occurs, closely up to an order of magnitude. It is discovered that the critical size of the NP alloy is not only affected by controlled tuning of the alloying temperature but also by the particle shape.Nowadays bimetallic nanoparticles (NPs) have emerged as key materials for important modern applications in nanoplasmonics, catalysis, biodiagnostics, and nanomagnetics. Consequently the control of bimetallic structural motifs with specific shapes provides increasing functionality and selectivity for related applications. However, producing bimetallic NPs with well controlled structural motifs still remains a formidable challenge. Hence, we present here a general methodology for gas phase synthesis of bimetallic NPs with distinctively different structural motifs ranging at a single particle level from a fully mixed alloy to core-shell, to onion (multi-shell), and finally to a Janus/dumbbell, with the same overall particle composition. These concepts are illustrated for Mo-Cu NPs, where the precise control of the bimetallic NPs with various degrees of chemical ordering, including different shapes from spherical to cube, is achieved by tailoring the energy and thermal environment that the NPs experience during their production. The initial state of NP growth, either in the liquid or in the solid state phase, has important implications for the different structural motifs and shapes of synthesized NPs. Finally we demonstrate that we are able to tune the alloying regime, for the otherwise bulk immiscible Mo-Cu, by achieving an increase of the critical size, below which alloying occurs, closely up to an order of magnitude. It is discovered that the critical size of the NP alloy is not only affected by controlled tuning of the alloying temperature but also by the particle shape. Electronic supplementary information (ESI) available: Experimental details including schematics of the gas phase synthesis set up, target arrangement, synthesis condition for various structures, and TEM images of alloy, core-shell and Mo-Cu-Mo onion nanoparticles. See DOI: 10.1039/c3nr00565h
Standards on the permanence of recording materials
NASA Astrophysics Data System (ADS)
Adelstein, Peter Z.
1996-02-01
The permanence of recording materials is dependent upon many factors, and these differ for photographic materials, magnetic tape and optical disks. Photographic permanence is affected by the (1) stability of the material, (2) the photographic processing and (3) the storage conditions. American National Standards on the material and the processing have been published for different types of film and standard test methods have been established for color film. The third feature of photographic permanence is the storage requirements and these have been established for photographic film, prints and plates. Standardization on the permanence of electronic recording materials is more complicated. As with photographic materials, stability is dependent upon (1) the material itself and (2) the storage environment. In addition, retention of the necessary (3) hardware and (4) software is also a prerequisite. American National Standards activity in these areas has been underway for the past six years. A test method for the material which determines the life expectancy of CD-ROMs has been standardized. The problems of determining the expected life of magnetic tape have been more formidable but the critical physical properties have been determined. A specification for the storage environment of magnetic tape has been finalized and one on the storage of optical disks is being worked on. Critical but unsolved problems are the obsolescence of both the hardware and the software necessary to read digital images.
Standards on the permanence of recording materials
NASA Astrophysics Data System (ADS)
Adelstein, Peter Z.
1996-01-01
The permanence of recording materials is dependent upon many factors, and these differ for photographic materials, magnetic tape and optical disks. Photographic permanence is affected by the (1) stability of the material, (2) the photographic processing, and (3) the storage conditions. American National Standards on the material and the processing have been published for different types of film and standard test methods have been established for color film. The third feature of photographic permanence is the storage requirements and these have been established for photographic film, prints, and plates. Standardization on the permanence of electronic recording materials is more complicated. As with photographic materials, stability is dependent upon (1) the material itself and (2) the storage environment. In addition, retention of the necessary (3) hardware and (4) software is also a prerequisite. American National Standards activity in these areas has been underway for the past six years. A test method for the material which determines the life expectancy of CD-ROMs has been standardized. The problems of determining the expected life of magnetic tape have been more formidable but the critical physical properties have been determined. A specification for the storage environment of magnetic tapes has been finalized and one on the storage of optical disks is being worked on. Critical but unsolved problems are the obsolescence of both the hardware and the software necessary to read digital images.
SU-D-210-04: Using Radiotherapy Biomaterials to Brand and Track Deadly Cancer Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Altundal, Y; Sajo, E; Ngwa, W
Purpose: Metastasis accounts for over 90% of all cancer associated suffering and death and arguably presents the most formidable challenges in cancer management. The detection of metastatic or rare circulating tumor cells (CTCs) in blood or lymph nodes remains a formidable technological challenge. In this study, we investigated the time needed to label each cancer cell in-situ (right at the source tumor) with sufficient number of GNPs that will allow enhanced non-invasive detection via photoacoustic imaging in the lymph nodes. Such in-situ labeling can be achieved via sustained release of the GNPs from Radiotherapy (RT) biomaterials (e.g. fiducials, spacers) coated/loadedmore » with the GNP. Methods: The minimum concentration (1000 GNPs/cell for 50nm GNPs) to detect GNPs with photoacoustic imaging method was experimentally measured by Mallidi et al. and fixed at the tumor sub-volume periphery. In this work, the GNPs were assumed to diffuse from a point source, placed in the middle of a 2–3cm tumor, with an initial concentration of 7–30 mg/g. The time required to label the cells with GNPs was calculated by solving the three dimensional diffusion-reaction equation analytically. The diffusion coefficient of 10nm GNPs was experimentally determined previously. Stokes-Einstein equation was used to calculate the diffusion coefficients for other sizes (2–50nm) of GNPs. The cellular uptake rate constants for several sizes of GNPs were experimentally measured by Jin et al. Results: The time required to label the cells was found 0.635–15.91 days for 2–50nm GNPs with an initial concentration of 7 mg/g GNPs in a 2 cm tumor; 1.379–34.633 days for 2–50nm GNPs with an initial concentration of 30 mg/g GNPs in a 3cm tumor. Conclusion: Our results highlight new potential for labeling CTCs with GNPs released from smart RT biomaterials (i.e. fiducials or spacers loaded with the GNP) towards enhanced non-invasive imaging/detection via photoacoustic imaging.« less
Baswan, Sudhir; Kasting, Gerald B.; Li, S. Kevin; Wickett, Randy; Adams, Brian; Eurich, Sean; Schamper, Ryan
2016-01-01
The topical treatment of nail fungal infections has been a focal point of nail research in the past few decades as it offers a much safer and focused alternative to conventional oral therapy. Although the current focus remains on exploring the ways of enhancing permeation through the formidable nail barrier, the understanding of the nail microstructure and composition is far from complete. This article reviews our current understanding of the nail microstructure, composition and diseases. A few of the parameters affecting the nail permeability and potential causes of the recurrence of fungal nail infection are also discussed. PMID:28098391
Baswan, Sudhir; Kasting, Gerald B; Li, S Kevin; Wickett, Randy; Adams, Brian; Eurich, Sean; Schamper, Ryan
2017-05-01
The topical treatment of nail fungal infections has been a focal point of nail research in the past few decades as it offers a much safer and focused alternative to conventional oral therapy. Although the current focus remains on exploring the ways of enhancing permeation through the formidable nail barrier, the understanding of the nail microstructure and composition is far from complete. This article reviews our current understanding of the nail microstructure, composition and diseases. A few of the parameters affecting the nail permeability and potential causes of the recurrence of fungal nail infection are also discussed. © 2017 Blackwell Verlag GmbH.
Racial bias in judgments of physical size and formidability: From size to threat.
Wilson, John Paul; Hugenberg, Kurt; Rule, Nicholas O
2017-07-01
Black men tend to be stereotyped as threatening and, as a result, may be disproportionately targeted by police even when unarmed. Here, we found evidence that biased perceptions of young Black men's physical size may play a role in this process. The results of 7 studies showed that people have a bias to perceive young Black men as bigger (taller, heavier, more muscular) and more physically threatening (stronger, more capable of harm) than young White men. Both bottom-up cues of racial prototypicality and top-down information about race supported these misperceptions. Furthermore, this racial bias persisted even among a target sample from whom upper-body strength was controlled (suggesting that racial differences in formidability judgments are a product of bias rather than accuracy). Biased formidability judgments in turn promoted participants' justifications of hypothetical use of force against Black suspects of crime. Thus, perceivers appear to integrate multiple pieces of information to ultimately conclude that young Black men are more physically threatening than young White men, believing that they must therefore be controlled using more aggressive measures. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Holbrook, Colin; Fessler, Daniel M T
2013-04-01
Victory in modern intergroup conflict derives from complex factors, including weaponry, economic resources, tactical outcomes, and leadership. We hypothesize that the mind summarizes such factors into simple metaphorical representations of physical size and strength, concrete dimensions that have determined the outcome of combat throughout both ontogenetic and phylogenetic experience. This model predicts that in the aftermath of tactical victories (e.g., killing an enemy leader), members of defeated groups will be conceptualized as less physically formidable. Conversely, reminders that groups possess effective leadership should lead their members to be envisioned as more physically formidable. Consonant with these predictions, in both an opportunistic study conducted immediately after Osama bin Laden's death was announced (Study 1) and a follow-up experiment conducted approximately a year later (Study 2), Americans for whom the killing was salient estimated a purported Islamic terrorist to be physically smaller/weaker. In Studies 3 and 4, primes of victorious terrorist leaders led to inflated estimates of terrorists' physical attributes. These findings elucidate how the mind represents contemporary military power, and may help to explain how even largely symbolic victories can influence reasoning about campaigns of coalitional aggression. Copyright © 2012 Elsevier B.V. All rights reserved.
A Rare Terminal Dinitrogen Complex of Chromium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mock, Michael T.; Chen, Shentan; Rousseau, Roger J.
The reduction of dinitrogen to ammonia from N2 and H2 is currently carried out by the Haber-Bosch process, an energy intensive process that requires high pressures and high temperatures and accounts for the production of millions of tons of ammonia per year. The development of a catalytic, energy-efficient process for N2 reduction is of great interest and remains a formidable challenge. In this communication, we are reporting the preparation, characterization and computational electronic structure analysis of a rare 'Chatt-type' ((P-P)2M(N2)2, P-P = diphosphine ligand) complex of chromium, cis-[Cr(N2)2(PPh2NBn2)2] and its reactivity with CO. This complex is supported by the diphosphinemore » ligand PPh2NBn2, containing non-coordinating pendant amine bases, to serve as proton relays. Future studies for this complex are aimed at answering fundamental questions regarding the role of proton relays in the second coordination sphere in their ability to facilitate proton movement from an external acid to metal-bound dinitrogen ligands in the challenging multi-proton/electron reduction of N2 to ammonia.« less
An alternative animal protein source: cultured beef.
Post, Mark J
2014-11-01
Alternative sources of animal proteins are needed that can be produced efficiently, thereby providing food security with diminished ecological burden. It is feasible to culture beef from bovine skeletal muscle stem cells, but the technology is still under development. The aim is to create a beef mimic with equivalent taste, texture, and appearance and with the same nutritional value as livestock-produced beef. More specifically, there is a need for optimization of protein content and fat content. In addition, scalability of production requires modification of current small-scale bioreactors to the largest possible scale. The necessary steps and current progress suggest that this aim is achievable, but formal evidence is still required. Similarly, we can be optimistic about consumer acceptance based on initial data, but detailed studies are needed to gain more insight into potential psychological obstacles that could lead to rejection. These challenges are formidable but likely surmountable. The severity of upcoming food-security threats warrants serious research and development efforts to address the challenges that come with bringing cultured beef to the market. © 2014 New York Academy of Sciences.
Relating Climate and Enviornmental Stress to Conflict... or Cooperation?
NASA Astrophysics Data System (ADS)
Kelley, C. P.
2016-12-01
There are many factors which contribute to social unrest, including governance, economy, access to resources and others. As global climate change progresses, many regions and nations, particularly those that are most vulnerable and least resilient, will face increasing challenges with respect to water and food scarcity. Increasing population and demand for water, combined with declining access to groundwater, will greatly increase exisiting vulnerability. Syria, Yemen and other countries serve as examples of nations that have experienced increasing both environmental stress and conflict. The Syria case in particular has had clear global repercussions, most notably contributing to a global refugee crisis. However, there are also examples of nations that have experienced increasing environmental stress that instead demonstrated transboundary water cooperation rather than conflict. An important and emerging body of work is that which seeks to better understand and characterize real-time resilience and vulnerability in order to better mitigate the consequences of future regional climate change. Prediction of potential conflict is a formidable challenge, one that is highly complex and multivariate, operating on many different temporal and spatial scales.
Five Policy Levers To Meet The Value Challenge In Cancer Care.
Callahan, Ryan; Darzi, Ara
2015-09-01
The burden of cancer on public finances is a serious concern for policy makers. More people are developing cancer, and as standards of care have risen, more are surviving and requiring longer-term care. Precision medicine promises better outcomes but demands commensurately higher payments for care. As both incidence and per case costs rise, we suggest that the task of expanding access to high-quality cancer care poses a "value challenge" that policies in many countries are inadequate to meet. Policy makers should respond with a new approach. We explore questions that policy makers will need to consider regarding objectives, barriers, and levers for policy development. We use transparency and accountability as cornerstones of a new approach to promote value-based decision making. Although barriers to advancing this agenda are formidable, we recommend that governments define common standards for value-based accounting; serve as information brokers for evidence development; pioneer value-based procurement of goods and services; engage in deliberative democracy in cancer care; and educate communities to facilitate knowledge sharing between communities of patients, their caretakers, and researchers. Project HOPE—The People-to-People Health Foundation, Inc.
[Personality disorders, psychopathy and serial killers].
Morana, Hilda C P; Stone, Michael H; Abdalla-Filho, Elias
2006-10-01
To illustrate the basic characteristics of several specific personality disorders, focusing mainly in antisocial personality disorder. The differences between antisocial personality disorder and psychopathy are highlighted. Serial killers and its psychopathic aspects are also discussed. A bibliographic review was completed in order to outline convergences and divergences among different authors about this controversial issue, especially those concerning the possibility of treatment. While anti-social personality disorder is a medical diagnosis, the term "psychopathy" (which belongs to the sphere of forensic psychiatry) may be understood as a "legal diagnosis". It is not still possible to identify an effective treatment for serial killers. Personality disorders, especially of the antisocial type, still represent a formidable challenge to forensic psychiatry today. Questions as yet unanswered include the best and most humane place for patients with this condition and the nature of a standardised treatment recommendation.
phMRI: methodological considerations for mitigating potential confounding factors
Bourke, Julius H.; Wall, Matthew B.
2015-01-01
Pharmacological Magnetic Resonance Imaging (phMRI) is a variant of conventional MRI that adds pharmacological manipulations in order to study the effects of drugs, or uses pharmacological probes to investigate basic or applied (e.g., clinical) neuroscience questions. Issues that may confound the interpretation of results from various types of phMRI studies are briefly discussed, and a set of methodological strategies that can mitigate these problems are described. These include strategies that can be employed at every stage of investigation, from study design to interpretation of resulting data, and additional techniques suited for use with clinical populations are also featured. Pharmacological MRI is a challenging area of research that has both significant advantages and formidable difficulties, however with due consideration and use of these strategies many of the key obstacles can be overcome. PMID:25999812
Thermodynamics of quantum information scrambling
NASA Astrophysics Data System (ADS)
Campisi, Michele; Goold, John
2017-06-01
Scrambling of quantum information can conveniently be quantified by so-called out-of-time-order correlators (OTOCs), i.e., correlators of the type <[Wτ,V ] †[Wτ,V ] > , whose measurements present a formidable experimental challenge. Here we report on a method for the measurement of OTOCs based on the so-called two-point measurement scheme developed in the field of nonequilibrium quantum thermodynamics. The scheme is of broader applicability than methods employed in current experiments and provides a clear-cut interpretation of quantum information scrambling in terms of nonequilibrium fluctuations of thermodynamic quantities, such as work and heat. Furthermore, we provide a numerical example on a spin chain which highlights the utility of our thermodynamic approach when understanding the differences between integrable and ergodic behaviors. We also discuss how the method can be used to extend the reach of current experiments.
Scovotti, Carol; Peltier, James W
2005-01-01
This article is the last in a series of two that examines participant satisfaction with the vocational rehabilitation (VR) process. Disabled individuals face formidable challenges when entering the workforce. The VR process involves a complex series of interactions and relationships among participants, counselors, training professionals, ancillary service providers, and employers to help participants prepare for and find employment. In the first article, we identified six relationship dimensions that influence overall satisfaction with vocational training services and presented a highly reliable survey instrument. In part two, we look at the items within each dimension and identify those with the greatest impact on participant satisfaction. The findings show that the level of caring or concern demonstrated by the counselor, an element of the interpersonal social bond dimension, has the greatest affect on participant satisfaction with the entire VR process.
Carbon Condensation during High Explosive Detonation with Time Resolved Small Angle X-ray Scattering
NASA Astrophysics Data System (ADS)
Hammons, Joshua; Bagge-Hansen, Michael; Nielsen, Michael; Lauderbach, Lisa; Hodgin, Ralph; Bastea, Sorin; Fried, Larry; May, Chadd; Sinclair, Nicholas; Jensen, Brian; Gustavsen, Rick; Dattelbaum, Dana; Watkins, Erik; Firestone, Millicent; Ilavsky, Jan; van Buuren, Tony; Willey, Trevor; Lawrence Livermore National Lab Collaboration; Los Alamos National Laboratory Collaboration; Washington State University/Advanced Photon Source Team
Carbon condensation during high-energy detonations occurs under extreme conditions and on very short time scales. Understanding and manipulating soot formation, particularly detonation nanodiamond, has attracted the attention of military, academic and industrial research. An in-situ characterization of these nanoscale phases, during detonation, is highly sought after and presents a formidable challenge even with today's instruments. Using the high flux available with synchrotron X-rays, pink beam small angle X-ray scattering is able to observe the carbon phases during detonation. This experimental approach, though powerful, requires careful consideration and support from other techniques, such as post-mortem TEM, EELS and USAXS. We present a comparative survey of carbon condensation from different CHNO high explosives. This work was performed under the auspices of the US DOE by LLNL under Contract DE-AC52-07NA27344.
The social dilemma of autonomous vehicles.
Bonnefon, Jean-François; Shariff, Azim; Rahwan, Iyad
2016-06-24
Autonomous vehicles (AVs) should reduce traffic accidents, but they will sometimes have to choose between two evils, such as running over pedestrians or sacrificing themselves and their passenger to save the pedestrians. Defining the algorithms that will help AVs make these moral decisions is a formidable challenge. We found that participants in six Amazon Mechanical Turk studies approved of utilitarian AVs (that is, AVs that sacrifice their passengers for the greater good) and would like others to buy them, but they would themselves prefer to ride in AVs that protect their passengers at all costs. The study participants disapprove of enforcing utilitarian regulations for AVs and would be less willing to buy such an AV. Accordingly, regulating for utilitarian algorithms may paradoxically increase casualties by postponing the adoption of a safer technology. Copyright © 2016, American Association for the Advancement of Science.
Beam Tests of Diamond-Like Carbon Coating for Mitigation of Electron Cloud
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eldred, Jeffrey; Backfish, Michael; Kato, Shigeki
Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Our results evaluate the efficacy of a diamond-like carbon (DLC) coating for the mitigation of electron in the Fermilab Main Injector. The interior surface of the beampipe conditions in response to electron bombardment from the electron cloud and we track the change in electron cloud flux over time in the DLC coated beampipe and uncoated stainless steel beampipe. The electron flux is measured by retarding field analyzers placed in a field-free region of the Mainmore » Injector. We find the DLC coating reduces the electron cloud signal to roughly 2\\% of that measured in the uncoated stainless steel beampipe.« less
Kang, Ting; Gao, Xiaoling; Chen, Jun
2014-01-01
The existence of blood-brain barrier (BBB) represents the most formidable challenge for drug delivery to the central nervous system (CNS). Modern breakthrough in biology offers multiple choices for overcoming this barrier but yields modest outcomes for clinical application due to various problems such as safety concerns, insufficient delivery efficiency and poor penetration. Cell penetrating peptides (CPPs) possessing powerful transmembrane capacity have been shown to be effective transport vectors for bioactive molecules and an attractive alternative to traditional active targeting approaches. However, the non-specificity of CPPs has hindered them from targeting a desired site of action. Promisingly, design of novel CPP-mediated nanoparticulate delivery systems with specific targeting property may extricate CPPs from the dilemma. In this review, both the traditional and novel applications of CPPs-based strategies for CNS drug delivery will be discussed.
On the Unruly Power of Pain in Middle English Drama.
Nakley, Susan
2015-01-01
Late medieval culture tends to value pain highly and positively. Accordingly, much medievalist scholarship links pain with fear and emphasizes their usefulness in the period's philosophy, literature, visual art, and drama. Yet, key moments in The York Play of the Crucifixion, The Second Shepherds' Play, and The Tretise of Miraclis Pleyinge trouble the significance of pain and its relationships with punishment and performance; these works admit the unreliability of pain and fear, even as they harness the formidable power pain holds throughout Middle English literature. This essay analyzes passages from all three texts to demonstrate their deep skepticism about the signifying power of pain alongside their abiding investments in pain's utility. I argue that these texts ultimately challenge Middle English drama's dominant discourses of patriarchy and empire by way of their representations of pain.
A reagent-controlled SN2-glycosylation for the direct synthesis of β-linked 2-deoxy-sugars.
Issa, John Paul; Bennett, Clay S
2014-04-16
The efficient and stereoselective construction of glycosidic linkages remains one of the most formidable challenges in organic chemistry. This is especially true in cases such as β-linked deoxy-sugars, where the outcome of the reaction cannot be controlled using the stereochemical information intrinsic to the glycosyl donor. Here we show that p-toluenesulfonic anhydride activates 2-deoxy-sugar hemiacetals in situ as electrophilic species, which react stereoselectively with nucleophilic acceptors to produce β-anomers exclusively. NMR studies confirm that, under these conditions, the hemiacetal is quantitatively converted into an α-glycosyl tosylate, which is presumably the reactive species in the reaction. This approach demonstrates that use of promoters that activate hemiacetals as well-defined intermediates can be used to permit stereoselective glycosylation through an SN2-pathway.
Predictors of High Level of Hostility among Homeless Men on Parole
Nyamathi, Adeline; Salem, Benissa; Farabee, David; Hall, Elizabeth; Zhang, Sheldon; Khalilifard, Farinaz; Faucette, Mark; Leake, Barbara
2014-01-01
High levels of hostility present a formidable challenge among homeless ex-offenders. This cross-sectional study assessed correlates of high levels of hostility using baseline data collected on recently-released male parolees (N=472; age 18-60) participating in a randomized trial focused on prevention of illicit drug use and recidivism. Predictors of high levels of hostility included greater depressive symptomatology, lower self-esteem, having a mother who was treated for alcohol/drugs, belonging to a gang, more tangible support, having used methamphetamine and having a history of cognitive difficulties. These findings highlight the need to understand predictors of hostility among recently released homeless men and how these predictors may relate to recidivism. Research implications are discussed as these findings will shape future nurse-led harm reduction and community-based interventions. PMID:25083121
Observations give us CLUES to Cosmic Flows' origins
NASA Astrophysics Data System (ADS)
Sorce, Jenny; Courtois, H.; Gottloeber, S.; Hoffman, Y.; Pomarede, D.; Tully, R. B.; Flows, Cosmic; CLUES
2014-01-01
In an era where the wealth of telescope-data and the development of computer superclusters keep increasing, the knowledge of Large Scale Structures' formation and evolution constitutes a tremendous challenge. Within this context the project Cosmic Flows has recently produced a catalog of peculiar velocities up to 150 Mpc. These velocities, obtained from direct distance measurements, are ideal markers of the underlying gravitational potential. They form a fantastic input to perform constrained simulations of the Local Universe within the CLUES project. A new method has recently been elaborated to achieve these simulations which prove to be excellent replicas of our neighborhood. The Wiener-Filter, the Reverse Zel'dovich Approximation and the Constrained Realization techniques are combined to build Initial Conditions. The resulting second generation of constrained simulations presents us the formidable history of the Great Attractor's and nearby supercluster's formation.
An embodied view of octopus neurobiology.
Hochner, Binyamin
2012-10-23
Octopuses have a unique flexible body and unusual morphology, but nevertheless they are undoubtedly a great evolutionary success. They compete successfully with vertebrates in their ecological niche using a rich behavioral repertoire more typical of an intelligent predator which includes extremely effective defensive behavior--fast escape swimming and an astonishing ability to adapt their shape and color to their environment. The most obvious characteristic feature of an octopus is its eight long and flexible arms, but these pose a great challenge for achieving the level of motor and sensory information processing necessary for their behaviors. First, coordinating motion is a formidable task because of the infinite degrees of freedom that have to be controlled; and second, it is hard to use body coordinates in this flexible animal to represent sensory information in a central control system. Here I will review experimental results suggesting that these difficulties, arising from the animal's morphology, have imposed the evolution of unique brain/body/behavior relationships best explained as intelligent behavior which emerges from the octopus's embodied organization. The term 'intelligent embodiment' comes from robotics and refers to an approach to designing autonomous robots in which the behavior emerges from the dynamic physical and sensory interactions of the agent's materials, morphology and environment. Consideration of the unusual neurobiology of the octopus in the light of its unique morphology suggests that similar embodied principles are instrumental for understanding the emergence of intelligent behavior in all biological systems. Copyright © 2012 Elsevier Ltd. All rights reserved.
The community FabLab platform: applications and implications in biomedical engineering.
Stephenson, Makeda K; Dow, Douglas E
2014-01-01
Skill development in science, technology, engineering and math (STEM) education present one of the most formidable challenges of modern society. The Community FabLab platform presents a viable solution. Each FabLab contains a suite of modern computer numerical control (CNC) equipment, electronics and computing hardware and design, programming, computer aided design (CAD) and computer aided machining (CAM) software. FabLabs are community and educational resources and open to the public. Development of STEM based workforce skills such as digital fabrication and advanced manufacturing can be enhanced using this platform. Particularly notable is the potential of the FabLab platform in STEM education. The active learning environment engages and supports a diversity of learners, while the iterative learning that is supported by the FabLab rapid prototyping platform facilitates depth of understanding, creativity, innovation and mastery. The product and project based learning that occurs in FabLabs develops in the student a personal sense of accomplishment, self-awareness, command of the material and technology. This helps build the interest and confidence necessary to excel in STEM and throughout life. Finally the introduction and use of relevant technologies at every stage of the education process ensures technical familiarity and a broad knowledge base needed for work in STEM based fields. Biomedical engineering education strives to cultivate broad technical adeptness, creativity, interdisciplinary thought, and an ability to form deep conceptual understanding of complex systems. The FabLab platform is well designed to enhance biomedical engineering education.
Simulation of MEMS for the Next Generation Space Telescope
NASA Technical Reports Server (NTRS)
Mott, Brent; Kuhn, Jonathan; Broduer, Steve (Technical Monitor)
2001-01-01
The NASA Goddard Space Flight Center (GSFC) is developing optical micro-electromechanical system (MEMS) components for potential application in Next Generation Space Telescope (NGST) science instruments. In this work, we present an overview of the electro-mechanical simulation of three MEMS components for NGST, which include a reflective micro-mirror array and transmissive microshutter array for aperture control for a near infrared (NIR) multi-object spectrometer and a large aperture MEMS Fabry-Perot tunable filter for a NIR wide field camera. In all cases the device must operate at cryogenic temperatures with low power consumption and low, complementary metal oxide semiconductor (CMOS) compatible, voltages. The goal of our simulation efforts is to adequately predict both the performance and the reliability of the devices during ground handling, launch, and operation to prevent failures late in the development process and during flight. This goal requires detailed modeling and validation of complex electro-thermal-mechanical interactions and very large non-linear deformations, often involving surface contact. Various parameters such as spatial dimensions and device response are often difficult to measure reliably at these small scales. In addition, these devices are fabricated from a wide variety of materials including surface micro-machined aluminum, reactive ion etched (RIE) silicon nitride, and deep reactive ion etched (DRIE) bulk single crystal silicon. The above broad set of conditions combine to be a formidable challenge for space flight qualification analysis. These simulations represent NASA/GSFC's first attempts at implementing a comprehensive strategy to address complex MEMS structures.
Quantification of soil structure based on Minkowski functions
NASA Astrophysics Data System (ADS)
Vogel, H.-J.; Weller, U.; Schlüter, S.
2010-10-01
The structure of soils and other geologic media is a complex three-dimensional object. Most of the physical material properties including mechanical and hydraulic characteristics are immediately linked to the structure given by the pore space and its spatial distribution. It is an old dream and still a formidable challenge to relate structural features of porous media to their functional properties. Using tomographic techniques, soil structure can be directly observed at a range of spatial scales. In this paper we present a scale-invariant concept to quantify complex structures based on a limited set of meaningful morphological functions. They are based on d+1 Minkowski functionals as defined for d-dimensional bodies. These basic quantities are determined as a function of pore size or aggregate size obtained by filter procedures using mathematical morphology. The resulting Minkowski functions provide valuable information on the size of pores and aggregates, the pore surface area and the pore topology having the potential to be linked to physical properties. The theoretical background and the related algorithms are presented and the approach is demonstrated for the pore structure of an arable soil and the pore structure of a sand both obtained by X-ray micro-tomography. We also analyze the fundamental problem of limited resolution which is critical for any attempt to quantify structural features at any scale using samples of different size recorded at different resolutions. The results demonstrate that objects smaller than 5 voxels are critical for quantitative analysis.
