Sample records for formulated engine oil

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnhill, William C.; Gao, Hong; Kheireddin, Bassem

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with an effective anti-wear (AW) functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated containing a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: AW performance in boundary lubrication (BL) and friction behavior (Stribeck curves) in elastohydrodynamic, mixed, and BL. In addition, the forthcoming standardmore » Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content). The IL-ZDDP formulation consistently outperforms the ZDDP-only formulation in friction reduction and wear protection, and results from the bench and engine tests are well correlated.« less

  2. Tribological bench and engine dynamometer tests of a low viscosity SAE 0W-16 engine oil using a combination of ionic liquid and ZDDP as anti-wear additives

    DOE PAGES

    Barnhill, William C.; Gao, Hong; Kheireddin, Bassem; ...

    2015-09-29

    We have previously reported an oil-miscible phosphonium-organophosphate ionic liquid (IL) with an effective anti-wear (AW) functionality when added to a base oil by itself or combined with a conventional zinc dialkyldithiophosphate (ZDDP) for a synergistic effect. In this research, we investigated whether this synergy manifests in formulated engine oils. An experimental SAE 0W-16 engine oil was generated containing a combination of IL and ZDDP with equal phosphorus contribution. The prototype engine oil was first evaluated using tribological bench tests: AW performance in boundary lubrication (BL) and friction behavior (Stribeck curves) in elastohydrodynamic, mixed, and BL. In addition, the forthcoming standardmore » Sequence VIE engine dynamometer test was then conducted to demonstrate improved fuel economy. Results were benchmarked against those of another experimental engine oil with almost the same formulation except using ZDDP only without the IL (similar total phosphorus content). The IL-ZDDP formulation consistently outperforms the ZDDP-only formulation in friction reduction and wear protection, and results from the bench and engine tests are well correlated.« less

  3. Feasibility of observing small differences in friction mean effective pressure between different lubricating oil formations using small, single-cylinder motored engine rig

    DOE PAGES

    Rohr, William F.; Nguyen, Ke; Bunting, Bruce G.; ...

    2015-09-01

    Here, the feasibility of using a motored single-cylinder 517 cc diesel engine to observe small frictional differences between oil formulations is investigated. Friction mean effective pressure (FMEP) is measured and compared for an SAE 10W-30 and an SAE 5W-20 oil in three stages of production: base oil, commercial oil without a friction and wear reducing additive, and fully formulated commercial oil. In addition, a commercial SAE 5W-30 engine oil is investigated. Friction mean effective pressure is plotted versus oil dynamic viscosity to compare the lubricant FMEP at a given viscosity. Linear regressions and average friction mean effective pressure are usedmore » as a secondary means of comparing FMEP for the various oil formulations. Differences between the oils are observed with the base oil having higher friction at a given viscosity but a lower average FMEP due to the temperature distribution of the test and lower viscosities reached by the base oil. The commercial oil is shown to have both a higher FMEP at a given viscosity and a higher average FMEP than the commercial oil without a friction and wear reducing additive. The increase in friction for the oil without a friction and wear reduction additive indicates that the operational regime of the engine may be out of the bounds of the optimal regime for the additive or that the additive is more optimized for wear reduction. Results show that it is feasible to observe small differences in FMEP between lubricating oil formulations using a small, single-cylinder motored engine.« less

  4. Feasibility of observing small differences in friction mean effective pressure between different lubricating oil formations using small, single-cylinder motored engine rig

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rohr, William F.; Nguyen, Ke; Bunting, Bruce G.

    Here, the feasibility of using a motored single-cylinder 517 cc diesel engine to observe small frictional differences between oil formulations is investigated. Friction mean effective pressure (FMEP) is measured and compared for an SAE 10W-30 and an SAE 5W-20 oil in three stages of production: base oil, commercial oil without a friction and wear reducing additive, and fully formulated commercial oil. In addition, a commercial SAE 5W-30 engine oil is investigated. Friction mean effective pressure is plotted versus oil dynamic viscosity to compare the lubricant FMEP at a given viscosity. Linear regressions and average friction mean effective pressure are usedmore » as a secondary means of comparing FMEP for the various oil formulations. Differences between the oils are observed with the base oil having higher friction at a given viscosity but a lower average FMEP due to the temperature distribution of the test and lower viscosities reached by the base oil. The commercial oil is shown to have both a higher FMEP at a given viscosity and a higher average FMEP than the commercial oil without a friction and wear reducing additive. The increase in friction for the oil without a friction and wear reduction additive indicates that the operational regime of the engine may be out of the bounds of the optimal regime for the additive or that the additive is more optimized for wear reduction. Results show that it is feasible to observe small differences in FMEP between lubricating oil formulations using a small, single-cylinder motored engine.« less

  5. Ionic Liquids as Novel Lubricants and /or Lubricant Additives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, J.; Viola, M. B.

    2013-10-31

    This ORNL-GM CRADA developed ionic liquids (ILs) as novel lubricants or oil additives for engine lubrication. A new group of oil-miscible ILs have been designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Mechanistic analysis attributes the superior lubricating performance of IL additives to their physical and chemical interactions with metallic surfaces. Working with a leading lubricant formulation company, the team has successfully developed a prototype low-viscosity engine oil using a phosphonium-phosphate IL as an anti-wear additive. Tribological bench tests of the IL-additized formulated oil showed 20-33% lower friction inmore » mixed and elastohydrodynamic lubrication and 38-92% lower wear in boundary lubrication when compared with commercial Mobil 1 and Mobil Clean 5W-30 engine oils. High-temperature, high load (HTHL) full-size engine tests confirmed the excellent anti-wear performance for the IL-additized engine oil. Sequence VID engine dynamometer tests demonstrated an improved fuel economy by >2% for this IL-additized engine oil benchmarked against the Mobil 1 5W-30 oil. In addition, accelerated catalyst aging tests suggest that the IL additive may potentially have less adverse impact on three-way catalysts compared to the conventional ZDDP. Follow-on research is needed for further development and optimization of IL chemistry and oil formulation to fully meet ILSAC GF-5 specifications and further enhance the automotive engine efficiency and durability.« less

  6. 7 CFR 3201.102 - Engine crankcase oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Engine crankcase oils. 3201.102 Section 3201.102... Designated Items § 3201.102 Engine crankcase oils. (a) Definition. Lubricating products formulated to provide lubrication and wear protection for four-cycle gasoline or diesel engines. (b) Minimum biobased content. The...

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frame, E.A.

    The objectives of this project were: (1) to determine the feasibility of adding a vapor-phase corrosion inhibitor (VCI) component to improve the preservation performance of MIL-L-21260 and (2) to evaluate a less complicated engine preservation procedure. A simultaneous two-phase approach was conducted. Phase 1 involved the formulation and evaluation of experimental VCI oils, while Phase 2 was the evaluation of a simplified engine preservation procedure. VCI oil formulation was conducted by Ronco Laboratory under subcontract. Compatibility of the experimental VCI oils with metal coupons, elastomers, and fuel filters was determined. Effectiveness of the experimental VCI oil was evaluated in amore » 3-year outdoor engine storage test. The engines were preserved using an experimental, simplified preservation procedure. The simplified engine preservation procedure proved to be acceptable as engines stored for 3 years in a very severe environment were judged to have been adequately preserved. Engine oil meeting specification MIL-L-21260 provided satisfactory protection during the 3-year storage test. The experimental VCI oil also provided satisfactory storage protection during this test; however, there was no observable advantage for the VCI oil. The VCI oil had acceptable compatibility with an elastomeric flex ring, metal coupons (except lead), and fuel filters.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shao, Huifang; Lam, William; Remias, Joseph

    Mobile source emissions standards are becoming more stringent and particulate emissions from gasoline direct injection (GDI) engines represent a particular challenge. Gasoline particulate filter (GPF) is deemed as one possible technical solution for particulate emissions reduction. In this work, a study was conducted on eight formulations of lubricants to determine their effect on GDI engine particulate emissions and GPF performance. Accelerated ash loading tests were conducted on a 2.4L GDI engine with engine oil injection in gasoline fuel by 2%. The matrix of eight formulations was designed with changing levels of sulfated ash (SASH) level, Zinc dialkyldithiophosphates (ZDDP) level andmore » detergent type. Comprehensive evaluations of particulates included mass, number, size distribution, composition, morphology and soot oxidation properties. GPF performance was assessed through filtration efficiency, back pressure and morphology. It was determined that oil formulation affects the particulate emission characteristics and subsequent GPF performance.« less

  9. Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

    USDA-ARS?s Scientific Manuscript database

    This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cottonseed biodiesel while assessing the IDI engine multi-fuel capability. Millions of tons of cotton seeds are available in the southeast of the USA every year and they contain oils that can be transesteri...

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gangopadhyay, Arup; McWatt, D. G.; Zdrodowski, R. J.

    Engine oils play a critical role in friction reduction. Improvements in engine oil technology steadily improved fuel economy as the industry moved through ILSAC GF-1 to GF-5 specifications. These improvements were influenced by changes in base oil chemistry, development of new friction modifiers and their treat levels, and the total additive package consisting of various other components. However, the improvements are incremental and further fuel consumption reduction opportunities are becoming more challenging. Polyalkylene glycol (PAG) based engine oils are being explored as a step forward for significant fuel consumption reduction. Although PAG fluids are used in many industrial applications, itsmore » application as an engine oil has been explored in a limited way. The objective of this project is to deep dive in exploring the applicability of PAG technology in engine oil, understanding the benefits, and limitations, elucidating the mechanism(s) for friction benefits, if any, and finally recommending how to address any limitations. The project was designed in four steps, starting with selection of lubricant technology, followed by friction and wear evaluations in laboratory bench tests which are relatively simple and inexpensive and also served as a screener for further evaluation. Selected formulations were chosen for more complex engine component level tests i.e., motored valvetrain friction and wear, piston ring friction using a motored single cylinder, and motored engine tests. A couple of formulations were further selected based on component level tests for engine dyno tests i.e., Sequence VID (ASTM D6709) for fuel economy, Sequence IVA (ASTM D6891) for valvetrain wear, and Sequence VG (ASTM D6593) for sludge and varnish protection. These are some of the industry standard tests required for qualifying engine oils. Out of these tests, a single PAG oil was selected for chassis roll dynamometer tests for fuel economy and emission measurements using FTP (Federal Test Procedure) metro/highway cycles. Five different PAG chemistries were selected by varying the starting alcohol, the oxide monomers (ethylene oxide, propylene oxide, or butylene oxide), capped or uncapped, homopolymer or random copolymer. All formulations contained a proprietary additive package and one which contained additional antiwear and friction modifier additives. Laboratory bench tests (Pin-on-Disk, High Frequency Reciprocating Rig (HFRR), Block-on-Ring, Mini-Traction Machine (MTM) identified formulations having friction, wear, and load carrying characteristics similar to or better than baseline GF-5 SAE 5W-20 oil. Motored valvetrain and motored piston ring friction tests showed nearly 50% friction reduction for some of the PAG formulations compared to GF-5 SAE 5W-20 oil. Motored engine tests showed up to 15% friction benefit over GF-5 SAE 5W-20 oil. It was observed that friction benefits are more related to PAG base oil chemistry than their lower viscosity compared to GF-5 SAE 5W-20 oil. Analysis of wear surfaces from laboratory bench tests and bucket tappets from motored valvetrain tests confirmed the presence of PAG molecules. The adsorption of these polar molecules is believed to be reason for friction reduction. However, the wear surfaces also had thin tribo-film derived from additive components. The tribo-film consisting of phosphates, sulfides, and molybdenum disulfide (when molybdenum additive was present) were observed for both GF-5 SAE 5W-20 and PAG fluids. However, when using PAG fluids, motored valvetrain tests showed high initial wear, which is believed to be due to delay in protective tribo-film formation. After the initial wear, the wear rate of PAG fluids was comparable to GF-5 SAE 5W-20 oil. The PAG oil containing additional antiwear and friction reducing additives showed low initial wear as expected. However, when this oil was evaluated in Sequence IVA test, it showed initially low wear comparable to GF-5 oil but wear accelerated with oil aging indicating rapid deterioration of additive components. ASTM Sequence VG test showed good sludge protection capability but failed to meet varnish rating for GF-5 requirement. Chassis roll dynamometer tests with PAG oil 15-1 showed about 1% fuel economy benefit over GF-5 SAE 5W-20 oil in EPA city cycles only and when the oil was slightly aged (500 miles). No fuel economy benefits could be observed in combined EPA metro/highway cycles. Also, no fuel economy benefit could be observed with continued (500- 10000 miles) oil aging. However, the emission level was comparable to the reference oil and was within EPA limits. Analysis of the PAG oil following tests showed low iron content although additive components were significantly degraded. The results indicate that PAG fluids have significant friction reduction potential but there are challenges with wear and varnish protection capabilities. These limitations are primarily because the selected additive components were chosen to provide a fluid with no metal content that forms little or no sulphated ash. Significant development work is needed to identify additive components compatible with PAG chemistry including their solubility in PAG oil. Miscibility of PAG fluids with mineral base oil is another challenge for oil change service. There is PAG chemistry (oil soluble PAG, OSP) which is soluble in mineral oils but the formulation explored in this investigation did not show significant friction reduction in motored engine tests. Again, highlighting the need for additive development for specific PAG chemistry. The thermal oxidation behavior of these oils has not been explored in this investigation and needs attention.« less

  11. Biobased extreme pressure additives: Structure-property considerations

    USDA-ARS?s Scientific Manuscript database

    Extreme pressure additives are widely used in lubricant formulations for engine oils, hydraulic fluids, gear oils, metalworking fluids, and many others. Extreme pressure additives contain selected elements such as sulfur, phosphorus, and halogens in their structures. These elements, under extreme tr...

  12. Shear rheological characterization of motor oils

    NASA Technical Reports Server (NTRS)

    Bair, Scott; Winer, Ward O.

    1988-01-01

    Measurements of high pressure viscosity, traction coefficient, and EHD film thickness were performed on twelve commercial automotive engine oils, a reference oil, two unformulated base oils and two unformated base oil and polymer blends. An effective high shear rate inlet viscosity was calculated from film thickness and pressure viscosity coefficient. The difference between measured and effective viscosity is a function of the polymer type and concentration. Traction measurements did not discriminate mileage formulated oils from those not so designated.

  13. Oil-Free Rotor Support Technologies for an Optimized Helicopter Propulsion System

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Bruckner, Robert J.

    2007-01-01

    An optimized rotorcraft propulsion system incorporating a foil air bearing supported Oil-Free engine coupled to a high power density gearbox using high viscosity gear oil is explored. Foil air bearings have adequate load capacity and temperature capability for the highspeed gas generator shaft of a rotorcraft engine. Managing the axial loads of the power turbine shaft (low speed spool) will likely require thrust load support from the gearbox through a suitable coupling or other design. Employing specially formulated, high viscosity gear oil for the transmission can yield significant improvements (approx. 2X) in allowable gear loading. Though a completely new propulsion system design is needed to implement such a system, improved performance is possible.

  14. Role of engine age and lubricant chemistry on the characteristics of EGR soot

    NASA Astrophysics Data System (ADS)

    Adeniran, Olusanmi Adeniji

    Exhaust products of Diesel Engines serves as an environmental hazard, and to curtail this problem a Tier 3 emission standard was introduced which involves change in engine designs and introduction of EGR systems in Diesel engines. EGR systems, however has the challenge of generating soot which are abrasive and are major causes of wear in Diesel engines. This work has studied the characteristics of EGR soot formed in different range of engine age and in different lubricant chemistries of Mineral and Synthetic based diesel Oils. It is found that lubricant degradation is encouraged by less efficient combustion as engine age increases, and these are precursors to formation of crystalline and amorphous particles that are causes of wear in Diesel Engines. It is found that soot from new engine is dominated by calcium based crystals which are from calcium sulfonate detergent, which reduces formation of second phase particles that can be abrasive. Diversity and peak intensity is seen to increase in soot samples as engine age increases. This understanding of second phase particles formed in engines across age ranges can help in the durability development of engine, improvement of Oil formulation for EGR engines, and in development of chemistries for after-treatment Oil solutions that can combat formation of abrasive particles in Oils.

  15. Nanocrystal Additives for Advanced Lubricants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Gregory; Lohuis, James; Demas, Nicholaos

    The innovations in engine and drivetrain lubricants are mainly driven by ever more stringent regulations, which demand better fuel economy, lower carbon emission, and less pollution. Many technologies are being developed for the next generations of vehicles to achieve these goals. Even if these technologies can be adopted, there still is a significant need for a “drop-in” lubricant solution for the existing ground vehicle fleet to reap immediate fuel savings at the same time reduce the pollution. Dramatic improvements were observed when Pixelligent’s proprietary, mono-dispersed, and highly scalable metal oxide nanocrystals were added to the base oils. The dispersions inmore » base and formulated oils are clear and without any change of appearance and viscosity. However, the benefits provided by the nanocrystals were limited to the base oils due to the interference of exiting additives in the fully formulated oils. Developing a prototype formulation including the nanocrystals that can demonstrate the same improvements observed in the base oils is a critical step toward the commercialization of these advanced nano-additives. A ‘bottom-up’ approach was adopted to develop a prototype lubricant formulation to avoid the complicated interactions with the multitude of additives, only minimal numbers of most essential additives are added, step by step, into the formulation, to ensure that they are compatible with the nanocrystals and do not compromise their tribological performance. Tribological performance are characterized to come up with the best formulations that can demonstrate the commercial potential of the nano-additives.« less

  16. Liquid chromatographic analysis of a formulated ester from a gas-turbine engine test

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Morales, W.

    1983-01-01

    Size exclusion chromatography (SEC) utilizing mu-Bondagel and mu-Styragel columns with a tetrahydrofuran mobile phase was used to determine the chemical degradation of lubricant samples from a gas-turbine engine test. A MIL-L-27502 candidate, ester-based lubricant was run in a J57-29 engine at a bulk oil temperature of 216 C. In general, the analyses indicated a progressive loss of primary ester, additive depletion, and formation of higher molecular weight material. An oil sample taken at the conclusion of the test showed a reversal of this trend because of large additions of new oil. The high-molecular-weight product from the degraded ester absorbed strongly in the ultraviolet region at 254 nanometers. This would indicate the presence of chromophoric groups. An analysis of a similar ester lubricant from a separate high-temperature bearing test yielded qualitatively similar results.

  17. Modified Thermoresponsive Hyperbranched Polymers for Improved Viscosity and Enhanced Lubricity of Engine Oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cosimbescu, Lelia; Robinson, Joshua W.; Bays, John Timothy

    The manuscript captures the chronological succession of the molecular design progression through multiple architectures and topologies of the polymeric viscosity index improvers and their rheology bench test performance. Tribology testing was also performed on selected analogs and their friction and wear was evaluated. Finally, a top performing polymer was selected for engine testing, scaled-up, and its rheological performance in a complete formulation was assessed. The engine performance of the viscosity index improver was examined against an industry-established baseline.

  18. Heavy Duty Diesel Exhaust Particles during Engine Motoring Formed by Lube Oil Consumption.

    PubMed

    Karjalainen, Panu; Ntziachristos, Leonidas; Murtonen, Timo; Wihersaari, Hugo; Simonen, Pauli; Mylläri, Fanni; Nylund, Nils-Olof; Keskinen, Jorma; Rönkkö, Topi

    2016-11-15

    This study reports high numbers of exhaust emissions particles during engine motoring. Such particles were observed in the exhaust of two heavy duty vehicles with no diesel particle filter (DPF), driven on speed ramp tests and transient cycles. A significant fraction of these particles was nonvolatile in nature. The number-weighted size distribution peak was below 10 nm when a thermodenuder was used to remove semivolatile material, growing up to 40 nm after semivolatile species condensation. These particles were found to contribute to 9-13% of total particle number emitted over a complete driving cycle. Engine motoring particles originated from lube oil and evidence suggests that these are of heavy organic or organometallic material. Particles of similar characteristics have been observed in the core particle mode during normal fired engine operation. Their size and chemical character has implications primarily on the environmental toxicity of non-DPF diesel and, secondarily, on the performance of catalytic devices and DPFs. Lube oil formulation measures can be taken to reduce the emission of such particles.

  19. Ionic Liquids as Multi-Functional Lubricant Additives to Enhance Engine Efficiency (final report NFE-12-03876)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun; Luo, Huimin; Toops, Todd J.

    This ORNL-Shell CRADA developed and investigated ionic liquids (ILs) as multifunctional additives for next-generation low-viscosity engine oils. Several groups of oil-miscible ILs were successfully designed and synthesized with high thermal stability, non-corrosiveness, excellent wettability, and most importantly effective anti-scuffing/anti-wear and friction reduction characteristics. Synergistic effects between the common anti-wear additive zinc dialkyldithiophosphate (ZDDP) and a particular group of ILs were discovered with > 30% friction reduction and 70% wear reduction compared with using ZDDP or IL alone. The IL+ZDDP tribofilm distinguishes itself from the IL or ZDDP tribofilms with substantially higher contents of metal phosphates but less metal oxides andmore » sulfur compounds. Notably, it was revealed that the actual concentrations of functional elements on the droplet surface of the oil containing IL+ZDDP are one order magnitude higher than their nominal values. Such significantly increased concentrations of anti-wear agents are presumably expected for the oilsolid interface and believed to be responsible for the superior lubricating performance. A prototype SAE 0W-16 engine oil using a synergistic IL+ZDDP pair as the anti-wear additive has been formulated based on the compatibility between the IL and other additives. Sequence VIE full-scale engine dynamometer tests demonstrated fuel economy improvement (FEI) for this prototype oil and revealed the individual contributions from the lower oil viscosity and reduced boundary friction. The impact of IL and IL+ZDDP on exhaust emission catalyst was investigated using an accelerated small engine aging test and results were benchmarked against ZDDP.« less

  20. Behaviors of Polymer Additives Under EHL and Influences of Interactions Between Additives on Friction Modification

    NASA Technical Reports Server (NTRS)

    Sakurai, T.

    1984-01-01

    Polymer additives have become requisite for the formulation of multigrade engine oils. The behavior of polymethacrylate (PMA)-thickened oils as lubricants in concentrated contacts under nominal rolling and pure sliding conditions was investigated by conventional optical interferometry. The PMA thickened oils behaved differently from the base oil in the formation of elastohydrodynamic (EHL) films. The higher the elastohydrodynamic molecular weight of the PMA contained in the lubricant, the thinner was the oil film under EHL conditions. The film thickness of shear-degraded PMA-thickened oils was also investigated. The behavior of graphite particles dispersed in both the base oil and the PMA-thickened oil was studied under pure sliding by taking photomicrographs. Many kinds of additives are contained in lubricating oil and the interactions between additives are considered. The interactions of zinc-organodithiophosphates (ZDP) with other additives is discussed.

  1. High-Temperature Solid Lubricants Developed by NASA Lewis Offer Virtually "Unlimited Life" for Oil-Free Turbomachinery

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    1999-01-01

    The NASA Lewis Research Center is capitalizing on breakthroughs in foil air bearing performance, tribological coatings, and computer analyses to formulate the Oil-free Turbomachinery Program. The program s long-term goal is to develop an innovative, yet practical, oil-free aeropropulsion gas turbine engine that floats on advanced air bearings. This type of engine would operate at higher speeds and temperatures with lower weight and friction than conventional oil-lubricated engines. During startup and shutdown, solid lubricant coatings are required to prevent wear in such engines before the self-generating air-lubrication film develops. NASA s Tribology Branch has created PS304, a chrome-oxide-based plasma spray coating specifically tailored for shafts run against foil bearings. PS304 contains silver and barium fluoride/calcium fluoride eutectic (BaF2/CaF2) lubricant additives that, together, provide lubrication from cold start temperatures to over 650 C, the maximum use temperature for foil bearings. Recent lab tests show that bearings lubricated with PS304 survive over 100 000 start-stop cycles without experiencing any degradation in performance due to wear. The accompanying photograph shows a test bearing after it was run at 650 C. The rubbing process created a "polished" surface that enhances bearing load capacity.

  2. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale

    NASA Astrophysics Data System (ADS)

    Semnani, S. J.; White, J. A.; Borja, R. I.

    2014-12-01

    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers, 2002.

  3. Vegetable Oils as Alternative Solvents for Green Oleo-Extraction, Purification and Formulation of Food and Natural Products.

    PubMed

    Yara-Varón, Edinson; Li, Ying; Balcells, Mercè; Canela-Garayoa, Ramon; Fabiano-Tixier, Anne-Sylvie; Chemat, Farid

    2017-09-05

    Since solvents of petroleum origin are now strictly regulated worldwide, there is a growing demand for using greener, bio-based and renewable solvents for extraction, purification and formulation of natural and food products. The ideal alternative solvents are non-volatile organic compounds (VOCs) that have high dissolving power and flash point, together with low toxicity and less environmental impact. They should be obtained from renewable resources at a reasonable price and be easy to recycle. Based on the principles of Green Chemistry and Green Engineering, vegetable oils could become an ideal alternative solvent to extract compounds for purification, enrichment, or even pollution remediation. This review presents an overview of vegetable oils as solvents enriched with various bioactive compounds from natural resources, as well as the relationship between dissolving power of non-polar and polar bioactive components with the function of fatty acids and/or lipid classes in vegetable oils, and other minor components. A focus on simulation of solvent-solute interactions and a discussion of polar paradox theory propose a mechanism explaining the phenomena of dissolving polar and non-polar bioactive components in vegetable oils as green solvents with variable polarity.

  4. Evaluation of soyscreen in an oil-based formulation for UV protection of Beauveria bassiana conidia.

    PubMed

    Behle, Robert W; Compton, David L; Laszlo, Joseph A; Shapiro-Ilan, David I

    2009-10-01

    Soyscreen oil was studied as a formulation ingredient to protect Beauveria bassiana (Balsamo) Vuillemin conidia from UV degradation. Feruloylated soy glycerides, referred to as Soyscreen oil, are biobased UV-absorbing molecules made by combining molecules of soybean oil with ferulic acid. Conidia stored in Soyscreen oil for 28 wk at 25, 30, and 35 degrees C retained viability as well as conidia stored in sunflower oil, demonstrating that Soyscreen did not adversely affect viability with prolonged storage. For samples applied to glass and exposed to simulated sunlight (xenon light), conidia in sunflower oil with or without sunscreens (Soyscreen or oxyl methoxycinnimate) had similar conidia viability after exposure. These oil formulations retained conidia viability better than conidia applied as an aqueous treatment. However, the 10% Soyscreen oil formulation applied to field grown cabbage (Brassica oleracea L.) and bean (Phaseolus vulgaris L.) plants, did not improve residual insecticidal activity compared with aqueous applications of unformulated conidia or two commercial formulations when assayed against Trichoplusia ni (Hübner) larvae. Our results suggest that the oil applications lose UV protection because the oil was absorbed by the leaf. This conclusion was supported in subsequent laboratory exposures of conidia in oil-based formulations with UV screens applied to cabbage leaves or balsa wood, which lost protection as measured by decreased viability of conidia when exposed to simulated sunlight. As a result, additional formulation techniques such as encapsulation to prevent separation of the protective oil from the conidia may be required to extend protection when oil formulations are applied in the field.

  5. Formulation and Characterization of Benzoyl Peroxide Gellified Emulsions

    PubMed Central

    Thakur, Naresh Kumar; Bharti, Pratibha; Mahant, Sheefali; Rao, Rekha

    2012-01-01

    The present investigation was carried out with the objective of formulating a gellified emulsion of benzoyl peroxide, an anti-acne agent. The formulations were prepared using four different vegetable oils, viz. almond oil, jojoba oil, sesame oil, and wheat germ oil, owing to their emollient properties. The idea was to overcome the skin irritation and dryness caused by benzoyl peroxide, making the formulation more tolerable. The gellified emulsions were characterized for their homogeneity, rheology, spreadability, drug content, and stability. In vitro permeation studies were performed to check the drug permeation through rat skin. The formulations were evaluated for their antimicrobial activity, as well as their acute skin irritation potential. The results were compared with those obtained for the marketed formulation. Later, the histopathological examination of the skin treated with various formulations was carried out. Formulation F3 was found to have caused a very mild dysplastic change to the epidermis. On the other hand, the marketed formulation led to the greatest dysplastic change. Hence, it was concluded that formulation F3, containing sesame oil (6%w/w), was the optimized formulation. It exhibited the maximum drug release and anti-microbial activity, in addition to the least skin irritation potential. PMID:23264949

  6. Repellent effect of microencapsulated essential oil in lotion formulation against mosquito bites.

    PubMed

    Misni, Norashiqin; Nor, Zurainee Mohamed; Ahmad, Rohani

    2017-01-01

    Many essential oils have been reported as natural sources of insect repellents; however, due to high volatility, they present low repellent effect. Formulation technique by using microencapsulation enables to control the volatility of essential oil and thereby extends the duration of repellency. In this study, the effectiveness of microencapsulated essential oils of Alpinia galanga, Citrus grandis and C. aurantifolia in the lotion formulations were evaluated against mosquito bites. Essential oils and N,N-Diethyl-3-methylbenzamide (DEET) were encapsulated by using interfacial pre- cipitation techniques before incorporation into lotion base to form microencapsulated (ME) formulation. The pure essential oil and DEET were also prepared into lotion base to produce non-encapsulated (NE) formulation. All the prepared formulations were assessed for their repellent activity against Culex quinquefasciatus under laboratory condition. Field evaluations also were conducted in three different study sites in Peninsular Malaysia. In addi- tion, Citriodiol® (Mosiquard®) and citronella-based repellents (KAPS®, MozAway® and BioZ Natural®) were also included for comparison. In laboratory conditions, the ME formulations of the essential oils showed no significant difference with regard to the duration of repellent effect compared to the microencapsulated DEET used at the highest con- centration (20%). It exhibited >98% repellent effect for duration of 4 h (p = 0.06). In the field conditions, these formulations demonstrated comparable repellent effect (100% for a duration of 3 h) to Citriodiol® based repellent (Mosiguard®) (p = 0.07). In both test conditions, the ME formulations of the essential oils presented longer duration of 100% repellent effect (between 1 and 2 h) compared to NE formulations. The findings of the study demonstrate that the application of the microencapsulation technique during the preparation of the formulations significantly increases the duration of the repellent effect of the essential oils, suggesting that the ME formulation of essential oils have potential to be commercialized as an alternative plant-based repellent in the market against the mosquitoes.

  7. Field Evaluation of a Kudzu/Cottonseed Oil Formulation on the Persistence of the Beet Armyworm Nucleopolyhedrovirus

    USDA-ARS?s Scientific Manuscript database

    A plant extract (kudzu) was tested as a UV protectant for SeMNPV, with and without the addition of an oil/emulsifier (cottonseed oil/lecithin) formulation. Aqueous and oil emulsion formulations of the beet armyworm, Spodoptera exigua (Hübner), nucleopolyhedrovirus SeMNPV were applied to collards an...

  8. Formulation of lubricating grease using Beeswax thickener

    NASA Astrophysics Data System (ADS)

    Suhaila, N.; Japar, A.; Aizudin, M.; Aziz, A.; Najib Razali, Mohd

    2018-04-01

    The issues on environmental pollution has brought the industries to seek the alternative green solutions for lubricating grease formulation. The significant challenges in producing modified grease are in which considering the chosen thickener as one of the environmental friendly material. The main purposes of the current research were to formulate lubricant grease using different types of base oils and to study the effect of thickener on the formulated lubricant grease. Used oil and motor oil were used as the base oils for the grease preparation. Beeswax and Damar were used as thickener and additive. The grease is tested based on its consistency, stability and oil bleeding. The prepared greases achieved grease consistency of grade 2 and 3 except for grease with unfiltered used oil. Grease formulated with used oil and synthetic oil tend to harden and loss its lubricating ability under high temperature compared to motor oil’ grease. Grease modification using environmental friendly thickener were successfully formulated but it is considered as a low temperature grease as the beeswax have low melting point of 62°C-65°C.

  9. A comparison of fresh and used aircraft oil for the identification of toxic substances linked to aerotoxic syndrome.

    PubMed

    Megson, David; Ortiz, Xavier; Jobst, Karl J; Reiner, Eric J; Mulder, Michel F A; Balouet, Jean-Christophe

    2016-09-01

    Fresh and used aircraft engine lubricants (Mobil Jet Oil II) were analysed using a Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICRMS) and comprehensive two dimensional gas chromatography with high resolution time of flight mass spectrometry (GCxGC-HRTOFMS). The composition of the fresh oil was established, with special focus to its tricresyl phosphate (TCP) content as this has formed the focus for most investigations into aerotoxic syndrome. The results showed that only four TCP isomers were present at detectable levels in the fresh oil: mmm-TCP, mmp-TCP, ppm-TCP and ppp-TCP. The results indicate that the formulation of Mobile Jet Oil II does not contain the more toxic ortho substituted TCP isomers at concentrations above 0.0005%. The temperatures of jet engines during operation are greater than 200 °C which creates the potential to alter the composition of the original oil and create other toxic compounds. The results show there may be a significant risk from alkylated cresyl phosphates, which were identified in the used oils at concentrations calculated in the range of 0.13-0.69%. w/w. Several xylenyl and ethylphenyl phosphates have been shown to exhibit a similar toxicity to ortho substituted TCP isomers which makes there discovery in used oil significant. These compounds should be included in future aircraft air quality studies and when assessing the risks and causes of aerotoxic syndrome. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Health effects of oil mists: a brief review.

    PubMed

    Mackerer, C R

    1989-05-01

    Metal cutting/grinding fluids are of three basic types: straight oil (insoluble), oil-in-water emulsions (soluble) and synthetic/semisynthetic. All contain a variety of additives to improve performance. Human exposure occurs primarily by direct skin contact with the liquid or by skin and respiratory contact after fluid misting. Dermatitis caused by primary or direct skin irritation is the most prevalent health effect of exposure to cutting fluids. Occasionally allergic dermatitis is seen which is related to the development of sensitization to one or more of the additive components. Recent studies indicate that long-term exposure to cutting fluids does not result in increased incidences of lung cancer, urinary bladder cancer, gastrointestinal cancer, or death from non-malignant respiratory diseases. Long-term exposure to certain cutting fluids, however, is believed to have resulted in certain types of skin cancer, especially scrotal cancer. It is likely that these carcinogenic responses were caused by contact with polycyclic aromatic compounds (PCA) of 3-7 rings. Modern base oils which are severely refined have very low levels of PCA, are not carcinogenic in animal bioassays, and are unlikely to be carcinogenic in man. This is not necessarily true for re-refined oils which may contain significant levels of PCA and polychlorinated biphenyls derived from comingling used cutting oils with used engine oils and transformer oils. Cutting oils, themselves, generally do not accumulate significant levels of carcinogenic PCA during use. Additives, in theory, can cause a variety of health effects either directly or through the generation of reaction products such as nitrosamines. In actual use, adverse health effects appear to be limited to occasional instances of allergic contact dermatitis. Nitrosamines are extremely carcinogenic in test animals; although no human cancer cases directly attributable to nitrosamine contamination have been observed, nitrosating agents and amines should not be combined in cutting fluid formulations. It is difficult to anticipate or predict the potential toxicity of a particular cutting fluid formulation because of the presence of variable amounts of proprietary additives which, themselves, are often complex reaction mixtures. Thus, each additive and final formulation must be evaluated on a case by case basis to appropriately assess potential health hazards.

  11. Bridging the Gap between Chemical Flooding and Independent Oil Producers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stan McCool; Tony Walton; Paul Whillhite

    2012-03-31

    Ten Kanas oil reservoirs/leases were studied through geological and engineering analysis to assess the potential performance of chemical flooding to recover oil. Reservoirs/leases that have been efficiently waterflooded have the highest performance potential for chemical flooding. Laboratory work to identify efficient chemical systems and to test the oil recovery performance of the systems was the major effort of the project. Efficient chemical systems were identified for crude oils from nine of the reservoirs/leases. Oil recovery performance of the identified chemical systems in Berea sandstone rocks showed 90+ % recoveries of waterflood residual oil for seven crude oils. Oil recoveries increasedmore » with the amount of chemical injected. Recoveries were less in Indiana limestone cores. One formulation recovered 80% of the tertiary oil in the limestone rock. Geological studies for nine of the oil reservoirs are presented. Pleasant Prairie, Trembley, Vinland and Stewart Oilfields in Kansas were the most favorable of the studied reservoirs for a pilot chemical flood from geological considerations. Computer simulations of the performance of a laboratory coreflood were used to predict a field application of chemical flooding for the Trembley Oilfield. Estimates of field applications indicated chemical flooding is an economically viable technology for oil recovery.« less

  12. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine

    DOE PAGES

    Choi, Seungmok; Seong, Heeje

    2016-09-30

    Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less

  13. Lube oil-dependent ash chemistry on soot oxidation reactivity in a gasoline direct-injection engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Seungmok; Seong, Heeje

    Gasoline particulate filters (GPF) are considered an enabling technology to meet stringent particulate matter (PM) regulations for gasoline direct-injection (GDI) engines, which are known to produce significant PM emissions. While ash loading in filters has been recognized to be detrimental in filter performance by increasing back pressure, increased ash fractions in soot were observed to enhance soot oxidation. In this study, GDI soot samples derived from different gasoline/lube oil blends were evaluated to identify potential promoting factors when formulated lube oils were dosed into gasoline fuel. Ca-derived ash enhanced soot oxidation remarkably, while P- and ZDDP-derived ash deteriorated soot oxidation.more » It is apparent that the promoting effect of lube oil-derived ash is due mainly to the Ca component that is the most abundant among additive components in lube oil. Bulk and surface analyses of these ash compounds indicate that Ca-derived ash would be complex compounds, while the contribution of CaSO 4, which is one of the most abundant ash compounds from diesel engines, is almost negligible. For the validation of the ash promoting impact in filters, the regeneration experiments were compared for a TWC-coated GPF in a GDI engine before and after ash loading was performed. The pressure drop of the ash-loaded GPF decreased noticeably in the initial regeneration stage and it increased gradually, whereas that of no ash-loaded GPF increased gradually without any reduction. So, it is concluded that the ash layer in the GPF assisted soot oxidation in the early regeneration stage when it was in close contact with soot.« less

  14. Essential oil based polymeric patch development and evaluating its repellent activity against mosquitoes.

    PubMed

    Chattopadhyay, Pronobesh; Dhiman, Sunil; Borah, Somi; Rabha, Bipul; Chaurasia, Aashwin Kumar; Veer, Vijay

    2015-07-01

    Essential oil based insect repellents are environment friendly and provide dependable personal protection against the bites of mosquitoes and other blood-sucking insects. In the present study, optimized mixture of three essential oils was embedded into the ethylcellulose (EC) and polyvinylpyrrolidone (PVP K-30) polymers to develop essential oils based patch type mosquito repellent formulation. The developed formulation was characterized for various physico-chemical properties, oil release efficiency and essential oil-polymer interaction. Repellent activity of the formulation was evaluated against Ae. (S) albopictus mosquitoes and compared with commercially available synthetic insecticide based mosquito repellent cream Odomos(®) in the laboratory. The developed patches were 100% flat and there was no interaction between oil components and the excipients. Patches were smooth, homogenous and provided excellent mosquito repellent activity comparable to Odomos(®) under laboratory condition. Morphological and physico-chemical characterization indicated that the formulation was stable and suitable with the polymeric combination. The patch formulation did not show any inhalation toxicity in experimental Wistar rat. The repellent patches developed and evaluated currently, may provide a suitable, eco-friendly, acceptable and safe alternative to the existing synthetic repellent formulations for achieving protection against mosquitoes. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae

    PubMed Central

    Okumu, Fredros O; Knols, Bart GJ; Fillinger, Ulrike

    2007-01-01

    Background Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. Methods To assess the larvicidal efficacy of a neem (Azadirachta indica) oil formulation (azadirachtin content of 0.03% w/v) on An. gambiae s.s., larvae were exposed as third and fourth instars to a normal diet supplemented with the neem oil formulations in different concentrations. A control group of larvae was exposed to a corn oil formulation in similar concentrations. Results Neem oil had an LC50 value of 11 ppm after 8 days, which was nearly five times more toxic than the corn oil formulation. Adult emergence was inhibited by 50% at a concentration of 6 ppm. Significant reductions on growth indices and pupation, besides prolonged larval periods, were observed at neem oil concentrations above 8 ppm. The corn oil formulation, in contrast, produced no growth disruption within the tested range of concentrations. Conclusion Neem oil has good larvicidal properties for An. gambiae s.s. and suppresses successful adult emergence at very low concentrations. Considering the wide distribution and availability of this tree and its products along the East African coast, this may prove a readily available and cheap alternative to conventional larvicides. PMID:17519000

  16. Larvicidal effects of a neem (Azadirachta indica) oil formulation on the malaria vector Anopheles gambiae.

    PubMed

    Okumu, Fredros O; Knols, Bart G J; Fillinger, Ulrike

    2007-05-22

    Larviciding is a key strategy used in many vector control programmes around the world. Costs could be reduced if larvicides could be manufactured locally. The potential of natural products as larvicides against the main African malaria vector, Anopheles gambiae s.s was evaluated. To assess the larvicidal efficacy of a neem (Azadirachta indica) oil formulation (azadirachtin content of 0.03% w/v) on An. gambiae s.s., larvae were exposed as third and fourth instars to a normal diet supplemented with the neem oil formulations in different concentrations. A control group of larvae was exposed to a corn oil formulation in similar concentrations. Neem oil had an LC50 value of 11 ppm after 8 days, which was nearly five times more toxic than the corn oil formulation. Adult emergence was inhibited by 50% at a concentration of 6 ppm. Significant reductions on growth indices and pupation, besides prolonged larval periods, were observed at neem oil concentrations above 8 ppm. The corn oil formulation, in contrast, produced no growth disruption within the tested range of concentrations. Neem oil has good larvicidal properties for An. gambiae s.s. and suppresses successful adult emergence at very low concentrations. Considering the wide distribution and availability of this tree and its products along the East African coast, this may prove a readily available and cheap alternative to conventional larvicides.

  17. Assessment of In vitro Sun Protection Factor of Calendula Officinalis L. (Asteraceae) Essential Oil Formulation.

    PubMed

    Mishra, Ak; Mishra, A; Chattopadhyay, P

    2012-01-01

    The present study was undertaken to study the sunscreen activity of herbal formulation. There is no evidence of the sun protection factor (SPF) studies on essential oil of Calendula flowers (Calendula officinalis L., Asteraceae). The study investigates the in vitro SPF by ultraviolet specrtophotometry method of Calendula flower oil in a cream formulation. Calendula oil was isolated by Clavenger's apparatus, compositions were identified by GC-MS and the cream of calendula flower oil was prepared by homogenization method followed by evaluation for physical parameters. The sun protection factor of cream was evaluated by in vitro method employing UV-visible spectrophotometer (Shimazdu-1600). The SPF of Calendula oil in cream formulation exhibited good activity (SPF = 14.84 ± 0.16). Finding of this study suggested that calendula oil cream can be used to protect the skin from UV radiations in form of sunscreen cream and to maintain the natural pigmentation of the skin.

  18. Studies on repellent activity of seed oils alone and in combination on mosquito, Aedes aegypti.

    PubMed

    Mukesh, Y; Savitri, P; Kaushik, R; Singh, N P

    2014-09-01

    The study was undertaken to investigate the relative repellency of Pongamia pinnata and Azadirachta indica seed oils on vector mosquito, Aedes aegypti under laboratory conditions. The repellents were formulated into 3 groups: seed oils, their mixture and combination of seed oils with three carrier oils viz. olive, mustard and coconut oil. Different formulations of each oil were tested at the concentrations of 1% and 5% on human baits. Efficiency was assessed, based on the total protection time; biting rate and percent protection provided by each formulation. Results showed that 5% formulation of the Pongamia pinnata and Azadirachta indica seed oils, mixed in 1:1 ratio exhibited highest percentage repellency of 85%, protection time of 300 min and bite rate of 6%. 5% concentration of A. indica and P. pinnata seed oil in mustard oil base offered 86.36% and 85% protection respectively with total protection time of 230 and 240 min respectively. The study confirms that Azadirachta indica and Pongamia pinnata have mosquito-repellent potential. When mixed in different ratios or with some carrier oil their efficacy increases 2-fold in some cases. These formulations are very promising for topical use (> 5 hrs complete protection) and are comparable to the protection provided by advanced Odomos mosquito repellent cream available commercially and thus are recommended for field trial.

  19. Developing eco-friendly biofungicide for the management of major seed borne diseases of rice and assessing their physical stability and storage life.

    PubMed

    Naveenkumar, Ramasamy; Muthukumar, Arjunan; Sangeetha, Ganesan; Mohanapriya, Ramanathan

    2017-04-01

    Three plant oils (Cymbopogon citratus, Cymbopogon martini, and Pelargonium graveolens) were developed as EC formulations and tested for their physical stabilities. EC formulations (10EC, 20EC and 30EC) of C. citratus, C. martini and P. graveolens had emulsion stability, spontaneity property, heat and cold stability. EC formulated plant oils were screened against the major seed borne fungi of rice such as Curvularia lunata, Fusarium moniliforme, Bipolaris oryzae, and Sarocladium oryzae. The level of inhibition varied among the concentrations of EC formulations. Among the three EC formulations, that of C. citratus oil 30EC recorded 100% inhibition on the mycelial growth of test pathogens. In the blotter paper method, rice seeds treated with a formulation of C. citratus oil 30EC controlled the infection of C. lunata, F. moniliforme, B. oryzae and S. oryzae in rice seed to the tune of 66.0%, 60.4%, 66.0% and 69.1%, respectively. Seed soaking with formulation of C. citratus oil 30EC showed the highest percentage of normal seedlings, the lowest number of abnormal seedling and fresh ungerminated seeds when tested with the roll-towel method. Seed soaking with 30EC formulation of C. citratus oil increased seed germination, shoot length, root length and vigour of rice seedlings when tested with the plastic tray method. Transmission of pathogens from seed to seedling was reduced significantly by the 30EC formulation of C. citratus oil when tested with the plastic pot method. The effect of the storage life of the 30EC formulation of C. citratus oil showed that it had retained their antifungal effect till the end of the incubation period (120 days), and is able to inhibit the mycelial growth of all test pathogens to the 100% level. Copyright © 2017 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

  20. Effect of heat stress and oil formulation on conidial germination of Metarhizium anisopliae s.s. on tick cuticle and artificial medium.

    PubMed

    Barreto, Lucas P; Luz, Christian; Mascarin, Gabriel M; Roberts, Donald W; Arruda, Walquíria; Fernandes, Éverton K K

    2016-07-01

    The effect of heat stress (45°C) versus non-heat stress (27°C) on germination of Metarhizium anisopliae sensu stricto (s.s.) isolate IP 119 was examined with conidia formulated (suspended) in pure mineral oil or in water (Tween 80, 0.01%), and then applied onto the cuticle of Rhipicephalus sanguineus sensu lato (s.l.) engorged females or onto culture medium (PDAY). In addition, bioassays were performed to investigate the effect of conidia heated while formulated in oil, then applied to blood-engorged adult R. sanguineus females. Conidia suspended in water then exposed to 45°C, in comparison to conidia formulated in mineral oil and exposed to the same temperature, germinated less and more slowly when incubated on either PDAY medium or tick cuticle. Also, conidial germination on tick cuticle was delayed in comparison to germination on artificial culture medium; for example, germination was 13% on tick cuticle 72h after inoculation, in contrast to 61.5% on PDAY medium. Unheated (27°C) conidia suspended in either water or oil and applied to tick cuticle developed appressoria 36h after treatment; whereas only heat-stressed conidia formulated in oil developed appressoria on tick cuticle. In comparison to conidia heated in mineral oil, there was a strong negative effect of heat on germination of conidia heated in water before being applied to arthropod cuticle. Nevertheless, bioassays [based primarily on egg production (quantity) and egg hatchability] exhibited high percentages of tick control regardless of the type of conidial suspension; i.e., water- or oil-formulated conidia, and whether or not conidia were previously exposed to heat. In comparison to aqueous conidial preparations, however, conidia formulated in oil reduced egg hatchability irrespective of heat or no-heat exposure. In conclusion, mineral-oil formulation protected conidia against heat-induced delay of both germination and appressorium production when applied to the cuticle of R. sanguineus. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Investigation on the photostability of tretinoin in creams.

    PubMed

    Brisaert, M; Plaizier-Vercammen, J A

    2007-04-04

    In this investigation, the photodegradation of some tretinoin cream formulations was evaluated. Several oils were selected to prepare the cream formulations: olive oil, maize oil, castor oil, isopropyl myristate and Miglyol 812. A solubility study showed that tretinoin is best soluble in castor oil (0.60g/100ml), followed by isopropyl myristate, maize oil, Miglyol 812 and olive oil, respectively, 0.35, 0.30, 0.29 and 0.22g/100ml. The photostability of tretinoin in oils is comparable with the photostability of a tretinoin lotion (ethanol/propylene glycol 50/50), castor oil and olive oil giving slightly better results than the other oils. Investigation of the photodegradation of tretinoin in o/w creams, prepared with the same oils as mentioned above, revealed that tretinoin is far more stable in the cream formulations than in the respective oils, however it is not clear whether this is due to the formulation or due to a different irradiation technique. Tretinoin seemed to be most stable in the olive oil cream, followed by the castor oil cream. However microscopic investigation revealed the presence of tretinoin crystals in the olive oil cream, while the other creams were free of it. As a conclusion, one can say that the cream prepared with castor oil seems to be the most suitable one, in terms of solubility of tretinoin and in terms of photostability.

  2. Flow cytometry: a promising technique for the study of silicone oil-induced particulate formation in protein formulations.

    PubMed

    Ludwig, D Brett; Trotter, Joseph T; Gabrielson, John P; Carpenter, John F; Randolph, Theodore W

    2011-03-15

    Subvisible particles in formulations intended for parenteral administration are of concern in the biopharmaceutical industry. However, monitoring and control of subvisible particulates can be complicated by formulation components, such as the silicone oil used for the lubrication of prefilled syringes, and it is difficult to differentiate microdroplets of silicone oil from particles formed by aggregated protein. In this study, we demonstrate the ability of flow cytometry to resolve mixtures comprising subvisible bovine serum albumin (BSA) aggregate particles and silicone oil emulsion droplets with adsorbed BSA. Flow cytometry was also used to investigate the effects of silicone oil emulsions on the stability of BSA, lysozyme, abatacept, and trastuzumab formulations containing surfactant, sodium chloride, or sucrose. To aid in particle characterization, the fluorescence detection capabilities of flow cytometry were exploited by staining silicone oil with BODIPY 493/503 and model proteins with Alexa Fluor 647. Flow cytometric analyses revealed that silicone oil emulsions induced the loss of soluble protein via protein adsorption onto the silicone oil droplet surface. The addition of surfactant prevented protein from adsorbing onto the surface of silicone oil droplets. There was minimal formation of homogeneous protein aggregates due to exposure to silicone oil droplets, although oil droplets with surface-adsorbed trastuzumab exhibited flocculation. The results of this study demonstrate the utility of flow cytometry as an analytical tool for monitoring the effects of subvisible silicone oil droplets on the stability of protein formulations. Copyright © 2010 Elsevier Inc. All rights reserved.

  3. EFFICACY OF THAI NEEM OIL AGAINST AEDES AEGYPTI (L.) LARVAE.

    PubMed

    Silapanuntakul, Suthep; Keanjoom, Romnalin; Pandii, Wongdyan; Boonchuen, Supawadee; Sombatsiri, Kwanchai

    2016-05-01

    Trees with larvicidal activity may be found in Thailand. We conducted this study to evaluate the efficacy and length of efficacy of Thai neem (Azadirachta siamensis) oil emulsion and an alginate bead of Thai neem oil formulation against early fourth stage Aedes aegypti larvae using a dipping test. The Thai neem oil emulsion had significantly greater larvicidal activity than the alginate bead formulation at 12 to 60 hours post-exposure (p < 0.01). The Thai neem oil formulation resulted in 100% mortality among the early fourth stage Aedes aegypti larvae at 48 hours, while the alginate bead formulation resulted in 98% larval mortality at 84 hours and 100% mortality at 96 hours. The mean larval mortality using the Thai neem oil emulsion dropped to < 25% by 12 days and with the alginate beads dropped to < 25% by 15 days of exposure.

  4. Low-Engine-Friction Technology for Advanced Natural-Gas Reciprocating Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; G. Smedley

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis has been followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. In this program, a detailed set of piston and piston-ring dynamic and friction models have been adapted and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukeshamore » VGF 18GL engine confirmed ring-pack friction reduction of 30-40%, which translates to total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. The study on surface textures, including roughness characteristics, cross hatch patterns, dimples and grooves have shown that even relatively small-scale changes can have a large effect on ring/liner friction, in some cases reducing FMEP by as much as 30% from a smooth surface case. The measured FMEP reductions were in good agreement with the model predictions. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Testing of low-friction lubricants showed that total engine FMEP reduced by up to {approx}16.5% from the commercial reference oil without significantly increasing oil consumption or blow-by flow. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is quite possible.« less

  5. Evaluation of PS 212 Coatings Under Boundary Lubrication Conditions with an Ester-based Oil to 300 C

    NASA Technical Reports Server (NTRS)

    Sliney, Harold E.; Loomis, William R.; Dellacorte, Christopher

    1994-01-01

    High friction and wear of turbine engine components occur during high temperature excursions above the oxidation threshold of the liquid lubricant. This paper reports on research to study the use of a high temperature self lubricating coating, PS 212 for back-up lubrication in the event of failure of the liquid lubricant. Pin on disk tests were performed under dry and boundary-lubricated conditions at disk temperatures up to 300 C. The liquid lubricant was a formulated polyol ester qualified under MIL L-23699. At test temperatures above the oil's thermal degradation level, the use of PS 212 reduced wear, providing a back-up lubricant effect.

  6. Evaluation of the preservative properties of Thymus vulgaris essential oil in topically applied formulations under a challenge test.

    PubMed

    Manou, I; Bouillard, L; Devleeschouwer, M J; Barel, A O

    1998-03-01

    The preservative properties of thyme essential oil (3%) with a known composition were evaluated in two types of final formulations, suitable for use as pharmaceutical or cosmetic vehicles, by means of a standard challenge test proposed by the latest European Pharmacopoeia. The required preservation efficacy criteria were satisfied against the bacterial strains, against the yeast in one of the formulations, but not against the mould strain involved in this study. Interactions between the essential oil compounds and other factors present in the final formulation might have influenced the activity of this essential oil, leading to an incomplete satisfaction of the criteria.

  7. Evaluation of Soyscreen in an Oil-based Formulation for UV Protection of Beauveria bassiana Conidia

    USDA-ARS?s Scientific Manuscript database

    SoyScreen oil was studied as a formulation ingredient to protect Beauveria bassiana (Balsamo) Vuillemin conidia from UV degradation. Feruloylated soy glycerides, referred to as SoyScreen oil, are biobased ultraviolet-absorbing molecules made by combining molecules of soybean oil with ferulic acid. ...

  8. The utilization of crude fish oil (CFO) to increase mudcrab (Scylla serrata) feed quality

    NASA Astrophysics Data System (ADS)

    Lamid, Mirni; Agustono

    2017-02-01

    Crude fish oil is one of essential fatty acid sources, which is found in Sardinella lemuru. This research aims to study the quality improvement of mudcrab(Scylla serrata) feed. Four feed formulations were designed by using completely randomized design, including P0 = trash fish + 1% tapioca starch; P1=trash fish + 2.0% crude fish oil + 1% tapioca starch;, P2= trash fish +4.0% crude fish oil + 1% tapioca starch; P3=trash fish + 6.0% crude fish oil + 1% tapioca starch; P4=trash fish +8.0% crude fish oil + 1% tapioca starch, respectively, which were carried out in quadruplicate. This study showed that feed formulation significantly affected crude protein, crude fiber, crude lipid, ash, organic matter and nitrogen free extract and energy of mudcrab. The P2 feed was the best formulation but had a slight different from P3 formulation.

  9. Assessment of In vitro Sun Protection Factor of Calendula Officinalis L. (Asteraceae) Essential Oil Formulation

    PubMed Central

    Mishra, AK; Mishra, A; Chattopadhyay, P

    2012-01-01

    The present study was undertaken to study the sunscreen activity of herbal formulation. There is no evidence of the sun protection factor (SPF) studies on essential oil of Calendula flowers (Calendula officinalis L., Asteraceae). The study investigates the in vitro SPF by ultraviolet specrtophotometry method of Calendula flower oil in a cream formulation. Calendula oil was isolated by Clavenger's apparatus, compositions were identified by GC–MS and the cream of calendula flower oil was prepared by homogenization method followed by evaluation for physical parameters. The sun protection factor of cream was evaluated by in vitro method employing UV–visible spectrophotometer (Shimazdu-1600). The SPF of Calendula oil in cream formulation exhibited good activity (SPF = 14.84 ± 0.16). Finding of this study suggested that calendula oil cream can be used to protect the skin from UV radiations in form of sunscreen cream and to maintain the natural pigmentation of the skin. PMID:22523455

  10. Design and evaluation of novel topical formulation with olive oil as natural functional active.

    PubMed

    Mota, Ana Henriques; Silva, Catarina Oliveira; Nicolai, Marisa; Baby, André; Palma, Lídia; Rijo, Patrícia; Ascensão, Lia; Reis, Catarina Pinto

    2017-07-03

    Currently, the innovative skin research is focused on the development of novel topical formulations loaded with natural functional actives. The health benefits of olive oil are unsurpassed and many others are revealed as research studies allow the understanding of its unlimited properties. Olive oil has a protective toning effect on skin, but it is not transported effectively into its layers. Aiming the development of a cosmetic formulation for skin photoprotection and hydration, we have prepared and characterized macro-sized particles, made of a hydrogel polymer, loaded with olive oil. Alginate beads were uniform in shape, with minimal oil leakage, offering interesting prospects for encapsulation of lipophilic and poorly stable molecules, like olive oil. In vitro photoprotection and in vivo tolerance tests were in favor of this application. Thus, this study suggests that the incorporation of the olive oil-loaded particles into a cream formulation provides strong moisturizing properties and a photoprotective potential, when applied to healthy subjects.

  11. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration

    PubMed Central

    Tichota, Deise Michele; Silva, Ana Catarina; Sousa Lobo, José Manuel; Amaral, Maria Helena

    2014-01-01

    Given its advantages in skin application (eg, hydration, antiaging, and protection), argan oil could be used in both dermatological and cosmetic formulations. Therefore, the preparation of nanostructured lipid carriers (NLCs) using argan oil as a liquid lipid is a promising technique, since the former constitute well-established systems for dermal delivery. The aim of this work was to develop a topical formulation of argan oil NLCs to improve skin hydration. Firstly an NLC dispersion was developed and characterized, and afterward an NLC-based hydrogel was prepared. The in vivo evaluation of the suitability of the prepared formulation for the proposed application was assessed in volunteers, by measuring different skin-surface parameters for 1 month. An argan oil NLC-based hydrogel formulation was successfully prepared and characterized. Moreover, the entrapment of the NLCs in the hydrogel net did not affect their colloidal sizes. Additionally, it was observed that this formulation precipitated an increase in skin hydration of healthy volunteers. Therefore, we concluded that the preparation of NLC systems using argan oil as the liquid lipid is a promising strategy, since a synergistic effect on the skin hydration was obtained (ie, NLC occlusion plus argan oil hydration). PMID:25143733

  12. Design, characterization, and clinical evaluation of argan oil nanostructured lipid carriers to improve skin hydration.

    PubMed

    Tichota, Deise Michele; Silva, Ana Catarina; Sousa Lobo, José Manuel; Amaral, Maria Helena

    2014-01-01

    Given its advantages in skin application (eg, hydration, antiaging, and protection), argan oil could be used in both dermatological and cosmetic formulations. Therefore, the preparation of nanostructured lipid carriers (NLCs) using argan oil as a liquid lipid is a promising technique, since the former constitute well-established systems for dermal delivery. The aim of this work was to develop a topical formulation of argan oil NLCs to improve skin hydration. Firstly an NLC dispersion was developed and characterized, and afterward an NLC-based hydrogel was prepared. The in vivo evaluation of the suitability of the prepared formulation for the proposed application was assessed in volunteers, by measuring different skin-surface parameters for 1 month. An argan oil NLC-based hydrogel formulation was successfully prepared and characterized. Moreover, the entrapment of the NLCs in the hydrogel net did not affect their colloidal sizes. Additionally, it was observed that this formulation precipitated an increase in skin hydration of healthy volunteers. Therefore, we concluded that the preparation of NLC systems using argan oil as the liquid lipid is a promising strategy, since a synergistic effect on the skin hydration was obtained (ie, NLC occlusion plus argan oil hydration).

  13. Innovations in the development of healthier chicken sausages formulated with different lipid sources.

    PubMed

    Andrés, S C; Zaritzky, N E; Califano, A N

    2009-08-01

    Long-chain polyunsaturated n-3 fatty acids are critical nutrients for human health and the fortification of foods with these fatty acids is an important emerging area from the commercial and academic point of view. Development, characterization, and changes during refrigerated vacuum storage of low-fat chicken sausages formulated with preemulsified squid oil were examined and compared with those formulated with beef tallow. Physicochemical analysis and process yield after heat treatment were determined; the heat-treated sausages were evaluated by purge loss, color, texture, microstructure by SEM, microbial counts, fatty acid profile, lipid oxidation, and sensory analysis during refrigerated vacuum storage. Process yield of both formulations was higher than 97% and purge losses during storage were lower than 7%. Purge losses of oil-formulated sausages were lower than those with beef tallow. Sausages with squid oil resulted in higher lightness, lower redness and yellowness, and lower texture profile analysis parameters than the formulation prepared with beef tallow. Microstructure of both formulations was similar, except for the fat droplets that microscopic observations showed in the sausages made with beef tallow. Low lipid oxidation was detected in formulation with squid oil due to the the combination of ingredients and storage conditions. Microbial counts of both products were less than 5 log cfu/g at the end of 90 d of storage. The sausage formulated with squid oil presented more than 30 and 40 g/100 g of monounsaturated and polyunsaturated fatty acids, respectively. Docosahexaenoic acid was the predominant polyunsaturated fatty acid, followed by eicosapentaenoic acid and linoleic acid. Both products showed safe sanitary conditions, good sensory acceptability, and presented very good stability and quality attributes, but sausages formulated with squid oil showed a better fatty acid profile according to nutritional criteria.

  14. Efficiency of Calamintha officinalis essential oil as preservative in two topical product types.

    PubMed

    Nostro, A; Cannatelli, M A; Morelli, I; Musolino, A D; Scuderi, F; Pizzimenti, F; Alonzo, V

    2004-01-01

    To verify the efficiency of Calamintha officinalis essential oil as natural preservative in two current formulations. The 1.0 and 2.0% (v/v) C. officinalis essential oil was assayed for its preservative activity in two product types (cream and shampoo). The microbial challenge test was performed following the standards proposed by the European Pharmacopoeia Commission (E.P.) concerning topical preparations using standard micro-organisms and in addition wild strains, either in single or mixed cultures were used. The results clearly demonstrated that the C. officinalis essential oil at 2.0% concentration reduced the microbial inoculum satisfying the criterion A of the E.P. in the cream formulation and the criterion B in the shampoo formulation. Standard and wild strains showed a behaviour similar, both in cream and in shampoo formulation, with no significant difference (gerarchic variance, P > 0.05). C. officinalis essential oil confirmed its preservative properties but at higher concentration than that shown in previous studies on cetomacrogol cream. The nature of the formulation in which an essential oil is incorporated as preservative could have considerable effect on its efficacy.

  15. Match of Solubility Parameters Between Oil and Surfactants as a Rational Approach for the Formulation of Microemulsion with a High Dispersed Volume of Copaiba Oil and Low Surfactant Content.

    PubMed

    Xavier-Junior, Francisco Humberto; Huang, Nicolas; Vachon, Jean-Jacques; Rehder, Vera Lucia Garcia; do Egito, Eryvaldo Sócrates Tabosa; Vauthier, Christine

    2016-12-01

    Aim was to formulate oil-in-water (O/W) microemulsion with a high volume ratio of complex natural oil, i.e. copaiba oil and low surfactant content. The strategy of formulation was based on (i) the selection of surfactants based on predictive calculations of chemical compatibility between their hydrophobic moiety and oil components and (ii) matching the HLB of the surfactants with the required HLB of the oil. Solubility parameters of the hydrophobic moiety of the surfactants and of the main components found in the oil were calculated and compared. In turn, required HLB of oils were calculated. Selection of surfactants was achieved matching their solubility parameters with those of oil components. Blends of surfactants were prepared with HLB matching the required HLB of the oils. Oil:water mixtures (15:85 and 25:75) were the titrated with surfactant blends until a microemulsion was formed. Two surfactant blends were identified from the predictive calculation approach. Microemulsions containing up to 19.6% and 13.7% of selected surfactant blends were obtained. O/W microemulsions with a high volume fraction of complex natural oil and a reasonable surfactant concentration were formulated. These microemulsions can be proposed as delivery systems for the oral administration of poorly soluble drugs.

  16. Efficacy of three citrus oil formulations against solenopsis invicta buren (Hymenoptera: Formicidae), the red imported fire ant1,2

    Treesearch

    James T. Vogt; Thormas G. Shelton; Michael E. Merchant; Scott A. Russell; Marla J. Tanley; Arthur G. Appel

    2002-01-01

    Experiments were conducted in Alabama, Oklahoma, and Texas to assess efficacy of raw citrus peel extract (orange oil) and a commercial citrus oil formulation for control of Solenopsis invicta Buren, the red imported fire ant. A recipe containing orange oil (equal parts orange oil, cattlemen's molasses, and compost tea at 47 mL L1 water),...

  17. Feasibility study of palm-based fuels for hybrid rocket motor applications

    NASA Astrophysics Data System (ADS)

    Tarmizi Ahmad, M.; Abidin, Razali; Taha, A. Latif; Anudip, Amzaryi

    2018-02-01

    This paper describes the combined analysis done in pure palm-based wax that can be used as solid fuel in a hybrid rocket engine. The measurement of pure palm wax calorific value was performed using a bomb calorimeter. An experimental rocket engine and static test stand facility were established. After initial measurement and calibration, repeated procedures were performed. Instrumentation supplies carried out allow fuel regression rate measurements, oxidizer mass flow rates and stearic acid rocket motors measurements. Similar tests are also carried out with stearate acid (from palm oil by-products) dissolved with nitrocellulose and bee solution. Calculated data and experiments show that rates and regression thrust can be achieved even in pure-tested palm-based wax. Additionally, palm-based wax is mixed with beeswax characterized by higher nominal melting temperatures to increase moisturizing points to higher temperatures without affecting regression rate values. Calorie measurements and ballistic experiments were performed on this new fuel formulation. This new formulation promises driving applications in a wide range of temperatures.

  18. Protein adsorption and excipient effects on kinetic stability of silicone oil emulsions.

    PubMed

    Ludwig, D Brett; Carpenter, John F; Hamel, Jean-Bernard; Randolph, Theodore W

    2010-04-01

    The effect of silicone oil on the stability of therapeutic protein formulations is of concern in the biopharmaceutical industry as more proteins are stored and delivered in prefilled syringes. Prefilled syringes provide convenience for medical professionals and patients, but prolonged exposure of proteins to silicone oil within prefilled syringes may be problematic. In this study, we characterize systems of silicone oil-in-aqueous buffer emulsions and model proteins in formulations containing surfactant, sodium chloride, or sucrose. For each of the formulations studied, silicone oil-induced loss of soluble protein, likely through protein adsorption onto the silicone oil droplet surface. Excipient addition affected both protein adsorption and emulsion stability. Addition of surfactant stabilized emulsions but decreased protein adsorption to silicone oil microdroplets. In contrast, addition of sodium chloride increased protein adsorption and decreased emulsion stability. Silicone oil droplets with adsorbed lysozyme rapidly agglomerated and creamed out of suspension. This decrease in the kinetic stability of the emulsion is ascribed to surface charge neutralization and a bridging flocculation phenomenon and illustrates the need to investigate not only the effects of silicone oil on protein stability, but also the effects of protein formulation variables on emulsion stability. 2009 Wiley-Liss, Inc. and the American Pharmacists Association

  19. Formulation of antiacne serum based on lime peel essential oil and in vitro antibacterial activity test against Propionibacterium acnes

    NASA Astrophysics Data System (ADS)

    Fitri, Noor; Fatimah, Ifat; Chabib, Lutfi; Fajarwati, Febi Indah

    2017-03-01

    Propionibacterium acnes are a normal bacterium in human skin but it can become primary pathogens that can cause inflammation on the skin. Research about new antibacterial compounds is important because resistance of bacteria acne to antibiotics. Some of Essential oils have antibacterial properties. Lime peel essential oil and patchouli essential oil have some terpenoids that act as antibacterial compounds such as Linalool and Seychellene. The purpose of this research was to formulate anti acne serum based on lime peel essential oil and patchouli oil and to determine the zone of inhibition against of Propionibacterium acnes. This study made 21 variations of formulation of anti acne serum, consisted of lime peel essential oil, patchouli oil and olive oil. Anti acne serum was evaluated i.e. in vitro antibacterial activity test against Propionibacterium acnes for 5 days, organoleptic, stability test, pH test, viscosity test and GC-MS analysis. Nine serum formulations had been selected, which based on their most favorite order. Those favorite serums had antibacterial inhibitory against Propionibacterium acnes between 20.80 - 26.12 mm, whereas control positive only 12.47 mm and control negative 5.78 mm. The most favorite serum with the best antibacterial activity was serum formula A. The composition of serum A consist of lime peel essential oil: patchouli oil: olive oil (11:1:18).

