Sample records for forskolin-stimulated camp production

  1. Antagonist interaction with the human 5-HT7 receptor mediates the rapid and potent inhibition of non-G-protein-stimulated adenylate cyclase activity: a novel GPCR effect

    PubMed Central

    Klein, MT; Teitler, M

    2011-01-01

    BACKGROUND AND PURPOSE The human 5-hydroxytryptamine7 (h5-HT7) receptor is Gs-coupled and stimulates the production of the intracellular signalling molecule cAMP. Previously, we reported a novel property of the h5-HT7 receptor: pseudo-irreversible antagonists irreversibly inhibit forskolin-stimulated (non-receptor-mediated) cAMP production. Herein, we sought to determine if competitive antagonists also affect forskolin-stimulated activity and if this effect is common among other Gs-coupled receptors. EXPERIMENTAL APPROACH Recombinant cell lines expressing h5-HT7 receptors or other receptors of interest were briefly exposed to antagonists; cAMP production was then stimulated by forskolin and quantified by an immunocompetitive assay. KEY RESULTS In human embryonic kidney 293 cells stably expressing h5-HT7 receptors, all competitive antagonists inhibited nearly 100% of forskolin-stimulated cAMP production. This effect was insensitive to pertussis toxin, that is, not Gi/o-mediated. Potency to inhibit forskolin-stimulated activity strongly correlated with h5-HT7 binding affinity (r2= 0.91), indicating that the antagonists acted through h5-HT7 receptors to inhibit forskolin. Potency and maximal effects of clozapine, a prototypical competitive h5-HT7 antagonist, were unaffected by varying forskolin concentration. Antagonist interaction with h5-HT6, human β1, β2, and β3 adrenoceptors did not inhibit forskolin's activity. CONCLUSIONS AND IMPLICATIONS The inhibition of adenylate cyclase, as measured by forskolin's activity, is an underlying property of antagonist interaction with h5-HT7 receptors; however, this is not a common property of other Gs-coupled receptors. This phenomenon may be involved in the roles played by h5-HT7 receptors in human physiology. Development of h5-HT7 antagonists that do not elicit this effect would aid in the elucidation of its mechanisms and shed light on its possible physiological relevance. PMID:21198551

  2. Cyclic Adenosine Monophosphate Regulation of Ion Transport in Porcine Vocal Fold Mucosae

    PubMed Central

    Sivasankar, Mahalakshmi; Nofziger, Charity; Blazer-Yost, Bonnie

    2012-01-01

    Objectives/Hypothesis Cyclic adenosine monophosphate (cAMP) is an important biological molecule that regulates ion transport and inflammatory responses in epithelial tissue. The present study examined whether the adenylyl cyclase activator, forskolin, would increase cAMP concentration in porcine vocal fold mucosa and whether the effects of increased cAMP would be manifested as a functional increase in transepithelial ion transport. Additionally, changes in cAMP concentrations following exposure to an inflammatory mediator, tumor necrosis factor-α (TNFα) were investigated. Study Design In vitro experimental design with matched treatment and control groups. Methods Porcine vocal fold mucosae (N = 30) and tracheal mucosae (N = 20) were exposed to forskolin, TNFα, or vehicle (dimethyl sulfoxide) treatment. cAMP concentrations were determined with enzyme-linked immunosorbent assay. Ion transport was measured using electrophysiological techniques. Results Thirty minute exposure to forskolin significantly increased cAMP concentration and ion transport in porcine vocal fold and tracheal mucosae. However, 30-minute and 2-hour exposure to TNFα did not significantly alter cAMP concentration. Conclusions We demonstrate that forskolin-sensitive adenylyl cyclase is present in vocal fold mucosa, and further, that the product, cAMP increases vocal fold ion transport. The results presented here contribute to our understanding of the intracellular mechanisms underlying vocal fold ion transport. As ion transport is important for maintaining superficial vocal fold hydration, data demonstrating forskolin-stimulated ion transport in vocal fold mucosa suggest opportunities for developing pharmacological treatments that increase surface hydration. PMID:18596479

  3. Cannabinoids reduce cAMP levels in the striatum of freely moving rats: an in vivo microdialysis study.

    PubMed

    Wade, Mark R; Tzavara, Eleni T; Nomikos, George G

    2004-04-16

    The cannabinoid receptor subtype 1 (CB1R) is a member of the G(i)-protein-coupled receptor family and cannabinoid signaling is largely dependent on the suppression of adenylyl cyclase-catalyzed cAMP production. In cell lines transfected with the CB1R or in native tissue preparations, treatment with cannabinoid agonists reduces both basal and forskolin-stimulated cAMP synthesis. We measured extracellular cAMP concentrations in the striatum of freely moving rats utilizing microdialysis to determine if changes in cAMP concentrations in response to CB1R agonists can be monitored in vivo. Striatal infusion of the CB1R agonist WIN55,212-2 (100 microM or 1 mM), dose-dependently decreased basal and forskolin-stimulated extracellular cAMP. These effects were reversed by co-infusion of the CB1R antagonist SR141716A (30 microM), which alone had no effect up to the highest concentration tested (300 microM). These data indicate that changes in extracellular cAMP concentrations in response to CB1R stimulation can be monitored in vivo allowing the study of cannabinoid signaling in the whole animal.

  4. cAMP Stimulates Transepithelial Short-Circuit Current and Fluid Transport Across Porcine Ciliary Epithelium.

    PubMed

    Cheng, Angela King-Wah; Civan, Mortimer M; To, Chi-Ho; Do, Chi-Wai

    2016-12-01

    To investigate the effects of cAMP on transepithelial electrical parameters and fluid transport across porcine ciliary epithelium. Transepithelial electrical parameters were determined by mounting freshly isolated porcine ciliary epithelium in a modified Ussing chamber. Similarly, fluid movement across intact ciliary body was measured with a custom-made fluid flow chamber. Addition of 1, 10, and 100 μM 8-Br-cAMP (cAMP) to the aqueous side (nonpigmented ciliary epithelium, NPE) induced a sustained increase in short-circuit current (Isc). Addition of niflumic acid (NFA) to the aqueous surface effectively blocked the cAMP-induced Isc stimulation. The administration of cAMP to the stromal side (pigmented ciliary epithelium, PE) triggered a significant stimulation of Isc only at 100 μM. No additive effect was observed with bilateral application of cAMP. Likewise, forskolin caused a significant stimulation of Isc when applied to the aqueous side. Concomitantly, cAMP and forskolin increased fluid transport across porcine ciliary epithelium, and this stimulation was effectively inhibited by aqueous NFA. Depleting Cl- in the bathing solution abolished the baseline Isc and inhibited the subsequent stimulation by cAMP. Pretreatment with protein kinase A (PKA) blockers (H89/KT5720) significantly inhibited the cAMP- and forskolin-induced Isc responses. Our results suggest that cAMP triggers a sustained stimulation of Cl- and fluid transport across porcine ciliary epithelium; Cl- channels in the NPE cells are potentially a cellular site for this PKA-sensitive cAMP-mediated response.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watson, E.L.; Singh, J.C.; Jacobson, K.L.

    Cholinergic-mediated amylase release in mouse parotid acini was augmented by forskolin; the potency but not the maximal response to carbachol was altered. Amylase released by carbachol plus forskolin was dependent on extracellular calcium and was mimicked by the calcium ionophore, A23187 plus forskolin. Forskolin was also shown to enhance carbachol-stimulated /sup 45/Ca/sup 2 +/ uptake into isolated acini. Hydroxylamine, nitroprusside, and 8-bromo-c-GMP each in combination with forskolin mimicked the effects of carbachol plus forskolin on amylase release. In the presence of carbachol (10/sup -8/M) forskolin did not augment c-AMP levels. However, in the presence of carbachol (5 x 10/sup -7/more » M) or hydroxylamine (50 ..mu..M) forskolin did significantly augment c-AMP accumulation. These results suggest that calcium and c-GMP may mediate the augmentation of cholinergic-mediated amylase release by effects on c-AMP metabolism. 21 references, 1 figure, 3 tables.« less

  6. cAMP dependent and independent regulation of thyroglobulin synthesis by two clones of the OVNIS 6H thyroid cell line.

    PubMed

    Aouani, A; Hovsépian, S; Fayet, G

    1987-07-01

    The hormonal regulation of thyroglobulin synthesis has been studied using two independent clones of the OVNIS 6H cell line. Insulin, hydrocortisone and TSH were able to stimulate thyroglobulin synthesis, whereas transferrin, somatostatin and glycyl-histidyl-lysine were without effect. Insulin stimulated thyroglobulin synthesis without affecting cAMP production. Hydrocortisone, when combined with insulin was a stimulator too; this stimulation was not accompanied by an increase in cAMP. TSH alone was unable to stimulate either cAMP or thyroglobulin synthesis. The stimulatory effect of TSH on thyroglobulin synthesis took place only when combined with insulin or insulin plus hydrocortisone, and was mediated by cAMP. Consequently, insulin and hydrocortisone stimulated thyroglobulin synthesis by cAMP-independent mechanisms, whereas TSH acted via the cAMP system. Forskolin mimicked TSH effects on cAMP and thyroglobulin synthesis. Calf serum inhibited cAMP and thyroglobulin production. Optimal cAMP and thyroglobulin synthesis as well as TSH responsiveness were obtained in serum-free medium supplemented with 5 micrograms/ml insulin, 100 nM hydrocortisone and 1 mU/ml TSH.

  7. [Forskolin inhibits spontaneous contraction of gastric antral smooth muscle in rats].

    PubMed

    Jiang, Jing-Zhi; Sun, Qian; Xu, Dong-Yuan; Zhang, Mo-Han; Piao, Li-Hua; Cai, Ying-Lan; Jin, Zheng

    2013-04-25

    The aim of the present study was to investigate the effects of cyclic adenosine monophosphate (cAMP) on rat gastric antral circular smooth muscle function. Forskolin, a direct activator of adenylyl cyclase (AC), was used to observe the influences of cAMP. Multi-channel physiological recorder was used to record spontaneous contraction activity of gastric antral circular muscle from Wistar rats. And ELISA method was used to detect the change of cAMP production in perfusate. The results showed that forskolin concentration-dependently suppressed the amplitude and frequency of the spontaneous contraction of the gastric antral muscle, and lowered the baseline of contraction movement significantly. Forskolin concentration-dependently increased the production of cAMP in the perfusate, which showed a significant negative correlation with the contraction amplitude of gastric antral ring muscle. The inhibitory effect of forskolin on spontaneous contraction activity of rat gastric antral circular muscle could be blocked by cAMP-dependent protein kinase (PKA) inhibitor H-89. These results suggest forskolin increases cAMP production and then activates PKA pathway, resulting in the inhibition of the spontaneous contraction activity of rat gastric antral circular smooth muscle.

  8. Regulation of forskolin-induced cAMP production by cytochrome P450 epoxygenase metabolites of arachidonic acid in HEK293 cells.

    PubMed

    Abukhashim, Mohamed; Wiebe, Glenis J; Seubert, John M

    2011-10-01

    Cytochrome P450 epoxygenases metabolize arachidonic acid to epoxyeicosatrienoic acids (EETs), which in turn are converted to dihydroxyeicosatrienoic acids (DHETs) by soluble epoxide hydrolase (sEH). EETs are known to modulate a number of vascular and renal functions, but the exact signaling mechanism(s) of these EET-mediated effects remains unknown. The purpose of this study is to investigate the role of EETs and DHETs in regulating cyclic adenosine monophosphate (cAMP) production via adenylyl cyclase in a human embryonic kidney cell line (HEK293). HEK293 cells were treated with vehicle, forskolin, epinephrine, 11,12-EET, 11,12-DHET, as well as potential pathway and G-protein inhibitors to assess changes in cAMP production. Co-administering 11,12-EET with forskolin effectively eliminated the increased cAMP levels observed in cells treated with forskolin alone. The inhibitory effect of EETs on forskolin-mediated cAMP production was abolished when cells were treated with a sEH inhibitor (tAUCB). 11,12-DHET also negated the effects of forskolin, suggesting that the inhibitory effect observed in EET-treated cells could be attributed to the downstream metabolites, DHETs. In contrast, inhibition of phosphodiesterase IV (PDE4) with rolipram eliminated the effects of EETs or DHETs, and inhibition of Gαi with pertussis toxin also resulted in enhanced cAMP production. Our data suggest that DHETs regulate cAMP production via PDE4 and Gαi protein. Moreover, they provide novel evidence as to how EET-mediated signaling may alter G-protein coupling in HEK293 cells. © Springer Science+Business Media B.V. 2011

  9. Inhibition of Rho Is Required for cAMP-induced Melanoma Cell Differentiation

    PubMed Central

    Buscà, Roser; Bertolotto, Corine; Abbe, Patricia; Englaro, Walter; Ishizaki, Toshimasa; Narumiya, Shuh; Boquet, Patrice; Ortonne, Jean-Paul; Ballotti, Robert

    1998-01-01

    Up-regulation of the cAMP pathway by forskolin or α-melanocyte stimulating hormone induces melanocyte and melanoma cell differentiation characterized by stimulation of melanin synthesis and dendrite development. Here we show that forskolin-induced dendricity is associated to a disassembly of actin stress fibers. Since Rho controls actin organization, we studied the role of this guanosine triphosphate (GTP)-binding protein in cAMP-induced dendrite formation. Clostridium botulinum C3 exotransferase, which inhibits Rho, mimicked the effect of forskolin in promoting dendricity and stress fiber disruption, while the Escherichia coli toxin cytotoxic necrotizing factor-1 (CNF-1), which activates Rho and the expression of a constitutively active Rho mutant, blocked forskolin-induced dendrite outgrowth. In addition, overexpression of a constitutively active form of the Rho target p160 Rho-kinase (P160ROCK) prevented the dendritogenic effects of cAMP. Our results suggest that inhibition of Rho and of its target p160ROCK are required events for cAMP-induced dendrite outgrowth in B16 cells. Furthermore, we present evidence that Rho is involved in the regulation of melanogenesis. Indeed, Rho inactivation enhanced the cAMP stimulation of tyrosinase gene transcription and protein expression, while Rho constitutive activation impaired these cAMP-induced effects. This reveals that, in addition to controlling dendricity, Rho also participates in the regulation of melanin synthesis by cAMP. PMID:9614180

  10. The organochlorine o,p'-DDD disrupts the adrenal steroidogenic signaling pathway in rainbow trout (Oncorhynchus mykiss).

    PubMed

    Lacroix, Martin; Hontela, Alice

    2003-08-01

    The mechanisms of action of o,p'-DDD on adrenal steroidogenesis were investigated in vitro in rainbow trout (Oncorhynchus mykiss). Acute exposures to o,p'-DDD inhibited ACTH-stimulated cortisol secretion while cell viability decreased significantly only at the highest concentration tested (200 microM o,p'-DDD). Stimulation of cortisol secretion with a cAMP analogue (dibutyryl-cAMP) was inhibited at a higher concentration than that needed to inhibit ACTH-stimulated cortisol synthesis in cells exposed to o,p'-DDD. Forskolin-stimulated cortisol secretion and cAMP production, and NaF-stimulated cAMP production were inhibited in a concentration-dependent manner by o,p'-DDD. In contrast, basal cortisol secretion was stimulated while basal cAMP production was unaffected by o,p'-DDD. Pregnenolone-stimulated cortisol secretion was enhanced by o,p'-DDD at a physiologically relevant pregnenolone concentration, while o,p'-DDD inhibited cortisol secretion when a pharmacological concentration of pregnenolone was used. Our results suggest that the cAMP generation step is a target in o,p'-DDD-mediated disruption of ACTH-stimulated adrenal steroidogenesis in rainbow trout but that other downstream targets such as steroidogenic enzymes responsible for cortisol synthesis might also be affected.

  11. Regulation of nicotinic acetylcholine receptor phosphorylation in rat myotubes by forskolin and cAMP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miles, K.; Anthony, D.T.; Rubin, L.L.