Nuclear threat in the post cold-war era. Monograph
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurey, W.S.
1995-05-14
This monograph discusses the nuclear threat that the United States faces following the downfall of the Soviet Union. The Russian and Chinese nuclear arsenals represent a formidable threat that must be countered and a new threat is emerging in the third world despite efforts to counter the proliferation of weapons of mass destruction. The monograph reviews the current status of both the Russian and Chinese arsenals and lists the programs that are being undertaken to modernize and improve their respective nuclear capabilities. Both nations are taking significant steps to preserve and improve their nuclear strike capability. The proliferation of nuclearmore » weapons technology, fissile material, and ballistic missiles in the third world is an emerging threat to national security interests. The lack of appropriate security measures during the on-going dismantling of the former Soviet nuclear arsenal presents an opportunity for rogue states and terrorist organizations to readily obtain the materials to produce their own nuclear weapons.« less
Influence of group size on the success of wolves hunting bison.
MacNulty, Daniel R; Tallian, Aimee; Stahler, Daniel R; Smith, Douglas W
2014-01-01
An intriguing aspect of social foraging behaviour is that large groups are often no better at capturing prey than are small groups, a pattern that has been attributed to diminished cooperation (i.e., free riding) in large groups. Although this suggests the formation of large groups is unrelated to prey capture, little is known about cooperation in large groups that hunt hard-to-catch prey. Here, we used direct observations of Yellowstone wolves (Canis lupus) hunting their most formidable prey, bison (Bison bison), to test the hypothesis that large groups are more cooperative when hunting difficult prey. We quantified the relationship between capture success and wolf group size, and compared it to previously reported results for Yellowstone wolves hunting elk (Cervus elaphus), a prey that was, on average, 3 times easier to capture than bison. Whereas improvement in elk capture success levelled off at 2-6 wolves, bison capture success levelled off at 9-13 wolves with evidence that it continued to increase beyond 13 wolves. These results are consistent with the hypothesis that hunters in large groups are more cooperative when hunting more formidable prey. Improved ability to capture formidable prey could therefore promote the formation and maintenance of large predator groups, particularly among predators that specialize on such prey.
Influence of Group Size on the Success of Wolves Hunting Bison
MacNulty, Daniel R.; Tallian, Aimee; Stahler, Daniel R.; Smith, Douglas W.
2014-01-01
An intriguing aspect of social foraging behaviour is that large groups are often no better at capturing prey than are small groups, a pattern that has been attributed to diminished cooperation (i.e., free riding) in large groups. Although this suggests the formation of large groups is unrelated to prey capture, little is known about cooperation in large groups that hunt hard-to-catch prey. Here, we used direct observations of Yellowstone wolves (Canis lupus) hunting their most formidable prey, bison (Bison bison), to test the hypothesis that large groups are more cooperative when hunting difficult prey. We quantified the relationship between capture success and wolf group size, and compared it to previously reported results for Yellowstone wolves hunting elk (Cervus elaphus), a prey that was, on average, 3 times easier to capture than bison. Whereas improvement in elk capture success levelled off at 2–6 wolves, bison capture success levelled off at 9–13 wolves with evidence that it continued to increase beyond 13 wolves. These results are consistent with the hypothesis that hunters in large groups are more cooperative when hunting more formidable prey. Improved ability to capture formidable prey could therefore promote the formation and maintenance of large predator groups, particularly among predators that specialize on such prey. PMID:25389760
NASA Astrophysics Data System (ADS)
Levine, J.; Bean, J. R.
2017-12-01
Global change science is ideal for NGSS-informed teaching, but presents a serious challenge to K-12 educators because it is complex and interdisciplinary- combining earth science, biology, chemistry, and physics. Global systems are themselves complex. Adding anthropogenic influences on those systems creates a formidable list of topics - greenhouse effect, climate change, nitrogen enrichment, introduced species, land-use change among them - which are often presented as a disconnected "laundry list" of "facts." This complexity, combined with public and mass-media scientific illiteracy, leaves global change science vulnerable to misrepresentation and politicization, creating additional challenges to teachers in public schools. Ample stand-alone, one-off, online resources, many of them excellent, are (to date) underutilized by teachers in the high school science course taken by most students: biology. The Understanding Global Change project (UGC) from the UC Berkeley Museum of Paleontology has created a conceptual framework that organizes, connects, and explains global systems, human and non-human drivers of change in those systems, and measurable changes in those systems. This organization and framework employ core ideas, crosscutting concepts, structure/function relationships, and system models in a unique format that facilitates authentic understanding, rather than memorization. This system serves as an organizing framework for the entire ecology unit of a forthcoming mainstream high school biology program. The UGC system model is introduced up front with its core informational graphic. The model is elaborated, step by step, by adding concepts and processes as they are introduced and explained in each chapter. The informational graphic is thus used in several ways: to organize material as it is presented, to summarize topics in each chapter and put them in perspective, and for review and critical thinking exercises that supplement the usual end-of-chapter lists of key terms.
A multimode electromechanical parametric resonator array
Mahboob, I.; Mounaix, M.; Nishiguchi, K.; Fujiwara, A.; Yamaguchi, H.
2014-01-01
Electromechanical resonators have emerged as a versatile platform in which detectors with unprecedented sensitivities and quantum mechanics in a macroscopic context can be developed. These schemes invariably utilise a single resonator but increasingly the concept of an array of electromechanical resonators is promising a wealth of new possibilities. In spite of this, experimental realisations of such arrays have remained scarce due to the formidable challenges involved in their fabrication. In a variation to this approach, we identify 75 harmonic vibration modes in a single electromechanical resonator of which 7 can also be parametrically excited. The parametrically resonating modes exhibit vibrations with only 2 oscillation phases which are used to build a binary information array. We exploit this array to execute a mechanical byte memory, a shift-register and a controlled-NOT gate thus vividly illustrating the availability and functionality of an electromechanical resonator array by simply utilising higher order vibration modes. PMID:24658349
Secondary HIV prevention among kothi-identified MSM in Chennai, India.
Chakrapani, Venkatesan; Newman, Peter A; Shunmugam, Murali
2008-05-01
This study explored experiences and contexts of HIV risk and prevention among HIV-positive kothi-identified men in Chennai, India. In-depth, semi-structured interviews were conducted with 10 HIV-positive men and three service providers, recruited using purposive sampling. Interviews were audio-taped, transcribed in Tamil and translated into English. Data were analysed using a narrative thematic approach and constant comparative method. Misconceptions about HIV transmission; cultural taboos around discussing sexual behaviour and HIV; stigma related to same-sex behaviour; harassment; and the criminalization of consensual sex between men present formidable challenges to HIV prevention. Frank and open discussion about male-to-male sexual behaviour and living with HIV, which may support health and HIV prevention, may be dangerous in the context of pervasive risks due to stigmatization, violence and criminalization. Instead, culturally appropriate, multi-level interventions developed in collaboration with community stakeholders are needed to support HIV prevention among kothi-identified men in South India.
Dementia in intellectual disability: a review of diagnostic challenges.
Nagdee, M
2011-07-01
The evaluation of dementia in individuals with intellectual disability (ID), which will guide subsequent intervention, care and management depends on the systematic review of a number of factors: (1) the individual historical context, obtained from multiple sources, (2) evaluation of the pre-existing cognitive, behavioural, psychiatric, medical and adaptive skill profile, (3) the constellation, and pattern of evolution, of presenting signs and symptoms, (4) results of focused investigations, and (5) refinement of the differential diagnosis. In patients with ID, standard clinical methods need to be supplemented by careful, longitudinal behavioural observations, and individually tailored assessment techniques. Co-morbidity, multiple biological, psychological and socioenvironmental factors, and complex interactions among events, are the reality for many ageing people with ID. Determining the various influences is often a formidable clinical task, but should be systematically carried out using medical, cognitive, behavioural, neuropsychiatric and psycho-social frameworks.
Symbolic Computation of Strongly Connected Components Using Saturation
NASA Technical Reports Server (NTRS)
Zhao, Yang; Ciardo, Gianfranco
2010-01-01
Finding strongly connected components (SCCs) in the state-space of discrete-state models is a critical task in formal verification of LTL and fair CTL properties, but the potentially huge number of reachable states and SCCs constitutes a formidable challenge. This paper is concerned with computing the sets of states in SCCs or terminal SCCs of asynchronous systems. Because of its advantages in many applications, we employ saturation on two previously proposed approaches: the Xie-Beerel algorithm and transitive closure. First, saturation speeds up state-space exploration when computing each SCC in the Xie-Beerel algorithm. Then, our main contribution is a novel algorithm to compute the transitive closure using saturation. Experimental results indicate that our improved algorithms achieve a clear speedup over previous algorithms in some cases. With the help of the new transitive closure computation algorithm, up to 10(exp 150) SCCs can be explored within a few seconds.
Harnessing the genome for characterization of GPCRs in cancer pathogenesis
Feigin, Michael E.
2014-01-01
G-protein coupled receptors (GPCRs) mediate numerous physiological processes and represent the targets for a vast array of therapeutics for diseases ranging from depression to hypertension to reflux. Despite the recognition that GPCRs can act as oncogenes and tumor suppressors by regulating oncogenic signaling networks, few drugs targeting GPCRs are utilized in cancer therapy. Recent large-scale genome-wide analyses of multiple human tumors have uncovered novel GPCRs altered in cancer. However, the work of determining which GPCRs from these lists are drivers of tumorigenesis, and hence valid therapeutic targets, remains a formidable challenge. In this review I will highlight recent studies providing evidence that GPCRs are relevant targets for cancer therapy through their effects on known cancer signaling pathways, tumor progression, invasion and metastasis, and the microenvironment. Furthermore, I will explore how genomic analysis is beginning to shine a light on GPCRs as therapeutic targets in the age of personalized medicine. PMID:23927072
Environmental Trigger(s) of Type 1 Diabetes: Why So Difficult to Identify?
2015-01-01
Type 1 diabetes (T1D) is one of the most common chronic diseases with childhood onset, and the disease has increased two- to fivefold over the past half century by as yet unknown means. T1D occurs when the body's immune system turns against itself so that, in a very specific and targeted way, it destroys the pancreatic β-cells. T1D results from poorly defined interactions between susceptibility genes and environmental determinants. In contrast to the rapid progress in finding T1D genes, identification and confirmation of environmental determinants remain a formidable challenge. This review article will focus on factors which have to be evaluated and decision to take before starting a new prospective cohort study. Considering all the large ongoing prospective studies, new and more conclusive data than that obtained so far should instead come from international collaboration on the ongoing cohort studies. PMID:25883954
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilkerson, Andrea M.; McCullough, Jeffrey J.
The Yuma Sector Border Patrol Area is a high flux lighting application in a high temperature environment, presenting a formidable challenge for light-emitting diodes (LEDs). This retrofit is an Energy Savings Performance Contract ENABLE project under the U.S. Department of Energy (DOE) Federal Energy Management Program. If high flux LED technology performs well in a region with high ambient temperature and solar radiation, it can perform well in most outdoor environments. The design process for the Yuma retrofit has already provided valuable knowledge to CBP and DOE. The LED lighting system selected for the retrofit is expected to reduce energymore » consumption 69% compared to the incumbent quartz metal halide (QMH) lighting system. If the LED lighting system is installed, GATEWAY will continue to document and disseminate information regarding the installation and long-term performance so that others may also gain valuable knowledge from the Yuma Sector Border Patrol Area lighting retrofit.« less
2009-03-10
Warming up: recovery sister and Territorial Army (TA) nurse Zayne Crow is undertaking a 151-mile race this month across part of the Sahara Desert. Ms Crow, who works at the King Edward VII's Hospital, London, and is an emergency nurse at the TA's City of London Field Hospital, is competing in the formidable Marathon des Sables, in Morocco. This is described as the world's toughest foot race, in which competitors run the equivalent of five and a half marathons in six days while carrying all of their kit, in temperatures of up to 50°C. Ms Crow said: 'The extreme temperatures and the weight I will be carrying will make it an immense challenge but, in terms of physical and mental fitness, I am in peak condition.' Ms Crow is raising funds for the wounded service personnel charity, Help for Heroes. ►For more information, go to www.justgiving.com/zaynecrow.
Anomalous Diffusion of Single Particles in Cytoplasm
Regner, Benjamin M.; Vučinić, Dejan; Domnisoru, Cristina; Bartol, Thomas M.; Hetzer, Martin W.; Tartakovsky, Daniel M.; Sejnowski, Terrence J.
2013-01-01
The crowded intracellular environment poses a formidable challenge to experimental and theoretical analyses of intracellular transport mechanisms. Our measurements of single-particle trajectories in cytoplasm and their random-walk interpretations elucidate two of these mechanisms: molecular diffusion in crowded environments and cytoskeletal transport along microtubules. We employed acousto-optic deflector microscopy to map out the three-dimensional trajectories of microspheres migrating in the cytosolic fraction of a cellular extract. Classical Brownian motion (BM), continuous time random walk, and fractional BM were alternatively used to represent these trajectories. The comparison of the experimental and numerical data demonstrates that cytoskeletal transport along microtubules and diffusion in the cytosolic fraction exhibit anomalous (nonFickian) behavior and posses statistically distinct signatures. Among the three random-walk models used, continuous time random walk provides the best representation of diffusion, whereas microtubular transport is accurately modeled with fractional BM. PMID:23601312
Complexity and Competition in Appetitive and Aversive Neural Circuits
Barberini, Crista L.; Morrison, Sara E.; Saez, Alex; Lau, Brian; Salzman, C. Daniel
2012-01-01
Decision-making often involves using sensory cues to predict possible rewarding or punishing reinforcement outcomes before selecting a course of action. Recent work has revealed complexity in how the brain learns to predict rewards and punishments. Analysis of neural signaling during and after learning in the amygdala and orbitofrontal cortex, two brain areas that process appetitive and aversive stimuli, reveals a dynamic relationship between appetitive and aversive circuits. Specifically, the relationship between signaling in appetitive and aversive circuits in these areas shifts as a function of learning. Furthermore, although appetitive and aversive circuits may often drive opposite behaviors – approaching or avoiding reinforcement depending upon its valence – these circuits can also drive similar behaviors, such as enhanced arousal or attention; these processes also may influence choice behavior. These data highlight the formidable challenges ahead in dissecting how appetitive and aversive neural circuits interact to produce a complex and nuanced range of behaviors. PMID:23189037
Kidney regeneration by xeno-embryonic nephrogenesis.
Yokoo, Takashi; Fukui, Akira; Matsumoto, Kei; Kawamura, Tetsuya
2008-03-01
Establishment of a functional whole kidney de novo has not received much attention because of the formidable challenges and the slow pace of advances in this field of research. This situation has changed recently with publication of data revealing the catastrophic nature of Medicaid costs for dialysis-related diseases. An innovative approach is needed in our search for therapies for kidney diseases and to provide a substitute for dialysis as soon as possible. Regenerative medicine offers great hope for realizing this goal. We established a system by which human mesenchymal stem cells can differentiate into a functional renal unit using a program of nephrogenesis in a developing xeno-embryo. In this article, recent research in the field of developing whole kidneys is reviewed, and possible therapeutic applications for kidney diseases are proposed in combination with our knowledge of the emerging field of kidney stem cell biology.
Progress on Updating the 1961-1990 National Solar Radiation Database
NASA Technical Reports Server (NTRS)
Renne, D.; Wilcox, S.; Marion, B.; George, R.; Myers, D.
2003-01-01
The 1961-1990 National Solar Radiation Data Base (NSRDB) provides a 30-year climate summary and solar characterization of 239 locations throughout the United States. Over the past several years, the National Renewable Energy Laboratory (NREL) has received numerous inquiries from a range of constituents as to whether an update of the database to include the 1990s will be developed. However, there are formidable challenges to creating an update of the serially complete station-specific database for the 1971-2000 period. During the 1990s, the National Weather Service changed its observational procedures from a human-based to an automated system, resulting in the loss of important input variables to the model used to complete the 1961-1990 NSRDB. As a result, alternative techniques are required for an update that covers the 1990s. This paper examines several alternative approaches for creating this update and describes preliminary NREL plans for implementing the update.
Targeted proteomics identifies liquid-biopsy signatures for extracapsular prostate cancer
Kim, Yunee; Jeon, Jouhyun; Mejia, Salvador; Yao, Cindy Q; Ignatchenko, Vladimir; Nyalwidhe, Julius O; Gramolini, Anthony O; Lance, Raymond S; Troyer, Dean A; Drake, Richard R; Boutros, Paul C; Semmes, O. John; Kislinger, Thomas
2016-01-01
Biomarkers are rapidly gaining importance in personalized medicine. Although numerous molecular signatures have been developed over the past decade, there is a lack of overlap and many biomarkers fail to validate in independent patient cohorts and hence are not useful for clinical application. For these reasons, identification of novel and robust biomarkers remains a formidable challenge. We combine targeted proteomics with computational biology to discover robust proteomic signatures for prostate cancer. Quantitative proteomics conducted in expressed prostatic secretions from men with extraprostatic and organ-confined prostate cancers identified 133 differentially expressed proteins. Using synthetic peptides, we evaluate them by targeted proteomics in a 74-patient cohort of expressed prostatic secretions in urine. We quantify a panel of 34 candidates in an independent 207-patient cohort. We apply machine-learning approaches to develop clinical predictive models for prostate cancer diagnosis and prognosis. Our results demonstrate that computationally guided proteomics can discover highly accurate non-invasive biomarkers. PMID:27350604
Electrophilicity: the "dark-side" of indole chemistry.
Bandini, Marco
2013-08-28
Indole is by far one of the most popular heterocyclic scaffolds in nature. The intriguing and challenging molecular architectures of polycyclic, naturally occurring indolyl compounds constitute a continuous stimulus for development in organic synthesis. The field had a formidable boom across the new millennium when catalysis started revolutionizing the chemistry of indole, providing always more convincing and sustainable solutions to the selective "decoration" of this pharmacophore. A common guideline of these approaches relies on the intrinsic overexpression of electron density of the indole core. Despite less diffusion, the "dark-side" of indole reactivity, electrophilicity, has been also elegantly documented with direct applications towards the realization of specific interatomic connections that would be difficult to obtain by means of conventional indole reactivity. The present Perspective article summarizes the major findings that brought the research area from the pioneering findings of the 60s to the state of the art.
Opioid Crisis: No Easy Fix to Its Social and Economic Determinants
Beletsky, Leo; Ciccarone, Daniel
2018-01-01
The accepted wisdom about the US overdose crisis singles out prescribing as the causative vector. Although drug supply is a key factor, we posit that the crisis is fundamentally fueled by economic and social upheaval, its etiology closely linked to the role of opioids as a refuge from physical and psychological trauma, concentrated disadvantage, isolation, and hopelessness. Overreliance on opioid medications is emblematic of a health care system that incentivizes quick, simplistic answers to complex physical and mental health needs. In an analogous way, simplistic measures to cut access to opioids offer illusory solutions to this multidimensional societal challenge. We trace the crisis’ trajectory through the intertwined use of opioid analgesics, heroin, and fentanyl analogs, and we urge engaging the structural determinants lens to address this formidable public health emergency. A broad focus on suffering should guide both patient- and community-level interventions. PMID:29267060
Mergers involving academic health centers: a formidable challenge.
Pellegrini, V D
2001-10-01
Escalating economic pressures on the clinical enterprise threaten the missions of education and research in many of the most prestigious academic health centers. Following the model of industry, mergers of the healthcare delivery systems of teaching hospitals and clinics held promise for economies of scale and an improved operating margin. Failure to follow business principles in constructing the merged entity, differences in organizational governance and culture, and inability of physician leadership to prioritize, downsize, and consolidate clinical programs to optimize operational efficiencies all compromise the success of such mergers in academic medicine. Academic institutions and their respective governing boards need to exercise greater discipline in financial analysis and a willingness to make difficult decisions that show favor to one parent institution over another if mergers are to be effective in this setting. To date, an example of a vibrant and successful merger of academic health centers remains to be found.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scribner, R.A.
Sea-launched cruise missiles (SLCMs) present some particularly striking problems for both national security and arms control. These small, dual-purpose, difficult to detect weapons present some formidable challenges for verification in any scheme that attempts to limit rather than eliminate them. Conventionally armed SLCMs offer to the navies of both superpowers important offensive and defensive capabilities. Nuclear armed, long-range, land-attack SLCMs, on the other hand, seem to pose destabilizing threats and otherwise have questionable value, despite strong US support for extensive deployment of them. If these weapons are not constrained, their deployment could circumvent gains which might be made in agreementsmore » directly reducing of strategic nuclear weapons. This paper reviews the technology and planned deployments of SLCMs, the verification schemes which have been discussed and are being investigated to try to deal with the problem, and examines the proposed need for and possible uses of SLCMs. It presents an overview of the problem technically, militarily, and politically.« less
Mechanical stimulation in the engineering of heart muscle.
Liaw, Norman Yu; Zimmermann, Wolfram-Hubertus
2016-01-15
Recreating the beating heart in the laboratory continues to be a formidable bioengineering challenge. The fundamental feature of the heart is its pumping action, requiring considerable mechanical forces to compress a blood filled chamber with a defined in- and outlet. Ventricular output crucially depends on venous loading of the ventricles (preload) and on the force generated by the preloaded ventricles to overcome arterial blood pressure (afterload). The rate of contraction is controlled by the spontaneously active sinus node and transmission of its electrical impulses into the ventricles. The underlying principles for these physiological processes are described by the Frank-Starling mechanism and Bowditch phenomenon. It is essential to consider these principles in the design and evaluation of tissue engineered myocardium. This review focuses on current strategies to evoke mechanical loading in hydrogel-based heart muscle engineering. Copyright © 2015. Published by Elsevier B.V.
Khurana, Surender
2018-04-27
Vaccination against influenza is the most effective approach for reducing influenza morbidity and mortality. However, influenza vaccines are unique among all licensed vaccines as they are updated and administered annually to antigenically match the vaccine strains and currently circulating influenza strains. Vaccine efficacy of each selected influenza virus vaccine varies depending on the antigenic match between circulating strains and vaccine strains, as well as the age and health status of the vaccine recipient. Low vaccine effectiveness of seasonal influenza vaccines in recent years provides an impetus to improve current seasonal influenza vaccines, and for development of next-generation influenza vaccines that can provide broader, long-lasting protection against both matching and antigenically diverse influenza strains. This review discusses a perspective on some of the issues and formidable challenges facing the development and regulation of the next-generation influenza vaccines.
The Centauri project: Manned interstellar travel
NASA Technical Reports Server (NTRS)
Ciesla, Thomas M.
1990-01-01
The development of antimatter engines for spacecraft propulsion will allow man to expand to the nearest stellar neighbors such as the Alpha Centuri system. Compared to chemically powered rockets like the Apollo mission class which would take 50,000 years to reach the Centauri system, antimatter propulsion would reduce one way trip time to 30 years or less. The challenges encountered by manned interstellar travel are formidable. The spacecraft must be a combination of sublight speed transportation system and a traveling microplanet serving an expanding population. As the population expands from the initial 100 people to approximately 300, the terraformed asteroid, enclosed by a man-made shell will allow for expansion over its surface in the fashion of a small terrestrial town. All aspects of human life - birth; death; physical, emotional, and educational needs; and government and law must be met by the structure, systems, and institutions on-board.
Synthesis and Stereochemical Assignment of Crypto-Optically Active (2) H6 -Neopentane.
Masarwa, Ahmad; Gerbig, Dennis; Oskar, Liron; Loewenstein, Aharon; Reisenauer, Hans Peter; Lesot, Philippe; Schreiner, Peter R; Marek, Ilan
2015-10-26
The determination of the absolute configuration of chiral molecules is at the heart of asymmetric synthesis. Here we probe the spectroscopic limits for chiral discrimination with NMR spectroscopy in chiral aligned media and with vibrational circular dichroism spectroscopy of the sixfold-deuterated chiral neopentane. The study of this compound presents formidable challenges since its stereogenicity is only due to small mass differences. For this purpose, we selectively prepared both enantiomers of (2) H6 -1 through a concise synthesis utilizing multifunctional intermediates. While NMR spectroscopy in chiral aligned media could be used to characterize the precursors to (2) H6 -1, the final assignment could only be accomplished with VCD spectroscopy, despite the fleetingly small dichroic properties of 1. Both enantiomers were assigned by matching the VCD spectra with those computed with density functional theory. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oxidative 1,2-carboamination of alkenes with alkyl nitriles and amines toward γ-amino alkyl nitriles
NASA Astrophysics Data System (ADS)
Liu, Yan-Yun; Yang, Xu-Heng; Song, Ren-Jie; Luo, Shenglian; Li, Jin-Heng
2017-04-01
Difunctionalization of alkenes has become a powerful tool for quickly increasing molecular complexity in synthesis. Despite significant progress in the area of alkene difunctionalization involving the incorporation of a nitrogen atom across the C-C double bonds, approaches for the direct 1,2-carboamination of alkenes to produce linear N-containing molecules are scarce and remain a formidable challenge. Here we describe a radical-mediated oxidative intermolecular 1,2-alkylamination of alkenes with alkyl nitriles and amines involving C(sp3)-H oxidative functionalization catalysed by a combination of Ag2CO3 with iron Lewis acids. This three-component alkene 1,2-alkylamination method is initiated by the C(sp3)-H oxidative radical functionalization, which enables one-step formation of two new chemical bonds, a C-C bond and a C-N bond, to selectively produce γ-amino alkyl nitriles.
Kim, Seonghwan; Lee, Dongkyu; Liu, Xunchen; Van Neste, Charles; Jeon, Sangmin; Thundat, Thomas
2013-01-01
Speciation of complex mixtures of trace explosives presents a formidable challenge for sensors that rely on chemoselective interfaces due to the unspecific nature of weak intermolecular interactions. Nanomechanical infrared (IR) spectroscopy provides higher selectivity in molecular detection without using chemoselective interfaces by measuring the photothermal effect of adsorbed molecules on a thermally sensitive microcantilever. In addition, unlike conventional IR spectroscopy, the detection sensitivity is drastically enhanced by increasing the IR laser power, since the photothermal signal comes from the absorption of IR photons and nonradiative decay processes. By using a broadly tunable quantum cascade laser for the resonant excitation of molecules, we increased the detection sensitivity by one order of magnitude compared to the use of a conventional IR monochromator. Here, we demonstrate the successful speciation and quantification of picogram levels of ternary mixtures of similar explosives (trinitrotoluene (TNT), cyclotrimethylene trinitramine (RDX), and pentaerythritol tetranitrate (PETN)) using nanomechanical IR spectroscopy. PMID:23346368
Relaxation dynamics of dysprosium(III) single molecule magnets.
Guo, Yun-Nan; Xu, Gong-Feng; Guo, Yang; Tang, Jinkui
2011-10-21
Over the past decade, lanthanide compounds have become of increasing interest in the field of Single Molecule Magnets (SMMs) due to the large inherent anisotropy of the metal ions. Heavy lanthanide metal systems, in particular those containing the dysprosium(III) ion, have been extensively employed to direct the formation of a series of SMMs. Although remarkable progress is being made regarding the synthesis and characterization of lanthanide-based SMMs, the understanding and control of the relaxation dynamics of strongly anisotropic systems represents a formidable challenge, since the dynamic behaviour of lanthanide-based SMMs is significantly more complex than that of transition metal systems. This perspective paper describes illustrative examples of pure dysprosium(III)-based SMMs, published during the past three years, showing new and fascinating phenomena in terms of magnetic relaxation, aiming at shedding light on the features relevant to modulating relaxation dynamics of polynuclear lanthanide SMMs. This journal is © The Royal Society of Chemistry 2011
A plasmonic nanorod that walks on DNA origami
Zhou, Chao; Duan, Xiaoyang; Liu, Na
2015-01-01
In nano-optics, a formidable challenge remains in precise transport of a single optical nano-object along a programmed and routed path toward a predefined destination. Molecular motors in living cells that can walk directionally along microtubules have been the inspiration for realizing artificial molecular walkers. Here we demonstrate an active plasmonic system, in which a plasmonic nanorod can execute directional, progressive and reverse nanoscale walking on two or three-dimensional DNA origami. Such a walker comprises an anisotropic gold nanorod as its ‘body' and discrete DNA strands as its ‘feet'. Specifically, our walker carries optical information and can in situ optically report its own walking directions and consecutive steps at nanometer accuracy, through dynamic coupling to a plasmonic stator immobilized along its walking track. Our concept will enable a variety of smart nanophotonic platforms for studying dynamic light–matter interaction, which requires controlled motion at the nanoscale well below the optical diffraction limit. PMID:26303016
Dorazio, Robert; Delampady, Mohan; Dey, Soumen; Gopalaswamy, Arjun M.; Karanth, K. Ullas; Nichols, James D.