  20. Commercial formulation of Metarhizium anisopliae for the control of Rhipicephalus microplus in a pen study.

    PubMed

    Camargo, Mariana G; Marciano, Allan F; Sá, Fillipe A; Perinotto, Wendell M S; Quinelato, Simone; Gôlo, Patrícia S; Angelo, Isabele C; Prata, Márcia C A; Bittencourt, Vânia R E P

    2014-09-15

    The present study evaluated, for the first time, the effect of the commercial formulation Metarril(®) SP Organic of Metarhizium anisopliae plus 10% mineral oil to control Rhipicephalus microplus in a pen study. Three groups were formed with six animals each: the first group was exposed to Metarril(®) plus 10% mineral oil and 1% Tween 80; the second group was exposed to sterile distilled water, mineral oil and Tween 80 (oil control group); and the third group received no treatment (control group). The fungal formulation contained 1 × 10(8)conidiaml(-1). Each animal was sprayed with 3L of formulation. Fallen ticks were counted daily and a sample of 20 engorged females per day was incubated for assessment of biological parameters. Throughout the study period, Metarril(®) oil-based formulation showed an efficacy ranging from 19.20% to 67.39% in comparison with the control group; and from 8.18% to 61.38% in comparison with the oil control group. The average efficacy of Metarril(®) oil-based formulation was 47.74% and 40.89% in comparison with control and oil control groups, respectively. Changes in the biological parameters of engorged R. microplus females were observed in the first three days after treatment, with a significant reduction in hatching percentage and egg production index. We concluded that Metarril(®) SP Organic plus 10% mineral oil was efficient against R. microplus in pen studies. However, further in vivo studies are required to increase the efficacy and to establish a protocol for the use of this product in the field against the cattle tick. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Isotretinoin Oil-Based Capsule Formulation Optimization

    PubMed Central

    Tsai, Pi-Ju; Huang, Chi-Te; Lee, Chen-Chou; Li, Chi-Lin; Huang, Yaw-Bin; Tsai, Yi-Hung; Wu, Pao-Chu

    2013-01-01

    The purpose of this study was to develop and optimize an isotretinoin oil-based capsule with specific dissolution pattern. A three-factor-constrained mixture design was used to prepare the systemic model formulations. The independent factors were the components of oil-based capsule including beeswax (X 1), hydrogenated coconut oil (X 2), and soybean oil (X 3). The drug release percentages at 10, 30, 60, and 90 min were selected as responses. The effect of formulation factors including that on responses was inspected by using response surface methodology (RSM). Multiple-response optimization was performed to search for the appropriate formulation with specific release pattern. It was found that the interaction effect of these formulation factors (X 1 X 2, X 1 X 3, and X 2 X 3) showed more potential influence than that of the main factors (X 1, X 2, and X 3). An optimal predicted formulation with Y 10 min, Y 30 min, Y 60 min, and Y 90 min release values of 12.3%, 36.7%, 73.6%, and 92.7% at X 1, X 2, and X 3 of 5.75, 15.37, and 78.88, respectively, was developed. The new formulation was prepared and performed by the dissolution test. The similarity factor f 2 was 54.8, indicating that the dissolution pattern of the new optimized formulation showed equivalence to the predicted profile. PMID:24068886

  2. Biocontrol of the Brown-Banded Cockroach, Supella longipalpa F. (Blattaria: Blattellidae), with Entomopathogenic Fungus, Metharhizium anisopliae

    PubMed Central

    Sharififard, Mona; Mossadegh, Mohammad Saeed; Vazirianzadeh, Babak; Latifi, Seyed Mahmood

    2016-01-01

    Background: Considering to the high distribution of cockroaches as urban pests, the efficacy of different formulations of Metarhizium anisopliae strain Iran 437C were assessed against the brown-banded cockroach, Supella longipalpa F. under laboratory and field conditions. Methods: Metarhizium anisopliae isolates were screened with immersing adults of the brown-banded cockroachs in aqueous suspension of 108 conidia ml−1 followed by surface or bait treated with different doses of the most virulent isolate against the nymphs. Then formulations of conidia oil-in-water were examined versus cockroach nymphs using different plant oils and paraffin. Then they were evaluated and compared with aqueous suspension and control group. On a large-scale, the sunflower oil-in-water formulation of conidia was sprayed at houses using a hand sprayer. Results: Metarhizium anisopliae IRAN 437C was the most virulent isolate against the brown-banded cockroach, causing 100% mortality in adults at seven days post-exposure. Inoculated bait with this isolate was not enough pathogenic against the cockroach even at two weeks after treatment. Treated surface with conidia as aqueous suspension or oil-in-water formulation was more effective than the bait formulation against the cockroach caused 39.4–97.2% mortality compared with 2.5% mortality in control group after two days. Spraying the conidia formulated with sunflower oil was an effective formulation causing 76.1% reduction in the cockroach density on the third day post treatment in the houses. Conclusion: The oil-in-water formulation of M. anisopliae IRAN 437C could be recommended as a promising alternative for cockroach control. PMID:27308292

  3. Acaricidal properties of the formulations based on essential oils from Cymbopogon winterianus and Syzygium aromaticum plants.

    PubMed

    de Mello, Valéria; Prata, Márcia Cristina de Azevedo; da Silva, Márcio Roberto; Daemon, Erik; da Silva, Luciane Santos; Guimarães, Flávia del Gaudio; de Mendonça, Alessandra Esther; Folly, Evelize; Vilela, Fernanda Maria Pinto; do Amaral, Lilian Henriques; Cabral, Lucio Mendes; do Amaral, Maria da Penha Henriques

    2014-12-01

    The cattle tick, Rhipicephalus (Boophilus) microplus, has caused serious harm to livestock raising in Brazil, considering the costs of controlling it, loss of revenue due to smaller production of milk and meat, and damage to leather, in addition to transmitting diseases. The use of medicinal plants is considered an alternative to the recurring resistance to chemicals. Due to the need for efficient alternatives with less environmental impact, this study aimed to develop contact formulations with essential oils from the Java citronella (Cymbopogon winterianus) and clove (Syzygium aromaticum) plants and to assess in vitro the effects in different stages of the tick cycle. In the present study, concentrations from 0.5-15.0% of the essential oils incorporated in the formulations were used. The ticks from different geographical areas were treated with those formulations, and their effects on the production levels of eggs, on the larvae hatching, and their efficiency on ticks were assessed. The obtained results were compared with other commercial acaricidal products. After the 20th day of treatment, the formulations with citronella essential oil had 2.09-55.51% efficiency, depending on the concentration of the oil incorporated. The efficiency of the treatment with formulations containing clove essential oil was higher, from 92.47-100%. The results showed the acaricidal effects of the formulations tested when compared to commercial chemical products. In vivo studies should be performed in order to assess the efficiency of those formulations in the fields, aiming to use these products as an alternative for controlling cattle ticks.

  4. Oil-in-oil-emulsions with enhanced substantivity for the treatment of chronic skin diseases.

    PubMed

    Lunter, Dominique Jasmin; Rottke, Michael; Daniels, Rolf

    2014-05-01

    The therapy of chronic skin diseases often requires several applications of creams or ointments per day. This is inconvenient to the patients and frequently leads to poor acceptance and compliance. We therefore developed oil-in-oil-emulsions that deliver the active pharmaceutical ingredient (API) to the skin over a prolonged period of time. In this study, we compare the permeation of the API from a conventional formulation to its permeation from an oil-in-oil-emulsion under infinite and finite dosing. Furthermore, we evaluate the substantivity of the formulations. Our results show that the permeation from oil-in-oil-emulsions is constant over a prolonged time and that the emulsions show significantly higher substantivity than conventional formulations. Because of that, the treatment intervals can be extended substantially and compliance can be increased. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  5. Review: Lipid Formulations for the Adult and Pediatric Patient: Understanding the Differences

    PubMed Central

    Anez-Bustillos, Lorenzo; Dao, Duy T.; Baker, Meredith A.; Fell, Gillian L.; Puder, Mark; Gura, Kathleen M.

    2017-01-01

    Intravenous lipid emulsions (IVLE) provide essential fatty acids (FA) and are a dense source of energy in parenteral nutrition (PN). Parenterally administered lipid was introduced in the 17th century but plagued with side effects. The formulation of lipid emulsions later on made it a relatively safe component for administration to patients. Many ingredients are common to all IVLE, yet the oil source(s) and its (their) percentage(s) makes them different from each other. The oil used dictates how IVLE are metabolized and cleared from the body. The FA present in each type of oil provide unique beneficial and detrimental properties. This review provides an overview of IVLE and discuss factors that would help clinicians choose the optimal product for their patients. Elucidating the characteristics of each oil source over time has resulted in an evolution of the different formulations currently available. Emulsions have gone from being solely made with soybean oil, to being combined with medium-chain triglycerides (i.e., coconut oil), olive oil, and more recently, fish oil. Unfortunately, the lipid, among other constituents in PN formulations, has been associated with the development of liver disease. Lipid-sparing or lipid-reduction strategies have therefore been proposed to avoid these complications. The ideal IVLE would reverse or prevent essential FA deficiency without leading to complications, while simultaneously providing energy to facilitate normal growth and development. Modifications in their ingredients, formulation, and dosing have made IVLE a relatively safe component alone or when added to PN formulations. The ideal emulsion, however, has yet to be developed. PMID:27533942

  6. Study of physical and tribology properties of soybean oil-based grease formulated with polysoap

    USDA-ARS?s Scientific Manuscript database

    Soybean oil-based grease formulated with polysoaps, which was synthesized from polymeric epoxdized soybean oil, was investigated. Greases were prepared using a mixture of lithium soap and triethanolammonium polysoap. Grease properties investigated were: hardness, using cone penetration procedure (AS...

  7. Evaluation of percutaneous permeation of repellent DEET and sunscreen oxybenzone from emulsion-based formulations in artificial membrane and human skin.

    PubMed

    Wang, Tao; Miller, Donald; Burczynski, Frank; Gu, Xiaochen

    2014-02-01

    Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers. The purpose of this study was to investigate the effects of emulsion type, addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments, in order to minimize overall systemic permeation of the substances. Formulation C (water-in-oil emulsion) significantly increased overall permeation of DEET through human skin (56%) compared to Formulation A (oil-in-water emulsion). Formulation B (oil-in-water emulsion with thickening agent xanthan gum) significantly decreased the size of oil droplet containing DEET (16%), but no effect on oil droplets containing oxybenzone. Adding xanthan gum also increased overall permeation of DEET and oxybenzone (21% and 150%) when compared to Formulation A; presence of both ingredients in Formulation B further increased their permeation (36% and 23%) in comparison to its single counterparts. Overall permeation of oxybenzone through LDPE was significantly higher by 26%-628% than that through human skin; overall permeation of DEET through human skin was significantly higher by 64%-338% than that through LDPE.

  8. Effect of Mixing Time and Storage Condition on Characterization of Heparinoid Admixtures with Corticosteroids.

    PubMed

    Sugiyama, Ikumi; Takahashi, Namiki; Sadzuka, Yasuyuki

    2016-01-01

    In dermatologic therapy, several external preparations formulated as ointments or creams are prescribed. And they are often admixture to improve patient compliance. In this study, we prepared admixtures of moisturizer with steroids and examined their usability and the amount of principal agent in formulations, particularly focusing on the moisturizer content. Four heparinoid semisolid formulations were selected: Hirudoid ® soft ointment 0.3% (Formulation A) and 3 generic agents [(Besoften ® oil-based cream 0.3% (Formulation B), Kuradoido ® ointment 0.3% (Formulation C), and Hepadaerm ointment 0.3% (Formulation D)], and Antebate ® ointment 0.05% (Formulation E) were used as steroids. Formulation A and B are water-in-oil emulsions, and Formulation C and D are oil-in-water emulsions. Admixtures looked like to be mixed uniformly by visual observation. In the examination of heparinoid amount, admixture A+E and B+E were mixed uniformly. On the other hand, admixture C+E was remarkable un-uniformly. It was speculated that the emulsification of formulation C was broken. The phenomenon was supported by the result of malleability. After 8 weeks storage, the heparinoid ratio in each formulation could be expressed as follows: Admixture B≥Admixture A>Admixture C=Admixture D. A suitable storage temperature was 4°C. The results of physicochemical data analysis reveal the formulations composed of water-in-oil cream, i.e., Formulation A and Formulation B, to be the optimal choices for mixing with steroid ointments. Mixing time and storage conditions may be optimized to solve pharmaceutical problems. Moreover, understanding the emulsion type and character of semisolid formulations can expand the range of formulation options.

  9. Determination of the efficacy of preservation of non-eye area water-miscible cosmetic and toiletry formulations: collaborative study.

    PubMed

    Machtiger, N A; Fischler, G E; Adams, M C; Spielmaker, R; Graf, J F

    2001-01-01

    A collaborative study was conducted to test a method developed to distinguish between adequately and inadequately preserved cosmetic formulations. Nineteen laboratories participated in the study. Samples tested included shampoos, hair conditioners, oil-in-water emulsions, and water-in-oil-emulsions. Triplicate samples of 4 adequately preserved and 4 inadequately preserved cosmetic products were tested by each collaborative laboratory. Results showed that all inadequately preserved shampoo and conditioner samples failed to meet the acceptance criteria for adequately preserved formulations. Of the 51 preserved samples, 49 shampoos and 48 conditioners met the criteria for adequate preservation. All samples of inadequately preserved water-in-oil emulsions and oil-in-water emulsions failed to meet the acceptance criteria, whereas all adequately preserved emulsion formulations met the acceptance criteria.

  10. Ease of oral administration and owner-perceived acceptability of triglyceride oil, dissolving thin film strip, and gelatin capsule formulations to healthy cats.

    PubMed

    Traas, Anne M; Fleck, Timothy; Ellings, Andrea; Mahabir, Sean; Stuebner, Kathy; Brown, Dorothy C; Durso, Dana; DiGregorio, Michael; Bode, Lora; Kievit, Kelly I; McCall, Robert

    2010-06-01

    To compare owner-assessed ease of administration and overall acceptability of 3 chemically inactive formulations administered PO to cats. 90 healthy client-owned cats. Cats were randomly assigned to receive 1 of 3 formulations PO once daily for 14 days: medium chain triglyceride (MCT) oil, dissolving thin film strips (proprietary ingredients), or gelatin capsules filled with microcrystalline cellulose. Owners administered the formulations and rated ease of administration daily on a 10-cm visual analogue scale (VAS). At the end of the study, owners rated overall acceptability of formulations from their own perspective and their overall perception of acceptability to their cat. Mean VAS scores for daily ease of administration of MCT oil and film strips were significantly higher than scores for gelatin capsules at all time points, except on days 2, 4, and 7. There was no difference between MCT oil and film strip formulation scores. Mean VAS scores were 8.8 (MCT oil), 8.9 (film strips), and 7.4 (gelatin capsules) for overall acceptability to owners and 8.0 (MCT oil), 8.3 (film strips), and 6.7 (gelatin capsules) for overall owner-perceived acceptability to cats. Daily ease of administration on 11 of 14 days and overall owner-perceived acceptability to cats were scored significantly higher for film strips and MCT oil, compared with scores for gelatin capsules. Overall acceptability to owners followed a similar pattern; however, the differences were not significant. Dissolving thin film strip or MCT oil vehicles may allow for easier PO administration of medication to cats than does administration of gelatin capsules.

  11. Treatment of pityriasis versicolor with topical application of essential oil of Cymbopogon citratus (DC) Stapf - therapeutic pilot study*

    PubMed Central

    Carmo, Egberto Santos; Pereira, Fillipe de Oliveira; Cavalcante, Neuza Maria; Gayoso, Carla Wanderley; Lima, Edeltrudes de Oliveira

    2013-01-01

    BACKGROUND Pityriasis versicolor is a fungal infection caused by Malassezia spp. that has frequent relapses. OBJECTIVES The main objective of this research was to perform phase I and II clinical studies, using formulations containing essential oil of Cymbopogon citratus in patients with pityriasis versicolor. METHODS Phase I study included twenty volunteers to ascertain the safety of the formulations. In phase II, 47 volunteers randomly received essential oil formulations at 1.25 μL/mL concentration, for forty days. The shampoo should be applied three times a week and the cream twice a day. A control group in phase II, consisting of 29 volunteers, received the same formulations but with 2% ketoconazole as the active ingredient. RESULTS No significant adverse events were observed in volunteers during Phase I. In Phase II, 30 (63.83%) volunteers using essential oil and 18 (62.07%) using ketoconazole remained until the end of the study. We observed a predominance of lesions in disseminated form, with M. sympodialis detected as the predominant agent identified in cultures. After 40 days of treatment, the rate of mycological cure was 60% (p <0.05) for the group treated with essential oil of C. citratus and over 80% (p <0.05) for the group treated with ketoconazole formulations. CONCLUSIONS Notwithstanding the safety and antifungal effects observed in this study after application of formulations containing the essential oil of C. citratus, further studies with larger populations should be performed to confirm the actual potential of these formulations in the treatment of patients with Pityriasis versicolor. PMID:23793205

  12. Formulating orange oil-in-water beverage emulsions for effective delivery of bioactives: Improvements in chemical stability, antioxidant activity and gastrointestinal fate of lycopene using carrier oils.

    PubMed

    Meroni, Erika; Raikos, Vassilios

    2018-04-01

    The influence of carrier oil type on the chemical stability, antioxidant properties and bioaccessibility of lycopene in orange oil-in-water beverage emulsions was investigated. The emulsions were formulated with orange oil (A), which was partially (50%) replaced with tributyrin (B) or corn oil (C) because of their distinctively different fatty acid composition. The addition of corn oil enhanced the physical stability of the beverage during chilled storage by inhibiting Ostwald ripening. The formation of oxidation products was insignificant after storage for 28 days at 4 °C, regardless the type of added oil. Lycopene was more susceptible to chemical degradation in the presence of unsaturated, long chain triglycerides and the retention followed the order: A (87.94%), B (64.41%) and C (57.39%). Interestingly, bioaccessibility of lycopene was significantly lower for emulsions formulated with 50% corn oil as opposed to 100% orange oil as indicated by the simulated in vitro gastric digestion model. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Nanoencapsulation of Rose-Hip Oil Prevents Oil Oxidation and Allows Obtainment of Gel and Film Topical Formulations.

    PubMed

    Contri, Renata V; Kulkamp-Guerreiro, Irene C; da Silva, Sheila Janine; Frank, Luiza A; Pohlmann, Adriana R; Guterres, Silvia S

    2016-08-01

    The rose-hip oil holds skin regenerating properties with applications in the dermatological and cosmetic area. Its nanoencapsulation might favor the oil stability and its incorporation into hydrophilic formulations, besides increasing the contact with the skin and prolonging its effect. The aim of the present investigation was to develop suitable rose-hip-oil-loaded nanocapsules, to verify the nanocapsule effect on the UV-induced oxidation of the oil and to obtain topical formulations by the incorporation of the nanocapsules into chitosan gel and film. The rose-hip oil (500 or 600 μL), polymer (Eudragit RS100®, 100 or 200 mg), and acetone (50 or 100 mL) contents were separately varied aiming to obtain an adequate size distribution. The results led to a combination of the factors acetone and oil. The developed formulation showed average diameter of 158 ± 6 nm with low polydispersity, pH of 5.8 ± 0.9, zeta potential of +9.8 ± 1.5 mV, rose-hip oil content of 54 ± 1 μL/mL and tendency to reversible creaming. No differences were observed in the nanocapsules properties after storage. The nanoencapsulation of rose-hip oil decreased the UVA and UVC oxidation of the oil. The chitosan gel and film containing rose-hip-oil-loaded nanocapsules showed suitable properties for cutaneous use. In conclusion, it was possible to successfully obtain rose-hip-oil-loaded nanocapsules and to confirm the nanocapsules effect in protecting the oil from the UV rays. The chitosan gel and film were considered interesting alternatives for incorporating the nanoencapsulated rose-hip oil, combining the advantages of the nanoparticles to the advantages of chitosan.

  14. Development and stability evaluation of olive oil nanoemulsion using sucrose monoester laurate

    NASA Astrophysics Data System (ADS)

    Eid, Ahmad M. M.; Baie, Saringat Haji; Arafat, Osama

    2012-11-01

    Nanoemulsion is a type of emulsion that consists of fine oil-in-water dispersions, with the droplets covering the size range of 20-200 nm. It can be achieved through emulsification process. One of the processes is through low energy emulsification method. Olive oil was chosen in this study due to its efficiency in treating skin problem. Olive oil nanophase gel (NPG) formulations were performed through various ratios of olive oil, sucrose laurate and glycerin. The particle sizes and stability of the prepared olive oil nanophase gel were evaluated and the optimal formulation was then selected for the development of olive oil nanoemulsion. This study proved that the composition of oil and surfactant play an important roles in influencing the nanophase gel droplet size. Nanophase gels containing olive oil in the concentration of 50 and 60 % show good stability at 4 °C and room temperature while it was less stable at 40 °C. Olive oil nanophase gels in the concentration of 50 % and 60 % with sucrose laurate 25 % in each formulation were good candidates to prepare nanoemulsion because they have the suitable droplets size and Polydispersing Index (PDI) when compared to other formulations. A mixture of NPG 50 % and water in the ratio of 40:60 and NPG 60 % and water in the ratio of 33.3:66.7 were used to produce nanoemulsions containing 20 % of oil with negative values of zeta potential (>60) which indicate the good stability of the nanoemulsions.

  15. Evaluation of percutaneous permeation of repellent DEET and sunscreen oxybenzone from emulsion-based formulations in artificial membrane and human skin

    PubMed Central

    Wang, Tao; Miller, Donald; Burczynski, Frank; Gu, Xiaochen

    2014-01-01

    Insect repellent DEET and sunscreen ingredient oxybenzone play an essential role in minimizing vector-borne diseases and skin cancers. The purpose of this study was to investigate the effects of emulsion type, addition of thickening agent and droplet size in three emulsion-based lotions on percutaneous permeation of DEET and oxybenzone using in vitro diffusion experiments, in order to minimize overall systemic permeation of the substances. Formulation C (water-in-oil emulsion) significantly increased overall permeation of DEET through human skin (56%) compared to Formulation A (oil-in-water emulsion). Formulation B (oil-in-water emulsion with thickening agent xanthan gum) significantly decreased the size of oil droplet containing DEET (16%), but no effect on oil droplets containing oxybenzone. Adding xanthan gum also increased overall permeation of DEET and oxybenzone (21% and 150%) when compared to Formulation A; presence of both ingredients in Formulation B further increased their permeation (36% and 23%) in comparison to its single counterparts. Overall permeation of oxybenzone through LDPE was significantly higher by 26%–628% than that through human skin; overall permeation of DEET through human skin was significantly higher by 64%–338% than that through LDPE. PMID:26579363

  16. Transdermal delivery of diclofenac using water-in-oil microemulsion: formulation and mechanistic approach of drug skin permeation.

    PubMed

    Thakkar, Priyanka J; Madan, Parshotam; Lin, Senshang

    2014-05-01

    The objective of the present investigation was to enhance skin permeation of diclofenac using water-in-oil microemulsion and to elucidate its skin permeation mechanism. The w/o microemulsion formulations were selected based on constructed pseudoternary phase diagrams depending on water solubilization capacity and thermodynamic stability. These formulations were also subjected to physical characterization based on droplet size, viscosity, pH and conductivity. Permeation of diclofenac across rat skin using side-by-side permeation cells from selected w/o microemulsion formulations were evaluated and compared with control formulations. The selected w/o microemulsion formulations were thermodynamically stable, and incorporation of diclofenac sodium into microemulsion did not affect the phase behavior of system. All microemulsion formulations had very low viscosity (11-17 cps) and droplet size range of 30-160 nm. Microemulsion formulations exhibited statistically significant increase in diclofenac permeation compared to oily solution, aqueous solution and oil-Smix solution. Higher skin permeation of diclofenac was observed with low Smix concentration and smaller droplet size. Increase in diclofenac loading in aqueous phase decreased the partition of diclofenac. Diclofenac from the oil phase of microemulsion could directly partition into skin, while diclofenac from the aqueous droplets was carried through skin by carrier effect.

  17. High drug loading self-microemulsifying/micelle formulation: design by high-throughput formulation screening system and in vivo evaluation.

    PubMed

    Sakai, Kenichi; Obata, Kouki; Yoshikawa, Mayumi; Takano, Ryusuke; Shibata, Masaki; Maeda, Hiroyuki; Mizutani, Akihiko; Terada, Katsuhide

    2012-10-01

    To design a high drug loading formulation of self-microemulsifying/micelle system. A poorly-soluble model drug (CH5137291), 8 hydrophilic surfactants (HS), 10 lipophilic surfactants (LS), 5 oils, and PEG400 were used. A high loading formulation was designed by a following stepwise approach using a high-throughput formulation screening (HTFS) system: (1) an oil/solvent was selected by solubility of the drug; (2) a suitable HS for highly loading was selected by the screenings of emulsion/micelle size and phase stability in binary systems (HS, oil/solvent) with increasing loading levels; (3) a LS that formed a broad SMEDDS/micelle area on a phase diagram containing the HS and oil/solvent was selected by the same screenings; (4) an optimized formulation was selected by evaluating the loading capacity of the crystalline drug. Aqueous solubility behavior and oral absorption (Beagle dog) of the optimized formulation were compared with conventional formulations (jet-milled, PEG400). As an optimized formulation, d-α-tocopheryl polyoxyethylene 1000 succinic ester: PEG400 = 8:2 was selected, and achieved the target loading level (200 mg/mL). The formulation formed fine emulsion/micelle (49.1 nm), and generated and maintained a supersaturated state at a higher level compared with the conventional formulations. In the oral absorption test, the area under the plasma concentration-time curve of the optimized formulation was 16.5-fold higher than that of the jet-milled formulation. The high loading formulation designed by the stepwise approach using the HTFS system improved the oral absorption of the poorly-soluble model drug.

  18. Effect of mode of addition of flaxseed oil on the quality characteristics of chicken sausage containing vitamin E and omega 3 fatty acids at levels to support a health claim.

    PubMed

    Bolger, Zara; Brunton, Nigel P; Monahan, Frank J

    2017-10-18

    Vitamin E and omega-3 fatty acids can be incorporated into meat products at levels supporting health claims of "protecting against oxidative stress" and "maintaining normal blood cholesterol levels", respectively. Chicken sausages were formulated to contain vitamin E (12 mg per 100 g) and flaxseed oil (2 g per 100 g) using different oil incorporation methods. The formulations were: (1) control (no oil); (2) oil; (3) emulsified oil; (4) freeze-dried encapsulated oil; (5) freeze-dried encapsulated oil with cross-linker genipin; (6) spray-dried encapsulated oil. α-Linolenic acid and α-tocopherol were retained in all fortified formulations at levels to meet nutrient and health claims but emulsification or encapsulation had no additional benefit in retention following cooking or on product quality as measured by proximate composition, lipid oxidation, colour, microbial analysis, cook loss and texture profile analysis. While the addition of flaxseed oil had a negative effect on consumer acceptance of flavour (although not when emulsified), overall acceptance of the chicken sausages was only reduced significantly (p ≤ 0.05) when oil was encapsulated.

  19. UV-blocking potential of oils and juices.

    PubMed

    Gause, S; Chauhan, A

    2016-08-01

    Sunscreens are commonly used to protect the body from damage caused by UV light. Some components of organic sunscreens have been shown to pass through the skin during wear which could raise toxicity concerns for these compounds. This study explores the potential for oils and fruit and vegetable juices to be substitutes for these compounds. The absorptivity of various oils (canola oil, citronella oil, coconut oil, olive oil, soya bean oil, vitamin E, as well as aloe vera) and fruit and vegetable juices (acerola, beet, grape, orange carrot, purple carrot and raspberry) was measured in vitro. The mean absorptivity was compared with FDA-approved UV absorbers to gauge the potential of the natural products. The most promising candidates were incorporated into formulations, and the UV transmittance of a 20-μm-thick film of the formulation was measured. The formulations were also imaged by light microscopy and scanning electron microscopy. The absorptivity of oils was at least two orders of magnitude lower compared to the commercial UV blockers. The fruit juice powders were more effective at UV blocking but still showed an order of magnitude lower absorptivity compared to commercial UV blockers. The UV blocking from most natural oils is insufficient to obtain a significant UV protection. Formulations containing 50wt% purple carrot showed good UV-blocking capabilities and represent a promising ingredient for sunscreen and cosmetic applications. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  20. Newcastle disease oil emulsion vaccines prepared with animal, vegetable, and synthetic oils.

    PubMed

    Stone, H D

    1997-01-01

    Animal, vegetable, and synthetic oils were tested as potential replacements for mineral oil in Newcastle disease oil emulsion vaccines. Emulsifying surfactants of seed oil origin comprised 10% of the the oil phase that was used to prepare water-in-oil emulsion vaccines that contained a final concentration of 20% aqueous antigen. The hemagglutination inhibition responses of chickens inoculated with 46 of the newly formulated oil vaccines were, in most cases, not significantly different from those of control chickens inoculated with mineral oil vaccine. Tissue reactions associated with animal, vegetable, and synthetic oil vaccines were less severe than those associated with mineral oil vaccines. Viscosity of the mineral oil formulations ranged from 1/2 to 3 1/2 times that of the mineral oil control vaccines. These findings indicate that any of several oils may be more suitable than mineral oil for preparation of immune adjuvants for poultry vaccines.

  1. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3.

    PubMed

    Kabri, Tin-Hinan; Arab-Tehrany, Elmira; Belhaj, Nabila; Linder, Michel

    2011-09-21

    Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design.

  2. Renewable Energy Laboratory Development for Biofuels Advanced Combustion Studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soloiu, Valentin A.

    2012-03-31

    The research advanced fundamental science and applied engineering for increasing the efficiency of internal combustion engines and meeting emissions regulations with biofuels. The project developed a laboratory with new experiments and allowed investigation of new fuels and their combustion and emissions. This project supports a sustainable domestic biofuels and automotive industry creating economic opportunities across the nation, reducing the dependence on foreign oil, and enhancing U.S. energy security. The one year period of research developed fundamental knowledge and applied technology in advanced combustion, emissions and biofuels formulation to increase vehicle's efficiency. Biofuels combustion was investigated in a Compression Ignition Directmore » Injection (DI) to develop idling strategies with biofuels and an Indirect Diesel Injection (IDI) intended for auxiliary power unit.« less

  3. Formulation, in vitro and in vivo evaluation of transdermal patches containing risperidone.

    PubMed

    Aggarwal, Geeta; Dhawan, Sanju; Hari Kumar, S L

    2013-01-01

    The efficacy of oral risperidone treatment in prevention of schizophrenia is well known. However, oral side effects and patient compliance is always a problem for schizophrenics. In this study, risperidone was formulated into matrix transdermal patches to overcome these problems. The formulation factors for such patches, including eudragit RL 100 and eudragit RS 100 as matrix forming polymers, olive oil, groundnut oil and jojoba oil in different concentrations as enhancers and amount of drug loaded were investigated. The transdermal patches containing risperidone were prepared by solvent casting method and characterized for physicochemical and in vitro permeation studies through excised rat skin. Among the tested preparations, formulations with 20% risperidone, 3:2 ERL 100 and ERS 100 as polymers, mixture of olive oil and jojoba oil as enhancer, exhibited greatest cumulative amount of drug permeated (1.87 ± 0.09 mg/cm(2)) in 72 h, so batch ROJ was concluded as optimized formulation and assessed for pharmacokinetic, pharmacodynamic and skin irritation potential. The pharmacokinetic characteristics of the optimized risperidone patch were determined using rabbits, while orally administered risperidone in solution was used for comparison. The calculated relative bioavailability of risperidone transdermal patch was 115.20% with prolonged release of drug. Neuroleptic efficacy of transdermal formulation was assessed by rota-rod and grip test in comparison with control and marketed oral formulations with no skin irritation. This suggests the transdermal application of risperidone holds promise for improved bioavailability and better management of schizophrenia in long-term basis.

  4. Characterization and Evaluation of Re-Refined Engine Lubricating Oil.

    DTIC Science & Technology

    1981-12-01

    performance of re-refineod and virgin oils and to Investigate the potential esubstantlal esquivalknced of re-refined and virgin lubricating oils. The...d 20. Abstract (continued) engine deposits derived from virgin and re-refined engine oils. (2) The effects of virgin and re-refined oils on engine...blowby composition and engine deposit generation were determined using a spark ignition engine and, 3) Virgin and re-refined basestock production

  5. Structural Oil Pan With Integrated Oil Filtration And Cooling System

    DOEpatents

    Freese, V, Charles Edwin

    2000-05-09

    An oil pan for an internal combustion engine includes a body defining a reservoir for collecting engine coolant. The reservoir has a bottom and side walls extending upwardly from the bottom to present a flanged lip through which the oil pan may be mounted to the engine. An oil cooler assembly is housed within the body of the oil pan for cooling lubricant received from the engine. The body includes an oil inlet passage formed integrally therewith for receiving lubricant from the engine and delivering lubricant to the oil cooler. In addition, the body also includes an oil pick up passage formed integrally therewith for providing fluid communication between the reservoir and the engine through the flanged lip.

  6. Adsorption of crude and engine oils from water using raw rice husk.

    PubMed

    Razavi, Zahra; Mirghaffari, Nourollah; Rezaei, Behzad

    2014-01-01

    The raw rice husk (RRH) was used as a low cost adsorbent to remove three oil compounds with different viscosities (crude oil, engine oil and spent engine oil) from an aqueous environment. Some of the sorbent specifications were characterized using a CHNSO analyzer, Fourier transform infrared, scanning electron microscope and inductively coupled plasma spectroscopy. With decreasing RRH particles size, the oil adsorption percentage was reduced for crude, spent and engine oils from 50 to 30%, 65 to 20% and 70 to 0.01%, respectively. This was probably due to damage of the microcavities. The removal percentage by sorbent at optimized conditions was 88, 80 and 55% for engine, spent and crude oils, respectively, corresponding to their descending viscosity. The adsorption of crude and spent oils on rice husk followed the Freundlich isotherm model, while the adsorption of engine oil was fitted by the Langmuir model. The maximum adsorption capacity (qmax), calculated from the Langmuir model for the adsorption of engine oil on RRH, was 1,250 mg/g.

  7. Anti-Wear Performance and Mechanism of an Oil-Miscible Ionic Liquid as a Lubricant Additive

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qu, Jun; Bansal, Dinesh G; Yu, Bo

    2012-01-01

    An ionic liquid (IL) trihexyltetradecylphosphonium bis(2-ethylhexyl) phosphate has been investigated as a potential anti-wear lubricant additive. Unlike most other ILs that have very low solubility in non-polar fluids, this IL is fully miscible with various hydrocarbon oils. In addition, it is thermally stable up to 347 oC, showed no corrosive attack to cast iron in ambient environment, and has excellent wettability on solid surfaces (e.g., contact angle on cast iron <8o). Most importantly, this phosphonium-based IL has demonstrated effective anti-scuffing and anti-wear characteristics when blended with lubricating oils. For example, a 5 wt.% addition into a synthetic base oil eliminatedmore » the scuffing failure experienced by the neat oil and, as a result, reduced the friction coefficient by 60% and the wear rate by three orders of magnitude. A synergistic effect on wear protection was observed with the current anti-wear additive when added into a fully-formulated engine oil. Nanostructure examination and composition analysis revealed a tribo-boundary film and subsurface plastic deformation zone for the metallic surface lubricated by the IL-containing lubricants. This protective boundary film is believed to be responsible for the IL s anti-scuffing and anti-wear functionality.« less

  8. Formulation of sage essential oil (Salvia officinalis, L.) monoterpenes into chitosan hydrogels and permeation study with GC-MS analysis.

    PubMed

    Kodadová, Alexandra; Vitková, Zuzana; Herdová, Petra; Ťažký, Anton; Oremusová, Jarmila; Grančai, Daniel; Mikuš, Peter

    2015-01-01

    This study deals with the formulation of natural drugs into hydrogels. For the first time, compounds from the sage essential oil were formulated into chitosan hydrogels. A sample preparation procedure for hydrophobic volatile analytes present in a hydrophilic water matrix along with an analytical method based on the gas chromatography coupled with the mass spectrometry (GC-MS) was developed and applied for the evaluation of the identity and quantity of essential oil components in the hydrogels and saline samples. The experimental results revealed that the chitosan hydrogels are suitable for the formulation of sage essential oil. The monoterpene release can be effectively controlled by both chitosan and caffeine concentration in the hydrogels. Permeation experiment, based on a hydrogel with the optimized composition [3.5% (w/w) sage essential oil, 2.0% (w/w) caffeine, 2.5% (w/w) chitosan and 0.1% (w/w) Tween-80] in donor compartment, saline solution in acceptor compartment, and semi-permeable cellophane membrane, demonstrated the useful permeation selectivity. Here, (according to lipophilicity) an enhanced permeation of the bicyclic monoterpenes with antiflogistic and antiseptic properties (eucalyptol, camphor and borneol) and, at the same time, suppressed permeation of toxic thujone (not exceeding its permitted applicable concentration) was observed. These properties highlight the pharmaceutical importance of the developed chitosan hydrogel formulating sage essential oil in the dermal applications.

  9. Fusarium semitectum, a potential mycopathogen against thrips and mites in chilli, Capsicum annuum.

    PubMed

    Mikunthan, G; Manjunatha, M

    2006-01-01

    In India, chilli (Capsicum annuum L.) suffers with a characteristic leaf curl symptoms due to the attack of mite, Polyphagotarsonemus latus (Banks) (Acari: Tarsonemidae) and thrips, Scirtothrips dorsalis Hood (Thysanoptera: Thripidae) or both. Experiments were conducted in the fields of College of Agriculture, Shimoga, India during kharif (September 2003 to January 2004) and summer (March-June) 2004. After proving its pathogenicity, the potential of the mycopathogen, Fusarium semitectum was evaluated under field conditions using the popular chilli variety "Byadagi". Different combinations of Fusarium semitectum formulations with monocrotophos (0.025% and 0.05%) were tested. Oil-emulsion and dust-water formulations (DWF) at 1x 10(8) spore/ml, DWF with monocrotophos and 5% Neem Seed Kernal Extract (NSKE) were evaluated. Population of S. dorsalis, P. latus, predatory mite Amblyseius ovalis and damage index were estimated. Populations of thrips, mite and the predatory mite were estimated at 15 days interval after 30 days of transplanting. Damage index was assessed using a visual rating method. Plant height, fruit length and dry chilli yield of each treatment were also taken. Among the treatments, oil-emulsion formulation and dust water formulation of F. semitectum in combination with monocrotophos (0.05%) reduced the population of thrips significantly over other treatments. Dust water formulation was achieved a significant decline of thrips population in chilli plants after 60 days of transplanting. This reduction of thrips population could be achieved due to the effect of second spraying, which was given at 50 days after transplanting. Chilli plant height and fruit length did not vary significantly among the treatment in both seasons. The highest dry chilli yield of 512 and 1058 kg/ha was recorded in dust water formulation in combination with monocrotophos (0.05%) followed by oil formulation (432 kg/ha and 763 kg/ha) in Kharif and summer seasons, respectively. Fusarium formulation sprayed plots were recorded low damage index than NSKE, water sprayed plots including control. Oil-emulsion formulation treated plot adjusted the highest benefit cost ratio of 6.07:1. Oil emulsion formulation (refined sunflower oil-Safola) was next best to the dust water formulation of F. semitectum. and monocrotophos combination and more-over equal to the monocrotophos 0.05% alone in suppressing the thrips and mite population. These results revealed that dust water formulation in combination with monocrotophos (0.05%) was able to suppress the population of thrips and mites and thus was able to give highest dry chilli yield. Oil emulsion formulation of F. semitectum can also be used as the next best choice in an environment friendly integrated chilli pest management programme.

  10. Biobased lubricant additives

    USDA-ARS?s Scientific Manuscript database

    Fully biobased lubricants are those formulated using all biobased ingredients, i.e. biobased base oils and biobased additives. Such formulations provide the maximum environmental, safety, and economic benefits expected from a biobased product. Currently, there are a number of biobased base oils that...

  11. Semisolid matrix filled capsules: an approach to improve dissolution stability of phenytoin sodium formulation.

    PubMed

    El Massik, M A; Abdallah, O Y; Galal, S; Daabis, N A

    2003-05-01

    Seven semisolid fill bases were selected for the formulation of 24 capsule formulations, each containing 100 mg of phenytoin sodium. The fill materials were selected based on the water absorption capacity of their mixtures with phenytoin sodium. The fill matrices included lipophilic bases (castor oil, soya oil, and Gelucire (G) 33/01), amphiphilic bases (G 44/14 and Suppocire BP), and water-soluble bases (PEG 4000 and PEG 6000). The drug:base ratio was 1:2. Excipients such as lecithin, docusate sodium, and poloxamer 188 were added to some formulations. The dissolution rate study indicated that formulations containing lipophilic and amphiphilic bases showed the best release profiles. These are F4 (castor oil-1% docusate sodium); F10 (castor oil-3% poloxamer 188); F14 (G33/01-10% lecithin); F17 (G33/01-1% docusate sodium), and F20 (Suppocire BP). Further, the dissolution stability of the five formulations above was assessed by an accelerated stability study at 30 degrees C and 75% RH using standard Epanutin capsules for comparison. The study included the test and standard capsules either packed in the container of marketed Epanutin capsules (packed) or removed from their outer pack (unpacked). Release data indicated superior release rates of castor oil based formulations (F4 and F10) relative to standard capsules in both the unpacked and packed forms. For instance, the extent of drug release at 30 min after 1 month was 91% for F4 and F10 and 20% for standard capsules. Drug release from packed capsules after 6 months storage was 88% for both formulations F4 and F10 and 35% for standard capsules. In conclusion, the pharmaceutical quality of phenytoin sodium capsules can be improved by using a semisolid lipophilic matrix filled in hard gelatin capsules.

  12. Self-microemulsifying smaller molecular volume oil (Capmul MCM) using non-ionic surfactants: a delivery system for poorly water-soluble drug.

    PubMed

    Bandivadeka, Mithun Mohanraor; Pancholi, Shyam Sundar; Kaul-Ghanekar, Ruchika; Choudhari, Amit; Koppikar, Soumya

    2012-07-01

    The main purpose of this work is to formulate self-microemulsifying drug delivery system (SMEDDS) using smaller molecular oil with Atorvastatin calcium as a model drug. Solubility of the selected drug was accessed in oils and surfactants. Percent transmittance (%T) test study was performed to identify the efficient self-microemulsifying formulations. Those formulations which showed higher value for %T were evaluated for droplet size, polydispersity index, ζ potential, refractive index and cloud point measurement. Effect of drug loading on droplet size, increasing dilution in different media, thermodynamic stability and in vitro dissolution was performed to observe the performance of the selected formulation. Further cytotoxicity and permeation enhancement studies were carried out on Caco2 cell lines. Of all the oils accessed for drug solubility, Capmul MCM showed higher solubility capacity for Atorvastatin calcium. Capmul MCM was better microemulsified using combination of Tween 20 and Labrasol surfactant. Droplet size was as low as 86.93 nm with polydispersity index and ζ potential at 0.195 ± 0.011 and -7.27 ± 3.11 mV respectively. The selected undiluted formulation showed refractive index values ranging from 1.40 to 1.47 indicating the isotropicity of the formulation. The selected formulation was robust to dilution in different media and thermodynamically stable. Dissolution profile was enhanced for the selected drug as compared to marketed formulation with t85% and DE values at 10 min and 80.15 respectively. Also cytotoxicity measurement showed minimum effect with good permeation enhancing capacity. Thus our study demonstrates the use of smaller molecular oil (Capmul MCM) for developing self-microemulsifying drug delivery system for better in vitro and in vivo performance.

  13. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery

    PubMed Central

    2017-01-01

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10–2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion. PMID:29093612

  14. Investigation of Chemical-Foam Design as a Novel Approach toward Immiscible Foam Flooding for Enhanced Oil Recovery.

    PubMed

    Hosseini-Nasab, S M; Zitha, P L J

    2017-10-19

    Strong foam can be generated in porous media containing oil, resulting in incremental oil recovery; however, oil recovery factor is restricted. A large fraction of oil recovered by foam flooding forms an oil-in-water emulsion, so that costly methods may need to be used to separate the oil. Moreover, strong foam could create a large pressure gradient, which may cause fractures in the reservoir. This study presents a novel chemical-foam flooding process for enhanced oil recovery (EOR) from water-flooded reservoirs. The presented method involved the use of chemically designed foam to mobilize the remaining oil after water flooding and then to displace the mobilized oil to the production well. A blend of two anionic surfactant formulations was formulated for this method: (a) IOS, for achieving ultralow interfacial tension (IFT), and (b) AOS, for generating a strong foam. Experiments were performed using Bentheimer sandstone cores, where X-ray CT images were taken during foam generation to find the stability of the advancing front of foam propagation and to map the gas saturation for both the transient and the steady-state flow regimes. Then the proposed chemical-foam strategy for incremental oil recovery was tested through the coinjection of immiscible nitrogen gas and surfactant solutions with three different formulation properties in terms of IFT reduction and foaming strength capability. The discovered optimal formulation contains a foaming agent surfactant, a low IFT surfactant, and a cosolvent, which has a high foam stability and a considerably low IFT (1.6 × 10 -2 mN/m). Coinjection resulted in higher oil recovery and much less MRF than the same process with only using a foaming agent. The oil displacement experiment revealed that coinjection of gas with a blend of surfactants, containing a cosolvent, can recover a significant amount of oil (33% OIIP) over water flooding with a larger amount of clean oil and less emulsion.

  15. Inhibitory effect of formulated lemongrass shampoo on Malassezia furfur: a yeast associated with dandruff.

    PubMed

    Wuthi-Udomlert, Mansuang; Chotipatoomwan, Ployphand; Panyadee, Sasikan; Gritsanapan, Wandee

    2011-03-01

    Lemongrass (Cymbopogon citratus Stapf) has been used in cooking and in many traditional medicines; the essential oil contains citral as a major constituent. This study evaluated the antifungal activity of lemongrass oil against Malassezia furfur, an opportunistic yeast associated with dandruff, by using a broth dilution assay. From the minimum fungicidal concentration (MFC) obtained, the oil was then incorporated at different percentages into shampoo formulations. The formulated shampoos were kept at room temperature (28 degrees-30 degrees C) and under accelerated condition (45 degrees C). At the end of the first and sixth weeks, after preparation, all formulations were tested again and the appearance was recorded. Selection of an appropriate formula was based on antifungal activity against M. furfur, the physical appearance, the chemical properties and stability of the formula. Two percent lemongrass oil shampoo provided the required qualities necessary for commercial use. After being kept for 6 weeks at 28 degrees-30 degrees C and 45 degrees C, this formulated shampoo gave MFCs against M. furfur of 75 microl/ml and 18.75 microl/ml, respectively.

  16. Microemulsion formulation of clonixic acid: solubility enhancement and pain reduction.

    PubMed

    Lee, Jung-Mi; Park, Kyung-Mi; Lim, Soo-Jeong; Lee, Mi-Kyung; Kim, Chong-Kook

    2002-01-01

    Clonixic acid is currently marketed as a salt form because of its poor water-solubility. However, the commercial dosage form causes severe pain after intramuscular or intravenous injection. To improve the solubility of clonixic acid and to reduce pain on injection, clonixic acid was incorporated into oil-in-water microemulsions prepared from pre-microemulsion concentrate composed of varying ratios of oil and surfactant mixture. As an oil phase for drug incorporation, up to 14% castor oil could be included in the pre-microemulsion concentrate without a significant increase in droplet size. Both drug contents and droplet size increased as the weight ratio of Tween 20 to Tween 85 decreased. Taken together, when microemulsions were prepared from pre-microemulsion concentrate composed of 5:12:18 weight ratio of castor oil:Tween 20:Tween 85, clonixic acid could be incorporated at 3.2 mg mL(-1) in the microemulsion with a droplet size of less than 120 nm. The osmotic pressure of this microemulsion was remarkably lower than the commercial formulation, irrespective of the dilution ratios. The rat paw-lick test was used to compare pain responses among formulations. The microemulsion formulation significantly reduced the number of rats licking their paws as well as the total licking time, suggesting less pain induction by the microemulsion formulation. The pharmacokinetic parameters of clonixic acid after intravenous administration of the clonixic acid microemulsion to rats were not significantly different from those of the commercial formulation, lysine clonixinate. The present study suggests that microemulsion is an alternative formulation for clonixic acid with improved characteristics.

  17. 7 CFR 2902.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... procurement preference for qualifying biobased 2-cycle engine oils. By that date, Federal agencies that have...

  18. Enrichment, Development, and Assessment of Indian Basil Oil Based Antiseptic Cream Formulation Utilizing Hydrophilic-Lipophilic Balance Approach

    PubMed Central

    Yadav, Narayan Prasad; Meher, Jaya Gopal; Pandey, Neelam; Luqman, Suaib; Yadav, Kuldeep Singh; Chanda, Debabrata

    2013-01-01

    The present work was aimed to develop an antiseptic cream formulation of Indian basil oil utilizing hydrophilic-lipophilic balance approach. In order to determine the required-hydrophilic lipophilic balance (rHLB) of basil oil, emulsions of basil oil were prepared by phase inversion temperature technique using water, Tween 80, and Span 80. Formulated emulsions were assessed for creaming (BE9; 9.8, BE10; 10.2), droplet size (BE18; 3.22 ± 0.09 μm), and turbidity (BE18; 86.12 ± 2.1%). To ensure correctness of the applied methodology, rHLB of light liquid paraffin was also determined. After rHLB determination, basil oil creams were prepared with two different combinations of surfactants, namely, GMS : Tween 80 (1 : 3.45) and SLS : GMS (1 : 3.68), and evaluated for in vitro antimicrobial activity, skin irritation test, viscosity and consistency. The rHLB of basil oil and light liquid paraffin were found to be 13.36 ± 0.36 and 11.5 ± 0.35, respectively. Viscosity, and consistency parameters of cream was found to be consistent over 90 days. Cream formulations showed net zone of growth inhibition in the range of 5.0–11.3 mm against bacteria and 4.3–7.6 mm against fungi. Primary irritation index was found to be between 0.38 and1.05. Conclusively stable, consistent, non-irritant, enriched antiseptic basil oil cream formulations were developed utilizing HLB approach. PMID:23984361

  19. 40 CFR 180.1035 - Pine oil; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... formulation with the bee repellent butanoic anhydride applied in an absorbent pad over the hive. Pine oil is... formulation with the bee repellent butanoic anhydride applied in an absorbent pad over the hive. [74 FR 26534...

  20. 40 CFR 180.1035 - Pine oil; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... formulation with the bee repellent butanoic anhydride applied in an absorbent pad over the hive. Pine oil is... formulation with the bee repellent butanoic anhydride applied in an absorbent pad over the hive. [74 FR 26534...

  1. 40 CFR 180.1035 - Pine oil; exemption from the requirement of a tolerance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... formulation with the bee repellent butanoic anhydride applied in an absorbent pad over the hive. Pine oil is... formulation with the bee repellent butanoic anhydride applied in an absorbent pad over the hive. [74 FR 26534...

  2. Optimization of physicochemical and textural properties of pizza cheese fortified with soybean oil and carrot extract.

    PubMed

    Motevalizadeh, Ehsan; Mortazavi, Seyed Ali; Milani, Elnaz; Hooshmand-Dalir, Moosa Al-Reza

    2018-03-01

    Response surface methodology (RSM) was used to optimize pizza cheese containing carrot extract. The effects of two important independent variables including soybean oil (5%-20%) and carrot extract (5%-20%) were studied on physicochemical and textural properties of pizza cheese containing carrot extract. According to the results, RSM was successfully used for optimizing formulation of pizza cheese containing carrot juice. Results of this study revealed that oil (A), carrot (B), AB, square term of carrot (B 2 ), B, AB, square term of oil (A 2 ), B 2 , AB, AB, A 2 B, A 2 , A 2 , A, A 2 , A 2 , AB, and AB 2 had the most effect on moisture, acidity, stretch, L*, a*, b*, hardness, meltability, springiness, peroxide value (PV), cohesiveness, chewiness, gumminess, fracture force, adhesiveness force, stiffness, flavor, and overall acceptability, respectively. A formulation upon 20% oil and 10.88% carrot extract was found as the optimal formulation for pizza cheese containing carrot extract. At the optimal formulation, PV, L*, a*, b*, meltability, stretch, cohesiveness, springiness, gumminess, chewiness, adhesive force, flavor, texture, and overall acceptability at the optimum formulation were measured 2.23, 82.51, -3.69, 18.05, 17.86, 85.61, 0.41, 7.874, 23.7, 0.27, 0.61, 3.50, 3.95, and 3.65, respectively.

  3. Physico-chemical characterization of nano-emulsions in cosmetic matrix enriched on omega-3

    PubMed Central

    2011-01-01

    Background Nano-emulsions, as non-equilibrium systems, present characteristics and properties which depend not only on composition but also on their method of preparation. To obtain better penetration, nanocosmeceuticals use nano-sized systems for the delivery of active ingredients to targeted cells. In this work, nano-emulsions composed of miglyol, rapeseed oil and salmon oil were developed as a cosmetic matrix. Measurements of different physico-chemical properties of nano-emulsions were taken according to size, electrophoretic mobility, conductivity, viscosity, turbidity, cristallization and melting point. The RHLB was calculated for each formulation in order to achieve maximum stability. Results Both tween 80 and soya lecithin were found to stabilize formulations. The results showed that rapeseed oil and miglyol are the predominant parameters for determining the expression of results concerning the characterization of emulsion. Based on the mixture design, we achieved the optimal point using the following formulation: 56.5% rapessed oil, 35.5% miglyol, and 8% salmon oil. We considered this formulation to be the best as a nanocosmeceutical product due to the small size, good turbidity, and average HLB. Conclusions This study demonstrates the influence of formulation on the physico-chemical properties of each nano-emulsion obtained by the mixture design. PMID:21936893

  4. Formulation, and physical, in vitro and ex vivo evaluation of transdermal ibuprofen hydrogels containing turpentine oil as penetration enhancer.

    PubMed

    Khan, N R; Khan, G M; Wahab, A; Khan, A R; Hussain, A; Nawaz, A; Akhlaq, M

    2011-11-01

    The aim of the present study was to investigate the transdermal permeation enhancing capability of turpentine oil for ibuprofen from hydrogels. Ibuprofen 1% w/v hydrogels were developed with carboxypolymethylene with and without turpentine oil. Turpentine oil was incorporated in increasing concentrations, i.e. 0.5, 1, 1.5, 2, 2.5 and 3% of the total gel formulation, and its permeation enhancing effect was examined. Gels were examined physically for pH, viscosity, spreadability, extrudability, smoothness and appearance. To study the in vitro and ex vivo permeation potential of formulated gels, permeation studies were performed with a Franz diffusion cell using cellulose membrane and excised rabbit abdominal skin. Ibuprofen hydrogel with 3% turpentine oil showed a maximum flux of 10.87 mg/cm2/h across artificial skin and 17.26 mg/cm2/h across rabbit abdominal skin.

  5. Comparative Oral Absorption of Curcumin in a Natural Turmeric Matrix with Two Other Curcumin Formulations: An Open-label Parallel-arm Study.

    PubMed

    Gopi, Sreeraj; Jacob, Joby; Varma, Karthik; Jude, Shintu; Amalraj, Augustine; Arundhathy, C A; George, Robin; Sreeraj, T R; Divya, C; Kunnumakkara, Ajaikumar B; Stohs, Sidney J

    2017-12-01

    Curcuminoids are the major bioactive molecules in turmeric, and poor bioavailability deters them from being the major components of many health and wellness applications. This study was conducted to assess the bioavailability of a completely natural turmeric matrix formulation (CNTMF) and compare its bioavailability with two other commercially available formulations, namely, curcumin with volatile oil (volatile oil formulation) and curcumin with phospholipids and cellulose (phospholipid formulation) in healthy human adult male subjects (15 each group) under fasting conditions. Each formulation was administrated orally as a single 500-mg dose in capsule form, and blood samples were analyzed by liquid chromatography mass spectrometry at various time intervals up to 24 h. The ingestion of the CNTMF was very well absorbed and resulted in a mean curcuminoids plasma C max of 170.14 ng/mL (T max  = 4 h) compared with 47.54 ng/mL and 69.63 ng/mL for the volatile oil (T max  = 3 h) and phospholipid (T max  = 2.25 h) formulations, respectively. The extent of absorption of total curcuminoids in the blood for the CNTMF was 6× greater than volatile oil formulation and 5× greater than phospholipids formulation. The results of this study indicate that curcumin in a natural turmeric matrix exhibited greater bioavailability than the two comparator products. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Comparative preclinical pharmacokinetics study of 3,3′-diindolylmethane formulations: is personalized treatment and targeted chemoprevention in the horizon?

    PubMed Central

    2013-01-01

    Background 3,3′-Diindolylmethane (DIM) is known as an agent of natural origin that provides protection against different cancers due to the broad spectrum of its biological activities in vivo. However, this substance has a very poor biodistribution and absorption in animal tissues. This preclinical trial was conducted to evaluate the pharmacokinetics and bioavailability of various DIM formulations in animal model. Materials and methods The pharmacokinetic parameters of one crystalline DIM formulation and one liquid DIM formulation (oil solution) compared to non-formulated crystalline DIM (control) were tested in 200 rats. The formulations were orally administered to animals by gavage at doses of 200 mg/kg per DIM (crystalline DIM formulation and non-formulated crystalline DIM) and 0.1 mg/kg per DIM (DIM in oil solution). DIM plasma elimination was measured using HPLC method; after that, the area under the curve (AUC), relative bioavailability, and absolute bioavailability were estimated for two formulations in relation to non-formulated crystalline DIM. Results and conclusion The highest bioavailability was achieved by administering liquid DIM (oil solution), containing cod liver oil and polysorbate. The level of DIM in rat blood plasma was about fivefold higher, though the 2,000-fold lower dose was administered compared to crystalline DIM forms. The novel pharmacological DIM substance with high bioavailability may be considered as a promising targeted antitumor chemopreventive agent. It could be used to prevent breast and ovarian cancer development in patients with heterozygous inherited and sporadic BRCA1 gene mutations. Further preclinical and clinical trials are needed to prove this concept. PMID:24325835

  7. LOW-ENGINE-FRICTION TECHNOLOGY FOR ADVANCED NATURAL-GAS RECIPROCATING ENGINES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Victor Wong; Tian Tian; Luke Moughon

    This program aims at improving the efficiency of advanced natural-gas reciprocating engines (ANGRE) by reducing piston and piston ring assembly friction without major adverse effects on engine performance, such as increased oil consumption and wear. An iterative process of simulation, experimentation and analysis is being followed towards achieving the goal of demonstrating a complete optimized low-friction engine system. To date, a detailed set of piston and piston-ring dynamic and friction models have been developed and applied that illustrate the fundamental relationships among mechanical, surface/material and lubricant design parameters and friction losses. Demonstration of low-friction ring-pack designs in the Waukesha VGFmore » 18GL engine confirmed total engine FEMP (friction mean effective pressure) reduction of 7-10% from the baseline configuration without significantly increasing oil consumption or blow-by flow. This represents a substantial (30-40%) reduction of the ringpack friction alone. The measured FMEP reductions were in good agreement with the model predictions. Further improvements via piston, lubricant, and surface designs offer additional opportunities. Tests of low-friction lubricants are in progress and preliminary results are very promising. The combined analysis of lubricant and surface design indicates that low-viscosity lubricants can be very effective in reducing friction, subject to component wear for extremely thin oils, which can be mitigated with further lubricant formulation and/or engineered surfaces. Hence a combined approach of lubricant design and appropriate wear reduction offers improved potential for minimum engine friction loss. Piston friction studies indicate that a flatter piston with a more flexible skirt, together with optimizing the waviness and film thickness on the piston skirt offer significant friction reduction. Combined with low-friction ring-pack, material and lubricant parameters, a total power cylinder friction reduction of 30-50% is expected, translating to an engine efficiency increase of two percentage points from its current baseline towards the goal of 50% ARES engine efficiency. The design strategies developed in this study have promising potential for application in all modern reciprocating engines as they represent simple, low-cost methods to extract significant fuel savings. The current program has possible spinoffs and applications in other industries as well, including transportation, CHP, and diesel power generation. The progress made in this program has wide engine efficiency implications, and potential deployment of low-friction engine components or lubricants in the near term is possible as current investigations continue.« less

  8. Study on the engine oil's wear based on the flash point

    NASA Astrophysics Data System (ADS)

    Niculescu, R.; Iorga-Simăn, V.; Trică, A.; Clenci, A.

    2016-08-01

    Increasing energy performance of internal combustion engines is largely influenced by frictional forces that arise between moving parts. Thus, in this respect, the nature and quality of the engine oil used is an important factor. Equally important is the effect of various engine injection strategies upon the oil quality. In other words, it's of utmost importance to maintain the quality of engine oil during engine's operation. Oil dilution is one of the most common causes that lead to its wear, creating lubrication problems. Moreover, at low temperatures operating conditions, the oil dilution with diesel fuel produces wax. When starting the engine, this may lead to lubrication deficiencies and even oil starvation with negative consequences on the engine mechanism parts wear (piston, rings and cylinders) but also crankcase bearings wear.Engine oil dilution with diesel fuel have several causes: wear of rings and/or injectors, late post-injection strategy for the sake of particulate filter regeneration, etc.This paper presents a study on the degree of deterioration of engine oils as a result of dilution with diesel fuel. The analysed oils used for this study were taken from various models of engines equipped with diesel particulate filter. The assessment is based on the determination of oil flash point and dilution degree using the apparatus Eraflash produced by Eralytics, Austria. Eraflash measurement is directly under the latest and safest standards ASTM D6450 & D7094), which are in excellent correlation with ASTM D93 Pensky - Martens ASTM D56 TAG methods; it uses the Continuous Closed Cup method for finding the Flash Point (CCCFP).

  9. Nanocapsules Containing Neem (Azadirachta Indica) Oil: Development, Characterization, And Toxicity Evaluation.

    PubMed

    Pasquoto-Stigliani, Tatiane; Campos, Estefânia V R; Oliveira, Jhones L; Silva, Camila M G; Bilesky-José, Natalia; Guilger, Mariana; Troost, Johann; Oliveira, Halley C; Stolf-Moreira, Renata; Fraceto, Leonardo F; de Lima, Renata

    2017-07-19

    In this study, we prepared, characterized, and performed toxicity analyses of poly(ε-caprolactone) nanocapsules loaded with neem oil. Three formulations were prepared by the emulsion/solvent evaporation method. The nanocapsules showed a mean size distribution around 400 nm, with polydispersity below 0.2 and were stable for 120 days. Cytotoxicity and genotoxicity results showed an increase in toxicity of the oleic acid + neem formulations according to the amount of oleic acid used. The minimum inhibitory concentrations demonstrated that all the formulations containing neem oil were active. The nanocapsules containing neem oil did not affect the soil microbiota during 300 days of exposure compared to the control. Phytotoxicity studies indicated that NC_20 (200 mg of neem oil) did not affect the net photosynthesis and stomatal conductance of maize plants, whereas use of NC_10 (100:100 of neem:oleic acid) and NC_15 (150:50 of neem:oleic acid) led to negative effects on these physiological parameters. Hence, the use of oleic acid as a complement in the nanocapsules was not a good strategy, since the nanocapsules that only contained neem oil showed lower toxicity. These results demonstrate that evaluation of the toxicity of nanopesticides is essential for the development of environmentally friendly formulations intended for applications in agriculture.

  10. The use of D-optimal mixture design in optimising okara soap formulation for stratum corneum application.

    PubMed

    Borhan, Farrah Payyadhah; Abd Gani, Siti Salwa; Shamsuddin, Rosnah

    2014-01-01

    Okara, soybean waste from tofu and soymilk production, was utilised as a natural antioxidant in soap formulation for stratum corneum application. D-optimal mixture design was employed to investigate the influence of the main compositions of okara soap containing different fatty acid and oils (virgin coconut oil A (24-28% w/w), olive oil B (15-20% w/w), palm oil C (6-10% w/w), castor oil D (15-20% w/w), cocoa butter E (6-10% w/w), and okara F (2-7% w/w)) by saponification process on the response hardness of the soap. The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for okara soap hardness in terms of the six design factors considered in this study. Results revealed that the best mixture was the formulation that included 26.537% A, 19.999% B, 9.998% C, 16.241% D, 7.633% E, and 7.000% F. The results proved that the difference in the level of fatty acid and oils in the formulation significantly affects the hardness of soap. Depending on the desirable level of those six variables, creation of okara based soap with desirable properties better than those of commercial ones is possible.

  11. Enhancement of the antimicrobial properties of bacteriophage-K via stabilization using oil-in-water nano-emulsions.

    PubMed

    Esteban, Patricia Perez; Alves, Diana R; Enright, Mark C; Bean, Jessica E; Gaudion, Alison; Jenkins, A T A; Young, Amber E R; Arnot, Tom C

    2014-01-01

    Bacteriophage therapy is a promising new treatment that may help overcome the threat posed by antibiotic-resistant pathogenic bacteria, which are increasingly identified in hospitalized patients. The development of biocompatible and sustainable vehicles for incorporation of viable bacterial viruses into a wound dressing is a promising alternative. This article evaluates the antimicrobial efficacy of Bacteriophage K against Staphylococcus aureus over time, when stabilized and delivered via an oil-in-water nano-emulsion. Nano-emulsions were formulated via thermal phase inversion emulsification, and then bacterial growth was challenged with either native emulsion, or emulsion combined with Bacteriophage K. Bacteriophage infectivity, and the influence of storage time of the preparation, were assessed by turbidity measurements of bacterial samples. Newly prepared Bacteriophage K/nano-emulsion formulations have greater antimicrobial activity than freely suspended bacteriophage. The phage-loaded emulsions caused rapid and complete bacterial death of three different strains of S. aureus. The same effect was observed for preparations that were either stored at room temperature (18-20°C), or chilled at 4°C, for up to 10 days of storage. A response surface design of experiments was used to gain insight on the relative effects of the emulsion formulation on bacterial growth and phage lytic activity. More diluted emulsions had a less significant effect on bacterial growth, and diluted bacteriophage-emulsion preparations yielded greater antibacterial activity. The enhancement of bacteriophage activity when delivered via nano-emulsions is yet to be reported. This prompts further investigation into the use of these formulations for the development of novel anti-microbial wound management strategies. © 2014 American Institute of Chemical Engineers.

  12. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOEpatents

    Boggs, D.L.; Baraszu, D.J.; Foulkes, D.M.; Gomes, E.G.

    1998-12-29

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine`s crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages. 4 figs.

  13. Viscosity of the oil-in-water Pickering emulsion stabilized by surfactant-polymer and nanoparticle-surfactant-polymer system

    NASA Astrophysics Data System (ADS)

    Sharma, Tushar; Kumar, G. Suresh; Chon, Bo Hyun; Sangwai, Jitendra S.

    2014-11-01

    Information on the viscosity of Pickering emulsion is required for their successful application in upstream oil and gas industry to understand their stability at extreme environment. In this work, a novel formulation of oil-in-water (o/w) Pickering emulsion stabilized using nanoparticle-surfactant-polymer (polyacrylamide) system as formulated in our earlier work (Sharma et al., Journal of Industrial and Engineering Chemistry, 2014) is investigated for rheological stability at high pressure and high temperature (HPHT) conditions using a controlled-strain rheometer. The nanoparticle (SiO2 and clay) concentration is varied from 1.0 to 5.0 wt%. The results are compared with the rheological behavior of simple o/w emulsion stabilized by surfactant-polymer system. Both the emulsions exhibit non-Newtonian shear thinning behavior. A positive shift in this behavior is observed for surfactant-polymer stabilized emulsion at high pressure conditions. Yield stress is observed to increase with pressure for surfactant-polymer emulsion. In addition, increase in temperature has an adverse effect on the viscosity of emulsion stabilized by surfactant-polymer system. In case of nanoparticle-surfactant-polymer stabilized o/w emulsion system, the viscosity and yield stress are predominantly constant for varying pressure and temperature conditions. The viscosity data for both o/w emulsion systems are fitted by the Herschel-Bulkley model and found to be satisfactory. In general, the study indicates that the Pickering emulsion stabilized by nanoparticle-surfactant-polymer system shows improved and stable rheological properties as compared to conventional emulsion stabilized by surfactant-polymer system indicating their successful application for HPHT environment in upstream oil and gas industry.

  14. Characterization of Streptomyces spp. isolated from the rhizosphere of oil palm and evaluation of their ability to suppress basal stem rot disease in oil palm seedlings when applied as powder formulations in a glasshouse trial.