    1987-09-01

    The nicotinic acetylcholine receptor (Ac-ChoR) from rat myotubes prelabeled in culture with (/sup 32/P)orthophosphate was isolated by acetylcholine affinity chromatography followed by immunoaffinity chromatography. Under basal conditions, the nicotinic AcChoR was shown to be phosphorylated in situ on the ..beta.. and delta subunits. Regulation of AcChoR phosphorylation by cAMP-dependent protein kinase was explored by the addition of forskolin or cAMP analogues to prelabeled cell cultures. Forskolin, an activator of adenylate cyclase, stimulated the phosphorylation of the delta subunit 20-fold over basal phosphorylation and induced phosphorylation of the ..cap alpha.. subunit. The effect of forskolin was dose dependent with a half-maximalmore » response at 8 ..mu..M in the presence of 35 ..mu..M Ro 20-1724, a phosphodiesterase inhibitor. Stimulation of delta subunit phosphorylation was almost maximal within 5 min, whereas stimulation of ..cap alpha.. subunit phosphorylation was not maximal until 45 min after forskolin treatment. Stimulation of AcChoR phosphorylation by 8-benzylthioadenosine 3',5'-cyclic monophosphate was identical to that obtained by forskolin. Two-dimensional thermolytic phosphopeptide maps of the delta subunit revealed a single major phosphopeptide. These results correlate closely with the observed effects of forskolin on AcChoR desensitization in muscle and suggest that cAMP-dependent phosphorylation of the delta subunit increases the rate of AcChoR desensitization in rat myotubes.« less

  12. β2-Agonist Induced cAMP Is Decreased in Asthmatic Airway Smooth Muscle Due to Increased PDE4D

    PubMed Central

    Trian, Thomas; Burgess, Janette K.; Niimi, Kyoko; Moir, Lyn M.; Ge, Qi; Berger, Patrick; Liggett, Stephen B.; Black, Judith L.; Oliver, Brian G.

    2011-01-01

    Background and Objective Asthma is associated with airway narrowing in response to bronchoconstricting stimuli and increased airway smooth muscle (ASM) mass. In addition, some studies have suggested impaired β-agonist induced ASM relaxation in asthmatics, but the mechanism is not known. Objective To characterize the potential defect in β-agonist induced cAMP in ASM derived from asthmatic in comparison to non-asthmatic subjects and to investigate its mechanism. Methods We examined β2-adrenergic (β2AR) receptor expression and basal β-agonist and forskolin (direct activator of adenylyl cyclase) stimulated cAMP production in asthmatic cultured ASM (n = 15) and non-asthmatic ASM (n = 22). Based on these results, PDE activity, PDE4D expression and cell proliferation were determined. Results In the presence of IBMX, a pan PDE inhibitor, asthmatic ASM had ∼50% lower cAMP production in response to isoproterenol, albuterol, formoterol, and forskolin compared to non-asthmatic ASM. However when PDE4 was specifically inhibited, cAMP production by the agonists and forskolin was normalized in asthmatic ASM. We then measured the amount and activity of PDE4, and found ∼2-fold greater expression and activity in asthmatic ASM compared to non-asthmatic ASM. Furthermore, inhibition of PDE4 reduced asthmatic ASM proliferation but not that of non-asthmatic ASM. Conclusion Decreased β-agonist induced cAMP in ASM from asthmatics results from enhanced degradation due to increased PDE4D expression. Clinical manifestations of this dysregulation would be suboptimal β-agonist-mediated bronchodilation and possibly reduced control over increasing ASM mass. These phenotypes appear to be “hard-wired” into ASM from asthmatics, as they do not require an inflammatory environment in culture to be observed. PMID:21611147

  13. Pleiotropic Actions of Forskolin Result in Phosphatidylserine Exposure in Primary Trophoblasts

    PubMed Central

    Riddell, Meghan R.; Winkler-Lowen, Bonnie; Jiang, Yanyan; Davidge, Sandra T.; Guilbert, Larry J.

    2013-01-01

    Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST) is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT). Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS) externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion and, importantly, provide evidence that the common differentiation agent forskolin has previously unappreciated pleiotropic effects on trophoblastic cells. PMID:24339915

  14. Pleiotropic actions of forskolin result in phosphatidylserine exposure in primary trophoblasts.

    PubMed

    Riddell, Meghan R; Winkler-Lowen, Bonnie; Jiang, Yanyan; Davidge, Sandra T; Guilbert, Larry J

    2013-01-01

    Forskolin is an extract of the Coleus forskholii plant that is widely used in cell physiology to raise intracellular cAMP levels. In the field of trophoblast biology, forskolin is one of the primary treatments used to induce trophoblastic cellular fusion. The syncytiotrophoblast (ST) is a continuous multinucleated cell in the human placenta that separates maternal from fetal circulations and can only expand by fusion with its stem cell, the cytotrophoblast (CT). Functional investigation of any aspect of ST physiology requires in vitro differentiation of CT and de novo ST formation, thus selecting the most appropriate differentiation agent for the hypothesis being investigated is necessary as well as addressing potential off-target effects. Previous studies, using forskolin to induce fusion in trophoblastic cell lines, identified phosphatidylserine (PS) externalization to be essential for trophoblast fusion and showed that widespread PS externalization is present even after fusion has been achieved. PS is a membrane phospholipid that is primarily localized to the inner-membrane leaflet. Externalization of PS is a hallmark of early apoptosis and is involved in cellular fusion of myocytes and macrophages. We were interested to examine whether PS externalization was also involved in primary trophoblast fusion. We show widespread PS externalization occurs after 72 hours when fusion was stimulated with forskolin, but not when stimulated with the cell permeant cAMP analog Br-cAMP. Using a forskolin analog, 1,9-dideoxyforskolin, which stimulates membrane transporters but not adenylate cyclase, we found that widespread PS externalization required both increased intracellular cAMP levels and stimulation of membrane transporters. Treatment of primary trophoblasts with Br-cAMP alone did not result in widespread PS externalization despite high levels of cellular fusion. Thus, we concluded that widespread PS externalization is independent of trophoblast fusion and, importantly, provide evidence that the common differentiation agent forskolin has previously unappreciated pleiotropic effects on trophoblastic cells.

  15. Dual contradictory roles of cAMP signaling pathways in hydroxyl radical production in the rat striatum.

    PubMed

    Hara, Shuichi; Kobayashi, Masamune; Kuriiwa, Fumi; Mukai, Toshiji; Mizukami, Hajime

    2012-03-15

    Studies have suggested that cAMP signaling pathways may be associated with the production of reactive oxygen species. In this study, we examined how modifications in cAMP signaling affected the production of hydroxyl radicals in rat striatum using microdialysis to measure extracellular 2,3-dihydroxybenzoic acid (2,3-DHBA), which is a hydroxyl radical adduct of salicylate. Up to 50 nmol of the cell-permeative cAMP mimetic 8-bromo-cAMP (8-Br-cAMP) increased 2,3-DHBA in a dose-dependent manner (there was no additional increase in 2,3-DHBA at 100 nmol). Another cAMP mimetic, dibutyryl cAMP (db-cAMP), caused a nonsignificant increase in 2,3-DHBA at 50 nmol and a significant decrease at 100 nmol. Up to 20 nmol of forskolin, which is a direct activator of adenylyl cyclase, increased 2,3-DHBA, similar to the effect of 8-Br-cAMP; however, forskolin resulted in a much greater increase in 2,3-DHBA. A potent inhibitor of protein kinase A (PKA), H89 (500 μM), potentiated the 8-Br-cAMP- and forskolin-induced increases in 2,3-DHBA and antagonized the inhibitory effect of 100 nmol of db-cAMP. Interestingly, the administration of 100 nmol of 8-bromo-cGMP alone or in combination with H89 had no significant effect on 2,3-DHBA levels. Doses of 100 nmol of a preferential PKA activator (6-phenyl-cAMP) or a preferential PKA inhibitor (8-bromoadenosine-3',5'-cyclic monophosphorothionate, Rp-isomer; Rp-8-Br-cAMPS), which also inhibits the cAMP-mediated activation of Epac (the exchange protein directly activated by cAMP), suppressed or enhanced, respectively, the formation of 2,3-DHBA. Up to 100 nmol of 8-(4-chlorophenylthio)-2'-O-methyladenosine-cAMP, which is a selective activator of Epac, dose-dependently stimulated the formation of 2,3-DHBA. These findings suggest that cAMP signaling plays contradictory roles (stimulation and inhibition) in the production of hydroxyl radicals in rat striatum by differential actions of Epac and PKA. These roles might contribute to the production of hydroxyl radicals concomitant with cAMP in carbon monoxide poisoning, because the formation of 2,3-DHBA was potentiated by the PKA inhibitor H89 and suppressed by Rp-8-Br-cAMPS, which inhibits PKA and Epac. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors.

    PubMed

    Martin, Adam L; Steurer, Michael A; Aronstam, Robert S

    2015-01-01

    The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention.

  17. Constitutive Activity among Orphan Class-A G Protein Coupled Receptors

    PubMed Central

    Martin, Adam L.; Steurer, Michael A.; Aronstam, Robert S.

    2015-01-01

    The purpose of this study was to evaluate the extent of constitutive activity among orphan class-A G protein coupled receptors within the cAMP signaling pathway. Constitutive signaling was revealed by changes in gene expression under control of the cAMP response element. Gene expression was measured in Chinese hamster ovary cells transiently co-transfected with plasmids containing a luciferase reporter and orphan receptor. Criteria adopted for defining constitutive activation were: 1) 200% elevation over baseline reporter gene expression; 2) 40% inhibition of baseline expression; and 3) 40% inhibition of expression stimulated by 3 μM forskolin. Five patterns of activity were noted: 1) inhibition under both baseline and forskolin stimulated expression (GPR15, GPR17, GPR18, GPR20, GPR25, GPR27, GPR31, GPR32, GPR45, GPR57, GPR68, GPR83, GPR84, GPR132, GPR150, GPR176); 2) no effect on baseline expression, but inhibition of forskolin stimulated expression (GPR4, GPR26, GPR61, GPR62, GPR78, GPR101, GPR119); 3) elevation of baseline signaling coupled with inhibition of forskolin stimulated expression (GPR6, GPR12); 4) elevation of baseline signaling without inhibition of forskolin stimulated expression (GPR3, GPR21, GPR52, GPR65); and 5) no effect on expression (GPR1, GPR19, GPR22, GPR34, GPR35, GPR39, GPR63, GPR82, GPR85, GPR87). Constitutive activity was observed in 75% of the orphan class-A receptors examined (30 of 40). This constitutive signaling cannot be explained by simple overexpression of the receptor. Inhibition of cAMP mediated expression was far more common (65%) than stimulation of expression (15%). Orphan receptors that were closely related based on amino acid homology tended to have similar effects on gene expression. These results suggest that identification of inverse agonists may be a fruitful approach for categorizing these orphan receptors and targeting them for pharmacological intervention. PMID:26384023

  18. Heparin and cAMP modulators interact during pre-in vitro maturation to affect mouse and human oocyte meiosis and developmental competence.

    PubMed

    Zeng, Hai-tao; Ren, Zi; Guzman, Luis; Wang, Xiaoqian; Sutton-McDowall, Melanie L; Ritter, Lesley J; De Vos, Michel; Smitz, Johan; Thompson, Jeremy G; Gilchrist, Robert B

    2013-06-01

    Does heparin ablate the advantageous effects of cyclic adenosine mono-phosphate (cAMP) modulators during pre-in vitro maturation (IVM) and have a deleterious effect in standard oocyte IVM? Heparin interrupts energy metabolism and meiotic progression and adversely affects subsequent development of oocytes under conditions of elevated cAMP levels in cumulus-oocyte complexes (COCs) after pre-IVM treatment with forskolin. In animal IVM studies, artificial regulation of meiotic resumption by cAMP-elevating agents improves subsequent oocyte developmental competence. Heparin has no effect on spontaneous, FSH- or epidermal growth factor (EGF)-stimulated meiotic maturation. An in vitro cross-sectional study was conducted using immature mouse and human COCs. Depending on individual experimental design, COCs were treated during pre-IVM with or without heparin, in the presence or absence of forskolin and/or 3-isobutyl-1-methylxanthine (IBMX), and then COC function was assessed by various means. Forty-two women with polycystic ovaries (PCOs) or polycystic ovarian syndrome (PCOS) donated COCs after oocyte retrieval in a non-hCG-triggered IVM cycle. COCs were collected in pre-IVM treatments and then cultured for 40 h and meiotic progression was assessed. COCs from 21- to 24-day-old female CBA F1 mice were collected 46 h after stimulation with equine chorionic gonadotrophin. Following treatments, COCs were checked for meiotic progression. Effects on mouse oocyte metabolism were measured by assessing oocyte mitochondrial membrane potential using JC-1 staining and oocyte ATP content. Post-IVM mouse oocyte developmental competence was assessed by in vitro fertilization and embryo production. Blastocyst quality was evaluated by differential staining of inner cell mass (ICM) and trophectoderm (TE) layers. In the absence of heparin in pre-IVM culture, the addition of cAMP modulators did not affect human oocyte MII competence after 40 h. In standard IVM, heparin supplementation in pre-IVM did not affect MII competence; however, when heparin was combined with cAMP modulators, MII competence was significantly reduced from 65 to 15% (P < 0.05). In mouse experiments, heparin alone in pre-IVM significantly delayed germinal vesicle breakdown (GVBD) so that fewer GVBDs were observed at 0 and 1 h of IVM (P < 0.05), but not by 2 or 3 h of IVM. Combined treatment with IBMX and forskolin in the pre-IVM medium produced a large delay in GVBD such that no COCs exhibited GVBD in the first 1 h of IVM, and the addition of heparin in pre-IVM further significantly delayed the progression of GVBD (P < 0.05), in a dose-dependent manner (P < 0.01). Combined IBMX and forskolin treatment of mouse COCs during pre-IVM significantly increased mitochondrial membrane potential and ATP production in the oocyte at the end of pre-IVM (P < 0.05), and significantly improved fertilization, embryo development and quality (P < 0.05). However, heparin abolished the IBMX + forskolin-stimulated increase in mitochondrial membrane potential and ATP production (P < 0.05), and adversely affected embryonic cleavage, development rates and embryo quality (P < 0.05). This latter adverse combinational effect was negated when mouse COCs were collected in heparin and IBMX for 15 min, washed and then cultured for 45 min in IBMX and forskolin without heparin. Experiments in mice found that heparin ablation of the advantageous effects of cAMP modulators during pre-IVM was associated with altered oocyte metabolism, but the mechanism by which heparin affects metabolism remains unclear. This study has revealed a novel and unexpected interaction between heparin and cAMP modulators in pre-IVM in immature mouse and human oocytes, and established a means to collect oocytes using heparin while modulating oocyte cAMP to improve developmental potential.

  19. Long-term forskolin stimulation induces AMPK activation and thereby enhances tight junction formation in human placental trophoblast BeWo cells.

    PubMed

    Egawa, M; Kamata, H; Kushiyama, A; Sakoda, H; Fujishiro, M; Horike, N; Yoneda, M; Nakatsu, Y; Ying, Guo; Jun, Zhang; Tsuchiya, Y; Takata, K; Kurihara, H; Asano, T

    2008-12-01

    BeWo cells, derived from human choriocarcinoma, have been known to respond to forskolin or cAMP analogues by differentiating into multinucleated cells- like syncytiotrophoblasts on the surfaces of chorionic villi of the human placenta. In this study, we demonstrated that long-term treatment with forskolin enhances the tight junction (TJ) formation in human placental BeWo cells. Interestingly, AMPK activation and phosphorylation of acetyl-CoA carboxylase (ACC), a molecule downstream from AMPK, were induced by long-term incubation (>12h) with forskolin, despite not being induced by acute stimulation with forskolin. In addition, co-incubation with an AMPK inhibitor, compound C, as well as overexpression of an AMPK dominant negative mutant inhibited forskolin-induced TJ formation. Thus, although the molecular mechanism underlying AMPK activation via the forskolin stimulation is unclear, the TJ formation induced by forskolin is likely to be mediated by the AMPK pathway. Taking into consideration that TJs are present in the normal human placenta, this mechanism may be important for forming the placental barrier system between the fetal and maternal circulations.

  20. Association of dopamine D(3) receptors with actin-binding protein 280 (ABP-280).

    PubMed

    Li, Ming; Li, Chuanyu; Weingarten, Paul; Bunzow, James R; Grandy, David K; Zhou, Qun Yong

    2002-03-01

    Proteins that bind to G protein-coupled receptors have been identified as regulators of receptor localization and signaling. In our previous studies, a cytoskeletal protein, actin-binding protein 280 (ABP-280), was found to associate with the third cytoplasmic loop of dopamine D(2) receptors. In this study, we demonstrate that ABP-280 also interacts with dopamine D(3) receptors, but not with D(4) receptors. Similar to the dopamine D(2) receptor, the D(3)/ABP-280 association is of signaling importance. In human melanoma M2 cells lacking ABP-280, D(3) receptors were unable to inhibit forskolin-stimulated cyclic AMP (cAMP) production significantly. D(4) receptors, however, exhibited a similar degree of inhibition of forskolin-stimulated cAMP production in ABP-280-deficient M2 cells and ABP-280-replent M2 subclones (A7 cells). Further experiments revealed that the D(3)/ABP-280 interaction was critically dependent upon a 36 amino acid carboxyl domain of the D(3) receptor third loop, which is conserved in the D(2) receptor but not in the D(4) receptor. Our results demonstrate a subtype-specific regulation of dopamine D(2)-family receptor signaling by the cytoskeletal protein ABP-280.