2017-01-01
Conservationists and managers are continually under pressure from the public, the media, and political policy makers to provide “tiger numbers,” not just for protected reserves, but also for large spatial scales, including landscapes, regions, states, nations, and even globally. Estimating the abundance of tigers within relatively small areas (e.g., protected reserves) is becoming increasingly tractable (see Chaps. 9 and 10), but doing so for larger spatial scales still presents a formidable challenge. Those who seek “tiger numbers” are often not satisfied by estimates of tiger occupancy alone, regardless of the reliability of the estimates (see Chaps. 4 and 5). As a result, wherever tiger conservation efforts are underway, either substantially or nominally, scientists and managers are frequently asked to provide putative large-scale tiger numbers based either on a total count or on an extrapolation of some sort (see Chaps. 1 and 2).
Wilhelm Heinrich Erb, M.D. (1840 to 1921): a historical perspective on Erb's palsy.
Watt, Andrew J; Niederbichler, Andreas D; Yang, Lynda J-S; Chung, Kevin C
2007-06-01
Erb's palsy is well known to physicians across medical specialties, and its clinical manifestations present a formidable challenge to reconstructive surgeons. Although the condition is well established, knowledge pertaining to its namesake, Wilhelm Heinrich Erb, is rather obscure in the existing scientific literature. Erb was influential not only through his description of classic brachial plexus palsy involving the superior (or upper) roots, but also by his indelible contributions to our understanding of peripheral nerve physiology, deep tendon reflexes, and the muscular dystrophies. Erb's contributions to medicine transcend specialty boundaries. In this article, the authors seek to convey his scientific achievements and the character of the man through translation of his German manuscripts. These texts, complemented by the existing English literature, provide a unique perspective on Wilhelm Heinrich Erb's contribution to medicine. The authors will also emphasize his role in describing and clarifying the nature of Erb's palsy.
Moving beyond the stigma: systematic review of video games and their potential to combat obesity.
Guy, Stacey; Ratzki-Leewing, Alexandria; Gwadry-Sridhar, Femida
2011-01-01
Increasing epidemic proportions of overweight children in the United States presents formidable challenges for education and healthcare. Given the popularity and pervasiveness of video gaming culture in North American children, the perfect opportunity arises to investigate the potential of video games to promote healthful behaviour. Our objective was to systematically review the literature for possible benefits of active and educational video games targeting diet and physical activity in children. A review of English-language journal articles from 1998 to 2011 using EMBASE and PubMed was conducted. Thirty-four studies concerned with children, video games, physical, and/or nutritional outcomes were included. Results of these studies that showed some benefit (increased physical activity and nutritional knowledge as a result of gaming) demonstrate the possibility of video games to combat childhood obesity-looking beyond the stigma attached to gaming.
SBROME: a scalable optimization and module matching framework for automated biosystems design.
Huynh, Linh; Tsoukalas, Athanasios; Köppe, Matthias; Tagkopoulos, Ilias
2013-05-17
The development of a scalable framework for biodesign automation is a formidable challenge given the expected increase in part availability and the ever-growing complexity of synthetic circuits. To allow for (a) the use of previously constructed and characterized circuits or modules and (b) the implementation of designs that can scale up to hundreds of nodes, we here propose a divide-and-conquer Synthetic Biology Reusable Optimization Methodology (SBROME). An abstract user-defined circuit is first transformed and matched against a module database that incorporates circuits that have previously been experimentally characterized. Then the resulting circuit is decomposed to subcircuits that are populated with the set of parts that best approximate the desired function. Finally, all subcircuits are subsequently characterized and deposited back to the module database for future reuse. We successfully applied SBROME toward two alternative designs of a modular 3-input multiplexer that utilize pre-existing logic gates and characterized biological parts.
Novel Solid Electrolytes for Li-Ion Batteries: A Perspective from Electron Microscopy Studies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma, Cheng; Chi, Miaofang
2016-06-08
Solid electrolytes can simultaneously overcome two of the most formidable challenges of Li-ion batteries: the severe safety issues and insufficient energy densities. However, before they can be implemented in actual batteries, the ionic conductivity needs to be improved and the interface with electrodes must be optimized. The prerequisite for addressing these issues is a thorough understanding of the material’s behavior at the microscopic and/or the atomic level. (Scanning) transmission electron microscopy is a powerful tool for this purpose, as it can reach an ultrahigh spatial resolution. Here, we review recent electron microscopy investigations on the ion transport behavior in solidmore » electrolytes and their interfaces. Specifically, three aspects will be highlighted: the influence of grain interior atomic configuration on ionic conductivity, the contribution of grain boundaries, and the behavior of solid electrolyte/electrode interfaces. In conclusion, based on this, the perspectives for future research will be discussed.« less
Zhang, G H; Poon, Carmen C Y; Zhang, Y T
2010-01-01
Body sensor networks (BSNs) have emerged as a new technology for healthcare applications, but the security of communication in BSNs remains a formidable challenge yet to be resolved. The paper discusses the typical attacks faced by BSNs and proposes a fast biometric based approach to generate keys for ensuing confidentiality and authentication in BSN communications. The approach was tested on 900 segments of electrocardiogram. Each segment was 4 seconds long and used to generate a 128-bit key. The results of the study found that entropy of 96% of the keys were above 0.95 and 99% of the hamming distances calculated from any two keys were above 50 bits. Based on the randomness and distinctiveness of these keys, it is concluded that the fast biometric based approach has great potential to be used to secure communication in BSNs for health applications.
The dynamics of insight: mathematical discovery as a phase transition.
Stephen, Damian G; Boncoddo, Rebecca A; Magnuson, James S; Dixon, James A
2009-12-01
In recent work in cognitive science, it has been proposed that cognition is a self-organizing, dynamical system. However, capturing the real-time dynamics of cognition has been a formidable challenge. Furthermore, it has been unclear whether dynamics could effectively address the emergence of abstract concepts (e.g., language, mathematics). Here, we provide evidence that a quintessentially cognitive phenomenon-the spontaneous discovery of a mathematical relation-emerges through self-organization. Participants solved a series of gear-system problems while we tracked their eye movements. They initially solved the problems by manually simulating the forces of the gears but then spontaneously discovered a mathematical solution. We show that the discovery of the mathematical relation was predicted by changes in entropy and changes in power-law behavior, two hallmarks of phase transitions. Thus, the present study demonstrates the emergence of higher order cognitive phenomena through the nonlinear dynamics of self-organization.
Security Hardened Cyber Components for Nuclear Power Plants: Phase I SBIR Final Technical Report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Franusich, Michael D.
SpiralGen, Inc. built a proof-of-concept toolkit for enhancing the cyber security of nuclear power plants and other critical infrastructure with high-assurance instrumentation and control code. The toolkit is based on technology from the DARPA High-Assurance Cyber Military Systems (HACMS) program, which has focused on applying the science of formal methods to the formidable set of problems involved in securing cyber physical systems. The primary challenges beyond HACMS in developing this toolkit were to make the new technology usable by control system engineers and compatible with the regulatory and commercial constraints of the nuclear power industry. The toolkit, packaged as amore » Simulink add-on, allows a system designer to assemble a high-assurance component from formally specified and proven blocks and generate provably correct control and monitor code for that subsystem.« less
Principles of nanoparticle design for overcoming biological barriers to drug delivery
Blanco, Elvin; Shen, Haifa; Ferrari, Mauro
2016-01-01
Biological barriers to drug transport prevent successful accumulation of nanotherapeutics specifically at diseased sites, limiting efficacious responses in disease processes ranging from cancer to inflammation. Although substantial research efforts have aimed to incorporate multiple functionalities and moieties within the overall nanoparticle design, many of these strategies fail to adequately address these barriers. Obstacles, such as nonspecific distribution and inadequate accumulation of therapeutics, remain formidable challenges to drug developers. A reimagining of conventional nanoparticles is needed to successfully negotiate these impediments to drug delivery. Site-specific delivery of therapeutics will remain a distant reality unless nanocarrier design takes into account the majority, if not all, of the biological barriers that a particle encounters upon intravenous administration. By successively addressing each of these barriers, innovative design features can be rationally incorporated that will create a new generation of nanotherapeutics, realizing a paradigmatic shift in nanoparticle-based drug delivery. PMID:26348965
How to tell a new story about battering.
Polletta, Francesca
2009-12-01
As Evan Stark observes, getting domestic violence against women recognized as coercive control will require a major effort of storytelling. Women's accounts of subjugation have to be narrated in a way that is both true to their experiences and capable of eliciting public understanding, sympathy, and action. This essay draws on an interdisciplinary literature on narrative to show why doing that poses such a formidable challenge. In lieu of the tragic form that has dominated battered women's storytelling, and in lieu of the quest and mystery forms that appear in Stark's own accounts, this article argues for using a rebirth story line.This genre, which has affinities with the fairytales Snow White and Sleeping Beauty, seems an unlikely vehicle for asserting battered women's combination of victimization and agency. Drawing on the stories told by battered women as part of a successful reform effort, however, this article shows how women have used the form effectively.
Anatomy of quantum critical wave functions in dissipative impurity problems
NASA Astrophysics Data System (ADS)
Blunden-Codd, Zach; Bera, Soumya; Bruognolo, Benedikt; Linden, Nils-Oliver; Chin, Alex W.; von Delft, Jan; Nazir, Ahsan; Florens, Serge
2017-02-01
Quantum phase transitions reflect singular changes taking place in a many-body ground state; however, computing and analyzing large-scale critical wave functions constitutes a formidable challenge. Physical insights into the sub-Ohmic spin-boson model are provided by the coherent-state expansion (CSE), which represents the wave function by a linear combination of classically displaced configurations. We find that the distribution of low-energy displacements displays an emergent symmetry in the absence of spontaneous symmetry breaking while experiencing strong fluctuations of the order parameter near the quantum critical point. Quantum criticality provides two strong fingerprints in critical low-energy modes: an algebraic decay of the average displacement and a constant universal average squeezing amplitude. These observations, confirmed by extensive variational matrix-product-state (VMPS) simulations and field theory arguments, offer precious clues into the microscopics of critical many-body states in quantum impurity models.
Moving Beyond the Stigma: Systematic Review of Video Games and Their Potential to Combat Obesity
Guy, Stacey; Ratzki-Leewing, Alexandria; Gwadry-Sridhar, Femida
2011-01-01
Increasing epidemic proportions of overweight children in the United States presents formidable challenges for education and healthcare. Given the popularity and pervasiveness of video gaming culture in North American children, the perfect opportunity arises to investigate the potential of video games to promote healthful behaviour. Our objective was to systematically review the literature for possible benefits of active and educational video games targeting diet and physical activity in children. A review of English-language journal articles from 1998 to 2011 using EMBASE and PubMed was conducted. Thirty-four studies concerned with children, video games, physical, and/or nutritional outcomes were included. Results of these studies that showed some benefit (increased physical activity and nutritional knowledge as a result of gaming) demonstrate the possibility of video games to combat childhood obesity—looking beyond the stigma attached to gaming. PMID:21629863
Opioid Crisis: No Easy Fix to Its Social and Economic Determinants.
Dasgupta, Nabarun; Beletsky, Leo; Ciccarone, Daniel
2018-02-01
The accepted wisdom about the US overdose crisis singles out prescribing as the causative vector. Although drug supply is a key factor, we posit that the crisis is fundamentally fueled by economic and social upheaval, its etiology closely linked to the role of opioids as a refuge from physical and psychological trauma, concentrated disadvantage, isolation, and hopelessness. Overreliance on opioid medications is emblematic of a health care system that incentivizes quick, simplistic answers to complex physical and mental health needs. In an analogous way, simplistic measures to cut access to opioids offer illusory solutions to this multidimensional societal challenge. We trace the crisis' trajectory through the intertwined use of opioid analgesics, heroin, and fentanyl analogs, and we urge engaging the structural determinants lens to address this formidable public health emergency. A broad focus on suffering should guide both patient- and community-level interventions.
Ion specific correlations in bulk and at biointerfaces.
Kalcher, I; Horinek, D; Netz, R R; Dzubiella, J
2009-10-21
Ion specific effects are ubiquitous in any complex colloidal or biological fluid in bulk or at interfaces. The molecular origins of these 'Hofmeister effects' are not well understood and their theoretical description poses a formidable challenge to the modeling and simulation community. On the basis of the combination of atomistically resolved molecular dynamics (MD) computer simulations and statistical mechanics approaches, we present a few selected examples of specific electrolyte effects in bulk, at simple neutral and charged interfaces, and on a short α-helical peptide. The structural complexity in these strongly Coulomb-correlated systems is highlighted and analyzed in the light of available experimental data. While in general the comparison of MD simulations to experiments often lacks quantitative agreement, mostly because molecular force fields and coarse-graining procedures remain to be optimized, the consensus as regards trends provides important insights into microscopic hydration and binding mechanisms.
Quasiparticle Approach to Molecules Interacting with Quantum Solvents.
Lemeshko, Mikhail
2017-03-03
Understanding the behavior of molecules interacting with superfluid helium represents a formidable challenge and, in general, requires approaches relying on large-scale numerical simulations. Here, we demonstrate that experimental data collected over the last 20 years provide evidence that molecules immersed in superfluid helium form recently predicted angulon quasiparticles [Phys. Rev. Lett. 114, 203001 (2015)PRLTAO0031-900710.1103/PhysRevLett.114.203001]. Most important, casting the many-body problem in terms of angulons amounts to a drastic simplification and yields effective molecular moments of inertia as straightforward analytic solutions of a simple microscopic Hamiltonian. The outcome of the angulon theory is in good agreement with experiment for a broad range of molecular impurities, from heavy to medium-mass to light species. These results pave the way to understanding molecular rotation in liquid and crystalline phases in terms of the angulon quasiparticle.
Xiao, Dianne J; Bloch, Eric D; Mason, Jarad A; Queen, Wendy L; Hudson, Matthew R; Planas, Nora; Borycz, Joshua; Dzubak, Allison L; Verma, Pragya; Lee, Kyuho; Bonino, Francesca; Crocellà, Valentina; Yano, Junko; Bordiga, Silvia; Truhlar, Donald G; Gagliardi, Laura; Brown, Craig M; Long, Jeffrey R
2014-07-01
Enzymatic haem and non-haem high-valent iron-oxo species are known to activate strong C-H bonds, yet duplicating this reactivity in a synthetic system remains a formidable challenge. Although instability of the terminal iron-oxo moiety is perhaps the foremost obstacle, steric and electronic factors also limit the activity of previously reported mononuclear iron(IV)-oxo compounds. In particular, although nature's non-haem iron(IV)-oxo compounds possess high-spin S = 2 ground states, this electronic configuration has proved difficult to achieve in a molecular species. These challenges may be mitigated within metal-organic frameworks that feature site-isolated iron centres in a constrained, weak-field ligand environment. Here, we show that the metal-organic framework Fe2(dobdc) (dobdc(4-) = 2,5-dioxido-1,4-benzenedicarboxylate) and its magnesium-diluted analogue, Fe0.1Mg1.9(dobdc), are able to activate the C-H bonds of ethane and convert it into ethanol and acetaldehyde using nitrous oxide as the terminal oxidant. Electronic structure calculations indicate that the active oxidant is likely to be a high-spin S = 2 iron(IV)-oxo species.
Bioterror events: preemptive strategies for healthcare executives.
Zinkovich, Lisa; Malvey, Donna; Hamby, Eileen; Fottler, Myron
2005-01-01
Today's healthcare executives face challenges that their predecessors have never known: bioterror events. To prepare their organizations to cope with new and emerging strategic threats of bioterrorism, these executives must consider preemptive strategies. The authors present courses of action to assist executives' internal, external, and cross-sectional organizational preparedness. For example, stakeholder groups, internal resources, and competencies that combine and align efforts efficiently are identified. Twelve preemptive strategies are provided to guide healthcare executives in meeting these formidable and unprecedented challenges. The reputation of the healthcare organization (HCO) is at risk if a bioterror event is not properly handled, resulting in severe disadvantages for future operations. Justifiably, healthcare executives are contemplating the value of prioritizing bioterror preparedness, taking into account the immediate realities of decreasing reimbursement, increasing numbers of uninsured patients, and staffing shortages. Resources must be focused on the most valid concerns and must maximize the return on investment. Healthcare organizations can reap the benefits of a win-win approach by optimizing available resources, planning, and training. Bioterror preparedness will transcend the boundaries of bioterrorism and prepare for myriad mass healthcare incidents such as the looming potential for an avian (bird) influenza pandemic.
New Approaches to HSCT Multidisciplinary Design and Optimization
NASA Technical Reports Server (NTRS)
Schrage, D. P.; Craig, J. I.; Fulton, R. E.; Mistree, F.
1996-01-01
The successful development of a capable and economically viable high speed civil transport (HSCT) is perhaps one of the most challenging tasks in aeronautics for the next two decades. At its heart it is fundamentally the design of a complex engineered system that has significant societal, environmental and political impacts. As such it presents a formidable challenge to all areas of aeronautics, and it is therefore a particularly appropriate subject for research in multidisciplinary design and optimization (MDO). In fact, it is starkly clear that without the availability of powerful and versatile multidisciplinary design, analysis and optimization methods, the design, construction and operation of im HSCT simply cannot be achieved. The present research project is focused on the development and evaluation of MDO methods that, while broader and more general in scope, are particularly appropriate to the HSCT design problem. The research aims to not only develop the basic methods but also to apply them to relevant examples from the NASA HSCT R&D effort. The research involves a three year effort aimed first at the HSCT MDO problem description, next the development of the problem, and finally a solution to a significant portion of the problem.
Green turtle fibropapillomatosis: challenges to assessing the role of environmental cofactors.
Herbst, L H; Klein, P A
1995-01-01
Green turtle fibropapillomatosis (GTFP) is a growing threat to the survival of green turtle (Chelonia mydas) populations worldwide. Recent transmission studies point to an infectious etiology. Several field studies suggest that high GTFP prevalence is associated with marine habitats that have been impacted by agricultural, industrial, or urban development. Environmental contaminants could be involved in GTFP through several plausible mechanisms including cocarcinogenesis and contaminant-induced immune suppression. However, an association of contaminants with GTFP has not been established. A broader perspective is needed when studying infectious diseases such as GTFP in complex ecosystems. Alternative explanations for high GTFP prevalence in some near-shore habitats include the following: a) these habitats provide an optimum physical environment for survival and transmission of the infectious agent; b) these habitats attract a high density of susceptible turtles or harbor a higher density of potential vectors, facilitating transmission of the pathogen in a density-dependent fashion; and c) these habitats may contain other stressors that render turtles more susceptible to GTFP. Application of scientifically rigorous criteria in the epizootiology of GTFP in free-ranging populations remains a formidable challenge. Images Figure 1. PMID:7556020
A case of a power failure in the operating room.
Yasny, Jeffrey; Soffer, Robert
2005-01-01
In the operating room, safely administering anesthesia amidst a major power failure can instantly present one with a formidable challenge. A case is presented involving a 23-year-old healthy woman who underwent a complex oral and maxillofacial surgery to correct a dentofacial deformity. Three hours into the case and with the patient's maxilla downfractured, the overhead surgical lights blacked out, and there was an apparent loss of the anesthesia machine's ability to function. Providing adequate oxygenation, ventilation, anesthesia levels, monitoring of vital signs, and transportation of the patient were some of the challenges faced, and the response to this unexpected event is recounted. The importance of one's familiarity with an anesthesia machine's backup battery supply, routinely checking machinery, ensuring that appropriate and sufficient supplies are readily available, exercising calm leadership with clear communication, and formulating a clear plan with backup alternatives are discussed. Various recommendations are proposed with respect to the preparation for and the prevention of a power failure in the operating room. This report's account of events is aimed to "shed some light" on this topic, serve as a check of one's own preparedness, and facilitate the optimal management of a similarly unexpected incident.
Cancer chemoprevention research with selenium in the post-SELECT era: Promises and challenges
Lü, Junxuan; Zhang, Jinhui; Jiang, Cheng; Deng, Yibin; Özten, Nur; Bosland, Maarten C.
2016-01-01
The negative efficacy outcomes of double-blinded, randomized, placebo-controlled Phase III human clinical trials with selenomethionine (SeMet) and SeMet-rich selenized-yeast (Se-yeast) for prostate cancer prevention and Se-yeast for prevention of non-small cell lung cancer (NSCLC) in North America lead to rejection of SeMet/Se-yeast for cancer prevention in Se-adequate populations. We identify two major lessons from the outcomes of these trials: 1) The antioxidant hypothesis was tested in wrong subjects or patient populations. 2) The selection of Se agents was not supported by cell culture and preclinical animal efficacy data as is common in drug development. We propose that next-generation forms of Se (next-gen Se), such as methylselenol precursors, offer biologically appropriate approaches for cancer chemoprevention but these are faced with formidable challenges. Solid mechanism-based preclinical efficacy assessments and comprehensive safety studies with next-gen Se will be essential to re-vitalize the idea of cancer chemoprevention with Se in the post-SELECT era. We advocate smaller mechanism-driven Phase I/II trials with these next-gen Se to guide and justify future decisions for definitive Phase III chemoprevention efficacy trials. PMID:26595411
Cancer chemoprevention research with selenium in the post-SELECT era: Promises and challenges.
Lü, Junxuan; Zhang, Jinhui; Jiang, Cheng; Deng, Yibin; Özten, Nur; Bosland, Maarten C
2016-01-01
The negative efficacy outcomes of double-blinded, randomized, placebo-controlled Phase III human clinical trials with selenomethionine (SeMet) and SeMet-rich selenized-yeast (Se-yeast) for prostate cancer prevention and Se-yeast for prevention of nonsmall cell lung cancer (NSCLC) in North America lead to rejection of SeMet/Se-yeast for cancer prevention in Se-adequate populations. We identify 2 major lessons from the outcomes of these trials: 1) the antioxidant hypothesis was tested in wrong subjects or patient populations, and 2) the selection of Se agents was not supported by cell culture and preclinical animal efficacy data as is common in drug development. We propose that next-generation forms of Se (next-gen Se), such as methylselenol precursors, offer biologically appropriate approaches for cancer chemoprevention but these are faced with formidable challenges. Solid mechanism-based preclinical efficacy assessments and comprehensive safety studies with next-gen Se will be essential to revitalize the idea of cancer chemoprevention with Se in the post-SELECT era. We advocate smaller mechanism-driven Phase I/II trials with these next-gen Se to guide and justify future decisions for definitive Phase III chemoprevention efficacy trials.
Groves, Kevin S
2017-08-03
Spearheaded by the industry's transition from volume- to value-based care, the health care reform movement has spurred both unprecedented challenges and opportunities for developing more effective and sustainable health care delivery organizations. Whereas the formidable challenges of leading hospitals and health systems have been widely discussed, including reimbursement degradation, the rapidly aging workforce, and the imminent wave of executive retirements, the opportunity to leverage succession management and talent development capabilities to overcome these challenges has been largely overlooked. To address this key research and practice need, this multiphase study develops and validates an assessment of succession management practices for health care organizations. Utilizing data collected from two national samples of hospital organizations, the results provide a 32-item succession management assessment comprising seven distinct sets of succession management practices. The results indicate that succession management practices are strongly associated with multiple hospital performance metrics, including patient satisfaction and Medicare Spending per Beneficiary, leadership bench strength, and internal/external placement rate for executive level positions. The author concludes this article with a discussion of several practical implications for health care executives and boards, including employing the succession management assessment for diagnosing development opportunities, benchmarking succession planning and talent development practices against similar hospitals or health systems, and elevating the profile of succession management as a strategic priority in today's increasingly uncertain health care landscape.
Improved proton CT imaging using a bismuth germanium oxide scintillator.
Tanaka, Sodai; Nishio, Teiji; Tsuneda, Masato; Matsushita, Keiichiro; Kabuki, Shigeto; Uesaka, Mitsuru
2018-02-02
Range uncertainty is among the most formidable challenges associated with the treatment planning of proton therapy. Proton imaging, which includes proton radiography and proton computed tomography (pCT), is a useful verification tool. We have developed a pCT detection system that uses a thick bismuth germanium oxide (BGO) scintillator and a CCD camera. The current method is based on a previous detection system that used a plastic scintillator, and implements improved image processing techniques. In the new system, the scintillation light intensity is integrated along the proton beam path by the BGO scintillator, and acquired as a two-dimensional distribution with the CCD camera. The range of a penetrating proton is derived from the integrated light intensity using a light-to-range conversion table, and a pCT image can be reconstructed. The proton range in the BGO scintillator is shorter than in the plastic scintillator, so errors due to extended proton ranges can be reduced. To demonstrate the feasibility of the pCT system, an experiment was performed using a 70 MeV proton beam created by the AVF930 cyclotron at the National Institute of Radiological Sciences. The accuracy of the light-to-range conversion table, which is susceptible to errors due to its spatial dependence, was investigated, and the errors in the acquired pixel values were less than 0.5 mm. Images of various materials were acquired, and the pixel-value errors were within 3.1%, which represents an improvement over previous results. We also obtained a pCT image of an edible chicken piece, the first of its kind for a biological material, and internal structures approximately one millimeter in size were clearly observed. This pCT imaging system is fast and simple, and based on these findings, we anticipate that we can acquire 200 MeV pCT images using the BGO scintillator system.
Improved proton CT imaging using a bismuth germanium oxide scintillator
NASA Astrophysics Data System (ADS)
Tanaka, Sodai; Nishio, Teiji; Tsuneda, Masato; Matsushita, Keiichiro; Kabuki, Shigeto; Uesaka, Mitsuru
2018-02-01
Range uncertainty is among the most formidable challenges associated with the treatment planning of proton therapy. Proton imaging, which includes proton radiography and proton computed tomography (pCT), is a useful verification tool. We have developed a pCT detection system that uses a thick bismuth germanium oxide (BGO) scintillator and a CCD camera. The current method is based on a previous detection system that used a plastic scintillator, and implements improved image processing techniques. In the new system, the scintillation light intensity is integrated along the proton beam path by the BGO scintillator, and acquired as a two-dimensional distribution with the CCD camera. The range of a penetrating proton is derived from the integrated light intensity using a light-to-range conversion table, and a pCT image can be reconstructed. The proton range in the BGO scintillator is shorter than in the plastic scintillator, so errors due to extended proton ranges can be reduced. To demonstrate the feasibility of the pCT system, an experiment was performed using a 70 MeV proton beam created by the AVF930 cyclotron at the National Institute of Radiological Sciences. The accuracy of the light-to-range conversion table, which is susceptible to errors due to its spatial dependence, was investigated, and the errors in the acquired pixel values were less than 0.5 mm. Images of various materials were acquired, and the pixel-value errors were within 3.1%, which represents an improvement over previous results. We also obtained a pCT image of an edible chicken piece, the first of its kind for a biological material, and internal structures approximately one millimeter in size were clearly observed. This pCT imaging system is fast and simple, and based on these findings, we anticipate that we can acquire 200 MeV pCT images using the BGO scintillator system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Settens, Charles M.