    PubMed

    Shariffah-Muzaimah, S A; Idris, A S; Madihah, A Z; Dzolkhifli, O; Kamaruzzaman, S; Maizatul-Suriza, M

    2017-12-18

    Ganoderma boninense, the main causal agent of oil palm (Elaeis guineensis) basal stem rot (BSR), severely reduces oil palm yields around the world. To reduce reliance on fungicide applications to control BSR, we are investigating the efficacy of alternative control methods, such as the application of biological control agents. In this study, we used four Streptomyces-like actinomycetes (isolates AGA43, AGA48, AGA347 and AGA506) that had been isolated from the oil palm rhizosphere and screened for antagonism towards G. boninense in a previous study. The aim of this study was to characterize these four isolates and then to assess their ability to suppress BSR in oil palm seedlings when applied individually to the soil in a vermiculite powder formulation. Analysis of partial 16S rRNA gene sequences (512 bp) revealed that the isolates exhibited a very high level of sequence similarity (> 98%) with GenBank reference sequences. Isolates AGA347 and AGA506 showed 99% similarity with Streptomyces hygroscopicus subsp. hygroscopicus and Streptomyces ahygroscopicus, respectively. Isolates AGA43 and AGA48 also belonged to the Streptomyces genus. The most effective formulation, AGA347, reduced BSR in seedlings by 73.1%. Formulations using the known antifungal producer Streptomyces noursei, AGA043, AGA048 or AGA506 reduced BSR by 47.4, 30.1, 54.8 and 44.1%, respectively. This glasshouse trial indicates that these Streptomyces spp. show promise as potential biological control agents against Ganoderma in oil palm. Further investigations are needed to determine the mechanism of antagonism and to increase the shelf life of Streptomyces formulations.

  15. Effect of Semisolid Formulation of Persea Americana Mill (Avocado) Oil on Wound Healing in Rats

    PubMed Central

    de Oliveira, Ana Paula; Franco, Eryvelton de Souza; Rodrigues Barreto, Rafaella; Cordeiro, Daniele Pires; de Melo, Rebeca Gonçalves; de Aquino, Camila Maria Ferreira; e Silva, Antonio Alfredo Rodrigues; de Medeiros, Paloma Lys; da Silva, Teresinha Gonçalves; Góes, Alexandre José da Silva; Maia, Maria Bernadete de Sousa

    2013-01-01

    The aim of this study was to evaluate the wound-healing activity of a semisolid formulation of avocado oil, SSFAO 50%, or avocado oil in natura, on incisional and excisional cutaneous wound models in Wistar rats. An additional objective was to quantify the fatty acids present in avocado oil. On the 14th day, a significant increase was observed in percentage wound contraction and reepithelialization in the groups treated with 50% SSFAO or avocado oil compared to the petroleum jelly control. Anti-inflammatory activity, increase in density of collagen, and tensile strength were observed inSSFAO 50% or avocado oil groups, when compared to control groups. The analysis of the components of avocado oil by gas chromatography detected the majority presence of oleic fatty acid (47.20%), followed by palmitic (23.66%), linoleic (13.46%) docosadienoic (8.88%), palmitoleic (3.58%), linolenic (1.60%), eicosenoic (1.29%), and myristic acids (0.33%). Our results show that avocado oil is a rich source of oleic acid and contains essential fatty acids. When used in natura or in pharmaceutical formulations for topical use, avocado oil can promote increased collagen synthesis and decreased numbers of inflammatory cells during the wound-healing process and may thus be considered a new option for treating skin wounds. PMID:23573130

  16. Effect of semisolid formulation of persea americana mill (avocado) oil on wound healing in rats.

    PubMed

    de Oliveira, Ana Paula; Franco, Eryvelton de Souza; Rodrigues Barreto, Rafaella; Cordeiro, Daniele Pires; de Melo, Rebeca Gonçalves; de Aquino, Camila Maria Ferreira; E Silva, Antonio Alfredo Rodrigues; de Medeiros, Paloma Lys; da Silva, Teresinha Gonçalves; Góes, Alexandre José da Silva; Maia, Maria Bernadete de Sousa

    2013-01-01

    The aim of this study was to evaluate the wound-healing activity of a semisolid formulation of avocado oil, SSFAO 50%, or avocado oil in natura, on incisional and excisional cutaneous wound models in Wistar rats. An additional objective was to quantify the fatty acids present in avocado oil. On the 14th day, a significant increase was observed in percentage wound contraction and reepithelialization in the groups treated with 50% SSFAO or avocado oil compared to the petroleum jelly control. Anti-inflammatory activity, increase in density of collagen, and tensile strength were observed inSSFAO 50% or avocado oil groups, when compared to control groups. The analysis of the components of avocado oil by gas chromatography detected the majority presence of oleic fatty acid (47.20%), followed by palmitic (23.66%), linoleic (13.46%) docosadienoic (8.88%), palmitoleic (3.58%), linolenic (1.60%), eicosenoic (1.29%), and myristic acids (0.33%). Our results show that avocado oil is a rich source of oleic acid and contains essential fatty acids. When used in natura or in pharmaceutical formulations for topical use, avocado oil can promote increased collagen synthesis and decreased numbers of inflammatory cells during the wound-healing process and may thus be considered a new option for treating skin wounds.

  17. Emu oil based nano-emulgel for topical delivery of curcumin.

    PubMed

    Jeengar, Manish Kumar; Rompicharla, Sri Vishnu Kiran; Shrivastava, Shweta; Chella, Naveen; Shastri, Nalini R; Naidu, V G M; Sistla, Ramakrishna

    2016-06-15

    Curcumin and emu oil derived from emu bird (Dromaius novaehollandiae) has shown promising results against inflammation. However, the delivery of curcumin is hindered due to low solubility and poor permeation. In addition, till date the role of emu oil in drug delivery has not been explored systemically. Hence, the current investigation was designed to evaluate the anti-inflammatory potential of curcumin in combination with emu oil from a nanoemulgel formulation in experimental inflammation and arthritic in vivo models. Nanoemulsion was prepared using emu oil, Cremophor RH 40 and Labrafil M2125CS as oil phase, surfactant and co-surfactant. The optimized curcumin loaded nanoemulsion with emu oil was incorporated into carbopol gel for convenient application by topical route. The anti-inflammatory efficacy was evaluated in carrageenan induced paw edema and FCA induced arthritic rat model in terms of paw swelling, weight indices of the liver and spleen, pathological changes in nuclear factor kappa B, iNOS, COX-2 expression and inflammatory cytokines. Arthritic scoring, paw volume, biochemical, molecular, radiological and histological examinations indicated significant improvement in anti-inflammatory activity with formulations containing curcumin in combination with emu oil compared to pure curcumin. These encouraging results demonstrate the potential of formulations containing curcumin and emu oil combination in rheumatoid arthritis. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Skin Penetration Enhancement by Natural Oils for Dihydroquercetin Delivery.

    PubMed

    Čižinauskas, Vytis; Elie, Nicolas; Brunelle, Alain; Briedis, Vitalis

    2017-09-12

    Natural oils are commonly used in topical pharmaceutical formulations as emulsifiers, stabilizers or solubility enhancers. They are presented as safe and inert components, mainly used for formulation purposes. It is confirmed that natural oils can affect the skin penetration of various substances. Fatty acids are mainly responsible for this effect. Current understanding lacks reliable scientific data on penetration of natural oils into the skin and their skin penetration enhancement potential. In the current study, fatty acid content analysis was used to determine the principal fatty acids in soybean, olive, avocado, sea-buckthorn pulp, raspberry seed and coconut oils. Time of flight secondary ion mass spectrometry bioimaging was used to determine the distribution of these fatty acids in human skin ex vivo after application of the oils. Skin penetration enhancement ratios were determined for a perspective antioxidant compound dihydroquercetin. The results demonstrated skin penetration of fatty acids from all oils tested. Only soybean and olive oils significantly increased the skin distribution of dihydroquercetin and can be used as skin penetration enhancers. However, no correlation can be determined between the fatty acids' composition and skin penetration enhancement using currently available methodological approaches. This indicates that potential chemical penetration enhancement should be evaluated during formulation of topically applied products containing natural oils.

  19. Characterization of lubrication oil emissions from aircraft engines.

    PubMed

    Yu, Zhenhong; Liscinsky, David S; Winstead, Edward L; True, Bruce S; Timko, Michael T; Bhargava, Anuj; Herndon, Scott C; Miake-Lye, Richard C; Anderson, Bruce E

    2010-12-15

    In this first ever study, particulate matter (PM) emitted from the lubrication system overboard breather vent for two different models of aircraft engines has been systematically characterized. Lubrication oil was confirmed as the predominant component of the emitted particulate matter based upon the characteristic mass spectrum of the pure oil. Total particulate mass and size distributions of the emitted oil are also investigated by several high-sensitivity aerosol characterization instruments. The emission index (EI) of lubrication oil at engine idle is in the range of 2-12 mg kg(-1) and increases with engine power. The chemical composition of the oil droplets is essentially independent of engine thrust, suggesting that engine oil does not undergo thermally driven chemical transformations during the ∼4 h test window. Volumetric mean diameter is around 250-350 nm for all engine power conditions with a slight power dependence.

  20. Formulation, optimization, and evaluation of self-emulsifying drug delivery systems of nevirapine

    PubMed Central

    Chintalapudi, Ramprasad; Murthy, T. E. G. K.; Lakshmi, K. Rajya; Manohar, G. Ganesh

    2015-01-01

    Background: The aim of the present study was to formulate and optimize the self-emulsifying drug delivery systems (SEDDS) of nevirapine (NVP) by use of 22 factorial designs to enhance the oral absorption of NVP by improving its solubility, dissolution rate, and diffusion profile. SEDDS are the isotropic mixtures of oil, surfactant, co-surfactant and drug that form oil in water microemulsion when introduced into the aqueous phase under gentle agitation. Materials and Methods: Solubility of NVP in different oils, surfactants, and co-surfactants was determined for the screening of excipients. Pseudo-ternary phase diagrams were constructed by the aqueous titration method, and formulations were developed based on the optimum excipient combinations with the help of data obtained through the maximum micro emulsion region containing combinations of oil, surfactant, and co-surfactant. The formulations of SEDDS were optimized by 22 factorial designs. Results: The optimum formulation of SEDDS contains 32.5% oleic acid, 44.16% tween 20, and 11.9% polyethylene glycol 600 as oil, surfactant, and co-surfactant respectively. The SEDDS was evaluated for the following drug content, self-emulsification time, rheological properties, zeta potential, in vitro diffusion studies, thermodynamic stability studies, and in vitro dissolution studies. An increase in dissolution was achieved by SEDDS compared to pure form of NVP. Conclusion: Overall, this study suggests that the dissolution and oral bioavailability of NVP could be improved by SEDDS technology. PMID:26682191

  1. Evaluation of Beeswax Influence on Physical Properties of Lipstick Using Instrumental and Sensory Methods.

    PubMed

    Kasparaviciene, Giedre; Savickas, Arunas; Kalveniene, Zenona; Velziene, Saule; Kubiliene, Loreta; Bernatoniene, Jurga

    2016-01-01

    The aim of this study was to optimize the lipsticks formulation according to the physical properties and sensory attributes and investigate the relationship between instrumental and sensory analyses and evaluate the influence of the main ingredients, beeswax and oil, with analysis of lipsticks properties. Central composite design was used to optimize the mixture of oils and beeswax and cocoa butter for formulation of lipsticks. Antioxidant activity was evaluated by DPPH free radical scavenging method spectrophotometrically. Physical properties of lipsticks melting point were determined in a glass tube; the hardness was investigated with texture analyzer. Sensory analysis was performed with untrained volunteers. The optimized mixture of sea buckthorn oil and grapeseed oil mixture ratio 13.96 : 6.18 showed the highest antioxidative activity (70 ± 0.84%) and was chosen for lipstick formulation. According to the sensory and instrumental analysis results, optimal ingredients amounts for the lipstick were calculated: 57.67% mixture of oils, 19.58% beeswax, and 22.75% cocoa butter. Experimentally designed and optimized lipstick formulation had good physical properties and high scored sensory evaluation. Correlation analysis showed a significant relationship between sensory and instrumental evaluations.

  2. Evaluation of Beeswax Influence on Physical Properties of Lipstick Using Instrumental and Sensory Methods

    PubMed Central

    Kasparaviciene, Giedre; Savickas, Arunas; Kalveniene, Zenona; Velziene, Saule; Kubiliene, Loreta

    2016-01-01

    The aim of this study was to optimize the lipsticks formulation according to the physical properties and sensory attributes and investigate the relationship between instrumental and sensory analyses and evaluate the influence of the main ingredients, beeswax and oil, with analysis of lipsticks properties. Central composite design was used to optimize the mixture of oils and beeswax and cocoa butter for formulation of lipsticks. Antioxidant activity was evaluated by DPPH free radical scavenging method spectrophotometrically. Physical properties of lipsticks melting point were determined in a glass tube; the hardness was investigated with texture analyzer. Sensory analysis was performed with untrained volunteers. The optimized mixture of sea buckthorn oil and grapeseed oil mixture ratio 13.96 : 6.18 showed the highest antioxidative activity (70 ± 0.84%) and was chosen for lipstick formulation. According to the sensory and instrumental analysis results, optimal ingredients amounts for the lipstick were calculated: 57.67% mixture of oils, 19.58% beeswax, and 22.75% cocoa butter. Experimentally designed and optimized lipstick formulation had good physical properties and high scored sensory evaluation. Correlation analysis showed a significant relationship between sensory and instrumental evaluations. PMID:27994631

  3. Terahertz spectroscopy properties of the selected engine oils

    NASA Astrophysics Data System (ADS)

    Zhu, Shouming; Zhao, Kun; Lu, Tian; Zhao, Songqing; Zhou, Qingli; Shi, Yulei; Zhao, Dongmei; Zhang, Cunlin

    2010-11-01

    Engine oil, most of which is extracted from petroleum, consist of complex mixtures of hydrocarbons of molecular weights in the range of 250-1000. Variable amounts of different additives are put into them to inhibit oxidation, improve the viscosity index, decrease the fluidity point and avoid foaming or settling of solid particles among others. Terahertz (THz) spectroscopy contains rich physical, chemical, and structural information of the materials. Most low-frequency vibrational and rotational spectra of many petrochemicals lie in this frequency range. In recent years, much attention has been paid to the THz spectroscopic studies of petroleum products. In this paper, the optical properties and spectroscopy of selected kinds of engine oil consisting of shell HELIX 10W-40, Mobilube GX 80W-90, GEELY ENGINE OIL SG 10W-30, SMA engine oil SG 5W-30, SMA engine oil SG 10W-30, SMA engine oil SG 75W-90 have been studied by the terahertz time-domain spectroscopy (THz-TDS) in the spectral range of 0.6-2.5 THz. Engine oil with different viscosities in the terahertz spectrum has certain regularity. In the THz-TDS, with the increase of viscosity, time delay is greater and with the increase of viscosity, refractive indexes also grow and their rank is extremely regular. The specific kinds of engine oil can be identified according to their different spectral features in the THz range. The THz-TDS technology has potentially significant impact on the engine oil analysis.

  4. The Acute, Delayed Neurotoxicity Evaluation of Two Jet Engine Oil Formulations

    DTIC Science & Technology

    1990-04-01

    humans after chronic exposure to these compounds. Similar neurotoxic effects have been demonstrated in adult chickens and cats after exposure to TOCP...salpingitis 0 1 0 0 0 0 0 0 0 0 0 0 Skin 2 3 3 2 4 3 1 2 2 3 1 5 Fibrosarcoma 0 0 1 0 0 0 0 0 0 0 0 0 *The number of animals in which the organ was examined...REFERENCES Beresford, W.A. and P. Glees. 1963. Degeneration in the Long Tracts of the Cords of the Chicken and Cat After Triorthocresyl phosphate

  5. Improving magnetic properties of MgB2 bulk superconductors by synthetic engine oil treatment

    NASA Astrophysics Data System (ADS)

    Taylan Koparan, E.; Savaskan, B.; Yanmaz, E.

    2016-08-01

    The present study focuses on the effects of standby time of the MgB2 samples immersed in synthetic engine oil on the critical current density (Jc(H)), magnetic field dependence of the pinning force density fp(b) and Tc performances of MgB2 bulk superconductors. Synthetic engine oil was used as a product which is cheap and a rich carbon source. Manufactured MgB2 pellet samples were immersed at different standby time of 30 min, 120 min, 300 min and 1440 min in synthetic engine oil after the first heating process. Finally, MgB2 samples immersed in synthetic engine oil were sintered at 1000 °C and kept for 15 min in Ar atmosphere. The critical current density of all of MgB2 samples immersed at different standby time in engine oil in whole field range was better than that of the pure MgB2 sample because of the number of the pinning centers. The MgB2 sample immersed at 300 min standby time in synthetic engine oil has the best performance compared to other samples. The Jc value for the pure sample is 2.0 × 103 A/cm2, whereas for the MgB2 sample immersed at 300 min standby time in engine oil the Jc is enhanced to 4.8 × 103A/cm2 at 5 K and 3 T. The superconducting transition temperature (Tc) did not change with the increasing standby time of the samples in synthetic engine oil at all. The best diamagnetic property was obtained from the sample which kept in synthetic engine oil for 300 min. Synthetic engine oil treatment results in remarkable improvement of the critical current density and pinning force performances of MgB2 superconductors. It was found that all MgB2 samples have a different pinning property at different measuring temperatures. Using synthetic engine oil as a product which is cheap and a rich carbon source in MgB2 bulk superconductors makes MgB2 samples immersed in synthetic engine oil a good candidate for industrial applications.

  6. Effect of citronella essential oil fractions as oil phase on emulsion stability

    NASA Astrophysics Data System (ADS)

    Septiyanti, Melati; Meliana, Yenny; Agustian, Egi

    2017-11-01

    The emulsion system consists of water, oil and surfactant. In order to create stable emulsion system, the composition and formulation between water phase, surfactant and oil phase are very important. Essential oil such as citronella oil has been known as active ingredient which has ability as insect repellent. This research studied the effect of citronella oil and its fraction as oil phase on emulsion stability. The cycle stability test was conducted to check the emulsion stability and it was monitored by pH, density, viscosity, particle size, refractive index, zeta potential, physical appearance and FTIR for 4 weeks. Citronellal fraction has better stability compared to citronella oil and rhodinol fraction with slight change of physical and chemical properties before and after the cycle stability test. However, it is need further study to enhance the stability of the emulsion stability for this formulation.

  7. CFD analysis of turboprop engine oil cooler duct for best rate of climb condition

    NASA Astrophysics Data System (ADS)

    Kalia, Saurabh; CA, Vinay; Hegde, Suresh M.

    2016-09-01

    Turboprop engines are widely used in commuter category airplanes. Aircraft Design bureaus routinely conduct the flight tests to confirm the performance of the system. The lubrication system of the engine is designed to provide a constant supply of clean lubrication oil to the engine bearings, the reduction gears, the torque-meter, the propeller and the accessory gearbox. The oil lubricates, cools and also conducts foreign material to the oil filter where it is removed from further circulation. Thus a means of cooling the engine oil must be provided and a suitable oil cooler (OC) and ducting system was selected and designed for this purpose. In this context, it is relevant to study and analyse behaviour of the engine oil cooler system before commencing actual flight tests. In this paper, the performance of the oil cooler duct with twin flush NACA inlet housed inside the nacelle has been studied for aircraft best rate of climb (ROC) condition using RANS based SST K-omega model by commercial software ANSYS Fluent 13.0. From the CFD analysis results, it is found that the mass flow rate captured and pressure drop across the oil cooler for the best ROC condition is meeting the oil cooler manufacturer requirements thus, the engine oil temperature is maintained within prescribed limits.

  8. Ivermectin disposition kinetics after subcutaneous and intramuscular administration of an oil-based formulation to cattle.

    PubMed

    Lifschitz, A; Virkel, G; Pis, A; Imperiale, F; Sanchez, S; Alvarez, L; Kujanek, R; Lanusse, C

    1999-10-01

    Slight differences in formulation may change the plasma kinetics and ecto-endoparasiticide activity of endectocide compounds. This work reports on the disposition kinetics and plasma availability of ivermectin (IVM) after subcutaneous (SC) and intramuscular (IM) administration as an oil-based formulation to cattle. Parasite-free Aberdeen Angus calves (n = 24; 240-280 kg) were divided into three groups (n = 8) and treated (200 microg/kg) with either an IVM oil-based pharmaceutical preparation (IVM-TEST formulation) (Bayer Argentina S.A.) given by subcutaneous (Group A) and intramuscular (Group B) injections or the IVM-CONTROL (non-aqueous formulation) (Ivomec, MSD Agvet) subcutaneously administered (Group C). Blood samples were taken over 35 days post-treatment and the recovered plasma was extracted and analyzed by HPLC using fluorescence detection. IVM was detected in plasma between 12 h and 35 days post-administration of IVM-TEST (SC and IM injections) and IVM-CONTROL formulations. Prolonged IVM absorption half-life (p < 0.05) and delayed peak plasma concentration (p < 0.001) were obtained following the SC administration of the IVM-TEST compared to the IVM-CONTROL formulation. No differences in total plasma availability were observed among treatments. However, the plasma residence time and elimination half-life of IVM were significantly longer after injection of the IVM-TEST formulation. IVM plasma concentrations were above 0.5 ng/ml for 20.6 (CONTROL) and 27.5 days (IVM-TEST SC), respectively (p < 0.05). The modified kinetic behaviour of IVM obtained after the administration of the novel oil-based formulation examined in this trial, compared to the standard preparation, may positively impact on its strategic use in cattle.

  9. Disposition of lipid-based formulation in the intestinal tract affects the absorption of poorly water-soluble drugs.

    PubMed

    Iwanaga, Kazunori; Kushibiki, Toshihiro; Miyazaki, Makoto; Kakemi, Masawo

    2006-03-01

    Solvent Green 3 (SG), a model poorly water-soluble compound, was orally administered to rats with soybean oil emulsion or the Self-microemulsifying drug delivery system (SMEDDS) composed of Gelucire44/14. The bioavailability of SG after oral administration with SMEDDS was 1.7-fold higher than that with soybean oil emulsion. The intestinal absorption of lipid-based formulations themselves was evaluated by the in situ closed loop method. The effect of lipase and bile salt on their absorption was also evaluated. SMEDDS itself was rapidly absorbed in the intestine even in the absence of lipase and bile salt, and the absorption was increased by the addition of lipase and bile salt. On the other hand, no soybean oil emulsion was absorbed in the absence of lipase and bile salt. However, mixed micelle prepared from emulsion by incubating soybean oil emulsion with lipase and bile salt was rapidly absorbed through the intestine. Without lipase and bile salt, SG was not absorbed after administration with soybean oil emulsion. Therefore, we concluded that the degradation of soybean oil emulsion was needed for SG to be absorbed through the intestine. Furthermore, we investigated the intestinal absorption of SG after oral administration to rats whose chylomicron synthesis were inhibited by pretreatment with colchicine. Colchicine completely inhibited the intestinal absorption of SG after administration with each lipid-based formulation, suggesting that SG was absorbed from the intestine via a lymphatic route. Absorption of the dosage formulation should be paid attention when poorly water-soluble drugs are orally administered with lipid-based formulation.

  10. Oil from transgenic Camelina sativa containing over 25 % n-3 long-chain PUFA as the major lipid source in feed for Atlantic salmon (Salmo salar).

    PubMed

    Betancor, Mónica B; Li, Keshuai; Bucerzan, Valentin S; Sprague, Matthew; Sayanova, Olga; Usher, Sarah; Han, Lihua; Norambuena, Fernando; Torrissen, Ole; Napier, Johnathan A; Tocher, Douglas R; Olsen, Rolf E

    2018-06-01

    Facing a bottleneck in the growth of aquaculture, and a gap in the supply and demand of the highly beneficial n-3 long-chain PUFA (LC-PUFA), sustainable alternatives to traditional marine-based feeds are required. Therefore, in the present trial, a novel oil obtained from a genetically engineered oilseed crop, Camelina sativa, that supplied over 25 % n-3 LC-PUFA was tested as a sole dietary-added lipid source in Atlantic salmon (Salmo salar) feed. Three groups of fish were fed three experimental diets for 12 weeks with the same basal composition and containing 20 % added oil supplied by either a blend of fish oil and rapeseed oil (1:3) (COM) reflecting current commercial formulations, wild-type Camelina oil (WCO) or the novel transgenic Camelina oil (TCO). There were no negative effects on the growth, survival rate or health of the fish. The whole fish and flesh n-3 LC-PUFA levels were highest in fish fed TCO, with levels more than 2-fold higher compared with those of fish fed the COM and WCO diets, respectively. Diet TCO had no negative impacts on the evaluated immune and physiological parameters of head kidney monocytes. The transcriptomic responses of liver and mid-intestine showed only mild effects on metabolism genes. Overall, the results clearly indicated that the oil from transgenic Camelina was highly efficient in supplying n-3 LC-PUFA providing levels double that obtained with a current commercial standard, and similar to those a decade ago before substantial dietary fishmeal and oil replacement.

  11. In vitro dermal disposition of abamectin (avermectin B(1)) in livestock.

    PubMed

    Baynes, Ronald E

    2004-06-01

    Many avermectins are approved for topical application in domestic animals. However, extralabel use may result in significant dermal absorption and consequently the potential for adverse effects or violative residues. The primary aim of this study was to assess dermal disposition of abamectin in vitro in bovine, caprine, ovine, and porcine skin dosed in 100% isopropanol, commercial alcohol-based (Ivomec), or oil-based (Eprinex) formulations. Skin sections were perfused in a flow-through diffusion cell system for 8 h, and the disposition of radiolabel abamectin was determined from perfusate and skin samples. Abamectin absorption ranged from 0.09% to 0.20% dose and there were no significant differences between formulations in each species. Isopropanol significantly increased skin deposition in all species when compared to the oil formulation. Absorption was significantly greater in bovine skin than in porcine skin for the isopropanol-containing formulations, but there were no significant species differences for the oil formulation. While significant levels (11.69-50.23% dose) remained on the skin surface, the highest levels deposited in viable skin were observed in caprine skin (28.09% dose) and the lowest levels were in porcine skin (1.50% dose) which could lead to systemic absorption. In summary, these 8-h experiments demonstrated that the alcohol-based formulations compared to oil-based formulations enhanced abamectin absorption and skin deposition in several animal species, and this effect is more likely to be observed in ruminant species than in porcine species.

  12. Formulation and characterization of garlic (Allium sativum L.) essential oil nanoemulsion and its acaricidal activity on eriophyid olive mites (Acari: Eriophyidae).

    PubMed

    Mossa, Abdel-Tawab H; Afia, Sahar I; Mohafrash, Samia M M; Abou-Awad, Badawi A

    2018-04-01

    Green and nanoacaricides including essential oil (EO) nanoemulsions are important compounds to provide new, active, safe acaricides and lead to improvement of avoiding the risk of synthetic acaricides. This study was carried out for the first time on eriophyid mites to develop nanoemulsion of garlic essential oil by ultrasonic emulsification and evaluate its acaricidal activity against the two eriophyid olive mites Aceria oleae Nalepa and Tegolophus hassani (Keifer). Acute toxicity of nanoemulsion was also studied on male rats. Garlic EO was analyzed by gas chromatography-mass spectrometry (GC-MS), and the major compounds were diallyl sulfide (8.6%), diallyl disulfide (28.36%), dimethyl tetrasulfide (15.26%), trisulfide,di-2-propenyl (10.41%), and tetrasulfide,di-2-propenyl (9.67%). Garlic oil nanoemulsion with droplet size 93.4 nm was formulated by ultrasonic emulsification for 35 min. Emulsification time and oil and surfactant ratio correlated to the emulsion droplet size and stability. The formulated nanoemulsion showed high acaricidal activity against injurious eriophyid mites with LC 50 298.225 and 309.634 μg/ml, respectively. No signs of nanoemulsion toxicity were noted in treating rats; thus, it may be considered non-toxic to mammals. Stability of garlic oil nanoemulsion, high acaricidal activity, and the absence of organic toxic solvents make the formulation that may be a possible acaricidal product. Results suggest the possibility of developing suitable natural nanoacaricide from garlic oil.

  13. Formulation and evaluation of C-Ether fluids as lubricants useful to 260 C. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Clark, F. S.; Miller, D. R.

    1980-01-01

    Three base stocks were evaluated in bench and bearing tests to determine their suitability for use at bulk oil temperatures (BOT) from -40 C to +260 C. A polyol ester gave good bearing tests at a bulk temperature of 218 C, but only a partially successful run at 274 C. These results bracket the fluid's maximum operating temperature between these values. An extensive screening program selected lubrication additives for a C-ether (modified polyphenyl ether) base stock. One formulation lubricated a bearing for 111 hours at 274 C (BOT), but this fluid gave many deposit related problems. Other C-ether blends produced cage wear or fatigue failures. Studies of a third fluid, a C-ether/disiloxane blend, consisted of bench oxidation and lubrication tests. These showed that some additives react differently in the blend than in pure C-ethers.

  14. Evaluation of methylated soy oil and water-based formulations of Bacillus thuringiensis var. Israelensis and Golden Bear Oil (GB-1111) against anopheles quadrimaculatus larvae in small rice plots.

    PubMed

    Dennett, J A; Lampman, R L; Novak, R J; Meisch, M V

    2000-12-01

    The efficacy of formulations containing methylated soybean oil (MSO) alone and with technical-grade Bacillus thuringiensis var. israelensis (Bti) were compared to Golden Bear Oil (GB-1111) and a water-based Bti formulation against 3rd- to 4th-stage Anopheles quadrimaculatus larvae confined to sentinel cages in small rice plots. Three replicates each of MSO with 2% Pyroter added as a surfactant (MSO + PYR), MSO with 2% Pyroter and 4 g of Bti technical powder (MSO + PYR + Bti), GB-1111, a water-based formulation with 4 g of Bti technical powder (Bti + water), and untreated controls were performed. Mosquito larvae were introduced on the 1st day of treatment and at 4 days posttreatment. Mortality was recorded at 24 and 48 h posttreatment for the 1st installation and at 5 days posttreatment for the 2nd installation. The Bti + water formulation provided 71% control and the MSO + PYR + Bti formulation achieved 64% control, whereas MSO + PYR and GB-1111 produced 16 and 18% control, respectively, at 24 h posttreatment. With the exception of MSO + PYR + Bti, which decreased by 2%, the mean percent control increased slightly at 48h posttreatment across remaining treatments, with Bti + water obtaining 72% control. This was significantly higher than GB-1111, which achieved 23% control at 48 h posttreatment. The MSO + PYR and MSO + PYR + Bti formulations yielded 56 and 62% control, respectively, during the same interval and were not significantly different from one another. Formulations containing MSO + PYR exhibited delayed activity similar to GB-1111, with all formulations except MSO + PYR + Bti providing greatest control at 48 h posttreatment. Both MSO formulations (MSO + PYR + Bti and MSO + PYR) were statistically comparable to Bti + water and GB-1111, respectively, at 24 and 48 h posttreatment. None of the formulations exhibited a residual activity adequate enough to control An. quadrimaculatus larvae for up to 5 days.

  15. Emissions from diesel engines using fatty acid methyl esters from different vegetable oils as blends and pure fuel

    NASA Astrophysics Data System (ADS)

    Schröder, O.; Munack, A.; Schaak, J.; Pabst, C.; Schmidt, L.; Bünger, J.; Krahl, J.

    2012-05-01

    Biodiesel is used as a neat fuel as well as in blends with mineral diesel fuel. Because of the limited availability of fossil resources, an increase of biogenic compounds in fuels is desired. To achieve this goal, next to rapeseed oil, other sustainably produced vegetable oils can be used as raw materials. These raw materials influence the fuel properties as well as the emissions. To investigate the environmental impact of the exhaust gas, it is necessary to determine regulated and non-regulated exhaust gas components. In detail, emissions of aldehydes and polycyclic aromatic hydrocarbons (PAH), as well as mutagenicity in the Ames test are of special interest. In this paper emission measurements on a Euro III engine OM 906 of Mercedes-Benz are presented. As fuel vegetable oil methyl esters from various sources and reference diesel fuel were used as well as blends of the vegetable oil methyl esters with diesel fuel. PAH were sampled according to VDI Guideline 3872. The sampling procedure of carbonyls was accomplished using DNPH cartridges coupled with potassium iodide cartridges. The carbon monoxide and hydrocarbon emissions of the tested methyl esters show advantages over DF. The particle mass emissions of methyl esters were likewise lower than those of DF, only linseed oil methyl ester showed higher particle mass emissions. A disadvantage is the use of biodiesel with respect to emissions of nitrogen oxides. They increased depending on the type of methyl ester by 10% to 30%. Emissions of polycyclic aromatic hydrocarbons (PAHs) and the results of mutagenicity tests correlate with those of the PM measurements, at which for palm oil methyl ester next to coconut oil methyl ester the lowest emissions were detected. From these results one can formulate a clear link between the iodine number of the ester and the emission behaviour. For blends of biodiesel and diesel fuel, emissions changed linearly with the proportion of biodiesel. However, especially in the non-regulated exhaust gas components, some deviations from this linear trend were detected.

  16. The toxicity of commercial jet oils.

    PubMed

    Winder, Chris; Balouet, Jean-Christophe

    2002-06-01

    Jet oils are specialized synthetic oils used in high-performance jet engines. They have an appreciable hazard due to toxic ingredients, but are safe in use provided that maintenance personnel follow appropriate safety precautions and the oil stays in the engine. Aircraft engines that leak oil may expose others to the oils through uncontrolled exposure. Airplanes that use engines as a source of bleed air for cabin pressurization may have this source contaminated by the oil if an engine leaks. Examination of the ingredients of the oil indicates that at least two ingredients are hazardous: N-phenyl-1-naphthylamine (a skin sensitizer) and tricresyl phosphate (a neurotoxicant, if ortho-cresyl isomers are present). Publicly available information such as labels and MSDS understates the hazards of such ingredients and in the case of ortho-cresyl phosphates by several orders of magnitude.

  17. Anti-dandruff Hair Tonic Containing Lemongrass (Cymbopogon flexuosus) Oil.

    PubMed

    Chaisripipat, Wannee; Lourith, Nattaya; Kanlayavattanakul, Mayuree

    2015-01-01

    Natural remedies for treating dandruff are becoming popular. A randomized, double-blind, placebo-controlled, split-head efficacy evaluation was conducted 30 Thai volunteers aged 20-60 years experiencing dandruff measured at level 3 on D-Squame® scale. An easy to use hair tonic containing essential oil of lemongrass (Cymbopogon flexuosus) active against lipophilic yeasts was developed and then evaluated for efficacy and preference. The base formulation with the significantly highest preference (p < 0.05) was stowed with the oil at 5, 10 or 15%. Subjects applied the formulation twice a day, and an efficacy assessment with D-Squame® scale was conducted on days 7 and 14 of application. The application of lemongrass oil hair tonics with 5, 10, or 15% reduced dandruff significant (p < 0.005) at day 7 (33, 75, and 51%) and increased the effect even more (p < 0.005) at day 14 (52, 81, and 74%). The hair tonic formulation with 10% of lemongrass oil seems to be the most effective preparation. © 2015 S. Karger GmbH, Freiburg.

  18. How to Attain an Ultralow Interfacial Tension and a Three-Phase Behavior with a Surfactant Formulation for Enhanced Oil Recovery: A Review. Part 2. Performance Improvement Trends from Winsor's Premise to Currently Proposed Inter- and Intra-Molecular Mixtures.

    PubMed

    Salager, Jean-Louis; Forgiarini, Ana M; Márquez, Laura; Manchego, Lisbeth; Bullón, Johnny

    2013-01-01

    The minimum interfacial tension occurrence along a formulation scan at the so-called optimum formulation is discussed to be related to the interfacial curvature. The attained minimum tension is inversely proportional to the domain size of the bicontinuous microemulsion and to the interfacial layer rigidity, but no accurate prediction is available. The data from a very simple ternary system made of pure products accurately follows the correlation for optimum formulation, and exhibit a linear relationship between the performance index as the logarithm of the minimum tension at optimum, and the formulation variables. This relation is probably too simple when the number of variables is increased as in practical cases. The review of published data for more realistic systems proposed for enhanced oil recovery over the past 30 years indicates a general guidelines following Winsor's basic studies concerning the surfactant-oil-water interfacial interactions. It is well known that the major performance benefits are achieved by blending amphiphilic species at the interface as intermolecular or intramolecular mixtures, sometimes in extremely complex formulations. The complexity is such that a good knowledge of the possible trends and an experienced practical know-how to avoid trial and error are important for the practitioner in enhanced oil recovery.

  19. The Use of D-Optimal Mixture Design in Optimising Okara Soap Formulation for Stratum Corneum Application

    PubMed Central

    Borhan, Farrah Payyadhah; Abd Gani, Siti Salwa; Shamsuddin, Rosnah

    2014-01-01

    Okara, soybean waste from tofu and soymilk production, was utilised as a natural antioxidant in soap formulation for stratum corneum application. D-optimal mixture design was employed to investigate the influence of the main compositions of okara soap containing different fatty acid and oils (virgin coconut oil A (24–28% w/w), olive oil B (15–20% w/w), palm oil C (6–10% w/w), castor oil D (15–20% w/w), cocoa butter E (6–10% w/w), and okara F (2–7% w/w)) by saponification process on the response hardness of the soap. The experimental data were utilized to carry out analysis of variance (ANOVA) and to develop a polynomial regression model for okara soap hardness in terms of the six design factors considered in this study. Results revealed that the best mixture was the formulation that included 26.537% A, 19.999% B, 9.998% C, 16.241% D, 7.633% E, and 7.000% F. The results proved that the difference in the level of fatty acid and oils in the formulation significantly affects the hardness of soap. Depending on the desirable level of those six variables, creation of okara based soap with desirable properties better than those of commercial ones is possible. PMID:25548777

  20. [Effectiveness of antimicrobial formulations for acne based on orange (Citrus sinensis) and sweet basil (Ocimum basilicum L) essential oils].

    PubMed

    Matiz, Germán; Osorio, María R; Camacho, Francisco; Atencia, Maira; Herazo, Jennifer

    2012-01-01

    Currently, the antimicrobial resistance has developed in bacterial strains involved in the development of acne. Therefore, alternatives to antibiotic treatment have become necessary. Gel formulations were designed based on essential oils and acetic acid, and their effectiveness was evaluated in patients affected by acne. Masked simple experimental study of three gel formulations on 28 volunteer patients, separated in four groups of seven patients. Treatments were applied daily for eight weeks and consisted of (1) antibacterial (essential oils), (2) keratolytic medication (3) essential oils mixed with acetic acetic, and (4) kerolytic medication with acetic acid. Weekly checks were conducted to evaluate patient improvement. All groups reported an improvement of the acne condition, which ranged between 43% and 75% clearance of lesions. Evidence of treatment disappeared within minutes, showing little discomfort or side effects after application. The essential oil formulations were chemically and physically stable during application of treatments. This was demonstrated by gas chromatography, where no evidence no change neither the composition profiles of essential oils nor in acetic acid. The results were ranked good to excellent, particularly for the acetic acid mixture, which achieved improvements of 75%. This appeared to be a result of their joint antiseptic and keratolytic activity. Side effects (burning and redness) disappeared within a few minutes of completing the application, therefore, did not interfere with adherence to treatment.

  1. Tests of oil scraper piston ring and piston fitted with oil drain holes

    NASA Technical Reports Server (NTRS)

    Mcdewell, H S

    1922-01-01

    Tests were conducted to determine whether or not a properly located and properly designed oil scraper piston ring, installed on a piston provided with oil drain holes of sufficient area, would prevent the excessive oiling of the Liberty engine, particularly with the engine running at idling speed with full oil pressure. Results showed that excessive oiling was in fact prevented. It is strongly recommended that scraper rings and pistons be adopted for aircraft engines.

  2. Optimum oil production planning using infeasibility driven evolutionary algorithm.

    PubMed

    Singh, Hemant Kumar; Ray, Tapabrata; Sarker, Ruhul

    2013-01-01

    In this paper, we discuss a practical oil production planning optimization problem. For oil wells with insufficient reservoir pressure, gas is usually injected to artificially lift oil, a practice commonly referred to as enhanced oil recovery (EOR). The total gas that can be used for oil extraction is constrained by daily availability limits. The oil extracted from each well is known to be a nonlinear function of the gas injected into the well and varies between wells. The problem is to identify the optimal amount of gas that needs to be injected into each well to maximize the amount of oil extracted subject to the constraint on the total daily gas availability. The problem has long been of practical interest to all major oil exploration companies as it has the potential to derive large financial benefit. In this paper, an infeasibility driven evolutionary algorithm is used to solve a 56 well reservoir problem which demonstrates its efficiency in solving constrained optimization problems. Furthermore, a multi-objective formulation of the problem is posed and solved using a number of algorithms, which eliminates the need for solving the (single objective) problem on a regular basis. Lastly, a modified single objective formulation of the problem is also proposed, which aims to maximize the profit instead of the quantity of oil. It is shown that even with a lesser amount of oil extracted, more economic benefits can be achieved through the modified formulation.

  3. Development of biodegradable PLGA nanoparticles surface engineered with hyaluronic acid for targeted delivery of paclitaxel to triple negative breast cancer cells.

    PubMed

    Cerqueira, Brenda Brenner S; Lasham, Annette; Shelling, Andrew N; Al-Kassas, Raida

    2017-07-01

    This study aimed at development of poly (lactic-co-glycolic acid) (PLGA) nanoparticles embedded with paclitaxel and coated with hyaluronic acid (HA-PTX-PLGA) to actively target the drug to a triple negative breast cancer cells. Nanoparticles were successfully fabricated using a modified oil-in-water emulsion method. The effect of various formulations parameters on the physicochemical properties of the nanoparticles was investigated. SEM imaging confirmed the spherical shape and nano-scale size of the nanoparticles. A sustained drug release profile was obtained and enhanced PTX cytotoxicity was observed when MDA-MB-231 cells were incubated with the HA-PTX-PLGA formulation compared to cells incubated with the non-HA coated nanoparticles. Moreover, HA-PLGA nanoparticles exhibited improved cellular uptake, based on a possible receptor mediated endocytosis due to interaction of HA with CD44 receptors when compared to non-coated PLGA nanoparticles. The non-haemolytic potential of the nanoparticles indicated the suitability of the developed formulation for intravenous administration. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Capacitive sensor for engine oil deterioration measurement

    NASA Astrophysics Data System (ADS)

    Shinde, Harish; Bewoor, Anand

    2018-04-01

    A simple system or mechanism for engine Oil (lubricating oil) deterioration monitoring is a need. As engine oil is an important element in I C engines and it is exposed to various strains depending on the operating conditions. If it becomes contaminated with dirt and metal particles, it can become too thick or thin and loses its protective properties, leads to unwanted friction. In turn, to avoid an engine failure, the oil must be changed before it loses its protective properties, which may be harmful to engine which deteriorates vehicle performance. At the same time, changing the lubricant too early, cause inefficient use of already depleting resources, also unwanted impact on the environment and economic reasons. Hence, it will be always helpful to know the quality of the oil under use. With this objective, the research work had been undertaken to develop a simple capacitance sensor for quantification of the quality of oil under use. One of the investigated parameter to quantify oil degradation is Viscosity (as per standard testing procedure: DIN 51562-1). In this research work, an alternative method proposed which analyzing change in capacitance of oil, to quantify the quality of oil underuse and compared to a conventional standard method. The experimental results reported in this paper shows trend for the same. Engine oil of grade SAE 15W40 used for light-duty vehicle, vans and passenger cars is used for experimentation. Suggested method can form a base for further research to develop a cost-effective method for indicating the time to change in engine oil quality have been presented.

  5. Low-fat frankfurters formulated with a healthier lipid combination as functional ingredient: microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation.

    PubMed

    Delgado-Pando, Gonzalo; Cofrades, Susana; Ruiz-Capillas, Claudia; Solas, Maria Teresa; Triki, Mehdi; Jiménez-Colmenero, Francisco

    2011-09-01

    Oil (healthier lipid combination of olive, linseed and fish oils)-in-water emulsions stabilized with different protein systems (prepared with sodium caseinate (SC), soy protein isolate (SPI), and microbial transglutaminase (MTG)) were used as pork backfat replacers in low-fat frankfurters. Microstructure, lipid oxidation, nitrite content, microbiological changes and biogenic amine formation of frankfurters were analyzed and found to be affected by the type of oil-in-water emulsion and by chilling storage (2° C, 41 days). Although the lipid oxidation levels attained were low, replacement of animal fat by healthier oil combinations in frankfurter formulation did promote a slight increase in lipid oxidation. Residual nitrite was affected (P < 0.05) by formulation and storage. Only 51-61% of the added nitrite was detectable in the product after processing and 17-46% at the end of storage. The microbial population was low in all formulations during chilling storage. Spermine was the most abundant amine (19-20 mg/kg), but similar in level to all samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Physical and chemical stability of nanostructured lipid drug carriers (NLC) based on natural lipids from Baikal region (Siberia, Russia).

    PubMed

    Averina, E S; Müller, R H; Popov, D V; Radnaeva, L D

    2011-05-01

    At the turn of the millennium, a new generation of lipid nanoparticles for pharmacology was developed, nanostructured lipid carriers (NLC). The features of NLC structure which allow the inclusion of natural biologically active lipids in the NLC matrix open a wide prospect for the creation of high performance drug carriers. In this study NLC formulations were developed based on natural lipids from the Siberia region (Russia): fish oil from Lake Baikal fish; polyunsaturated fatty acid fractions and monounsaturated and saturated fatty acid fractions from fish oil and Siberian pine seed oil. Formulation parameters of NLC such as as type of surfactant and storage conditions were evaluated. The data obtained indicated high physical stability of NLC formulated on the basis of pure fish oil stabilized by Tween 80 and NLC formulated on the basis of free fatty acids stabilized by Poloxamer 188. The good chemical stability of the lipid matrix and the high concentrations of the biologically active polyunsaturated fatty acids in the NLC developed open wide prospects for their use in pharmaceutics and cosmetics.

  7. 14 CFR 23.1011 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... General. (a) For oil systems and components that have been approved under the engine airworthiness...) Each engine must have an independent oil system that can supply it with an appropriate quantity of oil... the maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  8. 14 CFR 23.1011 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... General. (a) For oil systems and components that have been approved under the engine airworthiness...) Each engine must have an independent oil system that can supply it with an appropriate quantity of oil... the maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  9. 14 CFR 23.1011 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... General. (a) For oil systems and components that have been approved under the engine airworthiness...) Each engine must have an independent oil system that can supply it with an appropriate quantity of oil... the maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  10. 14 CFR 23.1011 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... General. (a) For oil systems and components that have been approved under the engine airworthiness...) Each engine must have an independent oil system that can supply it with an appropriate quantity of oil... the maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  11. 14 CFR 23.1011 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... General. (a) For oil systems and components that have been approved under the engine airworthiness...) Each engine must have an independent oil system that can supply it with an appropriate quantity of oil... the maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure...

  12. Effect of vegetable oils on fatty acid composition and cholesterol content of chicken frankfurters

    NASA Astrophysics Data System (ADS)

    Belichovska, D.; Pejkovski, Z.; Belichovska, K.; Uzunoska, Z.; Silovska-Nikolova, A.

    2017-09-01

    To study the effect of pork adipose tissue substitution with vegetable oils in chicken frankfurters, six frankfurter formulations were produced: control; with pork backfat; with olive oil; with rapeseed oil; with sunflower oil; with palm oil, and; with a mixture of 12% rapeseed oil and 8% palm oil. Fatty acid composition and cholesterol content and some oxides thereof were determined in the final products. The use of vegetable oils resulted in improvement of the fatty acid composition and nutritional of frankfurters. Frankfurters with vegetable oils contained significantly less cholesterol and some of its oxides, compared to the frankfurters with pork fat. The formulation with palm oil had the least favourable fatty acid composition. The use of 12% rapeseed oil improved the ratio of fatty acids in frankfurters with a mixture of rapeseed and palm oils. Complete pork fat replacement with vegetable oils in chicken frankfurter production is technologically possible. The mixture of 12% rapeseed oil and 8% palm oil is a good alternative to pork fat from health aspects. Further research is needed to find the most appropriate mixture of vegetable oils, which will produce frankfurters with good sensory characteristics, a more desirable fatty acid ratio and high nutritional value.

  13. Compression-ignition engine performance with undoped and doped fuel oils and alcohol mixtures

    NASA Technical Reports Server (NTRS)

    Moore, Charles S; Foster, Hampton H

    1939-01-01

    Several fuel oils, doped fuel oils, and mixtures of alcohol and fuel oil were tested in a high-speed, single-cylinder, compression-ignition engine to determine power output, fuel consumption, and ignition and combustion characteristics. Fuel oils or doped fuel oils of high octane number had shorter ignition lags, lower rates of pressure rise, and gave smoother engine operation than fuel oils or doped fuel oils of low octane number. Higher engine rotative speeds and boost pressures resulted in smoother engine operation and permitted the use of fuel oils of relatively low octane number. Although the addition of a dope to a fuel oil decreased the ignition lag and the rate of pressure rise, the ensuing rate of combustion was somewhat slower than for the undoped fuel oil so that the effectiveness of combustion was practically unchanged. Alcohol used as an auxiliary fuel, either as a mixture or by separate injection, increased the rates of pressure rise and induced roughness. In general, the power output decreased as the proportion of alcohol increased and, below maximum power, varied with the heating value of the total fuel charge.

  14. Improvement in bioavailability of transdermally applied flurbiprofen using tulsi (Ocimum sanctum) and turpentine oil.

    PubMed

    Charoo, Naseem Ahmad; Shamsher, Areeg Anwer Ali; Kohli, Kanchan; Pillai, Krishna; Rahman, Ziyaur

    2008-09-01

    Penetration enhancing potential of tulsi and turpentine oil on transdermal delivery of flurbiprofen, a potent non-steroidal anti-inflammatory agent, was investigated. The transdermal permeation rate of flurbiprofen across the rat abdominal skin from binary solvent mixture composition of propylene glycol (PG):isopropyl alcohol (IPA) (30:70%, v/v) was 98.88 microg/cm(2)/h, significantly higher than other binary solvent mixtures. The corresponding steady state plasma concentration, 0.71 microg/ml, was much lower than required steady state plasma concentration of 3-5 microg/ml. Hence influence of tulsi and turpentine oil in the optimized binary solvent mixture along with the increased drug load on the flurbiprofen permeation was evaluated. The magnitude of the flux enhancement factor with turpentine oil and tulsi oil was 2.4 and 2.0 respectively at 5% (v/v) concentration beyond which there was no significant increase in the flux. Addition of 2% (w/v) hydroxypropyl methylcellulose (HPMC), as a thickening agent, resulted in desired consistency for the fabrication of patch with insignificant effect on permeation rate of flurbiprofen. The reservoir type of transdermal patch formulation, fabricated by encapsulating the flurbiprofen reservoir solution within a shallow compartment moulded from polyester backing film and microporous ethyl vinyl acetate membrane, did not modulate the skin permeation of flurbiprofen through rat skin in case of turpentine formulations whereas flux of formulations with tulsi oil was significantly altered. The influence of penetration enhancer and solvents on the anatomical structure of the rat skin was studied. Enhancement properties exhibited by turpentine oil and tulsi oil in optimized binary solvent mixture were superior as compared to solvent treated and normal control groups with negligible skin irritation. The fabricated transdermal patches were found to be stable. The bioavailability of flurbiprofen with reference to orally administered flurbiprofen in albino rats was found to increase by 2.97, 3.80 and 5.56 times with transdermal patch formulation without enhancer, tulsi and turpentine oil formulations, respectively. The results were confirmed by pharmacodynamic studies in rat edema inflammation model.

  15. Application of diethanolamide surfactant derived from palm oil to improve the performance of biopesticide from neem oil

    NASA Astrophysics Data System (ADS)

    Nisya, F. N.; Prijono, D.; Nurkania, A.

    2017-05-01

    The purpose of this research was to improve the performance of organic pesticide derived from neem plant using diethanolamide surfactant (DEA) derived from palm oil in controlling armyworms. The pesticide was made of neem oil. Neem oil is a neem plant product containing several active components, i.e. azadirachtin, salanin, nimbin, and meliantriol which act as a pesticide. DEA surfactant acts as a wetting, dispersing and spreading agent in neem oil pesticide. The neem oil was obtained by pressing neem seeds using a screw press machine and a hydraulic press machine. DEA surfactant was synthesized from methyl esters of palm oil olein. Pesticide formulation was conducted by stirring the ingredients by using a homogenizer at 5,000 rpm for 30 minutes. Surfactant was added to the formulation by up to 5%. Glycerol, as an emulsifier, was added in to pesticide formulations of neem oil. The efficacy of the pesticides in controlling armyworms fed soybean leaves in laboratory was measured at six concentrations, i.e. 10, 13, 16, 19, 22, and 25 ml/L. Results showed that the neem oil used in this study had a density of 0.91 g/cm3, viscosity of 58.94 cPoise, refractive index of 1.4695, surface tension of 40.69 dyne/cm, azadirachtin content of 343.82-1.604 ppm. Meanwhile, the azadirachtin content of neem seed cake was 242.20 ppm. It was also found that palmitic (31.4%) and oleic (22.5%) acids were the main fatty acids contained in neem oil. As the additive material used in neem oil in this study, diethanolamide surfactant had a pH of 10.6, density of 0.9930 g/cm3, viscosity of 708.20 cP, and surface tension of 25.37 dyne/cm. Results of CMC, contact angle, and droplet size analyzes showed that diethanolamide surfactant could be added into insecticide formulation by 5%. Results of LC tests showed that on Spodoptera litura the LC50 and LC95 values were 13 and 22 ml/L, respectively. Neem oil was found to inhibit the development of Spodoptera litura and its larval molting process.

  16. Microstructured bicontinuous phase formulations: their characterization and application in dermal and transdermal drug delivery.

    PubMed

    Lapteva, Maria; Kalia, Yogeshvar N

    2013-08-01

    The development of approaches to increase drug solubility and partitioning into the skin is an active area of research in topical and transdermal delivery. In addition to forming spherical aggregates, e.g., conventional oil in water or water in oil microemulsions, the combination of an oil, surfactant and water can create bicontinuous structures where the self-assembly properties of surfactants mean that the boundaries between oil and water are no longer random. This leads to the formation of specific microstructures whose intrinsic properties and interactions with the drug will determine the ability to formulate a given drug, its stability once formulated and its subsequent delivery. The review explores the relationship between the microstructure of biphasic formulations, present in microemulsions and liquid crystalline phases, and drug delivery into the skin. An overview of possible internal microstructures is followed by a summary of the methods used for structure characterization. The final section presents the work to-date and discusses the efficacy of such vehicles in enhancing dermal and transdermal delivery. The combination of water, surface agent and oil generates a broad range of three dimensional structures differing in both chemical and physical proprieties. Knowledge of the microstructure is important in understanding the behavior of a formulation and its effect on drug delivery into the skin. Microstructure complexity, interactions between the drug and the vehicle (i.e., location and mobility) and those between the vehicle and the skin are key determinants of drug delivery.

  17. Congener-specific analysis of polychlorinated naphthalenes (PCNs) in the major Chinese technical PCB formulation from a stored Chinese electrical capacitor.

    PubMed

    Huang, Jun; Yu, Gang; Yamauchi, Makoto; Matsumura, Toru; Yamazaki, Norimasa; Weber, Roland

    2015-10-01

    Impurity of polychlorinated naphthalenes (PCNs) in commercial polychlorinated biphenyl (PCB) formulations has been recognized as a relevant source of PCNs in the environment. Congener-specific analysis of most main PCB formulations has been accomplished previously, excluding the Chinese product. The insulating oil in a stored Chinese electric capacitor containing the major Chinese technical formulation "PCB3" was sampled and tested by isotope dilution technology using high-resolution gas chromatography coupled to high-resolution mass spectrometry (HRGC/HRMS). The detected concentration of PCNs in the Chinese PCB oil sample was 1,307.5 μg/g and therefore significantly higher than that reported in PCB formulations from other countries, as well as that in the transformer oil (ASKAREL Nr 1740) additionally tested in the present study for comparison. Based on the measurement, the total amount of PCNs in Chinese PCB3 oil is estimated to be 7.8 t, which would mean only 0.005 % of global production of PCNs of 150,000 t. The homolog profile is similar to those of PCN in Aroclor 1262 and Clophen A40, where the contributions from hexa-CNs and hepta-CNs are predominant and accounted for similar proportions. The Toxic Equivalent Quantity (TEQ) concentration of dioxin-like PCN congeners is 0.47 μg TEQ/g, with the dominant contributors of CN-73 and CN-66/67. This TEQ content from PCN is higher than that in most other PCB formulations with the exemption of the Russian Sovol formulation. The total TEQ in the historic 6,000 t of the Chinese PCB3 formulation is estimated to be 2.8 kg TEQ.

  18. Ex vivo Skin Permeation of Betulin from Water-in-Oil Foams.

    PubMed

    Färber, Anna; Daniels, Rolf

    2016-01-01

    Triterpenes of the outer bark of birch are known to improve wound healing. An oleogel with these triterpenes as active principle is approved by the European Medicines Agency. As foams can be applied without touching the skin, they might be an advantageous application form. A comparable wound-healing effect can be expected when the permeation flux of the triterpenes from different types of formulations, namely oleogels, water-in-oil emulsions and water-in-oil foams, is similar. The tested formulations were based on three lipids (medium-chain trigylcerides, sunflower oil and paraffin) which differ in their polarity and solvent power for the triterpenes. Infinite dose permeation experiments were performed using porcine skin which was injured by either tape stripping or skin grafting. The results showed that steady-state permeation flux and lag time depend clearly on the depth of the skin lesion. Moreover, it was substantially affected by the lipid used as basis for the different formulations. In contrast, the different formulation types showed a comparable permeation behaviour leading to the conclusion that all formulation types can be used alike for the treatment of wounds, and the results that have already been obtained with oleogels can be directly translated to the foam with its superior use properties. © 2016 S. Karger AG, Basel.

  19. Microbial desalination cell for enhanced biodegradation of waste engine oil using a novel bacterial strain Bacillus subtilis moh3.

    PubMed

    Sabina, K; Fayidh, Mohammed A; Archana, G; Sivarajan, M; Babuskin, S; Babu, P Azhagu Saravana; Radha, K Krishnan; Sukumar, M

    2014-01-01

    Microbial desalination cell (MDC) is a bioelectrochemical system developed recently from microbial fuel cells (MFCs), for producing green energy from organic wastes along with desalination of saltwater. MDC is proved to be a better performer than MFC in terms of power output and chemical oxygen demand removal, with desalination as an additional feature. This study investigates the application potential of MDC for integrated biodegradation of waste engine oil. This study showed, for the first time, that waste engine oil could be used as an organic substrate in MDC, achieving biodegradation of engine oil along with considerable desalination and power production. Utilization of these wastes in MDC can protect the environment from waste engine oil contamination. Indigenous oil-degrading bacteria were isolated and identified from engine oil contaminated sludge. Degradation of waste engine oil by these novel isolates was studied in batch cultures and optimized the growth conditions. The same cultures when used in MDC, gave enhanced biodegradation (70.1 +/- 0.5%) along with desalination (68.3 +/- 0.6%) and power production (3.1 +/- 0.3 mW/m2). Fourier transform-infrared spectroscopy and gas chromatography-mass spectrometry analyses were performed to characterize the degradation metabolites in the anolyte of MDC which clearly indicated the biodegradation of long chain, branched and cyclic hydrocarbons present in waste engine oil.

  20. Development of a Sustained Antiplaque and Antimicrobial Chewing Gum of a Decapeptide.

    PubMed

    Al-Ghananeem, Abeer M; Leung, Kai P; Faraj, Jabar; DeLuca, Patrick P

    2017-08-01

    The objective of this paper was to design a chewing gum formulation delivery system in situations where typical dental hygiene practice is not practical. Thus, an analog of decapeptide KSL (KSL-W), known to possess antimicrobial and antiplaque activity, was incorporated into a chewing gum formulation containing cetylpyridinium chloride (CPC). The effect of the excipients, xylitol, and peppermint oil on active ingredients in vitro release was also assessed. Gum formulations were prepared with different excipient parameters, including heating xylitol and gum base at 65 or 85°C, using ground and unground xylitol, and the addition of 1.5, 3, and 7% peppermint oil, to determine the effect of these changes on the in vitro release of KSL-W and CPC using a chewing machine. The antimicrobial and antiplaque activities of solutions released from chewed gum formulation as well as prepared standard solutions with different concentrations were tested against placebo. The optimal temperature to avoid crystallization of xylitol during preparation was 65°C. Grinding xylitol to 104.5 μm improved release of active ingredients as compared to commercially unground xylitol. Peppermint oil had opposite effects on release of KSL-W and CPC. Peppermint oil at 1.5% was determined to be suitable (91 and 88% of KSL-W and CPC released, respectively, after 40 min). The gum formulation illustrated good sustained release of KSL-W and CPC with antibacterial and antiplaque activities after chewing. An effective antimicrobial and antiplaque chewing gum formulation was developed. This formulation has the potential to overcome oral hygiene issues in those unable to follow normal dental protocols.

  1. U.S. Department of Energy FreedomCAR & Vehicle Technologies Program Oil Bypass Filter Technology Evaluation Fifth Quarterly Report October - December 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larry Zirker; James Francfort

    2004-02-01

    This Oil Bypass Filter Technology Evaluation quarterly report (October-December 2003) details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy's FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 324,091 test miles. Thismore » represents an avoidance of 27 oil changes, which equate to 952 quarts (238 gallons) of new oil not conserved and therefore, 952 quarts of waste oil not generated. To validate the extended oil-drain intervals, an oil-analysis regime is used to evaluate the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. The test fleet has been expanded to include six Chevrolet Tahoe sport utility vehicles with gasoline engines.« less

  2. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  3. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  4. 40 CFR 80.522 - May used motor oil be dispensed into diesel motor vehicles or nonroad diesel engines?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... diesel motor vehicles or nonroad diesel engines? 80.522 Section 80.522 Protection of Environment... vehicles or nonroad diesel engines? No person may introduce used motor oil, or used motor oil blended with... later nonroad diesel engines (not including locomotive or marine diesel engines), unless both of the...

  5. 14 CFR 27.1189 - Shutoff means.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...— (1) Lines, fittings, and components forming an intergral part of an engine; (2) For oil systems for which all components of the system, including oil tanks, are fireproof or located in areas not subject to engine fire conditions; and (3) For reciprocating engine installations only, engine oil system...

  6. Oil-Free Turbomachinery Team Passed Milestone on Path to the First Oil-Free Turbine Aircraft Engine

    NASA Technical Reports Server (NTRS)

    Bream, Bruce L.

    2002-01-01

    The Oil-Free Turbine Engine Technology Project team successfully demonstrated a foil-air bearing designed for the core rotor shaft of a turbine engine. The bearings were subjected to test conditions representative of the engine core environment through a combination of high speeds, sustained loads, and elevated temperatures. The operational test envelope was defined during conceptual design studies completed earlier this year by bearing manufacturer Mohawk Innovative Technologies and the turbine engine company Williams International. The prototype journal foil-air bearings were tested at the NASA Glenn Research Center. Glenn is working with Williams and Mohawk to create a revolution in turbomachinery by developing the world's first Oil-Free turbine aircraft engine. NASA's General Aviation Propulsion project and Williams International recently developed the FJX-2 turbofan engine that is being commercialized as the EJ-22. This core bearing milestone is a first step toward a future version of the EJ-22 that will take advantage of recent advances in foil-air bearings by eliminating the need for oil lubrication systems and rolling element bearings. Oil-Free technology can reduce engine weight by 15 percent and let engines operate at very high speeds, yielding power density improvements of 20 percent, and reducing engine maintenance costs. In addition, with NASA coating technology, engines can operate at temperatures up to 1200 F. Although the project is still a couple of years from a full engine test of the bearings, this milestone shows that the bearing design exceeds the expected environment, thus providing confidence that an Oil-Free turbine aircraft engine will be attained. The Oil-Free Turbomachinery Project is supported through the Aeropropulsion Base Research Program.

  7. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced...

  8. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced...

  9. 7 CFR 3201.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false 2-Cycle engine oils. 3201.25 Section 3201.25... Designated Items § 3201.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to provide lubrication, decreased spark plug fouling, reduced deposit formation, and/or reduced...

  10. Experimental investigation of the physical properties of medium and heavy oils, their vaporization and use in explosion engines. Part I

    NASA Technical Reports Server (NTRS)

    Heinlein, Fritz

    1926-01-01

    While little has been accomplished in obtaining an abundant supply of light oils from coal and heavy oils, progress has been made on engine design to make use of the heavier oils. Progress has been made in two different directions which are outlined in this paper: the group of engines with medium and high-pressure carburetion in the cylinder; and the group of engines with low-pressure carburetion of the heavy oils before reaching the cylinder.

  11. Internal combuston engine having separated cylinder head oil drains and crankcase ventilation passages

    DOEpatents

    Boggs, David Lee; Baraszu, Daniel James; Foulkes, David Mark; Gomes, Enio Goyannes

    1998-01-01

    An internal combustion engine includes separated oil drain-back and crankcase ventilation passages. The oil drain-back passages extend from the cylinder head to a position below the top level of oil in the engine's crankcase. The crankcase ventilation passages extend from passages formed in the main bearing bulkheads from positions above the oil level in the crankcase and ultimately through the cylinder head. Oil dams surrounding the uppermost portions of the crankcase ventilation passages prevent oil from running downwardly through the crankcase ventilation passages.

  12. Formulation and evaluation of flurbiprofen microemulsion.

    PubMed

    Ambade, K W; Jadhav, S L; Gambhire, M N; Kurmi, S D; Kadam, V J; Jadhav, K R

    2008-01-01

    The purpose of the present study was to investigate the microemulsion formulations for topical delivery of Flurbiprofen (FP) in order to by pass its gastrointestinal adverse effects. The pseudoternary phase diagrams were developed and various microemulsion formulations were prepared using Isopropyl Myristate (IPM), Ethyl Oleate (EO) as oils, Aerosol OT as surfactant and Sorbitan Monooleate as cosurfactant. The transdermal permeability of flurbiprofen from microemulsions containing IPM and EO as two different oil phases was analyzed using Keshary-Chien diffusion cell through excised rat skin. Flurbiprofen showed higher in vitro permeation from IPM as compared to that of from EO microemulsion. Thus microemulsion containing IPM as oil phase were selected for optimization. The optimization was carried out using 2(3) factorial design. The optimized formula was then subjected to in vivo anti-inflammatory study and the performance of flurbiprofen from optimized formulation was compared with that of gel cream. Flurbiprofen from optimized microemulsion formulation was found to be more effective as compared to gel cream in inhibiting the carrageenan induced rat paw edema at all time intervals. Histopathological investigation of rat skin revealed the safety of microemulsion formulation for topical use. Thus the present study indicates that, microemulsion can be a promising vehicle for the topical delivery of flurbiprofen.

  13. Experimental Investigations on Diesel engine using Methyl esters of Jatropha oil and fish oil

    NASA Astrophysics Data System (ADS)

    Karthikeyan, A.; Jayaprabakar, J.; Dude Williams, Richard

    2017-05-01

    The aim of the study is to use fish oil methyl ester (FME) and Jatropha oil methyl ester (JME) as a substitute for diesel in compression ignition engine. Experiments were conducted when the engine was fuelled with Diesel, Fish oil methyl ester and Jatropha oil methyl ester. The experiment covered a range of loads. An AVL smoke meter was used to measure the smoke density in HSU (Hatridge Smoke Unit). The exhaust emissions were measured using exhaust gas analyzer. High volume sampler was employed to measure the particulate matter in exhaust. The performance of the engine was evaluated in terms of brake specific fuel consumption, brake thermal efficiency. The combustion characteristics of the engine were studied in terms of cylinder pressure with respect to crank angle. The emissions of the engine were studied in terms of concentration of CO, NOx, particulate matter and smoke density. The results obtained for Fish oil methyl ester, Jatropha oil methyl ester, were compared with the results of diesel. Bio-diesel, which can be used as an alternate diesel fuel, is made from vegetable oil and animal fats. It is renewable, non-toxic and possesses low emission profiles.

  14. Investigation of Engine Oil-cooling Problem during Idle Conditions on Pusher Type Turbo Prop Aircraft

    NASA Astrophysics Data System (ADS)

    Premkumar, P. S.; Chakravarthy, S. Bhaskar; Jayagopal, S.; Radhakrishnan, P.; Pillai, S. Nadaraja; Senthil Kumar, C.

    2017-11-01

    Aircraft engines need a cooling system to keep the engine oil well within the temperature limits for continuous operation. The aircraft selected for this study is a typical pusher type Light Transport Aircraft (LTA) having twin turbo prop engines mounted at the aft end of the fuselage. Due to the pusher propeller configuration, effective oil cooling is a critical issue, especially during low-speed ground operations like engine idling and also in taxiing and initial climb. However, the possibility of utilizing the inflow induced by the propeller for oil cooling is the subject matter of investigation in this work. The oil cooler duct was designed to accommodate the required mass flow, estimated using the oil cooler performance graph. A series of experiments were carried out with and without oil cooler duct attached to the nacelle, in order to investigate the mass flow induced by the propeller and its adequacy to cool the engine oil. Experimental results show that the oil cooler positioned at roughly 25 % of the propeller radius from the nacelle center line leads to adequate cooling, without incorporating additional means. Furthermore, it is suggested to install a NACA scoop to minimize spillage drag by increasing pressure recovery.