  1. Function of beta 2-adrenergic receptors in chronic localized myalgia.

    PubMed

    Maekawa, Kenji; Kuboki, Takuo; Inoue, Eitoku; Inoue-Minakuchi, Mami; Suzuki, Koji; Yatani, Hirofumi; Clark, Glenn T

    2003-01-01

    To investigate alteration of beta 2-adrenergic receptor (beta 2 AR) function in chronic localized myalgia subjects by evaluating levels of the beta 2 AR second messenger, cyclic adenosine monophosphate (cAMP), in mononuclear cells after beta AR-agonist stimulation. Eleven chronic localized myalgia subjects and 21 matched healthy controls participated in this study. Peripheral blood (30 cc) was drawn from the subjects' anterocubital vein. Mononuclear cells were isolated from the total blood by using the Ficoll-Hypaque gradient technique. Basal and stimulated intracellular cAMP levels were determined by enzyme immunoassay using a commercially available kit. Aliquots of 5 x 10(6) cells were incubated with or without stimulation of the beta AR-agonist isoproterenol for 5 minutes. Five different concentrations of isoproterenol (10(-3) M to 10(-7) M) were utilized. cAMP levels in both groups were tested statistically by a 2-way repeated-measures ANOVA with 2 predictors, group difference and isoproterenol concentration difference. As with isoproterenol stimulation, the cAMP responses to forskolin, which activates adenylyl cyclase directly and produces cAMP, bypassing the cell surface receptors were also measured. The basal cAMP levels in both groups (myalgia: 0.33 +/- 0.02 pmol/5 x 10(6) cells; control: 0.43 +/- 0.10 pmol/5 x 10(6) cells) were almost identical, and isoproterenol-produced cAMP levels increased dose-dependently in both groups. No significant differences in the mean cAMP levels were observed between the groups (P = .909). Significant increases were observed according to the isoproterenol concentration increase (P < .0001). The cAMP responses to forskolin stimulation also showed no significant group difference (P = .971). These results suggest that beta 2 AR function is not different between localized myalgia subjects and healthy individuals.

  2. Targeting Epithelial Cell Migration to Accelerate Wound Healing

    DTIC Science & Technology

    2012-02-01

    the presence and absence of forskolin to stimulate PKA. As seen in figure 10 cells depleted of Rsu1 and PINCH1 exhibit elevated phospho-VASP(ser157)at...a site of PKA and PKC phosphorylation even in the absence of cAMP increase and PKA activation by forskolin treatment. This indicates that RIPP...transfection were harvested with or without a 15 minutes exposure to forskolin (20 M). Blots were reacted with anti- phosphoVASP specific for serine 157

  3. Effect of the dB-c-AMP and forskolin on /sup 45/Ca influx, net Ca uptake and tension on rabbit aortic smooth muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-03-01

    The effect of dibutiryl-adenosine-3',5'-cyclic-monophosphate (dB-c-AMP) and forskolin on aortic tension and /sup 45/Ca influx were measured. dB-c-AMP reduced both the rate of force development and the maximal tension achieved in solutions containing various K/sup +/ concentrations. Stimulated /sup 45/Ca influx was also reduced however to a lesser extent than was the tension. Forskolin showed more marked effects of a similar nature. Thus, both these agents which increase intracellular c-AMP caused a rightward shift in the curve expressing force(ordinate) as a function of Ca influx (abscissa). Consequently, they found that dB-c-AMP stimulated more net Ca to be taken up by themore » sarcoplasmic reticulum(SR) at the same influx rate. The conclusion that c-AMP produced these effects by stimulating Ca uptake into the superficial SR was supported by the finding that dB-c-AMP increased the amount of Ca taken up into a caffeine releasable fraction.« less

  4. Anti-Diarrheal Mechanism of the Traditional Remedy Uzara via Reduction of Active Chloride Secretion

    PubMed Central

    Fromm, Anja; Günzel, Dorothee

    2011-01-01

    Background and Purpose The root extract of the African Uzara plant is used in traditional medicine as anti-diarrheal drug. It is known to act via inhibition of intestinal motility, but malabsorptive or antisecretory mechanisms are unknown yet. Experimental Approach HT-29/B6 cells and human colonic biopsies were studied in Ussing experiments in vitro. Uzara was tested on basal as well as on forskolin- or cholera toxin-induced Cl− secretion by measuring short-circuit current (ISC) and tracer fluxes of 22Na+ and 36Cl−. Para- and transcellular resistances were determined by two-path impedance spectroscopy. Enzymatic activity of the Na+/K+-ATPase and intracellular cAMP levels (ELISA) were measured. Key Results In HT-29/B6 cells, Uzara inhibited forskolin- as well as cholera toxin-induced ISC within 60 minutes indicating reduced active chloride secretion. Similar results were obtained in human colonic biopsies pre-stimulated with forskolin. In HT-29/B6, the effect of Uzara on the forskolin-induced ISC was time- and dose-dependent. Analyses of the cellular mechanisms of this Uzara effect revealed inhibition of the Na+/K+-ATPase, a decrease in forskolin-induced cAMP production and a decrease in paracellular resistance. Tracer flux experiments indicate that the dominant effect is the inhibition of the Na+/K+-ATPase. Conclusion and Implications Uzara exerts anti-diarrheal effects via inhibition of active chloride secretion. This inhibition is mainly due to an inhibition of the Na+/K+-ATPase and to a lesser extent to a decrease in intracellular cAMP responses and paracellular resistance. The results imply that Uzara is suitable for treating acute secretory diarrhea. PMID:21479205

  5. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation

    PubMed Central

    Veremeyko, Tatyana; Yung, Amanda W. Y.; Dukhinova, Marina; Kuznetsova, Inna S.; Pomytkin, Igor; Lyundup, Alexey; Strekalova, Tatyana; Barteneva, Natasha S.; Ponomarev, Eugene D.

    2018-01-01

    Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro, suggesting prevalence of indirect effect of Forskolin on differentiation and functions of autoimmune CD4 T cells in vivo. Thus, our data indicate that Forskolin has potency to skew balance toward M2 affecting ERK pathway in macrophages and indirectly inhibit pathogenic CD4 T cells in the CNS leading to the suppression of autoimmune inflammation. These data may have also implications for future therapeutic approaches to inhibit autoimmune Th1 cells at the site of tissue inflammation. PMID:29422898

  6. Cyclic AMP Pathway Suppress Autoimmune Neuroinflammation by Inhibiting Functions of Encephalitogenic CD4 T Cells and Enhancing M2 Macrophage Polarization at the Site of Inflammation.

    PubMed

    Veremeyko, Tatyana; Yung, Amanda W Y; Dukhinova, Marina; Kuznetsova, Inna S; Pomytkin, Igor; Lyundup, Alexey; Strekalova, Tatyana; Barteneva, Natasha S; Ponomarev, Eugene D

    2018-01-01

    Although it has been demonstrated that cAMP pathway affect both adaptive and innate cell functions, the role of this pathway in the regulation of T-cell-mediated central nervous system (CNS) autoimmune inflammation, such as in experimental autoimmune encephalomyelitis (EAE), remains unclear. It is also unclear how cAMP pathway affects the function of CD4 T cells in vivo at the site of inflammation. We found that adenylyl cyclase activator Forskolin besides inhibition of functions autoimmune CD4 T cells also upregulated microRNA (miR)-124 in the CNS during EAE, which is associated with M2 phenotype of microglia/macrophages. Our study further established that in addition to direct influence of cAMP pathway on CD4 T cells, stimulation of this pathway promoted macrophage polarization toward M2 leading to indirect inhibition of function of T cells in the CNS. We demonstrated that Forskolin together with IL-4 or with Forskolin together with IL-4 and IFNγ effectively stimulated M2 phenotype of macrophages indicating high potency of this pathway in reprogramming of macrophage polarization in Th2- and even in Th1/Th2-mixed inflammatory conditions such as EAE. Mechanistically, Forskolin and/or IL-4 activated ERK pathway in macrophages resulting in the upregulation of M2-associated molecules miR-124, arginase (Arg)1, and Mannose receptor C-type 1 (Mrc1), which was reversed by ERK inhibitors. Administration of Forskolin after the onset of EAE substantially upregulated M2 markers Arg1, Mrc1, Fizz1, and Ym1 and inhibited M1 markers nitric oxide synthetase 2 and CD86 in the CNS during EAE resulting in decrease in macrophage/microglia activation, lymphocyte and CD4 T cell infiltration, and the recovery from the disease. Forskolin inhibited proliferation and IFNγ production by CD4 T cells in the CNS but had rather weak direct effect on proliferation of autoimmune T cells in the periphery and in vitro , suggesting prevalence of indirect effect of Forskolin on differentiation and functions of autoimmune CD4 T cells in vivo . Thus, our data indicate that Forskolin has potency to skew balance toward M2 affecting ERK pathway in macrophages and indirectly inhibit pathogenic CD4 T cells in the CNS leading to the suppression of autoimmune inflammation. These data may have also implications for future therapeutic approaches to inhibit autoimmune Th1 cells at the site of tissue inflammation.

  7. The effects of forskolin and rolipram on cAMP, cGMP and free fatty acid levels in diet induced obesity.

    PubMed

    Doseyici, S; Mehmetoglu, I; Toker, A; Yerlikaya, F H; Erbay, E

    2014-07-01

    Obesity is a major health problem. We investigated the effects of forskolin and rolipram in the diet of animals in which obesity had been induced. We used 50 female albino Wistar rats that were assigned randomly into five groups as follows: group 1, control; group 2, high fat diet; group 3, high fat diet + forskolin; group 4, high fat diet + rolipram; and group 5, high fat diet + rolipram + forskolin. The rats were fed for 10 weeks and rolipram and forskolin were administered during last two weeks. The animals were sacrificed and blood samples were obtained. Serum cAMP, cGMP and free fatty acids (FFA) levels were measured using ELISA assays. We also measured weight gain during the 10 week period. cAMP and FFA levels of groups 3, 4 and 5 were significantly higher than those of groups 1 and 2. We found no significant differences in serum cGMP levels among the groups. The weight gain in groups 3, 4 and 5 was significantly less than for group 2. We also found that the weight gain in group 5 was significantly less than in groups 3 and 4. We found that both forskolin and rolipram stimulated lipolysis and inhibited body weight increase by increasing cAMP levels. Also, combination therapy using the two agents may be more effective in preventing diet induced obesity than either agent alone. We found also that these agents did not effect cellular cGMP levels in diet induced obesity.

  8. Forskolin increases angiogenesis through the coordinated cross-talk of PKA-dependent VEGF expression and Epac-mediated PI3K/Akt/eNOS signaling.

    PubMed

    Namkoong, Seung; Kim, Chun-Ki; Cho, Young-Lai; Kim, Ji-Hee; Lee, Hansoo; Ha, Kwon-Soo; Choe, Jongseon; Kim, Pyeung-Hyeun; Won, Moo-Ho; Kwon, Young-Geun; Shim, Eun Bo; Kim, Young-Myeong

    2009-06-01

    Forskolin, a potent activator of adenylyl cyclases, has been implicated in modulating angiogenesis, but the underlying mechanism has not been clearly elucidated. We investigated the signal mechanism by which forskolin regulates angiogenesis. Forskolin stimulated angiogenesis of human endothelial cells and in vivo neovascularization, which was accompanied by phosphorylation of CREB, ERK, Akt, and endothelial nitric oxide synthase (eNOS) as well as NO production and VEGF expression. Forskolin-induced CREB phosphorylation, VEGF promoter activity, and VEGF expression were blocked by the PKA inhibitor PKI.Moreover, phosphorylation of ERK by forskolin was inhibited by the MEK inhibitor PD98059, but not PKI. The forskolin-induced Akt/eNOS/NO pathway was completely inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002, but not significantly suppressed by PKI. These inhibitors and a NOS inhibitor partially inhibited forskolin-induced angiogenesis. The exchange protein directly activated by cAMP (Epac) activator, 8CPT-2Me-cAMP, promoted the Akt/eNOS/NO pathway and ERK phosphorylation,but did not induce CREB phosphorylation and VEGF expression. The angiogenic effect of the Epac activator was diminished by the inhibition of PI3K and MEK, but not by the PKA inhibitor. Small interfering RNA-mediated knockdown of Epac1 suppressed forskolin-induced angiogenesis and phosphorylation of ERK, Akt, and eNOS, but not CREB phosphorylation and VEGF expression. These results suggest that forskolin stimulates angiogenesis through coordinated cross-talk between two distinct pathways, PKA-dependent VEGF expression and Epac-dependent ERKactivation and PI3K/Akt/eNOS/NO signaling.

  9. Forskolin and derivatives as tools for studying the role of cAMP.

    PubMed

    Alasbahi, R H; Melzig, M F

    2012-01-01

    Forskolin (7beta-acetoxy-1alpha,6beta,9alpha-trihydroxy-8,13-epoxy-labd-14-en-11-one) is the first main labdane diterpenoid isolated from the roots of the Indian Plectranthus barbatus ANDREWS and one of the most extensively studied constituents of this plant. The unique character of forskolin as a general direct, rapid and reversible activator of adenylyl cyclase not only underlies its wide range of pharmacological effects but also renders it as a valuable tool in the study of the role of cAMP. The purpose of this review is to provide data presenting the utility of forskolin--as a cAMP activator--for studying the function of cAMP from different biological viewpoints as follows: 1) Investigation on the role of cAMP in various cellular processes in different organs such as gastrointestinal tract, respiratory tract, reproductive organs, endocrine system, urinary system, olfactory system, nervous system, platelet aggregating system, skin, bones, eyes, and smooth muscles. 2) Studies on the role of cAMP activation and inhibition to understand the pathogenesis (e.g. thyroid autoimmune disorders, leukocyte signal transduction defect in depression, acute malaria infection, secretory dysfunction in inflammatory diseases) as well as its possibly beneficial role for curing diseases such as the regulation of coronary microvascular NO production after heart failure, the attenuation of the development or progression of fibrosis in the heart and lungs, the augmentation of myo-protective effects of ischemic preconditioning especially in the failing hearts after myocardial infarction, the stimulation of the regeneration of injured retinal ganglion cells, the curing of glaucoma and inflammatory diseases, the reducing of cyst formation early in the polycystic kidney disease, and the management of autoimmune disorders by enhancing Fas-mediated apoptosis. 3) Studies on the role of cAMP in the mechanism of actions of a number of drugs and substances such as the effect of the protoberberine alkaloid palmatine on the active ion transport across rat colonic epithelium, the inhibitory effect of retinoic acid on HIV-1-induced podocyte proliferation, the whitening activity of luteolin, the effect of cilostazol on nitric oxide production, an effect that is involved in capillary-like tube formation in human aortic endothelial cells, the apoptotic effect of bullatacin, the effects of paraoxon and chlorpyrifos oxon on nervous system. Moreover, cAMP was found to play a role in acute and chronic exposure to ethanol, in morphine dependence and withdrawal and in behavioral sensitization to cocaine as well as in the protection against cisplatin-induced oxidative injuries.

  10. A drug-like antagonist inhibits thyrotropin receptor-mediated stimulation of cAMP production in Graves' orbital fibroblasts.

    PubMed

    Neumann, Susanne; Pope, Arthur; Geras-Raaka, Elizabeth; Raaka, Bruce M; Bahn, Rebecca S; Gershengorn, Marvin C

    2012-08-01

    Fibroblasts (FIBs) within the retro-orbital space of patients with Graves' disease (GOFs) express thyrotropin receptors (TSHRs) and are thought to be an orbital target of TSHR-stimulating autoantibodies in Graves' ophthalmopathy (GO). Recently, we developed a low molecular weight, drug-like TSHR antagonist (NCGC00229600) that inhibited TSHR activation in a model cell system overexpressing TSHRs and in normal human thyrocytes expressing endogenous TSHRs. Herein, we test the hypothesis that NCGC00229600 will inhibit activation of TSHRs endogenously expressed in GOFs. Three strains of GOFs, previously obtained from patients with GO, were studied as undifferentiated FIBs and after differentiation into adipocytes (ADIPs), and another seven strains were studied only as FIBs. ADIP differentiation was monitored by morphology and measurement of adiponectin mRNA. FIBs and ADIPs were treated with the TSH- or TSHR-stimulating antibody M22 in the absence or presence of NCGC00229600 and TSHR activation was monitored by cAMP production. FIBs contained few if any lipid vesicles and undetectable levels of adiponectin mRNA, whereas ADIPs exhibited abundant lipid vesicles and levels of adiponectin mRNA more than 250,000 times greater than FIBs; TSHR mRNA levels were 10-fold higher in ADIPs than FIBs. FIBs exhibited higher absolute levels of basal and forskolin-stimulated cAMP production than ADIPs. Consistent with previous findings, TSH stimulated cAMP production in the majority of ADIP strains and less consistently in FIBs. Most importantly, NCGC00229600 reduced both TSH- and M22-stimulated cAMP production in GOFs. These data confirm previous findings that TSHR activation may cause increased cAMP production in GOFs and show that NCGC00229600 can inhibit TSHR activation in GOFs. These findings suggest that drug-like TSHR antagonists may have a role in treatment of GO.