2015-01-01
Simultaneous migration of planar transistors to FinFET architectures, the introduction of a plurality of materials to ensure suitable electrical characteristics, and the establishment of reliable multiple patterning lithography schemes to pattern sub-10 nm feature sizes imposes formidable challenges to current in-line dimensional metrologies. Because the shape of a FinFET channel cross-section immediately influences the electrical characteristics, the evaluation of 3D device structures requires measurement of parameters beyond traditional critical dimension (CD), including their sidewall angles, top corner rounding and footing, roughness, recesses and undercuts at single nanometer dimensions; thus, metrologies require sub-nm and approaching atomic level measurement uncertainty. Synchrotron criticalmore » dimension small angle X-ray scattering (CD-SAXS) has unique capabilities to non-destructively monitor the cross-section shape of surface structures with single nanometer uncertainty and can perform overlay metrology to sub-nm uncertainty. In this dissertation, we perform a systematic experimental investigation using CD-SAXS metrology on a hierarchy of semiconductor 3D device architectures including, high-aspect-ratio contact holes, H2 annealed Si fins, and a series of grating type samples at multiple points along a FinFET fabrication process increasing in structural intricacy and ending with fully fabricated FinFET. Comparative studies between CD-SAXS metrology and other relevant semiconductor dimensional metrologies, particularly CDSEM, CD-AFM and TEM are used to determine physical limits of CD-SAXS approach for advanced semiconductor samples. CD-SAXS experimental tradeoffs, advice for model-dependent analysis and thoughts on the compatibility with a semiconductor manufacturing environment are discussed.« less
Efficacy of High Frequency Ultrasound in Localization and Characterization of Orbital Lesions
Gurushankar, G; Bhimarao; Kadakola, Bindushree
2015-01-01
Background The complicated anatomy of orbit and the wide spectrum of pathological conditions present a formidable challenge for early diagnosis, which is critical for management. Ultrasonography provides a detailed cross sectional anatomy of the entire globe with excellent topographic visualization and real time display of the moving organ. Objectives of the study To evaluate the efficacy of high frequency Ultrasound in localization of orbital diseases and to characterize various orbital pathologies sonologically. Materials and Methods Hundred eyes of 85 patients were examined with ultrasound using linear high frequency probe (5 to 17 MHz) of PHILPS IU22 ultrasound system. Sonological diagnosis was made based on location, acoustic characteristics, kinetic properties and Doppler flow dynamics. Final diagnosis was made based on clinical & laboratory findings/higher cross-sectional imaging/surgery & histopathology (as applicable). Diagnostic accuracy of ultrasonography was evaluated and compared with final diagnosis. Results The distinction between ocular and extraocular pathologies was made in 100% of cases. The overall sensitivity, specificity, NPV and accuracy of ultrasonography were 94.2%, 98.8%, 92.2% & 94.9% respectively for diagnosis of ocular pathologies and 94.2%, 99.2%, 95.9% & 95.2% respectively for extra ocular pathologies. Conclusion Ultrasonography is a readily available, simple, cost effective, non ionizing and non invasive modality with overall high diagnostic accuracy in localising and characterising orbital pathologies. It has higher spatial and temporal resolution compared to CT/MRI. However, CT/MRI may be indicated in certain cases for the evaluation of calcifications, bony involvement, extension to adjacent structures and intracranial extension. PMID:26500977
Advanced Signal Processing Techniques Applied to Terahertz Inspections on Aerospace Foams
NASA Technical Reports Server (NTRS)
Trinh, Long Buu
2009-01-01
The space shuttle's external fuel tank is thermally insulated by the closed cell foams. However, natural voids composed of air and trapped gas are found as by-products when the foams are cured. Detection of foam voids and foam de-bonding is a formidable task owing to the small index of refraction contrast between foam and air (1.04:1). In the presence of a denser binding matrix agent that bonds two different foam materials, time-differentiation of filtered terahertz signals can be employed to magnify information prior to the main substrate reflections. In the absence of a matrix binder, de-convolution of the filtered time differential terahertz signals is performed to reduce the masking effects of antenna ringing. The goal is simply to increase probability of void detection through image enhancement and to determine the depth of the void.
Liquid-Crystalline Elastomers with Gold Nanoparticle Cross-Linkers.
Wójcik, Michał M; Wróbel, Jarosław; Jańczuk, Zuzanna Z; Mieczkowski, Józef; Górecka, Ewa; Choi, Joonmyung; Cho, Maenghyo; Pociecha, Damian
2017-07-03
Embedding nanoparticles in a responsive polymer matrix is a formidable way to fabricate hybrid materials with predesigned properties and prospective applications in actuators, mechanically tunable optical elements, and electroclinic films. However, achieving chemical compatibility between nanoparticles and organic matter is not trivial and often results in disordered structures. Herein, it is shown that using nanoparticles as exclusive cross-linkers in the preparation of liquid-crystalline polymers can yield long-range-ordered liquid-crystalline elastomers with high loadings of well-dispersed nanoparticles, as confirmed by small-angle XRD measurements. Moreover, the strategy of incorporating NPs as cross-linking units does not result in disruption of mechanical properties of the polymer, and this phenomenon was explained by the means of all-atom molecular dynamics simulations. Such materials can exhibit switchable behavior under thermal stimulus with stability spanning over multiple heating/cooling cycles. The presented strategy has proven to be a promising approach for the preparation of new types of hybrid liquid-crystalline elastomers that can be of value for future photonic applications. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Oscherwitz, Jon; Feldman, Daniel; Yu, Fen; Cease, Kemp B
2015-01-09
Anthrax represents a formidable bioterrorism threat for which new, optimized vaccines are required. We previously demonstrated that epitope-focused multiple antigenic peptides or a recombinant protein in Freund's adjuvant can elicit Ab against the loop neutralizing determinant (LND), a cryptic linear neutralizing epitope in the 2ß2-2ß3 loop of protective antigen from Bacillus anthracis, which mediated protection of rabbits from inhalation challenge with B. anthracis Ames strain. However, demonstration of efficacy using human-use adjuvants is required before proceeding with further development of an LND vaccine for testing in non-human primates and humans. To optimize the LND immunogen, we first evaluated the protective efficacy and immune correlates associated with immunization of rabbits with mixtures containing two molecular variants of multiple antigenic peptides in Freunds adjuvant, termed BT-LND(2) and TB-LND(2). TB-LND(2) was then further evaluated for protective efficacy in rabbits employing human-use adjuvants. Immunization of rabbits with TB-LND(2) in human-use adjuvants elicited protection from Ames strain spore challenge which was statistically indistinguishable from that elicited through immunization with protective antigen. All TB-LND(2) rabbits with any detectable serum neutralization prior to challenge were protected from aerosolized spore exposure. Remarkably, rabbits immunized with TB-LND(2) in Alhydrogel/CpG had significant anamnestic increases in post-challenge LND-specific Ab and neutralization titers despite little evidence of spore germination in these rabbits. An LND-specific epitope-focused vaccine may complement PA-based vaccines and may represent a complementary stand-alone vaccine for anthrax. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hidden weapons of microbial destruction in plant genomes
Manners, John M
2007-01-01
Recent bioinformatic analyses of sequenced plant genomes reveal a previously unrecognized abundance of genes encoding antimicrobial cysteine-rich peptides, representing a formidable and dynamic defense arsenal against plant pests and pathogens. PMID:17903311
A deep etching mechanism for trench-bridging silicon nanowires
NASA Astrophysics Data System (ADS)
Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Erdem Alaca, B.
2016-03-01
Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.
Tissue engineering: state of the art in oral rehabilitation
SCHELLER, E. L.; KREBSBACH, P. H.; KOHN, D. H.
2009-01-01
SUMMARY More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering. PMID:19228277
Tissue engineering: state of the art in oral rehabilitation.
Scheller, E L; Krebsbach, P H; Kohn, D H
2009-05-01
More than 85% of the global population requires repair or replacement of a craniofacial structure. These defects range from simple tooth decay to radical oncologic craniofacial resection. Regeneration of oral and craniofacial tissues presents a formidable challenge that requires synthesis of basic science, clinical science and engineering technology. Identification of appropriate scaffolds, cell sources and spatial and temporal signals (the tissue engineering triad) is necessary to optimize development of a single tissue, hybrid organ or interface. Furthermore, combining the understanding of the interactions between molecules of the extracellular matrix and attached cells with an understanding of the gene expression needed to induce differentiation and tissue growth will provide the design basis for translating basic science into rationally developed components of this tissue engineering triad. Dental tissue engineers are interested in regeneration of teeth, oral mucosa, salivary glands, bone and periodontium. Many of these oral structures are hybrid tissues. For example, engineering the periodontium requires growth of alveolar bone, cementum and the periodontal ligament. Recapitulation of biological development of hybrid tissues and interfaces presents a challenge that exceeds that of engineering just a single tissue. Advances made in dental interface engineering will allow these tissues to serve as model systems for engineering other tissues or organs of the body. This review will begin by covering basic tissue engineering principles and strategic design of functional biomaterials. We will then explore the impact of biomaterials design on the status of craniofacial tissue engineering and current challenges and opportunities in dental tissue engineering.
A deep etching mechanism for trench-bridging silicon nanowires.
Tasdemir, Zuhal; Wollschläger, Nicole; Österle, Werner; Leblebici, Yusuf; Alaca, B Erdem
2016-03-04
Introducing a single silicon nanowire with a known orientation and dimensions to a specific layout location constitutes a major challenge. The challenge becomes even more formidable, if one chooses to realize the task in a monolithic fashion with an extreme topography, a characteristic of microsystems. The need for such a monolithic integration is fueled by the recent surge in the use of silicon nanowires as functional building blocks in various electromechanical and optoelectronic applications. This challenge is addressed in this work by introducing a top-down, silicon-on-insulator technology. The technology provides a pathway for obtaining well-controlled silicon nanowires along with the surrounding microscale features up to a three-order-of-magnitude scale difference. A two-step etching process is developed, where the first shallow etch defines a nanoscale protrusion on the wafer surface. After applying a conformal protection on the protrusion, a deep etch step is carried out forming the surrounding microscale features. A minimum nanowire cross-section of 35 nm by 168 nm is demonstrated in the presence of an etch depth of 10 μm. Nanowire cross-sectional features are characterized via transmission electron microscopy and linked to specific process steps. The technology allows control on all dimensional aspects along with the exact location and orientation of the silicon nanowire. The adoption of the technology in the fabrication of micro and nanosystems can potentially lead to a significant reduction in process complexity by facilitating direct access to the nanowire during surface processes such as contact formation and doping.
Mooney, Deirdre M; Fung, Erik; Doshi, Rahul N; Shavelle, David M
2015-01-01
Heart failure (HF) is a costly, challenging and highly prevalent medical condition. Hospitalization for acute decompensation is associated with high morbidity and mortality. Despite application of evidence-based medical therapies and technologies, HF remains a formidable challenge for virtually all healthcare systems. Repeat hospitalizations for acute decompensated HF (ADHF) can have major financial impact on institutions and resources. Early and accurate identification of impending ADHF is of paramount importance yet there is limited high quality evidence or infrastructure to guide management in the outpatient setting. Historically, ADHF was identified by physical exam findings or invasive hemodynamic monitoring during a hospital admission; however, advances in medical microelectronics and the advent of device-based diagnostics have enabled long-term ambulatory monitoring of HF patients in the outpatient setting. These monitors have evolved from piggybacking on cardiac implantable electrophysiologic devices to standalone implantable hemodynamic monitors that transduce left atrial or pulmonary artery pressures as surrogate measures of left ventricular filling pressure. As technology evolves, devices will likely continue to miniaturize while their capabilities grow. An important, persistent challenge that remains is developing systems to translate the large volumes of real-time data, particularly data trends, into actionable information that leads to appropriate, safe and timely interventions without overwhelming outpatient cardiology and general medical practices. Future directions for implantable hemodynamic monitors beyond their utility in heart failure may include management of other major chronic diseases such as pulmonary hypertension, end stage renal disease and portal hypertension.
Cultured meat from stem cells: challenges and prospects.
Post, Mark J
2012-11-01
As one of the alternatives for livestock meat production, in vitro culturing of meat is currently studied. The generation of bio-artificial muscles from satellite cells has been ongoing for about 15 years, but has never been used for generation of meat, while it already is a great source of animal protein. In order to serve as a credible alternative to livestock meat, lab or factory grown meat should be efficiently produced and should mimic meat in all of its physical sensations, such as visual appearance, smell, texture and of course, taste. This is a formidable challenge even though all the technologies to create skeletal muscle and fat tissue have been developed and tested. The efficient culture of meat will primarily depend on culture conditions such as the source of medium and its composition. Protein synthesis by cultured skeletal muscle cells should further be maximized by finding the optimal combination of biochemical and physical conditions for the cells. Many of these variables are known, but their interactions are numerous and need to be mapped. This involves a systematic, if not systems, approach. Given the urgency of the problems that the meat industry is facing, this endeavor is worth undertaking. As an additional benefit, culturing meat may provide opportunities for production of novel and healthier products. Copyright © 2012 Elsevier Ltd. All rights reserved.
Predicting protein structures with a multiplayer online game.
Cooper, Seth; Khatib, Firas; Treuille, Adrien; Barbero, Janos; Lee, Jeehyung; Beenen, Michael; Leaver-Fay, Andrew; Baker, David; Popović, Zoran; Players, Foldit
2010-08-05
People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully 'crowd-sourced' through games, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.
Chandra mission scheduling on-orbit experience
NASA Astrophysics Data System (ADS)
Bucher, Sabina; Williams, Brent; Pendexter, Misty; Balke, David
2008-07-01
Scheduling observatory time to maximize both day-to-day science target integration time and the lifetime of the observatory is a formidable challenge. Furthermore, it is not a static problem. Of course, every schedule brings a new set of observations, but the boundaries of the problem change as well. As spacecraft ages, its capabilities may degrade. As in-flight experience grows, capabilities may expand. As observing programs are completed, the needs and expectations of the science community may evolve. Changes such as these impact the rules by which a mission scheduled. In eight years on orbit, the Chandra X-Ray Observatory Mission Planning process has adapted to meet the challenge of maximizing day-to-day and mission lifetime science return, despite a consistently evolving set of scheduling constraints. The success of the planning team has been achieved, not through the use of complex algorithms and optimization routines, but through processes and home grown tools that help individuals make smart short term and long term Mission Planning decisions. This paper walks through the processes and tools used to plan and produce mission schedules for the Chandra X-Ray Observatory. Nominal planning and scheduling, target of opportunity response, and recovery from on-board autonomous safing actions are all addressed. Evolution of tools and processes, best practices, and lessons learned are highlighted along the way.
Exercise and Diabetes: A Narrative Review.
Jenkins, David W; Jenks, Alexander
Persons with diabetes might experience significant benefits through regular exercise. Not unlike the general population, those with diabetes could also lack motivation to participate in an exercise program. Often, those treating persons with diabetes lack training and/or interest in exercise prescription and are therefore unable to provide the needed information and encouragement. In many cases, reluctance to exercise could result from an inability to find an enjoyable exercise activity. Attempts to find activities that, not only provide effective aerobic challenges, but are also enjoyable to participate in are fraught with difficulty. Three electronic databases were searched in January 2017. Evidence for the merits of exercise for those with diabetes was robust. Numerous reports have addressed the degree of noncompliance to exercise recommendations and the barriers reported for this nonadherence. Additional studies concluded that most medical providers are deficient in formal training in the prescription of an exercise program. Newer studies are evaluating the effects of exercise and vitamin D supplementation and their interplay with diabetic peripheral neuropathy and ulceration. Exercise confers remarkable benefits to those with diabetes; however, the challenges to compelling patients with diabetes to exercise are formidable. An improved focus on exercise prescription and related motivation during provider training must be undertaken. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.
Assessing Omitted Confounder Bias in Multilevel Mediation Models.
Tofighi, Davood; Kelley, Ken
2016-01-01
To draw valid inference about an indirect effect in a mediation model, there must be no omitted confounders. No omitted confounders means that there are no common causes of hypothesized causal relationships. When the no-omitted-confounder assumption is violated, inference about indirect effects can be severely biased and the results potentially misleading. Despite the increasing attention to address confounder bias in single-level mediation, this topic has received little attention in the growing area of multilevel mediation analysis. A formidable challenge is that the no-omitted-confounder assumption is untestable. To address this challenge, we first analytically examined the biasing effects of potential violations of this critical assumption in a two-level mediation model with random intercepts and slopes, in which all the variables are measured at Level 1. Our analytic results show that omitting a Level 1 confounder can yield misleading results about key quantities of interest, such as Level 1 and Level 2 indirect effects. Second, we proposed a sensitivity analysis technique to assess the extent to which potential violation of the no-omitted-confounder assumption might invalidate or alter the conclusions about the indirect effects observed. We illustrated the methods using an empirical study and provided computer code so that researchers can implement the methods discussed.
Emerging infectious diseases in southeast Asia: regional challenges to control.
Coker, Richard J; Hunter, Benjamin M; Rudge, James W; Liverani, Marco; Hanvoravongchai, Piya
2011-02-12
Southeast Asia is a hotspot for emerging infectious diseases, including those with pandemic potential. Emerging infectious diseases have exacted heavy public health and economic tolls. Severe acute respiratory syndrome rapidly decimated the region's tourist industry. Influenza A H5N1 has had a profound effect on the poultry industry. The reasons why southeast Asia is at risk from emerging infectious diseases are complex. The region is home to dynamic systems in which biological, social, ecological, and technological processes interconnect in ways that enable microbes to exploit new ecological niches. These processes include population growth and movement, urbanisation, changes in food production, agriculture and land use, water and sanitation, and the effect of health systems through generation of drug resistance. Southeast Asia is home to about 600 million people residing in countries as diverse as Singapore, a city state with a gross domestic product (GDP) of US$37,500 per head, and Laos, until recently an overwhelmingly rural economy, with a GDP of US$890 per head. The regional challenges in control of emerging infectious diseases are formidable and range from influencing the factors that drive disease emergence, to making surveillance systems fit for purpose, and ensuring that regional governance mechanisms work effectively to improve control interventions. Copyright © 2011 Elsevier Ltd. All rights reserved.
Ebeling, Johannes; Yasué, Maï
2008-05-27
Recent proposals to compensate developing countries for reducing emissions from deforestation (RED) under forthcoming climate change mitigation regimes are receiving increasing attention. Here we demonstrate that if RED credits were traded on international carbon markets, even moderate decreases in deforestation rates could generate billions of Euros annually for tropical forest conservation. We also discuss the main challenges for a RED mechanism that delivers real climatic benefits. These include providing sufficient incentives while only rewarding deforestation reductions beyond business-as-usual scenarios, addressing risks arising from forest degradation and international leakage, and ensuring permanence of emission reductions. Governance may become a formidable challenge for RED because some countries with the highest RED potentials score poorly on governance indices. In addition to climate mitigation, RED funds could help achieve substantial co-benefits for biodiversity conservation and human development. However, this will probably require targeted additional support because the highest biodiversity threats and human development needs may exist in countries that have limited income potentials from RED. In conclusion, how successfully a market-based RED mechanism can contribute to climate change mitigation, conservation and development will strongly depend on accompanying measures and carefully designed incentive structures involving governments, business, as well as the conservation and development communities.
An overview of the regulation of influenza vaccines in the United States.
Weir, Jerry P; Gruber, Marion F
2016-09-01
Influenza virus vaccines are unique among currently licensed viral vaccines. The vaccines designed to protect against seasonal influenza illness must be updated periodically in an effort to match the vaccine strain with currently circulating viruses, and the vaccine manufacturing timeline includes multiple, overlapping processes with a very limited amount of flexibility. In the United States (U.S.), over 150 million doses of seasonal trivalent and quadrivalent vaccine are produced annually, a mammoth effort, particularly in the context of a vaccine with components that usually change on a yearly basis. In addition, emergence of an influenza virus containing an HA subtype that has not recently circulated in humans is an ever present possibility. Recently, pandemic influenza vaccines have been licensed, and the pathways for licensure of pandemic vaccines and subsequent strain updating have been defined. Thus, there are formidable challenges for the regulation of currently licensed influenza vaccines, as well as for the regulation of influenza vaccines under development. This review describes the process of licensing influenza vaccines in the U.S., the process and steps involved in the annual updating of seasonal influenza vaccines, and some recent experiences and regulatory challenges faced in development and evaluation of novel influenza vaccines. © 2016 The Authors. Influenza and Other Respiratory Viruses Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Granozzi, Gaetano; Bao, Xinhe
2015-04-01
Graphene (G) is an extremely intriguing material that is arousing a formidable interest in many different fields since it was first produced in a conscious manner in a lab in 2003 [1]. The name "graphene" was officially proposed in 1994 [2], but "monolayer graphite" has already been investigated by various surface scientists in earlier times [3]. Nowadays, G has gained prominence among other materials thanks to its exceptional properties, e.g. superb carrier mobility, high surface area, excellent thermal conductivity, and elevated intrinsic mechanical strength. So many words have already been spent to emphasize its peculiar properties that it is needless to add more efforts to convince scientists on the actual breakthroughs that graphene can provide. There are only two factors that we would like to emphasize herein. The first is associated with the mass production of G [4], which nowadays has become a reality. The expected reduction in price could make G competitive in many innovative applications. The second point is related to the common belief that G will withstand the normal seven-step sequence for any new technology (hope-hype-boom-bust-disillusionment-shakeout-profitability) and will meet expectations for profitability even faster than the other carbon allotropes [5].
Improving wheat to remove coeliac epitopes but retain functionality
Shewry, Peter R.; Tatham, Arthur S.
2016-01-01
Coeliac disease is an intolerance triggered by the ingestion of wheat gluten proteins. It is of increasing concern to consumers and health professionals as its incidence appears to be increasing. The amino acid sequences in gluten proteins that are responsible for triggering responses in sensitive individuals have been identified showing that they vary in distribution among and between different groups of gluten proteins. Conventional breeding may therefore be used to select for gluten protein fractions with lower contents of coeliac epitopes. Molecular breeding approaches can also be used to specifically down-regulate coeliac-toxic proteins or mutate coeliac epitopes within individual proteins. A combination of these approaches may therefore be used to develop a “coeliac-safe” wheat. However, this remains a formidable challenge due to the complex multigenic control of gluten protein composition. Furthermore, any modified wheats must retain acceptable properties for making bread and other processed foods. Not surprisingly, such coeliac-safe wheats have not yet been developed despite over a decade of research. PMID:26937068
Rural-urban differences in the prevalence of chronic disease in northeast China.
Wang, Shibin; Kou, Changgui; Liu, Yawen; Li, Bo; Tao, Yuchun; D'Arcy, Carl; Shi, Jieping; Wu, Yanhua; Liu, Jianwei; Zhu, Yingli; Yu, Yaqin
2015-05-01
Rural-urban differences in the prevalence of chronic diseases in the adult population of northeast China are examined. The Jilin Provincial Chronic Disease Survey used personal interviews and physical measures to research the presence of a range of chronic diseases among a large sample of rural and urban provincial residents aged 18 to 79 years (N = 21 435). Logistic regression analyses were used. After adjusting for age and gender, rural residents had higher prevalence of hypertension, chronic ischemic heart disease, cerebrovascular disease, chronic low back pain, arthritis, chronic gastroenteritis/peptic ulcer, chronic cholecystitis/gallstones, and chronic lower respiratory disease. Low education, low income, and smoking increased the risk of chronic diseases in rural areas. Reducing rural-urban differences in chronic disease presents a formidable public health challenge for China. The solution requires focusing attention on issues endemic to rural areas such as poverty, lack of chronic disease knowledge, and the inequality in access to primary care. © 2014 APJPH.
From Biology to Drug Development: New Approaches to Combat the Threat of Fungal Biofilms
Pierce, Christopher G.; Srinivasan, Anand; Ramasubramanian, Anand K.; López-Ribot, José L.
2015-01-01
Fungal infections constitute a major threat to an escalating number of critically ill patients. Fungi are eukaryotic organisms and, as such, there is a limited armamentarium of antifungal drugs, leading to high mortality rates. Moreover, fungal infections are often associated with the formation of biofilms, which contribute to virulence and further complicate treatment due to the high level of antifungal drug resistance displayed by sessile cells within these microbial communities. Thus, the treatment of fungal infections associated with a biofilm aetiology represents a formidable and unmet clinical challenge. The increasing importance and awareness of fungal biofilms is reflected by the fact that this is now an area of very active research. Studies in the last decade have provided important insights into fungal biofilm biology, physiology and pathology, as well as into the molecular basis of biofilm resistance. Here we discuss how this accumulated knowledge may inform the development of new anti-biofilm strategies and therapeutics that are urgently needed. PMID:26185082
Wooley, Chelsea N; Rogers, Richard
2015-08-01
Malingered posttraumatic stress disorder (PTSD) poses a formidable clinical challenge because of the apparent ease in feigning PTSD. As an additional confound, some patients with genuine PTSD produce elevated profiles on feigning indicators that are difficult to distinguish from feigned PTSD. The current study utilized 109 inpatients from a trauma unit to examine whether the Personality Assessment Inventory and the Detailed Assessment of Posttraumatic Stress can effectively differentiate between genuine and feigned PTSD. As a primary focus, Resnick's model of malingered PTSD was evaluated with its three subtypes: pure malingering, partial malingering, and false imputation. They were tested on their ability to (a) effectively simulate PTSD and (b) avoid being classified as feigning. The partial malingering group proved to be the best feigning group in achieving these two goals. Overall, the Personality Assessment Inventory Malingering Index and Negative Distortion Scale were the most effective at identifying feigning. © The Author(s) 2014.
Treatment of Nonunion of Scaphoid Waist with Ni-Ti Shape-Memory Alloy Connector and Iliac Bone Graft
NASA Astrophysics Data System (ADS)
Cao, Lie-Hu; Xu, Shuo-Gui; Wu, Ya-Le; Zhang, Chun-Cai
2011-07-01
After fracture, the unique anatomy and blood supply of the scaphoid itself predisposes to nonunion. Scaphoid nonunion presents a formidable challenge to surgeons because of the difficulties for fixation, and the high failure rate after treatment. The Ni-Ti shape-memory alloy can provide compressive stress at the nonunion site, which is the key point for bone healing. Hence, we designed a shape-memory bone connector named arched shape-memory connector (ASC). We conducted a retrospective study looking at the union rate and complications and correlating the outcome of treatment with this device. The study reviewed a cohort of six consecutive patients presenting with scaphoid waist nonunion, who were treated with ASC and iliac cancellous bone grafting at our center from August 2002 to December 2007. The patients with nonunion achieved a 100% union rate. All the patients who achieved union had good pain relief and improved function. Our study demonstrates that scaphoid waist nonunions can be successfully treated by ASC and iliac bone grafting.
Perera, Reshani H; Wu, Hanping; Peiris, Pubudu; Hernandez, Christopher; Burke, Alan; Zhang, Helen; Exner, Agata A
2017-01-01
The design of nanoscale yet highly echogenic agents for imaging outside of the vasculature and for ultrasound-mediated drug delivery remains a formidable challenge. We have previously reported on formulation of echogenic perfluoropropane gas nanobubbles stabilized by a lipid-pluronic surfactant shell. In the current work we describe the development of a new generation of these nanoparticles which consist of perfluoropropane gas stabilized by a surfactant and lipid membrane and a crosslinked network of N,N-diethylacrylamide. The resulting crosslinked nanobubbles (CL-PEG-NB) were 95.2±25.2nm in diameter and showed significant improvement in stability and retention of echogenic signal over 24h. In vivo analysis via ultrasound and fluorescence mediated tomography showed greater tumor extravasation and accumulation with CL-PEG-NB compared to microbubbles. Together these results demonstrate the capabilities and advantages of a new, more stable, nanometer-scale ultrasound contrast agent that can be utilized in future work for diagnostic scans and molecular imaging. Copyright © 2016 Elsevier Inc. All rights reserved.
Viswanathan, Mohan; Joshi, Shashank R.; Bhansali, Anil
2012-01-01
The epidemic of type 2 diabetes and the recognition that achieving specific glycemic goals can substantially reduce morbidity have made the effective treatment of hyperglycemia a top priority. Despite compelling evidence that tight glycemic control is crucial for delaying disease progression, increased risk of hypoglycemia associated with such control underscore the complexity of diabetes management. In most cases, hypoglycemia results from an excess of insulin, either absolute or relative to the available glucose substrate and the factors perhaps exacerbating the risk are pharmacokinetic imperfections, behavioral, co-morbidities etc. Additionally, many patients remain undiagnosed, and many diagnosed patients are not treated appropriately. In this article, the challenges of hypoglycemia, confronting health care providers and their patients with diabetes, are discussed for making treatment decisions that will help minimize risk of hypoglycemia and eventually overcome formidable barriers to optimal diabetes management. Strategies to treat and minimize the frequency and severity of hypoglycemia without compromising on glycemic goals are also presented. PMID:23226632
Lamacchia, Carmela; Camarca, Alessandra; Picascia, Stefania; Di Luccia, Aldo; Gianfrani, Carmen
2014-01-01
The gluten-free diet is, to date, the only efficacious treatment for patients with Celiac Disease. In recent years, the impressive rise of Celiac Disease incidence, dramatically prompted changes in the dietary habit of an increasingly large population, with a rise in demand of gluten-free products. The formulation of gluten-free bakery products presents a formidable challenge to cereal technologists. As wheat gluten contributes to the formation of a strong protein network, that confers visco-elasticity to the dough and allows the wheat flour to be processed into a wide range of products, the preparation of cereal-based gluten-free products is a somehow difficult process. This review focuses on nutritional and technological quality of products made with gluten-free cereals available on the market. The possibility of using flour from naturally low toxic ancient wheat species or detoxified wheat for the diet of celiacs is also discussed. PMID:24481131
A practical review of prognostic correlations of molecular biomarkers in glioblastoma.
Karsy, Michael; Neil, Jayson A; Guan, Jian; Mahan, Mark A; Mark, Mahan A; Colman, Howard; Jensen, Randy L
2015-03-01
Despite extensive efforts in research and therapeutics, achieving longer survival for patients with glioblastoma (GBM) remains a formidable challenge. Furthermore, because of rapid advances in the scientific understanding of GBM, communication with patients regarding the explanations and implications of genetic and molecular markers can be difficult. Understanding the important biomarkers that play a role in GBM pathogenesis may also help clinicians in educating patients about prognosis, potential clinical trials, and monitoring response to treatments. This article aims to provide an up-to-date review that can be discussed with patients regarding common molecular markers, namely O-6-methylguanine-DNA methyltransferase (MGMT), isocitrate dehydrogenase 1 and 2 (IDH1/2), p53, epidermal growth factor receptor (EGFR), platelet-derived growth factor receptor (PDGFR), phosphatase and tensin homolog (PTEN), phosphoinositide 3-kinase (PI3K), and 1p/19q. The importance of the distinction between a prognostic and a predictive biomarker as well as clinical trials regarding these markers and their relevance to clinical practice are discussed.