  15. Hydrophobin-nanofibrillated cellulose stabilized emulsions for encapsulation and release of BCS class II drugs.

    PubMed

    Paukkonen, Heli; Ukkonen, Anni; Szilvay, Geza; Yliperttula, Marjo; Laaksonen, Timo

    2017-03-30

    The purpose of this study was to construct biopolymer-based oil-in-water emulsion formulations for encapsulation and release of poorly water soluble model compounds naproxen and ibuprofen. Class II hydrophobin protein HFBII from Trichoderma reesei was used as a surfactant to stabilize the oil/water interfaces of the emulsion droplets in the continuous aqueous phase. Nanofibrillated cellulose (NFC) was used as a viscosity modifier to further stabilize the emulsions and encapsulate protein coated oil droplets in NFC fiber network. The potential of both native and oxidized NFC were studied for this purpose. Various emulsion formulations were prepared and the abilities of different formulations to control the drug release rate of naproxen and ibuprofen, used as model compounds, were evaluated. The optimal formulation for sustained drug release consisted of 0.01% of drug, 0.1% HFBII, 0.15% oxidized NFC, 10% soybean oil and 90% water phase. By comparison, the use of native NFC in combination with HFBII resulted in an immediate drug release for both of the compounds. The results indicate that these NFC originated biopolymers are suitable for pharmaceutical emulsion formulations. The native and oxidized NFC grades can be used as emulsion stabilizers in sustained and immediate drug release applications. Furthermore, stabilization of the emulsions was achieved with low concentrations of both HFBII and NFC, which may be an advantage when compared to surfactant concentrations of conventional excipients traditionally used in pharmaceutical emulsion formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Characterization of a hydro-pneumatic suspension strut with gas-oil emulsion

    NASA Astrophysics Data System (ADS)

    Yin, Yuming; Rakheja, Subhash; Yang, Jue; Boileau, Paul-Emile

    2018-06-01

    The nonlinear stiffness and damping properties of a simple and low-cost design of a hydro-pneumatic suspension (HPS) strut that permits entrapment of gas into the hydraulic oil are characterized experimentally and analytically. The formulation of gas-oil emulsion is studied in the laboratory, and the variations in the bulk modulus and mass density of the emulsion are formulated as a function of the gas volume fraction. An analytical model of the HPS is formulated considering polytropic change in the gas state, seal friction, and the gas-oil emulsion flows through orifices and valves. The model is formulated considering one and two bleed orifices configurations of the strut. The measured data acquired under a nearly constant temperature are used to identify gas volume fraction of the emulsion, and friction and flow discharge coefficients as functions of the strut velocity and fluid pressure. The results suggested that single orifice configuration, owing to high fluid pressure, causes greater gas entrapment within the oil and thus significantly higher compressibility of the gas-oil emulsion. The model results obtained under different excitations in the 0.1-8 Hz frequency range showed reasonably good agreements with the measured stiffness and damping properties of the HPS strut. The results show that the variations in fluid compressibility and free gas volume cause increase in effective stiffness but considerable reduction in the damping in a highly nonlinear manner. Increasing the gas volume fraction resulted in substantial hysteresis in the force-deflection and force-velocity characteristics of the strut.

  17. Neem oil (Azadirachta indica) nanoemulsion--a potent larvicidal agent against Culex quinquefasciatus.

    PubMed

    Anjali, C H; Sharma, Yamini; Mukherjee, Amitava; Chandrasekaran, Natarajan

    2012-02-01

    Nanoemulsion composed of neem oil and non-ionic surfactant Tween 20, with a mean droplet size ranging from 31.03 to 251.43 nm, was formulated for various concentrations of the oil and surfactant. The larvicidal effect of the formulated neem oil nanoemulsion was checked against Culex quinquefasciatus. O/W emulsion was prepared using neem oil, Tween 20 and water. Nanoemulsion of 31.03 nm size was obtained at a 1:3 ratio of oil and surfactant, and it was found to be stable. The larger droplet size (251.43 nm) shifted to a smaller size of 31.03 nm with increase in the concentration of Tween 20. The viscosity of the nanoemulsion increased with increasing concentration of Tween 20. The lethal concentration (LC50) of the nanoemulsion against Cx. quinquefasciatus was checked for 1:0.30, 1:1.5 and 1:3 ratios of oil and surfactant respectively. The LC50 decreased with droplet size. The LC50 for the ratio 1:3 nanoemulsions was 11.75 mg L(-1). The formulated nanoemulsion of 31.03 nm size was found to be an effective larvicidal agent. This is the first time that a neem oil nanoemulsion of this droplet size has been reported. It may be a good choice as a potent and selective larvicide for Cx. quinquefasciatus. Copyright © 2011 Society of Chemical Industry.

  18. Comparative real-time study of cellular uptake of a formulated conjugated linolenic acid rich nano and conventional macro emulsions and their bioactivity in ex vivo models for parenteral applications.

    PubMed

    Paul, Debjyoti; Mukherjee, Sayani; Chakraborty, Rajarshi; Mallick, Sanjaya K; Dhar, Pubali

    2015-02-01

    The objective of the present study was to fabricate and monitor real-time, impact of a stable conjugated linolenic acid, α-eleostearic acid (ESA) rich nanoemulsion (NE) formulation (d < 200 nm) vis-à-vis ESA conventional emulsion (CE) system in ex vivo systems against both endogenous and exogenous reactive oxygen species (ROS). Accordingly, stable nanoemulsion formulation of ESA was engineered with the aid of bitter melon seed oil and non-toxic excipients. Morphology and particle size of the emulsion formulations were studied to validate stability. The real-time rapid uptake of the ESA NE and its increased prophylactic efficacy against induced endogenous and exogenous ROS in terms of cell viability and membrane integrity was evaluated flow-cytometrically and with fluorescence microscopic analysis of different primary cells. It was found that the fabricated non-toxic ESA NE had stable parameters (hydrodynamic mean diameter, particle size distribution and zeta potential) for over 12 weeks. Further, ESA NE at a concentration of ∼ 70 μM exhibited maximum efficacy in protecting cells from oxidative damage against both endogenous and exogenous ROS in lymphocytes and hepatocytes as compared to its corresponding presence in the CE formulation. This study provides a real-time empirical evidence on the influence of nano formulation in enhancing bioavailability and antioxidative properties of ESA. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Qualification Lab Testing on M1 Abrams Engine Oil Filters

    DTIC Science & Technology

    2016-11-01

    UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K. Rutta U.S...the originator. UNCLASSIFIED QUALIFICATION LAB TESTING ON M1 ABRAMS ENGINE OIL FILTERS FINAL REPORT TFLRF No. 483 by Kristi K...TITLE AND SUBTITLE Qualification Lab Testing on M1 Abrams Engine Oil Filter 5a. CONTRACT NUMBER W56HZV-15-C-0030 5b. GRANT NUMBER 5c. PROGRAM

  20. Concentration measurements of biodiesel in engine oil and in diesel fuel

    NASA Astrophysics Data System (ADS)

    Mäder, A.; Eskiner, M.; Burger, C.; Ruck, W.; Rossner, M.; Krahl, J.

    2012-05-01

    This work comprised a method for concentration measurements of biodiesel in engine oil as well as biodiesel in diesel fuel by a measurement of the permittivity of the mixture at a frequency range from 100 Hz to 20 kHz. For this purpose a special designed measurement cell with high sensitivity was designed. The results for the concentration measurements of biodiesel in the engine oil and diesel fuel shows linearity to the measurement cell signal for the concentration of biodiesel in the engine oil between 0.5% Vol. to 10% Vol. and for biodiesel in the diesel fuel between 0% Vol. to 100% Vol. The method to measure the concentration of biodiesel in the engine oil or the concentration of biodiesel in the diesel fuel is very accurate and low concentration of about 0.5% Vol. biodiesel in engine oil or in diesel fuel can be measured with high accuracy.

  1. Oil Bypass Filter Technology Evaluation - Third Quarterly Report, April--June 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laurence R. Zirker; James E. Francfort

    2003-08-01

    This Third Quarterly report details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight full-size, four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the PuraDYN Corporation. The reported engine lubricating oil-filtering capability (down to 0.1 microns) and additive package of the bypass filter system is intended to extend oil-drain intervals. To validate the extended oil-drain intervals, an oil-analysis regime monitors the presence of necessary additives inmore » the oil, detects undesirable contaminants and engine wear metals, and evaluates the fitness of the oil for continued service. The eight buses have accumulated 185,000 miles to date without any oil changes. The preliminary economic analysis suggests that the per bus payback point for the oil bypass filter technology should be between 108,000 miles when 74 gallons of oil use is avoided and 168,000 miles when 118 gallons of oil use is avoided. As discussed in the report, the variation in the payback point is dependant on the assumed cost of oil. In anticipation of also evaluating oil bypass systems on six Chevrolet Tahoe sport utility vehicles, the oil is being sampled on the six Tahoes to develop an oil characterization history for each engine.« less

  2. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...

  3. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...

  4. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...

  5. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...

  6. 40 CFR 91.308 - Lubricating oil and test fuel.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Lubricating oil and test fuel. 91.308....308 Lubricating oil and test fuel. (a) Lubricating oil. (1) Use the engine lubricating oil which meets... specifications of the lubricating oil used for the test. (2) For two-stroke engines, the fuel/oil mixture ratio...

  7. Performance and emission characteristics of a low heat rejection engine with different air gap thicknesses with Jatropha oil based bio-diesel.

    PubMed

    Murali Krishna, M V S; Sarita, G; Seshagiri Rao, V V R; Chowdary, R P; Ramana Reddy, Ch V

    2010-04-01

    The research work on alternate fuels has been the topic of wider interest in the context of depletion of fossil fuels and increasing of pollution levels of the engines with conventional fossil fuels. Alcohols and vegetable oils are considered to replace diesel fuels as they are renewable in nature. However, use of alcohols in internal combustion engines is limited in India, as these fuels are diverted to PetroChemical industries and hence much emphasis is given to the non-edible vegetable oils as alternate fuels in internal combustion engines. However, the drawbacks of low volatility and high viscosity associated with non-edible vegetable oils call for hot combustion chamber, provided by low heat rejection (LHR) diesel engine. Investigations are carried out on a LHR diesel engine with varied air gap thicknesses and injection pressures with jatropha oil based bio-diesel at normal temperature. Performance is improved with high degree of insulation with LHR engine with vegetable oil in comparison with conventional engine (CE) with pure diesel operation.

  8. Preparation, characterization and in vitro evaluation of microemulsion of raloxifene hydrochloride.

    PubMed

    Golmohammadzadeh, Shiva; Farhadian, Nafiseh; Biriaee, Amir; Dehghani, Faranak; Khameneh, Bahman

    2017-10-01

    Raloxifene hydrochloride (RLX) is a selective estrogen receptor modulator which is orally used for treatment of osteoporosis and prevention of breast cancer. The drug has low aqueous solubility and bioavailability. The aim of the present study is to formulate and characterize oil-in-water microemulsion systems for oral delivery of RLX. To enhance the drug aqueous solubility, microemulsion based on sesame oil was prepared. Sesame oil and Tween 80 were selected as the drug solvent oil and surfactant, respectively. In the first and second formulations, Edible glycerin and Span 80 were applied as co-surfactant, respectively. Pseudo-ternary phase diagrams showed that the best surfactant/co-surfactant ratios in the first and second formulations were 4:1 and 9:1, respectively. The particle size of all free drug-loaded and drug loaded samples were in the range of 31.25 ± 0.3 nm and 60.9 ± 0.1 nm, respectively. Electrical conductivity coefficient and refractive index of all microemulsion samples confirmed the formation of oil-in-water type of microemulsion. In vitro drug release profile showed that after 24 hours, 46% and 63% of the drug released through the first formulation in 0.1% (w/v) Tween 80 in distilled water as a release medium and phosphate buffer solution (PBS) at pH = 5.5, respectively. These values were changed to 57% and 98% for the second formulation. Results confirmed that the proposed microemulsion system containing RLX could improve and control the drug release profile in comparison to conventional dosage form.

  9. Fuel properties and engine performance of biodiesel from waste cooking oil collected in Dhaka city

    NASA Astrophysics Data System (ADS)

    Islam, R. B.; Islam, R.; Uddin, M. N.; Ehsan, Md.

    2016-07-01

    Waste cooking oil can be a potential source of biodiesel that has least effect on the edible oil consumption. Increasing number of hotel-restaurants and more active monitoring by health authorities have increased the generation of waste cooking oil significantly in densely populated cities like Dhaka. If not used or disposed properly, waste cooking oil itself may generate lot of environmental issues. In this work, waste cooking oils from different restaurants within Dhaka City were collected and some relevant properties of these waste oils were measured. Based on the samples studied one with the highest potential as biodiesel feed was identified and processed for engine performance. Standard trans-esterification process was used to produce biodiesel from the selected waste cooking oil. Biodiesel blends of B20 and B40 category were made and tested on a single cylinder direct injection diesel engine. Engine performance parameters included - bhp, bsfc and exhaust emission for rated and part load conditions. Results give a quantitative assessment of the potential of using biodiesel from waste cooking oil as fuel for diesel engines in Bangladesh.

  10. Bioremediation of engine oil polluted soil by the tropical white rot fungus, Lentinus squarrosulus Mont. (Singer).

    PubMed

    Adenipekun, Clementina O; Isikhuemhen, Omoanghe S

    2008-06-15

    This study was conducted to test the efficacy of an indigenous white rot fungus Lentinus squarrosulus in degrading engine oil in soil. Flasks containing sterilized garden soil (100 g) moistened with 75% distilled water (w/v) were contaminated with engine oil 1, 2.5, 5, 10, 20 and 40% w/w concentrations, inoculated with L. squarrosulus and incubated at room temperature for 90 days. Levels of organic matter, pH, total hydrocarbon and elemental content (C, Cu, Fe, K, N, Ni, Zn and available P) were determined post-fungal treatment. Results indicate that contaminated soils inoculated with L. squarrosulus had increased organic matter, carbon and available phosphorus, while the nitrogen and available potassium was reduced. A relatively high percentage degradation of Total Petroleum Hydrocarbon (TPH) was observed at 1% engine oil concentration (94.46%), which decreased to 64.05% TPH degradation at 40% engine oil contaminated soil after 90 days of incubation. The concentrations of Fe, Cu, Zn and Ni recovered from straw/fungal biomass complex increased with the increase of engine-oil contamination and bio-accumulation by the white-rot fungus. The improvement of nutrient content values as well as the bioaccumulation of heavy metals at all levels of engine oil concentrations tested through inoculations with L. squarrosulus is of importance for the bioremediation of engine-oil polluted soils.

  11. Hippophae rhamnoides oil-in-water (O/W) emulsion improves barrier function in healthy human subjects.

    PubMed

    Khan, Barkat Ali; Akhtar, Naveed

    2014-11-01

    This study aimed to investigate the changes in skin barrier function in human subjects, following long-term topical application of Hippophae rhamnoides oil-in-water (O/W) emulsion whereas effects were measred using non-invasive probes like tewameter and corneometer. For this purpose, two stable oil-in-water (O/W) emulsions were formulated one with 5% Hippophae rhamnoides extract and other without extracts. Thirteen healthy, male subjects with a mean age 27 ± 4.8 years were enrolled after their informed consents. The subjects were instructed to apply either the active formulation or the base formulation over 84 days while they were not known with the contents of either formulation. Biometrological measurements of skin hydration and transepidermal water loss (TEWL) were performed on both sides of the face in each volunteer at baseline and on day 07, 14, 21, 28, 42, 56, 70 and 84. The statistical analysis revealed formulation with 5% plant extract was superior compared to placebo (base formulation) as formulation with extract have shown extremely significant improvements in skin hydration (p=0.0003) and TEWL (p=0.0087) throughout treatment course. Moreover, a significant (p<0.05) correlation between the active formulation and the improvement of the skin barrier functions was observed. The active formulation found to be superior to that of placebo. Results affirmed that future studies are necessary to clinically evaluate the active formulation hence it can be proposed that Hippophae rhamnoides emulsion could be an alternative pharmacological tool in treating barrier compromised conditions of skin.

  12. A New Emulsion Liquid Membrane Based on a Palm Oil for the Extraction of Heavy Metals

    PubMed Central

    Björkegren, Sanna; Fassihi Karimi, Rose; Martinelli, Anna; Jayakumar, Natesan Subramanian; Hashim, Mohd Ali

    2015-01-01

    The extraction efficiency of hexavalent chromium, Cr(VI), from water has been investigated using a vegetable oil based emulsion liquid membrane (ELM) technique. The main purpose of this study was to create a novel ELM formulation by choosing a more environmentally friendly and non-toxic diluent such as palm oil. The membrane phase so formulated includes the mobile carrier tri-n-octylmethylammonium chloride (TOMAC), to facilitate the metal transport, and the hydrophilic surfactant Tween 80 to facilitate the dispersion of the ELM phase in the aqueous solution. Span 80 is used as surfactant and butanol as co-surfactant. Our results demonstrate that this novel ELM formulation, using the vegetable palm oil as diluent, is useful for the removal of hexavalent chromium with an efficiency of over 99% and is thus competitive with the already existing, yet less environmentally friendly, ELM formulations. This result was achieved with an optimal concentration of 0.1 M NaOH as stripping agent and an external phase pH of 0.5. Different water qualities have also been investigated showing that the type of water (deionized, distilled, or tap water) does not significantly influence the extraction rate. PMID:25915191

  13. The enhanced stability and biodegradation of dispersed crude oil droplets by Xanthan Gum as an additive of chemical dispersant.

    PubMed

    Wang, Aiqin; Li, Yiming; Yang, Xiaolong; Bao, Mutai; Cheng, Hua

    2017-05-15

    It is necessary for chemical dispersant to disperse oil effectively and maintain the stability of oil droplets. In this work, Xanthan Gum (XG) was used as an environmentally friendly additive in oil dispersant formulation to enhance the stability and biodegradation of dispersed crude oil droplets. When XG was used together with chemical dispersant 9500A, the dispersion effectiveness of crude oil in artificial sea water (ASW) and the oil droplet stability were both greatly enhanced. In the presence of XG, lower concentration of 9500A was needed to achieve the effective dispersion and stabilization. In addition to the enhancement of dispersion and stabilization, it was found that the biodegradation rate of crude oil by bacteria was dramatically enhanced when a mixture of 9500A and XG was used as a dispersant. Because of the low environmental impact of XG, this would be a potential way to formulate the dispersant with lower toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Comparative evaluation of the effect of sweet orange oil-diesel blend on performance and emissions of a multi-cylinder compression ignition engine

    NASA Astrophysics Data System (ADS)

    Rahman, S. M. Ashrafur; Hossain, F. M.; Van, Thuy Chu; Dowell, Ashley; Islam, M. A.; Rainey, Thomas J.; Ristovski, Zoran D.; Brown, Richard J.

    2017-06-01

    In 2014, global demand for essential oils was 165 kt and it is expected to grow 8.5% per annum up to 2022. Every year Australia produces approximately 1.5k tonnes of essential oils such as tea tree, orange, lavender, eucalyptus oil, etc. Usually essential oils come from non-fatty areas of plants such as the bark, roots, heartwood, leaves and the aromatic portions (flowers, fruits) of the plant. For example, orange oil is derived from orange peel using various extraction methods. Having similar properties to diesel, essential oils have become promising alternate fuels for diesel engines. The present study explores the opportunity of using sweet orange oil in a compression ignition engine. Blends of sweet orange oil-diesel (10% sweet orange oil, 90% diesel) along with neat diesel fuel were used to operate a six-cylinder diesel engine (5.9 litres, common rail, Euro-III, compression ratio 17.3:1). Some key fuel properties such as: viscosity, density, heating value, and surface tension are presented. Engine performance (brake specific fuel consumption) and emission parameters (CO, NOX, and Particulate Matter) were measured to evaluate running with the blends. The engine was operated at 1500 rpm (maximum torque condition) with different loads. The results from the property analysis showed that sweet orange oil-diesel blend exhibits lower density, viscosity and surface tension and slightly higher calorific value compared to neat diesel fuel. Also, from the engine test, the sweet orange oil-diesel blend exhibited slightly higher brake specific fuel consumption, particulate mass and particulate number; however, the blend reduced the brake specific CO emission slightly and brake specific NOX emission significantly compared to that of neat diesel.

  15. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Oil strainer or filter. 23.1019 Section 23....1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of the engine oil flows and which meets the following requirements: (1) Each oil...

  16. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Oil strainer or filter. 23.1019 Section 23....1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of the engine oil flows and which meets the following requirements: (1) Each oil...

  17. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Oil strainer or filter. 23.1019 Section 23....1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of the engine oil flows and which meets the following requirements: (1) Each oil...

  18. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Oil strainer or filter. 23.1019 Section 23....1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of the engine oil flows and which meets the following requirements: (1) Each oil...

  19. 14 CFR 23.1019 - Oil strainer or filter.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Oil strainer or filter. 23.1019 Section 23....1019 Oil strainer or filter. (a) Each turbine engine installation must incorporate an oil strainer or filter through which all of the engine oil flows and which meets the following requirements: (1) Each oil...

  20. Evaluation of sensor arrays for engine oils using artificial oil alteration

    NASA Astrophysics Data System (ADS)

    Sen, Sedat; Schneidhofer, Christoph; Dörr, Nicole; Vellekoop, Michael J.

    2011-06-01

    With respect to varying operation conditions, only sensors directly installed in the engine can detect the current oil condition hence enabling to get the right time for the oil change. Usually, only one parameter is not sufficient to obtain reliable information about the current oil condition. For this reason, appropriate sensor principles were evaluated for the design of sensor arrays for the measurement of critical lubricant parameters. In this contribution, we report on the development of a sensor array for engine oils using laboratory analyses of used engine oils for the correlation with sensor signals. The sensor array comprises the measurement of conductivity, permittivity, viscosity and temperature as well as oil corrosiveness as a consequence of acidification of the lubricant. As a key method, rapid evaluation of the sensors was done by short term simulation of entire oil change intervals based on artificial oil alteration. Thereby, the compatibility of the sensor array to the lubricant and the oil deterioration during the artificial alteration process was observed by the sensors and confirmed by additional laboratory analyses of oil samples take.

  1. Oil Bypass Filter Technology Evaluation, Fourth Quarterly Report, July--September 2003

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James E. Francfort; Larry Zirker

    2003-11-01

    This fourth Oil Bypass Filter Technology Evaluation report details the ongoing fleet evaluation of an oil bypass filter technology by the Idaho National Engineering and Environmental Laboratory (INEEL) for the U.S. Department of Energy’s FreedomCAR & Vehicle Technologies Program. Eight four-cycle diesel-engine buses used to transport INEEL employees on various routes have been equipped with oil bypass filter systems from the puraDYN Corporation. The bypass filters are reported to have engine oil filtering capability of <1 micron and a built-in additive package to facilitate extended oil-drain intervals. To date, the eight buses have accumulated 259,398 test miles. This represents anmore » avoidance of 21 oil changes, which equates to 740 quarts (185 gallons) of oil not used or disposed of. To validate the extended oil-drain intervals, an oil-analysis regime evaluates the fitness of the oil for continued service by monitoring the presence of necessary additives, undesirable contaminants, and engine-wear metals. For bus 73450, higher values of iron have been reported, but the wear rate ratio (parts per million of iron per thousand miles driven) has remained consistent. In anticipation of also evaluating oil bypass systems on six Chevrolet Tahoe sport utility vehicles, the oil is being sampled on each of the Tahoes to develop a characterization history or baseline for each engine.« less

  2. 7 CFR 2902.25 - 2-Cycle engine oils.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false 2-Cycle engine oils. 2902.25 Section 2902.25... Items § 2902.25 2-Cycle engine oils. (a) Definition. Lubricants designed for use in 2-cycle engines to... least 34 percent, which shall be based on the amount of qualifying biobased carbon in the product as a...

  3. Biodiesel from plant seed oils as an alternate fuel for compression ignition engines-a review.

    PubMed

    Vijayakumar, C; Ramesh, M; Murugesan, A; Panneerselvam, N; Subramaniam, D; Bharathiraja, M

    2016-12-01

    The modern scenario reveals that the world is facing energy crisis due to the dwindling sources of fossil fuels. Environment protection agencies are more concerned about the atmospheric pollution due to the burning of fossil fuels. Alternative fuel research is getting augmented because of the above reasons. Plant seed oils (vegetable oils) are cleaner, sustainable, and renewable. So, it can be the most suitable alternative fuel for compression ignition (CI) engines. This paper reviews the availability of different types of plant seed oils, several methods for production of biodiesel from vegetable oils, and its properties. The different types of oils considered in this review are cashew nut shell liquid (CNSL) oil, ginger oil, eucalyptus oil, rice bran oil, Calophyllum inophyllum, hazelnut oil, sesame oil, clove stem oil, sardine oil, honge oil, polanga oil, mahua oil, rubber seed oil, cotton seed oil, neem oil, jatropha oil, egunsi melon oil, shea butter, linseed oil, Mohr oil, sea lemon oil, pumpkin oil, tobacco seed oil, jojoba oil, and mustard oil. Several methods for production of biodiesel are transesterification, pre-treatment, pyrolysis, and water emulsion are discussed. The various fuel properties considered for review such as specific gravity, viscosity, calorific value, flash point, and fire point are presented. The review also portrays advantages, limitations, performance, and emission characteristics of engine using plant seed oil biodiesel are discussed. Finally, the modeling and optimization of engine for various biofuels with different input and output parameters using artificial neural network, response surface methodology, and Taguchi are included.

  4. Crystal clear transparent lipstick formulation based on solidified oils.

    PubMed

    De Clermont-Gallerande, H; Chavardes, V; Zastrow, L

    1999-12-01

    We have developed a lipstick, the stick of which looks totally transparent. The base, coloured or not, may contain high concentration of actives or fragrances. The present study examines the process of determination of oils and solidifying agents. The selecting criterion include visible spectroscopic measurements to quantify transparency of the formulated product. We have also validated the stick hardness through drop point and breakage measurements. After several investigations, we selected a mixture of oils and solidifying agents. The oil network obtained has been characterized through optical microscopy, transmission electronic microscopy, X-ray diffraction and differential scanning calorimetry. We can show that the final product we obtained is amorphous and its solidity can be explained by chemical bonds formation.

  5. Criterion for excipients screening in the development of nanoemulsion formulation of three anti-inflammatory drugs.

    PubMed

    Shakeel, Faiyaz

    2010-01-01

    The present study was undertaken for screening of different excipients in the development of nanoemulsion formulations of three anti-inflammatory drugs namely ketoprofen, celecoxib (CXB) and meloxicam. Based on solubility profiles of each drug in oil, Triacetin (ketoprofen and CXB) and Labrafil (meloxicam) were selected as the oil phase. Based on maximum solubilization potential of oil in different surfactants, Cremophor-EL (ketoprofen and CXB) and Tween-80 (meloxicam) were selected as surfactants. Based on maximum nanoemulsion region in the pseudoternary phase diagrams, Transcutol-HP was selected as cosurfactant for all three drugs. 1:1 (ketoprofen and CXB) and 2:1 (meloxicam) mass ratio of surfactant to cosurfactant was selected for selection of different nanoemulsions on the basis of maximum nanoemulsion region in the phase diagrams. All selected nanoemulsion formulations were found thermodynamically stable. Results of these studies showed that all excipients were properly optimized for the development of nanoemulsion formulation of ketoprofen, CXB and meloxicam.

  6. Physical and Oxidative Stability of Flaxseed Oil-in-Water Emulsions Fabricated from Sunflower Lecithins: Impact of Blending Lecithins with Different Phospholipid Profiles.

    PubMed

    Liang, Li; Chen, Fang; Wang, Xingguo; Jin, Qingzhe; Decker, Eric Andrew; McClements, David Julian

    2017-06-14

    There is great interest in the formulation of plant-based foods enriched with nutrients that promote health, such as polyunsaturated fatty acids. This study evaluated the impact of sunflower phospholipid type on the formation and stability of flaxseed oil-in-water emulsions. Two sunflower lecithins (Sunlipon 50 and 90) with different phosphatidylcholine (PC) levels (59 and 90%, respectively) were used in varying ratios to form emulsions. Emulsion droplet size, charge, appearance, microstructure, and oxidation were measured during storage at 55 °C in the dark. The physical and chemical stability increased as the PC content of the lecithin blends decreased. The oxidative stability of emulsions formulated using Sunlipon 50 was better than emulsions formulated using synthetic surfactants (SDS or Tween 20). The results are interpreted in terms of the impact of emulsifier type on the colloidal interactions between oil droplets and on the molecular interactions between pro-oxidants and oil droplet surfaces.

  7. SCOR based key success factors in cooking oil supply chain buyers perspective in Padang City

    NASA Astrophysics Data System (ADS)

    Zahara, Fatimah; Hadiguna, Rika Ampuh

    2017-11-01

    Supply chain of cooking oil is a network of companies from palm oil as raw material to retailers which work to create the value and deliver products into the end consumers. This paper is aimed to study key success factors based on consumer's perspective as the last stage in the supply chain. Consumers who are examined in this study are restaurants management or owners. Restaurant is the biggest consumption of cooking oil. The factors is studied based on Supply Chain Operation Reference (SCOR) version 10.0. Factors used are formulated based on the third-level metrics of SCOR Model. Factors are analyzed using factors analysis. This study found factors which become key success factors in managing supply chain of cooking oil encompass reliability, responsiveness and agility. Key success factors can be applied by governments as policy making and cooking oil companies as formulation of the distribution strategies.

  8. 14 CFR 25.1011 - General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1011 General. (a) Each engine must have... allowable oil consumption of the engine under the same conditions, plus a suitable margin to ensure system... for reciprocating engine powered airplanes, the following fuel/oil ratios may be used: (1) For...

  9. 14 CFR 25.1011 - General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1011 General. (a) Each engine must have... allowable oil consumption of the engine under the same conditions, plus a suitable margin to ensure system... for reciprocating engine powered airplanes, the following fuel/oil ratios may be used: (1) For...

  10. 14 CFR 25.1011 - General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1011 General. (a) Each engine must have... allowable oil consumption of the engine under the same conditions, plus a suitable margin to ensure system... for reciprocating engine powered airplanes, the following fuel/oil ratios may be used: (1) For...

  11. 14 CFR 25.1011 - General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1011 General. (a) Each engine must have... allowable oil consumption of the engine under the same conditions, plus a suitable margin to ensure system... for reciprocating engine powered airplanes, the following fuel/oil ratios may be used: (1) For...

  12. 14 CFR 25.1011 - General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Oil System § 25.1011 General. (a) Each engine must have... allowable oil consumption of the engine under the same conditions, plus a suitable margin to ensure system... for reciprocating engine powered airplanes, the following fuel/oil ratios may be used: (1) For...

  13. Evaluation of alternative Plutella xylostella control by two Isaria fumosorosea conidial formulations - oil-based formulation and wettable powder - combined with Bacillus thuringiensis.

    PubMed

    Nian, Xiao-Ge; He, Yu-Rong; Lu, Li-Hua; Zhao, Rui

    2015-12-01

    Entomopathogenic fungi are potential candidates for controlling the diamondback moth Plutella xylostella (L.) (Lepidoptera: Plutellidae). The control efficacy of two Isaria fumosorosea conidial formulations - wettable powder and oil-based formulation - combined with Bacillus thuringiensis against P. xylostella was tested. In the laboratory, the combined application of two pathogens increased larval mortality either in an additive or a synergistic way. P. xylostella larvae treated with oil-based formulation died sooner than larvae infected with wettable powder. For pot and field experiments, each formulation was applied alone or combined with B. thuringiensis 668 µg mL(-1) , and then larval mortality, pupation rate, adult emergence rate, female longevity and fecundity were recorded. In pot experiments there was no evidence of any antagonistic effects between the two pathogens. Combined application of B. thuringiensis and a high concentration of the two I. fumosorosea formulations resulted in higher mortality (84.4 and 86.2%) with minimum pupation (15.6 and 11.9%) and adult emergence rates (8.7 and 7.0%). Female longevity and fecundity were significantly reduced by the two formulations at high concentration compared with the control. Similar results were also observed in field experiments. The combined application of I. fumosorosea and B. thuringiensis is a promising alternative strategy for P. xylostella control. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  14. Hepatoprotective effects of a self-micro emulsifying drug delivery system containing Silybum marianum native seed oil against experimentally induced liver injury.

    PubMed

    Fehér, P; Ujhelyi, Z; Vecsernyés, M; Fenyvesi, F; Damache, G; Ardelean, A; Costache, M; Dinischiotu, A; Hermenean, A; Bácskay, I

    2015-04-01

    The main purpose of this study was to certify the effect of native silymarin oil (SM-oil) formulated in a self-microemulsifying drug delivery system (SMEDDS). The optimal formulation was 25% of SM-oil, 33.3 % of Cremophor RH40, 20% of Transcutol HP, 16.6% of Labrasol and 5% of Capryol 90. In this novel formulation the SM-oil was the active substance and the lipid part. The in vivo study examined the preventive effects of SMEDDS containing SM native seeds oil against carbon tetrachloride (CC14) induced hepatotoxicity in mice. Determination of alanine aminotransferase (ALT), aspartate aminotransferase (AST) levels and also liver histology investigations have been done. The liver antioxidant status was determined with the concentrations of superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione reductase (GR), and glutathione (GSH) hepatic lipid peroxidation was examined and expressed in terms of malondialdehyde (MDA) content. The plasma levels of AST and ALT significantly diminished by pre-treatment with 500 mg/kg and 1000 mg/kg SMEDDS. The pre-treatment with 500 mg/kg and 1000 mg/kg SMEDDS increased GSH level by about 6% respectively 24% compared to the CC14 group. Due to preventive administration of 500 mg/kg and 1000 mg/kg of SMEDDS in the intoxicated animals, MDA levels were reduced by 22% respectively 58%. Also, an insignificant rise by almost 17% and 19% in the animals treated with the both doses of SMEDDS could be noticed. It can be concluded that hepatotoxicity may be avoided by the oral application of our formulation.

  15. Protein aggregation and particle formation in prefilled glass syringes.

    PubMed

    Gerhardt, Alana; Mcgraw, Nicole R; Schwartz, Daniel K; Bee, Jared S; Carpenter, John F; Randolph, Theodore W

    2014-06-01

    The stability of therapeutic proteins formulated in prefilled syringes (PFS) may be negatively impacted by the exposure of protein molecules to silicone oil-water interfaces and air-water interfaces. In addition, agitation, such as that experienced during transportation, may increase the detrimental effects (i.e., protein aggregation and particle formation) of protein interactions with interfaces. In this study, surfactant-free formulations containing either a monoclonal antibody or lysozyme were incubated in PFS, where they were exposed to silicone oil-water interfaces (siliconized syringe walls), air-water interfaces (air bubbles), and agitation stress (occurring during end-over-end rotation). Using flow microscopy, particles (≥2 μm diameter) were detected under all conditions. The highest particle concentrations were found in agitated, siliconized syringes containing an air bubble. The particles formed in this condition consisted of silicone oil droplets and aggregated protein, as well as agglomerates of protein aggregates and silicone oil. We propose an interfacial mechanism of particle generation in PFS in which capillary forces at the three-phase (silicone oil-water-air) contact line remove silicone oil and gelled protein aggregates from the interface and transport them into the bulk. This mechanism explains the synergistic effects of silicone oil-water interfaces, air-water interfaces, and agitation in the generation of particles in protein formulations. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Confirmation of heavy metal ions in used lubricating oil from a passenger car using chelating self-assembled monolayer.

    PubMed

    Ko, Young Gun; Kim, Choong Hyun

    2006-09-01

    In order to prevent engine failure, the oil must be changed before it loses its protective properties. It is necessary to monitor the actual physical and chemical condition of the oil to reliably determine the optimum oil-change interval. Our study focuses on the condition of the lubricating oil in an operated car engine. Shear stress curves and viscosity curves as a function of the shear rate for fresh and used lubricating oil were examined. Metal nitrate was detected in the lubricating oil from the operated car engine through the use of a chelating self-assembled monolayer.

  17. FORMULATION AND STABILITY EVALUATION OF BAUHINIA VARIEGATA EXTRACT TOPICAL EMULSION.

    PubMed

    Mohsin, Sabeeh; Akhtar, Naveed

    2017-05-01

    This study presents the results for the development of water in oil (W/O) emulsion containing 2 % Bauhinia variegata (BV) extract with good antioxidant potential for cosmetic application. Different ratios of surfactant, oil and water were investigated to optimize the ratio of ingredients. It was found that emulsifier and oil4ratio were important in improving the stability of emulsion. The formulation having 2.5% Abil EM90, 12% liquid paraffin, 83.5% distilled water and 2% BV extract was found to be most stable. Stability of the formulation was further evaluated by characterizing for organoleptic, sedimentation, microscopic and rheological properties at a range of storage conditions for a period of 12 weeks. Experimental findings showed stable formulation behavior with respect to color change, liquefaction and phase separation. Centrifugation test was carried out to predict the long term stability..The rheological parameters were evaluated from Power Law and the flow index value less than 1 suggested non-Newtonian behavior of the W/O emulsion. The mean droplet size of the internal phase of freshly prepared formulation was 4.06 ? 1.99 pm that did not change significantly (p > 0.05) during the storage. The newly developed formulation exhibited promising attributes over long term storage and open opportunities for the topical delivery of natural antioxidants for cosmetic and pharmaceutical objectives.

  18. Adequacy of the Measurement Capability of Fatty Acid Compositions and Sterol Profiles to Determine Authenticity of Milk Fat Through Formulation of Adulterated Butter.

    PubMed

    Soha, Sahel; Mortazavian, Amir M; Piravi-Vanak, Zahra; Mohammadifar, Mohammad A; Sahafar, Hamed; Nanvazadeh, Sara

    2015-01-01

    In this research a comparison has been made between the fatty acid and sterol compositions of Iranian pure butter and three samples of adulterated butter. These samples were formulated using edible vegetable fats/oils with similar milk fat structures including palm olein, palm kernel and coconut oil to determine the authenticity of milk fat. The amount of vegetable fats/oils used in the formulation of the adulterated butter was 10%. The adulterated samples were formulated so that their fatty acid profiles were comforted with acceptable levels of pure butter as specified by the Iranian national standard. Based on the type of the vegetable oil/fat, fatty acids such as C4:0, C12:0 and C18:2 were used as indicators for the adulterated formulations. According to the standard method of ISO, the analysis was performed using gas chromatography. The cholesterol contents were 99.71% in pure butter (B1), and 97.61%, 98.48% and 97.98% of the total sterols in the samples adulterated with palm olein, palm kernel and coconut oil (B2, B3 and B4), respectively. Contents of the main phytosterol profiles such as β-sitosterol, stigmasterol and campesterol were also determined. The β-sitosterol content, as an indicator of phytosterols, was 0% in pure butter, and 1.81%, 1.67% and 2.16%, of the total sterols in the adulterated samples (B2, B3 and B4), respectively. Our findings indicate that fatty acid profiles are not an efficient indicator for butter authentication. Despite the increase in phytosterols and the reduction in cholesterol and with regard to the conformity of the sterol profiles of the edible fats/oils used in the formulations with Codex standards, lower cholesterol and higher phytosterols contents should have been observed. It can therefore be concluded that sterol measurement is insufficient to verify the authenticity of the milk fat in butter. It can therefore be concluded that sterol measurement is insufficient in verifying the authenticity of milk fat.

  19. Design of Training Systems. Computerization of the Educational Technology Assessment Model (ETAM). Volume 2

    DTIC Science & Technology

    1977-05-01

    444 EN 2 31043 TEST UNIT INJECTORS AND/OR FUEL INJECTION NOZZLES 445 EN 2 31044 MAINTENANCE OF FUEL OIL INJECTORS 446 EN 2 31049 PREVENTION OF...OPERATIONAL MAINTENANCE OF DIESEL ENGINES OPERATE INTERNAL COMBUSTION ENGINES JACKING GEAR ON INTERNAL COMBUSTION ENGINES CARRYOUT TURNING OVER OF MAIN...ENGINES ALIGN LUBRICATING OIL SYSTEM USE OF STANDBY LUBRICATING OIL PUMPS PURGE DIESEL ENGINE FUEL INJECTION SYSTEM ENTRIES TO MAIN PROPULSION

  20. Correlation between electrical, mechanical and chemical properties of fresh and used aircraft engine oils

    NASA Astrophysics Data System (ADS)

    Gajewski, Juliusz B.; Głogowski, Marek J.; Paszkowski, Maciej; Czarnik-Matusewicz, Bogusława

    2011-06-01

    In this paper the results are presented of measurements of electrical, mechanical and chemical properties of fresh and used aircraft engine oils. Oils were used in a four-stroke aircraft engine and their samples were taken after the 50-hour work of the engine. The resistivity, permittivity and viscosity of oils were measured as a function of temperature. Additionally, some measurements of the absorbance spectra and size of particles contained in the oils were carried out. The significant reduction in the resistivity of the used Total oil was observed. The relative permittivity of both used oils was slightly increased. The oil's relative viscosity depends on temperature of oil and given time that elapsed from the very first moment when the shear force was applied in a rheometer. The results obtained allowed one to identify more precisely the chemical and physico-chemical interactions occurring in the tested samples, as compared with a typical infrared spectroscopy.

  1. Chia (Salvia hispanica L) gel can be used as egg or oil replacer in cake formulations.

    PubMed

    Borneo, Rafael; Aguirre, Alicia; León, Alberto E

    2010-06-01

    This study determined the overall acceptability, sensory characteristics, functional properties, and nutrient content of cakes made using chia (Salvia hispanica L) gel as a replacement for oil or eggs. Chia gel was used to replace 25%, 50%, and 75% of oil or eggs in a control cake formulation. Seventy-five untrained panelists participated in rating cakes on a seven-point hedonic scale. Analysis of variance conducted on the sensory characteristics and overall acceptability indicated a statistically significant effect when replacing oil or eggs for color, taste, texture, and overall acceptability (P<0.05). Post hoc analysis (using Fisher's least significant difference method) indicated that the 25% chia gel cakes were not significantly different from the control for color, taste, texture, and overall acceptability. The 50% oil substituted (with chia gel) cake, compared to control, had 36 fewer kilocalories and 4 g less fat per 100-g portion. Cake weight was not affected by chia gel in the formulation, although cake volume was lower as the percentage of substitution increased. Symmetry was generally not affected. This study demonstrates that chia gel can replace as much as 25% of oil or eggs in cakes while yielding a more nutritious product with acceptable sensory characteristics. 2010 American Dietetic Association. Published by Elsevier Inc. All rights reserved.

  2. Rapidly disintegrating vagina retentive cream suppositories of progesterone: development, patient satisfaction and in vitro/in vivo studies.

    PubMed

    Bendas, Ehab Rasmy; Basalious, Emad B

    2016-01-01

    Our objective was to develop novel vagina retentive cream suppositories (VRCS) of progesterone having rapid disintegration and good vaginal retention. VRCS of progesterone were prepared using oil in water (o/w) emulsion of mineral oil or theobroma oil in hard fat and compared with conventional vaginal suppositories (CVS) prepared by hard fat. VRCS formulations were tested for content uniformity, disintegration, melting range, in vitro release and stability studies. The most stable formulation (VRCS I) was subjected to scaling-up manufacturing and patients' satisfaction test. The rapid disintegration, good retentive properties are applicable through the inclusion of emulsified theobroma oil rather than hydrophilic surfactant into the hard fat bases. The release profile of progesterone from VRCS I showed a biphasic pattern due to the formation of progesterone reservoir in the emulsified theobroma oil. All volunteers involved in patients' satisfaction test showed high satisfactory response to the tested formulation (VRCS). The in vivo pharmacokinetic study suggests that VRCS of progesterone provided higher rate and extent of absorption compared to hard fat based suppositories. Our results proposed that emulsified theobroma oil could be promising to solve the problems of poor patients' satisfaction and variability of drug absorption associated with hard fat suppositories.

  3. Curcumin phytosomal softgel formulation: Development, optimization and physicochemical characterization.

    PubMed

    Allam, Ahmed N; Komeil, Ibrahim A; Abdallah, Ossama Y

    2015-09-01

    Curcumin, a naturally occurring lipophilic molecule can exert multiple and diverse bioactivities. However, its limited aqueous solubility and extensive presystemic metabolism restrict its bioavailability. Curcumin phytosomes were prepared by a simple solvent evaporation method where free flowing powder was obtained in addition to a newly developed semisolid formulation to increase curcumin content in softgels. Phytosomal powder was characterized in terms of drug content and zeta potential. Thirteen different softgel formulations were developed using oils such as Miglyol 812, castor oil and oleic acid, a hydrophilic vehicle such as PEG 400 and bioactive surfactants such as Cremophor EL and KLS P 124. Selected formulations were characterized in terms of curcumin in vitro dissolution. TEM analysis revealed good stability and a spherical, self-closed structure of curcumin phytosomes in complex formulations. Stability studies of chosen formulations prepared using the hydrophilic vehicle revealed a stable curcumin dissolution pattern. In contrast, a dramatic decrease in curcumin dissolution was observed in case of phytosomes formulated in oily vehicles.

  4. Feeding deterrent and growth inhibitory activities of PONNEEM, a newly developed phytopesticidal formulation against Helicoverpa armigera (Hubner)

    PubMed Central

    Packiam, Soosaimanickam Maria; Baskar, Kathirvelu; Ignacimuthu, Savarimuthu

    2014-01-01

    Objective To assess the feeding deterrent, growth inhibitory and egg hatchability effects of PONNEEM on Helicoverpa armigera (H. armigera). Methods Five oil formulations were prepared at different ratios to assess the feeding deterrent, growth inhibitory and egg hatchability effects on H. armigera. Results Invariably all the newly formulated phytopesticidal oil formulations showed the feeding deterrent and growth inhibitory activities against H. armigera. The maximum feeding deterrent activity of 88.44% was observed at 15 µL/L concentration of PONNEEM followed by formulation A (74.54%). PONNEEM was found to be effective in growth inhibitory activities and egg hatchability at 10 µL/L concentration. It exhibited statistically significant feeding deterrent activity and growth inhibitory activity compared with all the other treatments. Conclusions PONNEEM was found to be effective phytopesticidal formulation to control the larval stage of H. armigera. This is the first report for the feeding deterrent activity of PONNEEM against H. armigera. This newly formulated phytopesticide was patented in India. PMID:25183105

  5. Preparation and characterization of spironolactone-loaded nano-emulsions for extemporaneous applications.

    PubMed

    Hallouard, François; Dollo, Gilles; Brandhonneur, Nolwenn; Grasset, Fabien; Corre, Pascal Le

    2015-01-15

    In neonates as well as in adults having swallowing difficulty, oral medication is given through a nasogastric tube making liquid formulations preferable. In this study, we present the high potential of nanometric emulsions formulated by spontaneous surfactant diffusion, as extemporaneous formulations of hydrophobic drug. Spironolactone used as hydrophobic drug model, was incorporated in oil before formulation at a concentration of 13.5mg/g oil. Then, all formulations were evaluated from pharmacotechnical and clinical standpoints, for their use in hospital or community pharmacy. The strength of this new liquid formulation lies on the simplicity, efficiency and reproducibility of their low energy process as on clinical aspects: high dose uniformity, facility to be administered through in nasogastric tube without any retention and a stability of 2 months at least compatible for an extemporaneous use. Moreover, this emulsion presented spironolactone content of 3.75 mg/ml among the most concentrated formulations published. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. 14 CFR 29.1189 - Shutoff means.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... engine; (2) For oil systems for turbine engine installations in which all components of the system, including oil tanks, are fireproof or located in areas not subject to engine fire conditions; or (3) For...) There must be means to shut off or otherwise prevent hazardous quantities of fuel, oil, de-icing fluid...

  7. Laundry Detergency of Solid Non-Particulate Soil Using Microemulsion-Based Formulation.

    PubMed

    Chanwattanakit, Jarussri; Chavadej, Sumaeth

    2018-02-01

    Laundry detergency of solid non-particulate soil on polyester and cotton was investigated using a microemulsion-based formulation, consisting of an anionic extended surfactant (C 12,13 -4PO-SO 4 Na) and sodium mono-and di-methyl naphthalene sulfonate (SMDNS) as the hydrophilic linker, to provide a Winsor Type III microemulsion with an ultralow interfacial tension (IFT). In this work, methyl palmitate (palmitic acid methyl ester) having a melting point around 30°C, was used as a model solid non-particulate (waxy) soil. A total surfactant concentration of 0.35 wt% of the selected formulation (4:0.65 weight ratio of C 12,13 -4PO-SO 4 Na:SMDNS) with 5.3 wt% NaCl was able to form a middle phase microemulsion at a high temperature (40°C),which provided the highest oil removal level with the lowest oil redeposition and the lowest IFT, and was much higher than that with a commercial detergent or de-ionized water. Most of the detached oil, whether in liquid or solid state, was in an unsolubilized form. Hence, the dispersion stability of the detached oil droplets or solidified oil particles that resulted from the surfactant adsorption played an important role in the oil redeposition. For an oily detergency, the lower the system IFT, the higher the oil removal whereas for a waxy (non-particulate) soil detergency, the lower the contact angle, the higher the solidified oil removal. For a liquefied oil, the detergency mechanism was roll up and emulsification with dispersion stability, while that for the waxy soil (solid oil) was the detachment by wettability with dispersion stability.

  8. Short term endurance results on a single cylinder diesel engine fueled with upgraded bio oil biodiesel emulsion

    NASA Astrophysics Data System (ADS)

    Prakash, R.; Murugan, S.

    2017-11-01

    This paper deliberates the endurance test outcomes obtained from a single cylinder, diesel engine fueled with an upgraded bio oil biodiesel emulsion. In this investigation a bio oil obtained by pyrolysis of woody biomass was upgraded with acid treatment. The resulted bio oil was emulsified with addition of biodiesel and suitable surfactant which is termed as ATJOE15. The main objective of the endurance test was to evaluate the wear characteristics of the engine components and lubrication oil properties, when the engine is fueled with the ATJOE15 emulsion. The photographic views taken before and after the end of 100 hrs endurance test, and visual inspection of the engine components, wear and carbon deposit results, are discussed in this paper.

  9. Oil cooling system for a gas turbine engine

    NASA Technical Reports Server (NTRS)

    Coffinberry, G. A.; Kast, H. B. (Inventor)

    1977-01-01

    A gas turbine engine fuel delivery and control system is provided with means to recirculate all fuel in excess of fuel control requirements back to aircraft fuel tank, thereby increasing the fuel pump heat sink and decreasing the pump temperature rise without the addition of valving other than that normally employed. A fuel/oil heat exchanger and associated circuitry is provided to maintain the hot engine oil in heat exchange relationship with the cool engine fuel. Where anti-icing of the fuel filter is required, means are provided to maintain the fuel temperature entering the filter at or above a minimum level to prevent freezing thereof. Fluid circuitry is provided to route hot engine oil through a plurality of heat exchangers disposed within the system to provide for selective cooling of the oil.

  10. Characterization of industrial wastes as raw materials for Emulsified Modified Bitumen (EMB) formulation

    NASA Astrophysics Data System (ADS)

    Najib Razali, Mohd; Isa, Syarifah Nur Ezatie Mohd; Salehan, Noor Adilah Md; Musa, Musfafikri; Aziz, Mohd Aizudin Abd; Nour, Abdurahman Hamid; Yunus, Rosli Mohd

    2018-04-01

    This study was conducted to characterize industrial wastes for formulation of emulsified modified bitumen (EMB) in relation to their physical characteristic and elemental composition. This analysis will give information either raw materials from industrial wastes can be used for EMB formulation. Bitumen is produced from crude oil that is extracted from the ground which categorizes the crude oil as one of the non-renewable form of product. A vast environmental problem issues arises in Malaysia cause by the excessive manufacturing activity that lead to a miss-management of industrial waste has leads to the used of industrial waste in the EMB formulation. Industrial waste such as polystyrene, polyethylene and used automotive oil can be used as alternative to formulate bitumen. Then a suitable emulsifier needs to be added to produce the final product which is EMB. The emulsifier will yield a charge depends on its properties to bind the oily bitumen with water. Physical characteristic studies were performed by thermogravimetric Analysis (TGA), differential scanning calorimetry (DSC), flash point test, density rest and moisture content test. Fourier Transform Infrared Spectroscopy (FTIR) analysis was measured to determine the material’s molecular composition and structure.

  11. Bacteria Provide Cleanup of Oil Spills, Wastewater

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Through Small Business Innovation Research (SBIR) contracts with Marshall Space Flight Center, Micro-Bac International Inc., of Round Rock, Texas, developed a phototrophic cell for water purification in space. Inside the cell: millions of photosynthetic bacteria. Micro-Bac proceeded to commercialize the bacterial formulation it developed for the SBIR project. The formulation is now used for the remediation of wastewater systems and waste from livestock farms and food manufacturers. Strains of the SBIR-derived bacteria also feature in microbial solutions that treat environmentally damaging oil spills, such as that resulting from the catastrophic 2010 Deepwater Horizon oil rig explosion in the Gulf of Mexico.

  12. NASA PS304 Lubricant Tested in World's First Commercial Oil-Free Gas Turbine

    NASA Technical Reports Server (NTRS)

    Weaver, Harold F.

    2003-01-01

    In a marriage of research and commercial technology, a 30-kW Oil-Free Capstone microturbine electrical generator unit has been installed and is serving as a test bed for long-term life-cycle testing of NASA-developed PS304 shaft coatings. The coatings are used to reduce friction and wear of the turbine engine s foil air bearings during startup and shut down when sliding occurs, prior to the formation of a lubricating air film. This testing supports NASA Glenn Research Center s effort to develop Oil-Free gas turbine aircraft propulsion systems, which will employ advanced foil air bearings and NASA s PS304 high temperature solid lubricant to replace the ball bearings and lubricating oil found in conventional engines. Glenn s Oil-Free Turbomachinery team s current project is the demonstration of an Oil-Free business jet engine. In anticipation of future flight certification of Oil-Free aircraft engines, long-term endurance and durability tests are being conducted in a relevant gas turbine environment using the Capstone microturbine engine. By operating the engine now, valuable performance data for PS304 shaft coatings and for industry s foil air bearings are being accumulated.

  13. Analysis and implications of aircraft disinsectants.

    PubMed

    van Netten, C

    2002-07-03

    Aircraft disinsection is required by various countries. In-flight spraying with a 2% phenothrin aerosol exposes passengers and crew directly. Residual spaying uses a permethrin emulsions in the absence of passengers and crew and results in dermal and oral exposures. Exposed passengers and crew often complain of, skin rashes, respiratory problems, tingling and numbness in fingertips and lips and burning eyes. A number of formulations were analyzed for their constituents using GLC-Mass. spec. Volatile organic compounds (VOCs) were found in all aerosol preparations including, ethyl benzene and xylene isomers along with phenothrin. Residual sprays contained, cis-, and trans-, permethrins, palmidrol, and occasionally naphthalene. Headspace analysis found methylene chloride and hexene derivatives but not the active ingredients. The known synergistic effects between organophosphates and pyrethrins, based on carboxyesterases inhibition, can be expected in the presence of Tricresylphosphates (TCPs), constituents found in jet engine oils and in some hydraulic fluids. During oil seal failure, the presence of TCP in the ventilation air could explain the increased sensitivity of some crew members and passengers to disinsectants.

  14. Reservoir characterization using core, well log, and seismic data and intelligent software

    NASA Astrophysics Data System (ADS)

    Soto Becerra, Rodolfo

    We have developed intelligent software, Oilfield Intelligence (OI), as an engineering tool to improve the characterization of oil and gas reservoirs. OI integrates neural networks and multivariate statistical analysis. It is composed of five main subsystems: data input, preprocessing, architecture design, graphics design, and inference engine modules. More than 1,200 lines of programming code as M-files using the language MATLAB been written. The degree of success of many oil and gas drilling, completion, and production activities depends upon the accuracy of the models used in a reservoir description. Neural networks have been applied for identification of nonlinear systems in almost all scientific fields of humankind. Solving reservoir characterization problems is no exception. Neural networks have a number of attractive features that can help to extract and recognize underlying patterns, structures, and relationships among data. However, before developing a neural network model, we must solve the problem of dimensionality such as determining dominant and irrelevant variables. We can apply principal components and factor analysis to reduce the dimensionality and help the neural networks formulate more realistic models. We validated OI by obtaining confident models in three different oil field problems: (1) A neural network in-situ stress model using lithology and gamma ray logs for the Travis Peak formation of east Texas, (2) A neural network permeability model using porosity and gamma ray and a neural network pseudo-gamma ray log model using 3D seismic attributes for the reservoir VLE 196 Lamar field located in Block V of south-central Lake Maracaibo (Venezuela), and (3) Neural network primary ultimate oil recovery (PRUR), initial waterflooding ultimate oil recovery (IWUR), and infill drilling ultimate oil recovery (IDUR) models using reservoir parameters for San Andres and Clearfork carbonate formations in west Texas. In all cases, we compared the results from the neural network models with the results from regression statistical and non-parametric approach models. The results show that it is possible to obtain the highest cross-correlation coefficient between predicted and actual target variables, and the lowest average absolute errors using the integrated techniques of multivariate statistical analysis and neural networks in our intelligent software.

  15. Antioxidant effects of supercritical fluid garlic extracts in sunflower oil.

    PubMed

    Bravi, Elisabetta; Perretti, Giuseppe; Falconi, Caterina; Marconi, Ombretta; Fantozzi, Paolo

    2017-01-01

    Lipid oxidation causes changes in quality attributes of vegetable oils. Synthetic antioxidants have been used to preserve oils; however, there is interest in replacing them with natural ones. Garlic and its thiosulfinate compound allicin are known for their antioxidant activities. This study assesses a novel formulation, the supercritical fluid extract of garlic, on sunflower oil oxidation during an accelerated shelf-life test. Three quality parameters (free acidity, peroxide values, and p-anisidine values) were evaluated in each of the six oil samples. The samples included sunflower oil alone, sunflower oil supplemented with BHT, the undiluted supercritical fluid extract of garlic, and sunflower oils supplemented with three levels of garlic extract. The oils were also investigated for their antioxidant properties using the DPPH and the FRAP assays. The results were compared with the effect of the synthetic BHT. Our results underlined that the highest level of garlic extract may be superior, or at least comparable, with BHT in preserving sunflower oil. The oxidative degradation of oily samples can be limited by using supercritical fluid extract of garlic as it is a safe and an effective natural antioxidant formulation. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  16. Investigations on the effect of chlorine in lubricating oil and the presence of a diesel oxidation catalyst on PCDD/F releases from an internal combustion engine.

    PubMed

    Dyke, Patrick H; Sutton, Mike; Wood, David; Marshall, Jonathan

    2007-04-01

    This paper reports on an intensive study into releases of polychlorinated dibenzo-p-dioxins (PCDD), polychlorinated furans (PCDF) and polychlorinated biphenyls (PCB) from a diesel engine and the analysis of PCDD/F and PCB in crankcase lubricating oil. Experimental conditions were set and carefully controlled in order to maximize the possible impact of, and our ability to measure the effect of, changes in the levels of chlorine in the lubricant. Emissions to air were measured using modified EPA methods following the principles of the European EN 1948 standards. A series of 40 experimental runs were completed using three reference lubricants formulated to have three levels of chlorine present as a residual component (at levels of 12, 131 and 259 mg kg(-1) or ppm). The engine was run with and without the diesel oxidation catalyst. All lubricants were realistic oils and the use of unrealistic additives or doping of components - particularly chlorine - in the fuel and lubricant was carefully avoided. Analysis of fuel and lubricant (before and after testing) samples required strenuous attention to achieve acceptable recoveries and showed non-detectable levels of PCB and PCDD/F at a detection limit of around 1.5 ng I-TEQ kg(-1) (ppt), indistinguishable from the laboratory blank. The testing demonstrated the need for extreme care to be taken in developing measurement methods that are sufficiently sensitive for measuring chlorine content of fluids and PCDD/F in oils, the latter being particularly challenging. Mean emissions of PCDD/F with the diesel oxidation catalyst in place were 23 pg I-TEQ l(-1) of fuel and with the diesel oxidation catalyst removed 97 pg I-TEQ l(-1) of fuel. The results of this testing showed that the emissions of PCDD/F were greatly reduced by the presence of a diesel oxidation catalyst in the exhaust, a finding that has not been explicitly tested in previous work. They also show that emissions from the engine were not controlled by the level of chlorine in the lubricant and that emissions did not change in response to a much greater step change in the total chlorine entering the combustion chamber due to a change in the level of chlorine in the fuel. Emissions when the engine was configured with a diesel oxidation catalyst showed a consistent pattern that appears to be unique in the experience of the authors.

  17. Ruthenium oxide ion selective thin-film electrodes for engine oil acidity monitoring

    NASA Astrophysics Data System (ADS)

    Maurya, D. K.; Sardarinejad, A.; Alameh, K.

    2015-06-01

    We demonstrate the concept of a low-cost, rugged, miniaturized ion selective electrode (ISE) comprising a thin film RuO2 on platinum sensing electrode deposited using RF magnetron sputtered in conjunction with an integrated Ag/AgCl and Ag reference electrodes for engine oil acidity monitoring. Model oil samples are produced by adding nitric acid into fresh fully synthetic engine oil and used for sensor evaluation. Experimental results show a linear potential-versus-acid-concentration response for nitric acid concentration between 0 (fresh oil) to 400 ppm, which demonstrate the accuracy of the RuO2 sensor in real-time operation, making it attractive for use in cars and industrial engines.

  18. Thiolated polymers: evaluation of their potential as dermoadhesive excipients.

    PubMed

    Grießinger, Julia Anita; Bonengel, Sonja; Partenhauser, Alexandra; Ijaz, Muhammad; Bernkop-Schnürch, Andreas

    2017-02-01

    The objective of this study was to evaluate and compare four different thiolated polymers regarding their dermoadhesive potential. Therefore, three hydrophilic polymers (poly(acrylic acid), Carbopol 971 and carboxymethylcellulose) and a lipophilic polymer (silicone oil) were chosen to generate thiolated polymers followed by characterization. The total work of adhesion (TWA) and the maximum detachment force (MDF) of formulations containing modified and unmodified polymers were investigated on skin obtained from pig ears using a tensile sandwich technique. The synthesis of thiolated polymers provided 564 µmol, 1079 µmol, 482 µmol and 217 µmol thiol groups per gram poly(acrylic acid), Carbopol 971, carboxymethylcellulose and silicone oil, respectively. Hydrogels containing poly(acrylic acid)-cysteine, Carbopol 971-cysteine, and carboxymethylcellulose-cysteamine exhibited a 6-fold, 25-fold and 9-fold prolonged adhesion on porcine skin than the hydrogel formulations prepared from the corresponding unmodified polymers, respectively. Furthermore, thiolation of silicone oil with thioglycolic acid led to a 5-fold improvement in adhesion compared to the unmodified silicone oil. A comparison between the four thiolated polymer formulations showed a clear correlation between the amount of coupled thiol groups and the TWA. According to these results thiomers might also be useful excipients to provide a prolonged dermal resistance time of various formulations.

  19. Differences in antioxidant activity between two rice protein concentrates in an oil-in-water emulsion

    USDA-ARS?s Scientific Manuscript database

    Two formulations of rice protein concentrates (RPC) derived from brown rice were evaluated for their antioxidant activity in bulk oil and in oil-in-water emulsions. Bulk oils were mixed with RPC and heated to 180°C, and total polar compounds and triacylglycerol polymerization were measured. Minimal ...

  20. Anti-wear additive derived from soybean oil and boron utilized in a gear oil formulation

    USDA-ARS?s Scientific Manuscript database

    The synthesis of lubricant additives based on boron and epoxidized soybean oil are presented. These additives are made from a simple patent pending method involving a ring opening reaction and addition of the borate. A pair of different additives were tested in soybean oil, polyalpha olefin basestoc...

  1. 40 CFR 446.10 - Applicability; description of the oil-base solvent wash paint subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS PAINT FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Paint Subcategory § 446.10 Applicability; description of the oil-base solvent wash... production of oil-base paint where the tank cleaning is performed using solvents. When a plant is subject to...

  2. How does oil type determine emulsion characteristics in concentrated Na-caseinate emulsions?

    PubMed

    Tan, Hui Lin; McGrath, Kathryn M

    2013-08-01

    Macroscopic properties and ensemble average diffusion of concentrated (dispersed phase 50-60 wt%) Na-caseinate-stabilised emulsions for three different oils (soybean oil, palm olein and tetradecane) were explored. On a volume fraction basis, pulsed gradient stimulated echo (PGSTE)-NMR data show that droplet dynamics for all three systems are similar within a region of the emulsion morphology diagram. The exact limits of the emulsion space depend however on which oil is considered. The reduced solubility of tetradecane in water, and Na-caseinate in tetradecane, result in the stabilisation of flocs during formulation. Floc formation is not observed when soybean oil or palm olein is used under identical emulsion formulation conditions. Linear rheology experiments provide indirect evidence that the local structure and the properties of the thin film interfacial domain of tetradecane emulsions vary from those of soybean oil and palm olein emulsions. Collectively these data indicate that protein/oil interactions within a system dominate over specific oil droplet structure and size distribution, which are similar in the three systems. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...

  4. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...

  5. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...

  6. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...

  7. 41 CFR 101-26.602-1 - Procurement of lubricating oils, greases, and gear lubricants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (nonaircraft) equipment and of aircraft engine oils on an annual program basis. Estimates of requirements for... program Due on or before Lubricating oils (nonaircraft) 4.1 November 15. Aircraft engine oils 4.2 June 15... lubricating oils, greases, and gear lubricants. 101-26.602-1 Section 101-26.602-1 Public Contracts and...

  8. Utilization of sulphurized palm oil as cutting fluid base oil for broaching process

    NASA Astrophysics Data System (ADS)

    Sukirno; Ningsih, Y. R.

    2017-03-01

    Broaching is one of the most severe metal cutting operation that requires the use of cutting fluids formulated with extreme pressure (EP) additives to minimize metal-to-metal contact and improve tool life. Enhancement of EP performances of the cutting fluids can be achieved by addition of sulphur containing compounds that will allow the formation of metal sulfide film that has low shear strength and good antiweld properties and acts as protection layer from wear and seizure. Most of the cutting fluids are mineral oil based. However, as regards to health and environmental issues, reseach on vegetable oil based cutting fluid have been increased recently. This paper reports a study on the sulphurization of palm oil derivatives and its usage as broaching oil. Sulphurization of the palm oil derivative was conducted via non-catalytic sulphurization using elemental sulphur at various composition and under heating of 150-160°C for 3 hr. Broaching oil was made by blending the sulphurized palm oil and additive packages. The performance parameters of the broaching oil that has been observed including load carrying capacity, wear scar diameter, corrosion protection, oxidative stability, and surface finish of workpiece. From this research, it was found that sulphurized FAME based broaching oil has excellent EP properties. The optimum formulation was obtained on composition of sulphurized FAME-mineral oil with 6% wt of sulphur. The result from the test showed that kinematic viscosity of sulphurized palm oil was about 25.3 cSt (at 40 °C), load carrying capacity was 400 kgf, and wear scar diameter was 0.407 mm. In addition, it can be concluded that the class of corrosion protection of modified palm oil was 1.b (slight tarnish category), oxidative stability at 160 °C was obtained for 0.11 hr, and the surface roughness of workpiece was about 0.0418-0.0579 μm. These performances are comparable to commercial broaching oil. By this result, it indicates that sulphurized palm oil is applicable for industrial cutting fluids formulation.

  9. Advances in biobased lubricant additive development

    USDA-ARS?s Scientific Manuscript database

    Lubricant formulations comprise two categories of ingredients: base oils and additives. Depending on its application, a formulation may contain one or more from each category. Additives are the most expensive ingredients of lubricant formulations and, for some applications, can comprise 25 to 40% w/...

  10. Oil Spill Detection and Modelling: Preliminary Results for the Cercal Accident

    NASA Astrophysics Data System (ADS)

    da Costa, R. T.; Azevedo, A.; da Silva, J. C. B.; Oliveira, A.

    2013-03-01

    Oil spill research has significantly increased mainly as a result of the severe consequences experienced from industry accidents. Oil spill models are currently able to simulate the processes that determine the fate of oil slicks, playing an important role in disaster prevention, control and mitigation, generating valuable information for decision makers and the population in general. On the other hand, satellite Synthetic Aperture Radar (SAR) imagery has demonstrated significant potential in accidental oil spill detection, when they are accurately differentiated from look-alikes. The combination of both tools can lead to breakthroughs, particularly in the development of Early Warning Systems (EWS). This paper presents a hindcast simulation of the oil slick resulting from the Motor Tanker (MT) Cercal oil spill, listed by the Portuguese Navy as one of the major oil spills in the Portuguese Atlantic Coast. The accident took place nearby Leix˜oes Harbour, North of the Douro River, Porto (Portugal) on the 2nd of October 1994. The oil slick was segmented from available European Remote Sensing (ERS) satellite SAR images, using an algorithm based on a simplified version of the K-means clustering formulation. The image-acquired information, added to the initial conditions and forcings, provided the necessary inputs for the oil spill model. Simulations were made considering the tri-dimensional hydrodynamics in a crossscale domain, from the interior of the Douro River Estuary to the open-ocean on the Iberian Atlantic shelf. Atmospheric forcings (from ECMWF - the European Centre for Medium-Range Weather Forecasts and NOAA - the National Oceanic and Atmospheric Administration), river forcings (from SNIRH - the Portuguese National Information System of the Hydric Resources) and tidal forcings (from LNEC - the National Laboratory for Civil Engineering), including baroclinic gradients (NOAA), were considered. The lack of data for validation purposes only allowed the use of the two-dimensional surface plume transport model VOILS [1] with the oil spreading formulation enabled. The remaining oil weathering processes (evaporation, emulsification, dispersion and dissolution in the water column) and shoreline retention were disregarded. The computational structure of the model is based on Eulerian-Lagrangian formulations, horizontal unstructured mesh discretization and it is soft-coupled with the tri-dimensional hydrodynamic model SELFE - Semi-Implicit Eulerian Lagrangian Finite Element [15] that uses hybrid sigma-Z coordinates in the vertical. The preliminary results of this hindcast simulation for the Cercal oil spill are presented and compared with available satellite SAR images. The forcings used play an important role in the final results. During the late stage spreading phases of the oil, about one month after the spill, the Douro River outflow is best seen in the SAR images. The morphology of the river outflow is discussed according to traditional coastal dynamics, and compared with model results. In addition to several interesting physical features that were identified, we report on the generation of Internal Solitary Waves (ISW) in the vicinity of the Douro River Plume (DRP). It is well known that trains of short-period internal waves can be generated by river plumes (such as the Columbia River). The internal structure of the observed internal waves (elevation waves or mode-2 versus mode-1 internal waves) is discussed based on the SAR signatures and available stratification. The present work has been conducted under an FCT - Fundaç ão para a Ciência e a Tecnologia / MCTES - Ministério da Ciência, Tecnologia e Ensino Superior (PIDDAC - Programa de Investimentos e Despesas de Desenvolvimento da Administraç ão Central) Portuguese funded project entitled PAC:MAN Pollution accidents in coastal areas: a Risk management system (PTDC/AACAMB/113469/2008).