  11. Oxidative Stress and Phthalate-Induced Down-Regulation of Steroidogenesis in MA-10 Leydig Cells*

    PubMed Central

    Zhou, Liang; Beattie, Matthew C.; Lin, Chieh-Yin; Liu, June; Traore, Kassim; Papadopoulos, Vassilios; Zirkin, Barry R.; Chen, Haolin

    2013-01-01

    Previous studies have shown that phthalate exposure can suppress steroidogenesis. However, the affected components of the steroidogenic pathway, and the mechanisms involved, remain uncertain. We show that incubating MA-10 Leydig cells with mono-(2-ethylhexyl) phthalate (MEHP) resulted in reductions in luteinizing hormone (LH)-stimulated cAMP and progesterone productions. cAMP did not decrease in response to MEHP when the cells were incubated with cholera toxin or forskolin. Incubation of MEHP-treated cells with dibutyryl-cAMP, 22-hydroxycholesterol or pregnenolone inhibited the reductions in progesterone. Increased levels of reactive oxygen species (ROS) occurred in response to MEHP. In cells in which intracellular glutathione was depleted by buthionine sulfoximine pretreatment, the increases in ROS and decreases in progesterone in response to MEHP treatment were exacerbated. These results indicate that MEHP inhibits MA-10 Leydig cell steroidogenesis by targeting LH-stimulated cAMP production and cholesterol transport, and that a likely mechanism by which MEHP acts is through increased oxidative stress. PMID:23969005

  12. Milrinone enhances relaxation to prostacyclin and iloprost in pulmonary arteries isolated from lambs with persistent pulmonary hypertension of the newborn

    PubMed Central

    Lakshminrusimha, Satyan; Porta, Nicolas F. M.; Farrow, Kathryn N.; Chen, Bernadette; Gugino, Sylvia F.; Kumar, Vasanth H.; Russell, James A.; Steinhorn, Robin H.

    2009-01-01

    Prostacyclin is a pulmonary vasodilator and is produced by prostacyclin synthase and stimulates adenylate cyclase (AC) via the prostacyclin receptor (IP) to produce cAMP. Forskolin is a direct stimulant of AC. Phosphodiesterase 3 hydrolyzes cAMP and is inhibited by milrinone. Objective To characterize the prostacyclin-AC-cAMP pathway in the ovine ductal ligation model of persistent pulmonary hypertension of the newborn (PPHN). Setting University-based laboratory animal facility. Subjects Lambs delivered to time-dated pregnant ewes. Interventions Fifth generation pulmonary arteries (PA) and lung parenchyma were isolated from control fetal lambs (n = 8) and fetal lambs with PPHN induced by antenatal ductal ligation (n = 9). We studied relaxation responses to various agonists (milrinone, forskolin, prostacyclin, and iloprost, a prostacyclin analog) that increase cAMP in PA after half-maximal constriction with norepinephrine and pretreatment with propranolol ± indo-methacin. Lung protein levels of prostacyclin synthase, IP, AC2, and phosphodiesterase 3A were analyzed by Western blot and cAMP by enzyme-linked immunoassay. Main Results Milrinone relaxed control and PPHN PA and pretreatment with indomethacin significantly impaired this response. Relaxation to milrinone, prostacyclin, and iloprost were significantly impaired in PA from PPHN lambs. Pretreatment with milrinone markedly enhanced relaxation to prostacyclin and iloprost in PPHN PA, similar to relaxation in control PA. Relaxation to forskolin was similar in control and PPHN PAs indicating normal AC activity. Protein levels of prostacyclin synthase and IP were decreased in PPHN lungs compared with control, but AC2, cAMP, and phosphodiesterase 3A remained unchanged. Conclusions Prostacyclin and iloprost are dilators of PAs from PPHN lambs and their effect is enhanced by milrinone. This combination therapy may be an effective strategy in the management of patients with PPHN. PMID:19057444

  13. A forskolin derivative, colforsin daropate hydrochloride, inhibits rat mesangial cell mitogenesis via the cyclic AMP pathway.

    PubMed

    Ogata, Junichi; Minami, Kouichiro; Segawa, Kayoko; Yamamoto, Chieko; Kim, Sung-Teh; Shigematsu, Akio

    2003-11-01

    A forskolin derivative, colforsin daropate hydrochloride (CDH), has been introduced as an inotropic agent that acts directly on adenylate cyclase to increase intracellular cyclic AMP (cAMP) levels and ventricular contractility, resulting in positive inotropic activity. We investigated the effects of CDH on rat mesangial cell (MC) proliferation. CDH (10(-7)-10(-5) mol/l) inhibited [(3)H]thymidine incorporation into cultured rat MCs in a concentration-dependent manner. CDH (10(-7)-10(-5) mol/l) also decreased cell numbers in a similar manner, and stimulated cAMP accumulation in MCs in a concentration-dependent manner. A protein kinase A inhibitor, H-89, abolished the inhibitory effects of CDH on MC mitogenesis. These findings suggest that CDH would inhibit the proliferation of rat MCs via the cAMP pathway. Copyright 2003 S. Karger AG, Basel

  14. Isoproterenol-stimulated labelling of particulate proteins by using [adenylate-32P]NAD+ independent on a cAMP-dependent protein kinase in parotid acinar cells.

    PubMed

    Sugiya, H; Hara-Yokoyama, M; Furuyama, S

    1992-03-30

    When saponin-permeabilized rat parotid acinar cells were incubated with [adenylate-32P]NAD+, labelling of proteins (33, 27 and 23 kDa) in particulate fractions of the cells was stimulated by isoproterenol. The effect of isoproterenol was completely blocked by a beta-antagonist. Both forskolin or cAMP mimicked the effect of isoproterenol on the labelling. However, an inhibitor of cAMPdPK failed to induce complete inhibition of the effects of isoproterenol, forskolin and cAMP. When the labelled proteins were treated with snake venom phosphodiesterase, neither [32P]5'-AMP nor [32P]phosphoribosyladenosine was released. These results suggest that covalent modification of proteins with NAD+, which is distinct from ADP-ribosylation and cAMPdPK-dependent phosphorylation, is coupled to beta-receptor-cAMP signalling system in rat parotid acinar cells.

  15. Distinct Action of Flavonoids, Myricetin and Quercetin, on Epithelial Cl− Secretion: Useful Tools as Regulators of Cl− Secretion

    PubMed Central

    Sun, Hongxin; Niisato, Naomi; Nishio, Kyosuke; Hamilton, Kirk L.; Marunaka, Yoshinori

    2014-01-01

    Epithelial Cl− secretion plays important roles in water secretion preventing bacterial/viral infection and regulation of body fluid. We previously suggested that quercetin would be a useful compound for maintaining epithelial Cl− secretion at a moderate level irrespective of cAMP-induced stimulation. However, we need a compound that stimulates epithelial Cl− secretion even under cAMP-stimulated conditions, since in some cases epithelial Cl− secretion is not large enough even under cAMP-stimulated conditions. We demonstrated that quercetin and myricetin, flavonoids, stimulated epithelial Cl− secretion under basal conditions in epithelial A6 cells. We used forskolin, which activates adenylyl cyclase increasing cytosolic cAMP concentrations, to study the effects of quercetin and myricetin on cAMP-stimulated epithelial Cl− secretion. In the presence of forskolin, quercetin diminished epithelial Cl− secretion to a level similar to that with quercetin alone without forskolin. Conversely, myricetin further stimulated epithelial Cl− secretion even under forskolin-stimulated conditions. This suggests that the action of myricetin is via a cAMP-independent pathway. Therefore, myricetin may be a potentially useful compound to increase epithelial Cl− secretion under cAMP-stimulated conditions. In conclusion, myricetin would be a useful compound for prevention from bacterial/viral infection even under conditions that the amount of water secretion driven by cAMP-stimulated epithelial Cl− secretion is insufficient. PMID:24818160

  16. Phospholemman does not participate in forskolin-induced swine carotid artery relaxation.

    PubMed

    Meeks, M K; Han, S; Tucker, A L; Rembold, C M

    2008-01-01

    Phosphorylation of phospholemman (PLM) on ser68 has been proposed to at least partially mediate cyclic AMP (cAMP) mediated relaxation of arterial smooth muscle. We evaluated the time course of the phosphorylation of phospholemman (PLM) on ser68, myosin regulatory light chains (MRLC) on ser19, and heat shock protein 20 (HSP20) on ser16 during a transient forskolin-induced relaxation of histamine-stimulated swine carotid artery. We also evaluated the dose response for forskolin- and nitroglycerin-induced relaxation in phenylephrine-stimulated PLM-/- and PLM+/+ mice. The time course for changes in ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation was appropriate to explain the forskolin-induced relaxation and the recontraction observed upon washout of forskolin. However, the time course for changes in ser68 PLM phosphorylation was too slow to explain forskolin-induced changes in force. There was no difference in the phenylephrine contractile dose response or in forskolin-induced relaxation dose response observed in PLM-/- and PLM+/+ aortae. In aortae precontracted with phenylephrine, nitroglycerin induced a slightly, but significantly greater relaxation in PLM-/- compared to PLM+/+ aortae. These data are consistent with the hypothesis that ser19 MRLC dephosphorylation and ser16 HSP20 phosphorylation are involved in forskolin-induced relaxation. Our data suggest that PLM phosphorylation is not significantly involved in forskolin-induced arterial relaxation.

  17. Palmatine, a protoberberine alkaloid, inhibits both Ca2+- and cAMP-activated Cl− secretion in isolated rat distal colon

    PubMed Central

    Wu, D Z; Yuan, J Y; Shi, H L; Hu, Z B

    2008-01-01

    Background and purpose: The protoberberine alkaloid berberine has been reported to inhibit colonic Cl− secretion. However, it is not known if other protoberberine alkaloids share these effects. We have therefore selected another protoberberine alkaloid, palmatine, to assess its effects on active ion transport across rat colonic epithelium. Experimental approach: Rat colonic mucosa was mounted in Ussing chambers and short circuit current (I SC), apical Cl− current and basolateral K+ current were recorded. Intracellular cAMP content was determined by an enzyme immunoassay. Intracellular Ca2+ concentration was measured with Fura-2 AM. Key results: Palmatine inhibited carbachol-induced Ca2+-activated Cl− secretion and the carbachol-induced increase of intracellular Ca2+ concentration. Palmatine also inhibited cAMP-activated Cl− secretion induced by prostaglandin E2 (PGE2) or forskolin. Palmatine prevented the elevation of intracellular cAMP by forskolin. Determination of apical Cl− currents showed that palmatine suppressed the forskolin-stimulated, apical cAMP-activated Cl− current but not the carbachol-stimulated apical Ca2+-activated Cl− current. Following permeabilization of apical membranes with nystatin, we found that palmatine inhibited a carbachol-stimulated basolateral K+ current that was sensitive to charybdotoxin and resistant to chromanol 293B. However, the forskolin-stimulated basolateral K+ current inhibited by palmatine was specifically blocked by chromanol 293B and not by charybdotoxin. Conclusions and implications: Palmatine attenuated Ca2+-activated Cl− secretion through inhibiting basolateral charybdotoxin-sensitive, SK4 K+ channels, whereas it inhibited cAMP-activated Cl− secretion by inhibiting apical CFTR Cl− channels and basolateral chromanol 293B-sensitive, KvLQT1 K+ channels. PMID:18204477

  18. Effects of Forskolin on Kupffer Cell Production of Interleukin-10 and Tumor Necrosis Factor Alpha Differ from Those of Endogenous Adenylyl Cyclase Activators: Possible Role for Adenylyl Cyclase 9

    PubMed Central

    Dahle, Maria K.; Myhre, Anders E.; Aasen, Ansgar O.; Wang, Jacob E.

    2005-01-01

    Proinflammatory cytokines like tumor necrosis factor alpha (TNF-α) that are released from Kupffer cells may trigger liver inflammation and damage. Hence, endogenous mechanisms for limiting TNF-α expression are crucial for avoiding the development of sepsis. Such mechanisms include the anti-inflammatory actions of interleukin-10 (IL-10) as well as signaling induced by the intracellular second messenger cyclic AMP (cAMP). Kupffer cells express several receptors that activate cAMP synthesis, including E-prostanoid receptors and β-adrenergic receptors. The expression and role of specific adenylyl cyclases in the inhibition of Kupffer cell activation have so far not been subject to study. Pretreatment of rat Kupffer cell cultures with cAMP analogues [8-(4-chlorophenyl)-thio-cAMP], adenylyl cyclase activator (forskolin), or ligands for G-coupled receptors (isoproterenol or prostaglandin E2) 30 min before the addition of lipopolysaccharide (LPS) (1 μg/ml) caused attenuated TNF-α levels in culture medium (forskolin/isoproterenol, P ≤ 0.05; prostaglandin E2, P ≤ 0.01). Forskolin also reduced IL-10 mRNA and protein (P ≤ 0.05), which was not observed with the other cAMP-inducing agents. Furthermore, we found that rat Kupffer cells express high levels of the forskolin-insensitive adenylyl cyclase 9 compared to whole liver and that this expression is down-regulated by LPS (P ≤ 0.05). We conclude that regulation of TNF-α and IL-10 in Kupffer cells depends on the mechanism by which cAMP is elevated. Forskolin and prostaglandin E2 differ in their effects, which suggests a possible role of forskolin-insensitive adenylyl cyclases like adenylyl cyclase 9. PMID:16239525

  19. Tyrosine hydroxylase is activated and phosphorylated at different sites in rat pheochromocytoma PC 12 cells treated with phorbol ester and forskolin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tachikawa, E.; Tank, A.W.; Weiner, D.H.

    1986-03-01

    The effects of phorbol ester (4..beta..-phorbol, 12..beta..-myristate, 13..cap alpha..-acetate; TPA), an activator of Ca/sup + +//phospholipid-dependent protein kinase (PK-C), and forskolin, which stimulates adenylate cyclase and cyclic AMP-dependent protein kinase (cAMP-PK), on the activation and phosphorylation of tyrosine hydroxylase (TH) in rat pheochromocytoma (PC 12) cells were examined. Incubation of the cells with TPA (0.01-1 ..mu..M) or forskolin (0.01-0.1 ..mu..M) produces increases in activation and phosphorylation of TH in a concentration-dependent manner. The stimulatory effects of TPA are dependent on extracellular Ca/sup + +/ and are inhibited by pretreatment of the cells with trifluoperazine (TFP). The effects of forskolin aremore » independent of Ca/sup + +/ and are not inhibited by TFP. In cells treated with forskolin, the time course of the increase in cAMP correlates with the increases in TH activity and phosphorylation. cAMP levels do not increase in cells treated with TPA. There is an increase in the phosphorylation of only one tryptic phosphopeptide derived from TH in cells treated with either forskolin or TPA. The peptide phosphorylated in TPA-treated cells exhibits different elution characteristics on HPLC from that in forskolin-treated cells. The authors conclude that TH in PC 12 cells is phosphorylated on different sites by cAMP-PK and PK-C. Phosphorylation of either of these sites is associated with enzyme activation.« less

  20. Modulation of PC12 cell viability by forskolin-induced cyclic AMP levels through ERK and JNK pathways: an implication for L-DOPA-induced cytotoxicity in nigrostriatal dopamine neurons.