Self-organized cooperative swimming at low Reynolds numbers.
Reinmüller, Alexander; Schöpe, Hans Joachim; Palberg, Thomas
2013-02-12
Investigations of swimming at low Reynolds numbers (Re < 10(-4)) so far have focused on individual or collectively moving autonomous microswimmers consisting of a single active building unit. Here we show that linear propulsion can also be reproducibly generated in a self-assembled dynamic complex formed from a granular, HCl-releasing particle settled on a charged quartz wall and a swarm of micrometer-sized negatively charged colloids. In isolation, none of the constituents shows motion beyond diffusion. When brought together, they self-assemble into a complex capable of directed swimming. It is stabilized by toroidal solvent flow centered about the granular particle. Propulsion is then launched by an asymmetric distribution of the colloids. Motion is self-stabilizing and continues for up to 25 min with velocities of 1-3 μm/s. Although the details of the mechanisms involved pose a formidable experimental and theoretical challenge, our observations offer a conceptually new, well-reproduced, versatile approach to swimming and transport at low Reynolds numbers.
van Pletzen, Ermien; Lorenzo, Theresa
2015-01-01
An understanding of rural communities is fundamental to effective community-based rehabilitation work with persons with disabilities. By removing barriers to community participation, persons with disabilities are enabled to satisfy their fundamental human needs. However, insufficient attention has been paid to the challenges that rural community disability workers (CDWs) face in trying to realise these objectives. This qualitative interpretive study, involving in-depth interviews with 16 community disability workers in Botswana, Malawi and South Africa, revealed the complex ways in which poverty, inappropriately used power and negative attitudes of service providers and communities combine to create formidable barriers to the inclusion of persons with disabilities in families and rural communities. The paper highlights the importance of understanding and working with the concept of ‘disability’ from a social justice and development perspective. It stresses that by targeting attitudes, actions and relationships, community disability workers can bring about social change in the lives of persons with disabilities and the communities in which they live. PMID:28730029
The evolution of sex roles in birds is related to adult sex ratio.
Liker, András; Freckleton, Robert P; Székely, Tamás
2013-01-01
Sex-role reversal represents a formidable challenge for evolutionary biologists, since it is not clear which ecological, life-history or social factors facilitated conventional sex roles (female care and male-male competition for mates) to be reversed (male care and female-female competition). Classic theories suggested ecological or life-history predictors of role reversal, but most studies failed to support these hypotheses. Recent theory however predicts that sex-role reversal should be driven by male-biased adult sex ratio (ASR). Here we test this prediction for the first time using phylogenetic comparative analyses. Consistent with theory, both mating system and parental care are strongly related to ASR in shorebirds: conventional sex roles are exhibited by species with female-biased ASR, whereas sex-role reversal is associated with male-biased ASR. These results suggest that social environment has a strong influence on breeding systems and therefore revealing the causes of ASR variation in wild populations is essential for understanding sex role evolution.
Generation of iPS-derived model cells for analyses of hair shaft differentiation.
Kido, Takumi; Horigome, Tomoatsu; Uda, Minori; Adachi, Naoki; Hirai, Yohei
2017-09-01
Biological evaluation of hair growth/differentiation activity in vitro has been a formidable challenge, primarily due to the lack of relevant model cell systems. To solve this problem, we generated a stable model cell line in which successive differentiation via epidermal progenitors to hair components is easily inducible and traceable. Mouse induced pluripotent stem (iPS) cell-derived cells were selected to stably express a tetracycline (Tet)-inducible bone morphogenic protein-4 (BMP4) expression cassette and a luciferase reporter driven by a hair-specific keratin 31 gene (krt31) promoter (Tet-BMP4-KRT31-Luc iPS). While Tet- BMP4-KRT31-Luc iPS cells could be maintained as stable iPS cells, the cells differentiated to produce luciferase luminescence in the presence of all-trans retinoic acid (RA) and doxycycline (Dox), and addition of a hair differentiation factor significantly increased luciferase fluorescence. Thus, this cell line may provide a reliable cell-based screening system to evaluate drug candidates for hair differentiation activity.
The Broken Mirror: A Self Psychological Treatment Perspective for Relationship Violence
Wexler, David B.
1999-01-01
Clinicians face formidable challenges in working with male perpetrators of domestic violence. Many treatment programs use a confrontational approach that emphasizes male entitlement and patriarchal societal attitudes, without honoring the genuine psychological pain of the abusive male. Although some men with strong psychopathic tendencies are almost impossible to treat, the majority of spouse-abusing males respond best to an empathic, client-centered, self psychological approach that also includes education about sociocultural issues and specific skill building. Understanding the deprivations in mirroring selfobject functions from which these men typically suffer facilitates clinical treatment response. While insisting that men take full responsibility for their abusive behavior, treatment approaches can still be most effective by addressing inherent psychological issues. Group leaders who can offer respect for perpetrators' history, their experience of powerlessness, and their emotional injuries in primary relationships are more likely to make an impact.(The Journal of Psychotherapy Practice and Research 1999; 8:129–141) PMID:10079460
Bode, Gerard H; Coué, Gregory; Freese, Christian; Pickl, Karin E; Sanchez-Purrà, Maria; Albaiges, Berta; Borrós, Salvador; van Winden, Ewoud C; Tziveleka, Leto-Aikaterini; Sideratou, Zili; Engbersen, Johan F J; Singh, Smriti; Albrecht, Krystyna; Groll, Jürgen; Möller, Martin; Pötgens, Andy J G; Schmitz, Christoph; Fröhlich, Eleonore; Grandfils, Christian; Sinner, Frank M; Kirkpatrick, C James; Steinbusch, Harry W M; Frank, Hans-Georg; Unger, Ronald E; Martinez-Martinez, Pilar
2017-04-01
Targeted delivery of drugs across endothelial barriers remains a formidable challenge, especially in the case of the brain, where the blood-brain barrier severely limits entry of drugs into the central nervous system. Nanoparticle-mediated transport of peptide/protein-based drugs across endothelial barriers shows great potential as a therapeutic strategy in a wide variety of diseases. Functionalizing nanoparticles with peptides allows for more efficient targeting to specific organs. We have evaluated the hemocompatibilty, cytotoxicity, endothelial uptake, efficacy of delivery and safety of liposome, hyperbranched polyester, poly(glycidol) and acrylamide-based nanoparticles functionalized with peptides targeting brain endothelial receptors, in vitro and in vivo. We used an ELISA-based method for the detection of nanoparticles in biological fluids, investigating the blood clearance rate and in vivo biodistribution of labeled nanoparticles in the brain after intravenous injection in Wistar rats. Herein, we provide a detailed report of in vitro and in vivo observations. Copyright © 2016 Elsevier Inc. All rights reserved.
Emergence of structured communities through evolutionary dynamics.
Shtilerman, Elad; Kessler, David A; Shnerb, Nadav M
2015-10-21
Species-rich communities, in which many competing species coexist in a single trophic level, are quite frequent in nature, but pose a formidable theoretical challenge. In particular, it is known that complex competitive systems become unstable and unfeasible when the number of species is large. Recently, many studies have attributed the stability of natural communities to the structure of the interspecific interaction network, yet the nature of such structures and the underlying mechanisms responsible for them remain open questions. Here we introduce an evolutionary model, based on the generic Lotka-Volterra competitive framework, from which a stable, structured, diverse community emerges spontaneously. The modular structure of the competition matrix reflects the phylogeny of the community, in agreement with the hierarchial taxonomic classification. Closely related species tend to have stronger niche overlap and weaker fitness differences, as opposed to pairs of species from different modules. The competitive-relatedness hypothesis and the idea of emergent neutrality are discussed in the context of this evolutionary model. Copyright © 2015 Elsevier Ltd. All rights reserved.
Calculating the weight of evidence in low-template forensic DNA casework.
Lohmueller, Kirk E; Rudin, Norah
2013-01-01
Interpreting and assessing the weight of low-template DNA evidence presents a formidable challenge in forensic casework. This report describes a case in which a similar mixed DNA profile was obtained from four different bloodstains. The defense proposed that the low-level minor profile came from an alternate suspect, the defendant's mistress. The strength of the evidence was assessed using a probabilistic approach that employed likelihood ratios incorporating the probability of allelic drop-out. Logistic regression was used to model the probability of drop-out using empirical validation data from the government laboratory. The DNA profile obtained from the bloodstain described in this report is at least 47 billion times more likely if, in addition to the victim, the alternate suspect was the minor contributor, than if another unrelated individual was the minor contributor. This case illustrates the utility of the probabilistic approach for interpreting complex low-template DNA profiles. © 2012 American Academy of Forensic Sciences.
Getting into the brain: Potential of nanotechnology in the management of NeuroAIDS.
Nair, Madhavan; Jayant, Rahul Dev; Kaushik, Ajeet; Sagar, Vidya
2016-08-01
In spite of significant advances in antiretroviral (ARV) therapy, the elimination of human immunodeficiency virus (HIV) reservoirs from the periphery and the central nervous system (CNS) remains a formidable task. The incapability of ARV to go across the blood-brain barrier (BBB) after systemic administration makes the brain one of the dominant HIV reservoirs. Thus, screening, monitoring, and elimination of HIV reservoirs from the brain remain a clinically daunting and key task. The practice and investigation of nanomedicine possesses potentials for therapeutics against neuroAIDS. This review highlights the advancements in nanoscience and nanotechnology to design and develop specific size therapeutic cargo for efficient navigation across BBB so as to recognize and eradicate HIV brain reservoirs. Different navigation and drug release strategies, their biocompatibility and efficacy with related challenges and future prospects are also discussed. This review would be an excellent platform to understand nano-enable multidisciplinary research to formulate efficient nanomedicine for the management of neuroAIDS. Copyright © 2016 Elsevier B.V. All rights reserved.
Arthroscopic Triple Labral Repair in an Adolescent.
Cotter, Eric J; Frank, Rachel M; Trenhaile, Scott W
2017-10-01
Traumatic glenohumeral dislocations often result in significant injury to the anterior-inferior labrum, most commonly leading to recurrent anterior instability. While in skeletally immature patients, shoulder trauma more commonly results in fracture versus a true dislocation, shoulder instability does occur and can be difficult to manage in the setting of open physes. In any event, the goal of treatment is to reduce the risk of recurrence and allow full participation in activities, including sports. Arthroscopic stabilization has been shown to be an effective treatment option for young patients, with good return to sport rates; however, the vast majority of literature on shoulder instability in the youth patient population focuses on anterior instability. Concomitant lesions of the anterior, posterior, and superior labrum have been rarely described in youth athletes and present a formidable clinical challenge, particularly in skeletally immature patients. In this Technical Note, we describe the authors' preferred technique for arthroscopic repair of a traumatic triple labral tear, including anterior, posterior, and type IV SLAP components, in adolescent patients.
Magnetic field enhanced photothermal effect of Fe3O4 nanoparticles
NASA Astrophysics Data System (ADS)
Pan, Pengfei; Lin, Yawen; Gan, Zhixing; Luo, Xiaobin; Zhou, Weiping; Zhang, Ning
2018-03-01
Photothermal and magnetothermal effects are promising in hyperthermia for cancer therapy. However, the development of safe treatments with limited side-effects requires a relatively-high thermal efficiency triggered by mild near-infrared (NIR) light and alternating magnetic field (HAC), which remains a formidable challenge. In this work, a magnetic field enhanced photothermal effect (MFEP) of Fe3O4 nanoparticles is proposed and investigated systematically. The results suggest remarkable temperature increments of 9.59 to 36.90 °C under irradiation of NIR with different light power densities (808 nm, 0-6.98 W/cm2) combined with a certain magnetic field (HAC = 1.5 kA/m at 90 kHz). The rise of temperature induced by MFEP is substantially larger than the sum of isolated photothermal and magnetothermal effects, which is attributed to the hot-phonon bottleneck effect. The MFEP of Fe3O4 nanoparticles could serve as an effective treatment for cancer therapy in the future.
Gougoutas, Alexander J; Bastidas, Nicholas; Bartlett, Scott P; Jackson, Oksana
2015-12-01
Microvascular reconstruction of the pediatric mandible, particularly when necessitated by severe, congenital hypoplasia, presents a formidable challenge. Complex cases, however, may be simplified by computer-aided design/computer-aided manufacturing (CAD/CAM) assisted surgical planning. This series represents the senior authors' preliminary experiences with CAD/CAM assisted, microvascular reconstruction of the pediatric mandible. Presented are two patients with hemifacial/bifacial microsomia, both with profound mandibular hypoplasia, who underwent CAD/CAM assisted reconstruction of their mandibles with vascularized fibula flaps. Surgical techniques, CAD/CAM routines employed, complications, and long-term outcomes are reported. Successful mandibular reconstructions were achieved in both patients with centralization of their native mandibles and augmentation of deficient mandibular subunits. No long-term complications were observed. CAD/CAM technology can be utilized in pediatric mandibular reconstruction, and is particularly beneficial in cases of profound, congenital hypoplasia requiring extensive, multi-planar, bony reconstructions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Heat-labile Enterotoxins as Adjuvants or Anti-Inflammatory Agents
Liang, Shuang; Hajishengallis, George
2010-01-01
Escherichia coli and Vibrio cholerae produce structurally related AB5-type heat-labile enterotoxins which are classified into two major types. The Type I subfamily includes cholera toxin and E. coli LT-I, whereas the Type II subfamily comprises LT-IIa and LT-IIb. In addition to their roles in microbial pathogenesis, the enterotoxins are widely and intensively studied for their exceptionally strong adjuvant and immunomodulatory activities, which are not necessarily dependent upon their abilities to elevate intracellular cAMP levels. Despite general structural similarities, these molecules, in intact or derivative form, display notable differences in their interactions with gangliosides or Toll-like receptors. This divergence results in differential immune response outcomes, the underlying mechanisms of which remain largely uncharacterized. Whereas the study of these molecules has been pivotal in understanding basic mechanisms of immune regulation, a formidable challenge is to dissociate toxicity from useful properties that can be exploited in vaccine development or for the treatment of autoimmune inflammatory diseases. PMID:20461887
Heat-labile enterotoxins as adjuvants or anti-inflammatory agents.
Liang, Shuang; Hajishengallis, George
2010-01-01
Escherichia coli and Vibrio cholerae produce structurally related AB5-type heat-labile enterotoxins, which are classified into two major types. The Type I subfamily includes cholera toxin and E. coli LT-I, whereas the Type II subfamily comprises LT-IIa and LT-IIb. In addition to their roles in microbial pathogenesis, the enterotoxins are widely and intensively studied for their exceptionally strong adjuvant and immunomodulatory activities, which are not necessarily dependent upon their abilities to elevate intracellular cAMP levels. Despite general structural similarities, these molecules, in intact or derivative form, display notable differences in their interactions with gangliosides or Toll-like receptors. This divergence results in differential immune response outcomes, the underlying mechanisms of which remain largely uncharacterized. Whereas the study of these molecules has been pivotal in understanding basic mechanisms of immune regulation, a formidable challenge is to dissociate toxicity from useful properties that can be exploited in vaccine development or for the treatment of autoimmune inflammatory diseases.
Understanding and managing organizational change: implications for public health management.
Thompson, Jon M
2010-01-01
Managing organizational change has become a significant responsibility of managers. Managing the change process within public health organizations is important because appropriately and systematically managing change is linked to improved organizational performance. However, change is difficult and the change process poses formidable challenges for managers. Managers themselves face increased pressure to respond to environmental influences and provide the necessary leadership to their organizations in the change process. In fact, managing organizational change has become a key competency for healthcare managers. This article addresses the important topic of organizational change in public health organizations. It provides a conceptual foundation for understanding organizational change and its relationship to healthcare organizational performance, and then discusses the types and nature of change, using some examples and evidence from those organizations that have successfully managed change. A framework for guiding public health managers in the change management process is provided. The article concludes with suggested management competencies to establish a change-oriented organization with the culture and capacity for change.
Sanford, Robert A; Merchant, Thomas E; Zwienenberg-Lee, Marike; Kun, Larry E; Boop, Frederick A
2009-10-01
Childhood cerebellopontine angle (CPA) ependymoma is an uncommon anatomical variant of posterior fossa ependymoma. In infants and young children, the tumor often goes undetected until it causes hydrocephalus. As CPA ependymomas grow, they distort the anatomy and encase cranial nerves and vessels, thereby making resection a formidable surgical challenge. The purpose of this paper is to describe the surgical technique used to achieve gross total resection (GTR) of CPA ependymomas and demonstrate improved survival in these patients. Surgical techniques used for GTR in 45 patients with CPA ependymoma treated from 1997 to 2008 are described. Results of those procedures are compared with data from 11 patients who previously underwent surgical resection (1985-1995). We achieved GTR in 43 (95.6%) patients and near-total resection in two (4.4%); the probability of progression-free survival was 53.8%, and that of overall survival was 64%. Our novel surgical techniques greatly improve central nervous system function and survival among pediatric patients with CPA ependymoma.
Shaping van der Waals nanoribbons via torsional constraints: Scrolls, folds and supercoils
NASA Astrophysics Data System (ADS)
Shahabi, Alireza; Wang, Hailong; Upmanyu, Moneesh
2014-11-01
Interplay between structure and function in atomically thin crystalline nanoribbons is sensitive to their conformations yet the ability to prescribe them is a formidable challenge. Here, we report a novel paradigm for controlled nucleation and growth of scrolled and folded shapes in finite-length nanoribbons. All-atom computations on graphene nanoribbons (GNRs) and experiments on macroscale magnetic thin films reveal that decreasing the end distance of torsionally constrained ribbons below their contour length leads to formation of these shapes. The energy partitioning between twisted and bent shapes is modified in favor of these densely packed soft conformations due to the non-local van der Waals interactions in these 2D crystals; they subvert the formation of supercoils that are seen in their natural counterparts such as DNA and filamentous proteins. The conformational phase diagram is in excellent agreement with theoretical predictions. The facile route can be readily extended for tailoring the soft conformations of crystalline nanoscale ribbons, and more general self-interacting filaments.
Anon, Jack B
2004-08-02
Acute bacterial rhinosinusitis (ABRS) is a secondary bacterial infection of the nose and paranasal sinuses, usually preceded by a viral upper respiratory infection or allergy, with symptoms that have not improved after 10 days or that have worsened after 5 to 7 days. Streptococcus pneumoniae and Haemophilus influenzae are the most common causes of ABRS in adults. Increasing rates of antimicrobial resistance among S. pneumoniae and beta-lactamase production among H. influenzae are formidable challenges to the successful treatment of infections caused by these organisms. To this end, various formulations of amoxicillin-clavulanate have been developed, the most recent of which is pharmacokinetically enhanced and provides a total daily dose of 4,000 mg of amoxicillin and 250 mg of clavulanate. This formulation has been shown to be safe and effective in the treatment of infections caused by penicillin-resistant S. pneumoniae (minimum inhibitory concentration 2 microg/mL); the clavulanate component provides adequate coverage of beta-lactamase-producing pathogens.
Entering the New Millennium: Dilemmas in Arms Control
DOE Office of Scientific and Technical Information (OSTI.GOV)
BROWN,JAMES
The end of the Cold War finds the international community no longer divided into two opposing blocks. The concerns that the community now faces are becoming more fluid, less focused, and, in many ways, much less predictable. Issues of religion, ethnicity, and nationalism; the possible proliferation of Weapons of Mass Destruction; and the diffusion of technology and information processing throughout the world community have greatly changed the international security landscape in the last decade. Although our challenges appear formidable, the United Nations, State Parties, nongovernmental organizations, and the arms control community are moving to address and lessen these concerns throughmore » both formal and informal efforts. Many of the multilateral agreements (e.g., NPT, BWC, CWC, CTBT, MTCR), as well as the bilateral efforts that are taking place between Washington and Moscow employ confidence-building and transparency measures. These measures along with on-site inspection and other verification procedures lessen suspicion and distrust and reduce uncertainty, thus enhancing stability, confidence, and cooperation.« less
Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus.
Wheeler, Diek W; White, Charise M; Rees, Christopher L; Komendantov, Alexander O; Hamilton, David J; Ascoli, Giorgio A
2015-09-24
Hippocampome.org is a comprehensive knowledge base of neuron types in the rodent hippocampal formation (dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex). Although the hippocampal literature is remarkably information-rich, neuron properties are often reported with incompletely defined and notoriously inconsistent terminology, creating a formidable challenge for data integration. Our extensive literature mining and data reconciliation identified 122 neuron types based on neurotransmitter, axonal and dendritic patterns, synaptic specificity, electrophysiology, and molecular biomarkers. All ∼3700 annotated properties are individually supported by specific evidence (∼14,000 pieces) in peer-reviewed publications. Systematic analysis of this unprecedented amount of machine-readable information reveals novel correlations among neuron types and properties, the potential connectivity of the full hippocampal circuitry, and outstanding knowledge gaps. User-friendly browsing and online querying of Hippocampome.org may aid design and interpretation of both experiments and simulations. This powerful, simple, and extensible neuron classification endeavor is unique in its detail, utility, and completeness.
A Novel Architecture for Carbon Nanotube Membranes towards Fast and Efficient Oil/water Separation.
Saththasivam, Jayaprakash; Yiming, Wubulikasimu; Wang, Kui; Jin, Jian; Liu, Zhaoyang
2018-05-09
Carbon nanotubes (CNT) are robust and proven as promising building blocks for oil/water separating membranes. However, according to classic fluid dynamic theory, achieving high permeation flux without sacrificing other membrane properties is a formidable challenge for CNT membranes, because of the trade-off nature among key membrane parameters. Herein, to relieve the trade-off between permeation fluxes, oil rejection rate, and membrane thickness, we present a new concept to engineer CNT membranes with a three-dimensional (3D) architecture. Apart from achieving high oil separation efficiency (>99.9%), these new oil/water separating membranes can achieve water flux as high as 5,500 L/m 2 .h.bar, which is one order of magnitude higher than pristine CNT membranes. Most importantly, these outstanding properties can be achieved without drastically slashing membrane thickness down to nanoscale. The present study sheds a new light for the adoption of CNT-based membranes in oil/water separation industry.
A Formidable Foe is Sabotaging Your Results: What You Should Know about Biofilms and Wound Healing
Barker, Jenny C; Khansa, Ibrahim; Gordillo, Gayle M
2017-01-01
Learning Objectives After reading this article, the participant should be able to: 1. Describe biofilm pathogenesis as it relates to problem wounds, 2. Understand the pre-clinical and clinical evidence implicating biofilm in problem wounds, 3. Explain the diagnostic and treatment challenges that biofilms create for problem wounds, 4. Demonstrate a basic understanding of emerging strategies aimed at counteracting these processes. Summary Biofilm represents a protected mode of growth for bacteria, allowing them to evade standard diagnostic techniques and avoid eradication by standard therapies. Though only recently discovered, biofilm has existed for millennia and complicates nearly every aspect of medicine. Biofilm impacts wound healing by allowing bacteria to evade immune responses, prolonging inflammation and disabling skin barrier function. It is important to understand why problem wounds persist despite state-of-the-art treatment, why they are difficult to accurately diagnose, and why they recur. The aim of this article is to focus on current gaps in knowledge related to problem wounds, specifically, biofilm infection. PMID:28445380
A Computational Framework for Bioimaging Simulation.
Watabe, Masaki; Arjunan, Satya N V; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi
2015-01-01
Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units.
Optoelectronically probing the density of nanowire surface trap states to the single state limit
NASA Astrophysics Data System (ADS)
Dan, Yaping
2015-02-01
Surface trap states play a dominant role in the optoelectronic properties of nanoscale devices. Understanding the surface trap states allows us to properly engineer the device surfaces for better performance. But characterization of surface trap states at nanoscale has been a formidable challenge using the traditional capacitive techniques. Here, we demonstrate a simple but powerful optoelectronic method to probe the density of nanowire surface trap states to the single state limit. In this method, we choose to tune the quasi-Fermi level across the bandgap of a silicon nanowire photoconductor, allowing for capture and emission of photogenerated charge carriers by surface trap states. The experimental data show that the energy density of nanowire surface trap states is in a range from 109 cm-2/eV at deep levels to 1012 cm-2/eV near the conduction band edge. This optoelectronic method allows us to conveniently probe trap states of ultra-scaled nano/quantum devices at extremely high precision.
Transforming the practice of medicine using genomics
Ginsburg, Geoffrey S.; Ginsburg, Geoffrey S.; J. McCarthy, Jeanette
2009-01-01
Recent studies have demonstrated the use of genomic data, particularly gene expression signatures, as clinical prognostic factors in complex diseases. Such studies herald the future for genomic medicine and the opportunity for personalized prognosis in a variety of clinical contexts that utilize genomescale molecular information. Several key areas represent logical and critical next steps in the use of complex genomic profiling data towards the goal of personalized medicine. First, analyses should be geared toward the development of molecular profiles that predict future events – such as major clinical events or the response, resistance, or adverse reaction to therapy. Secondly, these must move into actual clinical practice by forming the basis for the next generation of clinical trials that will employ these methodologies to stratify patients. Lastly, there remain formidable challenges is in the translation of genomic technologies into clinical medicine that will need to be addressed: professional and public education, health outcomes research, reimbursement, regulatory oversight and privacy protection. PMID:22461094
Urban science education: examining current issues through a historical lens
NASA Astrophysics Data System (ADS)
McLaughlin, Cheryl A.
2014-12-01
This paper reviews and synthesizes urban science education studies published between 2000 and 2013 with a view to identifying current challenges faced by both teachers and students in urban classrooms. Additionally, this paper considers the historical events that have shaped the conditions, bureaucracies, and interactions of urban institutions. When the findings from these urban science education studies were consolidated with the historical overview provided, it was revealed that the basic design and regulatory policies of urban schools have not substantively changed since their establishment in the nineteenth century. Teachers in urban science classrooms continue to face issues of inequality, poverty, and social injustice as they struggle to meet the needs of an increasingly diverse student population. Furthermore, persistent concerns of conflicting Discourses, cultural dissonance, and oppression create formidable barriers to science learning. Despite the many modifications in structure and organization, urban students are still subjugated and marginalized in systems that emphasize control and order over high-quality science education.
Surgical Management of the Thick-Skinned Nose.
Davis, Richard E; Hrisomalos, Emily N
2018-02-01
When executed properly, open structure rhinoplasty can dramatically improve the consistency, durability, and quality of the cosmetic surgical outcome. Moreover, in expert hands, dramatic transformations in skeletal architecture can be accomplished with minimal risk and unparalleled control, all while preserving nasal airway function. While skeletal enhancements have become increasingly more controlled and precise, the outer skin-soft tissue envelope (SSTE) often presents a formidable obstacle to a satisfactory cosmetic result. In noses with unusually thick skin, excessive skin volume and characteristically hostile healing responses frequently combine to obscure or sometimes even negate cosmetic skeletal modifications and taint the surgical outcome. For this challenging patient subgroup, care must be taken to optimize the SSTE using a graduated treatment strategy directed at minimizing skin thickness and controlling unfavorable healing responses. When appropriate efforts are implemented to manage thick nasal skin, cosmetic outcomes are often substantially improved, sometimes even negating the ill-effects of thick skin altogether. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Multiwavelength Observations of Blazars
NASA Technical Reports Server (NTRS)
Sambruna, Rita
2007-01-01
The last decade has seen formidable progress in our understanding of blazar jets, thanks to the advent of several higher-sensitivity observatories. I will review the status of the art for blazar jets focusing especially on the latest multiwavelength campaigns.
Grown organic matter as a fuel raw material resource
NASA Technical Reports Server (NTRS)
Roller, W. L.; Keener, H. M.; Kline, R. D.; Mederski, H. J.; Curry, R. B.
1975-01-01
An extensive search was made on biomass production from the standpoint of climatic zones, water, nutrients, costs and energy requirements for many species. No exotic species were uncovered that gave hope for a bonanza of biomass production under culture, location, and management markedly different from those of existing agricultural concepts. A simulation analysis of biomass production was carried out for six species using conventional production methods, including their production costs and energy requirements. These estimates were compared with data on food, fiber, and feed production. The alternative possibility of using residues from food, feed, or lumber was evaluated. It was concluded that great doubt must be cast on the feasibility of producing grown organic matter for fuel, in competition with food, feed, or fiber. The feasibility of collecting residues may be nearer, but the competition for the residues for return to the soil or cellulosic production is formidable.
Du, Aijun; Zhu, Zhonghua; Smith, Sean C
2010-03-10
The lack of an obvious "band gap" is a formidable hurdle for making a nanotransistor from graphene. Here, we use density functional calculations to demonstrate for the first time that porosity such as evidenced in recently synthesized porous graphene ( http://www.sciencedaily.com/releases/2009/11/091120084337.htm ) opens a band gap. The size of the band gap (3.2 eV) is comparable to most popular photocatalytic titania and graphitic C(3)N(4) materials. In addition, the adsorption of hydrogen on Li-decorated porous graphene is much stronger than that in regular Li-doped graphene due to the natural separation of Li cations, leading to a potential hydrogen storage gravimetric capacity of 12 wt %. In light of the most recent experimental progress on controlled synthesis, these results uncover new potential for the practical application of porous graphene in nanoelectronics and clean energy.