  11. Laboratory observations of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Jenkins, Robert L.; Dalyander, P. Soupy; Penko, Allison; Long, Joseph W.

    2018-04-27

    Sand and oil agglomerates (SOAs) form when weathered oil reaches the surf zone and combines with suspended sediments. The presence of large SOAs in the form of thick mats (up to 10 centimeters [cm] in height and up to 10 square meters [m2] in area) and smaller SOAs, sometimes referred to as surface residual balls (SRBs), may lead to the re-oiling of beaches previously affected by an oil spill. A limited number of numerical modeling and field studies exist on the transport and dynamics of centimeter-scale SOAs and their interaction with the sea floor. Numerical models used to study SOAs have relied on shear-stress formulations to predict incipient motion. However, uncertainty exists as to the accuracy of applying these formulations, originally developed for sand grains in a uniformly sorted sediment bed, to larger, nonspherical SOAs. In the current effort, artificial sand and oil agglomerates (aSOAs) created with the size, density, and shape characteristics of SOAs were studied in a small-oscillatory flow tunnel. These experiments expanded the available data on SOA motion and interaction with the sea floor and were used to examine the applicability of shear-stress formulations to predict SOA mobility. Data collected during these two sets of experiments, including photographs, video, and flow velocity, are presented in this report, along with an analysis of shear-stress-based formulations for incipient motion. The results showed that shear-stress thresholds for typical quartz sand predicted the incipient motion of aSOAs with 0.5–1.0-cm diameters, but were inaccurate for aSOAs with larger diameters (>2.5 cm). This finding implies that modified parameterizations of incipient motion may be necessary under certain combinations of aSOA characteristics and environmental conditions.

  12. Implementing Effective Mission Systems Engineering Practices During Early Project Formulation Phases

    NASA Technical Reports Server (NTRS)

    Moton, Tryshanda

    2016-01-01

    Developing and implementing a plan for a NASA space mission can be a complicated process. The needs, goals, and objectives of any proposed mission or technology must be assessed early in the Project Life Cycle. The key to successful development of a space mission or flight project is the inclusion of systems engineering in early project formulation, namely during Pre-phase A, Phase A, and Phase B of the NASA Project Life Cycle. When a space mission or new technology is in pre-development, or "pre-Formulation", feasibility must be determined based on cost, schedule, and risk. Inclusion of system engineering during project formulation is key because in addition to assessing feasibility, design concepts are developed and alternatives to design concepts are evaluated. Lack of systems engineering involvement early in the project formulation can result in increased risks later in the implementation and operations phases of the project. One proven method for effective systems engineering practice during the pre-Formulation Phase is the use of a mission conceptual design or technology development laboratory, such as the Mission Design Lab (MDL) at NASA's Goddard Space Flight Center (GSFC). This paper will review the engineering process practiced routinely in the MDL for successful mission or project development during the pre-Formulation Phase.

  13. Properties of Base Stocks Obtained from Used Engine Oils by Acid/Clay Re-refining (Proprietes des Stocks de Base Obtenus par Regeneration des Huiles a Moteur Usees par le Procede de Traitement a l’Acide et a la Terre),

    DTIC Science & Technology

    1980-09-01

    Research Conseil national Council Canada de recherches Canada LEY EL < PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING DTIC...MECHANICAL ENGINEERING REPORT Canad NC MP75 NRC NO. 18719 PROPERTIES OF BASE STOCKS OBTAINED FROM USED ENGINE OILS BY ACID /CLAY RE-REFINING (PROPRIETES...refined Base Stock ..................................... 10 3 Physical Test Data of Acid /Clay Process - Re-refined Base Stock Oils ............ 11 4

  14. Rotordynamic Design Analysis of an Oil-Free Turbocharger

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.

    1997-01-01

    Modern heavy duty diesel engines utilize turbochargers for increased power output. Also, a wide range of power levels can be achieved with one engine displacement through the use of different turbocharger configurations, eliminating the need for several different sized engines. These are the reasons that virtually all diesel truck engines currently marketed use turbochargers. However, because these turbochargers rely on ring seals and oil-lubricated floating sleeve bearings, they often suffer breakdowns. These turbochargers operate at elevated temperatures which often causes the oil to degrade and even coke to the bearing surfaces. This can lead to catastrophic failure, increased particulate emissions from oil leaks, and, in extreme cases, engine fires. Replacing the oil lubricated bearings from these turbochargers with some other device is desirable to eliminate these inherent problems. Foil bearings are compliant selecting bearings lubricated by air and are well suited to high speed, light load applications. Thus, foil bearings present one potential replacement for oil-lubricated sleeve bearings. Their use as such is investigated in this work.

  15. Detection of unburned fuel as contaminant in engine oil by a gas microsensor array

    NASA Astrophysics Data System (ADS)

    Capone, Simonetta; Zuppa, Marzia; Presicce, Dominique S.; Epifani, Mauro; Francioso, Luca; Siciliano, Pietro; Distante, C.

    2007-05-01

    We developed a novel method to detect the presence of unburned diesel fuel in used diesel fuel engine oil. The method is based on the use of an array of different gas microsensors based on metal oxide thin films deposited by sol-gel technique on Si substrates. The sensor array, exposed to the volatile chemical species of different diesel fuel engine oil samples contaminated in different percentages by diesel fuel, resulted to be appreciable sensitive to them. Principal Component Analysis (PCA) and Self-Organizing Map (SOM) applied to the sensor response data-set gave a first proof of the sensor array ability to discriminate among the different diesel fuel diluted lubricating oils. Moreover, in order to get information about the headspace composition of the diesel fuel-contaminated engine oils used for gas-sensing tests, we analyzed the engine oil samples by Static Headspace Solid Phase Micro Extraction/Gas Chromatograph/Mass Spectrometer (SHS-SPME/ GC/MS).

  16. Alternative fuel properties of tall oil fatty acid methyl ester-diesel fuel blends.

    PubMed

    Altiparmak, Duran; Keskin, Ali; Koca, Atilla; Gürü, Metin

    2007-01-01

    In this experimental work, tall oil methyl ester-diesel fuel blends as alternative fuels for diesel engines were studied. Tall oil methyl ester was produced by reacting tall oil fatty acids with methyl alcohol under optimum conditions. The blends of tall oil methyl ester-diesel fuel were tested in a direct injection diesel engine at full load condition. The effects of the new fuel blends on the engine performance and exhaust emission were tested. It was observed that the engine torque and power output with tall oil methyl ester-diesel fuel blends increased up to 6.1% and 5.9%, respectively. It was also seen that CO emissions decreased to 38.9% and NO(x) emissions increased up to 30% with the new fuel blends. The smoke opacity did not vary significantly.

  17. Penetration enhancing effects of selected natural oils utilized in topical dosage forms.

    PubMed

    Viljoen, Joe M; Cowley, Amé; du Preez, Jan; Gerber, Minja; du Plessis, Jeanetta

    2015-01-01

    Various natural products, including oils, have been utilized as penetration enhancers due to their "safety profiles". These oils contain fatty acids promoting skin permeability through lipid fluidization within the stratum corneum; and might therefore be able to effectively enhance transdermal drug delivery. We investigated possible penetration enhancing properties of selected oils, utilizing flurbiprofen as marker compound in emulgel formulations. The formulations were compared to a liquid paraffin emulgel and a hydrogel to establish any significant penetration enhancing effects. Gas chromatographic analysis of the natural oils was performed at ambient temperature to determine the fatty acid composition in each selected natural oils. Franz cell diffusion studies and tape stripping methods were employed to study delivery of the marker into, and through the skin. The following rank order for the emulgel flux-values was obtained: Hydrogel > olive oil > liquid paraffin > coconut oil > grape seed oil > Avocado oil ≥ Crocodile oil > Emu oil. Results suggested that oils containing predominantly mono-unsaturated oleic acid, on average increased the flux of the marker to a larger extent than oils containing an almost even mixture of both mono- and poly-unsaturated fatty acids. Oils comprising saturated fatty acids (SFAs) with alkyl chains between C12 and C14, increased the marker flux to a higher extent than oils containing C16-C18 SFAs. Effects observed for branched fatty acids, however, did not vary significantly from effects for unbranched fatty acids with the same carbon chain length. Natural oils possess penetration enhancing effects.

  18. Recycling used palm oil and used engine oil to produce white bio oil, bio petroleum diesel and heavy fuel

    NASA Astrophysics Data System (ADS)

    Al-abbas, Mustafa Hamid; Ibrahim, Wan Aini Wan; Sanagi, Mohd. Marsin

    2012-09-01

    Recycling waste materials produced in our daily life is considered as an additional resource of a wide range of materials and it conserves the environment. Used engine oil and used cooking oil are two oils disposed off in large quantities as a by-product of our daily life. This study aims at providing white bio oil, bio petroleum diesel and heavy fuel from the disposed oils. Toxic organic materials suspected to be present in the used engine oil were separated using vacuum column chromatography to reduce the time needed for the separation process and to avoid solvent usage. The compounds separated were detected by gas chromatography-mass spectrometry (GC-MS) and found to contain toxic aromatic carboxylic acids. Used cooking oils (thermally cracked from usage) were collected and separated by vacuum column chromatography. White bio oil produced was examined by GC-MS. The white bio oil consists of non-toxic hydrocarbons and is found to be a good alternative to white mineral oil which is significantly used in food industry, cosmetics and drugs with the risk of containing polycyclic aromatic compounds which are carcinogenic and toxic. Different portions of the used cooking oil and used engine were mixed to produce several blends for use as heavy oil fuels. White bio oil was used to produce bio petroleum diesel by blending it with petroleum diesel and kerosene. The bio petroleum diesel produced passed the PETRONAS flash point and viscosity specification test. The heat of combustion of the two blends of heavy fuel produced was measured and one of the blends was burned to demonstrate its burning ability. Higher heat of combustion was obtained from the blend containing greater proportion of used engine oil. This study has provided a successful recycled alternative for white bio oil, bio petroleum fuel and diesel which can be an energy source.

  19. Nanoemulsion: for improved oral delivery of repaglinide.

    PubMed

    Akhtar, Juber; Siddiqui, Hefazat Hussain; Fareed, Sheeba; Badruddeen; Khalid, Mohammad; Aqil, Mohammed

    2016-07-01

    Repaglinide (RPG) is a fast-acting prandial glucose regulator. It acts by stimulating insulin release from pancreatic β-cells. Recurrent dosing of RPG before each meal is burdensome remedy. Hence the plan of the present study was to evaluate nanoemulsion as a hopeful carrier for RPG for persistent hypoglycemic effect. The drug was incorporated into oil phase of nanoemulsion to give improved biopharmaceutical properties as compared to the lipid-based systems. Pseudo ternary phase diagrams were prepared by aqueous titration method. Formulations were selected at a difference of 5% w/w of oil from the o/w nanoemulsion region of phase diagrams. The optimized nanoemulsion formulation constituted sefsol-218 (5% v/v) as an oil phase, 30% v/v of Tween-80 and transcutol as a surfactant and co-surfactant to restrain nanodroplet size and low viscosity and distilled water (65%). In vitro dissolution studies showed higher drug release (98.22%), finest droplet size (76.23 nm), slightest polydispersity value (0.183), least viscosity (21.45 cps) and immeasurable dilution capability from the nanoemulsion as compared with existing oral tablet formulation. The optimized RPG nanoemulsion formulation showed better hypoglycemic effect in comparison to tablet formulation in experimental diabetic rats. No significant variations were also observed in the optimized formulation when subjected to accelerated stability study at different temperature and relative humidity over a period of 3 months.

  20. Evaluation of the mechanism of gelation of an oleogel based on a triterpene extract from the outer bark of birch.

    PubMed

    Grysko, M; Daniels, R

    2013-07-01

    Oleogels are known for their high physical, chemical, and mechanical stability and good in vivo efficacy, which make them appropriate vehicles for dermal drug delivery and skin care for very dry skin. Modern formulation research focusses on well tolerated and sustainable formulation concepts. This paper deals with an innovative oleogel, which is based on a triterpene dry extract from the outer bark of birch (TE). In this formulation TE does not only act as an excipient but provides interesting pharmacological properties at the same time. The oleogel was formulated using solely Simmondsia Chinensis seed oil (jojoba oil) and TE. Fluorescence microscopy and confocal Raman microscopy showed that suspended TE particles arrange in a three-dimensional gel network. Infrared spectroscopy revealed that the formation of hydrogen bonds between TE particles is responsible for the self-assembly of TE in oil. Moreover, the influence of TE concentration and morphology of the TE particles on the viscoelasticity of the resulting oleogels was analyzed. Gel strength increased with TE concentration and was critical to the specific surface area of the TE particles.

  1. Effect of Presence and Concentration of Plasticizers, Vegetable Oils, and Surfactants on the Properties of Sodium-Alginate-Based Edible Coatings

    PubMed Central

    Schott, Michael; Müller, Kajetan

    2018-01-01

    Achieving high quality of a coated food product is mostly dependent on the characteristics of the food material to be coated, the properties of the components in the coating solution, and the obtained coating material. In the present study, usability and effectiveness of various components as well as their concentrations were assessed to produce an effective coating material. For this purpose, different concentrations of gelling agent (sodium alginate 0–3.5%, w/w), plasticizers (glycerol and sorbitol (0–20%, w/w), surfactants (tween 40, tween 80, span 60, span 80, lecithin (0–5%, w/w), and vegetable oils (sunflower oil, olive oil, rapeseed oil (0–5%, w/w) were used to prepare edible coating solutions. Formulations were built gradually, and characteristics of coatings were evaluated by analyzing surface tension values and its polar and dispersive components, emulsion droplet size, and optical appearance in microscopic scale. The results obtained showed that 1.25% sodium alginate, 2% glycerol, 0.2% sunflower oil, 1% span 80, and 0.2% tween 40 or tween 80 can be used in formulation to obtain an effective coating for hydrophobic food surfaces. Three formulations were designed, and their stability (emulsion droplet size, optical characteristics, and creaming index) and wettability tests on strawberry showed that they could be successfully used in coating applications. PMID:29509669

  2. Elevating bioavailability of cyclosporine a via encapsulation in artificial oil bodies stabilized by caleosin.

    PubMed

    Chen, Miles C M; Wang, Jui-Ling; Tzen, Jason T C

    2005-01-01

    To elevate its bioavailability via oral administration, cyclosporine A (CsA), a hydrophobic drug, was either incorporated into olive oil directly or encapsulated in artificial oil bodies (AOBs) constituted with olive oil and phospholipid in the presence or absence of recombinant caleosin purified from Escherichia coli. The bioavailabilities of CsA in these formulations were assessed in Wistar rats in comparison with the commercial formulation, Sandimmun Neoral. Among these tests, CsA-loaded AOBs stabilized by the recombinant caleosin exhibited better bioavailability than the commercial formulation and possessed the highest maximum whole blood concentration (C(max)), 1247.4 +/- 106.8 ng/mL, in the experimental animals 4.3 +/- 0.7 h (t(max)) after oral administration. C(max) and the area under the plasma concentration-time curve (AUC(0-24)) were individually increased by 50.8% and 71.3% in the rats fed with caleosin-stabilized AOBs when compared with those fed with the reference Sandimmun Neoral. The results suggest that constitution of AOBs stabilized by caleosin may be a suitable technique to encapsulate hydrophobic drugs for oral administration.

  3. The tetrapeptide N-acetyl-Pro-Pro-Tyr-Leu in skin care formulations-Physicochemical and release studies.

    PubMed

    Olejnik, Anna; Schroeder, Grzegorz; Nowak, Izabela

    2015-08-15

    Recently there has been a growth of interest in the novel skin care formulations containing active ingredients such as low molecular weight peptides. In this paper we present new skincare formulations such as hydrogels, oil-in-water emulsions and water-in-oil emulsion containing a tetrapeptide (N-acetyl-Pro-Pro-Tyr-Leu). These formulations were characterized in terms of physicochemical parameters (pH, viscosity), stability and particle size distribution. Additionally, the diffusion parameters of the peptide in the obtained formulations were calculated based on the Einstein-Smoluchowski equation. Furthermore, in order to determine the penetration of the tetrapeptide through membranes its release kinetics were investigated. On the basis of release curves, the release rate constants were determined. The results proved that the properties of the formulations strongly determined the release rate of the tetrapeptide. The higher viscosity of the semisolid, the slower was the permeation through the membrane. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engines: general. 29.1011 Section 29.1011... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each engine... the maximum allowable oil consumption of the engine under the same conditions, plus a suitable margin...

  5. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure adequate...

  6. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure adequate...

  7. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure adequate...

  8. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure adequate...

  9. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Engines: general. 29.1011 Section 29.1011... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each engine... the maximum allowable oil consumption of the engine under the same conditions, plus a suitable margin...

  10. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Engines: general. 29.1011 Section 29.1011... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each engine... the maximum allowable oil consumption of the engine under the same conditions, plus a suitable margin...

  11. 14 CFR 27.1011 - Engines: General.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engines: General. 27.1011 Section 27.1011... STANDARDS: NORMAL CATEGORY ROTORCRAFT Powerplant Oil System § 27.1011 Engines: General. (a) Each engine must... maximum oil consumption of the engine under the same conditions, plus a suitable margin to ensure adequate...

  12. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Engines: general. 29.1011 Section 29.1011... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each engine... the maximum allowable oil consumption of the engine under the same conditions, plus a suitable margin...

  13. 14 CFR 29.1011 - Engines: general.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Engines: general. 29.1011 Section 29.1011... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Oil System § 29.1011 Engines: general. (a) Each engine... the maximum allowable oil consumption of the engine under the same conditions, plus a suitable margin...

  14. 75 FR 39803 - Airworthiness Directives; Thielert Aircraft Engines GmbH Model TAE 125-01 Reciprocating Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-13

    ... Airworthiness Directives; Thielert Aircraft Engines GmbH Model TAE 125-01 Reciprocating Engines AGENCY: Federal...-18300R5, may cause a blow-by gas pressure increase inside the crankcase of the engine in excess of the oil seal design pressure limits. Leaking engine oil may adversely affect the gearbox clutch or the engine...

  15. Preparation of microemulsions with soybean oil-based surfactants

    USDA-ARS?s Scientific Manuscript database

    Emulsions are widely applied in food, cosmeceutical and medicinal formulations. Smaller and highly stable droplets of emulsions are important for their application. This research reports that by using soybean oil-based surfactants, the higher stabilized oil-in-water emulsions were obtained via an ul...

  16. Essential Oils Loaded in Nanosystems: A Developing Strategy for a Successful Therapeutic Approach

    PubMed Central

    Bilia, Anna Rita; Guccione, Clizia; Isacchi, Benedetta; Righeschi, Chiara; Firenzuoli, Fabio; Bergonzi, Maria Camilla

    2014-01-01

    Essential oils are complex blends of a variety of volatile molecules such as terpenoids, phenol-derived aromatic components, and aliphatic components having a strong interest in pharmaceutical, sanitary, cosmetic, agricultural, and food industries. Since the middle ages, essential oils have been widely used for bactericidal, virucidal, fungicidal, antiparasitical, insecticidal, and other medicinal properties such as analgesic, sedative, anti-inflammatory, spasmolytic, and locally anaesthetic remedies. In this review their nanoencapsulation in drug delivery systems has been proposed for their capability of decreasing volatility, improving the stability, water solubility, and efficacy of essential oil-based formulations, by maintenance of therapeutic efficacy. Two categories of nanocarriers can be proposed: polymeric nanoparticulate formulations, extensively studied with significant improvement of the essential oil antimicrobial activity, and lipid carriers, including liposomes, solid lipid nanoparticles, nanostructured lipid particles, and nano- and microemulsions. Furthermore, molecular complexes such as cyclodextrin inclusion complexes also represent a valid strategy to increase water solubility and stability and bioavailability and decrease volatility of essential oils. PMID:24971152

  17. An experiment of used palm oil refinery using the value engineering method

    NASA Astrophysics Data System (ADS)

    Sumiati; Waluyo, M.

    2018-01-01

    Palm Oil is one of prime materials which very necessary for Indonesia. In the development of palm oil industry the constraint which faced is raw material availability and the economic crisis that attack Indonesia which cause increasing of cost industry so that the salaes price become very expensive . With using alternative raw material namely used palm oil them be made palm oil design to solve this problems. In the designing which comply the consideration of good pal oil planning aspect be use value engineer study. While the criteria parameter of hygienic palm oil which obtained from the questioner area free fatty acid, water content, Iodine number, peroxide number, odor, taste and the color. The research which use value engineer study is throught any phase that is information phase, analyzes phase, creative phase, development phase and presentation phase. This research began with doing the identification of palm oil demand, continued by methodology development in order to measure oil design. By using creative process could be obtained flow rate position, the amount of adsorbent and the best settling time for palm oil alternative that is in the flow rate 70 ml/sec, 4% of adsorbent and the 70 minute for the settling time with free fatty acid value: 0.299. While the best palm oil alternative are palm oil with free fatty acid value = 0.299, water content = 0.31, Iodine number = 40.08, Peroxide number = 3.72, odor and taste = Normal, the color = Normal. The Evalution which done by value engineer study generate the value from alternative palm oil is 1.330 and market palm oil 1.392. Thus, can be conclude thet the value engineer study can be good implemented in the alternative palm oil planning so that alternative palm oil can be produced largely because they have better value that market palm oil and appropriate for little industries.

  18. A Survey of Aircraft Ground Support Equipment Utilization and Oil Condition at the Mandatory Six Month Inspection

    DTIC Science & Technology

    2016-09-30

    In parallel with the oil change interval study an engineering evaluation of a handheld oil condition analyzer was conducted. Within the limitations...of the study of diesel engine powered AGE assets at two U.S. Air Force locations, assets monitored were not impacted by eliminating the 6-month oil...limitations of the study , conclusions can be made from the cumulative knowledge of analyzing crankcase lubricants of diesel engine powered AGE assets

  19. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1982-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, a plasma, an atomic absorption, and an emission spectrometer to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations ( 2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure.

  20. Petroleum Diesel Fuel and Linseed Oil Mixtures as Engine Fuels

    NASA Astrophysics Data System (ADS)

    Markov, V. A.; Kamaltdinov, V. G.; Savastenko, A. A.

    2018-01-01

    The actual problem is the use of alternative biofuels in automotive diesel engines. Insufficiently studied are the indicators of toxicity of exhaust gases of these engines operating on biofuel. The aim of the study is to identify indicators of the toxicity of exhaust gases when using of petroleum diesel fuel and linseed oil mixtures as a fuel for automotive diesel engines. Physical and chemical properties of linseed oil and its mixtures with petroleum diesel fuel are considered. Experimental researches of D-245.12C diesel are carried out on mixtures of diesel fuel and corn oil with a different composition. An opportunity of exhaust toxicity indexes improvement using these mixtures as a fuel for automobiles engine is shown.

  1. Microemulsion of babassu oil as a natural product to improve human immune system function.

    PubMed

    Pessoa, Rafael Souza; França, Eduardo Luzia; Ribeiro, Elton Brito; Lanes, Patrícia Kelly Dias; Chaud, Natalina Galdeano Abud; Moraes, Lucélia Campelo Albuquerque; Honorio-França, Adenilda Cristina

    2015-01-01

    The aim of this study was to develop and characterize a babassu oil microemulsion system and determine the effect of this microemulsion on the functional activity of phagocytes. The microemulsion was formulated using distilled water, babassu as the oil phase component, Sorbitan monooleate-Span 80(®) (SP), Polysorbate 80-Tween 80(®) (TW), and 1-butanol (BT). Pseudoternary diagrams were prepared, and microemulsion diagram regions were preselected. Rheological characterization and preliminary and accelerated stability tests were performed. The effect of the microemulsion on the interactions between leukocytes and bacteria was determined by superoxide release, phagocytosis, and microbicidal activity. The developed formulation SP/TW/BT (4.2/4.8/1.0) was classified as oil/water, showed a Newtonian profile, and had linear viscosity. When we assessed the interaction of the microemulsion or babassu oil with phagocytes, we observed an increase in superoxide, phagocytosis, and microbicidal activity. The babassu oil microemulsion system is an option for future applications, including for vaccine delivery systems. Babassu oil is a natural product, so is an alternative for future immunotherapy strategies, in particular for infectious diseases.

  2. Fuel system for diesel engine with multi-stage heated

    NASA Astrophysics Data System (ADS)

    Ryzhov, Yu N.; Kuznetsov, Yu A.; Kolomeichenko, A. V.; Kuznetsov, I. S.; Solovyev, R. Yu; Sharifullin, S. N.

    2017-09-01

    The article describes a fuel system of a diesel engine with a construction tractor multistage heating, allowing the use of pure rapeseed oil as a diesel engine fuel. The paper identified the kinematic viscosity depending on the temperature and composition of the mixed fuel, supplemented by the existing recommendations on the use of mixed fuels based on vegetable oils and developed the device allowing use as fuel for diesel engines of biofuels based on vegetable oils.

  3. Study on production of biodiesel from Jatropha oil and the performance and emission of a diesel engine

    NASA Astrophysics Data System (ADS)

    Nor, N. F. M.; Hafidzal, M. H. M.; Shamsuddin, S. A.; Ismail, M. S.; Hashim, A. H.

    2015-05-01

    The use of nonedible oil as a feedstock is needed to replace edible oil as an alternative fuel for diesel engine. This nonedible oils in diesel engine however leads to low performance and higher emission due to its high viscosity. The characteristics of the fuel can be improved through transesterification process. The yield of biodiesel from Jatropha oil using potassium hydroxide catalyst concentration of 1%, reaction temperature 60°C, reaction time 40 minutes and molar ratio methanol to oil 6:1 was 70.1% from the lab scale. The experimental study on the performances and emissions of a diesel engine is carried out using the Jatropha biodiesel produced from the transesterification process and compared with pure diesel. Results show that B20 has closer performance to diesel and lower emission compared to B5 and diesel in terms of CO2 and HC.

  4. Preparation and evaluation of a multimodal minoxidil microemulsion versus minoxidil alone in the treatment of androgenic alopecia of mixed etiology: a pilot study.

    PubMed

    Sakr, Farouk M; Gado, Ali Mi; Mohammed, Haseebur R; Adam, Abdel Nasser Ismail

    2013-01-01

    The variable success of topical minoxidil in the treatment of androgenic alopecia has led to the hypothesis that other pathways could mediate this form of hair loss, including infection and/or microinflammation of the hair follicles. In this study, we prepared a multimodal microemulsion comprising minoxidil (a dihydrotestosterone antagonist), diclofenac (a nonsteroidal anti-inflammatory agent), and tea tree oil (an anti-infective agent). We investigated the stability and physicochemical properties of this formulation, and its therapeutic efficacy compared with a formulation containing minoxidil alone in the treatment of androgenic alopecia. We developed a multimodal oil/water (o/w) microemulsion, a formulation containing minoxidil alone, and another containing vehicle. A three-phase diagram was constructed to obtain the optimal concentrations of the selected oil, surfactant, and cosurfactant. Thirty-two men aged 18-30 years were randomized to apply 1 mL of microemulsion containing the multimodal formulation (formulation A, n = 11), minoxidil alone (formulation B, n = 11) or placebo (formulation C, n = 10) twice daily to the affected area for 32 weeks. Efficacy was evaluated by mean hair count, thickness, and weight on the targeted area of the scalp. Global photographs were taken, changes in the area of scalp coverage were assessed by patients and external investigators, and the benefits and safety of the study medications were evaluated. The physical stability of formula A was examined after a shelf storage period of 24 months. Formulation A achieved a significantly superior response than formulations B and C in terms of mean hair count (P < 0.001), mean hair weight (P < 0.001), and mean hair thickness (P < 0.05). A patient self-assessment questionnaire demonstrated that the multimodal minoxidil formulation significantly (P < 0.001) slowed hair loss, increased hair growth, and improved appearance, and showed no appreciable side effects, such as itching and/or inflammation of the scalp compared with the minoxidil alone and placebo formulations. These improvements were in agreement with the photographic assessments made by the investigators. Formula A was shown to be an o/w formulation with consistent pH, viscosity, specific gravity, and homogeneity, and was physically stable after 24 months of normal storage. A multimodal microemulsion comprising minoxidil, diclofenac, and tea tree oil was significantly superior to minoxidil alone and placebo in terms of stability, safety, and efficacy, and achieved an earlier response in the treatment of androgenic alopecia compared with minoxidil alone in this 32-week pilot study.

  5. Preparation and evaluation of a multimodal minoxidil microemulsion versus minoxidil alone in the treatment of androgenic alopecia of mixed etiology: a pilot study

    PubMed Central

    Sakr, Farouk M; Gado, Ali MI; Mohammed, Haseebur R; Adam, Abdel Nasser Ismail

    2013-01-01

    Background: The variable success of topical minoxidil in the treatment of androgenic alopecia has led to the hypothesis that other pathways could mediate this form of hair loss, including infection and/or microinflammation of the hair follicles. In this study, we prepared a multimodal microemulsion comprising minoxidil (a dihydrotestosterone antagonist), diclofenac (a nonsteroidal anti-inflammatory agent), and tea tree oil (an anti-infective agent). We investigated the stability and physicochemical properties of this formulation, and its therapeutic efficacy compared with a formulation containing minoxidil alone in the treatment of androgenic alopecia. Methods: We developed a multimodal oil/water (o/w) microemulsion, a formulation containing minoxidil alone, and another containing vehicle. A three-phase diagram was constructed to obtain the optimal concentrations of the selected oil, surfactant, and cosurfactant. Thirty-two men aged 18–30 years were randomized to apply 1 mL of microemulsion containing the multimodal formulation (formulation A, n = 11), minoxidil alone (formulation B, n = 11) or placebo (formulation C, n = 10) twice daily to the affected area for 32 weeks. Efficacy was evaluated by mean hair count, thickness, and weight on the targeted area of the scalp. Global photographs were taken, changes in the area of scalp coverage were assessed by patients and external investigators, and the benefits and safety of the study medications were evaluated. The physical stability of formula A was examined after a shelf storage period of 24 months. Results: Formulation A achieved a significantly superior response than formulations B and C in terms of mean hair count (P < 0.001), mean hair weight (P < 0.001), and mean hair thickness (P < 0.05). A patient self-assessment questionnaire demonstrated that the multimodal minoxidil formulation significantly (P < 0.001) slowed hair loss, increased hair growth, and improved appearance, and showed no appreciable side effects, such as itching and/or inflammation of the scalp compared with the minoxidil alone and placebo formulations. These improvements were in agreement with the photographic assessments made by the investigators. Formula A was shown to be an o/w formulation with consistent pH, viscosity, specific gravity, and homogeneity, and was physically stable after 24 months of normal storage. Conclusion: A multimodal microemulsion comprising minoxidil, diclofenac, and tea tree oil was significantly superior to minoxidil alone and placebo in terms of stability, safety, and efficacy, and achieved an earlier response in the treatment of androgenic alopecia compared with minoxidil alone in this 32-week pilot study. PMID:23807837

  6. Vaccine Adjuvants in Fish Vaccines Make a Difference: Comparing Three Adjuvants (Montanide ISA763A Oil, CpG/Poly I:C Combo and VHSV Glycoprotein) Alone or in Combination Formulated with an Inactivated Whole Salmonid Alphavirus Antigen

    PubMed Central

    Thim, Hanna L.; Villoing, Stéphane; McLoughlin, Marian; Christie, Karen Elina; Grove, Søren; Frost, Petter; Jørgensen, Jorunn B.

    2014-01-01

    Most commercial vaccines offered to the aquaculture industry include inactivated antigens (Ag) formulated in oil adjuvants. Safety concerns are related to the use of oil adjuvants in multivalent vaccines for fish, since adverse side effects (e.g., adhesions) can appear. Therefore, there is a request for vaccine formulations for which protection will be maintained or improved, while the risk of side effects is reduced. Here, by using an inactivated salmonid alphavirus (SAV) as the test Ag, the combined use of two Toll-like receptor (TLR) ligand adjuvants, CpG oligonucleotides (ODNs) and poly I:C, as well as a genetic adjuvant consisting of a DNA plasmid vector expressing the viral haemorrhagic septicaemia virus (VHSV) glycoprotein (G) was explored. VHSV-G DNA vaccine was intramuscularly injected in combination with intraperitoneal injection of either SAV Ag alone or combined with the oil adjuvant, Montanide ISA763, or the CpG/polyI:C combo. Adjuvant formulations were evaluated for their ability to boost immune responses and induce protection against SAV in Atlantic salmon, following cohabitation challenge. It was observed that CpG/polyI:C-based formulations generated the highest neutralizing antibody titres (nAbs) before challenge, which endured post challenge. nAb responses for VHSV G-DNA- and oil-adjuvanted formulations were marginal compared to the CpG/poly I:C treatment. Interestingly, heat-inactivated sera showed reduced nAb titres compared to their non-heated counterparts, which suggests a role of complement-mediated neutralization against SAV. Consistently elevated levels of innate antiviral immune genes in the CpG/polyI:C injected groups suggested a role of IFN-mediated responses. Co-delivery of the VHSV-G DNA construct with either CpG/polyI:C or oil-adjuvanted SAV vaccine generated higher CD4 responses in head kidney at 48 h compared to injection of this vector or SAV Ag alone. The results demonstrate that a combination of pattern recognizing receptor (PRR) ligands, such as CpG/polyI:C, increases both adaptive and innate responses and represents a promising adjuvant strategy for enhancing the protection of future viral vaccines. PMID:26344619

  7. Inhalation toxicology. III., Evaluation of thermal degradation products from aircraft and automobile engine oils, aircraft hydraulic fluid, and mineral oil.

    DOT National Transportation Integrated Search

    1983-04-01

    A malfunctioning seal in the gear-reduction box of a turboprop aircraft engine could allow oil to enter the turbine's compressor section, which is the source of bleed air used to pressurize the cabin. Oil, or its degradation products, could have a de...

  8. Current issues in natural gas lubrication

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reber, J.

    1997-10-01

    Because of the ability of natural gas to burn completely relatively easily, supplying excess oxygen to promote complete reactions is a viable alternative to catalysts. Hence, lean burn technology has a natural fit for this industry. Lube oil is not adversely affected by lean burn operation. There is a slight tendency to cause more oil nitration than oxidation, but the real difference is not significant. Operators may notice somewhat more varnish (caramel color) and less sludge (black) as a result. Because the fuel is burned more completely, there is less problem with fuel-derived oil contamination. Also because of the excessmore » air in the combustion chamber, overall cylinder temperature is lower, causing less stress on the oil. Oil life is generally lengthened. One common misconception that lean burn engines require different lubricants may stem from a change at Waukesha Engine Division--Dresser Industries. Waukesha has changed its lube oil requirements for VHP 3521, 5115, 7042, 9390 GL turbocharged and lean burn model engines. The lube oil specification for these engines is 1% to 1.7% ash with the same 0.10% zinc maximum. This change is not because of the lean burn nature of these engines, rather it is because of drastically decreased lube oil consumption. With less oil consumption, less ash is carried to the critical exhaust valve seat area to prevent valve recession.« less

  9. Self-microemulsifying drug delivery system improves curcumin dissolution and bioavailability.

    PubMed

    Wu, Xuemei; Xu, Jianhua; Huang, Xiuwang; Wen, Caixia

    2011-01-01

    Curcumin has a wide spectrum of biological and pharmacological activities, but it has not yet been approved as a therapeutic agent because of its low solubility and stability in aqueous solution, and the relatively low bioavailability in vivo. To overcome these limitations, self-microemulsifying drug delivery system (SMEDDS) of curcumin was developed. Various oils, surfactants, and cosurfactants were selected to optimize the formulation. Pseudoternary phase diagrams were constructed and orthogonal design was used to compare the oil-in-water (o/w) microemulsion-forming capacity of different oils/surfactants/cosurfactants. The solubility of curcumin in various oils and cosurfactants was determined to find suitable ingredients with a good solubilizing capacity. Droplet size was measured to obtain the concentration of oil, surfactant, and cosurfactant for forming stable microemulsion. Furthermore, its quality and bioavailability in mice were assessed. Pseudoternary phase diagrams and solubility test showed that the formulation of SMEDDS composed of 20% ethanol, 60% Cremophor RH40®, and 20% isopropyl myristate, in which the concentration of curcumin reached 50 mg/mL. Curcumin was released completely from SMEDDS at 10 minutes. The developed SMEDDS formulation improved the oral bioavailability of curcumin significantly, and the relative oral bioavailability of SMEDDS compared with curcumin suspension was 1213%. The SMEDDS can significantly increase curcumin dissolution in vitro and bioavailability in vivo.

  10. Ferrographic and spectrographic analysis of oil sampled before and after failure of a jet engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1980-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph as well as plasma, atomic absorption, and emission spectrometers. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism, nor a high level of wear debris was detected in the oil sample from the engine just prior to the test in which the failure occurred. However, low concentrations of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure.

  11. The Role of Tribology in the Development of an Oil-Free Turbocharger

    NASA Technical Reports Server (NTRS)

    Dellacorte, Christopher

    1997-01-01

    Gas-turbine-based aeropropulsion engines are technologically mature. Thus, as with any mature technology, revolutionary approaches will be needed to achieve the significant performance gains that will keep the U.S. propulsion manufacturers well ahead of foreign competition. One such approach is the development of oil-free turbomachinery utilizing advanced foil air bearings, seals, and solid lubricants. By eliminating oil-lubricated bearings and seals and supporting an engine rotor on an air film, significant improvements can be realized. For example, the entire oil system including pipes, lines, filters, cooler, and tanks could be removed, thereby saving considerable weight. Since air has no thermal decomposition temperature, engine systems could operate without excessive cooling. Also, since air bearings have no diameter-rpm fatigue limits (D-N limits), engines could be designed to operate at much higher speeds and higher density, which would result in a smaller aeropropulsion package. Because of recent advances in compliant foil air bearings and high temperature solid lubricants, these technologies can be applied to oil-free turbomachinery. In an effort to develop these technologies and to demonstrate a project along the path to an oil-free gas turbine engine, NASA has undertaken the development of an oil-free turbocharger for a heavy duty diesel engine. This turbomachine can reach 120000 rpm at a bearing temperature of 540 C (1000 F) and, in comparison to oil-lubricated bearings, can increase efficiency by 10 to 15 percent because of reduced friction. In addition, because there are no oil lubricants, there are no seal-leakage-induced emissions.

  12. Replacement of Coconut Oils with Unsaturated Oils in Recombined Filled Milk

    DTIC Science & Technology

    1992-10-01

    preliminary study only) or high-temperature-short-time ( HTST ) pasteurization. The milk was cooled, packaged and stored at 35 0F. In formulations where Actoloids...Each of 30 gallon formulation was then processed through a De Laval 460 GPH HTST pasteurizer (De Laval Brand, Alfa-Laval Agri Inc., Everett, MA) and...However, it was noted that HTST pasteurization greatly reduced the extent to which these defects were noticed. Furthermore, an increase in the percent

  13. Progesterone administration by nasal spray in menopausal women: comparison between two different spray formulations.

    PubMed

    Cicinelli, E; Savino, F; Cagnazzo, I; Scorcia, P; Galantino, P

    1992-12-01

    The aim of the study was to compare the bioavailability of progesterone dissolved in almond oil or dimethicone, and administered by nasal spray. Twenty healthy menopausal women were randomly allocated to treatment by four doses of intranasal spray either of a progesterone solution in almond oil, 2 mg/0.1 ml, corresponding to a total dose of approximately 11 mg of progesterone, or a progesterone solution in dimethicone 5 mg/0.1 ml corresponding to a total dose of approximately 28 mg of progesterone. Circulating progesterone levels were calculated at various time intervals following administration. The formulation with almond oil yielded a maximum progesterone concentration (Cmax of 3.75 ng/ml at Tmax = 60 min, and the area under the curve (AUC0-720) value was 1481.6 +/- 343. The formulation with dimethicone yielded a mean Cmax of 1.049 ng/ml at Tmax = 30 min; the AUC0-720 value was 302.06 +/- 37.5. Therefore, bioavailability of progesterone dissolved in almond oil proved to be largely superior compared to the solution in dimethicone. The crucial role of the carrier in the spray formulations is discussed; in addition to ensuring clinical safety, it must have good solubility for progesterone, be fluid enough to enable efficient 'spraying' and also must allow progesterone to be absorbed through the nasal mucosa.

  14. Improvement of skin condition in striae distensae: development, characterization and clinical efficacy of a cosmetic product containing Punica granatum seed oil and Croton lechleri resin extract

    PubMed Central

    Bogdan, Cătălina; Iurian, Sonia; Tomuta, Ioan; Moldovan, Mirela

    2017-01-01

    Striae distensae are a frequent skin condition associated with pregnancy, weight change or lack of skin elasticity. The aim of this research was to obtain a topical product containing herbal active ingredients with documented antioxidant and anti-inflammatory activity (Punica granatum seed oil and Croton lechleri resin extract) and demonstrate its positive effect on prevention and treatment of striae distensae. First, the cream base formulation was optimized through experimental design. Secondly, the cream containing the two active ingredients was investigated in an interventional nonrandomized clinical trial. The clinical outcome was assessed through biophysical parameters and ultrasonographic evaluation. The state of the skin was evaluated by biophysical measurements and ultrasonography at the beginning of the study and after 3 and 6 weeks. The experimental design was successfully used to set the best ranges for the technological and formulation factors to obtain a cosmetic formulation with optimal characteristics. The study of clinical efficacy on the optimal formulation revealed an increase in the dermis thickness, hydration and elasticity values in both groups after 6 weeks of cream application. The new oil-in-water cream containing P. granatum seed oil and C. lechleri resin extract can be helpful in the prevention or improving of skin changes associated with striae. PMID:28280300

  15. Comparison of High-Speed Operating Characteristics of Size 215 Cylindrical-Roller Bearings as Determined in Turbojet Engine and in Laboratory Test Rig

    NASA Technical Reports Server (NTRS)

    Macks, E Fred; Nemeth, Zolton N

    1951-01-01

    A comparison of the operating characteristics of 75-millimeter-bore (size 215) cylindrical-roller one-piece inner-race-riding cage-type bearings was made using a laboratory test rig and a turbojet engine. Cooling correlation parameters were determined by means of dimensional analysis, and the generalized results for both the inner- and outer-race bearing operating temperatures are compared for the laboratory test rig and the turbojet engine. Inner- and outer-race cooling-correlation curves were obtained for the turbojet-engine turbine-roller bearing with the same inner- and outer-race correlation parameters and exponents as those determined for the laboratory test-rig bearing. The inner- and outer-race turbine roller-bearing temperatures may be predicted from a single curve, regardless of variations in speed, load, oil flow, oil inlet temperature, oil inlet viscosity, oil-jet diameter or any combination of these parameters. The turbojet-engine turbine-roller-bearing inner-race temperatures were 30 to 60 F greater than the outer-race-maximum temperatures, the exact values depending on the operating condition and oil viscosity; these results are in contrast to the laboratory test-rig results where the inner-race temperatures were less than the outer-race-maximum temperatures. The turbojet-engine turbine-roller bearing, maximum outer-race circumferential temperature variation was approximately 30 F for each of the oils used. The effect of oil viscosity on inner- and outer-race turbojet-engine turbine-roller-bearing temperatures was found to be significant. With the lower viscosity oil (6x10(exp -7) reyns (4.9 centistokes) at 100 F; viscosity index, 83), the inner-race temperature was approximately 30 to 35 F less than with the higher viscosity oil (53x10(exp -7) reyns (42.8 centistokes) at 100 F; viscosity index, 150); whereas the outer-race-maximum temperatures were 12 to 28 F lower with the lower viscosity oil over the DN range investigated.

  16. Combusting vegetable oils in diesel engines: the impact of unsaturated fatty acids on particle emissions and mutagenic effects of the exhaust.

    PubMed

    Bünger, Jürgen; Bünger, Jörn F; Krahl, Jürgen; Munack, Axel; Schröder, Olaf; Brüning, Thomas; Hallier, Ernst; Westphal, Götz A

    2016-06-01

    High particle emissions and strong mutagenic effects were observed after combustion of vegetable oil in diesel engines. This study tested the hypothesis that these results are affected by the amount of unsaturated or polyunsaturated fatty acids of vegetable oils. Four different vegetable oils (coconut oil, CO; linseed oil, LO; palm tree oil, PO; and rapeseed oil, RO) and common diesel fuel (DF) were combusted in a heavy-duty diesel engine. The exhausts were investigated for particle emissions and mutagenic effects in direct comparison with emissions of DF. The engine was operated using the European Stationary Cycle. Particle masses were measured gravimetrically while mutagenicity was determined using the bacterial reverse mutation assay with tester strains TA98 and TA100. Combustion of LO caused the largest amount of total particulate matter (TPM). In comparison with DF, it particularly raised the soluble organic fraction (SOF). RO presented second highest TPM and SOF, followed by CO and PO, which were scarcely above DF. RO revealed the highest number of mutations of the vegetable oils closely followed by LO. PO was less mutagenic, but still induced stronger effects than DF. While TPM and SOF were strongly correlated with the content of polyunsaturated fatty acids in the vegetable oils, mutagenicity had a significant correlation with the amount of total unsaturated fatty acids. This study supports the hypothesis that numbers of double bounds in unsaturated fatty acids of vegetable oils combusted in diesel engines influence the amount of emitted particles and the mutagenicity of the exhaust. Further investigations have to elucidate the causal relationship.

  17. Emulsions and rectal formulations containing myrrh essential oil for better patient compliance.

    PubMed

    Etman, M; Amin, M; Nada, A H; Shams-Eldin, M; Salama, O

    2011-06-01

    Myrrh has long been used for its circulatory, disinfectant, analgesic, antirheumatic, antidiabetic, and schistosomicidal properties. Myrrh essential oil (MEO) was extracted from the oleo-gum resin of Commiphora molmol and formulated into emulsions and suppositories to mask/avoid its bitter taste. Three oil-in-water emulsions (E1-E3) were formulated and taste was evaluated by 10 volunteers. Particle size distribution was measured and correlated with excipients and the method of preparation. Physical and chemical stability testing was carried out for the optimum formulation (E2). Seven suppository formulations were investigated (F1-F7). Suppocire AML (F1) and Suppocire CM (F2) were chosen as fatty bases, and polyethylene glycol (PEG) 1500 (F3), PEG 4000 (F4), and a PEG blend (50% PEG 6000 + 30% PEG 1500 + 20% PEG 400) (F5) were chosen as water-soluble bases. A blend of PEG 1500 and Suppocire CM was also used (F7). Camphor (5%) was added to PEG 1500 (F6). Disintegration time, release rate, DSC, fracture points, and weight uniformity were evaluated. The overall average bitterness for formulations E1, E2, and E3 was 6.44, 4.15, and 3.45, respectively. Suppositories containing Suppocire AML had the fastest disintegration time (1.5 min) with dissolution efficiency (DE) of 56.8%. F3 containing PEG 1500 had a fast disintegration time of 2.5 min and maximum DE of 93.5%. The PEG blend had satisfactory release: (DE = 90.9%). A mixed fatty and water-soluble base (F7) had a disintegration time of 5 min and low DE (33.4%). A stable MEO emulsion with acceptable taste was formulated to improve patient acceptance and compliance. F3 suppositories yielded satisfactory results, while formulations containing fatsoluble bases exhibited poor release.

  18. Effects of tallow, choice white grease, palm oil, corn oil, or soybean oil on apparent total tract digestibility of minerals in diets fed to growing pigs.

    PubMed

    Merriman, L A; Walk, C L; Parsons, C M; Stein, H H

    2016-10-01

    An experiment was conducted to determine the effect of supplementing diets fed to growing pigs with fat sources differing in their composition of fatty acids on the apparent total tract digestibility (ATTD) of minerals. A diet based on corn, potato protein isolate, and 7% sucrose was formulated. Five additional diets that were similar to the previous diet with the exception that sucrose was replaced by 7% tallow, choice white grease, palm oil, corn oil, or soybean oil were also formulated. Diets were formulated to contain 0.70% Ca and 0.33% standardized total tract digestible P. Growing barrows ( = 60; 15.99 ± 1.48 kg initial BW) were allotted to a randomized complete block design with 2 blocks of 30 pigs, 6 dietary treatments, and 10 replicate pigs per treatment. Experimental diets were provided for 12 d with the initial 5 d being the adaptation period. Total feces were collected for a 5-d collection period using the marker-to-marker approach, and the ATTD of minerals, ether extract, and acid hydrolyzed ether extract was calculated for all diets. Digestibility of DM was greater ( < 0.05) in the diet containing soybean oil compared with the diet containing choice white grease or the basal diet, with all other diets being intermediate. The ATTD of Ca, S, and P was greater ( < 0.05) for pigs fed diets containing soybean oil, corn oil, palm oil, or tallow than for pigs fed the basal diet or the diet containing choice white grease. The ATTD of Mg, Zn, Mn, Na, and K were not different among dietary treatments. The ATTD of ether extract was greater ( < 0.05) in diets containing palm oil, corn oil, or soybean oil compared with the diet containing choice white grease, and the ATTD of acid hydrolyzed ether extract in the diet containing soybean oil was also greater ( < 0.05) than in the diet containing choice white grease. In conclusion, supplementation of a basal diet with tallow, palm oil, corn oil, or soybean oil may increase the ATTD of some macrominerals, but that appears not to be the case if choice white grease is used. There was no evidence of negative effects of the fat sources used in this experiment on the ATTD of any minerals.

  19. Elevating bioavailability of curcumin via encapsulation with a novel formulation of artificial oil bodies.

    PubMed

    Chang, Ming-Tsung; Tsai, Tong-Rong; Lee, Chun-Yann; Wei, Yu-Sheng; Chen, Ying-Jie; Chen, Chun-Ren; Tzen, Jason T C

    2013-10-09

    Utilization of curcumin has been limited due to its poor oral bioavailability. Oral bioavailability of hydrophobic compounds might be elevated via encapsulation in artificial seed oil bodies. This study aimed to improve oral bioavailability of curcumin via this encapsulation. Unfortunately, curcumin was indissoluble in various seed oils. A mixed dissolvent formula was used to dissolve curcumin, and the admixture was successfully encapsulated in artificial oil bodies stabilized by recombinant sesame caleosin. The artificial oil bodies of relatively small sizes (150 nm) were stably solidified in the forms of powder and tablet. Oral bioavailability of curcumin with or without encapsulation in artificial oil bodies was assessed in Sprague-Dawley male rats. The results showed that encapsulation of curcumin significantly elevated its bioavailability and provided the highest maximum whole blood concentration (Cmax), 37 ± 28 ng/mL, in the experimental animals 45 ± 17 min (t(max)) after oral administration. Relative bioavailability calculated on the basis of the area under the plasma concentration-time curve (AUC) was increased by 47.7 times when curcumin was encapsulated in the artificial oil bodies. This novel formulation of artificial oil bodies seems to possess great potential to encapsulate hydrophobic drugs for oral administration.

  20. Low-VOC wood floor varnishes from waterborne oil-modified urethanes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ingle, D.M.; Petschke, G.H.

    Varnishes protect wood flooring and enhance its beauty. Varnish compositions have varied from drying oils and alkyds to more durable systems (moisture-cured urethanes, oil-modified urethanes, epoxies and UV-curable coatings). Some chemistries are better suited for professional or factory applied situations. Oils, alkyds and oil-modified urethanes (OMU) are suitable for onsite professional application or even refinish application by homeowners (DIY market). These materials traditionally have been high in VOC. Recently, waterborne (WB) systems (such as polyurethane dispersions) with greatly reduced VOC have been used; high costs and relatively poor durability are drawbacks. A new generation of high performance waterborne oil-modified urethanemore » is now available with extended shelf-stability required for contractor and consumer markets. Formulated varnishes are coming onto the market that offer performance similar to conventional OMU, but with significant reductions in VOC. For example, a typical formulation for a conventional solvent-borne oil-modified urethane can be supplied at 1.6 lb/gal (less water). This represents a VOC reduction of 70-75% at equal application coating weight. Furthermore, waterborne oil-modified urethane offers advantages over polyurethane dispersions in performance areas such as durability and mar resistance.« less

  1. Transesterification reaction for synthesis of palm-based ethylhexyl ester and formulation as base oil for synthetic drilling fluid.

    PubMed

    Abdul Habib, Nor Saiful Hafiz; Yunus, Robiah; Rashid, Umer; Taufiq-Yap, Yun H; Abidin, Zurina Zainal; Syam, Azhari Muhammad; Irawan, Sonny

    2014-01-01

    The use of vegetable oil-based ester as a base fluid in synthetic drilling fluid has become a trend in drilling operations due to its environmental advantages. The transesterification reaction of palm oil methyl ester (POME) with 2-ethylhexanol (2EH) produced 98% of palm oil-based ethylhexyl ester in less than 30 minutes. Since the transesterification reaction of POME with 2EH is a reversible reaction, its kinetics was studied in the presence of excess EH and under vacuum. The POME-to-EH molar ratio and vacuum pressure were held constant at 1:2 and 1.5 mbar respectively and the effects of temperature (70 to 110°C) were investigated. Using excess of EH and continual withdrawal of methanol via vacuum promoted the reaction to complete in less than 10 minutes. The rate constant of the reaction (k) obtained from the kinetics study was in the range of 0.44 to 0.66 s⁻¹ and the activation energy was 15.6 kJ.mol⁻¹. The preliminary investigations on the lubrication properties of drilling mud formulated with palm oil-based 2EH ester indicated that the base oil has a great potential to substitute the synthetic ester-based oil for drilling fluid. Its high kinematic viscosity provides better lubrication to the drilling fluid compared to other ester-based oils. The pour point (-15°C) and flash point (204°C) values are superior for the drilling fluid formulation. The plastic viscosity, HPHT filtrate loss and emulsion stability of the drilling fluid had given acceptable values, while gel strength and yield point could be improved by blending it with proper additives.

  2. Advancements Toward Oil-Free Rotorcraft Propulsion

    NASA Technical Reports Server (NTRS)

    Howard, Samuel A.; Bruckner, Robert J.; Radil, Kevin C.

    2010-01-01

    NASA and the Army have been working for over a decade to advance the state-of-the-art (SOA) in Oil-Free Turbomachinery with an eye toward reduced emissions and maintenance, and increased performance and efficiency among other benefits. Oil-Free Turbomachinery is enabled by oil-free gas foil bearing technology and relatively new high-temperature tribological coatings. Rotorcraft propulsion is a likely candidate to apply oil-free bearing technology because the engine size class matches current SOA for foil bearings and because foil bearings offer the opportunity for higher speeds and temperatures and lower weight, all critical issues for rotorcraft engines. This paper describes an effort to demonstrate gas foil journal bearing use in the hot section of a full-scale helicopter engine core. A production engine hot-core location is selected as the candidate foil bearing application. Rotordynamic feasibility, bearing sizing, and load capability are assessed. The results of the program will help guide future analysis and design in this area by documenting the steps required and the process utilized for successful application of oil-free technology to a full-scale engine.

  3. 40 CFR 447.10 - Applicability; description of the oil-base solvent wash ink subcategory.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-base solvent wash ink subcategory. 447.10 Section 447.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INK FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Ink Subcategory § 447.10 Applicability; description of the oil-base solvent wash ink...

  4. 40 CFR 447.10 - Applicability; description of the oil-base solvent wash ink subcategory.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-base solvent wash ink subcategory. 447.10 Section 447.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) INK FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Ink Subcategory § 447.10 Applicability; description of the oil-base solvent...

  5. 40 CFR 447.10 - Applicability; description of the oil-base solvent wash ink subcategory.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-base solvent wash ink subcategory. 447.10 Section 447.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS INK FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Ink Subcategory § 447.10 Applicability; description of the oil-base solvent wash ink...

  6. 40 CFR 447.10 - Applicability; description of the oil-base solvent wash ink subcategory.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-base solvent wash ink subcategory. 447.10 Section 447.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) INK FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Ink Subcategory § 447.10 Applicability; description of the oil-base solvent...

  7. 40 CFR 447.10 - Applicability; description of the oil-base solvent wash ink subcategory.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-base solvent wash ink subcategory. 447.10 Section 447.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) INK FORMULATING POINT SOURCE CATEGORY Oil-Base Solvent Wash Ink Subcategory § 447.10 Applicability; description of the oil-base solvent...

  8. Cedarwood oil in water formulations for pressure-treating wood

    USDA-ARS?s Scientific Manuscript database

    Cedarwood oil has previously been demonstrated to confer resistance to otherwise non-resistant wood. This earlier research involved the use of ethanol as the carrier solvent to impregnate the wood. For several reasons, a better carrier for the cedarwood oil was desired. In this current study, severa...

  9. 7 CFR 3201.107 - Water turbine bearing oils.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Water turbine bearing oils. 3201.107 Section 3201.107... Designated Items § 3201.107 Water turbine bearing oils. (a) Definition. Lubricants that are specifically formulated for use in the bearings found in water turbines for electric power generation. Previously...

  10. Preparation of margarines from organogels of sunflower wax and vegetable oils

    USDA-ARS?s Scientific Manuscript database

    It was previously reported that sunflower wax (SW) had high potential as an organogelator for soybean oil-based margarine and spread products. In this study twelve other vegetable oils were evaluated in a margarine formulation to test feasibility of utilization of SW as an alternative to solid fats ...

  11. Influence of the Oil Phase and Topical Formulation on the Wound Healing Ability of a Birch Bark Dry Extract

    PubMed Central

    Steinbrenner, Isabel; Houdek, Pia; Pollok, Simone; Brandner, Johanna M.; Daniels, Rolf

    2016-01-01

    Triterpenes from the outer bark of birch are known for various pharmacological effects including enhanced wound healing (WH). A birch bark dry extract (TE) obtained by accelerated solvent extraction showed the ability to form oleogels when it is suspended in oils. Consistency of the oleogels and the dissolved amount of triterpenes varies largely with the used oil. Here we wanted to know to what extent different oils and formulations (oleogel versus o/w emulsion) influence WH. Looking at the plain oils, medium-chain triglycerides (MCT) enhanced WH (ca. 1.4-fold), while e.g. castor oil (ca.0.3-fold) or light liquid paraffin (LLP; ca. 0.5-fold) significantly decreased WH. Concerning the respective oleogels, TE-MCT showed no improvement although the solubility of the TE was high. In contrast, the oleogel of sunflower oil which alone showed a slight tendency to impair WH, enhanced WH significantly (ca. 1.6-fold). These results can be explained by release experiments where the release rate of betulin, the main component of TE, from MCT oleogels was significantly lower than from sunflower oil oleogels. LLP impaired WH as plain oil and even though it released betulin comparable to sunflower oil it still results in an overall negative effect of the oleogel on WH. As a further formulation option also surfactant free o/w emulsions were prepared using MCT, sunflower oil and LLP as a nonpolar oil phase. Depending on the preparation method (suspension or oleogel method) the distribution of the TE varied markedly and affected also release kinetics. However, the released betulin was clearly below the values measured with the respective oleogels. Consequently, none of the emulsions showed a significantly positive effect on WH. In conclusion, our data show that the oil used as a vehicle influences wound healing not only by affecting the release of the extract, but also by having its own vehicle effect on wound healing. This is also of importance for other applications where drugs have to be applied in non-polar vehicles because these solvents likely influence the outcome of the experiment substantially. PMID:27219110

  12. Diagnosis of lubricating oil by evaluating cyanide and carbon molecular emission lines in laser induced breakdown spectra

    NASA Astrophysics Data System (ADS)

    Elnasharty, I. Y.; Kassem, A. K.; Sabsabi, M.; Harith, M. A.

    2011-08-01

    To prevent engine failure it is essential to change lubricating oil regularly before it loses its protective properties. It is also necessary to monitor the physical and chemical conditions of the oil to reliably determine the optimum oil-change intervals. The present work focuses on studying evolution of the cyanide (CN) and carbon (C 2) molecular spectral emission lines in the laser induced breakdown spectra of lubricating oil as a function of its consumption. The intensities of these molecular bands have been taken as indicator of engine oil degradation at certain mileage. Furthermore, the percentage of decay of CN and C 2 integral intensity values at the corresponding mileage was calculated in order to relate it to the degree of consumption of the motor oil. Such percentage decay of the CN and C 2 integral intensities have been found to increase gradually with increasing mileage which is accompanied with increasing depletion of engine oil. The results of using LIBS technique in the present measurements proved that it is possible to have a direct, straightforward and easy method for prediction of lubricating oil degree of consumption. This may facilitate scheduling the proper time and/or mileage intervals for changing the oil to avoid any possibility of engine failure.

  13. RAPIDGRAB 2000™

    EPA Pesticide Factsheets

    Technical product bulletin: this miscellaneous oil spill control agent used in cleanups is a non-ionic liquid formulation applied by mist spraying onto floating oil slicks and sheens. Uses oleophitic synergistic effect of contraction and congealment.

  14. Antimicrobial efficacy of a novel eucalyptus oil, chlorhexidine digluconate and isopropyl alcohol biocide formulation.

    PubMed

    Hendry, Emma; Conway, Barbara; Worthington, Tony

    2012-10-30

    Effective surface disinfection is a fundamental infection control strategy within healthcare. This study assessed the antimicrobial efficacy of novel biocide formulations comprising 5% and 2% eucalyptus oil (EO) combined with 2% chlorhexidine digluconate (CHG) and 70% isopropyl alcohol (IPA) contained within a wipe. The efficacy of this novel antimicrobial formulation to remove and eliminate methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Candida albicans from steel surfaces was investigated. Adpression studies of pre-contaminated wipes were also utilised to assess their potential to induce cross-contamination between hard surfaces. Furthermore, the bactericidal nature of the EO-formulation was established in addition to time-kill. The EO-containing formulations demonstrated bactericidal antimicrobial efficacy against all microorganisms and did not induce surface cross-contamination. There was no significant difference (p < 0.05) between the 5% and 2% EO formulations in their ability to remove microorganisms from steel surfaces, however both significantly (p < 0.05) removed more than the control formulations. Microbial biofilms were eliminated within 10 min (p < 0.05) when exposed to the EO formulations. Our novel EO-formulation demonstrated rapid antimicrobial efficacy for potential disinfection and elimination of microbial biofilms from hard surfaces and may therefore be a useful adjunct to current infection control strategies currently employed within healthcare facilities.

  15. Antimicrobial Efficacy of a Novel Eucalyptus Oil, Chlorhexidine Digluconate and Isopropyl Alcohol Biocide Formulation

    PubMed Central

    Hendry, Emma; Conway, Barbara; Worthington, Tony

    2012-01-01

    Effective surface disinfection is a fundamental infection control strategy within healthcare. This study assessed the antimicrobial efficacy of novel biocide formulations comprising 5% and 2% eucalyptus oil (EO) combined with 2% chlorhexidine digluconate (CHG) and 70% isopropyl alcohol (IPA) contained within a wipe. The efficacy of this novel antimicrobial formulation to remove and eliminate methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli and Candida albicans from steel surfaces was investigated. Adpression studies of pre-contaminated wipes were also utilised to assess their potential to induce cross-contamination between hard surfaces. Furthermore, the bactericidal nature of the EO-formulation was established in addition to time-kill. The EO-containing formulations demonstrated bactericidal antimicrobial efficacy against all microorganisms and did not induce surface cross-contamination. There was no significant difference (p < 0.05) between the 5% and 2% EO formulations in their ability to remove microorganisms from steel surfaces, however both significantly (p < 0.05) removed more than the control formulations. Microbial biofilms were eliminated within 10 min (p < 0.05) when exposed to the EO formulations. Our novel EO-formulation demonstrated rapid antimicrobial efficacy for potential disinfection and elimination of microbial biofilms from hard surfaces and may therefore be a useful adjunct to current infection control strategies currently employed within healthcare facilities. PMID:23203047

  16. Adaptive individual-cylinder thermal state control using piston cooling for a GDCI engine

    DOEpatents

    Roth, Gregory T; Husted, Harry L; Sellnau, Mark C

    2015-04-07

    A system for a multi-cylinder compression ignition engine includes a plurality of nozzles, at least one nozzle per cylinder, with each nozzle configured to spray oil onto the bottom side of a piston of the engine to cool that piston. Independent control of the oil spray from the nozzles is provided on a cylinder-by-cylinder basis. A combustion parameter is determined for combustion in each cylinder of the engine, and control of the oil spray onto the piston in that cylinder is based on the value of the combustion parameter for combustion in that cylinder. A method for influencing combustion in a multi-cylinder engine, including determining a combustion parameter for combustion taking place in in a cylinder of the engine and controlling an oil spray targeted onto the bottom of a piston disposed in that cylinder is also presented.

  17. Optimizing power cylinder lubrication on a large bore natural gas engine

    NASA Astrophysics Data System (ADS)

    Luedeman, Matthew R.

    More than 6000 integral compressors, located along America's natural gas pipelines, pump natural gas across the United States. These compressors are powered by 2-stroke, large bore natural gas burning engines. Lowering the operating costs, reducing the emissions, and ensuring that these engines remain compliant with future emission regulations are the drivers for this study. Substantial research has focused on optimizing efficiency and reducing the fuel derived emissions on this class of engine. However, significantly less research has focused on the effect and reduction of lubricating oil derived emissions. This study evaluates the impact of power cylinder lubricating oil on overall engine emissions with an emphasis on reducing oxidation catalyst poisoning. A traditional power cylinder lubricator was analyzed; power cylinder lubricating oil was found to significantly impact exhaust emissions. Lubricating oil was identified as the primary contributor of particulate matter production in a large bore natural gas engine. The particulate matter was determined to be primarily organic carbon, and most likely direct oil carryover of small oil droplets. The particulate matter production equated to 25% of the injected oil at a nominal power cylinder lubrication rate. In addition, power cylinder friction is considered the primary contributor to friction loss in the internal combustion engine. This study investigates the potential for optimizing power cylinder lubrication by controlling power cylinder injection to occur at the optimal time in the piston cycle. By injecting oil directly into the ring pack, it is believed that emissions, catalyst poisoning, friction, and wear can all be reduced. This report outlines the design and theory of two electronically controlled lubrication systems. Experimental results and evaluation of one of the systems is included.

  18. A Wavelength Modulated, Continuum Excited Furnance Atomic Fluorescence System for the Determination of Wear Metals in Jet Engine Lubricating Oils.

    DTIC Science & Technology

    1980-01-01

    ting Oils 6. PERFORMING 04G. REPORT NUMBER -7 AUTHOR(s) 8 . CONTRACT OR GRANT NUMBER(s) O /Thomna-s F. Wynn, Jr: Capt, USAF 9. PERFORMING ORGANIZATION...EXCITED FURNACE ATOMIC FLUORESCENCE SYSTEM FOR THE DETERMINATION OF WEAR METALS IN JET ENGINE LUBRICATING OILS \\Ac ces-.ic’flr For DDC TL3 Unp-nnounced...DETERMINATION OF WEAR METALS IN JET ENGINE LUBRICATING OILS By Thomas F. Wynn, Jr. March, 1980 Chairman: James D. Winefordner Major Department: Chemistry A

  19. 78 FR 5126 - Airworthiness Directives; Rolls-Royce plc Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-24

    ... Airworthiness Directives; Rolls-Royce plc Turbofan Engines AGENCY: Federal Aviation Administration (FAA), DOT... turbofan engines. This AD requires replacement of the fuel oil heat exchanger (FOHE). This AD was prompted...-84 turbofan engines with a fuel oil heat exchanger (FOHE), part number 47111-1241, installed. (d...

  20. 40 CFR 1051.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... necessary. This might include adding engine oil, changing air, fuel, or oil filters, servicing engine... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission... the maintenance will be done at the recommended interval on in-use engines. In considering your...

  1. 40 CFR 1051.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... necessary. This might include adding engine oil, changing air, fuel, or oil filters, servicing engine... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission... the maintenance will be done at the recommended interval on in-use engines. In considering your...

  2. 40 CFR 1051.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... necessary. This might include adding engine oil, changing air, fuel, or oil filters, servicing engine... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission... the maintenance will be done at the recommended interval on in-use engines. In considering your...

  3. 40 CFR 1051.125 - What maintenance instructions must I give to buyers?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... necessary. This might include adding engine oil, changing air, fuel, or oil filters, servicing engine... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM RECREATIONAL ENGINES AND VEHICLES Emission... the maintenance will be done at the recommended interval on in-use engines. In considering your...

  4. Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3.