    PubMed

    Park, Keun Hong; Park, Hyun Jin; Shin, Keon Sung; Choi, Hyun Sook; Kai, Masaaki; Lee, Myung Koo

    2012-07-01

    The intracellular levels of cyclic AMP (cAMP) increase in response to cytotoxic concentrations of L-DOPA in PC12 cells, and forskolin that induces intracellular cAMP levels either protects PC12 cells from L-DOPA-induced cytotoxicity or enhances cytotoxicity in a concentration-dependent manner. This study investigated the effects of cAMP induced by forskolin on cell viability of PC12 cells, relevant to L-DOPA-induced cytotoxicity in Parkinson's disease therapy. The low levels of forskolin (0.01 and 0.1 μM)-induced cAMP increased dopamine biosynthesis and tyrosine hydroxylase (TH) phosphorylation, and induced transient phosphorylation of ERK1/2 within 1 h. However, at the high levels of forskolin (1.0 and 10 μM)-induced cAMP, dopamine biosynthesis and TH phosphorylation did not increase, but rapid differentiation in neurite-like formation was observed with a steady state. The high levels of forskolin-induced cAMP also induced sustained increase in ERK1/2 phosphorylation within 0.25-6 h and then led to apoptosis, which was apparently mediated by JNK1/2 and caspase-3 activation. Multiple treatment of PC12 cells with nontoxic L-DOPA (20 μM) for 4-6 days induced neurite-like formation and decreased intracellular dopamine levels by reducing TH phosphorylation. These results suggest that the low levels of forskolin-induced cAMP increased dopamine biosynthesis in cell survival via transient ERK1/2 phosphorylation. In contrast, the high levels of forskolin-induced cAMP induced differentiation via sustained ERK1/2 phosphorylation and then led to apoptosis. Taken together, the intracellular levels of cAMP play a dual role in cell survival and death through the ERK1/2 and JNK1/2 pathways in PC12 cells.

  1. Copper amplification of prostaglandin E/sub 2/ stimulation of the release of luteinizing hormone-releasing hormone is a postreceptor event

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barnea, A.; Cho, G.

    1987-01-01

    The authors have shown that copper amplifies prostaglandin E/sub 2/ (PGE/sub 2/) stimulation of luteinizing hormone-releasing hormone (LH-RH) from explants of the median eminence area (MEA) and that this process is calcium-dependent. Since a Ca-cAMP pathway has been implicated in PGE/sub 2/ action on the LH-RH neuron, in this study the authors wished to ascertain if copper exerts its effect on the PGE/sub 2/ receptor or on a postreceptor component involved in PGE/sub 2/ action. MEA of adult male rats were incubated for 5 min with 200 ..mu..M Cu/histidine and then incubated for 15 min either with 10 ..mu..M PGE/submore » 2/ (Cu/PGE/sub 2/), 100 ..mu..M forskolin (Cu/forskolin), or 1 mM 8-bromoadenosine 3',5'-cyclic monophosphate (Cu/cAMP). Basal release of LH-RH was 4.6 +/- 0.45 pg/15 min per MEA determined by radioimmunoassay. Net stimulated release during the 15-min exposure to PGE/sub 2/, forskolin, or 8-bromoadenosine 3',5'-cyclic monophosphate was 3.6 +/- 0.52, 3.1 +/- 0.39, and 1.6 +/- 0.42 pg/15 min per MEA, respectively. Net stimulated release after exposure to Cu/PGE/sub 2/, Cu/forskolin, or Cu/cAMP indicated that copper amplifies the action of PGE/sub 2/ and forskolin but not cAMP action. When MEA were exposed to a mixture of PGE/sub 2/ and forskolin for 15 min, the effects of these two secretagogues on LH-RH release were not additive. In contrast to PGE/sub 2/ and forskolin, copper did not amplify K/sup +/ stimulation of OH-RH release. These results are supportive of the proposition that PGE/sub 2/ stimulation of OH-RH release is mediated by the Ca-cAMP pathway and that copper amplification of PGE/sub 2/ action is a postreceptor event.« less

  2. Forskolin: genotoxicity assessment in Allium cepa.

    PubMed

    Mohammed, Khalid Pasha; Aarey, Archana; Tamkeen, Shayesta; Jahan, Parveen

    2015-01-01

    Forskolin, a diterpene, 7β-acetoxy-8,13-epoxy-1α,6β,9α-trihydroxy-labd-14-en-11-one (C22H34O7) isolated from Coleus forskohlii, exerts multiple physiological effects by stimulating the enzyme adenylate cyclase and increasing cyclic adenosine monophosphate (cAMP) concentrations. Forskolin is used in the treatment of hypertension, congestive heart failure, eczema, and other diseases. A cytogenetic assay was performed in Allium cepa to assess possible genotoxic effects of forskolin. Forskolin was tested at concentrations 5-100 μM for exposure periods of 24 or 48 h. Treated samples showed significant reductions in mitotic index (p < 0.05) and increases in the frequency of chromosome aberrations (p < 0.01) at both exposure times. The treated meristems showed chromosome aberrations including sticky metaphases, sticky anaphases, laggard, anaphase bridges, micronuclei, polyploidy, fragments, breaks, and C-mitosis. Forskolin may cause genotoxic effects and further toxicological evaluations should be conducted to ensure its safety. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Beta-Adrenergic Receptor Population is Up-Regulated by Increased Cyclic Amp Concentration in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, Kristin Y.; Vaughn, Jeffrey R.

    1999-01-01

    Skeletal muscle hypertrophy is promoted in vivo by administration of beta-drenergic receptor (bAR) agonists. Chicken skeletal muscle cells were treated with 1 (mu)M isoproterenol, a strong bAR agonist, between days 7 and 10 in culture. bAR population increased by approximately 40% during this treatment; however, the ability of the cells to synthesize cyclic AMP (cAMP) was diminished by two-fold. The quantity of myosin heavy chain (MHC) was not affected. To understand further the relationship between intracellular cAMP levels, bAR population, and muscle protein accumulation, intracellular cAMP levels were artificially elevated by treatment with 0-10 uM forskolin for up to three days. The basal concentration of CAMP in forskolin-treated cells increased up to 7-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in bAR population, with a maximum increase of approximately 40-60% at 10 uM forskolin. A maximum increase of 40-50% in the quantity of MHC was observed at 0.2 uM forskolin, but higher concentrations of forskolin reduced the quantity of MHC back to control levels. At 0.2 uM forskolin, intracellular levels of cAMP were higher by approximately 35%, and the (beta)AR population was higher by approximately 30%. Neither the number of muscle nuclei fused into myotubes nor the percentage of nuclei in myotubes were affected by forskolin at any of the concentrations studied.

  4. Gastrin-releasing peptide receptor-induced internalization, down-regulation, desensitization, and growth: possible role for cyclic AMP.

    PubMed

    Benya, R V; Fathi, Z; Kusui, T; Pradhan, T; Battey, J F; Jensen, R T

    1994-08-01

    Stimulation of the gastrin-releasing peptide receptor (GRP-R) in Swiss 3T3 cells resembles that of a number of other recently described G protein-coupled receptors, insofar as both the phospholipase C and adenylyl cyclase signal transduction pathways are activated. GRP-R activation induces numerous alterations in both the cell and the receptor, but because two signal transduction pathways are activated it is difficult to determine the specific contributions of either pathway. We have found that BALB/3T3 fibroblasts transfected with the coding sequence for the GRP-R are pharmacologically indistinguishable from native receptor-expressing cells and activate phospholipase C in a manner similar to that of the native receptor but fail to increase cAMP in response to bombesin; thus, they may be useful cells to explore the role of activation of each pathway in altering cell and receptor function. Swiss 3T3 cells and GRP-R-transfected BALB/3T3 cells expressed identically glycosylated receptors that bound various agonists and antagonists similarly. G protein activation, as determined by evaluation of agonist-induced activation of phospholipase C and by analysis of the effect of guanosine-5'-(beta,gamma-imido)triphosphate on GRP-R binding affinity, was indistinguishable. Agonist stimulation of GRP-R caused similar receptor changes (internalization and down-regulation) and homologous desensitization in both cell types. Bombesin stimulation of Swiss 3T3 cells that had been preincubated with forskolin increased cAMP levels 9-fold, but no bombesin-specific increase in cAMP levels was detected in transfected cells, even though forskolin and cholera toxin increased cAMP levels in these cells. Quiescent Swiss 3T3 cells treated with bombesin rapidly increased c-fos mRNA levels and [3H]thymidine incorporation, whereas both effects were potentiated by forskolin. The specific protein kinase A inhibitor H-89 blocked increases in c-fos levels and [3H]thymidine incorporation induced by low concentrations of bombesin. GRP-R-transfected BALB/3T3 cells increased c-fos mRNA levels and [3H]thymidine incorporation with the addition of serum but not bombesin. These data suggest that bombesin-stimulated increases in cellular levels of cAMP appear not to be an important mediator of GRP-R internalization, down-regulation, or desensitization but do play an important role in bombesin-induced mitogenesis.

  5. Separate Cl^- Conductances Activated by cAMP and Ca2+ in Cl^--Secreting Epithelial Cells

    NASA Astrophysics Data System (ADS)

    Cliff, William H.; Frizzell, Raymond A.

    1990-07-01

    We studied the cAMP- and Ca2+-activated secretory Cl^- conductances in the Cl^--secreting colonic epithelial cell line T84 using the whole-cell patch-clamp technique. Cl^- and K^+ currents were measured under voltage clamp. Forskolin or cAMP increased Cl^- current 2-15 times with no change in K^+ current. The current-voltage relation for cAMP-activated Cl^- current was linear from -100 to +100 mV and showed no time-dependent changes in current during voltage pulses. Ca2+ ionophores or increased pipette Ca2+ increased both Cl^- and K^+ currents 2-30 times. The Ca2+-activated Cl^- current was outwardly rectified, activated during depolarizing voltage pulses, and inactivated during hyperpolarizing voltage pulses. Addition of ionophore after forskolin further increased Cl^- conductance 1.5-5 times, and the current took on the time-dependent characteristics of that stimulated by Ca2+. Thus, cAMP and Ca2+ activate Cl^- conductances with different properties, implying that these second messengers activate different Cl^- channels or that they induce different conductive and kinetic states in the same Cl^- channel.

  6. Effect of Increased Cyclic AMP Concentration on Muscle Protein Synthesis and Beta-Adrenergic Receptor Expression in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Vaughn, J. R.; Bridge, K. Y.; Smith, C. K.

    1998-01-01

    Analogies of epinephrine are known to cause hypertrophy of skeletal muscle when fed to animals. These compounds presumably exert their physiological action through interaction with the P-adrenergic receptor. Since the intracellular signal generated by the Beta-adrenergic receptor is cyclic AMP (cAMP), experiments were initiated in cell culture to determine if artificial elevation of cAMP by treatment with forskolin would alter muscle protein metabolism and P-adrenergic receptor expression. Chicken skeletal muscle cells after 7 days in culture were treated with 0.2-30 micrometers forskolin for a total of three days. At the end of the treatment period, both the concentration of cAMP and the quantity of myosin heavy chain (MHC) were measured. Concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. In contrast, the quantity of MHC was increased approximately 50% above control cells at 0.2 micrometers forskolin, but exhibited a gradual decline at higher levels of forskolin so that the quantity of MHC in cells treated with 30 micrometers forskolin was not significantly different from controls. Curiously, the intracellular concentration of cAMP which elicited the maximum increase in the quantity of MHC was only 40% higher than cAMP concentration in control cells.

  7. Role of calcium in the regulation of theca cell androstenedione production in the domestic hen.

    PubMed

    Levorse, J M; Tilly, J L; Johnson, A L

    1991-05-01

    Theca cells were collected from the second largest preovulatory follicle. Chelation of extracellular calcium with EGTA attenuated LH (10 ng)-induced androstenedione production by theca cells, and this effect was more pronounced in calcium-deficient than in calcium-replete incubation medium. Incubation of theca cells with steroidogenic agonists in the presence of the calcium channel blocker verapamil (100 microM) suppressed androstenedione production stimulated by LH (a 57% decrease), the adenylate cyclase activator forskolin (a 59% decrease) and the cyclic adenosine monophosphate (cAMP) analog 8-bromo-cAMP (a 61% decrease). Furthermore, 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester (TMB-8), a putative inhibitor of intracellular calcium mobilization, suppressed LH-induced androstenedione production in a dose-dependent fashion. The calmodulin inhibitors trifluoperazine (100 microM) and R24571 (50 microM) inhibited androstenedione production stimulated by hormonal (LH) and non-hormonal (forskolin, 8-bromo-cAMP) agonists (decreases ranging from 76 to 98%). While increasing the intracellular calcium ion concentrations with the calcium ionophore A23187 did not affect basal concentrations of androstenedione, treatment of LH-stimulated cells with the ionophore caused dose-dependent inhibition of androstenedione production; these effects were enhanced by coincubation with phorbol 12-myristate 13-acetate (a known activator of protein kinase C). We conclude that the mobilization of calcium is critical for agonist-stimulated steroidogenesis in hen theca cells, apparently requiring the interaction of calcium with its binding protein, calmodulin. Furthermore, increased cytosolic calcium concentrations may be involved in the suppression of androstenedione production, possibly as a result of an interaction with protein kinase C.

  8. Chronic gonadotropin-releasing hormone inhibits activin induction of the ovine follicle-stimulating hormone beta-subunit: involvement of 3',5'-cyclic adenosine monophosphate response element binding protein and nitric oxide synthase type I.

    PubMed

    Shafiee-Kermani, Farideh; Han, Sang-oh; Miller, William L

    2007-07-01

    FSH is induced by activin, and this expression is modulated by GnRH through FSHB expression. This report focuses on the inhibitory effect of GnRH on activin-induced FSHB expression. Activin-treated primary murine pituitary cultures robustly express mutant ovine FSHBLuc-DeltaAP1, a luciferase transgene driven by 4.7 kb of ovine FSHB promoter. This promoter lacks two GnRH-inducible activator protein-1 sites, making it easier to observe GnRH-mediated inhibition. Luciferase expression from this transgene was decreased 94% by 100 nM GnRH with a half-time of approximately 4 h in pituitary cultures, and this inhibition was independent of follistatin. Activators of cAMP and protein kinase C like forskolin and phorbol 12-myristate 3-acetate (PMA), respectively, mimicked GnRH action. Kinetic studies of wild-type ovine FSHBLuc in LbetaT2 cells showed continuous induction by activin (4-fold) over 20 h. Most of this induction (78%) was blocked, beginning at 6 h. cAMP response element binding protein (CREB) was implicated in this inhibition because overexpression of its constitutively active mutant mimicked GnRH, and its inhibitor (inducible cAMP early repressor isoform II) reversed the inhibition caused by GnRH, forskolin, or PMA. In addition, GnRH, forskolin, or PMA increased the expression of a CREB-responsive reporter gene, 6xCRE-37PRL-Luc. Inhibition of nitric oxide type I (NOSI) by 7-nitroindazole also reversed GnRH-mediated inhibition by 60%. It is known that GnRH and CREB induce production of NOSI in gonadotropes and neuronal cells, respectively. These data support the concept that chronic GnRH inhibits activin-induced ovine FSHB expression by sequential activation of CREB and NOSI through the cAMP and/or protein kinase C pathways.

  9. AGE-RELATED INHIBITION OF FORSKOLIN-STIMULATED CAMP FORMATION BY CHLORPYRIFOS OXON IN RAT CORTICAL SLICES. (R825811)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  10. Cyclic AMP differentiates two separate but interacting pathways of phosphoinositide hydrolysis in the DDT1-MF2 smooth muscle cell line.

    PubMed

    Schachter, J B; Wolfe, B B

    1992-03-01

    The activation of adenosine A1 receptors in DDT1-MF2 smooth muscle cells resulted in both the inhibition of agonist-stimulated cAMP accumulation and the potentiation of norepinephrine-stimulated phosphoinositide hydrolysis. Pharmacological analysis indicated the involvement of an A1 adenosine receptor subtype in both of these responses. In the absence of norepinephrine, the activation of the adenosine receptor did not directly stimulate phosphoinositide hydrolysis. The adenosine receptor-mediated augmentation of norepinephrine-stimulated phosphoinositide hydrolysis was pertussis toxin sensitive and was selectively antagonized by agents that mimicked cAMP (8-bromo-cAMP) or raised cellular cAMP levels (forskolin). This initially suggested that cAMP might partially regulate the magnitude of the phospholipase C response to norepinephrine and that adenosine agonists might enhance the phospholipase C response by reducing cAMP levels. However, neither the reduction of cellular cAMP levels by other agents nor the inhibition of cAMP-dependent protein kinase was sufficient to replicate the action of adenosine receptor activation on phosphoinositide hydrolysis. Thus, in the presence of norepinephrine, adenosine receptor agonists appear to stimulate phosphoinositide hydrolysis via a pathway that is separate from, but dependent upon, that of norepinephrine. This second pathway can be distinguished from that which is stimulated by norepinephrine on the basis of its sensitivity to inhibition by both cAMP and pertussis toxin.