Szarko, Jodi M.; Guo, Jianchang; Rolczynski, Brian S.; Chen, Lin X.
2011-01-01
Photovoltaic functions in organic materials are intimately connected to interfacial morphologies of molecular packing in films on the nanometer scale and molecular levels. This review will focus on current studies on correlations of nanoscale morphologies in organic photovoltaic (OPV) materials with fundamental processes relevant to photovoltaic functions, such as light harvesting, exciton splitting, exciton diffusion, and charge separation (CS) and diffusion. Small molecule photovoltaic materials will be discussed here. The donor and acceptor materials in small molecule OPV devices can be fabricated in vacuum-deposited, multilayer, crystalline thin films, or spin-coated together to form blended bulk heterojunction (BHJ) films. These two methods result in very different morphologies of the solar cell active layers. There is still a formidable debate regarding which morphology is favored for OPV optimization. The morphology of the conducting films has been systematically altered; using variations of the techniques above, the whole spectrum of film qualities can be fabricated. It is possible to form a highly crystalline material, one which is completely amorphous, or an intermediate morphology. In this review, we will summarize the past key findings that have driven organic solar cell research and the current state-of-the-art of small molecule and conducting oligomer materials. We will also discuss the merits and drawbacks of these devices. Finally, we will highlight some works that directly compare the spectra and morphology of systematically elongated oligothiophene derivatives and compare these oligomers to their polymer counterparts. We hope this review will shed some new light on the morphology differences of these two systems. PMID:22110870
KOBER, SCOTT
2007-01-01
The cost of biologic therapies adds urgency to the need to develop realistic compliance strategies. By engaging and educating both the physician and patient, some MCOs are working hard to address at what has always been a complicated and formidable issue. PMID:23319920
Ehrlich, Paul R; Pringle, Robert M
2008-08-12
The threats to the future of biodiversity are many and well known. They include habitat conversion, environmental toxification, climate change, and direct exploitation of wildlife, among others. Moreover, the projected addition of 2.6 billion people by mid-century will almost certainly have a greater environmental impact than that of the last 2.6 billion. Collectively, these trends portend a grim future for biodiversity under a business-as-usual scenario. These threats and their interactions are formidable, but we review seven strategies that, if implemented soundly and scaled up dramatically, would preserve a substantial portion of global biodiversity. These are actions to stabilize the human population and reduce its material consumption, the deployment of endowment funds and other strategies to ensure the efficacy and permanence of conservation areas, steps to make human-dominated landscapes hospitable to biodiversity, measures to account for the economic costs of habitat degradation, the ecological reclamation of degraded lands and repatriation of extirpated species, the education and empowerment of people in the rural tropics, and the fundamental transformation of human attitudes about nature. Like the carbon "stabilization wedges" outlined by Pacala and Socolow [Pacala S, Socolow R (2004) Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305:968-972] (1), the science and technologies needed to effect this vision already exist. The remaining challenges are largely social, political, and economic. Although academic conservation biology still has an important role to play in developing technical tools and knowledge, success at this juncture hinges more on a massive mobilization of effort to do things that have traditionally been outside the scope of the discipline.
Ehrlich, Paul R.; Pringle, Robert M.
2008-01-01
The threats to the future of biodiversity are many and well known. They include habitat conversion, environmental toxification, climate change, and direct exploitation of wildlife, among others. Moreover, the projected addition of 2.6 billion people by mid-century will almost certainly have a greater environmental impact than that of the last 2.6 billion. Collectively, these trends portend a grim future for biodiversity under a business-as-usual scenario. These threats and their interactions are formidable, but we review seven strategies that, if implemented soundly and scaled up dramatically, would preserve a substantial portion of global biodiversity. These are actions to stabilize the human population and reduce its material consumption, the deployment of endowment funds and other strategies to ensure the efficacy and permanence of conservation areas, steps to make human-dominated landscapes hospitable to biodiversity, measures to account for the economic costs of habitat degradation, the ecological reclamation of degraded lands and repatriation of extirpated species, the education and empowerment of people in the rural tropics, and the fundamental transformation of human attitudes about nature. Like the carbon “stabilization wedges” outlined by Pacala and Socolow [Pacala S, Socolow R (2004) Stabilization wedges: Solving the climate problem for the next 50 years with current technologies. Science 305:968–972] (1), the science and technologies needed to effect this vision already exist. The remaining challenges are largely social, political, and economic. Although academic conservation biology still has an important role to play in developing technical tools and knowledge, success at this juncture hinges more on a massive mobilization of effort to do things that have traditionally been outside the scope of the discipline. PMID:18695214
Human studies of cannabinoids and medicinal cannabis.
Robson, P
2005-01-01
Cannabis has been known as a medicine for several thousand years across many cultures. It reached a position of prominence within Western medicine in the nineteenth century but became mired in disrepute and legal controls early in the twentieth century. Despite unremitting world-wide suppression, recreational cannabis exploded into popular culture in the 1960s and has remained easily obtainable on the black market in most countries ever since. This ready availability has allowed many thousands of patients to rediscover the apparent power of the drug to alleviate symptoms of some of the most cruel and refractory diseases known to humankind. Pioneering clinical research in the last quarter of the twentieth century has given some support to these anecdotal reports, but the methodological challenges to human research involving a pariah drug are formidable. Studies have tended to be small, imperfectly controlled, and have often incorporated unsatisfactory synthetic cannabinoid analogues or smoked herbal material of uncertain composition and irregular bioavailability. As a result, the scientific evaluation of medicinal cannabis in humans is still in its infancy. New possibilities in human research have been opened up by the discovery of the endocannabinoid system, a rapidly expanding knowledge of cannabinoid pharmacology, and a more sympathetic political environment in several countries. More and more scientists and clinicians are becoming interested in exploring the potential of cannabis-based medicines. Future targets will extend beyond symptom relief into disease modification, and already cannabinoids seem to offer particular promise in the treatment of certain inflammatory and neurodegenerative conditions. This chapter will begin with an outline of the development and current status of legal controls pertaining to cannabis, following which the existing human research will be reviewed. Some key safety issues will then be considered, and the chapter will conclude with some suggestions as to future directions for human research.
Kim, Se-Hee; Choi, Keun-Ho; Cho, Sung-Ju; Choi, Sinho; Park, Soojin; Lee, Sang-Young
2015-08-12
Forthcoming flexible/wearable electronic devices with shape diversity and mobile usability garner a great deal of attention as an innovative technology to bring unprecedented changes in our daily lives. From the power source point of view, conventional rechargeable batteries (one representative example is a lithium-ion battery) with fixed shapes and sizes have intrinsic limitations in fulfilling design/performance requirements for the flexible/wearable electronics. Here, as a facile and efficient strategy to address this formidable challenge, we demonstrate a new class of printable solid-state batteries (referred to as "PRISS batteries"). Through simple stencil printing process (followed by ultraviolet (UV) cross-linking), solid-state composite electrolyte (SCE) layer and SCE matrix-embedded electrodes are consecutively printed on arbitrary objects of complex geometries, eventually leading to fully integrated, multilayer-structured PRISS batteries with various form factors far beyond those achievable by conventional battery technologies. Tuning rheological properties of SCE paste and electrode slurry toward thixotropic fluid characteristics, along with well-tailored core elements including UV-cured triacrylate polymer and high boiling point electrolyte, is a key-enabling technology for the realization of PRISS batteries. This process/material uniqueness allows us to remove extra processing steps (related to solvent drying and liquid-electrolyte injection) and also conventional microporous separator membranes, thereupon enabling the seamless integration of shape-conformable PRISS batteries (including letters-shaped ones) into complex-shaped objects. Electrochemical behavior of PRISS batteries is elucidated via an in-depth analysis of cell impedance, which provides a theoretical basis to enable sustainable improvement of cell performance. We envision that PRISS batteries hold great promise as a reliable and scalable platform technology to open a new concept of cell architecture and fabrication route toward flexible power sources with exceptional shape conformability and aesthetic versatility.
Statistical Teleodynamics: Toward a Theory of Emergence.
Venkatasubramanian, Venkat
2017-10-24
The central scientific challenge of the 21st century is developing a mathematical theory of emergence that can explain and predict phenomena such as consciousness and self-awareness. The most successful research program of the 20th century, reductionism, which goes from the whole to parts, seems unable to address this challenge. This is because addressing this challenge inherently requires an opposite approach, going from parts to the whole. In addition, reductionism, by the very nature of its inquiry, typically does not concern itself with teleology or purposeful behavior. Modeling emergence, in contrast, requires the addressing of teleology. Together, these two requirements present a formidable challenge in developing a successful mathematical theory of emergence. In this article, I describe a new theory of emergence, called statistical teleodynamics, that addresses certain aspects of the general problem. Statistical teleodynamics is a mathematical framework that unifies three seemingly disparate domains-purpose-free entities in statistical mechanics, human engineered teleological systems in systems engineering, and nature-evolved teleological systems in biology and sociology-within the same conceptual formalism. This theory rests on several key conceptual insights, the most important one being the recognition that entropy mathematically models the concept of fairness in economics and philosophy and, equivalently, the concept of robustness in systems engineering. These insights help prove that the fairest inequality of income is a log-normal distribution, which will emerge naturally at equilibrium in an ideal free market society. Similarly, the theory predicts the emergence of the three classes of network organization-exponential, scale-free, and Poisson-seen widely in a variety of domains. Statistical teleodynamics is the natural generalization of statistical thermodynamics, the most successful parts-to-whole systems theory to date, but this generalization is only a modest step toward a more comprehensive mathematical theory of emergence.
NASA Astrophysics Data System (ADS)
Huang, Tao; Browning, Lauren M.; Xu, Xiao-Hong Nancy
2012-04-01
Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions.Cellular signaling pathways play crucial roles in cellular functions and design of effective therapies. Unfortunately, study of cellular signaling pathways remains formidably challenging because sophisticated cascades are involved, and a few molecules are sufficient to trigger signaling responses of a single cell. Here we report the development of far-field photostable-optical-nanoscopy (PHOTON) with photostable single-molecule-nanoparticle-optical-biosensors (SMNOBS) for mapping dynamic cascades of apoptotic signaling pathways of single live cells in real-time at single-molecule (SM) and nanometer (nm) resolutions. We have quantitatively imaged single ligand molecules (tumor necrosis factor α, TNFα) and their binding kinetics with their receptors (TNFR1) on single live cells; tracked formation and internalization of their clusters and their initiation of intracellular signaling pathways in real-time; and studied apoptotic signaling dynamics and mechanisms of single live cells with sufficient temporal and spatial resolutions. This study provides new insights into complex real-time dynamic cascades and molecular mechanisms of apoptotic signaling pathways of single live cells. PHOTON provides superior imaging and sensing capabilities and SMNOBS offer unrivaled biocompatibility and photostability, which enable probing of signaling pathways of single live cells in real-time at SM and nm resolutions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr11739h
Hosek, Sybil; Celum, Connie; Wilson, Craig M; Kapogiannis, Bill; Delany-Moretlwe, Sinead; Bekker, Linda-Gail
2016-01-01
Introduction Adolescents and young adults aged <25 are a key population in the HIV epidemic, with very high HIV incidence rates in many geographic settings and a large number who have limited access to prevention services. Thus, any biomedical HIV prevention approach should prepare licensure and implementation strategies for young populations. Oral pre-exposure prophylaxis (PrEP) is the first antiretroviral-based prevention intervention with proven efficacy across many settings and populations, and regulatory and policy approvals at global and national levels are occurring rapidly. We discuss available data from studies in the United States and South Africa on the use of oral PrEP for HIV prevention in adolescent minors, along with some of the implementation challenges. Discussion Ongoing studies in the United States and South Africa among youth under the age of 18 should provide the safety data needed by the end of 2016 to contribute to licensure of Truvada as daily PrEP in adolescents. The challenges of completing these studies as well as foreseeable broader challenges highlighted by this work are presented. Adherence to daily PrEP is a greater challenge for younger populations, and poor adherence was associated with decreased efficacy in all PrEP trials. Individual-level barriers include limited familiarity with antiretroviral-based prevention, stigma, product storage, and social support. Structural challenges include healthcare financing for PrEP, clinician acceptability and comfort with PrEP delivery, and the limited youth-friendly health services available. These challenges are discussed in the context of the work done to date in the United States and South Africa, but will likely be magnified in the setting of limited resources in many other countries that are heavily impacted by HIV. Conclusions Adolescent populations are particularly vulnerable to HIV, and oral PrEP in these populations is likely to have an impact on population-level HIV incidence. The challenges of disseminating an HIV biomedical prevention tool requiring daily usage in adolescents are formidable, but addressing these issues and starting dialogues will lay the groundwork for the many other HIV prevention tools now being developed and tested. PMID:27760684
Carrada-Bravo, Teodoro
2016-02-01
The virulence of pneumococci for mice depends on the production of a polysaccharide-capsule, which encloses the bacteria and protects it against phagocytosis. Capsulated pneumococci yield smooth, brilliant colonies designated S, but mutant strains arise frequently which have lost the capacity to sinthetise the capsule, are avirulent and rough designated R. F. Griffith discovery of bacterial "transformation" in 1928, is a landmark in the history of genetics, because hereditary determinants could be transferred from one bacteria to another, and laid the foundation for the subsequent recognition of deoxyribonucleic acid (DNA) as the hereditary material. A systematic analysis of the chemical nature of the "transforming principle", by O. T. Avery and his colleagues during next 10 years, culminated in a formidable weight of evidence that it possessed all properties of DNA. In 1953, J. D. Watson and F. H. C Crick by a brilliant synthesis, fitted the chemical X-ray diffraction data together into a symmetrical double-helix structure, which possessed the inherent properties of genetic material, and carries the information necessary to direct all biochemical-cellular activities and self-replications. This paper describes de early rise and development of bacterial genetics and molecular biology.
NASA Astrophysics Data System (ADS)
Zamil, Mohammad Shafayet
The physical and mechanical properties of cell walls, their shape, how they are arranged and interact with each other determine the architecture of plant organs and how they mechanically respond to different environmental and loading conditions. Due to the distinctive hierarchy from subcellular to tissue scale, plant materials can exhibit remarkably different mechanical properties. To date, how the subcellular scale arrangement and the mechanical properties of plant cell wall structural constituents give rise to macro or tissue scale mechanical responses is not yet well understood. Although the tissue scale plant cell wall samples are easy to prepare and put to different types of mechanical tests, the hierarchical features that emerge when moving towards a higher scale make it complicated to link the macro scale results to micro or subcellular scale structural components. On the other hand, the microscale size of cell brings formidable challenges to prepare and grip samples and carry mechanical tests under tensile loading at subcellular scale. This study attempted to develop a set of test protocols based on microelectromechanical system (MEMS) tensile testing devices for characterizing plant cell wall materials at different length scales. For the ease of sample preparation and well established database of the composition and conformation of its structural constituents, onion epidermal cell wall profile was chosen as the study material. Based on the results and findings of multiscale mechanical characterization, a framework of architecture-based finite element method (FEM) computational model was developed. The computational model laid the foundation of bridging the subcellular or microscale to the tissue or macroscale mechanical properties. This study suggests that there are important insights of cell wall mechanics and structural features that can only be investigated by carrying tensile characterization of samples not confounded by extracellular parameters. To the best of our knowledge, the plant cell wall at subcellular scale was never characterized under tensile loading. By coupling the structure based multiscale modeling and mechanical characterizations at different length scales, an attempt was made to provide novel insights towards understanding the mechanics and architecture of cell wall. This study also suggests that a multiscale investigation is essential for garnering fundamental insights into the hierarchical deformation of biological systems.
DOT National Transportation Integrated Search
2015-03-01
This report presents a research examining the feasibility of creating an integrated structural health : monitoring and impact/collision detection system for bridges in remote cold regions, where in-person : inspection becomes formidable. The research...
1993-06-08
size, with some of its industrial wares entering international markets. Overall, however, because of the shortage of capital and some irrational ...time. Japan’s exuberance makes it a formidable adversary of the United States and the USSR in the scientific and high technology fields. The grim
The Mediterranean: Geostrategic Study and Evaluation.
1988-05-04
for more than sixty years. In it have participated the * 7 -.-. - national bourgeoisies that intended a synthesis between tradition and technological...a formidable barrier against the penetration of marxism . In this environment, what role does Spain play? To begin with, it represents together with
Urbanization in Bangladesh: some contemporary observations.
Laskar, S I
1996-01-01
The author analyzes "levels and trends of urbanization in Bangladesh. It also makes an attempt to elucidate the implications of urbanization.... The...analysis corroborates that although the overall level of urbanization remained low, the sheer magnitude of total urban population has become formidable." excerpt
The Impact of Biotechnology on Pharmaceutics.
ERIC Educational Resources Information Center
Block, Lawrence H.
1990-01-01
The emergence of bioactive peptides and proteins as new drug species poses formidable problems for the pharmaceutical scientist. Implications for revision or change in undergraduate and graduate pharmaceutics curricula derive from the biopharmaceutical, pharmacokinetic, and physiochemical aspects of the new drug species, which differ from…
USDA-ARS?s Scientific Manuscript database
Testing for human pathogenic viruses in foods represents a formidable task requiring the extraction, concentration, and assay of a host of viruses from a wide range of food matrices. The enteric viruses, particularly genogroup I and II (GI and GII) noroviruses and hepatitis A virus, are the princip...
Barochemistry: Predictive Solid State Chemistry
NASA Astrophysics Data System (ADS)
Yoo, Choong-Shik
The application of compression energy comparable to that of chemical bonds, but substantially greater than those of defects and grain boundaries in solids allows us to pursue novel concepts of high-pressure chemistry (or barochemistry) in materials development by design. At such extreme pressures, simple molecular solids covert into densely packed extended network structures that can be predicted from first principles. In recent years, a significant number of new materials and novel extended structures have been designed and discovered in highly compressed states of the first- and second- row elemental solids, including Li, C, H2,N2, O2, CO, CO2, and H2O. These extended solids are extremely hard, have high energy density, and exhibit novel electronic and nonlinear optical properties that are superior to other known materials at ambient conditions. However, these materials are often formed at formidable pressures and are highly metastable at ambient conditions; only a few systems have been recovered, limiting the materials within a realm of fundamental scientific discoveries. Therefore, an exciting new research area has emerged on the barochemistry to understand and, ultimately, control the stability, bonding, structure, and properties of low Z extended solids. In this paper, we will present our recent research to develop hybrid low Z extended solids amenable to scale up synthesis and ambient stabilization, utilizing kinetically controlled processes in dense solid mixtures and discuss the governing fundamental principles of barochemistry. This work was performed in support of the NSF (DMR-1203834), DTRA (HDTRA1-12-01-0020), and DARPA (W31P4Q-12-1-0009).
NASA Astrophysics Data System (ADS)
Franklin, Oskar; Han, Wang; Dieckmann, Ulf; Cramer, Wolfgang; Brännström, Åke; Pietsch, Stephan; Rovenskaya, Elena; Prentice, Iain Colin
2017-04-01
Dynamic global vegetation models (DGVMs) are now indispensable for understanding the biosphere and for estimating the capacity of ecosystems to provide services. The models are continuously developed to include an increasing number of processes and to utilize the growing amounts of observed data becoming available. However, while the versatility of the models is increasing as new processes and variables are added, their accuracy suffers from the accumulation of uncertainty, especially in the absence of overarching principles controlling their concerted behaviour. We have initiated a collaborative working group to address this problem based on a 'missing law' - adaptation and optimization principles rooted in natural selection. Even though this 'missing law' constrains relationships between traits, and therefore can vastly reduce the number of uncertain parameters in ecosystem models, it has rarely been applied to DGVMs. Our recent research have shown that optimization- and trait-based models of gross primary production can be both much simpler and more accurate than current models based on fixed functional types, and that observed plant carbon allocations and distributions of plant functional traits are predictable with eco-evolutionary models. While there are also many other examples of the usefulness of these and other theoretical principles, it is not always straight-forward to make them operational in predictive models. In particular on longer time scales, the representation of functional diversity and the dynamical interactions among individuals and species presents a formidable challenge. Here we will present recent ideas on the use of adaptation and optimization principles in vegetation models, including examples of promising developments, but also limitations of the principles and some key challenges.
NASA Astrophysics Data System (ADS)
Beringer, Douglas B.
Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory's CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency - 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m - there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (approximately 45 MV/m for Niobium) where inevitable thermodynamic breakdown occurs. With state of the art niobium based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio-frequency applications.
Hu, Xiaoshi; Lou, Xiaobing; Li, Chao; Yang, Qi; Chen, Qun; Hu, Bingwen
2018-05-02
Rational design and delicate control on the textural properties of metal-oxide materials for diverse structure-dependent applications still remain formidable challenges. Here, we present an eco-friendly and facile approach to smartly fabricate three-dimensional (3D) layer-by-layer manganese oxide (MnO x ) hierarchical mesoporous microcuboids from a Mn-MOF-74-based template, using a one-step solution-phase reaction scheme at room temperature. Through the controlled exchange of metal-organic framework (MOF) ligand with OH - in alkaline aqueous solution and in situ oxidation of manganese hydroxide intermediate, the Mn-MOF-74 template/precursor was readily converted to Mn 3 O 4 or δ-MnO 2 counterpart consisting of primary nanoparticle and nanosheet building blocks, respectively, with well-retained morphology. By X-ray diffraction, transmission electron microscopy (TEM), scanning electron microscopy, high-resolution TEM, N 2 adsorption-desorption analysis and other techniques, their crystal structure, detailed morphology, and microstructure features were unambiguously revealed. Specifically, their electrochemical Li-ion insertion/extraction properties were well evaluated, and it turns out that these unique 3D microcuboids could achieve a sustained superior lithium-storage performance especially at high rates benefited from the well-orchestrated structural characteristics (Mn 3 O 4 microcuboids: 890.7, 767.4, 560.1, and 437.1 mAh g -1 after 400 cycles at 0.2, 0.5, 1, and 2 A g -1 , respectively; δ-MnO 2 microcuboids: 991.5, 660.8, 504.4, and 362.1 mAh g -1 after 400 cycles at 0.2, 0.5, 1, and 2 A g -1 , respectively). To our knowledge, this is the most durable high-rate capability as well as the highest reversible capacity ever reported for pure MnO x anodes, which even surpass most of their hybrids. This facile, green, and economical strategy renews the traditional MOF-derived synthesis for highly tailorable functional materials and opens up new opportunities for metal-oxide electrodes with high performance.
Character and Moral Education: A Reader
ERIC Educational Resources Information Center
DeVitis, Joseph L., Ed.; Yu, Tianlong, Ed.
2011-01-01
Against a formidable national discourse that emphasizes academic standardization, accountability, and high-stakes testing in educational policy, "Character and Moral Education: A Reader" seeks to re-introduce and revive the moral mission of education in public conversation and practices in America's schools. With contributions from a…
How Do We Match Instructional Effectiveness with Learning Curves?
ERIC Educational Resources Information Center
Branum-Martin, Lee; Mehta, Paras D.; Taylor, W. Patrick; Carlson, Coleen D.; Lei, Xiaoxuan; Hunter, C. Vincent; Francis, David J.
2015-01-01
In order to examine the effectiveness of instruction, the authors confront formidable statistical problems, including multivariate structure of classroom observations, longitudinal dependence of both classroom observations and student outcomes. As the authors begin to examine instruction, classroom observations involve multiple variables for which…
The synaptic maintenance problem: membrane recycling, Ca2+ homeostasis and late onset degeneration
2013-01-01
Most neurons are born with the potential to live for the entire lifespan of the organism. In addition, neurons are highly polarized cells with often long axons, extensively branched dendritic trees and many synaptic contacts. Longevity together with morphological complexity results in a formidable challenge to maintain synapses healthy and functional. This challenge is often evoked to explain adult-onset degeneration in numerous neurodegenerative disorders that result from otherwise divergent causes. However, comparably little is known about the basic cell biological mechanisms that keep normal synapses alive and functional in the first place. How the basic maintenance mechanisms are related to slow adult-onset degeneration in different diseasesis largely unclear. In this review we focus on two basic and interconnected cell biological mechanisms that are required for synaptic maintenance: endomembrane recycling and calcium (Ca2+) homeostasis. We propose that subtle defects in these homeostatic processes can lead to late onset synaptic degeneration. Moreover, the same basic mechanisms are hijacked, impaired or overstimulated in numerous neurodegenerative disorders. Understanding the pathogenesis of these disorders requires an understanding of both the initial cause of the disease and the on-going changes in basic maintenance mechanisms. Here we discuss the mechanisms that keep synapses functional over long periods of time with the emphasis on their role in slow adult-onset neurodegeneration. PMID:23829673
Heinrich, Kathleen T
As academic institutions across the country raise the scholarly bar for retention, promotion, and tenure, academic leaders are being asked to scholar-ready nursing faculty. With the retirement of senior scholars and too few scholar-mentors to go around, leaders often find themselves squeezed between scholarly expectations on the rise and faculty groups less than ready to meet those expectations. Today's nursing faculty present a formidable scholarly development challenge. A diverse mix of master's-prepared clinicians and recent graduates from doctor of philosophy and doctor of nursing practice programs, they come with a broad range of scholarly learning needs. These inequities not only leave many faculty feeling like scholar-impostors but also they can breed competitions that erode collegial bonds and sow the seeds of incivilities that steal scholarly joy, slow scholarly progress, and stress academic workplaces. What if leaders began imagining something different for themselves and with faculty groups? This is what can happen when leaders expand their perspective on scholarly faculty development from individual challenge to collective responsibility. More essay than research paper, this article describes how scholarly joy-stealing patterns can infiltrate faculty groups, shares thought leaders' visions for supportive scholarly communities, and offers strategies leaders can use to invite faculty groups to co-create cultures of scholarly caring. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Nguyen, Quang-Viet
2001-01-01
Concerns about damaging the Earth's ozone layer as a result of high levels of nitrogen oxides (known collectively as NOx) from high-altitude, high-speed aircraft have prompted the study of lean premixed prevaporized (LPP) combustion in aircraft engines. LPP combustion reduces NOx emissions principally by reducing the peak flame temperatures inside an engine. Recent advances in LPP technologies have realized exceptional reductions in pollutant emissions (single-digit ppm NOx for example). However, LPP combustion also presents major challenges: combustion instability and dynamic coupling effects between fluctuations in heat-release rate, dynamic pressure, and fuel pressure. These challenges are formidable and can literally shake an engine apart if uncontrolled. To better understand this phenomenon so that it can be controlled, we obtained real-time laser absorption measurements of the fuel vapor concentration (and equivalence ratio) simultaneously with the dynamic pressure, flame luminosity, and time-averaged gaseous emissions measurements in a research-type jet-A-fueled LPP combustor. The measurements were obtained in NASA Glenn Research Center's CE-5B optically accessible flame tube facility. The CE-5B facility provides inlet air temperatures and pressures similar to the actual operating conditions of real aircraft engines. The laser absorption measurements were performed using an infrared 3.39 micron HeNe laser in conjunction with a visible HeNe laser for liquid droplet scattering compensation.
Jones, Deborah J.