    PubMed

    Lee, Sook-Kuan; Lur, Huu-Sheng; Lo, Kai-Jiun; Cheng, Kuan-Chen; Chuang, Chun-Chao; Tang, Shiueh-Jung; Yang, Zhi-Wei; Liu, Chi-Te

    2016-09-01

    Biofertilizers can help improve soil quality, promote crop growth, and sustain soil health. The photosynthetic bacterium Rhodopseudomonas palustris strain PS3 (hereafter, PS3), which was isolated from Taiwanese paddy soil, can not only exert beneficial effects on plant growth but also enhance the efficiency of nutrient uptake from applied fertilizer. To produce this elite microbial isolate for practical use, product development and formulation are needed to permit the maintenance of the high quality of the inoculant during storage. The aim of this study was to select a suitable formulation that improves the survival and maintains the beneficial effects of the PS3 inoculant. Six additives (alginate, polyethylene glycol [PEG], polyvinylpyrrolidone-40 [PVP], glycerol, glucose, and horticultural oil) were used in liquid-based formulations, and their capacities for maintaining PS3 cell viability during storage in low, medium, and high temperature ranges were evaluated. Horticultural oil (0.5 %) was chosen as a potential additive because it could maintain a relatively high population and conferred greater microbial vitality under various storage conditions. Furthermore, the growth-promoting effects exerted on Chinese cabbage by the formulated inoculants were significantly greater than those of the unformulated treatments. The fresh and dry weights of the shoots were significantly increased, by 10-27 and 22-40 %, respectively. Horticultural oil is considered a safe, low-cost, and easy-to-process material, and this formulation would facilitate the practical use of strain PS3 in agriculture.

  5. Prospects of pyrolysis oil from plastic waste as fuel for diesel engines: A review

    NASA Astrophysics Data System (ADS)

    Mangesh, V. L.; Padmanabhan, S.; Ganesan, S.; PrabhudevRahul, D.; Reddy, T. Dinesh Kumar

    2017-05-01

    The purpose ofthis study is to review the existing literature about chemical recycling of plastic waste and its potential as fuel for diesel engines. This is a review covering on the field of converting waste plastics into liquid hydrocarbon fuels for diesel engines. Disposal and recycling of waste plastics have become an incremental problem and environmental threat with increasing demand for plastics. One of the effective measures is by converting waste plastic into combustible hydrocarbon liquid as an alternative fuel for running diesel engines. Continued research efforts have been taken by researchers to convert waste plastic in to combustible pyrolysis oil as alternate fuel for diesel engines. An existing literature focuses on the study of chemical structure of the waste plastic pyrolysis compared with diesel oil. Converting waste plastics into fuel oil by different catalysts in catalytic pyrolysis process also reviewed in this paper. The methodology with subsequent hydro treating and hydrocracking of waste plastic pyrolysis oil can reduce unsaturated hydrocarbon bonds which would improve the combustion performance in diesel engines as an alternate fuel.

  6. Analysis of oil consumption in cylinder of diesel engine for optimization of piston rings

    NASA Astrophysics Data System (ADS)

    Zhang, Junhong; Zhang, Guichang; He, Zhenpeng; Lin, Jiewei; Liu, Hai

    2013-01-01

    The performance and particulate emission of a diesel engine are affected by the consumption of lubricating oil. Most studies on oil consumption mechanism of the cylinder have been done by using the experimental method, however they are very costly. Therefore, it is very necessary to study oil consumption mechanism of the cylinder and obtain the accurate results by the calculation method. Firstly, four main modes of lubricating oil consumption in cylinder are analyzed and then the oil consumption rate under common working conditions are calculated for the four modes based on an engine. Then, the factors that affect the lubricating oil consumption such as working conditions, the second ring closed gap, the elastic force of the piston rings are also investigated for the four modes. The calculation results show that most of the lubricating oil is consumed by evaporation on the liner surface. Besides, there are three other findings: (1) The oil evaporation from the liner is determined by the working condition of an engine; (2) The increase of the ring closed gap reduces the oil blow through the top ring end gap but increases blow-by; (3) With the increase of the elastic force of the ring, both the left oil film thickness and the oil throw-off at the top ring decrease. The oil scraping of the piston top edge is consequently reduced while the friction loss between the rings and the liner increases. A neural network prediction model of the lubricating oil consumption in cylinder is established based on the BP neural network theory, and then the model is trained and validated. The main piston rings parameters which affect the oil consumption are optimized by using the BP neural network prediction model and the prediction accuracy of this BP neural network is within 8%, which is acceptable for normal engineering applications. The oil consumption is also measured experimentally. The relative errors of the calculated and experimental values are less than 10%, verifying the validity of the simulation results. Applying the established simulation model and the validated BP network model is able to generate numerical results with sufficient accuracy, which significantly reduces experimental work and provides guidance for the optimal design of the piston rings diesel engines.

  7. Larvicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes

    PubMed Central

    Dua, Virendra K; Pandey, Akhilesh C; Raghavendra, Kamaraju; Gupta, Ashish; Sharma, Trilochan; Dash, Aditya P

    2009-01-01

    Background Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of botanical origin have been reported as useful for control of mosquitoes. Azadirachta indica (Meliaceae) and its derived products have shown a variety of insecticidal properties. The present paper discusses the larvicidal activity of neem-based biopesticide for the control of mosquitoes. Methods Larvicidal efficacy of an emulsified concentrate of neem oil formulation (neem oil with polyoxyethylene ether, sorbitan dioleate and epichlorohydrin) developed by BMR & Company, Pune, India, was evaluated against late 3rd and early 4th instar larvae of different genera of mosquitoes. The larvae were exposed to different concentrations (0.5–5.0 ppm) of the formulation along with untreated control. Larvicidal activity of the formulation was also evaluated in field against Anopheles, Culex, and Aedes mosquitoes. The formulation was diluted with equal volumes of water and applied @ 140 mg a.i./m2 to different mosquito breeding sites with the help of pre calibrated knapsack sprayer. Larval density was determined at pre and post application of the formulation using a standard dipper. Results Median lethal concentration (LC50) of the formulation against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti was found to be 1.6, 1.8 and 1.7 ppm respectively. LC50 values of the formulation stored at 26°C, 40°C and 45°C for 48 hours against Ae. aegypti were 1.7, 1.7, 1.8 ppm while LC90 values were 3.7, 3.7 and 3.8 ppm respectively. Further no significant difference in LC50 and LC90 values of the formulation was observed against Ae. aegypti during 18 months storage period at room temperature. An application of the formulation at the rate of 140 mg a.i./m2 in different breeding sites under natural field conditions provided 98.1% reduction of Anopheles larvae on day 1; thereafter 100% reduction was recorded up to week 1 and more than 80% reduction up to week 3, while percent reduction against Culex larvae was 95.5% on day 1, and thereafter 80% reduction was achieved up to week 3. The formulation also showed 95.1% and, 99.7% reduction of Aedes larvae on day 1 and day 2 respectively; thereafter 100% larval control was observed up to day 7. Conclusion The neem oil formulation was found effective in controlling mosquito larvae in different breeding sites under natural field conditions. As neem trees are widely distributed in India, their formulations may prove to be an effective and eco-friendly larvicide, which could be used as an alternative for malaria control. PMID:19500429

  8. Larvicidal activity of neem oil (Azadirachta indica) formulation against mosquitoes.

    PubMed

    Dua, Virendra K; Pandey, Akhilesh C; Raghavendra, Kamaraju; Gupta, Ashish; Sharma, Trilochan; Dash, Aditya P

    2009-06-08

    Mosquitoes transmit serious human diseases, causing millions of deaths every year. Use of synthetic insecticides to control vector mosquitoes has caused physiological resistance and adverse environmental effects in addition to high operational cost. Insecticides of botanical origin have been reported as useful for control of mosquitoes. Azadirachta indica (Meliaceae) and its derived products have shown a variety of insecticidal properties. The present paper discusses the larvicidal activity of neem-based biopesticide for the control of mosquitoes. Larvicidal efficacy of an emulsified concentrate of neem oil formulation (neem oil with polyoxyethylene ether, sorbitan dioleate and epichlorohydrin) developed by BMR & Company, Pune, India, was evaluated against late 3rd and early 4th instar larvae of different genera of mosquitoes. The larvae were exposed to different concentrations (0.5-5.0 ppm) of the formulation along with untreated control. Larvicidal activity of the formulation was also evaluated in field against Anopheles, Culex, and Aedes mosquitoes. The formulation was diluted with equal volumes of water and applied @ 140 mg a.i./m(2) to different mosquito breeding sites with the help of pre calibrated knapsack sprayer. Larval density was determined at pre and post application of the formulation using a standard dipper. Median lethal concentration (LC(50)) of the formulation against Anopheles stephensi, Culex quinquefasciatus and Aedes aegypti was found to be 1.6, 1.8 and 1.7 ppm respectively. LC(50) values of the formulation stored at 26 degrees C, 40 degrees C and 45 degrees C for 48 hours against Ae. aegypti were 1.7, 1.7, 1.8 ppm while LC(90) values were 3.7, 3.7 and 3.8 ppm respectively. Further no significant difference in LC(50) and LC(90) values of the formulation was observed against Ae. aegypti during 18 months storage period at room temperature. An application of the formulation at the rate of 140 mg a.i./m(2) in different breeding sites under natural field conditions provided 98.1% reduction of Anopheles larvae on day 1; thereafter 100% reduction was recorded up to week 1 and more than 80% reduction up to week 3, while percent reduction against Culex larvae was 95.5% on day 1, and thereafter 80% reduction was achieved up to week 3. The formulation also showed 95.1% and, 99.7% reduction of Aedes larvae on day 1 and day 2 respectively; thereafter 100% larval control was observed up to day 7. The neem oil formulation was found effective in controlling mosquito larvae in different breeding sites under natural field conditions. As neem trees are widely distributed in India, their formulations may prove to be an effective and eco-friendly larvicide, which could be used as an alternative for malaria control.

  9. Ferrographic and spectrometer oil analysis from a failed gas turbine engine

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.

    1983-01-01

    An experimental gas turbine engine was destroyed as a result of the combustion of its titanium components. It was concluded that a severe surge may have caused interference between rotating and stationary compressor parts that either directly or indirectly ignited the titanium components. Several engine oil samples (before and after the failure) were analyzed with a Ferrograph, and with plasma, atomic absorption, and emission spectrometers to see if this information would aid in the engine failure diagnosis. The analyses indicated that a lubrication system failure was not a causative factor in the engine failure. Neither an abnormal wear mechanism nor a high level of wear debris was detected in the engine oil sample taken just prior to the test in which the failure occurred. However, low concentrations (0.2 to 0.5 ppm) of titanium were evident in this sample and samples taken earlier. After the failure, higher titanium concentrations (2 ppm) were detected in oil samples taken from different engine locations. Ferrographic analysis indicated that most of the titanium was contained in spherical metallic debris after the failure. The oil analyses eliminated a lubrication system bearing or shaft seal failure as the cause of the engine failure. Previously announced in STAR as N83-12433

  10. Comparison of the single dose pharmacokinetics, pharmacodynamics, and safety of two novel oral formulations of dimethandrolone undecanoate (DMAU): a potential oral, male contraceptive.

    PubMed

    Ayoub, R; Page, S T; Swerdloff, R S; Liu, P Y; Amory, J K; Leung, A; Hull, L; Blithe, D; Christy, A; Chao, J H; Bremner, W J; Wang, C

    2017-03-01

    Dimethandrolone (DMA, 7α,11β-dimethyl-19-nortestosterone) has both androgenic and progestational activities, ideal properties for a male hormonal contraceptive. In vivo, dimethandrolone undecanoate (DMAU) is hydrolyzed to DMA. We showed previously that single oral doses of DMAU powder in capsule taken with food are well tolerated and effective at suppressing both LH and testosterone (T), but absorption was low. We compared the pharmacokinetics and pharmacodynamics of two new formulations of DMAU, in castor oil and in self-emulsifying drug delivery systems (SEDDS), with the previously tested powder formulation. DMAU was dosed orally in healthy adult male volunteers at two academic medical centers. For each formulation tested in this double-blind, placebo-controlled study, 10 men received single, escalating, oral doses of DMAU (100, 200, and 400 mg) and two subjects received placebo. All doses were evaluated for both fasting and with a high fat meal. All three formulations were well tolerated without clinically significant changes in vital signs, blood counts, or serum chemistries. For all formulations, DMA and DMAU showed higher maximum (p < 0.007) and average concentrations (p < 0.002) at the 400 mg dose, compared with the 200 mg dose. The powder formulation resulted in a lower conversion of DMAU to DMA (p = 0.027) compared with both castor oil and SEDDS formulations. DMAU in SEDDS given fasting resulted in higher serum DMA and DMAU concentrations compared to the other two formulations. Serum LH and sex hormone concentrations were suppressed by all formulations of 200 and 400 mg DMAU when administered with food, but only the SEDDS formulation was effectively suppressed serum T when given fasting. We conclude that while all three formulations of oral DMAU are effective and well tolerated when administered with food, DMAU in oil and SEDDS increased conversion to DMA, and SEDDS may have some effectiveness when given fasting. These properties might be advantageous for the application of DMAU as a male contraceptive. © 2016 American Society of Andrology and European Academy of Andrology.

  11. Transgenic oil palm: production and projection.

    PubMed

    Parveez, G K; Masri, M M; Zainal, A; Majid, N A; Yunus, A M; Fadilah, H H; Rasid, O; Cheah, S C

    2000-12-01

    Oil palm is an important economic crop for Malaysia. Genetic engineering could be applied to produce transgenic oil palms with high value-added fatty acids and novel products to ensure the sustainability of the palm oil industry. Establishment of a reliable transformation and regeneration system is essential for genetic engineering. Biolistic was initially chosen as the method for oil palm transformation as it has been the most successful method for monocotyledons to date. Optimization of physical and biological parameters, including testing of promoters and selective agents, was carried out as a prerequisite for stable transformation. This has resulted in the successful transfer of reporter genes into oil palm and the regeneration of transgenic oil palm, thus making it possible to improve the oil palm through genetic engineering. Besides application of the Biolistics method, studies on transformation mediated by Agrobacterium and utilization of the green fluorescent protein gene as a selectable marker gene have been initiated. Upon the development of a reliable transformation system, a number of useful targets are being projected for oil palm improvement. Among these targets are high-oleate and high-stearate oils, and the production of industrial feedstock such as biodegradable plastics. The efforts in oil palm genetic engineering are thus not targeted as commodity palm oil. Due to the long life cycle of the palm and the time taken to regenerate plants in tissue culture, it is envisaged that commercial planting of transgenic palms will not occur any earlier than the year 2020.

  12. Studies on the effects of storage stability of bio-oil obtained from pyrolysis of Calophyllum inophyllum deoiled seed cake on the performance and emission characteristics of a direct-injection diesel engine.

    PubMed

    Rajamohan, Sakthivel; Kasimani, Ramesh

    2018-04-19

    The highly unbalanced nature of bio-oil composition poses a serious threat in terms of storage and utilization of bio-oil as a viable fuel in engines. So it becomes inevitable to study the variations in physicochemical properties of the bio-oil during storage to value its chemical instability, for designing stabilization methodologies. The present study aims to investigate the effects of storage stability of bio-oil extracted from pyrolyzing Calophyllum inophyllum (CI) deoiled seed cake on the engine operating characteristics. The bio-oil is produced in a fixed bed reactor at 500 °C under the constant heating rate of 30 °C/min. All the stability analysis methods involve an accelerated aging procedure based on standards established by ASTM (D5304 and E2009) and European standard (EN 14112). Gas chromatography-mass spectrometry was employed to analytically characterize the unaged and aged bio-oil samples. The results clearly depict that stabilizing Calophyllum inophyllum bio-oil with 10% (w/w) methanol improved its stability than that of the unstabilized sample thereby reducing the aging rate of bio-oil to 0.04 and 0.13 cst/h for thermal and oxidative aging respectively. Engine testing of the bio-oil sample revealed that aged bio-oil samples deteriorated engine performance and increased emission levels at the exhaust. The oxidatively aged sample showed the lowest BTE (24.41%), the highest BSEC (20.14 MJ/kWh), CO (1.51%), HC (132 ppm), NOx (1098 ppm) and smoke opacity (34.8%).

  13. Analysis of BJ493 diesel engine lubrication system properties

    NASA Astrophysics Data System (ADS)

    Liu, F.

    2017-12-01

    The BJ493ZLQ4A diesel engine design is based on the primary model of BJ493ZLQ3, of which exhaust level is upgraded to the National GB5 standard due to the improved design of combustion and injection systems. Given the above changes in the diesel lubrication system, its improved properties are analyzed in this paper. According to the structures, technical parameters and indices of the lubrication system, the lubrication system model of BJ493ZLQ4A diesel engine was constructed using the Flowmaster flow simulation software. The properties of the diesel engine lubrication system, such as the oil flow rate and pressure at different rotational speeds were analyzed for the schemes involving large- and small-scale oil filters. The calculated values of the main oil channel pressure are in good agreement with the experimental results, which verifies the proposed model feasibility. The calculation results show that the main oil channel pressure and maximum oil flow rate values for the large-scale oil filter scheme satisfy the design requirements, while the small-scale scheme yields too low main oil channel’s pressure and too high. Therefore, application of small-scale oil filters is hazardous, and the large-scale scheme is recommended.

  14. Effect of type of emulsifiers and antioxidants on oxidative stability, colour and fatty acid profile of low-fat beef burgers enriched with unsaturated fatty acids and phytosterols.

    PubMed

    Pennisi Forell, S C; Ranalli, N; Zaritzky, N E; Andrés, S C; Califano, A N

    2010-10-01

    Low-fat beef burgers were formulated using fresh lean meat, 9.9% oleic sunflower oil and 0.1% deodorized fish oil to obtain a product enriched in unsaturated fatty acids. The effect of two emulsifiers (whey proteins or egg white) and natural antioxidants (tocopherols and/or oregano-rosemary), as well as the influence of frozen storage on the oxidative stability, colour, and fatty acid (FA) profile was determined on the cooked products. Whey proteins protected better against oxidation than egg white, and tocopherols demonstrated an adequate antioxidant effect in formulations with egg white. For all the formulations the unsaturated/saturated FA ratio was higher than 5.8, showing a good lipid balance in the products. The consumption of 100g of the cooked product would provide 6% of the recommended daily intake of phytosterols suggested to decrease cholesterol and the risk of heart disease. Formulated low-fat burgers with pre-emulsified oils and phytosterols could be considered to be potentially functional foodstuffs. Copyright (c) 2010 The American Meat Science Association. Published by Elsevier Ltd. All rights reserved.

  15. Evaluation of Stability and In Vitro Security of Nanoemulsions Containing Eucalyptus globulus Oil

    PubMed Central

    Quatrin, Priscilla Maciel; Sagrillo, Michele Rorato; Nascimento, Kátia

    2017-01-01

    Essential oil of Eucalyptus globulus presents several pharmacological properties. However, their therapeutic efficacy may be affected by limitations due to several conditions, rendering it difficult to obtain stable and effective pharmaceutical formulations. The use of nanotechnology is an alternative to improve their characteristics aiming to ensure their stability and effectiveness. Furthermore, studies about the possible toxic effects of nanostructures are necessary to evaluate safety when the formulation comes into contact with human cells. Hence, in this paper, we evaluate for the first time the stability and in vitro cytogenotoxicity of nanoemulsions containing Eucalyptus globulus in peripheral blood mononuclear cells. As a result, the stability study found that the best condition for storage up to 90 days was refrigeration (4°C); it was the condition that best preserved the nanometric features. The content of the major compounds of oil was maintained after nanoencapsulation and preserved over time. In tests to evaluate the safety of this formulation, we can conclude that, at a low concentration (approximately 0.1%), Eucalyptus globulus nanoemulsion did not cause toxicity in peripheral blood mononuclear cells and also showed a protective effect in cells against possible damage when compared to oil in free form. PMID:28691021

  16. Analysis of variation in oil pressure in lubricating system

    NASA Astrophysics Data System (ADS)

    Sharma, Sumit; Upreti, Mritunjay; Sharma, Bharat; Poddar, Keshav

    2018-05-01

    Automotive Maintenance for an engine contributes to its reliability, energy efficiency and repair cost reduction. Modeling of engine performance and fault detection require large amount of data, which are usually obtained on test benches. This report presents a methodical study on analysis of variation in lubrication system of various medium speed engines. Further this study is limited to the influence of Engine Oil Pressure on frictional losses, Torque analysis for various Oil Pressures and an analytical analysis of engine Lubrication System. The data collected from various Engines under diagnostics is represented graphically. Finally the illustrated results were used as a viable source for detection and troubleshooting of faults in Lubrication System of regular passenger vehicle.

  17. Novel Approaches in Formulation of Entomopathogenic Fungi for Control of Insects in Soil, Foliar, and Structural Habitats: Thinking Outside the Box and Expecting the Unexpected

    USDA-ARS?s Scientific Manuscript database

    By and large, mycoinsecticide formulations have involved sprayable products, typically oil flowables, emulsifiable suspensions, wettable powders, and water dispersable granules. Various nutritive or inert carriers have been used to create granular formulations for use against soil pests. Sometime...

  18. Ultrasonication-assisted preparation and characterization of emulsions and emulsion gels for topical drug delivery.

    PubMed

    Singh, Vinay K; Behera, Baikuntha; Pramanik, Krishna; Pal, Kunal

    2015-03-01

    The current study describes the use of ultrasonication for the preparation of biphasic emulsions and emulsion gels for topical drug delivery. Sorbitan monostearate (SMS) was used as the surfactant for stabilizing the interface of sesame oil (apolar phase) and water (polar phase). Emulsions were formed at lower concentrations of SMS, whereas emulsion gels were formed at higher concentrations of SMS. The formulations were characterized by fluorescent microscopy, X-ray diffraction, viscosity, stress relaxation, spreadability, and differential scanning calorimetry studies. Fluorescence microscopy suggested formation of oil-in-water type of formulations. There was an increase in the viscosity, bulk resistance, and firmness of the formulations as the proportions of SMS was increased. The emulsion gels were viscoelastic in nature. Thermal studies suggested higher thermodynamic stability at higher proportions of either SMS or water. Metronidazole, a model antimicrobial drug, was incorporated within the formulations. The release of the drug from the formulations was found to be diffusion mediated. The drug-loaded formulations showed sufficient antimicrobial efficiency to be used as carriers for topical antimicrobial drug delivery. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  19. A low cost mid-infrared sensor for on line contamination monitoring of lubricating oils in marine engines

    NASA Astrophysics Data System (ADS)

    Ben Mohammadi, L.; Kullmann, F.; Holzki, M.; Sigloch, S.; Klotzbuecher, T.; Spiesen, J.; Tommingas, T.; Weismann, P.; Kimber, G.

    2010-04-01

    The chemical and physical condition of oils in marine engines must be monitored to ensure optimum performance of the engine and to avoid damage by degraded oil not adequately lubricating the engine. Routine monitoring requires expensive laboratory testing and highly skilled analysts. This work describes the adaptation and implementation of a mid infrared (MIR) sensor module for continued oil condition monitoring in two-stroke and four-stroke diesel engines. The developed sensor module will help to reduce costs in oil analysis by eliminating the need to collect and send samples to a laboratory for analysis. The online MIR-Sensor module measures the contamination of oil with water, soot, as well as the degradation indicated by the TBN (Total Base Number) value. For the analysis of water, TBN, and soot in marine engine oils, four spectral regions of interest have been identified. The optical absorption in these bands correlating with the contaminations is measured simultaneously by using a four-field thermopile detector, combined with appropriate bandpass filters. Recording of the MIR-absorption was performed in a transmission mode using a flow-through cell with appropriate path length. Since in this case no spectrometer is required, the sensor including the light source, the flowthrough- cell, and the detector can be realised at low cost and in a very compact manner. The optical configuration of the sensor with minimal component number and signal intensity optimisation at the four-field detector was implemented by using non-sequential ray tracing simulation. The used calibration model was robust enough to predict accurately the value for soot, water, and TBN concentration for two-stroke and four-stroke engine oils. The sensor device is designed for direct installation on the host engine or machine and, therefore, becoming an integral part of the lubrication system. It can also be used as a portable stand-alone system for machine fluid analysis in the field.

  20. Metabolism of waste engine oil by Pseudomonas species.

    PubMed

    Salam, Lateef B

    2016-06-01

    Two bacterial strains phylogenetically identified as Pseudomonas aeruginosa strains RM1 and SK1 displayed extensive degradation ability on waste engine oil (SAE 40W) in batch cultures. Spectrophotometric analysis revealed the presence of various heavy metals such as lead, chromium and nickel in the waste engine oil. The rate of degradation of waste engine oil by the isolates, for the first 12 days and the last 9 days were 66.3, 31.6 mg l -1  day -1   and 69.6, 40.0 mg l -1  day -1 for strains RM1 and SK1, respectively. Gas chromatographic (GC) analyses of residual waste engine oil, revealed that 66.58, 89.06 % and 63.40, 90.75 % of the initial concentration of the waste engine oil were degraded by strains RM1 and SK1 within 12 and 21 days. GC fingerprints of the waste engine oil after 12 days of incubation of strains RM1 and SK1 showed total disappearance of C 15 , C 23 , C 24 , C 25 and C 26 hydrocarbon fractions as well as drastic reductions of C 13 , C 14 , C 16 and PAHs fractions such as C 19 -anthracene and C 22 -pyrene. At the end of 21 days incubation, total disappearance of C 17 -pristane, C 22 -pyrene, one of the C 19 -anthracene and significant reduction of C 18 -phytane (97.2 %, strain RM1; 95.1 %, strain SK1) fractions were observed. In addition, <10 % of Day 0 values of medium fraction ranges C 13 , and C 16 were discernible after 21 days. This study has established the potentials of P. aeruginosa strains RM1 and SK1 in the degradation of aliphatic, aromatic and branched alkane components of waste engine oils.

  1. Incident-response monitoring technologies for aircraft cabin air quality

    NASA Astrophysics Data System (ADS)

    Magoha, Paul W.

    Poor air quality in commercial aircraft cabins can be caused by volatile organophosphorus (OP) compounds emitted from the jet engine bleed air system during smoke/fume incidents. Tri-cresyl phosphate (TCP), a common anti-wear additive in turbine engine oils, is an important component in today's global aircraft operations. However, exposure to TCP increases risks of certain adverse health effects. This research analyzed used aircraft cabin air filters for jet engine oil contaminants and designed a jet engine bleed air simulator (BAS) to replicate smoke/fume incidents caused by pyrolysis of jet engine oil. Field emission scanning electron microscopy (FESEM) with X-ray energy dispersive spectroscopy (EDS) and neutron activation analysis (NAA) were used for elemental analysis of filters, and gas chromatography interfaced with mass spectrometry (GC/MS) was used to analyze used filters to determine TCP isomers. The filter analysis study involved 110 used and 90 incident filters. Clean air filter samples exposed to different bleed air conditions simulating cabin air contamination incidents were also analyzed by FESEM/EDS, NAA, and GC/MS. Experiments were conducted on a BAS at various bleed air conditions typical of an operating jet engine so that the effects of temperature and pressure variations on jet engine oil aerosol formation could be determined. The GC/MS analysis of both used and incident filters characterized tri- m-cresyl phosphate (TmCP) and tri-p-cresyl phosphate (TpCP) by a base peak of an m/z = 368, with corresponding retention times of 21.9 and 23.4 minutes. The hydrocarbons in jet oil were characterized in the filters by a base peak pattern of an m/z = 85, 113. Using retention times and hydrocarbon thermal conductivity peak (TCP) pattern obtained from jet engine oil standards, five out of 110 used filters tested had oil markers. Meanwhile 22 out of 77 incident filters tested positive for oil fingerprints. Probit analysis of jet engine oil aerosols obtained from BAS tests by optical particle counter (OPC) revealed lognormal distributions with the mean (range) of geometric mass mean diameter (GMMD) = 0.41 (0.39, 0.45) microm and geometric standard deviation (GSD), sigma g = 1.92 (1.87, 1.98). FESEM/EDS and NAA techniques found a wide range of elements on filters, and further investigations of used filters are recommended using these techniques. The protocols for air and filter sampling and GC/MS analysis used in this study will increase the options available for detecting jet engine oil on cabin air filters. Such criteria could support policy development for compliance with cabin air quality standards during incidents.

  2. Trace analysis of surfactants in Corexit oil dispersant formulations and seawater

    NASA Astrophysics Data System (ADS)

    Place, Benjamin J.; Perkins, Matt J.; Sinclair, Ewan; Barsamian, Adam L.; Blakemore, Paul R.; Field, Jennifer A.

    2016-07-01

    After the April 2010 explosion on the Deepwater Horizon oil rig, and subsequent release of millions of barrels of oil, two Corexit oil dispersant formulations were used in unprecedented quantities both on the surface and sub-surface of the Gulf of Mexico. Although the dispersant formulations contain four classes of surfactants, current studies to date focus on the anionic surfactant, bis-(2-ethylhexyl) sulfosuccinate (DOSS). Factors affecting the integrity of environmental and laboratory samples for Corexit analysis have not been systematically investigated. For this reason, a quantitative analytical method was developed for the detection of all four classes of surfactants, as well as the hydrolysis products of DOSS, the enantiomeric mixture of α- and β-ethylhexyl sulfosuccinate (α-/β-EHSS). The analytical method was then used to evaluate which practices for sample collection, storage, and analysis resulted in high quality data. Large volume, direct injection of seawater followed by liquid chromatography tandem mass spectrometry (LC-MS/MS) minimized analytical artifacts, analysis time, and both chemical and solid waste. Concentrations of DOSS in the seawater samples ranged from 71 to 13,000 ng/L, while the nonionic surfactants including Span 80, Tween 80, Tween 85 were detected infrequently (26% of samples) at concentrations from 840 to 9100 ng/L. The enantiomers α-/β-EHSS were detected in seawater, at concentrations from 200 to 1900 ng/L, and in both Corexit dispersant formulations, indicating α-/β-EHSS were applied to the oil spill and may be not unambiguous indicator of DOSS degradation. Best practices are provided to ensure sample integrity and data quality for environmental monitoring studies and laboratory that require the detection and quantification of Corexit-based surfactants in seawater.

  3. Ketoprofen suppository dosage forms: in vitro release and in vivo absorption studies in rabbits.

    PubMed

    Babar, A; Bellete, T; Plakogiannis, F M

    1999-02-01

    In vitro release of ketoprofen from suppository bases and in vivo absorption in rabbits were studied. Suppositories containing 50 mg of ketoprofen were prepared using theobroma oil, esterified (c10-c18) fatty acids, and polyethylene glycol 1000 bases. The displacement values of the drug were determined and found to be of the order of theobroma oil > esterified (c10-c18) fatty acids and polyethylene glycol 1000 bases. The suppository hardness data revealed that the theobroma oil base produced relatively brittle suppositories. Using the USP dissolution method, the release of ketoprofen was observed to be greatest from polyethylene glycol 1000 suppositories. With the dialysis technique, the maximum release of drug was obtained from theobroma oil suppository containing polysorbate 40 at a 6% level. Selected suppository formulations were evaluated for rectal absorption studies in rabbits. The in vivo data showed that the optimum drug absorption took place from the polyethylene glycol 1000 base and theobroma oil formulation containing 6% polysorbate 40.

  4. Pickering emulsions based on cyclodextrins: A smart solution for antifungal azole derivatives topical delivery.

    PubMed

    Leclercq, Loïc; Nardello-Rataj, Véronique

    2016-01-20

    Surfactants are usually used for the preparation of emulsions. Potential drawbacks on the human body or on the environment can be observed for some of them(e.g. skin irritation, hemolysis, protein denaturation, etc.). However, it is possible to use biocompatible emulsifiers such as native cyclodextrins (CDs). The mixture of oil (paraffin oil or isopropyl myristate), water and native CDs results in the formation of Pickering emulsions. The emulsion properties were investigated by ternary phase diagrams elaboration, multiple light scattering, optical and transmission microscopies. The results prove that these Pickering emulsions were very stable against coalescence due to the dense film format the oil/water interface. The rheological behavior has shown that these emulsions remain compatible for topical applications. This kind of emulsions (biocompatibility, stability and surfactant free) has been used to obtain sustainable formulations for antifungal econazole derivatives delivery. Our results prove that these new formulations are at least as active as commercially available formulations.

  5. Sensitivity and Antioxidant Response of Chlorella sp. MM3 to Used Engine Oil and Its Water Accommodated Fraction.

    PubMed

    Ramadass, Kavitha; Megharaj, Mallavarapu; Venkateswarlu, Kadiyala; Naidu, Ravi

    2016-07-01

    We exposed the microalgal strain, Chlorella sp. MM3, to unused or used engine oil, or their water accommodated fractions (WAFs) to determine growth inhibition and response of antioxidant enzymes. Oil type and oil concentration greatly affected the microalgal growth. Used oil at 0.04 % (0.4 g L(-1)) resulted in 50 % inhibition in algal growth, measured in terms of chlorophyll-a, while the corresponding concentration of unused oil was nontoxic. Similarly, used oil WAF showed significant toxicity to the algal growth at 10 % level, whereas WAF from unused oil was nontoxic even at 100 % concentration. Peroxidase enzyme in the microalga significantly increased with used oil at concentrations above 0.04 g L(-1) whereas the induction of superoxide dismutase and catalase was apparent only at 0.06 g L(-1). Activities of the antioxidant enzymes increased significantly when the microalga was exposed to 75 and 100 % WAF obtained from used oil. The used oil toxicity on microalga could be due to the presence of toxic soluble mono- and polyaromatic compounds, heavy metals, and other compounds attained by the oil during its use in the motor engines.

  6. Evaluation of garlic oil in nano-emulsified form: Optimization and its efficacy in high-fat diet induced dyslipidemia in Wistar rats.

    PubMed

    Ragavan, Gokulakannan; Muralidaran, Yuvashree; Sridharan, Badrinathan; Nachiappa Ganesh, Rajesh; Viswanathan, Pragasam

    2017-07-01

    Garlic oil nanoemulsion was formulated using ultrasonic emulsification and the optimized garlic oil nanoemulsion ratio (1:2) of oil: surfactant showed spherical, with tiny droplet size 24.9 ± 1.11 nm. It was observed that the prepared nanoemulsion has the zeta potential of -42.63 ± 1.58 mV and a low polydispersity index of 0.2 ± 0.09 with excellent stability. The formulation was subjected to in vivo acute and sub-acute toxicity. In acute toxicity study, single oral administration of 18.63 ml of garlic oil nanoemulsion/kg resulted in immediate mortality. However, garlic oil nanoemulsion (0.46 ml/kg) and tween 80 (0.5 ml/kg) administered rats did not exhibit any toxicity and showed no changes in hematological and histological parameters. Further, both preventive and curative studies of garlic oil nanoemulsion were evaluated in high-fat diet fed dyslipidemic Wistar rats. Garlic oil nanoemulsion administered groups showed a significant effect in reducing the levels of lipid profiles (p < 0.001) compared to atorvastatin and garlic oil. Evaluation of lipid deposits in hepatic tissues was analyzed by Oil Red O staining, which revealed that garlic oil nanoemulsion administered rats markedly reduced the fat depots. Our findings suggest that garlic oil nano-emulsified form reduced toxicity and improved efficacy in preventing and treating dyslipidemia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Treatment of Xerosis with a Topical Formulation Containing Glyceryl Glucoside, Natural Moisturizing Factors, and Ceramide

    PubMed Central

    Kausch, Martina; Rippke, Frank; Schoelermann, Andrea M.; Filbry, Alexander W.

    2012-01-01

    Objective: To assess the effects of Light Formulation, an oil-in-water emulsion, and Rich Formulation, a water-in-oil emulsion, for the treatment of xerosis. Design: Two double-blind, vehicle-controlled trials (both formulations); a double-blind, randomized regression study (Rich Formulation); and a single-blind tolerability study (Light Formulation). The two formulations were applied twice daily for two weeks, for five days in the regression study, and twice daily for two weeks in the tolerability study. Setting: Studies were conducted during winter in Hamburg, Germany. Participants: A total of 169 subjects were enrolled and 154 completed the studies. The majority were between 50 and 80 years of age, women, all with very dry skin. One withdrew because of an incompatibility reaction that reoccurred with the subject's own body lotion after sun exposure. Measurements: Skin hydration and skin barrier function with both formulations over two weeks, long-term moisturization effect after discontinuation of Rich Formulation, and symptom improvement and skin tolerability with Light Formulation. Results: Vehicle-controlled studies of Light and Rich Formulations demonstrated significantly improved hydration at Weeks 1 and 2 versus the untreated site and vehicles, and significantly reduced transepidermal water loss versus untreated site and basic vehicle. Both products significantly decreased visible dryness and tactile roughness. In the regression study, Rich Formulation maintained significant moisturization six days after treatment discontinuation. Light Formulation reduced symptoms of itching, burning, tightness, tingling, and feeling of dryness. Conclusion: These formulations represent a new approach for the treatment of xerosis by addressing multiple key deficiencies in skin hydration. PMID:22916312

  8. Identification of lubrication oil in the particulate matter emissions from engine exhaust of in-service commercial aircraft.

    PubMed

    Yu, Zhenhong; Herndon, Scott C; Ziemba, Luke D; Timko, Michael T; Liscinsky, David S; Anderson, Bruce E; Miake-Lye, Richard C

    2012-09-04

    Lubrication oil was identified in the organic particulate matter (PM) emissions of engine exhaust plumes from in-service commercial aircraft at Chicago Midway Airport (MDW) and O'Hare International Airport (ORD). This is the first field study focused on aircraft lubrication oil emissions, and all of the observed plumes described in this work were due to near-idle engine operations. The identification was carried out with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF AMS) via a collaborative laboratory and field investigation. A characteristic mass marker of lubrication oil, I(85)/I(71), the ratio of ion fragment intensity between m/z = 85 and 71, was used to distinguish lubrication oil from jet engine combustion products. This AMS marker was based on ion fragmentation patterns measured using electron impact ionization for two brands of widely used lubrication oil in a laboratory study. The AMS measurements of exhaust plumes from commercial aircraft in this airport field study reveal that lubrication oil is commonly present in organic PM emissions that are associated with emitted soot particles, unlike the purely oil droplets observed at the lubrication system vent. The characteristic oil marker, I(85)/I(71), was applied to quantitatively determine the contribution from lubrication oil in measured aircraft plumes, which ranges from 5% to 100%.

  9. Candida lipolytica UCP0988 Biosurfactant: Potential as a Bioremediation Agent and in Formulating a Commercial Related Product

    PubMed Central

    Santos, Danyelle K. F.; Resende, Ana H. M.; de Almeida, Darne G.; Soares da Silva, Rita de Cássia F.; Rufino, Raquel D.; Luna, Juliana M.; Banat, Ibrahim M.; Sarubbo, Leonie A.

    2017-01-01

    The aim of the present study was to investigate the potential application of the biosurfactant from Candida lipolytica grown in low-cost substrates, which has previously been produced and characterized under optimized conditions as an adjunct material to enhance the remediation processes of hydrophobic pollutants and heavy metals generated by the oil industry and propose the formulation of a safe and stable remediation agent. In tests carried out with seawater, the crude biosurfactant demonstrated 80% oil spreading efficiency. The dispersion rate was 50% for the biosurfactant at a concentration twice that of the CMC. The biosurfactant removed 70% of motor oil from contaminated cotton cloth in detergency tests. The crude biosurfactant also removed 30–40% of Cu and Pb from standard sand, while the isolated biosurfactant removed ~30% of the heavy metals. The conductivity of solutions containing Cd and Pb was sharply reduced after biosurfactants' addition. A product was prepared through adding 0.2% potassium sorbate as preservative and tested over 120 days. The formulated biosurfactant was analyzed for emulsification and surface tension under different pH values, temperatures, and salt concentrations and tested for toxicity against the fish Poecilia vivipara. The results showed that the formulation had no toxicity and did not cause significant changes in the tensoactive capacity of the biomolecule while maintaining activity demonstrating suitability for potential future commercial product formulation. PMID:28507538

  10. Formulation and evaluation of carrot seed oil-based cosmetic emulsions.

    PubMed

    Singh, Shalini; Lohani, Alka; Mishra, Arun Kumar; Verma, Anurag

    2018-05-08

    The present study deals with the evaluation of antiaging potential of carrot seed oil-based cosmetic emulsions. Briefly, cosmetic emulsions composed of carrot seed oil in varying proportions (2, 4, and 6% w/v) were prepared using the hydrophile-lipophile balance (HLB) technique. Coconut oil, nonionic surfactants (Tween 80 and Span 80), and xanthan gum were used as the oil phase, emulgent, and emulsion stabilizer, respectively. The formed emulsions were evaluated for various physical, chemical, and biochemical parameters such as the zeta potential, globule size measurement, antioxidant activity, sun protection factor (SPF), skin irritation, and biochemical studies. The zeta potential values ranged from -43.2 to -48.3, indicating good stability. The polydispersity index (PDI) of various emulsion formulations ranged from 0.353 to 0.816. 1,1-Diphenyl-2-picrylhydrazyl- (DPPH) and nitric oxide-free radical scavenging activity showed the antioxidant potential of the prepared carrot seed oil emulsions. The highest SPF value (6.92) was shown by F3 having 6%w/v carrot seed oil. Histopathological data and biochemical analysis (ascorbic acid (ASC) and total protein content) suggest that these cosmetic emulsions have sufficient potential to be used as potential skin rejuvenating preparations.

  11. Lack of genotoxic potential of pesticides, spinosad, imidacloprid and neem oil in mice (Mus musculus).

    PubMed

    Saxena, Ankita; Kesari, V P

    2016-03-01

    Pesticides, spinosad, imidacloprid and neem oil are widely used both in residential and agricultural environments because of its broad spectrum insecticidal activity and effectiveness. The present study was undertaken to estimate genotoxicity of formulations of some pesticides in mice. Three pesticides of diverse group studied were spinosad (45% w/v), imidacloprid (17.8%, w/v) and neem oil. Animals were exposed 37, 4.5 and 50 mg kg⁻¹ b.wt. for spinosad, imidacloprid and neem oil, respectively, through oral gavage for 5 consecutive days. A vehicle control group and one positive control (cyclophosphamide; 20 mg kg⁻¹ b. wt.) were also selected. The results showed that cyclophosphamide produced 1.12% micronuclei in mice, as against 0.18 in vehicle control, 0.30 in spinosad, 0.28 in imidacloprid and 0.22% in neem oil, respectively. The gross percentage of chromosomal aberration in mice were 28.5% in cyclophosphamide against 6.5% in vehicle control, 8.0% in spinosad, 9.5% in imidacloprid and 7.0% in neem oil, respectively. The overall findings of the present study revealed that all the three pesticide formulations, imidacloprid, spinosad and neem oil at tested dose did not show any genotoxic effect in mice.

  12. Oil-based compositions as saliva substitutes: A pilot study to investigate in-mouth retention.

    PubMed

    Hanning, Sara M; Medlicott, Natalie J

    2016-03-30

    This pilot study aimed to compare the in-mouth retention of an oil-based saliva substitute (emulsion, consisting of rice bran oil, soy lecithin and water) with water and a 1% w/v methylcellulose suspension (polymer) in healthy volunteers. Each formulation was tagged with 1 mmol/L lithium and participants (n=30) rinsed their mouth with one randomly assigned formulation (emulsion, polymer or water) for 30s, before expectorating into a cup. Concentration of lithium expectorated was measured and amount of each formulation remaining in the mouth was estimated. Patient acceptability was investigated using questionnaires, and Fourier-Transform Infrared spectroscopy (FTIR) was used to determine the presence of oil in expectorated samples. Immediately after rinsing, taste was rated lower in the emulsion group compared to the polymer or water groups (p>0.05), although variability was high. Mean retention was highest in the emulsion group, with a difference of 8.34 ± 2.71% (p=0.003) and 4.57 ± 2.71% (p=0.06) compared with the water and polymer groups, respectively. FTIR confirmed the presence of oil in all expectorated emulsion samples. The emulsion was not inferior to the polymer in terms of retention immediately after rinsing. The next step is to conduct larger clinical studies over longer time periods in participants with salivary hypofunction. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Stability of penethamate, a benzylpenicillin ester prodrug, in oily vehicles.

    PubMed

    Jain, Rohit; Bork, Olaf; Tucker, Ian G

    2015-01-01

    Penethamate (PNT) is an ester prodrug of benzylpenicillin which is marketed as dry powder for reconstitution with aqueous vehicle prior to injection. The purpose of this paper was to investigate the chemical stability of PNT in oily formulations to provide a basis for a ready-to-use (RTU) oil-based PNT formulation. The chemical stability of PNT solutions and suspensions in light liquid paraffin (LP), medium chain triglyceride (MIG), ethyl oleate (EO) and sunflower oil (SO) was investigated at 30 °C. Solid state stability of PNT powder and stability of PNT in EO suspensions with different moisture contents were also evaluated. The solubility of PNT in the oils was in order SO > EO > MIG > LP. Degradation of PNT was rapid in oily solutions and less than 10% remained after 7-15 days. Stability of PNT decreased with increase in moisture content in ethyl oleate suspensions. PNT was stable over four weeks in the solid state. Hydrolysis, due to moisture in the oil formulation is not the only degradation mechanism. PNT stability (% drug remaining) in oily suspensions after 3.5 months was in the order LP (96.2%) > MIG (95.4%) > EO (94.1%) > SO (86%). A shelf-life of up to 5.5 years at 30 °C may be achieved for PNT suspension in these oils.

  14. Triacylglycerol "hand-shape profile" of Argan oil. Rapid and simple UHPLC-PDA-ESI-TOF/MS and HPTLC methods to detect counterfeit Argan oil and Argan-oil-based products.

    PubMed

    Pagliuca, Giordana; Bozzi, Carlotta; Gallo, Francesca Romana; Multari, Giuseppina; Palazzino, Giovanna; Porrà, Rita; Panusa, Alessia

    2018-02-20

    The marketing of new argan-based products is greatly increased in the last few years and consequently, it has enhanced the number of control analysis aimed at detecting counterfeit products claiming argan oil as a major ingredient. Argan oil is produced in Morocco and it is quite expensive. Two simple methods for the rapid screening of pure oil and argan-oil based products, focused on the analysis of the triacylglycerol profile, have been developed. A three-minute-run by UHPLC-PDA allows the identification of a pure argan oil, while the same run with the MS detector allows also the analysis of products containing the oil down to 0.03%. On the other hand, by HPTLC the simultaneous analysis of twenty samples, containing argan oil down to 0.5%, can be carried out in a forty-five-minute run. The triglyceride profile of the most common vegetable fats such as almond, coconut, linseed, wheat germ, sunflower, peanut, olive, soybean, rapeseed, hemp oils as well as shea butter used either in cosmetics or commonly added for the counterfeiting of argan oil, has been also investigated. Over sixty products with different formulations and use have been successfully analyzed and argan oil in the 2.4-0.06% concentration range has been quantified. The methods are suitable either for a rapid screening or for quantifying argan oil in different formulations. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Lubricant Formulations to Enhance Engine Efficiency in Modern Internal Combustion Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, Wai; Wong, Victor; Plumley, Michael

    2017-04-19

    The research program presented aimed to investigate, develop, and demonstrate low-friction, environmentally-friendly and commercially-feasible lubricant formulations that would significantly improve the mechanical efficiency of modern engines without incurring increased wear, emissions or deterioration of the emission-aftertreatment system.

  16. Quantification of the carcinogenic effect of polycyclic aromatic hydrocarbons in used engine oil by topical application onto the skin of mice.

    PubMed

    Grimmer, G; Dettbarn, G; Brune, H; Deutsch-Wenzel, R; Misfeld, J

    1982-01-01

    The purpose of this investigation was to identify the substances mainly responsible for the carcinogenic effect of used engine oil from gasoline engines using topical application as a carcinogen-specific bioassay. This was performed by comparison of the tumorigenic effect of single fractions with that of an unseparated sample of the lubricating oil. The probit analysis of the results shows: 1) The used engine oil, from gasoline-driven automobiles, investigated provoked local tumors after long-term application to the dorsal skin of mice. The incidence of carcinoma depended on the dose of the oil. 2) The fraction of the polycyclic aromatic hydrocarbons (PAH) containing more than three rings accounts for about 70% of the total carcinogenicity in the case of crankcase oil. This fraction constitutes only up to 1.14% by weight of the total oil sample. 3) The content of benzo(a)pyrene (216.8 mg/kg) accounts for 18% of the total carcinogenicity of the used oil. 4) Regarding the reduced carcinogenicity of the oil sample, which was reconstituted from all fractions, it seems possible that some of the carcinogenic substances were lost due to volatility, with evaporation of the solvents from the oil-fractionation processes. 5) Regarding the small effect of the PAH-free fraction, as well as the equal carcinogenic effects of the PAH-fraction (containing more than three rings) and the reconstituted oil sample, no hints for a co-carcinogenic activity were obtained.

  17. Gelled oil particles: a new approach to encapsulate a hydrophobic metallophthalocyanine.

    PubMed

    Siqueira-Moura, Marigilson P; Franceschi-Messant, Sophie; Blanzat, Muriel; Ré, Maria Inês; Perez, Emile; Rico-Lattes, Isabelle; Lattes, Armand; Tedesco, Antonio C

    2013-07-01

    Chloroaluminum phthalocyanine (ClAlPc) is a promising sensitizer molecule for photodynamic therapy, but its hydrophobicity makes it difficult to formulate. In this study, we have efficiently encapsulated ClAlPc into gelled soybean oil particles dispersed in water. 12-Hydroxystearic acid (HSA) and polyethyleneimine (PEI) were the gelling and stabilizing agents, respectively. The preparation process involved hot emulsification above the gelation temperature (Tgel), followed by cooling to room temperature, which gave a colloidal dispersion of gelled particles of oil in aqueous medium. The gelled particles containing ClAlPc had a medium diameter of 280 nm, homogeneous size distribution (polydispersity index ≈0.3) and large positive zeta potential (about +50 mV) and showed a spherical morphology. The gelled oil particle formulations exhibited good physical stability over a 6-month period. ClAlPc interfered with the HSA self-assembly only slightly, and decreased the gelation temperature to a small extent; however it did not affect gelation process of the oil droplets. The amounts of PEI and HSA employed during the preparation allowed us to control particle size and the dispersion stability, a phenomenon that results from complex electrostatic interactions between the positively charged PEI and the negatively charged HSA fibers present on the gelled particles surface. In summary, by using the right ClAlPc, HSA, and PEI proportions, we prepared very stable dispersions of gelled soybean oil particles with excellent ClAlPc encapsulation efficiency. The obtained colloidal formulation of gelled oil particles loaded with ClAlPc shall be very useful for photodynamic therapy protocols. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  18. Dose-response effects of clove oil from Syzygium aromaticum on the root-knot nematode Meloidogyne incognita.

    PubMed

    Meyer, Susan L F; Lakshman, Dilip K; Zasada, Inga A; Vinyard, Bryan T; Chitwood, David J

    2008-03-01

    Clove oil, derived from the plant Syzygium aromaticum (L.) Merr. & Perry, is active against various organisms, and was prepared in a soy lecithin/detergent formulation to determine concentrations active against the root-knot nematode Meloidogyne incognita (Kofoid and White) Chitwood. In microwell assays, the mean effective clove oil concentration that reduced egg hatch by 50% (EC(50)) was 0.097% (v/v) clove oil; the EC(50) for second-stage juvenile (J2) viability was 0.145% clove oil (compared with carrier control treatments). Volatiles from 5.0% clove oil reduced nematode egg hatch in water by 30%, and decreased viability of hatched J2 by as much as 100%. Reductions were not as large with nematodes in carrier. In soil trials with J2 recovered from Baermann funnels, the EC(50) = 0.192% clove oil (compared with water controls). The results demonstrated that the tested formulation is active against M. incognita eggs and J2, that the EC(50) values for J2 in the microwell studies and the soil recovery tests were similar to each other and that direct contact with the clove oil is needed for optimal management results with this natural product. (c) 2008 Society of Chemical Industry.

  19. Impact of extra virgin olive oil and ethylenediaminetetraacetic acid (EDTA) on the oxidative stability of fish oil emulsions and spray-dried microcapsules stabilized by sugar beet pectin.

    PubMed

    Polavarapu, Sudheera; Oliver, Christine M; Ajlouni, Said; Augustin, Mary Ann

    2012-01-11

    The influence of EDTA on lipid oxidation in sugar beet pectin-stabilized oil-in-water emulsions (pH 6, 15% oil, wet basis), prepared from fish oil (FO) and fish oil-extra virgin olive oil (FO-EVOO) (1:1 w/w), as well as the spray-dried microcapsules (50% oil, dry basis) prepared from these emulsions, was investigated. Under accelerated conditions (80 °C, 5 bar oxygen pressure) the oxidative stability was significantly (P < 0.05) higher for FO and FO-EVOO formulated with EDTA, in comparison to corresponding emulsions and spray-dried microcapsules formulated without EDTA. The EDTA effect was greater in emulsions than in spray-dried microcapsules, with the greatest protective effect obtained in FO-EVOO emulsions. EDTA enhanced the oxidative stability of the spray-dried microcapsules during ambient storage (~25 °C, a(w) = 0.5), as demonstrated by their lower concentration of headspace volatile oxidation products, propanal and hexanal. These results show that the addition of EDTA is an effective strategy to maximize the oxidative stability of both FO emulsions and spray-dried microcapsules in which sugar beet pectin is used as the encapsulant material.

  20. Edible oil structuring: an overview and recent updates.

    PubMed

    Patel, Ashok R; Dewettinck, Koen

    2016-01-01

    In recent years, research dealing with edible oil structuring has received considerable interest from scientific community working in the area of food formulation. Much of this interest is linked to the possibility of using structured oil in development of newer product formats with improved nutritional profile (trans fat-free, low in saturated fats and high in mono and/or poly unsaturated fatty acids). In addition to the obvious industrial need of finding the alternative formulation approach, the interesting properties of structured systems (particularly, oleogels) also makes them a fascinating subject for fundamental studies. In this paper, we attempt to give a comprehensive and concise overview of the field of oil structuring with special emphasis on the updates from recent years. Specifically, several categories of food-grade oleogelators and their potential food applications are summarized with typical examples along with a discussion on the general principles and unresolved challenges related to this emerging area.

  1. Nearshore dynamics of artificial sand and oil agglomerates

    USGS Publications Warehouse

    Dalyander, P. Soupy; Plant, Nathaniel G.; Long, Joseph W.; McLaughlin, Molly R.

    2015-01-01

    Weathered oil can mix with sediment to form heavier-than-water sand and oil agglomerates (SOAs) that can cause beach re-oiling for years after a spill. Few studies have focused on the physical dynamics of SOAs. In this study, artificial SOAs (aSOAs) were created and deployed in the nearshore, and shear stress-based mobility formulations were assessed to predict SOA response. Prediction sensitivity to uncertainty in hydrodynamic conditions and shear stress parameterizations were explored. Critical stress estimates accounting for large particle exposure in a mixed bed gave the best predictions of mobility under shoaling and breaking waves. In the surf zone, the 10-cm aSOA was immobile and began to bury in the seafloor while smaller size classes dispersed alongshore. aSOAs up to 5 cm in diameter were frequently mobilized in the swash zone. The uncertainty in predicting aSOA dynamics reflects a broader uncertainty in applying mobility and transport formulations to cm-sized particles.

  2. 75 FR 2787 - Airworthiness Directives; Turbomeca Turmo IV A and IV C Turboshaft Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-19

    ... inspection before the first flight of the day, an oil leak was found on an engine deck. A circumferential... inspection before the first flight of the day, an oil leak was found on an engine deck. A circumferential... Airworthiness Directives; Turbomeca Turmo IV A and IV C Turboshaft Engines AGENCY: Federal Aviation...

  3. Clerget 100 hp heavy-oil engine

    NASA Technical Reports Server (NTRS)

    Leglise, Pierre

    1931-01-01

    A complete technical description of the Clerget heavy-oil engine is presented along with the general characteristics. The general characteristics are: 9 cylinders, bore 120 mm, stroke 130 mm, four-stroke cycle engine, rated power limited to 100 hp at 1800 rpm; weight 228 kg; propeller with direct drive and air cooling. Moving parts, engine block, and lubrication are all presented.

  4. Experimental investigations on a diesel engine operated with fuel blends derived from a mixture of Pakistani waste tyre oil and waste soybean oil biodiesel.

    PubMed

    Qasim, Muhammad; Ansari, Tariq Mahmood; Hussain, Mazhar

    2017-10-18

    The waste tyre and waste cooking oils have a great potential to be used as alternative fuels for diesel engines. The aim of this study was to convert light fractions of pyrolysis oil derived from Pakistani waste vehicle tyres and waste soybean oil methyl esters into valuable fuel and to reduce waste disposal-associated environmental problems. In this study, the waste tyre pyrolysis liquid (light fraction) was collected from commercial tyre pyrolysis plant and biodiesel was prepared from waste soybean oil. The fuel blends (FMWO10, FMWO20, FMWO30, FMWO40 and FMWO50) were prepared from a 30:70 mixture of waste tyre pyrolysis liquid and waste soybean oil methyl esters with different proportions of mineral diesel. The mixture was named as the fuel mixture of waste oils (FMWO). FT-IR analysis of the fuel mixture was carried out using ALPHA FT-IR spectrometer. Experimental investigations on a diesel engine were carried out with various FMWO blends. It was observed that the engine fuel consumption was marginally increased and brake thermal efficiency was marginally decreased with FMWO fuel blends. FMWO10 has shown lowest NOx emissions among all the fuel blends tested. In addition, HC, CO and smoke emissions were noticeably decreased by 3.1-15.6%, 16.5-33.2%, and 1.8-4.5%, respectively, in comparison to diesel fuel, thereby qualifying the blends to be used as alternative fuel for diesel engines.

  5. Successful transmission of Solenopsis invicta virus 3 to Solenopsis invicta fire ant colonies in oil, sugar, and cricket bait formulations

    USDA-ARS?s Scientific Manuscript database

    Tests were conducted to evaluate whether Solenopsis invicta virus 3 (SINV-3) could be delivered in various bait formulations to fire ant colonies and measure the corresponding colony health changes associated with virus infection in Solenopsis invicta. Three bait formulations (10% sugar solution, c...

  6. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling...

  7. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling...

  8. 40 CFR Appendix 8 to Subpart A of... - Reference C16-C18 Internal Olefin Drilling Fluid Formulation

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Drilling Fluid Formulation 8 Appendix 8 to Subpart A of Part 435 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) EFFLUENT GUIDELINES AND STANDARDS (CONTINUED) OIL AND GAS EXTRACTION POINT...—Reference C16-C18 Internal Olefin Drilling Fluid Formulation The reference C16-C18 internal olefin drilling...

  9. The performance and emissions of diesel engines with biodiesel of sunan pecan seed and diesel oil blends

    NASA Astrophysics Data System (ADS)

    Ariani, F.; Sitorus, T. B.; Ginting, E.

    2017-12-01

    An observation was performed to evaluate the performance of direct injection stationary diesel engine which used a blends of biodiesel of Sunan pecan seed. The experiments were done with diesel oil, B5, B10, B15 and B20 in the engine speed variety. Results showed that the values of torque, power and thermal efficiency tend to decrease when the engine is using B5, B10, B15 and B20, compared to diesel oil. It also shown that the specific fuel consumption is increased when using B5, B10, B15 and B20. From the results of experiments and calculations, the maximum power of 3.08 kW, minimum specific fuel consumption of 189.93 g/kWh and maximum thermal efficiency of 45.53% when engine using diesel oil. However, exhaust gases were measured include opacity, carbon monoxide and hydrocarbon when the engine using biodiesel B5, B10, B15 and B20 decreased.

  10. Effect of flour-oil composite as powdered fat source in low-fat cake mixes

    USDA-ARS?s Scientific Manuscript database

    Excess steam jet-cooked composites containing wheat flour and 30 to 55% canola oil were drum dried and used to replace the oil and part of the flour in low-fat cake mix formulations. Specific gravity and viscosity of cake batters were measured. The cakes were analyzed for crumb grain, color, textu...

  11. Chemical Surface Washing Agents for Oil Spills: Update State-of-the-Art on Mechanisms of Action and Evaluation of Two Laboratory Effectiveness Tests.

    EPA Science Inventory

    Chemical surface washing agents are formulations designed to help release stranded oil from shoreline substrates.The U.S. Environmental Protection Agency (EPA), in response to the Oil Pollution Act of 1990, Initiated study of these cleaning agents. The project summarized here had...

  12. Essential oils: from extraction to encapsulation.

    PubMed

    El Asbahani, A; Miladi, K; Badri, W; Sala, M; Aït Addi, E H; Casabianca, H; El Mousadik, A; Hartmann, D; Jilale, A; Renaud, F N R; Elaissari, A

    2015-04-10

    Essential oils are natural products which have many interesting applications. Extraction of essential oils from plants is performed by classical and innovative methods. Numerous encapsulation processes have been developed and reported in the literature in order to encapsulate biomolecules, active molecules, nanocrystals, oils and also essential oils for various applications such as in vitro diagnosis, therapy, cosmetic, textile, food etc. Essential oils encapsulation led to numerous new formulations with new applications. This insures the protection of the fragile oil and controlled release. The most commonly prepared carriers are polymer particles, liposomes and solid lipid nanoparticles. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A Study of the Applicability of Atomic Emission Spectroscopy (AES), Fourier Transform Infrared (FT-IR) Spectroscopy, Direct Reading and Analytical Ferrography on High Performance Aircraft Engine Lubricating Oils

    DTIC Science & Technology

    1998-01-01

    Ferrography on High Performance Aircraft Engine Lubricating Oils Allison M. Toms, Sharon 0. Hem, Tim Yarborough Joint Oil Analysis Program Technical...turbine engines by spectroscopy (AES and FT-IR) and direct reading and analytical ferrography . A statistical analysis of the data collected is...presented. Key Words: Analytical ferrography ; atomic emission spectroscopy; condition monitoring; direct reading ferrography ; Fourier transform infrared

  14. Bio-derived Fuel Blend Dilution of Marine Engine Oil and Imapct on Friction and Wear Behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ajayi, Oyelayo O.; Lorenzo-Martin, Cinta; Fenske, George R.

    To reduce the amount of petroleum-derived fuel used in vehicles and vessels powered by internal combustion engines, the addition of bio-derived fuel extenders is a common practice. Ethanol is perhaps the most common bio-derived fuel used for blending, and butanol is being evaluated as a promising alternative. The present study determined the fuel dilution rate of three lubricating oils (E0, E10, and i-B16) in a marine engine operating in on-water conditions with a start-and-stop cycle protocol. The level of fuel dilution increased with the number of cycles for all three fuels. The most dilution was observed with i-B16 fuel, andmore » the least with E10 fuel. In all cases, fuel dilution substantially reduced the oil viscosity. The impacts of fuel dilution and the consequent viscosity reduction on the lubricating capability of the engine oil in terms of friction, wear, and scuffing prevention were evaluated by four different tests protocols. Although the fuel dilution of the engine oil had minimal effect on friction, because the test conditions were under the boundary lubrication regime, significant effects were observed on wear in many cases. Fuel dilution also was observed to reduce the load-carrying capacity of the engine oils in terms of scuffing load reduction.« less

  15. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  16. Phytosterol structured algae oil nanoemulsions and powders: improving antioxidant and flavor properties.

    PubMed

    Chen, Xiao-Wei; Chen, Ya-Jun; Wang, Jin-Mei; Guo, Jian; Yin, Shou-Wei; Yang, Xiao-Quan

    2016-09-14

    Algae oil, enriched with omega-3 long-chain polyunsaturated fatty acids (ω-3 LC-PUFA), is known for its health benefits. However, protection against lipid oxidation as well as masking of unpleasant fishy malodors in algae oil enriched foods is a big challenge to achieve. In this study, we firstly achieved a one-pot ultrasound emulsification strategy (alternative heating-homogenization) to prepare phytosterol structured thermosensitive algae oil-in-water nanoemulsion stabilized by quillaja saponin. After spray drying, the resulting algae oil powders from the structured nanoemulsion templates exhibit an excellent reconstructed behavior, even after 30 d of storage. Furthermore, an enhanced oxidative stability was obtained by reducing both the primary and secondary oxidation products through formulation with β-sitosterol and γ-oryzanol, which are natural antioxidants. Following the results of headspace volatiles using dynamic headspace-gas chromatography-mass spectrometry (DHS-GC-MS), it was clear that the structured algae oil-loaded nanoemulsion and powder had lower levels of fishy off-flavour (e.g., (Z)-heptenal, decanal, ethanone, and hexadecenoic acid), whereas the control emulsion and oil powder without structure performed worse. This study demonstrated that the structure from phytosterols is an effective strategy to minimize the fishy off-flavour and maximize oxidative stability of both algae oil nanoemulsions and spray-dried powders, and opens up the possibility of formulation design in polyunsaturated oil encapsulates as novel delivery systems to apply in functional foods and beverages.

  17. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris.

    PubMed

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-12-08

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine.

  18. Airborne Laser Remote Sensor for Oil Detection and Classification : Engineering Requirements and Technical Considerations Relevant to a Performance Specification

    DOT National Transportation Integrated Search

    1975-08-01

    This report outlines the engineering requirements for an Airborne Laser Remote Sensor for Oil Detection and Classification System. Detailed engineering requirements are given for the major units of the system. Technical considerations pertinent to a ...

  19. Variable Cycle Engine Technology Program Planning and Definition Study

    NASA Technical Reports Server (NTRS)

    Westmoreland, J. S.; Stern, A. M.

    1978-01-01

    The variable stream control engine, VSCE-502B, was selected as the base engine, with the inverted flow engine concept selected as a backup. Critical component technologies were identified, and technology programs were formulated. Several engine configurations were defined on a preliminary basis to serve as demonstration vehicles for the various technologies. The different configurations present compromises in cost, technical risk, and technology return. Plans for possible variably cycle engine technology programs were formulated by synthesizing the technology requirements with the different demonstrator configurations.

  20. Single Common Powertrain Lubricant (SCPL) Development. Part 2

    DTIC Science & Technology

    2014-04-01

    stand and connected via steel braided Teflon hose to the engines oil filter outlet port. A remote liquid-liquid heat exchanger was then added in...series with the stainless braided Teflon oil lines (after the oil filter), and its return was plumbed back to the engine via the engine’s front lower

  1. Vegetable Oil-based Diesel Fuels From 1900 to the Present

    USDA-ARS?s Scientific Manuscript database

    The diesel engine, invented and developed by Rudolf Diesel in the 1890's, was displayed at the Paris World Exposition in 1900. At that occasion, one of the displayed diesel engines ran on peanut oil. This event marks the beginning of the use of vegetable oils and, later, derivatives thereof as die...

  2. Alternative Fuels Data Center: Natural Gas Vehicle Maintenance and Safety

    Science.gov Websites

    and delivery systems for road vehicles. Oil-Change Intervals Cleaner-burning fuels have a direct impact on extending the useful life of the engine's lubricating oil. In conventionally fueled vehicles , engine oil degrades as a result of soot and other impurities from the combustion process that get

  3. The formulation of the essential oil of Piper aduncum Linnaeus (Piperales: Piperaceae) increases its efficacy as an insect repellent.

    PubMed

    Mamood, S N H; Hidayatulfathi, O; Budin, S B; Ahmad Rohi, G; Zulfakar, M H

    2017-02-01

    The essential oil (EO) of Piper aduncum Linnaeus, known as 'sireh lada' to locals Malaysian, has the potential to be used as an alternative to synthetic insect repellents such as N,N-diethyl-meta-toluamide. However, the EO's efficacy as a repellent decreases after application due to the high volatility of its active ingredients. A number of studies have showed that optimizing the formulation of plant-based EOs can improve their efficacy as repellents. The present study sought to evaluate the effectiveness of 10% P. aduncum EO in ethanol and in three different semisolid formulations: ointment, cream and gel. These formulations were tested on Aedes aegypti under laboratory conditions. Each formulation was applied to the subject's hands, which were then inserted into a cage containing 25 nulliparous A. aegypti. The number of mosquitoes landing on or biting each subject's hand was recorded, and the repellency percentage, landing/biting percentage and protection time for each of the formulations were compared. There were no statistically significant differences between the semisolid EO formulations with regards to the repellency percentage and the landing/biting percentage at 4 h post-application. All three semisolid EO formulations were able to repel >65% of the A. aegypti at 4 h post-application. The EO ointment formulation provided a protection time (182.5 ± 16.01 min) that was statistically significantly longer than that associated with the EO gel formulation (97.5 ± 14.93 min). Meanwhile, the EO cream formulation provided a protection time of 162.5 ± 6.29 min. As the EO cream and ointment formulations displayed better repellent properties than the EO gel formulation, they appear to be the most promising P. aduncum EO formulations to be developed and commercialized as alternatives to synthetic repellents.