  11. Skeletal muscle expresses the extracellular cyclic AMP–adenosine pathway

    PubMed Central

    Chiavegatti, T; Costa, V L; Araújo, M S; Godinho, R O

    2007-01-01

    Background and purpose: cAMP is a key intracellular signalling molecule that regulates multiple processes of the vertebrate skeletal muscle. We have shown that cAMP can be actively pumped out from the skeletal muscle cell. Since in other tissues, cAMP efflux had been associated with extracellular generation of adenosine, in the present study we have assessed the fate of interstitial cAMP and the existence of an extracellular cAMP-adenosine signalling pathway in skeletal muscle. Experimental approach: cAMP efflux and/or its extracellular degradation were analysed by incubating rat cultured skeletal muscle with exogenous cAMP, forskolin or isoprenaline. cAMP and its metabolites were quantified by radioassay or HPLC, respectively. Key results: Incubation of cells with exogenous cAMP was followed by interstitial accumulation of 5′-AMP and adenosine, a phenomenon inhibited by selective inhibitors of ecto-phosphodiesterase (DPSPX) and ecto-nucleotidase (AMPCP). Activation of adenylyl cyclase (AC) in cultured cells with forskolin or isoprenaline increased cAMP efflux and extracellular generation of 5′-AMP and adenosine. Extracellular cAMP-adenosine pathway was also observed after direct and receptor-dependent stimulation of AC in rat extensor muscle ex vivo. These events were attenuated by probenecid, an inhibitor of ATP binding cassette family transporters. Conclusions and implications: Our results show the existence of an extracellular biochemical cascade that converts cAMP into adenosine. The functional relevance of this extracellular signalling system may involve a feedback modulation of cellular response initiated by several G protein-coupled receptor ligands, amplifying cAMP influence to a paracrine mode, through its metabolite, adenosine. PMID:18157164

  12. Second messenger production in avian medullary nephron segments in response to peptide hormones.

    PubMed

    Goldstein, D L; Reddy, V; Plaga, K

    1999-03-01

    We examined the sites of peptide hormone activation within medullary nephron segments of the house sparrow (Passer domesticus) kidney by measuring rates of hormone-induced generation of cyclic nucleotide second messenger. Thin descending limbs, thick ascending limbs, and collecting ducts had baseline activity of adenylyl cyclase that resulted in cAMP accumulation of 207 +/- 56, 147 +/- 31, and 151 +/- 41 fmol. mm-1. 30 min-1, respectively. In all segments, this activity increased 10- to 20-fold in response to forskolin. Activity of adenylyl cyclase in the thin descending limb was stimulated approximately twofold by parathyroid hormone (PTH) but not by any of the other hormones tested [arginine vasotocin (AVT), glucagon, atrial natriuretic peptide (ANP), or isoproterenol, each at 10(-6) M]. Thick ascending limb was stimulated two- to threefold by both AVT and PTH; however, glucagon and isoproterenol had no effect, and ANP stimulated neither cAMP nor cGMP accumulation. Adenylyl cyclase activity in the collecting duct was stimulated fourfold by AVT but not by the other hormones; likewise, ANP did not stimulate cGMP accumulation in this segment. These data support a tubular action of AVT and PTH in the avian renal medulla.

  13. INHIBITION OF FORSKOLIN-STIMULATED CAMP FORMATION IN VITRO BY PARAOXON AND CHLORPYRIFOS OXON IN CORTICAL SLICES FROM NEONATAL, JUVENILE AND ADULT RATS. (R825811)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. A large contribution of a cyclic AMP-independent pathway to turtle olfactory transduction

    PubMed Central

    1994-01-01

    Although multiple pathways are involved in the olfactory transduction mechanism, cAMP-dependent pathway has been considered to contribute mainly to the transduction. We examined the degree of contribution of cAMP-independent pathway to the turtle olfactory response by recording inward currents from isolated cells, nerve impulses from cilia and olfactory bulbar responses. The results obtained by the three recordings were essentially consistent with each other, but detail studies were carried out by recording the bulbar response to obtain quantitative data. Application of an odorant cocktail to the isolated olfactory neuron after injection of 1 mM cAMP from the patch pipette elicited a large inward current. Mean amplitude of inward currents evoked by the cocktail with 1 mM cAMP in the patch pipette was similar to that without cAMP in the pipette. Application of the cocktail after the response to 50 microM forskolin was adapted also induced a large inward current. Application of the odorant cocktail to the olfactory epithelium, after the response to 50 microM forskolin was adapted, brought about an appreciable increase in the impulse frequency. The bulbar response to forskolin alone reached a saturation level around 10 microM. After the response to 50 microM forskolin was adapted, 11 species of odorants were applied to the olfactory epithelium. The magnitudes of responses to the odorants after forskolin were 45-80% of those of the control responses. There was no essential difference in the degree of the suppression by forskolin between cAMP- and IP3- producing odorants classified in the rat, suggesting that certain part of the forskolin-suppressive component was brought about by nonspecific action of forskolin. Application of a membrane permeant cAMP analogue, cpt-cAMP elicited a large response, and 0.1 mM citralva after 3 mM cpt- cAMP elicited 51% of the control response which was close to the response to citralva after 50 microM forskolin. A membrane permeant cGMP analogue, db-cGMP elicited a small response and the response to 0.1 mM citralva was unaffected by db-cGMP. It was concluded that cAMP- independent (probably IP3-independent) pathway greatly contributes to the turtle olfactory transduction. PMID:7523576

  15. Lubiprostone activates Cl- secretion via cAMP signaling and increases membrane CFTR in the human colon carcinoma cell line, T84.

    PubMed

    Ao, Mei; Venkatasubramanian, Jayashree; Boonkaewwan, Chaiwat; Ganesan, Nivetha; Syed, Asma; Benya, Richard V; Rao, Mrinalini C

    2011-02-01

    Lubiprostone, used clinically (b.i.d.) to treat constipation, has been reported to increase transepithelial Cl(-) transport in T84 cells by activating ClC-2 channels. To identify the underlying signaling pathway, we explored the effects of short-term and overnight lubiprostone treatment on second messenger signaling and Cl(-) transport. Cl(-) transport was assessed either as I(sc) across T84 monolayers grown on Transwells and mounted in Ussing chambers or by the iodide efflux assay. [cAMP](i) was measured by enzyme immunoassay, and [Ca(2+)](i) by Fluo-3 fluorescence. Quantitation of apical cell surface CFTR protein levels was assessed by Western blotting and biotinylation with the EZ-Link Sulfo-NHS-LC-LC-Biotin. ClC-2 mRNA level was studied by RT-PCR. Lubiprostone and the cAMP stimulator, forskolin, caused comparable and maximal increases of I(sc) in T84 cells. The I(sc) effects of lubiprostone and forskolin were each suppressed if the tissue had previously been treated with the other agent. These responses were unaltered even if the monolayers were treated with lubiprostone overnight. Lubiprostone-induced increases in iodide efflux were ~80% of those obtained with forskolin. Lubiprostone increased [cAMP](i). H89, bumetanide, or CFTR(inh)-172 greatly attenuated lubiprostone-stimulated Cl(-) secretion, whereas the ClC-2 inhibitor CdCl(2) did not. Compared to controls, FSK-treatment increased membrane-associated CFTR by 1.9 fold, and lubiprostone caused a 2.6-fold increase in apical membrane CFTR as seen by immunoblotting following cell surface biotinylation. Lubiprostone activates Cl(-) secretion in T84 cells via cAMP, protein kinase A, and by increasing apical membrane CFTR protein.

  16. Cilostamide and forskolin treatment during pre-IVM improves preimplantation development of cloned embryos by influencing meiotic progression and gap junction communication in pigs.

    PubMed

    Park, Bola; Lee, Hanna; Lee, Yongjin; Elahi, Fazle; Lee, Joohyeong; Lee, Seung Tae; Park, Choon-Keun; Hyun, Sang-Hwan; Lee, Eunsong

    2016-08-01

    This study was conducted to evaluate the effects of treatment with the cAMP modulators cilostamide and/or forskolin during pre-IVM culture on meiotic progression, gap junction communication, intraoocyte cAMP level and glutathione content, embryonic development after parthenogenesis, and somatic cell nuclear transfer in pigs. Cumulus-oocyte complexes were cultured for 24 hours in unsupplemented medium or media containing 20 μM cilostamide and/or 50 μM forskolin. After pre-IVM, oocytes were cultured for 41 to 44 hours in a standard IVM medium to induce oocyte maturation. When the nuclear status of oocytes was examined after pre-IVM for 24 hours, a higher (P < 0.01) proportion of oocytes treated with forskolin (85.5%) and cilostamide + forskolin (92.6%) remained at the germinal vesicle stage compared with untreated (20.6%) and cilostamide-treated oocytes (54.7%). cAMP level in pre-IVM oocytes was significantly increased by combined treatment with cilostamide + forskolin (21.38 fmol/oocyte) relative to the no pre-IVM control, no treatment, cilostamide, and forskolin groups (2.85, 1.88, 1.74, and 8.95 fmol/oocyte, respectively). Forskolin with or without cilostamide significantly maintained open-gap junction communication relative to no treatment. Blastocyst formation in parthenogenesis was significantly (P < 0.01) improved by forskolin (65.3%) relative to other treatments (28.3% to 48.1%). Supplementation of pre-IVM with dibutyryl cAMP showed similar blastocyst formation as forskolin treatment (61.1% and 61.0%, respectively). In somatic cell nuclear transfer, simultaneous treatment with cilostamide + forskolin significantly (P < 0.05) increased embryonic development to the blastocyst stage (42.9%) relative to the no pre-IVM, control, and cilostamide groups (32.3, 28.6, and 32.8%, respectively). The glutathione contents in pre-IVM oocytes were increased by no treatment, forskolin, and cilostamide + forskolin (1.38, 1.39, and 1.27 pixels/oocyte, respectively) compared with no pre-IVM and cilostamide (1.00 and 0.99 pixels/oocyte, respectively; P < 0.05). Our results reported that the meiotic progression of immature pig oocytes could be reversibly attenuated by cAMP, whereas treatment with cilostamide and forskolin during pre-IVM had positive effects on developmental competence of oocytes in pigs, probably by improving cytoplasmic maturation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Differential Activation of Enkephalin, Galanin, Somatostatin, NPY, and VIP Neuropeptide Production by Stimulators of Protein Kinases A and C in Neuroendocrine Chromaffin Cells

    PubMed Central

    Hook, Vivian; Toneff, Thomas; Baylon, Sheley; Sei, Catherine

    2009-01-01

    Neuropeptides function as peptide neurotransmitters and hormones to mediate cell-cell communication. The goal of this study was to understand how different neuropeptides may be similarly or differentially regulated by protein kinase A (PKA) and protein kinase C (PKC) intracellular signaling mechanisms. Therefore, this study compared the differential effects of treating neuroendocrine chromaffin cells with stimulators of PKA and PKC on the production of the neuropeptides (Met)enkephalin, galanin, somatostatin, NPY, and VIP. Significantly, selective increases in production of these neuropeptides was observed by forskolin or PMA (phorbol myristate acetate) which stimulate PKA and PKC mechanisms, respectively. (Met)enkephalin production was stimulated by up to 2-fold by forskolin treatment, but not by PMA. In contrast, PMA treatment (but not forskolin) resulted in a 2-fold increase in production of galanin and somatostatin, and a 3-fold increase in NPY production. Notably, VIP production was highly stimulated by forskolin and PMA, with increases of 3-fold and 10–15-fold, respectively. Differences in elevated neuropeptides occurred in cell extracts compared to secretion media, which consisted of (i) increased NPY primarily in cell extracts, (ii) increased (Met)enkephalin and somatostatin in secretion media (not cell extracts), and (iii) increased galanin and VIP in both cell extracts and secretion media. Involvement of PKA or PKC for forskolin or PMA regulation of neuropeptide biosynthesis, respectively, was confirmed with direct inhibitors of PKA and PKC. The selective activation of neuropeptide production by forskolin and PMA demonstrates that PKA and PKC pathways are involved in the differential regulation of neuropeptide production. PMID:18619673

  18. Increase in Ca2+ current by sustained cAMP levels enhances proliferation rate in GH3 cells.

    PubMed

    Rodrigues, Andréia Laura; Brescia, Marcella; Koschinski, Andreas; Moreira, Thaís Helena; Cameron, Ryan T; Baillie, George; Beirão, Paulo S L; Zaccolo, Manuela; Cruz, Jader S

    2018-01-01

    Ca 2+ and cAMP are important intracellular modulators. In order to generate intracellular signals with various amplitudes, as well as different temporal and spatial properties, a tightly and precise control of these modulators in intracellular compartments is necessary. The aim of this study was to evaluate the effects of elevated and sustained cAMP levels on voltage-dependent Ca 2+ currents and proliferation in pituitary tumor GH3 cells. Effect of long-term exposure to forskolin and dibutyryl-cyclic AMP (dbcAMP) on Ca 2+ current density and cell proliferation rate were determined by using the whole-cell patch-clamp technique and real time cell monitoring system. The cAMP levels were assayed, after exposing transfected GH3 cells with the EPAC-1 cAMP sensor to forskolin and dbcAMP, by FRET analysis. Sustained forskolin treatment (24 and 48h) induced a significant increase in total Ca 2+ current density in GH3 cells. Accordingly, dibutyryl-cAMP incubation (dbcAMP) also elicited increase in Ca 2+ current density. However, the maximum effect of dbcAMP occurred only after 72h incubation, whereas forskolin showed maximal effect at 48h. FRET-experiments confirmed that the time-course to elevate intracellular cAMP was distinct between forskolin and dbcAMP. Mibefradil inhibited the fast inactivating current component selectively, indicating the recruitment of T-type Ca 2+ channels. A significant increase on cell proliferation rate, which could be related to the elevated and sustained intracellular levels of cAMP was observed. We conclude that maintaining high levels of intracellular cAMP will cause an increase in Ca 2+ current density and this phenomenon impacts proliferation rate in GH3 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Beta-Adrenergic Receptor Expression in Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B.; Bridge, K.; Vaughn, J. R.

    1999-01-01

    beta-adrenergic receptor (bAR) agonists presumably exert their physiological action on skeletal muscle cells through the bAR. Since the signal generated by the bAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of bAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 uM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the bAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 uM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in (beta)AR population, with a maximum increase of approximately 50% at 10 uM. This increase in (beta)AR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of (beta)AR population. Clenbuterol and isoproterenol gave similar effects on bAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 UM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  20. cAMP and forskolin decrease gamma-aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes.

    PubMed Central

    Heuschneider, G; Schwartz, R D

    1989-01-01

    The effects of the cyclic nucleotide cAMP on gamma-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate inhibited muscimol-induced 36Cl- uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner (IC50 = 1.3 mM). The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate, 8-bromoadenosine 3',5'-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the gamma-aminobutyric acid-gated Cl- channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, in the intact synaptoneurosomes, forskolin inhibited muscimol-induced 36Cl- uptake and generated cAMP with similar potencies (IC50 = 14.3 microM; EC50 = 6.2 microM, respectively). Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl- channel directly. Indeed, forskolin inhibition of muscimol-induced 36Cl- uptake was extremely rapid (within 5 sec), preceding the accumulation of sufficient levels of cAMP. After 5 min, a slower phase of inhibition was seen, similar to the time course for cAMP accumulation. The data suggest that gamma-aminobutyric acid (GABAA) receptor function in brain can be regulated by cAMP-dependent phosphorylation. PMID:2468163

  1. Forskolin induces myosin light chain dephosphorylation in bovine trabecular meshwork cells.

    PubMed

    Ramachandran, Charanya; Satpathy, Minati; Mehta, Dolly; Srinivas, Sangly P

    2008-02-01

    Enhanced contractility of the actin cytoskeleton in trabecular meshwork (TM) cells is implicated in increased resistance to aqueous humor outflow. In this study, we have investigated effects of forskolin, which is known to elevate cAMP and also enhance aqueous humor outflow, on myosin light chain (MLC) phosphorylation, a biochemical marker of actin contractility. Experiments were performed using cultured bovine TM cells. Phosphorylated MLC (pMLC), expressed as the % of untreated cells, was assessed by urea-glycerol gel electrophoresis and Western blotting. RhoA activity was determined by affinity precipitation of RhoA-GTP to RhoA binding domain of an effector of RhoA. Intracellular cAMP levels were measured by ELISA. Exposure to LPA (lysophosphatidic acid) led to increased MLC phosphorylation (LPA: pMLC=133%) and activation of RhoA. These responses of LPA were suppressed by co-treatment with forskolin (LPA+forskolin: pMLC=88%). Similarly, ET-1 and nocodazole-induced MLC phosphorylation (ET-1: pMLC=145%; nocodazole: pMLC=145%) as well as RhoA activation were suppressed by co-treatment with forskolin (ET-1+forskolin: pMLC=99%; nocodazole+forskolin: pMLC=107%). Exposure to forskolin alone led to MLC dephosphorylation (pMLC=68%). Forskolin alone led to a 4-fold increase in cAMP levels. This increase was not affected when co-treated with LPA or ET-1. Forskolin prevents MLC phosphorylation induced by LPA, ET-1, and nocodazole through inhibition of RhoA-Rho kinase axis. MLC dephosphorylation and consequent relaxation of actin cytoskeleton in TM cells presumably underlies the increased outflow facility reported in response to forskolin.