2013-01-01
Treatment outcome research with children and adolescents has progressed to such an extent that numerous handbooks have been devoted to reviewing and summarizing the evidence base. Ensuring that consumers of these advancements in state-of-the-field interventions have the opportunity to access, engage in, and benefit from this evidence-base, however, has been wrought with challenge. As such, much discussion exists about innovative strategies for overcoming the gap between research and practice; yet, no other potential solution that has received more attention in both the popular and academic press than technology. The promise of technology is not surprising given the fast-paced evolution in development and, in turn, a seemingly endless range of possibilities for novel service delivery platforms. Yet, this is precisely the most formidable challenge threatening to upset the very promise of this potential solution: The rate of emerging technologies is far outpacing the field’s capacity to demonstrate the conceptual or empirical benefits of such an approach. Accordingly, this paper aims to provide a series of recommendations that better situate empirical enquiry at the core of a collaborative development, testing, and deployment process that must define this line of work if the promise of mental health technologies is going to be a reality for front-line clinicians and the clients they serve. PMID:24400723
Formulation of medicines for children
Nunn, Tony; Williams, Julie
2005-01-01
The development of age-adapted dosage forms and taste-masking of bitter-tasting drugs administered orally for children, are formidable challenges for formulation scientists. Childhood is a period of maturation requiring knowledge of developmental pharmacology to establish dose but the ability of the child to manage different dosage forms and devices also changes. Paediatric formulations must allow accurate administration of the dose to children of widely varying age and weight. Whilst the oral route will be preferred for long term use and the intravenous route for the acutely ill, many of the dosage forms designed for adults, such as oro-dispersible tablets, buccal gels and transdermal patches, would also benefit children if they contained an appropriate paediatric dose. The age at which children can swallow conventional tablets is of great importance for their safety. Liquid medicines are usually recommended for infants and younger dhildren so the ability to mask unpleasant taste with sweeteners and flavours is crucial. More sophisticated formulations such as granules and oro-dispersible tablets may be required but there will be limitations on choice and concentration of excipients. There are many gaps in our knowledge about paediatric formulations and many challenges for the industry if suitable preparations are to be available for all ranges. A CHMP points to consider document is soon to be released. More research and clinical feedback are important because a formulation with poor acceptability may affect compliance, prescribing practice and ultimately commercial viability. PMID:15948931
Ismail, Sharif A; Abbara, Aula; Collin, Simon M; Orcutt, Miriam; Coutts, Adam P; Maziak, Wasim; Sahloul, Zaher; Dar, Osman; Corrah, Tumena; Fouad, Fouad M
2016-06-01
To describe trends in major communicable diseases in Syria during the ongoing conflict, and the challenges to communicable disease surveillance and control in the context of dynamic, large-scale population displacement, unplanned mass gatherings, and disruption to critical infrastructure. A rapid review of the peer-reviewed and non-peer-reviewed literature from 2005 to 2015 was performed, augmented by secondary analysis of monitoring data from two disease early warning systems currently operational in Syria, focusing mainly on three diseases: tuberculosis (TB), measles, and polio. Trend data show discrepancies in case report numbers between government and non-government controlled areas, especially for TB, but interpretation is hampered by uncertainties over sentinel surveillance coverage and base population numbers. Communicable disease control has been undermined by a combination of governance fragmentation, direct and indirect damage to facilities and systems, and health worker flight. Five years into the crisis, some progress has been made in disease surveillance, but governance and coordination problems, variable immunization coverage, and the dynamic and indiscriminate nature of the conflict continue to pose a serious threat to population health in Syria and surrounding countries. The risk of major cross-border communicable disease outbreaks is high, and challenges for health in a post-conflict Syria are formidable. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
James, S A
1999-12-01
The primordial prevention of cardiovascular disease (CVD) among African-Americans represents a formidable challenge for public health. This paper discusses the nature of this challenge, highlighting the role that economic and cultural factors play in shaping the distributions of major CVD risk factors among African-Americans. The paper concludes with specific suggestions for research. Data from recent national health surveys on black/white differences in major CVD risk factors like hypertension, obesity, cholesterol, cigarette smoking, and physical inactivity were reviewed for the purpose of identifying promising avenues for primordial prevention research among African-Americans. Cigarette smoking has a delayed onset among African-Americans compared to whites. Black/white differences in "vigorous" leisure-time physical activity (e.g., social dancing and team sports) are not apparent until around age 40. These findings have relevance for primordial prevention work in black communities since they suggest the existence of broad-based, health-relevant cultural norms which could support primordial prevention programs, such as regular physical activity, across the life cycle. CVD primordial prevention programs among African-Americans must be grounded in an understanding of how cultural values as well as economic conditions shape CVD risk factor distributions in this population. Ultimate success will depend on the strength of the partnerships that public health researchers, primary care providers, and community residents are able to build.
Rahman, Md Arifur; Sarkar, Atanu
2017-07-01
Extensively Drug-resistant Tuberculosis (XDR-TB) has emerged as one of the most formidable challenges to the End TB Strategy that has targeted a 95% reduction in TB deaths and 90% reduction in cases by 2035. Globally, there were an estimated 55,100 new XDR-TB cases in 2015 in 117 countries. However, only one in 30 XDR-TB cases had been reported so far. Drug susceptibility test (DST) is the mainstay for diagnosing XDR-TB, but the lack of laboratory facilities in the resource-limited endemic countries limit its uses. A few new drugs including bedaquiline and delamanid, have the potential to improve the efficiency of XDR-TB treatment, but the drugs have been included in 39 countries only. The costs of XDR-TB treatment are several folds higher than that of the MDR-TB. Despite the financing from the donors, there is an urgent need to fill the current funding gap of US$ 2 billion to ensure effective treatment and robust surveillance. In the review article we have addressed current update on XDR-TB, including surveillance, diagnosis and the interventions needed to treat and limit its spread, emphasis on extensive financial support for implementing of current recommendations to meet the goals of End TB Strategy. Copyright © 2017 Tuberculosis Association of India. Published by Elsevier B.V. All rights reserved.
Aggressive-antisocial boys develop into physically strong young men.
Isen, Joshua D; McGue, Matthew K; Iacono, William G
2015-04-01
Young men with superior upper-body strength typically show a greater proclivity for physical aggression than their weaker male counterparts. The traditional interpretation of this phenomenon is that young men calibrate their attitudes and behaviors to their physical formidability. Physical strength is thus viewed as a causal antecedent of aggressive behavior. The present study is the first to examine this phenomenon within a developmental framework. We capitalized on the fact that physical strength is a male secondary sex characteristic. In two longitudinal cohorts of children, we estimated adolescent change in upper-body strength using the slope parameter from a latent growth model. We found that males' antisocial tendencies temporally precede their physical formidability. Boys, but not girls, with greater antisocial tendencies in childhood attained larger increases in physical strength between the ages of 11 and 17. These results support sexual selection theory, indicating an adaptive congruence between male-typical behavioral dispositions and subsequent physical masculinization during puberty. © The Author(s) 2015.
Interactive Effects of Cognitive Representations of Formidability and Technology on Aggression
2014-09-08
defensive technologies; their fighting skill ; the number and proximity of their allies; the quality of their leadership; their degree of unit...since the last review) 1. Gneezy, A. and Fessler, D.M.T. (2011) Conflict, sticks, and carrots: War increases prosocial punishments and rewards
Deposition of aerosol particles in human lungs: in vivo measurements and modeling
The deposition dose and site of inhaled particles within the lung are the key determinants in health risk assessment of particulate pollutants. Accurate dose estimation, however, is a formidable task because aerosol transport and deposition in the lung are governed by many factor...
Hierarchical Feedback Modules and Reaction Hubs in Cell Signaling Networks
Xu, Jianfeng; Lan, Yueheng
2015-01-01
Despite much effort, identification of modular structures and study of their organizing and functional roles remain a formidable challenge in molecular systems biology, which, however, is essential in reaching a systematic understanding of large-scale cell regulation networks and hence gaining capacity of exerting effective interference to cell activity. Combining graph theoretic methods with available dynamics information, we successfully retrieved multiple feedback modules of three important signaling networks. These feedbacks are structurally arranged in a hierarchical way and dynamically produce layered temporal profiles of output signals. We found that global and local feedbacks act in very different ways and on distinct features of the information flow conveyed by signal transduction but work highly coordinately to implement specific biological functions. The redundancy embodied with multiple signal-relaying channels and feedback controls bestow great robustness and the reaction hubs seated at junctions of different paths announce their paramount importance through exquisite parameter management. The current investigation reveals intriguing general features of the organization of cell signaling networks and their relevance to biological function, which may find interesting applications in analysis, design and control of bio-networks. PMID:25951347
Quantum chemical approaches in structure-based virtual screening and lead optimization
NASA Astrophysics Data System (ADS)
Cavasotto, Claudio N.; Adler, Natalia S.; Aucar, Maria G.
2018-05-01
Today computational chemistry is a consolidated tool in drug lead discovery endeavors. Due to methodological developments and to the enormous advance in computer hardware, methods based on quantum mechanics (QM) have gained great attention in the last 10 years, and calculations on biomacromolecules are becoming increasingly explored, aiming to provide better accuracy in the description of protein-ligand interactions and the prediction of binding affinities. In principle, the QM formulation includes all contributions to the energy, accounting for terms usually missing in molecular mechanics force-fields, such as electronic polarization effects, metal coordination, and covalent binding; moreover, QM methods are systematically improvable, and provide a greater degree of transferability. In this mini-review we present recent applications of explicit QM-based methods in small-molecule docking and scoring, and in the calculation of binding free-energy in protein-ligand systems. Although the routine use of QM-based approaches in an industrial drug lead discovery setting remains a formidable challenging task, it is likely they will increasingly become active players within the drug discovery pipeline.
Petrosectomies for invasive tumours: surgery and reconstruction.
Malata, C M; Cooter, R D; Towns, G M; Batchelor, A G
1996-09-01
Tumours involving the temporal bone have historically carried a bad prognosis. The only prospect of cure is radical en bloc resection. Temporal bone resection for malignancies is, however, such a formidable undertaking that many centres label such tumours as unresectable. Additionally, the enormity of the surgical defect poses a major reconstructive challenge. A review of 14 petrosectomies (in 12 males and 2 females) performed for extensively invasive neoplasms in and around the ear is presented. All underwent immediate reconstruction, the majority (12/14) with free tissue transfers. 9 of the 14 patients (64%) are still alive after a mean follow-up of 70 months (range 4-8 years). With the use of free tissue transfers, an aggressive approach with regard to the resection margins can safely be adopted in the full knowledge that the eventual size of the defect need not compromise tumour clearance. Additionally, free flaps provided a reliable dural seal. This approach of radical en bloc resection with free flap reconstruction has decreased the mortality (compared to the literature), while largely reducing the morbidity to that of unavoidable cranial nerve resection.
Tessera: Open source software for accelerated data science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sego, Landon H.; Hafen, Ryan P.; Director, Hannah M.
2014-06-30
Extracting useful, actionable information from data can be a formidable challenge for the safeguards, nonproliferation, and arms control verification communities. Data scientists are often on the “front-lines” of making sense of complex and large datasets. They require flexible tools that make it easy to rapidly reformat large datasets, interactively explore and visualize data, develop statistical algorithms, and validate their approaches—and they need to perform these activities with minimal lines of code. Existing commercial software solutions often lack extensibility and the flexibility required to address the nuances of the demanding and dynamic environments where data scientists work. To address this need,more » Pacific Northwest National Laboratory developed Tessera, an open source software suite designed to enable data scientists to interactively perform their craft at the terabyte scale. Tessera automatically manages the complicated tasks of distributed storage and computation, empowering data scientists to do what they do best: tackling critical research and mission objectives by deriving insight from data. We illustrate the use of Tessera with an example analysis of computer network data.« less
Withaferin-A—A Natural Anticancer Agent with Pleitropic Mechanisms of Action
Lee, In-Chul; Choi, Bu Young
2016-01-01
Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A. PMID:26959007
Withaferin-A--A Natural Anticancer Agent with Pleitropic Mechanisms of Action.
Lee, In-Chul; Choi, Bu Young
2016-03-04
Cancer, being the second leading cause of mortality, exists as a formidable health challenge. In spite of our enormous efforts, the emerging complexities in the molecular nature of disease progression limit the real success in finding an effective cancer cure. It is now conceivable that cancer is, in fact, a progressive illness, and the morbidity and mortality from cancer can be reduced by interfering with various oncogenic signaling pathways. A wide variety of structurally diverse classes of bioactive phytochemicals have been shown to exert anticancer effects in a large number of preclinical studies. Multiple lines of evidence suggest that withaferin-A can prevent the development of cancers of various histotypes. Accumulating data from different rodent models and cell culture experiments have revealed that withaferin-A suppresses experimentally induced carcinogenesis, largely by virtue of its potent anti-oxidative, anti-inflammatory, anti-proliferative and apoptosis-inducing properties. Moreover, withaferin-A sensitizes resistant cancer cells to existing chemotherapeutic agents. The purpose of this review is to highlight the mechanistic aspects underlying anticancer effects of withaferin-A.
Human Response to Emergency Warning
NASA Astrophysics Data System (ADS)
Sorensen, J.
2009-12-01
Almost every day people evacuate from their homes, businesses or other sites, even ships, in response to actual or predicted threats or hazards. Evacuation is the primary protective action utilized in large-scale emergencies such as hurricanes, floods, tornados, tsunamis, volcanic eruptions, or wildfires. Although often precautionary, protecting human lives by temporally relocating populations before or during times of threat remains a major emergency management strategy. One of the most formidable challenges facing emergency officials is evacuating residents for a fast-moving and largely unpredictable event such as a wildfire or a local tsunami. How to issue effective warnings to those at risk in time for residents to take appropriate action is an on-going problem. To do so, some communities have instituted advanced communications systems that include reverse telephone call-down systems or other alerting systems to notify at-risk residents of imminent threats. This presentation examines the effectiveness of using reverse telephone call-down systems for warning San Diego residents of wildfires in the October of 2007. This is the first systematic study conducted on this topic and is based on interviews with 1200 households in the evacuation areas.
Beyond Peaceful Coexistence: The Emergence of Space, Time and Quantum
NASA Astrophysics Data System (ADS)
Licata, Ignazio
A physical theory consists of a formal structure and one or more interpretations. The latter can come out from cultural and cognitive tension going far beyond any sound operational pact between theoretical constructs and empirical data. We have no reason to doubt about the consistency and efficacy of syntaxes if properly used in the right range. The formal side of Physics has grown in a strongly connected and stratified way through an almost autopoietic, self-dual procedure (let's think of the extraordinary success of the gauge theories), whereas the foundational debate is still blustering about the two pillars of such monumental construction. The general relativity (GR) and the quantum mechanics (QM), which still appear to be greatly incompatible and stopped in a limited peaceful coexistence between local causality in space-time and quantum non-locality [1]. The formidable challenges waiting for us beyond the Standard Model seem to require a new semantic consistency [2] within the two theories, so as to build a new way to look at them, to work and to relate them...
Berg, Rigmor C; Carter, Dakota; Ross, Michael W
Societal prejudice against people living with HIV infection is a formidable public health challenge that can negatively impact health and well-being. We recruited a multiethnic sample of 129 gay and bisexual men living with HIV who completed a brief survey; a subset of participants completed semi-structured qualitative interviews to contextualize the data. In bivariate analyses, stigma was positively and significantly correlated with depression (r = .402, p < .001) and negatively correlated with social support (r = -.482, p < .001). Qualitative interview results captured the mental suffering caused by stigma and coping strategies the men had developed. Although some of the coping strategies reduced the likelihood of experiencing acts of stigmatization, they also exacerbated the psychological stress of living with a stigmatized disease and limited the potential for social support. Our results highlight the need to scale up stigma-reduction programs, particularly those that can bolster social support networks. Copyright © 2017 Association of Nurses in AIDS Care. Published by Elsevier Inc. All rights reserved.
Identification of high-level functional/system requirements for future civil transports
NASA Technical Reports Server (NTRS)
Swink, Jay R.; Goins, Richard T.
1992-01-01
In order to accommodate the rapid growth in commercial aviation throughout the remainder of this century, the Federal Aviation Administration (FAA) is faced with a formidable challenge to upgrade and/or modernize the National Airspace System (NAS) without compromising safety or efficiency. A recurring theme in both the Aviation System Capital Investment Plan (CIP), which has replaced the NAS Plan, and the new FAA Plan for Research, Engineering, and Development (RE&D) rely on the application of new technologies and a greater use of automation. Identifying the high-level functional and system impacts of such modernization efforts on future civil transport operational requirements, particularly in terms of cockpit functionality and information transfer, was the primary objective of this project. The FAA planning documents for the NAS of the 2005 era and beyond were surveyed; major aircraft functional capabilities and system components required for such an operating environment were identified. A hierarchical structured analysis of the information processing and flows emanating from such functional/system components were conducted and the results documented in graphical form depicting the relationships between functions and systems.
Kronewitter, Scott R; An, Hyun Joo; de Leoz, Maria Lorna; Lebrilla, Carlito B; Miyamoto, Suzanne; Leiserowitz, Gary S
2009-06-01
Annotation of the human serum N-linked glycome is a formidable challenge but is necessary for disease marker discovery. A new theoretical glycan library was constructed and proposed to provide all possible glycan compositions in serum. It was developed based on established glycobiology and retrosynthetic state-transition networks. We find that at least 331 compositions are possible in the serum N-linked glycome. By pairing the theoretical glycan mass library with a high mass accuracy and high-resolution MS, human serum glycans were effectively profiled. Correct isotopic envelope deconvolution to monoisotopic masses and the high mass accuracy instruments drastically reduced the amount of false composition assignments. The high throughput capacity enabled by this library permitted the rapid glycan profiling of large control populations. With the use of the library, a human serum glycan mass profile was developed from 46 healthy individuals. This paper presents a theoretical N-linked glycan mass library that was used for accurate high-throughput human serum glycan profiling. Rapid methods for evaluating a patient's glycome are instrumental for studying glycan-based markers.
Cost effective malaria risk control using remote sensing and environmental data
NASA Astrophysics Data System (ADS)
Rahman, Md. Z.; Roytman, Leonid; Kadik, Abdel Hamid
2012-06-01
Malaria transmission in many part of the world specifically in Bangladesh and southern African countries is unstable and epidemic. An estimate of over a million cases is reported annually. Malaria is heterogeneous, potentially due to variations in ecological settings, socio-economic status, land cover, and agricultural practices. Malaria control only relies on treatment and supply of bed networks. Drug resistance to these diseases is widespread. Vector control is minimal. Malaria control in those countries faces many formidable challenges such as inadequate accessibility to effective treatment, lack of trained manpower, inaccessibility of endemic areas, poverty, lack of education, poor health infrastructure and low health budgets. Health facilities for malaria management are limited, surveillance is inadequate, and vector control is insufficient. Control can only be successful if the right methods are used at the right time in the right place. This paper aims to improve malaria control by developing malaria risk maps and risk models using satellite remote sensing data by identifying, assessing, and mapping determinants of malaria associated with environmental, socio-economic, malaria control, and agricultural factors.
Multifunctional Nanoparticles for Brain Tumor Diagnosis and Therapy
Cheng, Yu; Morshed, Ramin; Auffinger, Brenda; Tobias, Alex L.; Lesniak, Maciej S.
2013-01-01
Brain tumors are a diverse group of neoplasms that often carry a poor prognosis for patients. Despite tremendous efforts to develop diagnostic tools and therapeutic avenues, the treatment of brain tumors remains a formidable challenge in the field of neuro-oncology. Physiological barriers including the blood-brain barrier result in insufficient accumulation of therapeutic agents at the site of a tumor, preventing adequate destruction of malignant cells. Furthermore, there is a need for improvements in brain tumor imaging to allow for better characterization and delineation of tumors, visualization of malignant tissue during surgery, and tracking of response to chemotherapy and radiotherapy. Multifunctional nanoparticles offer the potential to improve upon many of these issues and may lead to breakthroughs in brain tumor management. In this review, we discuss the diagnostic and therapeutic applications of nanoparticles for brain tumors with an emphasis on innovative approaches in tumor targeting, tumor imaging, and therapeutic agent delivery. Clinically feasible nanoparticle administration strategies for brain tumor patients are also examined. Furthermore, we address the barriers towards clinical implementation of multifunctional nanoparticles in the context of brain tumor management. PMID:24060923
A Computational Framework for Bioimaging Simulation
Watabe, Masaki; Arjunan, Satya N. V.; Fukushima, Seiya; Iwamoto, Kazunari; Kozuka, Jun; Matsuoka, Satomi; Shindo, Yuki; Ueda, Masahiro; Takahashi, Koichi
2015-01-01
Using bioimaging technology, biologists have attempted to identify and document analytical interpretations that underlie biological phenomena in biological cells. Theoretical biology aims at distilling those interpretations into knowledge in the mathematical form of biochemical reaction networks and understanding how higher level functions emerge from the combined action of biomolecules. However, there still remain formidable challenges in bridging the gap between bioimaging and mathematical modeling. Generally, measurements using fluorescence microscopy systems are influenced by systematic effects that arise from stochastic nature of biological cells, the imaging apparatus, and optical physics. Such systematic effects are always present in all bioimaging systems and hinder quantitative comparison between the cell model and bioimages. Computational tools for such a comparison are still unavailable. Thus, in this work, we present a computational framework for handling the parameters of the cell models and the optical physics governing bioimaging systems. Simulation using this framework can generate digital images of cell simulation results after accounting for the systematic effects. We then demonstrate that such a framework enables comparison at the level of photon-counting units. PMID:26147508
Optoelectrical Cooling of Formaldehyde to Sub-Millikelvin Temperatures
NASA Astrophysics Data System (ADS)
Zeppenfeld, Martin
2016-05-01
Due to their strong long-range dipole-dipole interactions and large number of internal states, polar molecules cooled to ultracold temperatures enable fascinating applications ranging from ultracold chemistry to investigation of dipolar quantum gases. However, realizing a simple and general technique to cool molecules to ultracold temperatures, akin to laser cooling of atoms, has been a formidable challenge. We present results for opto-electrical Sisyphus cooling applied to formaldehyde (H2 CO). In this generally applicable cooling scheme, molecules repeatedly move up and down electric field gradients of a trapping potential in different rotational states to efficiently extract kinetic energy. A total of about 300,000 molecules are thereby cooled by a factor of 1000 to 400uK, resulting in a record-large ensemble of ultracold molecules. In addition to cooling of the motional degrees of freedom, optical pumping via a vibrational transition allows us to control the internal rotational state. We thereby achieve a purity of over 80% of formaldehyde molecules in a single rotational M-sublevel. Our experiment provides an excellent starting point for precision spectroscopy and investigation of ultracold collisions.
Resilient parenting of children at developmental risk across middle childhood.
Ellingsen, Ruth; Baker, Bruce L; Blacher, Jan; Crnic, Keith
2014-06-01
This paper focuses on factors that might influence positive parenting during middle childhood when a parent faces formidable challenges defined herein as "resilient parenting." Data were obtained from 162 families at child age 5 and 8 years. Using an adapted ABCX model, we examined three risk domains (child developmental delay, child ADHD/ODD diagnosis, and low family income) and three protective factors (mother's education, health, and optimism). The outcome of interest was positive parenting as coded from mother-child interactions. We hypothesized that each of the risk factors would predict poorer parenting and that higher levels of each protective factor would buffer the risk-parenting relationship. Positive parenting scores decreased across levels of increasing risk. Maternal optimism appeared to be a protective factor for resilient parenting concurrently at age 5 and predictively to age 8, as well as a predictor of positive change in parenting from age 5 to age 8, above and beyond level of risk. Maternal education and health were not significantly protective for positive parenting. Limitations, future directions, and implications for intervention are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
Resilient Parenting of Children at Developmental Risk Across Middle Childhood
Baker, Bruce L.; Blacher, Jan; Crnic, Keith
2015-01-01
This paper focuses on factors that might influence positive parenting during middle childhood when a parent faces formidable challenges defined herein as “resilient parenting.” Data were obtained from 162 families at child age 5 and 8 years. Using an adapted ABCX model, we examined three risk domains (child developmental delay, child ADHD/ODD diagnosis, and low family income) and three protective factors (mother’s education, health, and optimism). The outcome of interest was positive parenting as coded from mother-child interactions. We hypothesized that each of the risk factors would predict poorer parenting and that higher levels of each protective factor would buffer the risk-parenting relationship. Positive parenting scores decreased across levels of increasing risk. Maternal optimism appeared to be a protective factor for resilient parenting concurrently at age 5 and predictively to age 8, as well as a predictor of positive change in parenting from age 5 to age 8, above and beyond level of risk. Maternal education and health were not significantly protective for positive parenting. Limitations, future directions, and implications for intervention are discussed. PMID:24713516
A linear framework for time-scale separation in nonlinear biochemical systems.
Gunawardena, Jeremy
2012-01-01
Cellular physiology is implemented by formidably complex biochemical systems with highly nonlinear dynamics, presenting a challenge for both experiment and theory. Time-scale separation has been one of the few theoretical methods for distilling general principles from such complexity. It has provided essential insights in areas such as enzyme kinetics, allosteric enzymes, G-protein coupled receptors, ion channels, gene regulation and post-translational modification. In each case, internal molecular complexity has been eliminated, leading to rational algebraic expressions among the remaining components. This has yielded familiar formulas such as those of Michaelis-Menten in enzyme kinetics, Monod-Wyman-Changeux in allostery and Ackers-Johnson-Shea in gene regulation. Here we show that these calculations are all instances of a single graph-theoretic framework. Despite the biochemical nonlinearity to which it is applied, this framework is entirely linear, yet requires no approximation. We show that elimination of internal complexity is feasible when the relevant graph is strongly connected. The framework provides a new methodology with the potential to subdue combinatorial explosion at the molecular level.
Probabilistic models of eukaryotic evolution: time for integration
Lartillot, Nicolas
2015-01-01
In spite of substantial work and recent progress, a global and fully resolved picture of the macroevolutionary history of eukaryotes is still under construction. This concerns not only the phylogenetic relations among major groups, but also the general characteristics of the underlying macroevolutionary processes, including the patterns of gene family evolution associated with endosymbioses, as well as their impact on the sequence evolutionary process. All these questions raise formidable methodological challenges, calling for a more powerful statistical paradigm. In this direction, model-based probabilistic approaches have played an increasingly important role. In particular, improved models of sequence evolution accounting for heterogeneities across sites and across lineages have led to significant, although insufficient, improvement in phylogenetic accuracy. More recently, one main trend has been to move away from simple parametric models and stepwise approaches, towards integrative models explicitly considering the intricate interplay between multiple levels of macroevolutionary processes. Such integrative models are in their infancy, and their application to the phylogeny of eukaryotes still requires substantial improvement of the underlying models, as well as additional computational developments. PMID:26323768
NASA Astrophysics Data System (ADS)
van der Laan, Harry
2002-09-01
ESO has come a long way since in 1987 the first rocks were blasted at the NTT site on La Silla. Those were exciting days, when SEST came online and soon after the VLT programme was getting up to speed upon its approval in December 1987. It was not an easy time for staff or management: taking up the role of main contractor for its own design and construction programme rather than finding an industrial consultant to do so was an enormous challenge. It was not obvious that it could be done, for more than ninety per cent of ESO's staff capacity was occupied with running La Silla, operating Headquarter services and constructing the NTT. The VLT Blue Book and the bag of money Council had allocated to its realization were necessary but by no means sufficient. For the new, formidable task, manpower had to be found and trained, manpower both reassigned and newly recruited.
Financial sustainability planning for immunization services in Cambodia.
Soeung, Sann Chan; Grundy, John; Maynard, Jim; Brooks, Alan; Boreland, Marian; Sarak, Duong; Jenkinson, Karl; Biggs, Beverley-Ann
2006-07-01
The expanded programme of immunization was established in Cambodia in 1986. In 2002, 67% of eligible children were immunized, despite significant health sector and macro-economic financial constraints. A financial sustainability planning process for immunization was introduced in 2002, in order to mobilize national and international resources in support of the achievement of child health objectives. The aim of this paper is to outline this process, describe its early impact as an advocacy tool and recommend additional strategies for mobilizing additional resources for health. The methods of financial sustainability planning are described, including the advocacy strategies that were applied. Analysis of financial sustainability planning results indicates rising programme costs associated with new vaccine introduction and new technologies. Despite this, the national programme has demonstrated important early successes in using financial sustainability planning to advocate for increased mobilization of national and international sources of funding for immunization. The national immunization programme nevertheless faces formidable system and financial challenges in the coming years associated with rising costs, potentially diminishing sources of international assistance, and the developing role of sub-national authorities in programme management and financing.
Creating effective scholarly posters: a guide for DNP students.
Christenbery, Thomas L; Latham, Tiffany G
2013-01-01
Dissemination of scholarly project outcomes is an essential component of Doctor of Nursing Practice (DNP) education. This article provides guidelines for professional poster development and presentation as well as suggestions for integrating poster development as part of the DNP curriculum. This article was prepared by reviewing both theoretical and research-based literature regarding professional poster development. Evidence indicates that poster presentations at professional conferences are an excellent venue for DNP students to successfully share the results of their scholarly projects. For posters to be both well perceived and received at conferences, certain guidelines must be followed regarding poster development. Guidelines include emphasizing a consistent message, clear focus, logical format, and esthetically pleasing design. Poster development guidelines and strategies need to be taught early and regularly throughout the DNP student's education. DNP scholarly projects provide forward-looking solutions to some of society's most formidable healthcare challenges. The dissemination of knowledge gleaned from the DNP scholarly projects is vital to 21st century global health. Effective poster presentations are critical to the dissemination of scholarly knowledge. ©2012 The Author(s) Journal compilation ©2012 American Association of Nurse Practitioners.
Knowledge About HIV/AIDS Among Secondary School Students.
Gupta, Pratibha; Anjum, Fatima; Bhardwaj, Pankaj; Srivastav, Jp; Zaidi, Zeashan Haider
2013-02-01
HIV/AIDS has emerged as the single most formidable challenge to public health. School children of today are exposed to the risk of HIV/AIDS. The study was conducted to determine the knowledge among secondary school students regarding HIV/AIDS and provide suggestions for HIV/AIDS education in schools. A cross-sectional study was conducted among students of tenth to twelfth standard in the intermediate schools of Lucknow, India, from July to October 2011. A total of 215 students, both boys and girls, were enrolled in the study. In this study, for majority of the students (85%), the source of information about HIV/AIDS was the television. Regarding knowledge about modes of transmission of HIV/AIDS among girl students, 95.1% of them told that it is through unprotected sex. A total of 75.8% students said that it was transmitted from mother to child. It was observed that the knowledge of the school students was quite satisfactory for most of the variables like modes of transmission, including mother-to-child transmission of the disease. However, schools should come forward to design awareness campaigns for the benefit of the students.