  4. Development of Metarhizium anisopliae and Beauveria bassiana formulations for control of malaria mosquito larvae

    PubMed Central

    2011-01-01

    Background The entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana have demonstrated effectiveness against anopheline larvae in the laboratory. However, utilising these fungi for the control of anopheline larvae under field conditions, relies on development of effective means of application as well as reducing their sensitivity to UV radiation, high temperatures and the inevitable contact with water. This study was conducted to develop formulations that facilitate the application of Metarhizium anisopliae and Beauveria bassiana spores for the control of anopheline larvae, and also improve their persistence under field conditions. Methods Laboratory bioassays were conducted to test the ability of aqueous (0.1% Tween 80), dry (organic and inorganic) and oil (mineral and synthetic) formulations to facilitate the spread of fungal spores over the water surface and improve the efficacy of formulated spores against anopheline larvae as well as improve spore survival after application. Field bioassays were then carried out to test the efficacy of the most promising formulation under field conditions in western Kenya. Results When formulated in a synthetic oil (ShellSol T), fungal spores of both Metarhizium anisopliae and Beauveria bassiana were easy to mix and apply to the water surface. This formulation was more effective against anopheline larvae than 0.1% Tween 80, dry powders or mineral oil formulations. ShellSol T also improved the persistence of fungal spores after application to the water. Under field conditions in Kenya, the percentage pupation of An. gambiae was significantly reduced by 39 - 50% by the ShellSol T-formulated Metarhizium anisopliae and Beauveria bassiana spores as compared to the effects of the application of unformulated spores. Conclusions ShellSol T is an effective carrier for fungal spores when targeting anopheline larvae under both laboratory and field conditions. Entomopathogenic fungi formulated with a suitable carrier are a promising tool for control of larval populations of malaria mosquitoes. Additional studies are required to identify the best delivery method (where, when and how) to make use of the entomopathogenic potential of these fungi against anopheline larvae. PMID:21342492

  5. 78 FR 18255 - Airworthiness Directives; Hartzell Propeller, Inc. Propellers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-26

    ... engine oil leak. This proposed AD would require replacement of the propeller hydraulic bladder diaphragm. We are proposing this AD to prevent propeller hydraulic bladder diaphragm rupture, loss of engine oil, damage to the engine, and loss of the airplane. DATES: We must receive comments on this proposed AD by...

  6. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid.

    PubMed

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-04

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  7. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    NASA Astrophysics Data System (ADS)

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-08-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2-16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process.

  8. Supercritical Fluid Synthesis and Tribological Applications of Silver Nanoparticle-decorated Graphene in Engine Oil Nanofluid

    PubMed Central

    Meng, Yuan; Su, Fenghua; Chen, Yangzhi

    2016-01-01

    Silver nanoparticle-decorated graphene nanocomposites were synthesized by a facile chemical reduction approach with the assistance of supercritical CO2 (ScCO2). The silver nanoparticles with diameters of 2–16 nm are uniformly distributed and firmly anchored on graphene nanosheets. The tribological properties of the as-synthesized nanocomposites as lubricant additives in engine oil were investigated by a four-ball tribometer. The engine oil with 0.06~0.10 wt.% Sc-Ag/GN nanocomposites displays remarkable lubricating performance, superior than the pure engine oil, the engine oil containing zinc dialkyl dithiophosphate (ZDDP), as well as the oil dispersed with the single nanomaterial of graphene oxides (GOs) and nano-Ag particles alone. The remarkable lubricating behaviors of Sc-Ag/GN probably derive from the synergistic interactions of nano-Ag and graphene in the nanocomposite and the action of the formed protective film on the contact balls. The anchored nano-Ag particles on graphene expand the interlamination spaces of graphene nanosheets and can prevent them from restacking during the rubbing process, resulting in the full play of lubricating activity of graphene. The formed protective film on the friction pairs significantly reduces the surface roughness of the sliding balls and hence preventing them from direct interaction during the sliding process. PMID:27488733

  9. Increased urinary excretion of 8-hydroxydeoxyguanosine in engine room personnel exposed to polycyclic aromatic hydrocarbons

    PubMed Central

    Nilsson, R; Nordlinder, R; Moen, B; Ovrebo, S; Bleie, K; Skorve, A; Hollund, B; Tagesson, C

    2004-01-01

    Background: Previous investigations indicate that engine room personnel on ships are exposed to polycyclic aromatic hydrocarbons (PAH) from oil and oil products, with dermal uptake as the major route of exposure. Several PAH are known carcinogens and mutagens. Aims: To investigate the urinary excretion of a marker for oxidative DNA damage, 8-hydroxydeoxy-guanosine (8OHdG), in engine room personnel, and to study the association between 8OHdG and 1-hydroxypyrene (1OHP), a biological marker for PAH exposure. Methods: Urine samples were collected from engine room personnel (n = 36) on 10 Swedish and Norwegian ships and from unexposed controls (n = 34) with similar age and smoking habits. The exposure to oils, engine exhaust, and tobacco smoke 24 hours prior to sampling was estimated from questionnaires. The urinary samples were frozen for later analyses of 8OHdG and 1OHP by high performance liquid chromatography. Results: Excretion in urine of 8OHdG (adjusted to density 1.022) was similar for controls (mean 18.0 nmol/l, n = 33), and for those who had been in the engine room without skin contact with oils (mean 18.7 nmol/l, n = 15). Engine room personnel who reported skin contact with oil had increased excretion of 8OHdG (mean 23.2 nmol/l, n = 19). The difference between this group and the unexposed controls was significant. The urinary levels of ln 1OHP and ln 8OHdG were significantly correlated, and the association was still highly significant when the effects of smoking and age were accounted for in a multiple regression analysis. Conclusion: Results indicate that exposure to PAH or possibly other compounds from skin contact with oils in engine rooms may cause oxidative DNA damage. PMID:15258276

  10. Increased urinary excretion of 8-hydroxydeoxyguanosine in engine room personnel exposed to polycyclic aromatic hydrocarbons.

    PubMed

    Nilsson, R; Nordlinder, R; Moen, B E; Øvrebø, S; Bleie, K; Skorve, A H; Hollund, B E; Tagesson, C

    2004-08-01

    Previous investigations indicate that engine room personnel on ships are exposed to polycyclic aromatic hydrocarbons (PAH) from oil and oil products, with dermal uptake as the major route of exposure. Several PAH are known carcinogens and mutagens. To investigate the urinary excretion of a marker for oxidative DNA damage, 8-hydroxydeoxy-guanosine (8OHdG), in engine room personnel, and to study the association between 8OHdG and 1-hydroxypyrene (1OHP), a biological marker for PAH exposure. Urine samples were collected from engine room personnel (n = 36) on 10 Swedish and Norwegian ships and from unexposed controls (n = 34) with similar age and smoking habits. The exposure to oils, engine exhaust, and tobacco smoke 24 hours prior to sampling was estimated from questionnaires. The urinary samples were frozen for later analyses of 8OHdG and 1OHP by high performance liquid chromatography. Excretion in urine of 8OHdG (adjusted to density 1.022) was similar for controls (mean 18.0 nmol/l, n = 33), and for those who had been in the engine room without skin contact with oils (mean 18.7 nmol/l, n = 15). Engine room personnel who reported skin contact with oil had increased excretion of 8OHdG (mean 23.2 nmol/l, n = 19). The difference between this group and the unexposed controls was significant. The urinary levels of ln 1OHP and ln 8OHdG were significantly correlated, and the association was still highly significant when the effects of smoking and age were accounted for in a multiple regression analysis. Results indicate that exposure to PAH or possibly other compounds from skin contact with oils in engine rooms may cause oxidative DNA damage.

  11. Antimicrobial Activity of Copaiba (Copaifera officinalis) and Pracaxi (Pentaclethra macroloba) Oils against Staphylococcus Aureus: Importance in Compounding for Wound Care.

    PubMed

    Guimarães, Anna Luísa Aguijar; Cunha, Elisa Alves; Matias, Fernanda Oliveira; Garcia, Patrícia Guedes; Danopoulos, Panagiota; Swikidisa, Rosita; Pinheiro, Vanessa Alves; Nogueira, Rodrigo José Lupatini

    2016-01-01

    The Amazon rainforest is the largest reserve of natural products in the world. Its rich biodiversity of medicinal plants has been utilized by local populations for hundreds of years for the prevention and treatment of various diseases and ailments. Oil extracts from plant species such as Copaifera officinalis and Pentaclethra macroloba are used in compounded formulations for their antiinflammatory, antimicrobial, emollient, moisturizing, and wound-healing activities. The objective of this study was to investigate the in vitro bacteriostatic effect of two Amazonian oils, Copaiba and Pracaxi, against Staphylococcus aureus, a clinically important microorganism responsible for wound infection, to support the use of these oils as novel natural products for compounded wound-treatment modalities. The antibacterial activity of Copaiba and Pracaxi oils against a standard strain of Staphylococcus aureus was assessed using broth microdilution to determine the Minimum Inhibitory Concentration and Minimum Bactericidal Concentration of the oil extracts. Copaiba oil demonstrated antibacterial activity against Staphylococcus aureus, with a Minimum Inhibitory Concentration of 0.3125 mg/mL and a Minimum Bactericidal Concentration of 0.3125 mg/mL. Conversely, Pracaxi oil failed to inhibit Staphylococcus aureus growth. While additional studies are required to further evaluate the antimicrobial activity of Pracaxi oil, even low concentrations of Copaiba oil effectively inhibited Staphylococcus aureus growth, supporting its potential use as a promising adjuvant in compounded topical formulations for wound and scar healing.

  12. Formulation of vitamin D encapsulated cinnamon oil nanoemulsion: Its potential anti-cancerous activity in human alveolar carcinoma cells.

    PubMed

    Meghani, Nikita; Patel, Pal; Kansara, Krupa; Ranjan, Shivendu; Dasgupta, Nandita; Ramalingam, Chidambaram; Kumar, Ashutosh

    2018-06-01

    Cinnamon oil is used for medicinal purpose since ancient time because of its antioxidant activity. Oil-in-water nanoemulsion (NE) of cinnamon oil was formulated using cinnamon oil, nonionic surfactant Tween 80 and water by ultrasonication technique. Phase diagram was constructed to investigate the influence of oil, water and surfactant concentration. Vitamin D encapsulated cinnamon oil NE was fabricated by wash out method followed by ultrasonication in similar fashion. The hydrodynamic size of cinnamon oil NE and vitamin D encapsulated cinnamon oil NE was observed as 40.52 and 48.96 nm in complete DMEM F12 media respectively. We focused on the cytotoxic and genotoxic responses of NEs in A549 cells in concentration dependent manner. We observed that both NEs induce DNA damage along with corresponding increase in micronucleus frequency that is evident from the comet and CBMN assay. Both the NEs arrested the cell cycle progression in G0/G1 phase, showed increased expression of Bax, capase-3 and caspase-9 and decrease expression of BcL2 proteins along with significant (p < 0.05) increase in apoptotic cell population and loss of mitochondrial membrane potential. NEs were also evaluated for bactericidal efficacy against E. coli. Thus, both NEs have cytotoxic, genotoxic and antibacterial potential and hence can also be used in food industry with cinnamon oil as carrier for lipophilic nutraceutical like vitamin D. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Installation and testing of a cummins Qsk19 lean burn natural gas engine

    NASA Astrophysics Data System (ADS)

    Sutley, Franklin H.

    The goal for a more efficient engine will never disappear. Over the years many different techniques have been explored within the common goal of higher efficiency. Lean combustion has proven to be effective at increasing efficiencies as well as reducing emissions. The purpose of this thesis is to install a modern Cummins QSK19G and perform certain test that will explore the lean combustion limits and other methods that could possibly increase efficiency even more. The entire installation and instrumentation process is documented within this thesis. The engine was installed in the Engines and Energy Conversion Laboratory at Colorado State University. The engine was installed with the hopes of instilling the desire for endless future tests from Cummins as well as other companies seeking this type of research engine. The lean limit was explored in the most detail. Cummins supplied a test plan that satisfied their desired stopping at a lean limit when the coefficient of variance of indicated mean effective pressure reached 5%. For the curiosity of others involved and this thesis, the lean limit was explored further until the engine could no longer ignite the ultra-lean combustion mixture. Friction accounts for a significant loss in a modern internal combustion engine. One role of the engine oil is to reduce these frictional losses as much as possible without causing increased wear. A test was conducted on the QSK19G to explore the effects of varying the engine oil viscosity. Frictional losses of two different viscosity oils were compared to the stock engine oil losses. The fact that reducing oil viscosity reduces frictional losses was proven in the test.

  14. Visualization of oil behavior in a small 4-cycle engine with electrical motoring by neutron radiography

    NASA Astrophysics Data System (ADS)

    Nakamura, M.; Sugimoto, K.; Asano, H.; Murakawa, H.; Takenaka, N.; Mochiki, K.

    2009-06-01

    Neutron radiography is suitable for the visualization of liquid behavior in a metallic machine. Observation of oil behavior in a small 4-cycle engine on operating was carried out by using the neutron radiography facility at JRR-3 in JAEA. The engine was not fired but operated by an electrical motor. Movies were taken by a neutron image intensifier with a color CCD camera of 8-bit resolution, 30 frames/s and 640×480 pixels developed by Toshiba Corp. The engine was placed on a turn table and was rotated, so the movie could be taken from any angle. Numbers of revolution of the engine were changed from 260 to 1200 rpm. Visualized images of the mechanism and the oil behavior in the engine were obtained.

  15. In Vitro Evaluation of Sunscreen Safety: Effects of the Vehicle and Repeated Applications on Skin Permeation from Topical Formulations

    PubMed Central

    Parenti, Carmela

    2018-01-01

    The evaluation of UV-filter in vitro percutaneous absorption allows the estimation of the systemic exposure dose (SED) and the margin of safety (MoS) of sunscreen products. As both the vehicle and pattern of application may affect sunscreen safety and efficacy, we evaluated in vitro release and skin permeation of two widely used UV-filters, octylmethoxycinnamate (OMC) and butylmethoxydibenzoylmethane (BMBM) from topical formulations with different features (oil in water (O/W) emulsions with different viscosity, water in oil (W/O) emulsion, oils with different lipophilicity). To mimic in-use conditions, we carried out experiments repeating sunscreen application on the skin surface for three consecutive days. BMBM release from all these vehicles was very low, thus leading to poor skin permeation. The vehicle composition significantly affected OMC release and skin permeation, and slight increases of OMC permeation were observed after repeated applications. From skin permeation data, SED and MoS values of BMBM and OMC were calculated for all the investigated formulations after a single application and repeated applications. While MoS values of BMBM were always well beyond the accepted safety limit, the safety of sunscreen formulations containing OMC may depend on the vehicle composition and the application pattern. PMID:29495452

  16. Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance.

    PubMed

    Arumugam, A; Ponnusami, V

    2017-12-01

    Waste sardine oil, a byproduct of fish industry, was employed as a low cost feedstock for biodiesel production. It has relatively high free fatty acid (FFA) content (32 mg KOH/g of oil). Lipase enzyme immobilized on activated carbon was used as the catalyst for the transesterification reaction. Process variables viz. reaction temperature, water content and oil to methanol molar ratio were optimized. Optimum methanol to oil molar ratio, water content and temperature were found to be 9:1, 10 v/v% and 30 °C respectively. Reusability of immobilized lipase was studied and it was found after 5 cycles of reuse there was about 13% drop in FAME yield. Engine performance of the produced biodiesel was studied in a Variable Compression Engine and the results confirm that waste sardine oil is a potential alternate and low-cost feedstock for biodiesel production.

  17. Parameters for Stable Water-in-Oil Lipiodol Emulsion for Liver Trans-Arterial Chemo-Eembolization.

    PubMed

    Deschamps, F; Moine, L; Isoardo, T; Tselikas, L; Paci, A; Mir, L M; Huang, N; Fattal, E; de Baère, T

    2017-12-01

    Water-in-oil type and stability are important properties for Lipiodol emulsions during conventional trans-arterial chemo-embolization. Our purpose is to evaluate the influence of 3 technical parameters on those properties. The Lipiodol emulsions have been formulated by repetitive back-and-forth pumping of two 10-ml syringes through a 3-way stopcock. Three parameters were compared: Lipiodol/doxorubicin ratio (2/1 vs. 3/1), doxorubicin concentration (10 vs. 20 mg/ml) and speed of incorporation of doxorubicin in Lipiodol (bolus vs. incremental vs. continuous). The percentage of water-in-oil emulsion obtained and the duration until complete coalescence (stability) for water-in-oil emulsions were, respectively, evaluated with the drop-test and static light scattering technique (Turbiscan). Among the 48 emulsions formulated, 32 emulsions (67%) were water-in-oil. The percentage of water-in-oil emulsions obtained was significantly higher for incremental (94%) and for continuous (100%) injections compared to bolus injection (6%) of doxorubicin. Emulsion type was neither influenced by Lipiodol/doxorubicin ratio nor by doxorubicin concentration. The mean stability of water-in-oil emulsions was 215 ± 257 min. The emulsions stability was significantly longer when formulated using continuous compared to incremental injection (326 ± 309 vs. 96 ± 101 min, p = 0.018) and using 3/1 compared to 2/1 ratio of Lipiodol/doxorubicin (372 ± 276 vs. 47 ± 43 min, p = <0.0001). Stability was not influenced by the doxorubicin concentration. The continuous and incremental injections of doxorubicin in the Lipiodol result in highly predictable water-in-oil emulsion type. It also demonstrates a significant increase in stability compared to bolus injection. Higher ratio of Lipiodol/doxorubicin is a critical parameter for emulsion stability too.

  18. Supercritical CO2 extract from strawberry seeds as a valuable component of mild cleansing compositions.

    PubMed

    Sikora, E; Michorczyk, P; Olszańska, M; Ogonowski, J

    2015-12-01

    The aim of this work was an elaboration of mild cleansing compositions, containing supercritical CO2 extract from strawberry seeds (SC-CO2 strawberry seed oil), as a moisturizing and skin-softening agent. The influence of concentration of the oil on user properties of shower/bath products was studied. A series of products (shower/bath cosmetics) composed mainly of mild surfactants (amphoacetates, sulfosuccinates, betaines) and containing different amounts of the oil (0.5 up to 5.0%) were prepared. For the stable products (formulations containing up to 2% of the oil), the influence of the SC-CO2 strawberry seed oil addition on the products' stability, foam ability, surface tension, pH and rheological properties was studied. Moreover, the skin compatibility and moisturizing efficiency of the cleansing products were recorded in a group of 15 volunteers (including 10 women and five men, aged 20-30 years), using skin diagnosis system AramoTS, Aram Huvis Co. Additionally, characterization of CO2 extract from strawberry seeds was performed. Measurements of the oil's analytical constants, that is acid value and saponification number, were conducted according to Polish Standard PN-EN ISO 660:2010 and PN-EN ISO 3657:2013, respectively. The oil concentration influences stability of the products. Only the formulations containing 0.5-2% of the extract have shown high stability. Moreover, used in the amount up to 2% the SC-CO2, strawberry seed oil does not affect significantly the cleansing and foaming properties of the products. The obtained shower/bath cosmetics showed good user properties and additionally good skin-moisturizing effect. The supercritical CO2 extract from strawberry seeds, rich source of unsaturated fatty acid, could be successfully used in the formulation of body washing compositions as a moisturizing and skin-softening agent. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Toxicity of basil oil constituents and related compounds and the efficacy of spray formulations to Dermatophagoides farinae (Acari: Pyroglyphidae).

    PubMed

    Perumalsamy, Haribalan; Kim, Jae Yeon; Kim, Jun-Ran; Hwang, Kum Na Ra; Ahn, Young-Joon

    2014-05-01

    Pyroglyphid house dust mites are the most common cause of allergic symptoms in humans. An assessment was made of the toxicity of basil, Ocimum basilicum L, essential oil, 11 basil oil constituents, seven structurally related compounds, and another 22 previously known basil oil constituents to adult American house dust mites, Dermatophagoides farinae Hughes. The efficacy of four experimental spray formulations containing basil oil (1, 2, 3, and 4% sprays) was also assessed. Results were compared with those of two conventional acaricides benzyl benzoate and N,N-diethyl-3-methylbenzamide. The active principles of basil oil were determined to be citral, alpha-terpineol, and linalool. Citral (24 h LC50, 1.13 microg/cm2) and menthol (1.69 microg/cm2) were the most toxic compounds, followed by methyl eugenol (5.78 microg/cm2). These compounds exhibited toxicity greater than benzyl benzoate (LC50, 8.41 microg/cm2) and N,N-diethyl-3-methylbenzamide (37.67 microg/cm2). Potent toxicity was also observed with eugenol, menthone, spathulenol, alpha-terpineol, nerolidol, zerumbone, and nerol (LC50, 12.52-21.44 microg/cm2). Interestingly, the sesquiterpenoid alpha-humulene, lacking only the carbonyl group present in zerumbone, was significantly less effective than zerumbone, indicating that the alpha,beta-unsaturated carbonyl group of zerumbone is a prerequisite component for toxicity. These compounds were consistently more toxic in closed versus open containers, indicating that their mode of delivery was largely a result of vapor action. Basil oil applied as 3 and 4% sprays provided 97 and 100% mortality against the mites, respectively, whereas permethrin (cis:trans, 25:75) 2.5 g/liter spray treatment resulted in 17% mortality. Our results indicate that practical dust mite control in indoor environments can be achieved by basil oil spray formulations (3 and 4% sprays) as potential contact-action fumigants.

  20. The Addition of Medium-Chain Triglycerides to a Purified Fish Oil Based Diet Alters Inflammatory Profiles in Mice

    PubMed Central

    Carlson, SJ; Nandivada, P; Chang, MI; Mitchell, PD; O’Loughlin, A; Cowan, E; Gura, KM; Nose, V; Bistrian, B; Puder, M

    2014-01-01

    Objective Parenteral nutrition associated liver disease (PNALD) is a deadly complication of long term parenteral nutrition (PN) use in infants. Fish oil-based lipid emulsion has been shown in recent years to effectively treat PNALD. Alternative fat sources free of essential fatty acids have recently been investigated for health benefits related to decreased inflammatory response. We hypothesized that the addition of medium-chain triglycerides (MCT) to a purified fish oil-based diet would decrease the response to inflammatory challenge in mice, while allowing for sufficient growth and development. Materials/Methods Six groups of ten adult male C57/Bl6 mice were pair-fed different dietary treatments for a period of twelve weeks, varying only in fat source (percent calories by weight): 10.84% soybean oil (SOY), 10% coconut oil (HCO), 10% medium-chain triglycerides (MCT), 3% purified fish oil (PFO), 3% purified fish oil with 3% medium-chain triglycerides (50:50 MCT:PFO) and 3% purified fish oil with 7.59% medium-chain triglycerides (70:30 MCT:PFO). An endotoxin challenge was administered to half of the animals in each group at the completion of dietary treatment. Results All groups demonstrated normal growth throughout the study period. Groups fed MCT and HCO diets demonstrated biochemical essential fatty acid deficiency and decreased IL-6 and TNF-α response to endotoxin challenge. Groups containing PFO had increased inflammatory response to endotoxin challenge, and the addition of MCT to PFO mitigated this inflammatory response. Conclusion These results suggest that the addition of MCT to PFO formulations may decrease the host response to inflammatory challenge, which may pose potential for optimized PN formulations. Inclusion of MCT in lipid emulsions given with PN formulations may be of use in therapeutic interventions for disease states resulting from chronic inflammation. PMID:25458829

  1. The addition of medium-chain triglycerides to a purified fish oil-based diet alters inflammatory profiles in mice.

    PubMed

    Carlson, Sarah J; Nandivada, Prathima; Chang, Melissa I; Mitchell, Paul D; O'Loughlin, Alison; Cowan, Eileen; Gura, Kathleen M; Nose, Vania; Bistrian, Bruce R; Puder, Mark

    2015-02-01

    Parenteral nutrition associated liver disease (PNALD) is a deadly complication of long term parenteral nutrition (PN) use in infants. Fish oil-based lipid emulsion has been shown in recent years to effectively treat PNALD. Alternative fat sources free of essential fatty acids have recently been investigated for health benefits related to decreased inflammatory response. We hypothesized that the addition of medium-chain triglycerides (MCT) to a purified fish oil-based diet would decrease the response to inflammatory challenge in mice, while allowing for sufficient growth and development. Six groups of ten adult male C57/Bl6 mice were pair-fed different dietary treatments for a period of twelve weeks, varying only in fat source (percent calories by weight): 10.84% soybean oil (SOY), 10% coconut oil (HCO), 10% medium-chain triglycerides (MCT), 3% purified fish oil (PFO), 3% purified fish oil with 3% medium-chain triglycerides (50:50 MCT:PFO) and 3% purified fish oil with 7.59% medium-chain triglycerides (70:30 MCT:PFO). An endotoxin challenge was administered to half of the animals in each group at the completion of dietary treatment. All groups demonstrated normal growth throughout the study period. Groups fed MCT and HCO diets demonstrated biochemical essential fatty acid deficiency and decreased IL-6 and TNF-α response to endotoxin challenge. Groups containing PFO had increased inflammatory response to endotoxin challenge, and the addition of MCT to PFO mitigated this inflammatory response. These results suggest that the addition of MCT to PFO formulations may decrease the host response to inflammatory challenge, which may pose potential for optimized PN formulations. Inclusion of MCT in lipid emulsions given with PN formulations may be of use in therapeutic interventions for disease states resulting from chronic inflammation. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Studies on piston bowl geometries using single blend ratio of various non-edible oils.

    PubMed

    Viswanathan, Karthickeyan; Pasupathy, Balamurugan

    2017-07-01

    The depletion of fossil fuels and hike in crude oil prices were some of the main reasons to explore new alternatives from renewable source of energy. This work presents the impact of various bowl geometries on diesel engine with diesel and biodiesel samples. Three non-edible oils were selected, namely pumpkin seed oil, orange oil and neem oil. These oils were converted into respective biodiesel using transesterification process in the presence of catalyst and alcohol. After transesterification process, the oils were termed as pumpkin seed oil methyl ester (PSOME), orange oil methyl ester (OME) and neem oil methyl ester (NOME), respectively. The engine used for experimentation was a single-cylinder four-stroke water-cooled direct-injection diesel engine and loads were applied to the engine using eddy current dynamometer. Two bowl geometries were developed, namely toroidal combustion chamber (TCC) and trapezoidal combustion chamber (TRCC). Also, the engine was inbuilt with hemispherical combustion chamber (HCC). The base line readings were recorded using neat diesel fuel with HCC for various loads. Followed by 20% of biodiesel mixed with 80% neat diesel for all prepared methyl esters and termed as B1 (20% PSOME with 80% diesel), B2 (20% OME with 80% diesel) and B3 (20% NOME with 80% diesel). All fuel samples were tested in HCC, TCC and TRCC bowl geometries under standard injection timing and with compression ratio of 18. Increased brake thermal efficiency and reduced brake specific fuel consumption were observed with diesel in TCC geometry. Also, higher heat release and cylinder pressures with lower ignition delay were recorded with TCC bowl geometry. TCC bowl geometry showed lower CO, HC and smoke emissions with B2 fuel sample than diesel and other biodiesel samples. But, higher NOx emission was observed in HCC and TCC than that in TRCC bowl geometry. Graphical abstract ᅟ.

  3. Insect growth regulator effects of azadirachtin and neem oil on survivorship, development and fecundity of Aphis glycines (Homoptera: Aphididae) and its predator, Harmonia axyridis (Coleoptera: Coccinellidae).

    PubMed

    Kraiss, Heidi; Cullen, Eileen M

    2008-06-01

    Aphis glycines Matsumura, an invasive insect pest in North American soybeans, is fed upon by a key biological control agent, Harmonia axyridis Pallas. Although biological control is preferentially relied upon to suppress insect pests in organic agriculture, approved insecticides, such as neem, are periodically utilized to reduce damaging pest populations. The authors evaluated direct spray treatments of two neem formulations, azadirachtin and neem seed oil, under controlled conditions for effects on survivorship, development time and fecundity in A. glycines and H. axyridis. Both azadirachtin and neem seed oil significantly increased aphid nymphal mortality (80 and 77% respectively) while significantly increasing development time of those surviving to adulthood. First-instar H. axyridis survival to adulthood was also significantly reduced by both neem formulations, while only azadirachtin reduced third-instar survivorship. Azadirachtin increased H. axyridis development time to adult when applied to both instars, while neem oil only increased time to adult when applied to first instar. Neither neem formulation affected the fecundity of either insect. Results are discussed within the context of future laboratory and field studies aimed at clarifying if neem-derived insecticides can be effectively integrated with biological control for soybean aphid management in organic soybeans. Copyright (c) 2008 Society of Chemical Industry.

  4. Combination of argan oil and phospholipids for the development of an effective liposome-like formulation able to improve skin hydration and allantoin dermal delivery.

    PubMed

    Manca, Maria Letizia; Matricardi, Pietro; Cencetti, Claudia; Peris, Josè Esteban; Melis, Virginia; Carbone, Claudia; Escribano, Elvira; Zaru, Marco; Fadda, Anna Maria; Manconi, Maria

    2016-05-30

    Allantoin is traditionally employed in the treatment of skin ulcers and hypertrophic scars. In the present work, to improve its local deposition in the skin and deeper tissues, allantoin was incorporated in conventional liposomes and in new argan oil enriched liposomes. In both cases, obtained vesicles were unilamellar, as confirmed by cryo-TEM observation, but the addition of argan oil allowed a slight increase of the mean diameter (∼130nm versus ∼85nm). The formulations, especially those containing argan oil, favoured the allantoin accumulation in the skin, in particular in the dermis (∼8.7μg/cm(2)), and its permeation through the skin (∼33μg/cm(2)). The performances of vesicles as skin delivery systems were compared with those obtained by water dispersion of allantoin and the commercial gel, Sameplast(®). Moreover, in this work, for the first time, the elastic and viscous moduli of the skin were measured, underlining the different hydrating/moisturizing effects of the formulations. The application of ARG liposomes seems to provide a softening and relaxing effect on the skin, thus facilitating the drug accumulation and passage into and trough it. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Optimization of edible coating formulations for improving postharvest quality and shelf life of pear fruit using response surface methodology.

    PubMed

    Nandane, A S; Dave, Rudri K; Rao, T V Ramana

    2017-01-01

    The effect of composite edible films containing soy protein isolate (SPI) in combination with additives like hydroxypropyl methylcellulose (HPMC) and olive oil on 'Babughosha' pear ( Pyrus communis L.) stored at ambient temperature (28 ± 5 °C and 60 ± 10% RH) was evaluated using Response surface methodology (RSM). A total of 30 edible coating formulations comprising of SPI (2-6%, w/v), olive oil (0.7-1.1%, v/v), HPMC (0.1-0.5%, w/v) and potassium sorbate (0-0.4% w/v) were evaluated for optimizing the most suitable combination. Quality parameters like weight loss%, TSS, pH and titrable acidity of the stored pears were selected as response variables for optimization. The optimization procedure was carried out using RSM. It was observed that the response variables were mainly effected by concentration of SPI and olive oil in the formulation. Edible coating comprising of SPI 5%, HPMC 0.40%, olive oil 1% and potassium sorbate 0.22% was found to be most suitable combination for pear fruit with predicted values of response variables indicated as weight loss% 3.50, pH 3.41, TSS 11.13 and TA% 0.513.

  6. Experimental investigation of engine emissions with marine gas oil-oxygenate blends.

    PubMed

    Nabi, Md Nurun; Hustad, Johan Einar

    2010-07-15

    This paper investigates the diesel engine performance and exhaust emissions with marine gas oil-alternative fuel additive. Marine gas oil (MGO) was selected as base fuel for the engine experiments. An oxygenate, diethylene glycol dimethyl ether (DGM), and a biodiesel (BD) jatropha oil methyl ester (JOME) with a volume of 10% were blended with the MGO fuel. JOME was derived from inedible jatropha oil. Lower emissions with diesel-BD blends (soybean methyl ester, rapeseed methyl ester etc.) have been established so far, but the effect of MGO-BD (JOME) blends on engine performance and emissions has been a growing interest as JOME (BD) is derived from inedible oil and MGO is frequently used in maritime transports. No phase separation between MGO-DGM and MGO-JOME blends was found. The neat MGO, MGO-DGM and MGO-JOME blends are termed as MGO, Ox10 and B10 respectively. The experiments were conducted with a six-cylinder, four-stroke, turbocharged, direct-injection Scania DC 1102 (DI) diesel engine. The experimental results showed significant reductions in fine particle number and mass emissions, PM and smoke emissions with Ox10 and B10 fuels compared to the MGO fuel. Other emissions including total unburned hydrocarbon (THC), carbon monoxide (CO) and engine noise were also reduced with the Ox10 and B10 fuels, while maintaining similar brake specific fuel consumption (BSFC) and thermal efficiency with MGO fuel. Oxides of nitrogen (NOx) emissions, on the other hand, were slightly higher with the Ox10 and B10 fuels at high engine load conditions. Copyright 2010 Elsevier B.V. All rights reserved.

  7. Bioactivity of Argentinean Essential Oils Against Permethrin-Resistant Head Lice, Pediculus humanus capitis

    PubMed Central

    Toloza, Ariel C; Zygadlo, Julio; Biurrun, Fernando; Rotman, Alicia; Picollo, María I

    2010-01-01

    Infestation with the head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), is one of the most common parasitic infestation of humans worldwide. Traditionally, the main treatment for control of head lice is chemical control that is based in a wide variety of neurotoxic synthetic insecticides. The repeated overuse of these products has resulted in the selection of resistant populations of head lice. Thus, plant-derived insecticides, such as the essential oils seem to be good viable alternatives as some have low toxicity to mammals and are biodegradable. We determined the insecticidal activity of 25 essential oils belonging to several botanical families present in Argentina against permethrin-resistant head lice. Significant differences in fumigant activity against head lice were found among the essential oils from the native and exotic plant species. The most effective essential oils were Cinnamomum porphyrium, followed by Aloysia citriodora (chemotype 2) and Myrcianthes pseudomato, with KT50 values of 1.12, 3.02 and 4.09; respectively. The results indicate that these essential oils are effective and could be incorporated into pediculicide formulations to control head lice infestations once proper formulation and toxicological tests are performed. PMID:21062140

  8. Bioactivity of Argentinean essential oils against permethrin-resistant head lice, Pediculus humanus capitis.

    PubMed

    Toloza, Ariel C; Zygadlo, Julio; Biurrun, Fernando; Rotman, Alicia; Picollo, María I

    2010-01-01

    Infestation with the head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae), is one of the most common parasitic infestation of humans worldwide. Traditionally, the main treatment for control of head lice is chemical control that is based in a wide variety of neurotoxic synthetic insecticides. The repeated overuse of these products has resulted in the selection of resistant populations of head lice. Thus, plant-derived insecticides, such as the essential oils seem to be good viable alternatives as some have low toxicity to mammals and are biodegradable. We determined the insecticidal activity of 25 essential oils belonging to several botanical families present in Argentina against permethrin-resistant head lice. Significant differences in fumigant activity against head lice were found among the essential oils from the native and exotic plant species. The most effective essential oils were Cinnamomum porphyrium, followed by Aloysia citriodora (chemotype 2) and Myrcianthes pseudomato, with KT(50) values of 1.12, 3.02 and 4.09; respectively. The results indicate that these essential oils are effective and could be incorporated into pediculicide formulations to control head lice infestations once proper formulation and toxicological tests are performed.

  9. Toxicity of Lavandula angustifolia oil constituents and spray formulations to insecticide-susceptible and pyrethroid-resistant Plutella xylostella and its endoparasitoid Cotesia glomerata.

    PubMed

    Yi, Chang Geun; Hieu, Tran Trung; Lee, Si Hyeock; Choi, Byeoung-Ryeol; Kwon, Min; Ahn, Young-Joon

    2016-06-01

    Plutella xylostella is one of the most serious insect pests of cruciferous crops. This study was conducted to determine the toxicity of 21 constituents from Lavandula angustifolia essential oil (LA-EO) and another 16 previously known LA-EO constituents and the toxicity of six experimental spray formulations containing the oil (1-6 g L(-1) sprays) to susceptible KS-PX and pyrethroid-resistant JJ-PX P. xylostella larvae, as well as to its endoparasitoid Cotesia glomerata adults. Linalool and linalool oxide (LC50 = 0.016 mg cm(-3) ) were the most toxic fumigant compounds and were 10.7-fold less toxic than dichlorvos to KS-PX larvae. Either residual or fumigant toxicity of these compounds was almost identical against larvae from either of the two strains. Against C. glomerata, dichlorvos (LC50 = 7 × 10(-6)  mg cm(-3) ) was the most toxic insecticide. LA-EO was ∼1430 times less toxic than dichlorvos. The oil applied as 6 g L(-1) spray and emamectin benzoate 21.5 g L(-1) emulsifiable concentrate provided 100% mortality against larvae from either of the two strains. Reasonable P. xylostella control in greenhouses can be achieved by a spray formulation containing the 6 g L(-1) oil as potential contact-action fumigant. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.

  10. Coenzyme Q10-Loaded Fish Oil-Based Bigel System: Probing the Delivery Across Porcine Skin and Possible Interaction with Fish Oil Fatty Acids.

    PubMed

    Zulfakar, Mohd Hanif; Chan, Lee Mei; Rehman, Khurram; Wai, Lam Kok; Heard, Charles M

    2018-04-01

    Coenzyme Q10 (CoQ10) is a vitamin-like oil-soluble molecule that has anti-oxidant and anti-ageing effects. To determine the most optimal CoQ10 delivery vehicle, CoQ10 was solubilised in both water and fish oil, and formulated into hydrogel, oleogel and bigel. Permeability of CoQ10 from each formulation across porcine ear skin was then evaluated. Furthermore, the effects of the omega-3 fatty eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids from fish oil on skin permeation were investigated by means of nuclear magnetic resonance (NMR) and computerised molecular modelling docking experiments. The highest drug permeation was achieved with the bigel formulation that proved to be the most effective vehicle in delivering CoQ10 across the skin membrane due to a combination of its adhesive, viscous and lipophilic properties. Furthermore, the interactions between CoQ10 and fatty acids revealed by NMR and molecular modelling experiments likely accounted for skin permeability of CoQ10. NMR data showed dose-dependent changes in proton chemical shifts in EPA and DHA. Molecular modelling revealed complex formation and large binding energies between fatty acids and CoQ10. This study advances the knowledge about bigels as drug delivery vehicles and highlights the use of NMR and molecular docking studies for the prediction of the influence of drug-excipient relationships at the molecular level.

  11. Stabilization of a non-aqueous self-double-emulsifying delivery system of rutin by fat crystals and nonionic surfactants: preparation and bioavailability study.

    PubMed

    Wang, Qiang; Huang, Juan; Hu, Caibiao; Xia, Nan; Li, Tong; Xia, Qiang

    2017-07-19

    Literature examples of non-aqueous Pickering emulsions stabilized by fat crystals are very rare. Moreover, the applications of rutin are limited due to its low solubility in both water and oils (less than 0.10 mg g -1 and 0.25 mg g -1 , respectively). Thus, herein, we developed an optimum formulation of a non-aqueous self-double-emulsifying delivery system (SDEDS) containing rutin and evaluated its oral bioavailability. The new formulation stabilized by fat crystals (glycerol monostearate, GMS) and nonionic surfactants was prepared via a two-step emulsification process. The presence of a mixture of GMS crystals and nonionic surfactants effectively improves the stability of the emulsions. The non-aqueous SDEDS spontaneously forms oil-in-oil-in-water (O/O/W) double emulsions in the gastrointestinal environment with the inner oil phase mainly containing the active ingredients. It is stable at both 4 °C and 25 °C for 30 days and could enhance the dissolution properties of the active ingredients. Furthermore, the protection of rutin against digestion-mediated precipitation was observed when the formulation contained a high concentration of GMS crystals. The oral absolute bioavailability of rutin obtained from SDEDS (8.62%) is 1.76-fold higher than that of the actives suspension (4.90%). Thus, the non-aqueous SDEDS is an attractive candidate for the encapsulation of water-insoluble and simultaneously oil-insoluble nutrients (such as rutin) and for use in oral delivery applications.

  12. The Stability of Lubricant Oil Acidity of Biogas Fuelled Engine due to Biogas Desulfurization

    NASA Astrophysics Data System (ADS)

    Gde Tirta Nindhia, Tjokorda; Wayan Surata, I.; Wardana, Ari

    2017-05-01

    This research is established for the purpose of the understanding the stability of the acidity of lubricant oil in biogas fuelled engine due to the absence of hydrogen sulfide (H2S). As was recognized that other than Methane (CH4), there are also other gas impurities in the biogas such as carbon dioxide (CO2), hydrogen sulfide (H2S), moisture (H2O) and ammonia (NH3). Due to H2S contents in the biogas fuel, the engine was found failure. This is caused by corrosion in the combustion chamber due to increase of lubricant acidity. To overcome this problem in practical, the lubricant is increased the pH to basic level with the hope will be decrease to normal value after several time use. Other method is by installing pH measurement sensor in the engine lubricant so that when lubricant is known turn to be acid, then lubricant replacement should be done. In this research, the effect of biogas desulfurization down to zero level to the acidity of lubricant oil in the four stroke engine was carried out with the hope that neutral lubrication oil to be available during running the engine. The result indicates that by eliminating H2S due desulfurization process, effect on stability and neutrality of pH lubricant. By this method the engine safety can be obtained without often replacement the lubricant oil.

  13. A comparative study of antiplaque and antigingivitis effects of herbal mouthrinse containing tea tree oil, clove, and basil with commercially available essential oil mouthrinse

    PubMed Central

    Kothiwale, Shaila V.; Patwardhan, Vivek; Gandhi, Megha; Sohoni, Rahul; Kumar, Ajay

    2014-01-01

    Background: The relatively safe nature and cost-effectiveness of herbal extracts have led to a resurgent interest in their utility as therapeutic agents. Therefore, this prospective, double-blind, randomly controlled clinical trial was designed to compare the antiplaque and antigingivitis effects of newly formulated mouthrinse containing tea tree oil (TTO), clove, and basil with those of commercially available essential oil (EO) mouthrinse. Materials and Methods: Forty patients were selected for a 21-day study period and randomly divided into two groups. The test group patients were given newly formulated herbal mouthrinse and the control group patients were given commercially available EO mouthrinse. The Plaque Index (PI), Gingival Index (GI), and Papillary Marginal Attachment (PMA) Index were recorded at baseline, 14 days, and 21 days. The microbial colony forming units (CFU) were assessed at baseline and 21 days. Results: Test group patients using herbal mouthrinse showed significant improvement in GI (0.16), PI (0.57), and PMA (0.02) scores. These improvements were comparable to those achieved with commercially available EO mouthrinse. However, the aerobic and anaerobic CFU of microbiota were reduced with the herbal mouthrinse (P = 0.0000). Conclusion: The newly formulated herbal mouthrinse and commercially available mouthrinse were beneficial clinically as antiplaque and antigingivitis agents. Newly formulated mouthrinses showed significant reduction in microbial CFU at 21 days. So, our findings support the regular use of herbal mouthrinse as an antiplaque, antigingivitis, and antimicrobial rinse for better efficacy. PMID:25024544

  14. Development of lamellar gel phase emulsion containing marigold oil (Calendula officinalis) as a potential modern wound dressing.

    PubMed

    Okuma, C H; Andrade, T A M; Caetano, G F; Finci, L I; Maciel, N R; Topan, J F; Cefali, L C; Polizello, A C M; Carlo, T; Rogerio, A P; Spadaro, A C C; Isaac, V L B; Frade, M A C; Rocha-Filho, P A

    2015-04-25

    Appropriate therapeutics for wound treatments can be achieved by studying the pathophysiology of tissue repair. Here we develop formulations of lamellar gel phase (LGP) emulsions containing marigold (Calendula officinalis) oil, evaluating their stability and activity on experimental wound healing in rats. LGP emulsions were developed and evaluated based on a phase ternary diagram to select the best LGP emulsion, having a good amount of anisotropic structure and stability. The selected LGP formulation was analyzed according to the intrinsic and accelerated physical stability at different temperatures. In addition, in vitro and in vivo studies were carried out on wound healing rats as a model. The LGP emulsion (15.0% marigold oil; 10.0% of blend surfactants and 75.0% of purified water [w/w/w]) demonstrated good stability and high viscosity, suggesting longer contact of the formulation with the wound. No cytotoxic activity (50-1000 μg/mL) was observed in marigold oil. In the wound healing rat model, the LGP (15 mg/mL) showed an increase in the leukocyte recruitment to the wound at least on days 2 and 7, but reduced leukocyte recruitment after 14 and 21 days, as compared to the control. Additionally, collagen production was reduced in the LGP emulsion on days 2 and 7 and further accelerated the process of re-epithelialization of the wound itself. The methodology utilized in the present study has produced a potentially useful formulation for a stable LGP emulsion-containing marigold, which was able to improve the wound healing process. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Toxicity of botanical formulations to nursery-infesting white grubs (Coleoptera: Scarabaeidae).

    PubMed

    Ranger, Christopher M; Reding, Michael E; Oliver, Jason B; Moyseenko, James J; Youssef, Nadeer N

    2009-02-01

    The toxicity of eight botanically based biopesticides was evaluated against third instars of the scarab larvae (Coleoptera: Scarabaeidae) Popillia japonica Newman, Rhizotrogus majalis (Razoumowsky), Anomala orientalis Waterhouse, and Cyclocephala borealis Arrow. Soil dip bioassays were used to obtain concentration-mortality data 7 d after treatment of larvae, leading to the calculation of LC50 and LC90 values. A wide range in LC50 and LC90 values were exhibited among the formulations. The product Armorex was one of the most active formulations against P. japonica (LC50 = 0.42 ml/liter), R. majalis (LC50 = 0.48 ml/liter), A. orientalis (LC50 = 0.39 ml/liter), and C. borealis (LC50 = 0.49 ml/liter). Armorex is composed of extracts from diverse botanical sources, including 84.5% sesame oil, 2.0% garlic oil, 2.0% clove oil, 1.0% rosemary oil, and 0.5% white pepper extracts. The product Azatin, composed of 3% azadirachtin, also exhibited high toxicity to P. japonica (LC50 = 1.13 ml/liter), R. majalis (LC50 = 0.81 ml/liter), and A. orientalis (LC50 = 1.87 ml/liter). Veggie Pharm is composed of extracts from diverse sources, but this product showed the lowest toxicity to P. japonica (LC50 = 35.19 ml/liter), R. majalis (LC50 = 62.10 ml/liter), A. orientalis (LC50 = 43.76 ml/liter), and C. borealis (LC50 = 50.24 ml/liter). These results document the potential for botanical formulations to control white grubs, but blending extracts from diverse botanical sources does not ensure enhanced biological activity.

  16. Nano-formulation enhances insecticidal activity of natural pyrethrins against Aphis gossypii (Hemiptera: Aphididae) and retains their harmless effect to non-target predators.

    PubMed

    Papanikolaou, Nikos E; Kalaitzaki, Argyro; Karamaouna, Filitsa; Michaelakis, Antonios; Papadimitriou, Vassiliki; Dourtoglou, Vassilis; Papachristos, Dimitrios P

    2018-04-01

    The insecticidal activity of a new nano-formulated natural pyrethrin was examined on the cotton aphid, Aphis gossypii Glover (Hemiptera: Aphididae), and the predators Coccinella septempunctata L. (Coleoptera: Coccinellidae) and Macrolophus pygmaeus Rambur (Hemiptera: Miridae), in respect with the nano-scale potential to create more effective and environmentally responsible pesticides. Pyrethrin was nano-formulated in two water-in-oil micro-emulsions based on safe biocompatible materials, i.e., lemon oil terpenes as dispersant, polysorbates as stabilizers, and mixtures of water with glycerol as the dispersed aqueous phase. Laboratory bioassays showed a superior insecticidal effect of the pyrethrin micro-emulsions compared to two commercial suspension concentrates of natural pyrethrins against the aphid. The nano-formulated pyrethrins were harmless, in terms of caused mortality and survival time, to L3 larvae and four-instar nymphs of the predators C. septempunctata and M. pygmaeus, respectively. We expect that these results can contribute to the application of nano-technology in optimization of pesticide formulation, with further opportunities in the development of effective plant protection products compatible with integrated pest management practices.

  17. Zinc oxide as a new antimicrobial preservative of topical products: interactions with common formulation ingredients.

    PubMed

    Pasquet, Julia; Chevalier, Yves; Couval, Emmanuelle; Bouvier, Dominique; Bolzinger, Marie-Alexandrine

    2015-02-01

    Zinc oxide (ZnO) appears as a promising preservative for pharmaceutical or cosmetic formulations. The other ingredients of the formulations may have specific interactions with ZnO that alter its antimicrobial properties. The influence of common formulation excipients on the antimicrobial efficacy of ZnO has been investigated in simple model systems and in typical topical products containing a complex formulation. A wide variety of formulation excipients have been investigated for their interactions with ZnO: antioxidants, chelating agents, electrolytes, titanium dioxide pigment. The antimicrobial activity of ZnO against Escherichia coli was partially inhibited by NaCl and MgSO4 salts. A synergistic influence of uncoated titanium dioxide has been observed. The interference effects of antioxidants and chelating agents were quite specific. The interactions of these substances with ZnO particles and with the soluble species released by ZnO were discussed so as to reach scientific guidelines for the choice of the ingredients. The preservative efficacy of ZnO was assessed by challenge testing in three different formulations: an oil-in-water emulsion; a water-in-oil emulsion and a dry powder. The addition of ZnO in complex formulations significantly improved the microbiological quality of the products, in spite of the presence of other ingredients that modulate the antimicrobial activity. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Integrated approach in the assessment of skin compatibility of cosmetic formulations with green coffee oil.

    PubMed

    Wagemaker, T A L; Rijo, P; Rodrigues, L M; Maia Campos, P M B G; Fernandes, A S; Rosado, C

    2015-10-01

    Green coffee oil (GCO) has been used in cosmetic formulations due to its emollient and anti-ageing properties. However, there are insufficient studies about its safety when applied in cosmetic formulations. Cytotoxicity of GCO and of formulations containing 2.5-15% of GCO was evaluated by the MTT reduction assay, in human keratinocytes. Formulations containing 15% of GCO and the vehicle were applied under in use conditions in the volar forearm of human volunteers during 3 days. Transepidermal water loss, stratum corneum water content and erythema index were evaluated each 24 h using biophysical techniques. The same formulations were probed for skin tolerance through a patch test. Neither pure GCO nor its formulations showed cytotoxic effects in concentrations up to 100 μg mL(-1) . Transepidermal water loss values showed a slight reduction when the formulation containing GCO was applied. Stratum corneum water content and erythema index did not show significant differences, as the results observed in the first day of the study were maintained throughout 3 days. None of the volunteers display any reaction after using an occlusive patch. The results obtained in the study indicate that GCO seems to be safe for topical applications and showed good skin compatibility under the experimental conditions of the study. © 2015 Society of Cosmetic Scientists and the Société Française de Cosmétologie.

  19. Engineering the biosynthesis of novel rhamnolipids in Escherichia coli for enhanced oil recovery.

    PubMed

    Han, L; Liu, P; Peng, Y; Lin, J; Wang, Q; Ma, Y

    2014-07-01

    The interfacial tension of rhamnolipids and their applications in enhanced oil recovery are dependent on their chemical structures and compositions. To improve their performances of interfacial tension and enhanced oil recovery, the engineered strategies were applied to produce novel rhamnolipids with different chemical structures and compositions. By introducing different key genes for rhamnolipid biosynthesis, Escherichia coli was firstly constructed to produce rhamnolipids that showed different performances in interfacial tension from those from Pseudomonas aeruginosa due to the different fatty acyl compositions. Then, the mutant RhlBs were created by directed evolution and subsequent site-directed mutagenesis and resulted in the production of the novel rhamnolipids with the different performances in interfacial tension as well as enhanced oil recovery. Lastly, computational modelling elucidates that the single amino acid mutation at the position 168 in RhlB would change the volume of binding pocket for substrate and thus affect the selectivity of rhamnolipid formation in E. coli. The novel rhamnolipids that showed the improved performances of interfacial tension and the potential different applications in enhanced oil recovery were successfully produced by engineered E. coli. This study proved that the combination of metabolic engineering and protein engineering is an important engineered strategy to produce many novel metabolites in micro-organisms. © 2014 The Society for Applied Microbiology.

  20. 75 FR 51657 - Airworthiness Directives; Pratt & Whitney Canada Corp. (P&WC) PW615F-A Turbofan Engines

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-23

    ... showed that the Fuel Filter Bypass Valve poppet in the Fuel Oil Heat Exchanger (FOHE) on that engine had... a dormant failure that could result in an unsafe condition. The PW615F-A engine Fuel Filter Bypass... that the Fuel Filter Bypass Valve poppet in the Fuel Oil Heat Exchanger (FOHE) on that engine had worn...

  1. 75 FR 63060 - Airworthiness Directives; PIAGGIO AERO INDUSTRIES S.p.A. Model PIAGGIO P-180 Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-14

    ... failure of engine oil dipsticks, installed on Pratt & Whitney Canada (P&WC) PT6A66 and PT6A66B engines... subsequent corrosion, can cause incorrect reading of the engine oil low level on the Refuel/Ground Test Panel. If left uncorrected, this situation could lead to in-flight engine failure(s). We are issuing this AD...

  2. Niaouli oils from different sources: analysis and influence on cutaneous permeation of estradiol in vitro.

    PubMed

    Monti, D; Tampucci, S; Chetoni, P; Burgalassi, S; Bertoli, A; Pistelli, L

    2009-07-01

    Previous studies in vitro had identified niaouli essential oil (NEO) as a valuable transdermal permeation promoter for estradiol (ES). Subsequent considerations on the complex issue of NEO provenance and composition stimulated the present investigation, which was aimed at defining the composition of NEOs obtained from four different sources, at evaluating their influence on transdermal permeation of ES through hairless mouse skin, and at formulating and evaluating simpler terpene mixtures mimicking the NEOs' composition. While all oils contained 1,8-cineol (eucalyptol) as the main component, appreciable variations in composition could be evidenced, originating differences on the ES cutaneous permeation. Two artificial mixtures containing the same proportions of the main terpenes present in each oil (except the commercially unavailable gamma-terpineol) proved equal or significantly superior in activity when compared with the original oils. It is felt that this study might contribute to the formulation of terpene mixtures acting more efficiently and reproducibly with respect to natural NEOs, whose complex and variable composition, depending on growing place, season, and extraction process, is well documented in the relevant literature.

  3. Food grade microemulsion systems: Sunflower oil/castor oil derivative-ethanol/water. Rheological and physicochemical analysis.

    PubMed

    Mori Cortés, Noelia; Lorenzo, Gabriel; Califano, Alicia N

    2018-05-01

    Microemulsions are thermodynamically stable systems that have attracted considerable attention in the food industry as delivery systems for many hydrophobic nutrients. These spontaneous systems are highly dependent on ingredients and composition. In this work phase diagrams were constructed using two surfactants (Kolliphor RH40 and ELP), water, sunflower oil, and ethanol as cosurfactant, evaluating their physicochemical properties. Stability of the systems was studied at 25 and 60 °C, monitoring turbidity at 550 nm for over a month to identify the microemulsion region. Conductivity was measured to classify between water-in-oil and oil-in-water microemulsions. The phase diagram constructed with Kolliphor RH40 exhibited a larger microemulsion area than that formulated with Kolliphor ELP. All formulations showed a monomodal droplet size distribution with low polydispersity index (<0.30) and a mean droplet size below 20 nm. Systems with higher water content presented a Newtonian behavior; increasing the dispersed phase content produced a weak gel-like structure with pseudoplastic behavior under flow conditions that was satisfactorily modeled to obtain structural parameters. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. Experimental investigation on Performance and Emission Characteristics of J20, P20, N20 Biodiesel blends and Sound Characteristics of P20 Biodiesel blend Used in Single Cylinder Diesel Engine

    NASA Astrophysics Data System (ADS)

    rajasekar, R.; karthik, N.; Xavier, Goldwin

    2017-05-01

    Present work provides the effect of biodiesel blends and Sound Characteristics of P20 Biodiesel blend compared with Performance and emission Characteristics of diesel. Methods and analysis biodiesel blends was prepared by the Transesterification Process. Experiments were conducted in single cylinder constant speed direct injection diesel engine for various test fuels. Research is mainly focused on pongamia oil. It was observed that a 20% Pongamia oil blends and its properties were similar to diesel. The results showed that 20% Pongamia oil blends gave better performance, less in noise and emission compared with ester of Jatropha and neem oil blends. Hence Pongamia blends can be used in existing diesel engine without compromising the engine performance.

  5. Recycling of waste engine oil for diesel production.

    PubMed

    Maceiras, R; Alfonsín, V; Morales, F J

    2017-02-01

    The aim of this work was to recycle waste engine oil until converting it into reusable product, diesel fuel. The waste oil was treated using pyrolytic distillation. The effect of two additives (sodium hydroxide and sodium carbonate) in the purification of the obtained fuel was also studied. Moreover, the influence of the number of distillations were analysed. Some thermal and physicochemical properties (density, viscosity, colour, turbidity, acidity value, distillation curves, cetane number, corrosiveness to Cu, water content, flash point and hydrocarbons) were determined to analyse the quality of the obtained fuel. The best results were obtained with 2% of sodium carbonate and two successive distillations. The obtained results showed that pyrolytic distillation of waste engine oil is an excellent way to produce diesel fuel to be used in engines. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Preparation methods for monodispersed garlic oil microspheres in water using the microemulsion technique and their potential as antimicrobials.

    PubMed

    Zheng, Hua Ming; Li, Hou Bin; Wang, Da Wei; Liu, Dun

    2013-08-01

    Garlic oil is considered as a natural broad-spectrum antibiotic because of its well-known antimicrobial activity. However, the characteristics of easy volatility and poor aqueous solubility limit the application of garlic oil in industry. The purpose of the present work is to develop and evaluate an oil-free microemulsion by loading garlic oil in microemulsion system. Microemulsions were prepared with ethoxylated hydrogenated castor (Cremophor RH40) as surfactant, n-butanol (or ethanol) as cosurfactant, oleic acid-containing garlic oil as oil phase, and ultrapure water as water phase. The effects of the ratio of surfactant to cosurfactant and different oil concentration on the area of oil-in-water (O/W) microemulsion region in pseudoternary phase diagrams were investigated. The particle size and garlic oil encapsulation efficiency of the formed microemulsions with different formulations were also investigated. In addition, the antimicrobial activity in vitro against Escherichia coli and Staphylococcus aureus was assessed. The experimental results show that a stable microemulsion region can be obtained when the mass ratio of surfactant to cosurfactant is, respectively, 1:1, 2:1, and 3:1. Especially, when the mixture surfactants of RH40/n-butanol 2/1 (w/w) is used in the microemulsion formulation, the area of O/W microemulsion region is 0.089 with the particle size 13.29 to 13.85 nm and garlic oil encapsulation efficiency 99.5%. The prepared microemulsion solution exhibits remarkable antibacterial activity against S. aureus. © 2013 Institute of Food Technologists®

  7. Wound Healing Activity of Topical Application Forms Based on Ayurveda

    PubMed Central

    Datta, Hema Sharma; Mitra, Shankar Kumar; Patwardhan, Bhushan

    2011-01-01

    The traditional Indian medicine—Ayurveda, describes various herbs, fats, oils and minerals with anti-aging as well as wound healing properties. With aging, numerous changes occur in skin, including decrease in tissue cell regeneration, decrease in collagen content, loss of skin elasticity and mechanical strength. We prepared five topical anti-aging formulations using cow ghee, flax seed oil, Phyllanthus emblica fruits, Shorea robusta resin, Yashada bhasma as study materials. For preliminary efficacy evaluation of the anti-aging activity we chose excision and incision wound healing animal models and studied the parameters including wound contraction, collagen content and skin breaking strength which in turn is indicative of the tissue cell regeneration capacity, collagenation capacity and mechanical strength of skin. The group treated with the formulations containing Yashada bhasma along with Shorea robusta resin and flax seed oil showed significantly better wound contraction (P < .01), higher collagen content (P < .05) and better skin breaking strength (P < .01) as compared to control group; thus proposing them to be effective prospective anti-aging formulations. PMID:19252191

  8. Vegetable oils and animal fats for diesel fuels: a systems study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lipinsky, E.S.; Kresovich, S.; Wagner, C.K.

    1982-01-01

    This paper provided some information on the possible use of vegetable oils and animal fats as substitute fuels and as emergency diesel fuels in the United States. This paper is confined to using triglyceride fuels in agricultural, automotive, and highway transportation applications. Satisfactory substitution of petroleum-based diesel fuels with triglyceride-based fuels requires the development of an integrated system for the production, processing, and end use of the new fuels on a basis that is both technically attractive and economically rewarding to all of the elements of the system. The three subsystems, the farms that produce oilseed crops, the production ofmore » triglycerides and protein, and the manufacturers of the diesel engines and the owners of the present stock of auto-ignition engines, are discussed. It was concluded that vegetable oils and animal fats have substantial prospects as long-term substitutes for diesel fuels. If special auto-ignition engines were developed to handle vegetable oils, on-farm production and use might succeed. In the absence of such engine development, it is likely that large, centralized facilities to manufacture vegetable oils and their methylesters will be the successful processing route. Vegetable oils are likely to succeed first in geographical areas with benign climates. Vegetable oils and animal fats have limited prospects as diesel fuels for acute emergencies. The high viscosity of vegetable oils and the necessity to make substantial capital investments to obtain oils from oilseeds render the system relatively inflexible. 4 tables. (DP)« less

  9. Oil-Free Turbomachinery Being Developed

    NASA Technical Reports Server (NTRS)

    DellaCorte, Christopher; Valco, Mark J.

    2001-01-01

    NASA and the Army Research Laboratory (ARL) along with industry and university researchers, are developing Oil-Free technology that will have a revolutionary impact on turbomachinery systems used in commercial and military applications. System studies have shown that eliminating an engine's oil system can yield significant savings in weight, maintenance, and operational costs. The Oil-Free technology (foil air bearings, high-temperature coatings, and advanced modeling) is being developed to eliminate the need for oil lubrication systems on high-speed turbomachinery such as turbochargers and gas turbine engines that are used in aircraft propulsion systems. The Oil-Free technology is enabled by recent breakthroughs in foil bearing load capacity, solid lubricant coatings, and computer-based analytical modeling. During the past fiscal year, a U.S. patent was awarded for the NASA PS300 solid lubricant coating, which was developed at the NASA Glenn Research Center. PS300 has enabled the successful operation of foil air bearings to temperatures over 650 C and has resulted in wear lives in excess of 100,000 start/stop cycles. This leapfrog improvement in performance over conventional solid lubricants (limited to 300 C) creates new application opportunities for high-speed, high-temperature Oil-Free gas turbine engines. On the basis of this break-through coating technology and the world's first successful demonstration of an Oil-Free turbocharger in fiscal year 1999, industry is partnering with NASA on a 3-year project to demonstrate a small, Oil-Free turbofan engine for aeropropulsion.

  10. 40 CFR 63.10685 - What are the requirements for the control of contaminants from scrap?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... not charge to a furnace metallic scrap that contains scrap from motor vehicle bodies, engine blocks... vehicle bodies, engine blocks, oil filters, oily turnings, machine shop borings, transformers or... restriction does not apply to any post-consumer engine blocks, post-consumer oil filters, or oily turnings...

  11. 40 CFR 63.10685 - What are the requirements for the control of contaminants from scrap?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... not charge to a furnace metallic scrap that contains scrap from motor vehicle bodies, engine blocks... vehicle bodies, engine blocks, oil filters, oily turnings, machine shop borings, transformers or... restriction does not apply to any post-consumer engine blocks, post-consumer oil filters, or oily turnings...

  12. 40 CFR 63.10685 - What are the requirements for the control of contaminants from scrap?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... not charge to a furnace metallic scrap that contains scrap from motor vehicle bodies, engine blocks... vehicle bodies, engine blocks, oil filters, oily turnings, machine shop borings, transformers or... restriction does not apply to any post-consumer engine blocks, post-consumer oil filters, or oily turnings...

  13. Characteristics Study of In-Situ Capacitive Sensor for Monitoring Lubrication Oil Debris

    PubMed Central

    Han, Zhibin; Wang, Yishou; Qing, Xinlin

    2017-01-01

    As an essential part of engine health monitoring (EHM), online lubrication oil debris monitoring has recently received great attention for the assessment of rotating and reciprocating parts in aero-engines, due to its high integration, low cost and safe characteristics. However, it is be a challenge to find a suitable sensor operating in such a complex environment. We present an unconventional novel approach, in which a cylinder capacitive sensor is designed and integrated with the pipeline of an engine lubrication system, so that the capacitive sensor can effectively detect changes in the lubrication oil condition. In this paper, an attempt to illustrate the performance characteristics of the developed cylinder capacitive sensor is made, through an experiment system that simulates a real scenario of a lubrication oil system. The main aim of the research was to qualitatively describe the relationship between the sensor parameter and the lubrication oil debris. In addition, the effect of the temperature and flow rate of the lubrication oil on capacitance change was performed by several experiments and we figured out a compensation method. The experimental results demonstrated that the cylinder capacitive sensor can potentially be used for lubrication oil debris monitoring of the health condition of an aero-engine. PMID:29292748

  14. [Aerotoxic syndrome: fact or fiction?].

    PubMed

    de Graaf, Leroy J; Hageman, Gerard; Gouders, Bernie C M; Mulder, Michel F A

    2014-01-01

    Although the air from the turbine engines of commercial jet aircraft is used chiefly for propulsion some is also used to refresh and replenish air in the cabin. As a result of oil-seal leakage, pyrolysed engine oil or lubricating oil can contaminate cabin air via the aircraft's ventilation system, and flight crew and passengers can then inhale the combusted fumes. Exposure to emissions from cabin air, whether polluted or not, is associated with certain health risks. This phenomenon is known as the aerotoxic syndrome or 'cabin contamination'. The symptoms are non-specific, consisting predominantly of fatigue and mild cognitive impairment. Possible adverse health effects are attributed factors including organophosphate tricresyl phosphate, a component of aircraft engine oil that is potently neurotoxic.

  15. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    NASA Astrophysics Data System (ADS)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  16. Biodiesel Impact on Engine Lubricant Dilution During Active Regeneration of Aftertreatment Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, X.; Williams, A.; Christensen, E.

    Experiments were conducted with ultra low sulfur diesel (ULSD) and 20% biodiesel blends (B20) to compare lube oil dilution levels and lubricant properties for systems using late in-cylinder fuel injection for aftertreatment regeneration. Lube oil dilution was measured by gas chromatography (GC) following ASTM method D3524 to measure diesel content, by Fourier transform infrared (FTIR) spectrometry following a modified ASTM method D7371 to measure biodiesel content, and by a newly developed back-flush GC method that simultaneously measures both diesel and biodiesel. Heavy-duty (HD) engine testing was conducted on a 2008 6.7L Cummins ISB equipped with a diesel oxidation catalyst (DOC)more » and diesel particle filter (DPF). Stage one of engine testing consisted of 10 consecutive repeats of a forced DPF regeneration event. This continuous operation with late in-cylinder fuel injection served as a method to accelerate lube-oil dilution. Stage two consisted of 16 hours of normal engine operation over a transient test cycle, which created an opportunity for any accumulated fuel in the oil sump to evaporate. Light duty (LD) vehicle testing was conducted on a 2010 VW Jetta equipped with DOC, DPF and a NOx storage catalyst (NSC). Vehicle testing comprised approximately 4,000 miles of operation on a mileage-accumulation dynamometer (MAD) using the U.S. Environmental Protection Agency's Highway Fuel Economy Cycle because of the relatively low engine oil and exhaust temperatures, and high DPF regeneration frequency of this cycle relative to other cycles examined. Comparison of the lube oil dilution analysis methods suggests that D3524 does not measure dilution by biodiesel. The new back-flush GC method provided analysis for both diesel and biodiesel, in a shorter time and with lower detection limit. Thus all lube oil dilution results in this paper are based on this method. Analysis of the HD lube-oil samples showed only 1.5% to 1.6% fuel dilution for both fuels during continuous operation under DPF regeneration events. During the second stage of HD testing, the ULSD lube-oil dilution levels fell from 1.5% to 0.8%, while for B20, lube-oil dilution levels fell from 1.6% to 1.0%, but the fuel in the oil was 36% biodiesel. For the LD vehicle tests, the frequency of DPF regeneration events was observed to be the same for both ULSD and B20. No significant difference between the two fuels' estimated soot loading was detected by the engine control unit (ECU), although a 23% slower rate of increase in differential pressure across DPF was observed with B20. It appears that the ECU estimated soot loading is based on the engine map, not taking advantage of the lower engine-out particulate matter from the use of biodiesel. After 4,000 miles of LD vehicle operation with ULSD, fuel dilution in the lube-oil samples showed total dilution levels of 4.1% diesel. After 4,000 miles of operation with B20, total fuel in oil dilution levels were 6.7% consisting of 3.6% diesel fuel and 3.1% biodiesel. Extrapolation to the 10,000-mile oil drain interval with B20 suggests that the total fuel content in the oil could reach 12%, compared to 5% for operation on ULSD. Analysis of the oil samples also included measurement of total acid number, total base number, viscosity, soot, metals and wear scar; however, little difference in these parameters was noted.« less

  17. Effect of residual oil saturation on hydrodynamic properties of porous media

    NASA Astrophysics Data System (ADS)

    Zhang, Junjie; Zheng, Xilai; Chen, Lei; Sun, Yunwei

    2014-07-01

    To understand the effect of residual oil on hydraulic properties and solute dispersive behavior of porous media, miscible displacement column experiments were conducted using two petroleum products (diesel and engine oil) and a sandy soil. The effective water permeability, effective water-filled porosity, and dispersivity were investigated in two-fluid systems of water and oil as a function of residual oil saturation (ROS). At the end of each experiment, the distribution of ending ROS along the sand column was determined by the method of petroleum ether extraction-ultraviolet spectrophotometry. Darcy’s Law was used to determine permeability, while breakthrough curves (BTCs) of a tracer, Cl-, were used to calibrate effective porosity and dispersivity. The experimental results indicate that the maximum saturated zone residual saturation of diesel and engine oil in this study are 16.0% and 45.7%, respectively. Cl- is found to have no sorption on the solid matrix. Generated BTCs are sigmoid in shape with no evidence of tailing. The effective porosity of sand is inversely proportional to ROS. For the same level of ROS, the magnitude of reduction in effective porosity by diesel is close to that by engine oil. The relative permeability of sand to water saturation decreases with increasing amount of trapped oil, and the slope of the relative permeability-saturation curve for water is larger at higher water saturations, indicating that oil first occupies larger pores, which have the most contribution to the conductivity of the water. In addition, the reduction rate of relative permeability by diesel is greater than that by engine oil. The dispersivity increases with increasing ROS, suggesting that the blockage of pore spaces by immobile oil globules may enhance local velocity variations and increase the tortuosity of aqueous-phase flow paths.