  2. Beta-Adrenergic Receptor Population is Up-Regulated in Chicken Skeletal Muscle Cells Treated with Forskolin

    NASA Technical Reports Server (NTRS)

    Bridge, K. Y.; Young, R. B.; Vaughn, J. R.

    1998-01-01

    Skeletal muscle hypertrophy is promoted by in vivo administration of beta-adrenergic receptor (betaAR) agonists. These compounds presumably exert their physiological action through the betaAR, and alterations in the population of betaAR could potentially change the ability of the cell to respond to the betaAR agonists. Since the intracellular chemical signal generated by the betaAR is cyclic AMP (cAMP), experiments were initiated in primary chicken muscle cell cultures to determine if artificial elevation of intracellular cAMP by treatment with forskolin would alter the population of functional betaAR expressed on the surface of muscle cells. Chicken skeletal muscle cells after 7 days in culture were employed for the experiments because muscle cells have attained a steady state with respect to muscle protein metabolism at this stage. Cells were treated with 0-10 microM forskolin for a total of three days. At the end of the 1, 2, and 3 day treatment intervals, the concentration of cAMP and the betaAR population were measured. Receptor population was measured in intact muscle cell cultures as the difference between total binding of [H-3]CGP-12177 and non-specific binding of [H-3]CGP-12177 in the presence of 1 microM propranolol. Intracellular cAMP concentration was measured by radioimmunoassay. The concentration of cAMP in forskolin-treated cells increased up to 10-fold in a dose dependent manner. Increasing concentrations of forskolin also led to an increase in betaAR population, with a maximum increase of approximately 50% at 10 microM. This increase in PAR population was apparent after only 1 day of treatment, and the pattern of increase was maintained for all 3 days of the treatment period. Thus, increasing the intracellular concentration of cAMP leads to up-regulation of betaAR population. The effect of forskolin on the quantity and apparent synthesis rate of the heavy chain of myosin (mhc) were also investigated. A maximum increase of 50% in the quantity of mhc was observed at 0.2 microM forskolin, but higher concentrations of forskolin reduced the quantity of mhc back to control levels.

  3. H{sub 2}S induces vasoconstriction of rat cerebral arteries via cAMP/adenylyl cyclase pathway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sen; Ping, Na-na; Cao, Lei, E-mail: leicao@mail.xjtu.edu.cn

    2015-12-15

    Hydrogen sulfide (H{sub 2}S), traditionally known for its toxic effects, is now involved in regulating vascular tone. Here we investigated the vasoconstrictive effect of H{sub 2}S on cerebral artery and the underlying mechanism. Sodium hydrosulfide (NaHS), a donor of H{sub 2}S, concentration-dependently induced vasoconstriction on basilar artery, which was enhanced in the presence of isoprenaline, a β-adrenoceptor agonist or forskolin, an adenylyl cyclase activator. Administration of NaHS attenuated the vasorelaxant effects of isoprenaline or forskolin. Meanwhile, the NaHS-induced vasoconstriction was diminished in the presence of 8B-cAMP, an analog of cAMP, but was not affected by Bay K-8644, a selective L-typemore » Ca{sup 2+} channel agonist. These results could be explained by the revised effects of NaHS on isoprenaline-induced cAMP elevation and forskolin-stimulated adenylyl cyclase activity. Additionally, NaHS-induced vasoconstriction was enhanced by removing the endothelium or in the presence of L-NAME, an inhibitor of nitric oxide synthase. L-NAME only partially attenuated the effect of NaHS which was given together with forskolin on the pre-contracted artery. In conclusion, H{sub 2}S induces vasoconstriction of cerebral artery via, at least in part, cAMP/adenylyl cyclase pathway. - Highlights: • The vasoactivity effect of NaHS, a donor of H{sub 2}S, was studied on rat cerebral arteries. • H{sub 2}S induces a constriction, not a relaxant effect on basilar arteries. • The vasoconstrictive effect is invovled in inhibiting adenylyl cyclase to reduce cAMP levels. • The vasoconstriction is partially antagonized by NO, and does not necessarily act via NO pathway.« less

  4. Immunocytology on microwave-fixed cells reveals rapid and agonist-specific changes in subcellular accumulation patterns for cAMP or cGMP.

    PubMed Central

    Barsony, J; Marx, S J

    1990-01-01

    We developed a method for cAMP and cGMP immunocytology based upon fixation by microwave irradiation. Fixation by microwave irradiation prevented three problems found with other fixation methods: nucleotide loss from cells, nucleotide diffusion within cells, and chemical modification of immunologic epitopes. Six agonists (four that stimulate adenylate cyclase and two that stimulate guanylate cyclase) produced cAMP or cGMP accumulation patterns that were agonist-specific, dose-dependent, detectable at physiologic concentrations of hormone, and time-dependent within 15 sec to 30 min. cAMP accumulation after 1 mM forskolin was greatest in the nucleus. Isoproterenol, prostaglandin E2, or calcitonin caused initial accumulation of cAMP along the plasma membrane, but later accumulation was greater in the cytoplasm. With calcitonin the later accumulation of cAMP was selectively perinuclear and along the nuclear membrane. Sodium nitroprusside stimulated cGMP accumulation diffusely throughout the cytoplasm. Atrial natriuretic peptide initiated cGMP accumulation near the plasma membrane, and cGMP accumulation moved from there into the cytoplasm. In conclusion, microwave irradiation preserved cell structure and allowed visualization of expected as well as unsuspected changes in intracellular accumulation patterns of cAMP and cGMP. Images PMID:2153973

  5. Extracellular calcium antagonizes forskolin-induced aquaporin 2 trafficking in collecting duct cells.

    PubMed

    Procino, Giuseppe; Carmosino, Monica; Tamma, Grazia; Gouraud, Sabine; Laera, Antonia; Riccardi, Daniela; Svelto, Maria; Valenti, Giovanna

    2004-12-01

    Urinary concentrating defects and polyuria are the most important renal manifestations of hypercalcemia and the resulting hypercalciuria. In this study, we tested the hypothesis that hypercalciuria-associated polyuria in kidney collecting duct occurs through an impairment of the vasopressin-dependent aquaporin 2 (AQP2) water channel targeting to the apical membrane possibly involving calcium-sensing receptor (CaR) signaling. AQP2-transfected collecting duct CD8 cells were used as experimental model. Quantitation of cell surface AQP2 immunoreactivity was performed using an antibody recognizing the extracellular AQP2 C loop. Intracellular cyclic adenosine monophosphate (cAMP) accumulation was measured in CD8 cells using a cAMP enzyme immunoassay kit. To study the translocation of protein kinase C (PKC), membranes or cytosol fractions from CD8 cells were subjected to Western blotting using anti-PKC isozymes antibodies. The amount of F-actin was determined by spectrofluorometric techniques. Intracellular calcium measurements were performed by spectrofluorometric analysis with Fura-2/AM. We demonstrated that extracellular calcium (Ca2+ o) (5 mmol/L) strongly inhibited forskolin-stimulated increase in AQP2 expression in the apical plasma membrane. At least three intracellular pathways activated by extracellular calcium were found to contribute to this effect. Firstly, the increase in cAMP levels in response to forskolin stimulation was drastically reduced in cells pretreated with Ca2+ o compared to untreated cells. Second, Ca2+ o activated PKC, known to counteract vasopressin response. Third, quantification of F-actin demonstrated that Ca2+ o caused a nearly twofold increase in F-actin content compared with basal conditions. All these effects were mimicked by a nonmembrane permeable agonist of the extracellular CaR, Gd3+. Together, these data demonstrate that extracellular calcium, possibly acting through the endogenous CaR, antagonizes forskolin-induced AQP2 translocation to the apical plasma membrane in CD8 cells. In hypercalciuria, this mechanism might blunt water reabsorption and prevent further calcium concentration, thus protecting against a potential risk of urinary calcium-containing stone formation.

  6. Pharmacological characterization of human recombinant melatonin mt1 and MT2 receptors

    PubMed Central

    Browning, Christopher; Beresford, Isabel; Fraser, Neil; Giles, Heather

    2000-01-01

    We have pharmacologically characterized recombinant human mt1 and MT2 receptors, stably expressed in Chinese hamster ovary cells (CHO-mt1 and CHO-MT2), by measurement of [3H]-melatonin binding and forskolin-stimulated cyclic AMP (cAMP) production. [3H]-melatonin bound to mt1 and MT2 receptors with pKD values of 9.89 and 9.56 and Bmax values of 1.20 and 0.82 pmol mg−1 protein, respectively. Whilst most melatonin receptor agonists had similar affinities for mt1 and MT2 receptors, a number of putative antagonists had substantially higher affinities for MT2 receptors, including luzindole (11 fold), GR128107 (23 fold) and 4-P-PDOT (61 fold). In both CHO-mt1 and CHO-MT2 cells, melatonin inhibited forskolin-stimulated accumulation of cyclic AMP in a concentration-dependent manner (pIC50 9.53 and 9.74, respectively) causing 83 and 64% inhibition of cyclic AMP production at 100 nM, respectively. The potencies of a range of melatonin receptor agonists were determined. At MT2 receptors, melatonin, 2-iodomelatonin and 6-chloromelatonin were essentially equipotent, whilst at the mt1 receptor these agonists gave the rank order of potency of 2-iodomelatonin>melatonin>6-chloromelatonin. In both CHO-mt1 and CHO-MT2 cells, melatonin-induced inhibition of forskolin-stimulated cyclic AMP production was antagonized in a concentration-dependent manner by the melatonin receptor antagonist luzindole, with pA2 values of 5.75 and 7.64, respectively. Melatonin-mediated responses were abolished by pre-treatment of cells with pertussis toxin, consistent with activation of Gi/Go G-proteins. This is the first report of the use of [3H]-melatonin for the characterization of recombinant mt1 and MT2 receptors. Our results demonstrate that these receptor subtypes have distinct pharmacological profiles. PMID:10696085

  7. The Natural cAMP Elevating Compound Forskolin in Cancer Therapy: Is It Time?

    PubMed

    Sapio, Luigi; Gallo, Monica; Illiano, Michela; Chiosi, Emilio; Naviglio, Daniele; Spina, Annamaria; Naviglio, Silvio

    2017-05-01

    Cancer is a major public health problem and the second leading cause of mortality around the world. Although continuous advances in the science of oncology and cancer research are now leading to improved outcomes for many cancer patients, novel cancer treatment options are strongly demanded. Naturally occurring compounds from a variety of vegetables, fruits, and medicinal plants have been shown to exhibit various anticancer properties in a number of in vitro and in vivo studies and represent an attractive research area for the development of new therapeutic strategies to fight cancer. Forskolin is a diterpene produced by the roots of the Indian plant Coleus forskohlii. The natural compound forskolin has been used for centuries in traditional medicine and its safety has also been documented in conventional modern medicine. Forskolin directly activates the adenylate cyclase enzyme, that generates cAMP from ATP, thus, raising intracellular cAMP levels. Notably, cAMP signaling, through the PKA-dependent and/or -independent pathways, is very relevant to cancer and its targeting has shown a number of antitumor effects, including the induction of mesenchymal-to-epithelial transition, inhibition of cell growth and migration and enhancement of sensitivity to conventional antitumor drugs in cancer cells. Here, we describe some features of cAMP signaling that are relevant to cancer biology and address the state of the art concerning the natural cAMP elevating compound forskolin and its perspectives as an effective anticancer agent. J. Cell. Physiol. 232: 922-927, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Forskolin-stimulated vasopressin and oxytocin release from the rat hypothalamo-neurohypophysial system in vitro is inhibited by melatonin.

    PubMed

    Roszczyk, Magdalena; Juszczak, Marlena

    2014-01-01

    Previous in vivo and in vitro studies have shown that melatonin changes vasopressin (AVP) and oxytocin (OT) secretion from the rat neurohypophysis. Additionally, melatonin is known to inhibit the forskolin-induced (forskolin is a strong adenylyl cyclase - AC activator) increase in cAMP accumulation in the rat pituitary. To determine whether the possible response of vasopressinergic and/or oxytocinergic neurones to melatonin could be mediated through a cAMP-dependent mechanism, the effect of different concentrations of melatonin (i.e. 10-11, 10-9, 10-7, 10-5 and 10-3 M) on forskolin-stimulated AVP and OT release from the rat hypothalamo-neurohypophysial (H-NH) system was studied in vitro. Male rats served as donors of the H-NH explants, which were placed in 1 mLof normal Krebs-Ringer fluid (nKRF), heated to 37oC and constantly gassed with carbogen (95% O2 and 5% CO2). The H-NH explants were incubated successively in nKRF {fluid B1} and incubation fluid as B1 enriched with an appropriate concentration of melatonin, i.e. 10-11 - 10-3 M and/or forskolin (at a concentration of 10-5 M) or their vehicles (0.1% ethanol or DMSO) {fluid B2}. After 20 min incubation in fluid B1 and next B2, the media were collected and immediately frozen before AVP and OT estimation by the RIA. The AVP and OT secretion was determined by using B2/B1 ratio for each H-NH explant. We have demonstrated that the highly effective AC activator - forskolin significantly stimulated both AVP and OT release from isolated rat H-NH system. Such an effect of forskolin was reduced by melatonin at concentrations of 10-9, 10-7 and 10-5 M. The strongest effect was exerted by this hormone at a concentration of 10-7 M, which inhibited not only forskolin-stimulated, but also basal, AVP and OT release. On the contrary, the highest studied concentration (i.e. 10-3 M) of melatonin stimulated both AVP and OT basal release, but when forskolin was present in the medium melatonin at such a concentration remained inactive in modifying these hormones release from the H-NH system in vitro. Our present results demonstrate that in the male rat: 1. The influence of melatonin on the vasopressinergic and oxytocinergic neurones activity is mediated partly through a cAMP-dependent mechanism. 2. The effect of melatonin in this respect depends on its concentration.

  9. Aquaporin 3 expression in human fetal membranes and its up-regulation by cyclic adenosine monophosphate in amnion epithelial cell culture.

    PubMed

    Wang, Shengbiao; Amidi, Fataneh; Beall, Marie; Gui, Lizhen; Ross, Michael G

    2006-04-01

    The cell membrane water channel protein aquaporins (AQPs) may be important in regulating the intramembranous (IM) pathway of amniotic fluid (AF) resorption. The objective of the present study was to determine whether aquaporin 3 (AQP3) is expressed in human fetal membranes and to further determine if AQP3 expression in primary human amnion cell culture is regulated by second-messenger cyclic adenosine monophosphate (cAMP). AQP3 expression in human fetal membranes of normal term pregnancy was studied by reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry (IHC). To determine the effect of cAMP on AQP3 expression, primary human amnion cell cultures were treated in either heat-inactivated medium alone (control), or heat-inactivated medium containing: (1) SP-cAMP, a membrane-permeable and phosphodiesterase resistant cAMP agonist, or (2) forskolin, an adenylate cyclase stimulator. Total RNA was isolated and multiplex real-time RT-PCR employed for relative quantitation of AQP3 expression. We detected AQP3 expression in placenta, chorion, and amnion using RT-PCR. Using IHC, we identified AQP3 protein expression in placenta syncytiotrophoblasts and cytotrophoblasts, chorion cytotrophoblasts, and amnion epithelia. In primary amnion epithelial cell culture, AQP3 mRNA significantly increased at 2 hours following forskolin or SP-cAMP, remained elevated at 10 hours following forskolin, and returned to baseline levels by 20 hours following treatment. This study provides evidence of AQP3 expression in human fetal membranes and demonstrates that AQP3 expression in primary human amnion cell culture is up-regulated by second-messenger cAMP. As AQP3 is permeable to water, urea, and glycerol, modulation of its expression in fetal membranes may contribute to AF homeostasis.

  10. Effect of 3,3',5-triiodothyronine and 3,5-diiodothyronine on progesterone production, cAMP synthesis, and mRNA expression of STAR, CYP11A1, and HSD3B genes in granulosa layer of chicken preovulatory follicles.