Conceptual Development of a National Volcanic Hazard Model for New Zealand
NASA Astrophysics Data System (ADS)
Stirling, Mark; Bebbington, Mark; Brenna, Marco; Cronin, Shane; Christophersen, Annemarie; Deligne, Natalia; Hurst, Tony; Jolly, Art; Jolly, Gill; Kennedy, Ben; Kereszturi, Gabor; Lindsay, Jan; Neall, Vince; Procter, Jonathan; Rhoades, David; Scott, Brad; Shane, Phil; Smith, Ian; Smith, Richard; Wang, Ting; White, James D. L.; Wilson, Colin J. N.; Wilson, Tom
2017-06-01
We provide a synthesis of a workshop held in February 2016 to define the goals, challenges and next steps for developing a national probabilistic volcanic hazard model for New Zealand. The workshop involved volcanologists, statisticians, and hazards scientists from GNS Science, Massey University, University of Otago, Victoria University of Wellington, University of Auckland, and University of Canterbury. We also outline key activities that will develop the model components, define procedures for periodic update of the model, and effectively articulate the model to end-users and stakeholders. The development of a National Volcanic Hazard Model is a formidable task that will require long-term stability in terms of team effort, collaboration and resources. Development of the model in stages or editions that are modular will make the process a manageable one that progressively incorporates additional volcanic hazards over time, and additional functionalities (e.g. short-term forecasting). The first edition is likely to be limited to updating and incorporating existing ashfall hazard models, with the other hazards associated with lahar, pyroclastic density currents, lava flow, ballistics, debris avalanche, and gases/aerosols being considered in subsequent updates.
Hippocampome.org: a knowledge base of neuron types in the rodent hippocampus
Wheeler, Diek W; White, Charise M; Rees, Christopher L; Komendantov, Alexander O; Hamilton, David J; Ascoli, Giorgio A
2015-01-01
Hippocampome.org is a comprehensive knowledge base of neuron types in the rodent hippocampal formation (dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex). Although the hippocampal literature is remarkably information-rich, neuron properties are often reported with incompletely defined and notoriously inconsistent terminology, creating a formidable challenge for data integration. Our extensive literature mining and data reconciliation identified 122 neuron types based on neurotransmitter, axonal and dendritic patterns, synaptic specificity, electrophysiology, and molecular biomarkers. All ∼3700 annotated properties are individually supported by specific evidence (∼14,000 pieces) in peer-reviewed publications. Systematic analysis of this unprecedented amount of machine-readable information reveals novel correlations among neuron types and properties, the potential connectivity of the full hippocampal circuitry, and outstanding knowledge gaps. User-friendly browsing and online querying of Hippocampome.org may aid design and interpretation of both experiments and simulations. This powerful, simple, and extensible neuron classification endeavor is unique in its detail, utility, and completeness. DOI: http://dx.doi.org/10.7554/eLife.09960.001 PMID:26402459
Controlling Tensegrity Robots Through Evolution
NASA Technical Reports Server (NTRS)
Iscen, Atil; Agogino, Adrian; SunSpiral, Vytas; Tumer, Kagan
2013-01-01
Tensegrity structures (built from interconnected rods and cables) have the potential to offer a revolutionary new robotic design that is light-weight, energy-efficient, robust to failures, capable of unique modes of locomotion, impact tolerant, and compliant (reducing damage between the robot and its environment). Unfortunately robots built from tensegrity structures are difficult to control with traditional methods due to their oscillatory nature, nonlinear coupling between components and overall complexity. Fortunately this formidable control challenge can be overcome through the use of evolutionary algorithms. In this paper we show that evolutionary algorithms can be used to efficiently control a ball-shaped tensegrity robot. Experimental results performed with a variety of evolutionary algorithms in a detailed soft-body physics simulator show that a centralized evolutionary algorithm performs 400 percent better than a hand-coded solution, while the multi-agent evolution performs 800 percent better. In addition, evolution is able to discover diverse control solutions (both crawling and rolling) that are robust against structural failures and can be adapted to a wide range of energy and actuation constraints. These successful controls will form the basis for building high-performance tensegrity robots in the near future.
Stigma, American military personnel and mental health care: challenges from Iraq and Afghanistan.
Schreiber, Michael; McEnany, Geoffry Phillips
2015-02-01
Since 2001, more than 2.5 million United States military personnel have been deployed for combat. Over one million have served multiple deployments. Combat generally involved repeated exposure to highly traumatic events. Personnel were also victims of military sexual trauma (MST), a major risk factor for psychiatric illness. Most survivors do not seek or receive mental health care. Stigma is one of the main barriers to that care. To explore the impact of stigma on personnel with psychiatric illness, and suggest some innovative ways to potentially reduce stigma and improve care. Cinahl and PubMed databases were searched from 2001 to 2014. Anonymity, the use of non-stigmatizing language, peer-to-peer, and stigma-reduction programs help military personnel receive mental health care. Technology offers the opportunity for effective and appropriate education and treatment. Although stigma is formidable, several innovative services are available or being developed for military victims of trauma. Commitment of resources for program development and further research to explore which interventions offer the best clinical outcomes are needed to increase efforts to combat stigma and ensure quality care.
Group cohesion and nurse satisfaction: examination of a team-building approach.
DiMeglio, Karen; Padula, Cynthia; Piatek, Carolyn; Korber, Susan; Barrett, Ann; Ducharme, Maria; Lucas, Sandra; Piermont, Nicole; Joyal, Elaine; DeNicola, Virginia; Corry, Karen
2005-03-01
The purpose of this study was to determine the impact of a team-building intervention on group cohesion, nurse satisfaction, and turnover rates. Creating an environment that supports and retains nurses represents a formidable challenge for nursing leaders. Research related to strategies that positively impact the culture in which nurses practice, thus potentially improving nurse satisfaction and reducing turnover, is critically needed. Registered nurses (RNs) employed on inpatient units in a 247-bed, private acute care Magnet teaching hospital participated in this quasi experimental preintervention and postintervention design. The RN-RN interaction subscale from the National Database of Nursing Quality Indicators Adapted Index of Work Satisfaction, the National Database of Nursing Quality Indicators Adapted Index of Job Enjoyment, the Group Cohesion Scale, and a facilitator-developed measure were completed preimplementation and postimplementation of unit-tailored intervention strategies, which took place over a 12-month period. Turnover rates were collected 6 month preintervention and postintervention. Improvement in group cohesion, RN-RN interaction, job enjoyment, and turnover was demonstrated. Targeted, unit-based strategies can be an effective means of reducing turnover rates and improving group cohesion and nurse satisfaction.
Standards for Library Services to Disabled Students.
ERIC Educational Resources Information Center
Trezza, Alphonse F.
The paper addresses the quality and extent of services provided by academic libraries to students with disabilities. The issue of establishing standards for such services is considered, and while the author notes the formidable difficulties involved in establishing such standards, he asserts that standards must be developed and implemented. He…
Functionality of Cooperative Business Education in Development of Nigeria
ERIC Educational Resources Information Center
Okoli, Constance I.
2016-01-01
Cooperatives without doubt are seen as major players in the development process especially in developing countries; for the mobilization of citizens and building them into formidable groups for productive purposes. The ability of this organization to achieve objectives depends greatly on the public, its members, management and leadership, in…
The Missing Soldier in the Drug War
2000-04-28
further, Robert Maginnis of the Family Research Council states, “Giving heroin to addicts is unethical and can result in euthanasia. Instead of...formidable foe we’ve faced since slavery . Someone is selling death to us, and we’re letting it happen. The only reason drugs are sold on the
ERIC Educational Resources Information Center
Rural America, Inc., Washington, DC.
In rural America 34 million culturally and economically diverse women share the common problem of unfair treatment based on sex. Although in recent years women have begun to question the social attitudes limiting their aspirations, a formidable gap exists between their expectations and the archaic legal, social, and economic policies that continue…
The Relationship between Buy-Back Provisions and Teacher Attendance Rates.
ERIC Educational Resources Information Center
Boyer, Charles Edwin
Teacher absenteeism is a formidable obstacle to cost-effective education, academic achievement, orderly school operation, and amiable school-community relations. This study examined the relationship between school district policies on sick leave and teacher attendance rates in Georgia--in particular, the degree to which policy provisions for the…
Growing an Emerging Research University
ERIC Educational Resources Information Center
Birx, Donald L.; Anderson-Fletcher, Elizabeth; Whitney, Elizabeth
2013-01-01
The emerging research college or university is one of the most formidable resources a region has to reinvent and grow its economy. This paper is the first of two that outlines a process of building research universities that enhance regional technology development and facilitate flexible networks of collaboration and resource sharing. Although the…
Differentiation for Gifted Learners: Going beyond the Basics
ERIC Educational Resources Information Center
Heacox, Diane; Cash, Richard M.
2014-01-01
Within a group of advanced learners, the variety of abilities, talents, interests, and learning styles can be formidable. For the first time, this book connects the unique learning differences among gifted students to the specific teaching methods used to tailor their educational experiences. Differentiated instruction for gifted and talented…
School Handbooks: Legal Considerations. Second Edition.
ERIC Educational Resources Information Center
Shaughnessy, Mary Angela
School handbooks contain the policies and procedures for which school community members are responsible. Developing and writing them, however, is a formidable task for any Catholic school administrator in this era of legal and moral accountability to entities ranging from state educational authorities to diocesan officials to pastors in parish…
Health information for the grass roots.
M'Jamtu-Sie, N
1996-01-01
In its endeavours to achieve the health-for-all goals, Sierra Leone confronts many formidable obstacles, among the greatest of which are illiteracy and poverty. Nevertheless, determined efforts are being made to disseminate health messages, including advice on self-help in the prevention of diseases and accidents and in tackling illness and disability.
Agency Amidst Formidable Structures: How Girls Perform Gender in Science Class
ERIC Educational Resources Information Center
Carlone, Heidi B.; Johnson, Angela; Scott, Catherine M.
2015-01-01
Larger social structures such as race, class, gender, and sexuality and classroom structures like narrowly defined participation practices constrain individuals' agency to engage in untroubled and sustained science identity work. This article explores the central dilemma of attending to structure and agency in settings where inequities are…
Reconsidering the Ambitions and Position of Gifted Education
ERIC Educational Resources Information Center
Persson, Roland S.
2017-01-01
This article is a theoretical commentary to Robert J. Sternberg's Active Concerned Citizenship and Ethical Leadership (ACCEL) model as published in the "Roeper Review." Though the proposed model is attractive and a formidable attempt to reform education in a politically and economically turbulent world that all too often ignores ethics…
The University as an Open Laboratory
ERIC Educational Resources Information Center
Birx, Donald L.; Ford, Ralph M.; Payne, Carrie A.
2013-01-01
Colleges and universities are two of the most formidable resources a country has to reinvent and grow its economy. This is the second of two papers that outlines a process of building and strengthening research universities that enhances regional technology development and facilitates flexible networks of collaboration and resource sharing. In the…
ERIC Educational Resources Information Center
Graham, Patricia Albjerg
The goal of American education must be to provide more learning for more people. Accomplishing this objective will require formidable commitments of social will, educational expertise, and financial resources. Although there are many good schools in America, many others face many impediments in their efforts to educate children. Obstacles for…
Market Power and Cultural Imperialism.
ERIC Educational Resources Information Center
Gandy, Oscar H., Jr.
This paper argues that the conditions that have historically supported the regulation of the telecommunications industry in the United States have been reproduced around the world and exist most formidably within the developing nations. In support of this argument, the paper examines several key periods in United States regulatory history. It then…
Lignos, Ioannis; Morad, Viktoriia; Shynkarenko, Yevhen; Bernasconi, Caterina; Maceiczyk, Richard M; Protesescu, Loredana; Bertolotti, Federica; Kumar, Sudhir; Ochsenbein, Stefan T; Masciocchi, Norberto; Guagliardi, Antonietta; Shih, Chih-Jen; Bodnarchuk, Maryna I; deMello, Andrew J; Kovalenko, Maksym V
2018-05-22
Hybrid organic-inorganic and fully inorganic lead halide perovskite nanocrystals (NCs) have recently emerged as versatile solution-processable light-emitting and light-harvesting optoelectronic materials. A particularly difficult challenge lies in warranting the practical utility of such semiconductor NCs in the red and infrared spectral regions. In this context, all three archetypal A-site monocationic perovskites-CH 3 NH 3 PbI 3 , CH(NH 2 ) 2 PbI 3 , and CsPbI 3 -suffer from either chemical or thermodynamic instabilities in their bulk form. A promising approach toward the mitigation of these challenges lies in the formation of multinary compositions (mixed cation and mixed anion). In the case of multinary colloidal NCs, such as quinary Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs, the outcome of the synthesis is defined by a complex interplay between the bulk thermodynamics of the solid solutions, crystal surface energies, energetics, dynamics of capping ligands, and the multiple effects of the reagents in solution. Accordingly, the rational synthesis of such NCs is a formidable challenge. Herein, we show that droplet-based microfluidics can successfully tackle this problem and synthesize Cs x FA 1- x PbI 3 and Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs in both a time- and cost-efficient manner. Rapid in situ photoluminescence and absorption measurements allow for thorough parametric screening, thereby permitting precise optical engineering of these NCs. In this showcase study, we fine-tune the photoluminescence maxima of such multinary NCs between 700 and 800 nm, minimize their emission line widths (to below 40 nm), and maximize their photoluminescence quantum efficiencies (up to 89%) and phase/chemical stabilities. Detailed structural analysis revealed that the Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs adopt a cubic perovskite structure of FAPbI 3 , with iodide anions partially substituted by bromide ions. Most importantly, we demonstrate the excellent transference of reaction parameters from microfluidics to a conventional flask-based environment, thereby enabling up-scaling and further implementation in optoelectronic devices. As an example, Cs x FA 1- x Pb(Br 1- y I y ) 3 NCs with an emission maximum at 735 nm were integrated into light-emitting diodes, exhibiting a high external quantum efficiency of 5.9% and a very narrow electroluminescence spectral bandwidth of 27 nm.
System Engineering on the Use for Ares I,V - the Simpler, the Better
NASA Technical Reports Server (NTRS)
Kelly, William; Greene, William D.; Greasley, Paul; Ackerman, Peter C.
2008-01-01
The Ares I and Ares V Vehicles will utilize the J-2X rocket engine developed for NASA by the Pratt & Whitney Rocketdyne Company. The J-2X is an improved higher power version of the original J-2 engine used during the Apollo program. With higher power and updated requirements for safety and performance, the J-2X becomes a new engine using state-of-the-art design methodology, materials and manufacturing processes. The implementation of Systems Engineering (SE) principles enables the rapid J-2X development program to remain aligned with the ARES I and V vehicle programs, Meeting the aggressive development schedule is a challenge. Coordinating the best expertise thai NASA and PWR have to offer requires effectively utilizing resources at multiple sites. This presents formidable communication challenges. SE allows honest and open discussions of issues and problems. This simple idea is often overlooked in large and complex SE programs. Regular and effective meetings linking SE objectives to component designs are used to voice differences of opinions with customer and contractor in attendance so that the best mutual decisions can be made on the shortest possible schedule. Regular technical interchange meetings on secure program wide computer networks and CM processes are effective,in the "Controlled Change" process that exemplifies good SE. Good communication is a key effective SE implementation. The System of Systems approach is the vision of the Orion program which facilitates the establishment of dynamic SE processes at all levels including the engine. SE enables requirements evolution by facilitating organizational and process agility. Flow down and distribution of requirements is controlled by Allocation Reports which breakdown numerical design objectives (weight, reliability, etc.) into quanta goals for each component area. Linked databases of design and verification requirements helps eliminate redundancy and potential mistakes inherent m separated systems. Another tool, the Architecture Design Description, is being used to control J-2X system architecture and effectively communicate configuration changes to those involved in the design process. But the proof is in successful program accomplishment. The SE is the methodology being used to meet the challenge of completing J-2X engine certification 2 years ahead of any engine program ever developed at PWR. The Ares I SE system of systems has delivered according to expectations thus far. All major design reviews (SRR. PDR, CDR) have been successfully conducted to satisfy overall program objectives using SE as the basis for accomplishment. The paper describes SE tools and techniques utilized to achieve this success.
Ethical issues when modelling brain disorders innon-human primates.
Neuhaus, Carolyn P
2018-05-01
Non-human animal models of human diseases advance our knowledge of the genetic underpinnings of disease and lead to the development of novel therapies for humans. While mice are the most common model organisms, their usefulness is limited. Larger animals may provide more accurate and valuable disease models, but it has, until recently, been challenging to create large animal disease models. Genome editors, such as Clustered Randomised Interspersed Palindromic Repeat (CRISPR), meet some of these challenges and bring routine genome engineering of larger animals and non-human primates (NHPs) well within reach. There is growing interest in creating NHP models of brain disorders such as autism, depression and Alzheimer's, which are very difficult to model or study in other organisms, including humans. New treatments are desperately needed for this set of disorders. This paper is novel in asking: Insofar as NHPs are being considered for use as model organisms for brain disorders, can this be done ethically? The paper concludes that it cannot. Notwithstanding ongoing debate about NHPs' moral status, (1) animal welfare concerns, (2) the availability of alternative methods of studying brain disorders and (3) unmet expectations of benefit justify a stop on the creation of NHP model organisms to study brain disorders. The lure of using new genetic technologies combined with the promise of novel therapeutics presents a formidable challenge to those who call for slow, careful, and only necessary research involving NHPs. But researchers should not create macaques with social deficits or capuchin monkeys with memory deficits just because they can. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
The genetic pleiotropy of musculoskeletal aging
Karasik, David; Cohen-Zinder, Miri
2012-01-01
Musculoskeletal aging is detrimental to multiple bodily functions and starts early, probably in the fourth decade of an individual's life. Sarcopenia is a health problem that is expected to only increase as a greater portion of the population lives longer; prevalence of the related musculoskeletal diseases is similarly expected to increase. Unraveling the biological and biomechanical associations and molecular mechanisms underlying these diseases represents a formidable challenge. There are two major problems making disentangling the biological complexity of musculoskeletal aging difficult: (a) it is a systemic, rather than “compartmental,” problem, which should be approached accordingly, and (b) the aging per se is neither well defined nor reliably measurable. A unique challenge of studying any age-related condition is a need of distinguishing between the “norm” and “pathology,” which are interwoven throughout the aging organism. We argue that detecting genes with pleiotropic functions in musculoskeletal aging is needed to provide insights into the potential biological mechanisms underlying inter-individual differences insusceptibility to the musculoskeletal diseases. However, exploring pleiotropic relationships among the system's components is challenging both methodologically and conceptually. We aimed to focus on genetic aspects of the cross-talk between muscle and its “neighboring” tissues and organs (tendon, bone, and cartilage), and to explore the role of genetics to find the new molecular links between skeletal muscle and other parts of the “musculoskeleton.” Identification of significant genetic variants underlying the musculoskeletal system's aging is now possible more than ever due to the currently available advanced genomic technologies. In summary, a “holistic” genetic approach is needed to study the systems's normal functioning and the disease predisposition in order to improve musculoskeletal health. PMID:22934054
NASA Space Exploration Logistics Workshop Proceedings
NASA Technical Reports Server (NTRS)
deWeek, Oliver; Evans, William A.; Parrish, Joe; James, Sarah
2006-01-01
As NASA has embarked on a new Vision for Space Exploration, there is new energy and focus around the area of manned space exploration. These activities encompass the design of new vehicles such as the Crew Exploration Vehicle (CEV) and Crew Launch Vehicle (CLV) and the identification of commercial opportunities for space transportation services, as well as continued operations of the Space Shuttle and the International Space Station. Reaching the Moon and eventually Mars with a mix of both robotic and human explorers for short term missions is a formidable challenge in itself. How to achieve this in a safe, efficient and long-term sustainable way is yet another question. The challenge is not only one of vehicle design, launch, and operations but also one of space logistics. Oftentimes, logistical issues are not given enough consideration upfront, in relation to the large share of operating budgets they consume. In this context, a group of 54 experts in space logistics met for a two-day workshop to discuss the following key questions: 1. What is the current state-of the art in space logistics, in terms of architectures, concepts, technologies as well as enabling processes? 2. What are the main challenges for space logistics for future human exploration of the Moon and Mars, at the intersection of engineering and space operations? 3. What lessons can be drawn from past successes and failures in human space flight logistics? 4. What lessons and connections do we see from terrestrial analogies as well as activities in other areas, such as U.S. military logistics? 5. What key advances are required to enable long-term success in the context of a future interplanetary supply chain? These proceedings summarize the outcomes of the workshop, reference particular presentations, panels and breakout sessions, and record specific observations that should help guide future efforts.
Technology for Institutional Enrollment, Communication, and Student Success
ERIC Educational Resources Information Center
Salas, Grace; Alexander, Julie S.
2008-01-01
Regardless of whether an institution is a reluctant passenger on the racing technology train or itching to throw another shovel of coal on the fire, continuing advancements in technology make it a formidable factor in life on college campuses today. While students are updating their most recent social networking sites, faculty, staff, and…
This Is About Attendance Counselling.
ERIC Educational Resources Information Center
Prokos, George
The days of the formidable truant officer who chased after hooky-playing delinquents and led them back to school by the ear are gone. Today's "attendance counselors" see their function as protecting a child's right to a meaningful education. Although their goal is still to get absent students back to classes, their approach is now a more…
KIDS COUNT Data Book, 2005: State Profiles of Child Well-Being
ERIC Educational Resources Information Center
Annie E. Casey Foundation, 2005
2005-01-01
Clearly, the issues in this year's KIDS COUNT Data Book essay represent some of the most formidable barriers facing parents who are trying to connect to the workforce. Substance abuse, domestic violence, prior incarceration, and depression can potentially paralyze even the most eager and enterprising parents and jeopardize the economic security…
The University and the Community.
ERIC Educational Resources Information Center
Mehta, Mohan S.
Upon reception of the William Pearson Tolley Medal for distinguished leadership in adult education, Mohan S. Mehta, president of the Indian Adult Education Association, spoke on the civilization and culture of India, its long history, and its modern problems in the field of education. In the face of formidable problems in such areas as economics,…
ERIC Educational Resources Information Center
Beeber, Linda S.; Schwartz, Todd A.; Holditch-Davis, Diane; Canuso, Regina; Lewis, Virginia; Matsuda, Yui
2014-01-01
Formidable barriers prevent low-income mothers from accessing evidence-based treatment for depressive symptoms that compromise their ability to provide sensitive, responsive parenting for their infant or toddler. interpersonal psychotherapy (IPT), an evidence-based psychotherapy for depression, was tailored for in-home delivery to mothers…
Vocational Psychology and Ex-Offenders' Reintegration: A Call for Action
ERIC Educational Resources Information Center
Brown, Chris
2011-01-01
Failure to find steady and rewarding employment and stabilizing economic resources are key contributors to recidivism among ex-offenders. Within 3 years of their release, almost two thirds of ex-offenders return to prison. Ex-offenders face formidable barriers to employment including legal limitations and those specific to their skills, education,…
ERIC Educational Resources Information Center
Berkowitz, Peter
2007-01-01
Higher education in America faces such formidable problems as unaffordable tuition, lack of accountability, students ill-prepared for college, declining enrollment in math and science, and too few graduates fluent in critical foreign languages. This Opportunity 08 position paper recommends that the next President should take the following steps to…
New Advocacy Groups Shaking up Education Field
ERIC Educational Resources Information Center
Sawchuk, Stephen
2012-01-01
A new generation of education advocacy groups has emerged to play a formidable political role in states and communities across the country. Those groups are shaping policy through aggressive lobbying and campaign activity--an evolution in advocacy that is primed to continue in the 2012 elections and beyond. Though the record of their electoral…
Draft Genome Sequence of the Patulin-Producing Fungus Paecilomyces niveus Strain CO7.
Biango-Daniels, Megan N; Wang, Tristan W; Hodge, Kathie T
2018-06-21
Paecilomyces niveus is an extremotolerant fungus with surprising powers to survive high temperatures and infect apples and aphids. These abilities make it a formidable enemy in food and agricultural environments. In addition, it produces patulin, the most significant mycotoxin in apples. Copyright © 2018 Biango-Daniels et al.
2035 Biodeterrence: Problems and Promises for Biodefense
2010-02-17
7 How are Bioweapons Different from other Weapons...the nature of biological threats and how dual-use research, their formidable attributes, and their WMD potential make them a threat the United...its objective to prevent an attack or at least greatly mitigate the effects of an attack. How are Bioweapons Different from other Weapons? The
Harnessing Technology to Assess Oral Communication in Business English
ERIC Educational Resources Information Center
Levy, Tal; Gertler, Hedy
2015-01-01
Assessing oral skills in relatively large Business English classes seems a most formidable task for any teacher. How does one make sure to get multiple and valid assessments of each student? This action research paper provides supporting evidence for the correlation between the use of technology and students' engagement. This was achieved by…
ERIC Educational Resources Information Center
Holbrook, Colin; Fessler, Daniel M. T.
2013-01-01
Victory in modern intergroup conflict derives from complex factors, including weaponry, economic resources, tactical outcomes, and leadership. We hypothesize that the mind summarizes such factors into simple metaphorical representations of physical size and strength, concrete dimensions that have determined the outcome of combat throughout both…
Considering the many organizations which have published methods for monitoring contaminated sediments and the large number of documents on this subject, it can be a formidable task for a superfund project manager to find methods appropriate for his or her contaminated sediment si...
Investigative workshop for mathematical modeling of Johne's disease epidemiology and immunology
USDA-ARS?s Scientific Manuscript database
Despite long and intensive national-level efforts for Johne’s disease (JD) control, we are still far from preventing the significant economic impact of this formidable disease. One of the major reasons for the continuing struggle with JD is that there are many unknown factors in JD epidemiology and ...
Durability of Peace Education Effects in the Shadow of Conflict
ERIC Educational Resources Information Center
Rosen, Yigal; Salomon, Gavriel
2011-01-01
Value-oriented instructional programs, such as anti-racism, may often face societal barriers. A case in point are peace education programs in conflictual contexts. Close analysis of peace education programs in regions of conflict and tension suggest that they face formidable barriers that would appear to prevent the attainment of their goals of…
The Browning of U.S. Higher Education
ERIC Educational Resources Information Center
Roach, Ronald
2009-01-01
The author reports the result of a population analysis released by scholars at the Tomas Rivera Policy Institute at the University of Southern California. The scholars say that changing student demographics may prove the most formidable ever for American colleges and universities as well as for public K-12 school systems. They have pointed to the…
Engaging the Unengaged: Using Visual Images to Enhance Students' "Poli Sci 101" Experience
ERIC Educational Resources Information Center
Ulbig, Stacy
2009-01-01
As the nation witnesses a distinct decline in civic engagement among young adults, political science instructors across the nation face the formidable task of engaging students in lower-level, general education courses outside students' primary domain of interest. The research presented here seeks to understand if visually enhanced lecture…
The Profit Prophets in Higher Education
ERIC Educational Resources Information Center
Halfond, Jay A.
2010-01-01
The nation seems to have suddenly awoken to the reality that for-profit academic institutions are a force to be reckoned with. For so long, they have been ignored as inconsequential, second-rate competition, and vilified for their greed and lack of quality. Two events have changed their image into something far more formidable: (1) the realization…
Leadership Practices That Fosters Trauma Informed Approaches in Schools
ERIC Educational Resources Information Center
Gomez-Lee, Vanessa
2017-01-01
The purpose of this study was to address the formidable effect that complex trauma has on children and their school success. Trauma impacts a significant number of school-age children and that impact compromises many developmental milestones and events, including learning and school success. This study examined one elementary school that has…
Land, Speculation, and Manipulation on the Pecos
ERIC Educational Resources Information Center
Bogener, Stephen
2008-01-01
The Pecos River of the nineteenth century, unlike its faint twenty-first century shadow, was a formidable watercourse. The river stretches some 755 miles, from the Sangre de Cristo Mountains northeast of Santa Fe to its eventual merger with the Rio Grande. Control over the public domain of southeastern New Mexico came from controlling access to…
Family Physician Support for a Family With a Mentally Ill Member.
McBride, J LeBron
2016-09-01
Mentally ill family members can have a formidable impact on the families in which they reside. Family physicians can intervene in powerful ways when they are sensitive to those who are mentally ill and their families and can provide much needed compassionate support. © 2016 Annals of Family Medicine, Inc.
USDA-ARS?s Scientific Manuscript database
The global burden of enteric dysfunction and diarrhoeal disease remains a formidable problem that requires novel interventions. This study investigated the immune-modulatory capacity of bran across rice varieties with phytochemical differences. 129SvEvTac mice were fed a 10% rice bran or control die...