  18. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  19. Immunomodulatory and Physical Effects of Oil Composition in Vaccine Adjuvant Emulsions

    PubMed Central

    Fox, Christopher B.; Baldwin, Susan L.; Duthie, Malcolm S.; Reed, Steven G.; Vedvick, Thomas S.

    2011-01-01

    Squalene-based oil-in-water emulsions have been used for years in some seasonal and pandemic influenza vaccines. However, concerns have been expressed regarding squalene source and potential biological activities. Little information is available regarding the immunomodulatory activity of squalene in comparison with other metabolizable oils in the context of oil-in-water emulsions formulated with vaccines. The present work describes the manufacture and physical characterization of emulsions composed of different classes of oils, including squalene, long chain triglycerides, a medium chain triglyceride, and a perfluorocarbon, all emulsified with egg phosphatidylcholine. Some differences were apparent among the non-squalene oils in terms of emulsion stability, including higher size polydispersity in the perfluorocarbon emulsion, more rapid visual instability at 60 °C for the long-chain triglyceride and perfluorocarbon emulsions, and an increased creaming rate in the medium-chain triglyceride emulsion at 60 °C as detected by laser scattering optical profiling. The biological activity of each of these emulsions was compared when formulated with either a recombinant malaria antigen or a split-virus inactivated influenza vaccine. Overall, vaccines containing the squalene emulsion elicited higher antibody titers and more abundant long-lived plasma cells than vaccines containing emulsions based on other oils. Since squalene-based emulsions show higher adjuvant potency compared to the other oils tested, non-squalene oils may be more suitable as carriers of amphiphilic or hydrophobic immunostimulatory molecules (such as TLR agonists) rather than as stand-alone adjuvants. PMID:21906648

  20. The evaporative drying of sludge by immersion in hot oil: Effects of oil type and temperature.

    PubMed

    Ohm, Tae-In; Chae, Jong-Seong; Lim, Kwang-Soo; Moon, Seung-Hyun

    2010-06-15

    We investigated the evaporative drying by immersion in hot oil (EDIHO) method for drying sludge. This involved heating oil to a temperature higher than that needed for moisture to be evaporated from the sludge by turbulent heat and mass transfer. We fry-dried sewage and leather plant sludge for 10 min in each of four different oils (waste engine, waste cooking, refined waste, and B-C heavy) and three different temperatures (140 degrees C, 150 degrees C, and 160 degrees C). Drying efficiency was found to be greater for higher temperatures. However, giving consideration to energy efficiency we suggest that the optimal temperature for fry-drying sludge is 150 degrees C. At 150 degrees C, the water content of sewage sludge reduced from 78.9% to between 1.5% (with waste cooking oil) and 3.8% (with waste engine oil). The reduction in water content for leather plant sludge fry-dried at 150 degrees C was from 81.6% to between 1% (with waste cooking oil) and 6.5% (with refined waste oil). The duration of the constant rate-drying period was also influenced by the type of oil used: refined waste oil>waste engine oil>B-C heavy oil>waste cooking oil. The duration at 150 degrees C with waste cooking oil was 3 min for sewage sludge and 2 min for leather plant sludge. It is likely that the drying characteristics of oil are influenced by its thermal properties, including its specific heat, and molecular weight. Copyright 2010 Elsevier B.V. All rights reserved.

  1. Submersible optical sensors exposed to chemically dispersed crude oil: wave tank simulations for improved oil spill monitoring.

    PubMed

    Conmy, Robyn N; Coble, Paula G; Farr, James; Wood, A Michelle; Lee, Kenneth; Pegau, W Scott; Walsh, Ian D; Koch, Corey R; Abercrombie, Mary I; Miles, M Scott; Lewis, Marlon R; Ryan, Scott A; Robinson, Brian J; King, Thomas L; Kelble, Christopher R; Lacoste, Jordanna

    2014-01-01

    In situ fluorometers were deployed during the Deepwater Horizon (DWH) Gulf of Mexico oil spill to track the subsea oil plume. Uncertainties regarding instrument specifications and capabilities necessitated performance testing of sensors exposed to simulated, dispersed oil plumes. Dynamic ranges of the Chelsea Technologies Group AQUAtracka, Turner Designs Cyclops, Satlantic SUNA and WET Labs, Inc. ECO, exposed to fresh and artificially weathered crude oil, were determined. Sensors were standardized against known oil volumes and total petroleum hydrocarbons and benzene-toluene-ethylbenzene-xylene measurements-both collected during spills, providing oil estimates during wave tank dilution experiments. All sensors estimated oil concentrations down to 300 ppb oil, refuting previous reports. Sensor performance results assist interpretation of DWH oil spill data and formulating future protocols.

  2. From creekology to geology: Finding and conserving oil on the Southern Plains, 1859--1930

    NASA Astrophysics Data System (ADS)

    Frehner, Brian

    This dissertation tells the story of the oil industry's westward migration from Pennsylvania to the Southern Plains states of Kansas, Oklahoma, and Texas and how different environments in these regions influenced prospectors' methods for finding oil. Petroleum engineers, geologists, and businessmen take center stage throughout the narrative, and I emphasize how their biases, values, and interests influenced the kind of knowledge produced. At the heart of this story lay a contest between professional, university-trained engineers and geologists and so-called practical oil men, or "wildcatters," who received their training less formally from surveying the landscape. Although both groups performed field work in their search for oil, I explore how each learned very different information from that activity. Wildcatters met with so much success that the oil industry failed to take geologists seriously for approximately fifty years after 1860 when the Pennsylvania oil boom started, and I argue that the environment played an important role in this contest for authority between oil prospectors who learned their trade through hands-on experience and those who learned it primarily in the classroom. I continue this theme by showing how the environment actively influenced the growing acceptance of geologists as the oil industry migrated west and companies with interests in Kansas, Oklahoma, and Texas began hiring geologists and establishing their own geological research departments. A pioneer in the use of geology, Henry L. Doherty, controlled Cities Service holding company and dispatched an army of geologists who discovered significant oil strikes in these states. Doherty's embrace of university-trained experts led him to advocate conservation of oil on the basis of geological and engineering principles. Practical men in Oklahoma, however, recognized the need for conservation even earlier and succeeded in lobbying their state legislature for laws which proved effective long before geologists and engineers entered the industry en masse. I show how the political battle over conservation between practical men and petroleum engineers and geologists underscores the complex and decades-long relationship between the oil industry and the natural world.

  3. Components for digitally controlled aircraft engines

    NASA Technical Reports Server (NTRS)

    Meador, J. D.

    1981-01-01

    Control system components suitable for use in digital electronic control systems are defined. Compressor geometry actuation concepts and fuel handling system concepts suitable for use in large high performance turbofan/turbojet engines are included. Eight conceptual system designs were formulated for the actuation of the compressor geometry. Six conceptual system designs were formulated for the engine fuel handling system. Assessment criteria and weighting factors were established and trade studies performed on their candidate systems to establish the relative merits of the various concepts. Fuel pumping and metering systems for small turboshaft engines were also studied. Seven conceptual designs were formulated, and trade studies performed. A simplified bypassing fuel metering scheme was selected and a preliminary design defined.

  4. Utilization of alternative fuels in diesel engines

    NASA Technical Reports Server (NTRS)

    Lestz, S. A.

    1984-01-01

    Performance and emission data are collected for various candidate alternate fuels and compare these data to that for a certified petroleum based number two Diesel fuel oil. Results for methanol, ethanol, four vegetable oils, two shale derived oils, and two coal derived oils are reported. Alcohol fumigation does not appear to be a practical method for utilizing low combustion quality fuels in a Diesel engine. Alcohol fumigation enhances the bioactivity of the emitted exhaust particles. While it is possible to inject many synthetic fuels using the engine stock injection system, wholly acceptable performance is only obtained from a fuel whose specifications closely approach those of a finished petroleum based Diesel oil. This is illustrated by the contrast between the poor performance of the unupgraded coal derived fuel blends and the very good performance of the fully refined shale derived fuel.

  5. Lubrication System 1. Check and Change the Engine Oil. Student Manual. Small Engine Repair Series. First Edition.

    ERIC Educational Resources Information Center

    Hill, Pamela

    This student manual on checking and changing the engine oil is the second of three in an instructional package on the lubrication system in the Small Engine Repair Series for handicapped students. The stated purpose for the booklet is to help students learn what tools and equipment to use and all the steps of the job. Informative material and…

  6. Increased productivity through waste reduction effort in oil and gas company

    NASA Astrophysics Data System (ADS)

    Hidayati, J.; Silviana, NA; Matondang, RA

    2018-02-01

    National companies engaged in oil and gas activities in the upstream sector. In general, the on going operations include drilling, exploration, and production activities with the result being crude oil channelled for shipment. Production activities produce waste gas (flare) of 0.58 MMSCFD derived from 17.05% of natural gas produced. Gas flares are residual gases that have been burning through flare stacks to avoid toxic gases such as H2S and CO that are harmful to human health and the environment. Therefore, appropriate environmental management is needed; one of them is by doing waste reduction business. Through this approach, it is expected that waste reduction efforts can affect the improvement of environmental conditions while increasing the productivity of the company. In this research begins by identifying the existence of problems on the company related to the amount of waste that is excessive and potentially to be reduced. Alternative improvements are then formulated and selected by their feasibility to be implemented through financial analysis, and the estimation of alternative contributions to the level of productivity. The result of this research is an alternative solution to solve the problem of the company by doing technological based engineering by reusing gas flare into fuel for incinerator machine. This alternative contributes to the increased productivity of material use by 23.32%, humans 83.8%, capital 10.13 %, and waste decreased by 0.11%.

  7. Why ceramic engines?

    NASA Technical Reports Server (NTRS)

    Stadler, H. L.

    1984-01-01

    Oil is still a problem for the U.S. and its allies. Transportation uses 61 percent of U.S. oil and its share is increasing, so more efficient technology should be concentrated there. Trucks' share of oil use is increasing because they are already much more efficient than autos. The primary truck opportunities are streamlining, more efficient engines, and shifting freight to railroads. More efficient engines are possible using ceramics to allow elimination of cooling systems and better use of waste exhaust heat. A 60 percent improvement seems possible if ceramics can be made tough enough and durable enough.

  8. WETTABILITY AND PREDICTION OF OIL RECOVERY FROM RESERVOIRS DEVELOPED WITH MODERN DRILLING AND COMPLETION FLUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jill S. Buckley; Norman R. Morrow

    2006-01-01

    The objectives of this project are: (1) to improve understanding of the wettability alteration of mixed-wet rocks that results from contact with the components of synthetic oil-based drilling and completion fluids formulated to meet the needs of arctic drilling; (2) to investigate cleaning methods to reverse the wettability alteration of mixed-wet cores caused by contact with these SBM components; and (3) to develop new approaches to restoration of wetting that will permit the use of cores drilled with SBM formulations for valid studies of reservoir properties.

  9. Oil strategies benefits over different driving cycles using numerical simulation

    NASA Astrophysics Data System (ADS)

    Sara, Hanna; Chalet, David; Cormerais, Mickaël; Hetet, Jean-François

    2017-08-01

    95 g/km is the allowed quantity of CO2 emission normalized to NEDC to be set in 2020. In addition, NEDC will be replaced by more severe driving cycles and will be united worldwide. To respond to those criteria, automotive industries are working on every possible field. Thermal management has been proved to be effective in reducing fuel consumption. Cold start is a primordial reason of overconsumption, as the engine highest efficiency is at its optimal temperature. At cold start, the engine's oil is at its lowest temperature and thus its higher viscosity level. A high viscosity oil generates more friction, which is one of the most important heat losses in the engine. In this paper, hot oil storage is studied. Numerical simulations on GT-suite model were done. The model consists of a 4-cylinder turbocharged Diesel engine using a storage volume of 1 liter of hot oil. Ambient temperature variation were taken into consideration as well as different driving cycles. Furthermore, different configurations of the thermal strategy (multifunction oil sump) were proposed and evaluated. Lubricant temperature and viscosity profiles are presented in the article as well as fuel consumption savings for different configurations, driving cycles and ambient temperatures.

  10. [Metabolic engineering of edible plant oils].

    PubMed

    Yue, Ai-Qin; Sun, Xi-Ping; Li, Run-Zhi

    2007-12-01

    Plant seed oil is the major source of many fatty acids for human nutrition, and also one of industrial feedstocks. Recent advances in understanding of the basic biochemistry of seed oil biosynthesis, coupled with cloning of the genes encoding the enzymes involved in fatty acid modification and oil accumulation, have set the stage for the metabolic engineering of oilseed crops that produce "designer" plant seed oils with the improved nutritional values for human being. In this review we provide an overview of seed oil biosynthesis/regulation and highlight the key enzymatic steps that are targets for gene manipulation. The strategies of metabolic engineering of fatty acids in oilseeds, including overexpression or suppression of genes encoding single or multi-step biosynthetic pathways and assembling the complete pathway for the synthesis of long-chain polyunsaturated fatty acids (e.g. arachidonic acid, eicosapentaenoic acid and docosahexaenoic acid) are described in detail. The current "bottlenecks" in using common oilseeds as "bioreactors" for commercial production of high-value fatty acids are analyzed. It is also discussed that the future research focuses of oilseed metabolic engineering and the prospects in creating renewable sources and promoting the sustainable development of human society and economy.

  11. Diesel oil

    MedlinePlus

    ... oil is a heavy oil used in diesel engines. Diesel oil poisoning occurs when someone swallows diesel ... people trying to suck (siphon) gas from an automobile tank using their mouth and a garden hose ( ...

  12. A Rapid Analytical Method for Determination of Aflatoxins in Plant-Derived Dietary Supplement and Cosmetic Oils

    PubMed Central

    Mahoney, Noreen; Molyneux, Russell J.

    2010-01-01

    Consumption of edible oils derived from conventional crop plants is increasing because they are generally regarded as more healthy alternatives to animal based fats and oils. More recently there has been increased interest in the use of alternative specialty plant-derived oils, including those from tree nuts (almonds, pistachios and walnuts) and botanicals (borage, evening primrose and perilla) both for direct human consumption (e.g. as salad dressings) but also for preparation of cosmetics, soaps, and fragrance oils. This has raised the issue as to whether or not exposure to aflatoxins can result from such oils. Although most crops are subject to analysis and control, it has generally been assumed that plant oils do not retain aflatoxins due to their high polarity and lipophobicity of these compounds. There is virtually no scientific evidence to support this supposition and available information is conflicting. To improve the safety and consistency of botanicals and dietary supplements, research is needed to establish whether or not oils used directly, or in the formulation of products, contain aflatoxins. A validated analytical method for the analysis of aflatoxins in plant-derived oils is essential, in order to establish the safety of dietary supplements for consumption or cosmetic use that contain such oils. The aim of this research was therefore to develop an HPLC method applicable to a wide variety of oils from different plant sources spiked with aflatoxins, thereby providing a basis for a comprehensive project to establish an intra- and inter-laboratory validated analytical method for analysis of aflatoxins in dietary supplements and cosmetics formulated with plant oils. PMID:20235534

  13. Past, Present, and Future of Chemical Acaricides

    USDA-ARS?s Scientific Manuscript database

    There have been many different acaricides and acaricide formulations used throughout the history of tick control. Originally, various mixtures of crude oil, lard, sulfur, and kerosene were used for dipping livestock. This was followed by Beaumont crude oil. Arsenical dips were introduced in 1911 and...

  14. Bioavailability of omega-3 essential fatty acids from perilla seed oil.

    PubMed

    Kurowska, E M; Dresser, G K; Deutsch, L; Vachon, D; Khalil, W

    2003-03-01

    Increased dietary intake of fish oil omega-3 fatty acids, eicosapentanoic acid and docosohexanoic acid, and their precursor, alpha-linolenic acid (ALA), is associated with various health benefits. Enteric-coating (Entrox), which improves stability of omega-3 capsules, has been shown to facilitate fish oil absorption after chronic treatment. To assess the effect of Entrox coating on the short-term bioavailability of ALA administered in the form of ALA-rich Perilla seed oil, 12 healthy subjects (6 males and 6 females) received in a random order Entrox-coated and non-coated ALA formulations, each as a single 6g dose separated by a 3-week washout period. Measurements of plasma ALA concentrations from 0 to 24h showed no difference in ALA pharmacokinetics between the two formulations. However, significantly greater increases in plasma ALA levels from baseline to 24h were observed after ingestion of Entrox vs. non-coated product, suggesting a possible benefit of Entrox with long-term treatment.

  15. Combustion Performance and Exhaust Emission of DI Diesel Engine Using Various Sources of Waste Cooking Oil

    NASA Astrophysics Data System (ADS)

    Afiq, Mohd; Azuhairi, Mohd; Jazair, Wira

    2010-06-01

    In Malaysia, more than 200-tone of cooking oil are used by domestic users everyday. After frying process, about a quarter of these cooking oil was remained and drained into sewage system. This will pollutes waterways and affects the ecosystem. The use of waste cooking oil (WCO) for producing bio-diesel was considered in economical factor which current production cost of bio-diesel production is higher in Malaysia due to higher price of palm oil. Thus, the aim of this study is to investigate the most suitable source of WCO to become a main source of bio-diesel for bio-diesel production in this country. To perform this research, three type of WCO were obtained from house's kitchen, cafeteria and mamak's restaurant. In this study, prospect of these bio-diesel source was evaluated based on its combustion performance and exhaust emissions operated in diesel engine in the form of waste cooking oil methyl ester (WCOME) and have been compared with pure diesel fuel. A 0.6 liter, single-cylinder, air-cooled direct injection diesel engine was used to perform this experiment. Experiment was done at variable engine loads and constant engine speed. As the result, among three stated WCOMEs, the one collected from house's kitchen gives the best performance in term of brake specific fuel consumption (bsfc) and brake power (BP) with lowest soot emission.

  16. Muffins Elaborated with Optimized Monoglycerides Oleogels: From Solid Fat Replacer Obtention to Product Quality Evaluation.

    PubMed

    Giacomozzi, Anabella S; Carrín, María E; Palla, Camila A

    2018-06-01

    This study demonstrates the effectiveness of using oleogels from high oleic sunflower oil (HOSO) and monoglycerides as solid fat replacers in a sweet bakery product. Firstly, a methodology to obtain oleogels with desired properties based on mathematical models able to describe relationships between process and product characteristics variables followed by multi-objective optimization was applied. Later, muffins were prepared with the optimized oleogels and their physicochemical and textural properties were compared with those of muffins formulated using a commercial margarine (Control) or only HOSO. Furthermore, the amount of oil released from muffins over time (1, 7, and 10 days) was measured to evaluate their stability. The replacement of commercial margarine with the optimized oleogels in muffin formulation led to the obtention of products with greater spreadability, higher specific volume, similar hardness values, and a more connected and homogeneous crumb structure. Moreover, these products showed a reduction of oil migration of around 50% in contrast to the Control muffins after 10 days of storage, which indicated that the optimized oleogels can be used satisfactorily to decrease oil loss in this sweet baked product. Fat replacement with the optimized monoglycerides oleogels not only had a positive impact on the quality of the muffins, but also allowed to improve their nutritional profile (without trans fat and low in saturated fat). The food industry demands new ways to reduce the use of saturated and trans fats in food formulations. To contribute to this search, oleogels from high oleic sunflower oil and saturated monoglycerides were prepared under optimized conditions in order to obtain a product with similar functionality to margarine, and its potential application as a semisolid fat ingredient in muffins was evaluated. Muffins formulated with oleogels showed an improved quality compare with those obtained using a commercial margarine with the added benefit of a healthier nutritional profile. © 2018 Institute of Food Technologists®.

  17. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  18. Repellent activity of herbal essential oils against Aedes aegypti (Linn.) and Culex quinquefasciatus (Say.)

    PubMed Central

    Sritabutra, Duangkamon; Soonwera, Mayura

    2013-01-01

    Objective To determine the mosquito repellent activity of herbal essential oils against female Aedes aegypti and Culex quinquefasciatus. Methods On a volunteer's forearm, 0.1 mL of each essential oil was applied to 3 cm×10 cm of exposed skin. The protection time was recorded for 3 min after every 30 min. Results Essential oil from clove oil in olive oil and in coconut oil gave the longest lasting period of 76.50 min and 96.00 min respectively against Aedes aegypti. The citronella grass oil in olive oil, citronella grass oil in coconut oil and lemongrass oil in coconut oil exhibited protection against Culex quinquefasciatus at 165.00, 105.00, and 112.50 min respectively. Conclusions The results clearly indicated that clove, citronella and lemongrass oil were the most promising for repellency against mosquito species. These oils could be used to develop a new formulation to control mosquitoes.

  19. Effect of Diet High in Coconut Oil on Cardiovascular Disease Risk in ApoE Knockout and Wild Type Mice (Mus musculus)

    DTIC Science & Technology

    2016-04-07

    Objective: We evaluated the risk of cardiovascular disease in both control and proatherosclerotic mice consuming diets high in coconut oil. Methods...The mice were weighed and randomly assigned to receive a custom diet with either coconut oil or milk fat. Both diets were formulated to have the...significant differences were seen between knockout and wildtype mice in aorta score regardless of diet, and in liver score with coconut oil diet

  20. Formulation of US international energy policies

    NASA Astrophysics Data System (ADS)

    1980-09-01

    To find out how the United States develops international energy policy, GAO reviewed five major energy issues covering the period from early 1977 through 1979. The issues are: vulnerabilities to petroleum supply interruptions; long term national security strategy on imported oil prices; export of U.S. oil and gas production equipment and technology to the Soviety Union; World Bank initiatives to assist in financing oil and gas exploration and development in oil-importing developing countries; and the role of gas imports relative to the nation's future sources of gas.

  1. Hydraulic fluids and jet engine oil: pyrolysis and aircraft air quality.

    PubMed

    van Netten, C; Leung, V

    2001-01-01

    Incidents of smoke in aircraft cabins often result from jet engine oil and/or hydraulic fluid that leaks into ventilation air, which can be subjected to temperatures that exceed 500 degrees C. Exposed flight-crew members have reported symptoms, including dizziness, nausea, disorientation, blurred vision, and tingling in the legs and arms. In this study, the authors investigated pyrolysis products of one jet engine oil and two hydraulic fluids at 525 degrees C. Engine oil was an important source of carbon monoxide. Volatile agents and organophosphate constituents were released from all the agents tested; however, the neurotoxin trimethyl propane phosphate was not found. The authors hypothesized that localized condensation of pyrolysis products in ventilation ducts, followed by mobilization when cabin heat demand was high, accounted for mid-flight incidents. The authors recommended that carbon monoxide data be logged continuously to capture levels during future incidents.

  2. Studies on exhaust emissions of mahua oil operated compression ignition engine.

    PubMed

    Kapilan, N; Reddy, R P

    2009-07-01

    The world is confronted with fossil fuel depletion and environmental degradation. The energy demand and pollution problems lead to research for an alternative renewable energy sources. Vegetable oils and biodiesel present a very promising alternative fuel to diesel. In this work, an experimental work was carried out to study the feasibility of using raw mahua oil (MO) as a substitute for diesel in dual fuel engine. A single cylinder diesel engine was modified to work in dual fuel mode and liquefied petroleum gas (LPG) was used as primary fuel and mahua oil was used as pilot fuel. The results show that the performance of the dual fuel engine at the injector opening pressure of 220 bar and the advanced injection timing of 30 degrees bTDC results in performance close to diesel base line (DBL) operation and lower smoke and oxides of nitrogen emission.

  3. 14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... that is time-limited. K25.1.4Propulsion systems. (a) Fuel system design. Fuel necessary to complete an... does not apply to airplanes with a required flight engineer. (b) APU design. If an APU is needed to..., whichever is lower, and run for the remainder of any flight . (c) Engine oil tank design. The engine oil...

  4. 14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... that is time-limited. K25.1.4Propulsion systems. (a) Fuel system design. Fuel necessary to complete an... does not apply to airplanes with a required flight engineer. (b) APU design. If an APU is needed to..., whichever is lower, and run for the remainder of any flight . (c) Engine oil tank design. The engine oil...

  5. 14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... that is time-limited. K25.1.4Propulsion systems. (a) Fuel system design. Fuel necessary to complete an... does not apply to airplanes with a required flight engineer. (b) APU design. If an APU is needed to..., whichever is lower, and run for the remainder of any flight . (c) Engine oil tank design. The engine oil...

  6. 14 CFR Appendix K to Part 25 - Extended Operations (ETOPS)

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... that is time-limited. K25.1.4Propulsion systems. (a) Fuel system design. Fuel necessary to complete an... does not apply to airplanes with a required flight engineer. (b) APU design. If an APU is needed to..., whichever is lower, and run for the remainder of any flight . (c) Engine oil tank design. The engine oil...

  7. 1. View of engine terminal complex looking westnorthwest from east ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of engine terminal complex looking west-northwest from east side of Phillips Drive. Shown are (left to right) the south roundhouse, the machine and blacksmith shops, the storehouse, the oil house, and the coaling sation (behind the oil house in this view). - Central Railroad of New Jersey, Engine Terminal, Jersey City, Hudson County, NJ

  8. [Survey of silicone oil for ocular diseases in Japan].

    PubMed

    Sakamoto, Taiji; Hida, Tetsuo; Tano, Yasuo; Negi, Akira; Takeuchi, Shinobu; Ishibashi, Tatsuro; Inoue, Yoshitsugu; Ohguro, Nobuyuki; Okada, Annabelle Ayame

    2008-09-01

    To survey the use of silicone oil in clinical ophthalmology in Japan. Questionnaires were sent to 1,240 hospitals registered as being ophthalmology residency training institutions with the Japanese Ophthalmological Society as of September 2007. Responses were collected via the Internet and results totaled. The use of silicone oil at each institution for the 2006 one-year period was assessed, included queries regarding type of silicone oil, indication for use, results and complications. Hospitals were divided into non-specialty institutions, intermediate-specialty institutions and specialty institutions based on number of vitrectomy procedures performed in the one-year period, and trends were analyzed based on these divisions. Responses were received from 272 institutions (21.9% response rate). Of a total of 36,104 vitrectomy procedures, silicone oil was used in 2,170 cases (6.0%). The diagnosis was proliferative vitreoretinopathy in the majority of cases, followed by proliferative diabetic retinopathy and rhegmatogenous retinal detachment. The majority of institutions replied that the indication for use was complicated case. The type of silicone oil used was ophthalmic formulation in 120 institutions (54.1%) and industrial formulation in 73 institutions (32.9%). Specialty institutions had a higher rate of use of the industrial formulation. The average volume used at one time was 6.4 ml. The majority of institutions responded that silicone oil removal was performed at 3 months after the initial vitrectomy. Silicone oil was not removed in 530 cases in which continued tamponade was judged to be appropriate; this comprised 53.3% of cases at non-specialty institutions. The overall evaluation for silicone oil use was good; silicone oil was rated as being indispensable in 72 cases (31.2%) and effective in 130 cases (56.3%). Responses stating a high need for silicone oil were most frequent for proliferative vitreoretinopathy and proliferative diabetic retinopathy. Complications related to silicone oil use were glaucoma in 125 cases (5.6%), intraocular pressure elevation in 411 cases (18.4%), hypotony in 28 cases (1.3%), endophthalmitis in 5 cases (0.22%), retinal detachment in 13 cases (0.58%), corneal opacification in 105 cases (4.7%), inadvertant subretinal infusion in 31 cases (1.4%) and silicone oil emulsification in 82 cases (3.7%). It was the opinion of many institutions that, in cases where silicone oil could not be used, the number of necessary surgical procedures increased, with lower rates of cure and greater burden on the patient. Silicone oil was utilized in approximately 1 in every 17 vitrectomy procedures performed in 2006 by the Japanese institutions surveyed. Complications were observed, however overall the indications were appropriate and the use of silicone oil was judged to be necessary by nearly 90% of institutions surveyed.

  9. ADFNE: Open source software for discrete fracture network engineering, two and three dimensional applications

    NASA Astrophysics Data System (ADS)

    Fadakar Alghalandis, Younes

    2017-05-01

    Rapidly growing topic, the discrete fracture network engineering (DFNE), has already attracted many talents from diverse disciplines in academia and industry around the world to challenge difficult problems related to mining, geothermal, civil, oil and gas, water and many other projects. Although, there are few commercial software capable of providing some useful functionalities fundamental for DFNE, their costs, closed code (black box) distributions and hence limited programmability and tractability encouraged us to respond to this rising demand with a new solution. This paper introduces an open source comprehensive software package for stochastic modeling of fracture networks in two- and three-dimension in discrete formulation. Functionalities included are geometric modeling (e.g., complex polygonal fracture faces, and utilizing directional statistics), simulations, characterizations (e.g., intersection, clustering and connectivity analyses) and applications (e.g., fluid flow). The package is completely written in Matlab scripting language. Significant efforts have been made to bring maximum flexibility to the functions in order to solve problems in both two- and three-dimensions in an easy and united way that is suitable for beginners, advanced and experienced users.

  10. Laboratory investigation of air-void systems produced by air-entraining admixtures in fresh and hardened mortar.

    DOT National Transportation Integrated Search

    2006-01-01

    The air-void systems produced by two commercially available air-entraining admixtures (AEA), one a vinsol resin formulation and the other a tall oil formulation, were studied in mortars. Mortars were composed of four different portland cements and tw...

  11. Application of Advanced Materials in Petroleum Engineering

    NASA Astrophysics Data System (ADS)

    Zhao, Gufan; Di, Weina; Wang, Minsheng

    With the background of increasing requirements on the petroleum engineering technology from more high demanding exploration targets, global oil companies and oil service companies are making more efforts on both R&D and application of new petroleum engineering technology. Advanced materials always have a decisive role in the functionality of a new product. Technology transplantation has become the important means of innovation in oil and gas industry. Here, we mainly discuss the properties and scope of application of several advanced materials. Based on the material requirements in petroleum engineering, we provide several candidates for downhole electronics protection, drilling fluid additives, downhole tools, etc. Based on the analysis of petroleum engineering technology characteristics, this paper made analysis and research on such advanced materials as new insulation materials, functional gradient materials, self-healing polymers, and introduced their application prospect in petroleum engineering in terms of specific characteristics.

  12. The application of the Routh approximation method to turbofan engine models

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.

    1977-01-01

    The Routh approximation technique is applied in the frequency domain to a 16th order state variable turbofan engine model. The results obtained motivate the extension of the frequency domain formulation of the Routh method to the time domain to handle the state variable formulation directly. The time domain formulation is derived, and a characterization, which specifies all possible Routh similarity transformations, is given. The characterization is computed by the solution of two eigenvalue eigenvector problems. The application of the time domain Routh technique to the state variable engine model is described, and some results are given.

  13. Repellency of a wax-based catnip-oil formulation against stable flies

    USDA-ARS?s Scientific Manuscript database

    Our significant finds including: 1). EAG recordings showed that volatile catnip compounds elicit significant antennal responses from both sexes of stable flies; 2). The laboratory dispersal bioassay showed that stable flies avoided areas treated with catnip oil; 3). The relative concentration of cat...

  14. On the stabilizing role of species diffusion in chemical enhanced oil recovery

    NASA Astrophysics Data System (ADS)

    Daripa, Prabir; Gin, Craig

    2015-11-01

    In this talk, the speaker will discuss a problem on the stability analysis related to the effect of species diffusion on stabilization of fingering in a Hele-Shaw model of chemical enhanced oil recovery. The formulation of the problem is motivated by a specific design principle of the immiscible interfaces in the hope that this will lead to significant stabilization of interfacial instabilities, there by improving oil recovery in the context of porous media flow. Testing the merits of this hypothesis poses some challenges which will be discussed along with some numerical results based on current formulation of this problem. Several open problems in this context will be discussed. This work is currently under progress. Supported by the grant NPRP 08-777-1-141 from the Qatar National Research Fund (a member of The Qatar Foundation).

  15. Low-fat pork liver pâtés enriched with n-3 PUFA/konjac gel: dynamic rheological properties and technological behaviour during chill storage.

    PubMed

    Delgado-Pando, G; Cofrades, S; Ruiz-Capillas, C; Triki, M; Jiménez-Colmenero, F

    2012-09-01

    Low-fat pork liver pâtés enriched with n-3 PUFA/konjac gel were formulated by replacing (total or partially) pork backfat by a combination of healthier oils (olive, linseed and fish oils) and konjac gel. Dynamic rheological properties and technological behaviour of pâtés during chill storage (2 °C, 85 days) were analysed. Cooking yields were affected (P<0.05) by formulation, with percentages ranging between 88 and 98%. According to the frequency sweep test, pâtés presented a gel/emulsion-like pattern with a loosely-structured network and the consistency of a viscoelastic gel. Thermal processing caused the formation of a protein gel network with a considerable element of emulsion-like characteristics. Pâtés became lighter and less red (P<0.05) during chill storage. Purge losses of around 1% were observed at the end of the storage period, irrespective of formulation. Textural parameters of pâtés were affected by formulation and storage time. The results suggest that the replacement of pork back fat by oil-in-water emulsion and the incorporation of konjac gel could provide a mixture of ingredients that effectively mimics the normal animal fat content in pâtés. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Analysis and antibacterial activity of Nigella sativa essential oil formulated in microemulsion system.

    PubMed

    Shaaban, Hamdy A; Sadek, Zainab; Edris, Amr E; Saad-Hussein, Amal

    2015-01-01

    The Essential oil (EO) of Nigella sativa (black cumin) was extracted from the crude oil and the volatile constituents were characterized using gas chromatographic analysis. The EO was formulated in water-based microemulsion system and its antibacterial activity against six pathogenic bacteria was evaluated using the agar well diffusion method. This activity was compared with two other well known biologically active natural and synthetic antimicrobials namely eugenol and Ceftriaxone(®). Results showed that N. sativa EO microemulsion was highly effective against S. aureus, B. cereus and S. typhimurium even at the lowest tested concentration of that EO in the microemulsion (100.0 μg/well). Interestingly, the EO microemulsion showed higher antibacterial activity than Ceftriaxone solution against S. typhimurium at 400.0 μg/well and almost comparable activity against E. coli at 500.0 μg/well. No activity was detected for the EO microemulsion against L. monocytogenes and P. aeruginosa. Eugenol which was also formulated in microemulsion was less effective than N. sativa EO microemulsion except against P. aeruginosa. The synthetic antibiotic (Ceftriaxone) was effective against most of the six tested bacterial strains. This work is the first report revealing the formulation of N. sativa EO in microemulsion system and investigating its antibacterial activity. The results may offer potential application of that water-based microemulsion in controlling the prevalence of some pathogenic bacteria.

  17. Determination of in vivo behavior of mitomycin C-loaded o/w soybean oil microemulsion and mitomycin C solution via gamma camera imaging.

    PubMed

    Kotmakçı, Mustafa; Kantarcı, Gülten; Aşıkoğlu, Makbule; Ozkılıç, Hayal; Ertan, Gökhan

    2013-09-01

    In this study, a microemulsion system was evaluated for delivery of mitomycin C (MMC). To track the distribution of the formulated drug after intravenous administration, radiochemical labeling and gamma scintigraphy imaging were used. The aim was to evaluate a microemulsion system for intravenous delivery of MMC and to compare its in vivo behavior with that of the MMC solution. For microemulsion formulation, soybean oil was used as the oil phase. Lecithin and Tween 80 were surfactants and ethanol was the cosurfactant. To understand the whole body localization of MMC-loaded microemulsion, MMC was labeled with radioactive technetium and gamma scintigraphy was applied for visualization of drug distribution. Radioactivity in the bladder 30 minutes after injection of the MMC solution was observed, according to static gamma camera images. This shows that urinary excretion of the latter starts very soon. On the other hand, no radioactivity appeared in the urinary bladder during the 90 minutes following the administration of MMC-loaded microemulsion. The unabated radioactivity in the liver during the experiment shows that the localization of microemulsion formulation in the liver is stable. In the light of the foregoing, it is suggested that this microemulsion formulation may be an appropriate carrier system for anticancer agents by intravenous delivery in hepatic cancer chemotherapy.

  18. Oral bioavailability assessment and intestinal lymphatic transport of Org 45697 and Org 46035, two highly lipophilic novel immunomodulator analogues.

    PubMed

    Caliph, Suzanne M; Faassen, W A Fried; Vogel, Gerard M; Porter, Christopher J H

    2009-08-01

    Org 45697 (MW 600.7, clogP 7.92, soybean oil solubility 50 mg/g) and Org 46035 (MW 601.6, clog P 8.46, soybean oil solubility 40 mg/g) are two poorly water soluble (<0.1 microg/ml), highly lipophilic drug candidates with immunomodulator activity and highly analogous chemical structures. After oral administration to conscious ambulatory rats in an aqueous-based methylcellulose/Tween 80 suspension, the bioavailability of both compounds was low (< 2% of administered dose). However, bioavailability was significantly increased (> 5 fold) after oral administration in a long chain triglyceride lipid (olive oil) formulation. Subsequent studies have explored the potential for solubilising formulations, including lipid-based formulations, to enhance the oral bioavailability of Org 45697 and Org 46035 and secondly to explore the potential contribution of intestinal lymphatic transport to intestinal absorption. The experimental data show that solubilising formulations may provide for significant increases in oral bioavailability for Org 45697 and Org 46035 and that after co-administration with lipid, 35-50% of the absorbed dose may be transported to the systemic circulation via the intestinal lymph. Interestingly, the lymphatic transport of the less lipid soluble analogue, Org 46035 was approximately 40% lower than that of Org 45697 suggesting that relatively subtle differences in lipid solubility can have significant impact on the extent of lymphatic transport.

  19. Lubricating oil burn-off in Coast Guard power plants

    DOT National Transportation Integrated Search

    1975-02-01

    The results of a feasibility study for the burn-off of waste oils in Coast Guard power plants are presented. Among the factors considered in this evaluation were: simplicity, cost, engine manufacturers recommendations, mixing ratios, engine emissions...

  20. Biodegradation of waste lubricants by a newly isolated Ochrobactrum sp. C1.

    PubMed

    Bhattacharya, Munna; Biswas, Dipa; Sana, Santanu; Datta, Sriparna

    2015-10-01

    A potential degrader of paraffinic and aromatic hydrocarbons was isolated from oil-contaminated soil from steel plant effluent area in Burnpur, India. The strain was investigated for degradation of waste lubricants (waste engine oil and waste transformer oil) that often contain EPA (Environmental Protection Agency, USA) classified priority pollutants and was identified as Ochrobactrum sp. C1 by 16S rRNA gene sequencing. The strain C1 was found to tolerate unusually high waste lubricant concentration along with emulsification capability of the culture broth, and its degradation efficiency was 48.5 ± 0.5 % for waste engine oil and 30.47 ± 0.25 % for waste transformer oil during 7 days incubation period. In order to get optimal degradation efficiency, a three level Box-Behnken design was employed to optimize the physical parameters namely pH, temperature and waste oil concentration. The results indicate that at temperature 36.4 °C, pH 7.3 and with 4.6 % (v/v) oil concentration, the percentage degradation of waste engine oil will be 57 % within 7 days. At this optimized condition, the experimental values (56.7 ± 0.25 %) are in a good agreement with the predicted values with a calculated R 2 to be 0.998 and significant correlation between biodegradation and emulsification activity (E 24  = 69.42 ± 0.32 %) of the culture broth toward engine oil was found with a correlation coefficient of 0.972. This is the first study showing that an Ochrobactrum sp. strain is capable of degrading waste lubricants, which might contribute to the bioremediation of waste lubricating oil-contaminated soil.

  1. Influence of anatomical site and topical formulation on skin penetration of sunscreens

    PubMed Central

    Benson, Heather AE; Sarveiya, Vikram; Risk, Stacey; Roberts, Michael S

    2005-01-01

    Sunscreen products are widely used to protect the skin from sun-related damage. Previous studies have shown that some sunscreen chemicals are absorbed across the skin to the systemic circulation. The current study shows that absorption into the skin of sunscreen chemicals applied to the face is up to four times greater than that of the same product applied to the back. This has implications for the way sunscreen products are formulated and may allow the use of less potent products on the face compared with the rest of the body. The effect of formulation vehicles on the release and skin penetration of the common sunscreen agent benzophenone-3 (common name oxybenzone) was also assessed. Penetration of benzophenone-3 across excised human epidermis and high-density polyethylene (HDPE) membrane was measured using in vitro Franz-type diffusion cells. Penetration and epidermal retention was measured following application of infinite and finite (epidermis only) doses of benzophenone-3 in five vehicles: liquid paraffin, coconut oil, 50:50 ethanol:coconut oil, aqueous cream BP, and oily cream BP. Highest benzophenone-3 skin retention was observed for the ethanol:coconut oil combination. Maximal and minimal benzophenone-3 fluxes were observed from liquid paraffin and coconut oil, respectively. The alcohol-based vehicle exhibited low benzophenone-3 release from the vehicle but high skin penetration and retention. PMID:18360561

  2. Synergistic Combinations of a Pyrethroid Insecticide and an Emulsifiable Oil Formulation of Beauveria bassiana to Overcome Insecticide Resistance in Listronotus maculicollis (Coleoptera: Curculionidae).

    PubMed

    Wu, Shaohui; Kostromytska, Olga S; Koppenhöfer, Albrecht M

    2017-08-01

    The annual bluegrass weevil, Listronotus maculicollis (Kirby), is a major pest of golf course turf in eastern North America and has become particularly problematic owing to widespread development of insecticide resistance. As an alternative option to manage resistant adult L. maculicollis, we explored combinations of the pyrethroid insecticide bifenthrin with an emulsifiable oil formulation of the entomopathogenic fungus Beauveria bassiana strain GHA (Bb ES). Combinations synergistically enhanced mortality in both insecticide-susceptible and insecticide-resistant L. maculicollis adults in the laboratory when bifenthrin was used at LC50s for each population. To determine the component behind the synergism, technical spores of B. bassiana GHA and the emulsifiable oil carrier in the fungal formulation were tested separately or in combination with bifenthrin. In both separate and combined applications, the emulsifiable oil carrier was responsible for high mortality within 3 d after treatment and interacted synergistically with bifenthrin, whereas fungus-induced mortality started later. Strong synergism was also observed in three field experiments with a relatively resistant L. maculicollis population. Combinations of Bb ES and bifenthrin hold promise as an effective L. maculicollis management tool, particularly of pyrethroid-resistant populations. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Formulation characteristics and in vitro release testing of cyclosporine ophthalmic ointments.

    PubMed

    Dong, Yixuan; Qu, Haiou; Pavurala, Naresh; Wang, Jiang; Sekar, Vasanthakumar; Martinez, Marilyn N; Fahmy, Raafat; Ashraf, Muhammad; Cruz, Celia N; Xu, Xiaoming

    2018-06-10

    The aim of the present study was to investigate the relationship between formulation/process variables versus the critical quality attributes (CQAs) of cyclosporine ophthalmic ointments and to explore the feasibility of using an in vitro approach to assess product sameness. A definitive screening design (DSD) was used to evaluate the impact of formulation and process variables. The formulation variables included drug percentage, percentage of corn oil and lanolin alcohol. The process variables studied were mixing temperature, mixing time and the method of mixing. The quality and performance attributes examined included drug assay, content uniformity, image analysis, rheology (storage modulus, shear viscosity) and in vitro drug release. Of the formulation variables evaluated, the percentage of the drug substance and the percentage of corn oil in the matrix were the most influential factors with respect to in vitro drug release. Conversely, the process parameters tested were observed to have minimal impact. An evaluation of the release mechanism of cyclosporine from the ointment revealed an interplay between formulation (e.g. physicochemical properties of the drug and ointment matrix type) and the release medium. These data provide a scientific basis to guide method development for in vitro drug release testing of ointment dosage forms. These results demonstrate that the in vitro methods used in this investigation were fit-for-purpose for detecting formulation and process changes and therefore amenable to assessment of product sameness. Published by Elsevier B.V.

  4. Predicting solubilisation features of ternary phase diagrams of fully dilutable lecithin linker microemulsions.

    PubMed

    Nouraei, Mehdi; Acosta, Edgar J

    2017-06-01

    Fully dilutable microemulsions (μEs), used to design self-microemulsifying delivery system (SMEDS), are formulated as concentrate solutions containing oil and surfactants, without water. As water is added to dilute these systems, various μEs are produced (water-swollen reverse micelles, bicontinuous systems, and oil-swollen micelles), without the onset of phase separation. Currently, the formulation dilutable μEs follows a trial and error approach that has had a limited success. The objective of this work is to introduce the use of the hydrophilic-lipophilic-difference (HLD) and net-average-curvature (NAC) frameworks to predict the solubilisation features of ternary phase diagrams of lecithin-linker μEs and the use of these predictions to guide the formulation of dilutable μEs. To this end, the characteristic curvatures (Cc) of soybean lecithin (surfactant), glycerol monooleate (lipophilic linker) and polyglycerol caprylate (hydrophilic linker) and the equivalent alkane carbon number (EACN) of ethyl caprate (oil) were obtained via phase scans with reference surfactant-oil systems. These parameters were then used to calculate the HLD of lecithin-linkers-ethyl caprate microemulsions. The calculated HLDs were able to predict the phase transitions observed in the phase scans. The NAC was then used to fit and predict phase volumes obtained from salinity phase scans, and to predict the solubilisation features of ternary phase diagrams of the lecithin-linker formulations. The HLD-NAC predictions were reasonably accurate, and indicated that the largest region for dilutable μEs was obtained with slightly negative HLD values. The NAC framework also predicted, and explained, the changes in microemulsion properties along dilution lines. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Biopharmaceutical Assessment and Irritation Potential of Microemulsions and Conventional Systems Containing Oil from Syagrus cearensis for Topical Delivery of Amphotericin B Using Alternative Methods.

    PubMed

    Sousa, Giovana D; Kishishita, Juliana; Aquino, Kátia A S; Presgrave, Octávio A F; Leal, Leila B; Santana, Davi P

    2017-07-01

    The aim of this study was to compare the biopharmaceutical characteristics and irritation potentials of microemulsions (MEs) and conventional systems (CSs) containing oil from Syagrus cearensis for topical delivery of Amphotericin B (AmB). Pseudo-ternary phase diagrams were constructed using a water titration method to develop the MEs, and the CSs were prepared according to the classical technique of phase inversion. In the skin permeation and retention study, dermatomed pig skin without stratum corneum was used as an alternative disturbed skin model. The irritation potential was evaluated using three different methods, chorioallantoic membrane assays (HET-CAM and CAM-TBS), and bovine corneal opacity and permeability (BCOP) test. The optimized formulation (ME1) consisting of 0.1% (w/w) Amphotericin B, 9.1% (w/w) catolé oil, 81% (w/w) Smix (1:1, Tween 20 and Kolliphor EL) possessed droplet size of 31.02 ± 0.9 nm, zeta potential of -23.4 mV, and viscosity 0.63 ± 0.1 Pa.s. ME1 exhibited greater retention of AmB in to skin layers (84.79 ± 2.08 μg cm -2 ) than all the others formulations. In general, MEs showed higher drug release and retention than CSs and all of the formulations showed greater retentivity than permeability. Only MEs developed using Labrasol/Plurol Oleique (L/PO) as the surfactant and co-surfactant exhibited a moderate irritation potential; all other MEs and CSs were classified as non-irritants or slight irritants. The results indicate that formulations containing oil from S. cearensis are promising alternatives for the delivery of AmB targeting the treatment of cutaneous leishmaniasis.

  6. Development of a hull-less pumpkin (Cucurbita pepo L.) seed oil press-cake spread.

    PubMed

    Radočaj, Olga; Dimić, Etelka; Vujasinović, Vesna

    2012-09-01

    A stable, oil-based spread rich in the omega-3 (ω-3) and omega-6 (ω-6) fatty acids was developed using a hull-less pumpkin seed (Cucurbita pepo L.) oil press-cake, a by-product of the pumpkin oil pressing process, along with cold-pressed hemp oil. Response surface methodology (RSM) was applied to investigate the effects of two factors, as the formulation's compositional variables: a commercial stabilizer (X(1) ) and cold-pressed hemp oil (X(2) ) added to the pumpkin seed oil press-cake in the spread formulations. A central composite, 2-factorial experimental design on 5 levels was used to optimize the spreads where model responses were ω-3 fatty acids content, spreadability (hardness), oil separation, and sensory evaluation. The selected responses were significantly affected by both variables (P < 0.05). The spreads resembled commercial peanut butter, both in appearance, texture and spreadability; were a source of ω-3 fatty acids and with no visual oil separation after 1 mo of storage. An optimum spread was produced using 1.25% (w/w) of stabilizer and 80% of hemp oil (w/w, of the total added oil) which had 0.97 g of ω-3 fatty acids per serving size; penetration depth of 68.4 mm; oil separation of 9.2% after 3 mo of storage; and a sensory score of 17.5. A use of by-products generated from different food processing technologies, where the edible waste is successfully incorporated as a value-added ingredient, has become a very important area of research to support global sustainability efforts. This study contributes to the knowledge of a product design process for oil-based spread development, where oil press-cake, a by-product of the oil pressing process of the naked pumpkin seeds, was used and where results have demonstrated that a new product can be successfully developed and potentially manufactured as a functional food. © 2012 Institute of Food Technologists®

  7. Use of Water-Fuel Mixture in Diesel Engines at Fishing Vessels

    NASA Astrophysics Data System (ADS)

    Klyus, Oleg; Bezyukov, O.

    2017-06-01

    The paper presents the laboratory test results determining physical parameters of fuel mixture made up of petroleum diesel oil, rapeseed oil methyl esters (up to 20%) and water (up to 2.5%). The obtained parameters prove that adding bio-components (rapeseed oil methyl esters) and water to fuel does not result in deterioration of their physical and chemical properties and are comparable to base fuel parameters, namely petroleum diesel oil. The mixture was a subject of bench testing with the use of a self-ignition engine by means of pre-catalytic fuel treatment. The treatment process consisted in fuel - catalytically active material direct contact on the atomizer body. At the comparable operational parameters for the engine, the obtained exhaust gases opacity was lower up to 60% due to the preliminary fuel mixture treatment in relation to the factory-made fuel injection system using petroleum diesel oil.

  8. Low Velocity Impact Behavior of Glass Filled Fiber-Reinforced Thermoplastic Engine Components

    PubMed Central

    Mouti, Zakaria; Westwood, Keith; Kayvantash, Kambiz; Njuguna, James

    2010-01-01

    This paper concerns automotive parts located underneath the engine and in particular the engine oil pan. Classically made of stamped steel or cast aluminum, new developments have allowed the manufacture oil pans with polyamide 66 reinforced by 35% weight of short glass fiber. However, polyamides have some limitations and the most significant is their response to localized impact loading. The nature of the impact considered here is of a typical stone collected from the road and projected into the oil pan.  Low velocity impact investigations were carried out using a gas gun and drop weight tower.  The study shows that the design of the oil pan has a significant contribution in the shock absorption. In addition to the material properties, the geometry and the ribbing both cleverly combined, increase the impact resistance of the component significantly. Areas of oil pan design improvement have been identified and conclusions drawn.

  9. Characteristics and oil sorption effectiveness of kapok fibre, sugarcane bagasse and rice husks: oil removal suitability matrix.

    PubMed

    Ali, Norizan; El-Harbawi, Mohanad; Jabal, Ayman Abo; Yin, Chun-Yang

    2012-01-01

    The characteristics and water/oil sorption effectiveness ofkapok fibre, sugarcane bagasse and rice husks have been compared. The three biomass types were subjected to field emission scanning electron microscopy-energy dispersive X-ray spectroscopy and surface tension analyses for liquid-air and oil-water systems were conducted. Both kapok fibre and sugarcane bagasse exhibit excellent oil sorption capabilities for diesel, crude, new engine and used engine oils as their oil sorption capacities all exceed 10 g/g. The synthetic sorbent exhibits oil sorption capacities comparable with sugarcane bagasse, while rice husks exhibit the lowest oil sorption capacities among all the sorbents. Kapok fibre shows overwhelmingly high oil-to-water sorption (O/W) ratios ranging from 19.35 to 201.53 while sugarcane bagasse, rice husks and synthetic sorbent have significantly lower O/W ratios (0.76-2.69). This suggests that kapok fibre is a highly effective oil sorbent even in well-mixed oil-water media. An oil sorbent suitability matrix is proposed to aid stakeholders in evaluating customized oil removal usage of the natural sorbents.

  10. Splash lubricating system for an engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakano, K.; Tani, Y.; Umeda, T.

    1986-12-16

    A splash lubrication system is described for an engine comprising a crank case, a crank room formed in the crank case, an oil reserving room formed in a lower part of the crank case for lubricating oil, and an oil splasher. The splasher extends from a big end of a connecting rod downward so as to splash oil from the oil reserving room to the crank room on its way from a front side to a back side along the lower part of its orbit. The improvement described here comprises: a transverse partition substantially covering the oil reserving room, disposedmore » at an upper space thereof, having an opening which allows the oil splasher to move therein. It includes three buffer plates covering front, right and left sides of the opening respectively for controlling oil level thereunder.« less

  11. Physicochemical and sensory properties of ice-cream formulated with virgin coconut oil.

    PubMed

    Choo, S Y; Leong, S K; Henna Lu, F S

    2010-12-01

    The substitution of milk fat with virgin coconut oil (VCO) was used to produce nutritious ice cream with pleasant coconut flavor and aroma. Three formulations were developed whereby formulation VCO4, VCO8 and VCO12 was substituted with 4%, 8% and 12% of VCO, respectively. The physicochemical properties of ice creams analyzed include overrun, meltdown, pH, titratable acidity, total solid, protein and fat content. The fatty acids profile of VCO formulated ice creams and their stabilities over 3 and 6 weeks storage were studied respectively using gas chromatography (GC). Qualitative descriptive analysis (QDA) and consumer affective test were performed among the trained and untrained panelists. Significant differences (p < 0.05) of overrun, pH, total solid, protein and fat content between ice cream formulations were observed except titratable acidity. Increased VCO content in ice cream formulations lowered the melting resistance of ice cream. For GC analysis, the major fatty acid identified was lauric acid. Upon storage time, the concentration of unsaturated fatty acid decreased but the concentration of saturated fatty acid increased. The result of QDA showed that formulation VCO4, VCO8 and VCO12 were significantly (p < 0.05) different in attributes of color, firmness and smoothness as compared to the control ice cream. Formulation VCO12 was highly accepted by panelists in terms of the acceptance level of appearance, aroma, texture, flavor and overall acceptability. Hence, it has a potential marketable value.

  12. Formulation and optimization by experimental design of eco-friendly emulsions based on d-limonene.

    PubMed

    Pérez-Mosqueda, Luis M; Trujillo-Cayado, Luis A; Carrillo, Francisco; Ramírez, Pablo; Muñoz, José

    2015-04-01

    d-Limonene is a natural occurring solvent that can replace more pollutant chemicals in agrochemical formulations. In the present work, a comprehensive study of the influence of dispersed phase mass fraction, ϕ, and of the surfactant/oil ratio, R, on the emulsion stability and droplet size distribution of d-limonene-in-water emulsions stabilized by a non-ionic triblock copolymer surfactant has been carried out. An experimental full factorial design 3(2) was conducted in order to optimize the emulsion formulation. The independent variables, ϕ and R were studied in the range 10-50 wt% and 0.02-0.1, respectively. The emulsions studied were mainly destabilized by both creaming and Ostwald ripening. Therefore, initial droplet size and an overall destabilization parameter, the so-called turbiscan stability index, were used as dependent variables. The optimal formulation, comprising minimum droplet size and maximum stability was achieved at ϕ=50 wt%; R=0.062. Furthermore, the surface response methodology allowed us to obtain the formulation yielding sub-micron emulsions by using a single step rotor/stator homogenizer process instead of most commonly used two-step emulsification methods. In addition, the optimal formulation was further improved against Ostwald ripening by adding silicone oil to the dispersed phase. The combination of these experimental findings allowed us to gain a deeper insight into the stability of these emulsions, which can be applied to the rational development of new formulations with potential application in agrochemical formulations. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Effect of cooking method on the fatty acid content of reduced-fat and PUFA-enriched pork patties formulated with a konjac-based oil bulking system.

    PubMed

    Salcedo-Sandoval, Lorena; Cofrades, Susana; Ruiz-Capillas, Claudia; Jiménez-Colmenero, Francisco

    2014-12-01

    The effect of cooking methods (electric grilling and pan-frying in olive oil) on the composition of reduced-fat and reduced-fat/PUFA enriched pork patties was studied. Fat reduction was performed by replacing pork backfat (38% and 100%) with konjac gel and PUFA-enrichment by replacing pork backfat (49%) with a konjac-based oil bulking system stabilizing a healthier oil combination (olive, linseed and fish oils). Cooking losses (13%-27%) were affected (p<0.05) by formulation and cooking procedure. Compared with raw products, cooked samples had higher (p<0.05) concentrations of MUFAs and PUFAs (both n-3 and n-6); the difference was greater (p<0.05) in the pan-fried patties. Fatty acid retention was generally better in pan-fried than in grilled samples. When cooked, the PUFA levels in the medium-fat/improved sample containing the oil bulking system ranged between 1.4 and 1.6g/100g (0.47-0.51 from n-3 PUFAs), with EPA+DHA concentrations of around 75mg/100g. Konjac materials were successfully used to produce pork patties with a better lipid composition. Copyright © 2014. Published by Elsevier Ltd.

  14. Promising features of Moringa oleifera oil: recent updates and perspectives.

    PubMed

    Nadeem, Muhammad; Imran, Muhammad

    2016-12-08

    Lipids are the concentrated source of energy, fat soluble vitamins, essential fatty acids, carriers of flavours and many bio-active compounds with important role in maintaining physiological functions of biological body. Moringa oleifera is native to Himalaya and widely grown in many Asian and African countries with seed oil content range from 35-40%. Moringa oleifera oil (MOO) has light yellow colour with mild nutty flavour and fatty acids composition suggests that MOO is highly suitable for both edible and non-edible applications. MOO is extremely resistant to autoxidation which can be used as an antioxidant for the long term stabilization of commercial edible oils. Thermal stability of MOO is greater than soybean, sunflower, canola and cottonseed oils. High oleic contents of MOO are believed to have the capability of increasing beneficial HDL cholesterol and decreased the serum cholesterol and triglycerides. MOO applications have also been explored in cosmetics, folk medicines and skin care formulations. Overall, this review focuses on commercial production status, food applications, antioxidant characteristics, health benefits, thermal stability, fractionation, cholesterol contents, medicinal, nutraceutical action, toxicological evaluation, biodiesel production, personal care formulations and future perspectives of the MOO for the stake holders to process and utilize MOO as a new source of edible oil for industrial purpose.

  15. Liquid Crystal Formation from Sunflower Oil: Long Term Stability Studies.

    PubMed

    da Rocha-Filho, Pedro Alves; Maruno, Mônica; Ferrari, Márcio; Topan, José Fernando

    2016-06-09

    The Brazilian biodiversity offers a multiplicity of raw materials with great potential in cosmetics industry applications. Some vegetable oils and fatty esters increase skin hydration by occlusivity, keeping the skin hydrated and with a shiny appearance. Sunflower (Helianthus annus L.) oil is widely employed in cosmetic emulsions in the form of soaps, creams, moisturizers and skin cleansers due to the presence of polyphenols and its high vitamin E content. Liquid crystals are systems with many applications in both pharmaceutical and cosmetic formulations and are easily detected by microscopy under polarized light due to their birefringence properties. The aim of this research was to develop emulsions from natural sunflower oil for topical uses. Sunflower oil (75.0% w/w) was combined with liquid vaseline (25.0% w/w) employing a natural self-emulsifying base (SEB) derivative. The high temperature of the emulsification process did not influence the antioxidant properties of sunflower oil. Fatty esters were added to cosmetic formulations and extended stability tests were performed to characterize the emulsions. Fatty esters like cetyl palmitate and cetyl ester increase the formation of anisotropic structures. O/W emulsions showed acidic pH values and pseudoplastic behavior. The presence of a lamellar phase was observed after a period of 90 days under different storage conditions.

  16. Fundamental understanding of drug absorption from a parenteral oil depot.

    PubMed

    Kalicharan, Raween W; Schot, Peter; Vromans, Herman

    2016-02-15

    Oil depots are parenteral drug formulations meant for sustained release of lipophilic compounds. Until now, a comprehensive understanding of the mechanism of drug absorption from oil depots is lacking. The aim of this paper was to fill this gap. A clinical study with healthy volunteers was conducted. An oil depot with nandrolone decanoate and benzyl alcohol was subcutaneously administered in the upper arm of female volunteers. Pharmacokinetic profiles of both substances were related to each other and to literature data. Benzyl alcohol absorbs much more rapidly than nandrolone. In detail, it appears that benzyl alcohol enters the central compartment directly, while nandrolone decanoate is recovered in serum after a lag time. This lag time is also seen in literature data, although not reported explicitly. The absorption of nandrolone is enhanced by the presence of benzyl alcohol. This is most likely an effect of altered oil viscosity and partition coefficient between the oil and aqueous phase. The absorption rate constant of compounds is found to be related to the logP of the solubilized prodrug. The absorption rate is however not only determined by the physico-chemical properties of the formulation but also by the tissue properties. Here, it is argued that lymphatic flow must be considered as a relevant parameter. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Waste Heat Recovery from a High Temperature Diesel Engine

    NASA Astrophysics Data System (ADS)

    Adler, Jonas E.

    Government-mandated improvements in fuel economy and emissions from internal combustion engines (ICEs) are driving innovation in engine efficiency. Though incremental efficiency gains have been achieved, most combustion engines are still only 30-40% efficient at best, with most of the remaining fuel energy being rejected to the environment as waste heat through engine coolant and exhaust gases. Attempts have been made to harness this waste heat and use it to drive a Rankine cycle and produce additional work to improve efficiency. Research on waste heat recovery (WHR) demonstrates that it is possible to improve overall efficiency by converting wasted heat into usable work, but relative gains in overall efficiency are typically minimal ( 5-8%) and often do not justify the cost and space requirements of a WHR system. The primary limitation of the current state-of-the-art in WHR is the low temperature of the engine coolant ( 90 °C), which minimizes the WHR from a heat source that represents between 20% and 30% of the fuel energy. The current research proposes increasing the engine coolant temperature to improve the utilization of coolant waste heat as one possible path to achieving greater WHR system effectiveness. An experiment was performed to evaluate the effects of running a diesel engine at elevated coolant temperatures and to estimate the efficiency benefits. An energy balance was performed on a modified 3-cylinder diesel engine at six different coolant temperatures (90 °C, 100 °C, 125 °C, 150 °C, 175 °C, and 200 °C) to determine the change in quantity and quality of waste heat as the coolant temperature increased. The waste heat was measured using the flow rates and temperature differences of the coolant, engine oil, and exhaust flow streams into and out of the engine. Custom cooling and engine oil systems were fabricated to provide adequate adjustment to achieve target coolant and oil temperatures and large enough temperature differences across the engine to reduce uncertainty. Changes to exhaust emissions were recorded using a 5-gas analyzer. The engine condition was also monitored throughout the tests by engine compression testing, oil analysis, and a complete teardown and inspection after testing was completed. The integrity of the head gasket seal proved to be a significant problem and leakage of engine coolant into the combustion chamber was detected when testing ended. The post-test teardown revealed problems with oil breakdown at locations where temperatures were highest, with accompanying component wear. The results from the experiment were then used as inputs for a WHR system model using ethanol as the working fluid, which provided estimates of system output and improvement in efficiency. Thermodynamic models were created for eight different WHR systems with coolant temperatures of 90 °C, 150 °C, 175 °C, and 200 °C and condenser temperatures of 60 °C and 90 °C at a single operating point of 3100 rpm and 24 N-m of torque. The models estimated that WHR output for both condenser temperatures would increase by over 100% when the coolant temperature was increased from 90 °C to 200 °C. This increased WHR output translated to relative efficiency gains as high as 31.0% for the 60 °C condenser temperature and 24.2% for the 90 °C condenser temperature over the baseline engine efficiency at 90 °C. Individual heat exchanger models were created to estimate the footprint for a WHR system for each of the eight systems. When the coolant temperature increased from 90 °C to 200 °C, the total heat exchanger volume increased from 16.6 x 103 cm3 to 17.1 x 10 3 cm3 with a 60 °C condenser temperature, but decreased from 15.1 x 103 cm3 to 14.2 x 10 3 cm3 with a 90 °C condenser temperature. For all cases, increasing the coolant temperature resulted in an improvement in the efficiency gain for each cubic meter of heat exchanger volume required. Additionally, the engine oil coolers represented a significant portion of the required heat exchanger volume due to abnormally low engine oil temperatures during the experiment ( 80 °C). Future studies should focus on allowing the engine oil to reach higher operating temperatures which would decrease the heat rejected to the engine oil and reduce the heat duty for the oil coolers resulting in reduced oil cooler volume.

  18. Improved oral bioavailability and brain transport of Saquinavir upon administration in novel nanoemulsion formulations.

    PubMed

    Vyas, Tushar K; Shahiwala, Aliasgar; Amiji, Mansoor M

    2008-01-22

    The aim of this investigation was to develop novel oil-in-water (o/w) nanoemulsions containing Saquinavir (SQV), an anti-HIV protease inhibitor, for enhanced oral bioavailability and brain disposition. SQV was dissolved in different types of edible oils rich in essential polyunsaturated fatty acids (PUFA) to constitute the internal oil phase of the nanoemulsions. The external phase consisted of surfactants Lipoid-80 and deoxycholic acid dissolved in water. The nanoemulsions with an average oil droplet size of 100-200 nm, containing tritiated [(3)H]-SQV, were administered orally and intravenously to male Balb/c mice. The SQV bioavailability as well as distribution in different organ systems was examined. SQV concentrations in the systemic circulation administered in flax-seed oil nanoemulsions were threefold higher as compared to the control aqueous suspension. The oral bioavailability and distribution to the brain, a potential sanctuary site for HIV, were significantly enhanced with SQV delivered in nanoemulsion formulations. In comparing SQV in flax-seed oil nanoemulsion with aqueous suspension, the maximum concentration (C(max)) and the area-under-the-curve (AUC) values were found to be five- and threefold higher in the brain, respectively, suggesting enhanced rate and extent of SQV absorption following oral administration of nanoemulsions. The results of this study show that oil-in-water nanoemulsions made with PUFA-rich oils may be very promising for HIV/AIDS therapy, in particular, for reducing the viral load in important anatomical reservoir sites.

  19. Microbial enhanced oil recovery and compositions therefor

    DOEpatents

    Bryant, Rebecca S.

    1990-01-01

    A method is provided for microbial enhanced oil recovery, wherein a combination of microorganisms is empirically formulated based on survivability under reservoir conditions and oil recovery efficiency, such that injection of the microbial combination may be made, in the presence of essentially only nutrient solution, directly into an injection well of an oil bearing reservoir having oil present at waterflood residual oil saturation concentration. The microbial combination is capable of displacing residual oil from reservoir rock, which oil may be recovered by waterflooding without causing plugging of the reservoir rock. Further, the microorganisms are capable of being transported through the pores of the reservoir rock between said injection well and associated production wells, during waterflooding, which results in a larger area of the reservoir being covered by the oil-mobilizing microorganisms.

  20. A new nano-engineered hierarchical membrane for concurrent removal of surfactant and oil from oil-in-water nanoemulsion

    PubMed Central

    Qin, Detao; Liu, Zhaoyang; Bai, Hongwei; Sun, Darren Delai; Song, Xiaoxiao

    2016-01-01

    Surfactant stabilized oil-in-water nanoemulsions pose a severe threat to both the environment and human health. Recent development of membrane filtration technology has enabled efficient oil removal from oil/water nanoemulsion, however, the concurrent removal of surfactant and oil remains unsolved because the existing filtration membranes still suffer from low surfactant removal rate and serious surfactant-induced fouling issue. In this study, to realize the concurrent removal of surfactant and oil from nanoemulsion, a novel hierarchically-structured membrane is designed with a nanostructured selective layer on top of a microstructured support layer. The physical and chemical properties of the overall membrane, including wettability, surface roughness, electric charge, thickness and structures, are delicately tailored through a nano-engineered fabrication process, that is, graphene oxide (GO) nanosheet assisted phase inversion coupled with surface functionalization. Compared with the membrane fabricated by conventional phase inversion, this novel membrane has four times higher water flux, significantly higher rejections of both oil (~99.9%) and surfactant (as high as 93.5%), and two thirds lower fouling ratio when treating surfactant stabilized oil-in-water nanoemulsion. Due to its excellent performances and facile fabrication process, this nano-engineered membrane is expected to have wide practical applications in the oil/water separation fields of environmental protection and water purification. PMID:27087362

Top