    PubMed

    Sechman, A; Pawlowska, K; Hrabia, A

    2011-10-01

    In vitro studies were performed to assess whether stimulatory effects of triiodothyronine (T3) on progesterone (P4) production in a granulosa layer (GL) of chicken preovulatory follicles are associated with 3',5'-cyclic adenosine monophosphate (cAMP) synthesis and mRNA expression of STAR protein, CYP11A1, and HSD3B. Effects of 3,5-diiodothyronine (3,5-T2) on steroidogenic function in these follicles were also investigated. The GL of F3 to F1 follicles was incubated in medium supplemented with T3 or 3,5-T2, LH, or forskolin (F), and a combination of each iodothyronine with LH or F. Levels of P4 and cAMP in culture media were determined by RIA. Expression of genes involved in P4 synthesis (ie, STAR protein, CYP11A1, and HSD3B) in the GL of F3 to F1 follicles incubated in medium with T3 or 3,5-T2 and their combination with LH was performed by real-time PCR. Triiodothyronine increased basal and LH- and F-stimulated P4 secretion by preovulatory follicles. The 3,5-T2 elevated P4 synthesis by F3, had no effect on F2 follicles, and diminished P4 production by the GL of F1 follicles. It had no effect on LH-stimulated P4 production; however, it augmented F-stimulated P4 production by F2 and F1 follicles. Although T3 did not affect basal and F-stimulated cAMP synthesis by the GL of preovulatory follicles, it increased LH-stimulated synthesis of this nucleotide. However, 3,5-T2 elevated F-stimulated cAMP synthesis in F3 and F2 follicles; it did not change basal and LH-stimulated cAMP production. Triiodothyronine decreased basal STAR and CYP11A1 mRNAs in F3 follicles, increased them in F1 follicles, and elevated HSD3B mRNA levels in F1 follicles. Triiodothyronine augmented LH-stimulated STAR, CYP11A1, and HSD3B mRNA levels in F2 and CYP11A1 in F1 follicles. However, T3 decreased LH-stimulated STAR and HSD3B mRNA levels in F1 follicles. The 3,5-T2 did not affect basal STAR and CYP11A1 mRNA expression in all investigated follicles; however, it decreased LH-stimulated STAR expression in F2 and F1 ones. The effects of 3,5-T2 caused elevated basal but diminished LH-stimulated HSD3B mRNA levels. In conclusion, data indicate that both iodothyronines are involved in P4 production in the GL of chicken preovulatory follicles acting alone and additively with LH. Effects of iodothyronines depend on follicle maturation and are associated with modulation of cAMP synthesis and STAR, CYP11A1, and HSD3B mRNA expression. We suggest that iodothyronines participate in maturation and ovulation of chicken follicles. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Different rate-limiting activities of intracellular pH regulators for HCO3- secretion stimulated by forskolin and carbachol in rat parotid intralobular ducts.

    PubMed

    Ueno, Kaori; Hirono, Chikara; Kitagawa, Michinori; Shiba, Yoshiki; Sugita, Makoto

    2016-11-01

    Intracellular pH (pH i ) regulation fundamentally participates in maintaining HCO 3 - release from HCO 3 - -secreting epithelia. We used parotid intralobular ducts loaded with BCECF to investigate the contributions of a carbonic anhydrase (CA), anion channels and a Na + -H + exchanger (NHE) to pH i regulation for HCO 3 - secretion by cAMP and Ca 2+ signals. Resting pH i was dispersed between 7.4 and 7.9. Forskolin consistently decreased pH i showing the dominance of pH i -lowering activities, but carbachol gathered pH i around 7.6. CA inhibition suppressed the forskolin-induced decrease in pH i , while it allowed carbachol to consistently increase pH i by revealing that carbachol prominently activated NHE via Ca 2+ -calmodulin. Under NHE inhibition, forskolin and carbachol induced the remarkable decreases in pH i , which were slowed predominantly by CA inhibition and by CA or anion channel inhibition, respectively. Our results suggest that forskolin and carbachol primarily activate the pH i -lowering CA and pH i -raising NHE, respectively, to regulate pH i for HCO 3 - secretion.

  12. cAMP and forskolin decrease. gamma. -aminobutyric acid-gated chloride flux in rat brain synaptoneurosomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heuschneider, G.; Schwartz, R.D.

    1989-04-01

    The effects of the cyclic nucleotide cAMP on {gamma}-aminobutyric acid-gated chloride channel function were investigated. The membrane-permeant cAMP analog N{sup 6}, O{sup 2{prime}}-dibutyryladenosine 3{prime},5{prime}-cyclic monophosphate inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake into rat cerebral cortical synaptoneurosomes in a concentration-dependent manner. The inhibition was due to a decrease in the maximal effect of muscimol, with no change in potency. Similar effects were observed with 8-(4-chlorophenylthio)adenosine 3{prime},5{prime}-cyclic monophosphate, 8-bromoadenosine 3{prime},5{prime}-cyclic monophosphate, and the phosphodiesterase inhibitor isobutylmethylxanthine. The effect of endogenous cAMP accumulation on the {gamma}-aminobutyric acid-gated Cl{sup {minus}} channel was studied with forskolin, an activator of adenylate cyclase. Under identical conditions, inmore » the intact synaptoneurosomes, forskolin inhibited muscimol-induced {sup 36}Cl{sup {minus}} uptake and generated cAMP with similar potencies. Surprisingly, 1,9-dideoxyforskolin, which does not activate adenylate cyclase, also inhibited the muscimol response, suggesting that forskolin and its lipophilic derivatives may interact with the Cl{sup {minus}} channel directly. The data suggest that {gamma}-aminobutyric acid (GABA{sub A}) receptor function in brain can be regulated by cAMP-dependent phosphorylation.« less

  13. Enhancement of UV-induced nucleotide excision repair activity upon forskolin treatment is cell growth-dependent.

    PubMed

    Lee, Jeong-Min; Park, Jeong-Min; Kang, Tae-Hong

    2016-10-01

    Forskolin (FSK), an adenylyl cyclase activator, has recently been shown to enhance nucleotide excision repair (NER) upon UV exposure. However, our study revealed that this effect was detected in human skin epithelial ARPE19 cells only in growing cells, but not in non-cycling cells. When the cells were grown at low density (70% confluence), FSK was capable of stimulating cAMP responsive element binding (CREB) phosphorylation, a marker for FSK-stimulated PKA activation, and resulted in a significant increase of NER activity compared to control treatment. However, cells grown under 100% confluent conditions showed neither FSK-induced CREB phosphorylation nor the resulting NER enhancement. These findings indicate that cellular growth is critical for FSK-induced NER enhancement and suggest that cellular growth conditions should be considered as a variable while evaluating a reagent's pharmacotherapeutic efficacy. [BMB Reports 2016; 49(10): 566-571].

  14. Recruitment of endosomal signaling mediates the forskolin modulation of guinea pig cardiac neuron excitability.

    PubMed

    Hardwick, Jean C; Clason, Todd A; Tompkins, John D; Girard, Beatrice M; Baran, Caitlin N; Merriam, Laura A; May, Victor; Parsons, Rodney L

    2017-08-01

    Forskolin, a selective activator of adenylyl cyclase (AC), commonly is used to establish actions of G protein-coupled receptors (GPCRs) that are initiated primarily through activation of AC/cAMP signaling pathways. In the present study, forskolin was used to evaluate the potential role of AC/cAMP, which is a major signaling mechanism for the pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor, in the regulation of guinea pig cardiac neuronal excitability. Forskolin (5-10 µM) increases excitability in ~60% of the cardiac neurons. The forskolin-mediated increase in excitability was considered related to cAMP regulation of a cyclic nucleotide gated channel or via protein kinase A (PKA)/ERK signaling, mechanisms that have been linked to PAC1 receptor activation. However, unlike PACAP mechanisms, forskolin enhancement of excitability was not significantly reduced by treatment with cesium to block currents through hyperpolarization-activated nonselective cation channels ( I h ) or by treatment with PD98059 to block MEK/ERK signaling. In contrast, treatment with the clathrin inhibitor Pitstop2 or the dynamin inhibitor dynasore eliminated the forskolin-induced increase in excitability; treatments with the inactive Pitstop analog or PP2 treatment to inhibit Src-mediated endocytosis mechanisms were ineffective. The PKA inhibitor KT5702 significantly suppressed the forskolin-induced change in excitability; further, KT5702 and Pitstop2 reduced the forskolin-stimulated MEK/ERK activation in cardiac neurons. Collectively, the present results suggest that forskolin activation of AC/cAMP/PKA signaling leads to the recruitment of clathrin/dynamin-dependent endosomal transduction cascades, including MEK/ERK signaling, and that endosomal signaling is the critical mechanism underlying the forskolin-induced increase in cardiac neuron excitability. Copyright © 2017 the American Physiological Society.

  15. Forskolin-induced apical membrane insertion of virally expressed, epitope-tagged CFTR in polarized MDCK cells.

    PubMed

    Howard, M; Jiang, X; Stolz, D B; Hill, W G; Johnson, J A; Watkins, S C; Frizzell, R A; Bruton, C M; Robbins, P D; Weisz, O A

    2000-08-01

    Channel gating of the cystic fibrosis transmembrane conductance regulator (CFTR) is activated in response to cAMP stimulation. In addition, CFTR activation may also involve rapid insertion of a subapical pool of CFTR into the plasma membrane (PM). However, this issue has been controversial, in part because of the difficulty in distinguishing cell surface vs. intracellular CFTR. Recently, a fully functional, epitope-tagged form of CFTR (M2-901/CFTR) that can be detected immunologically in nonpermeabilized cells was characterized (Howard M, Duvall MD, Devor DC, Dong J-Y, Henze K, and Frizzell RA. Am J Physiol Cell Physiol 269: C1565-C1576, 1995; and Schultz BD, Takahashi A, Liu C, Frizzell RA, and Howard M. Am J Physiol Cell Physiol 273: C2080-C2089, 1997). We have developed replication-defective recombinant adenoviruses that express M2-901/CFTR and used them to probe cell surface CFTR in forskolin (FSK)-stimulated polarized Madin-Darby canine kidney (MDCK) cells. Virally expressed M2-901/CFTR was functional and was readily detected on the apical surface of FSK-stimulated polarized MDCK cells. Interestingly, at low multiplicity of infection, we observed FSK-stimulated insertion of M2901/CFTR into the apical PM, whereas at higher M2-901/CFTR expression levels, no increase in surface expression was detected using indirect immunofluorescence. Immunoelectron microscopy of unstimulated and FSK-stimulated cells confirmed the M2-901/CFTR redistribution to the PM upon FSK stimulation and demonstrates that the apically inserted M2-901/CFTR originates from a population of subapical vesicles. Our observations may reconcile previous conflicting reports regarding the effect of cAMP stimulation on CFTR trafficking.

  16. Ca(2+)-Calmodulin regulation of testicular androgen production in Mozambique tilapia (Oreochromis mossambicus).

    PubMed

    Martins, Rute S T; Fuentes, Juan; Almeida, Olinda; Power, Deborah M; Canario, Adelino V M

    2009-06-01

    The Ca(2+)-Calmodulin (CaM) signaling pathway has previously been shown to be involved in the regulation of teleost fish ovarian steroidogenesis. However, a putative role of CaM in testicular steroidogenesis and potential targets has not been examined. To examine whether basal steroidogenesis is modulated by Ca(2+) and CaM levels in the testis of Mozambique tilapia (Oreochromis mossambicus) we have incubated testicular fragments in vitro under different conditions and analyzed steroid output. Calcium-free medium with or without EGTA did not affect testicular basal 11-ketotestosterone (11-KT) and testosterone (T) secretion. However, addition of 80microM the CaM inhibitor W7 significantly reduced basal 11-KT, T and androstenedione secretion. Interestingly, the decreased androgen production by 80microM of W7 was accompanied by increased 11-desoxicortisol output and by the activation of cortisol synthesis in the testis, the latter undetected in untreated tissues. However, production of 17,20alpha-dihydroxy-4-pregnen-3-one was unaltered by W7. This suggests that C17,20 desmolase, 21-hydroxylase and possibly 11beta-hydroxysteroid dehydrogenase are targets for CaM. In addition, androgen production was also found to be regulated by the level of cAMP since incubations with forskolin (FK) significantly increased 11-KT and T output. A cross-talk between the cAMP and Ca(2+)-CaM signaling pathways was detected since W7 administration also decreased FK stimulated androgen production. Altogether, these data show that both basal and cAMP stimulated androgen levels were modulated by intracellular Ca(2+)-dependent CaM and that possibly Ca(2+)-CaM determines the shift in steroidogenesis from C21 steroids to androgens.

  17. The cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cho, Eun-Ah; Juhnn, Yong-Sung, E-mail: juhnn@snu.ac.kr

    2012-06-01

    Highlights: Black-Right-Pointing-Pointer cAMP signaling system inhibits repair of {gamma}-ray-induced DNA damage. Black-Right-Pointing-Pointer cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. Black-Right-Pointing-Pointer cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. Black-Right-Pointing-Pointer The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1. -- Abstract: Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNAmore » repair activity, and we investigated the effects of the cAMP signaling system on {gamma}-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (G{alpha}sQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of G{alpha}sQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after {gamma}-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2 Prime -O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2 Prime -O-Me-cAMP and restored XRCC1 protein level following {gamma}-ray irradiation. From these results, we conclude that the cAMP signaling system inhibits the repair of {gamma}-ray-induced DNA damage by promoting the ubiquitin-proteasome dependent degradation of XRCC1 in an Epac-dependent pathway in lung cancer cells.« less

  18. Molecular cloning and pharmacological characterisation of a tyramine receptor from the rice stem borer, Chilo suppressalis (Walker).

    PubMed

    Wu, Shun-Fan; Huang, Jia; Ye, Gong-Yin

    2013-01-01

    Tyramine (TA) and octopamine (OA) are considered to be the invertebrate counterparts of the vertebrate adrenergic transmitters. Because these two phenolamines are the only biogenic amines whose physiological significance is presumably restricted to invertebrates, the attention of pharmacologists has been focused on the corresponding receptors, which are believed to represent promising targets for novel insecticides. For example, the formamidine pesticides, such as chlordimeform and amitraz, have been shown to activate OA receptors. A full-length cDNA (designated CsTyR1) from the rice stem borer, Chilo suppressalis (Walker), has been obtained through homology cloning in combination with rapid amplification of cDNA ends/polymerase chain reaction (RACE-PCR). The mRNA of CsTyR1 is present in various tissues, including hemocytes, fat body, midgut, Malpighian tubules, nerve cord and epidermis, and it is found predominantly in the larval nerve cord with 16-80-fold enrichment compared with other tissues. The authors generated a HEK 293 cell line stably expressing CsTyR1 in order to examine functional and pharmacological properties of this receptor. Both TA and OA at 0.01-100 µM can reduce forskolin-stimulated intracellular cAMP levels in a dose-dependent manner (TA, EC(50) = 369 nM; OA, EC(50) = 978 nM). In agonist assays, activation of CsTyR1 by clonidine and amitraz but not by naphazoline and chlordimeform can also significantly inhibit forskolin-stimulated cAMP production. The inhibitory effect of TA at 10 µM is eliminated by coincubation with yohimbine, phentolamine or chlorpromazine (each 10 µM). This study represents a comprehensive molecular and pharmacological characterisation of a tyramine receptor in the rice stem borer. Copyright © 2012 Society of Chemical Industry.

  19. β2-Adrenergic Receptor Agonists Inhibit the Proliferation of 1321N1 Astrocytoma CellsS⃞

    PubMed Central

    Toll, L.; Jimenez, L.; Waleh, N.; Jozwiak, K.; Woo, A.Y.-H.; Xiao, R.-P.; Bernier, M.

    2011-01-01

    Astrocytomas and glioblastomas have been particularly difficult to treat and refractory to chemotherapy. However, significant evidence has been presented that demonstrates a decrease in astrocytoma cell proliferation subsequent to an increase in cAMP levels. The 1321N1 astrocytoma cell line, as well as other astrocytomas and glioblastomas, expresses β2-adrenergic receptors (β2-ARs) that are coupled to Gs activation and consequent cAMP production. Experiments were conducted to determine whether the β2-AR agonist (R,R′)-fenoterol and other β2-AR agonists could attenuate mitogenesis and, if so, by what mechanism. Receptor binding studies were conducted to characterize β2-AR found in 1321N1 and U118 cell membranes. In addition, cells were incubated with (R,R′)-fenoterol and analogs to determine their ability to stimulate intracellular cAMP accumulation and inhibit [3H]thymidine incorporation into the cells. 1321N1 cells contain significant levels of β2-AR as determined by receptor binding. (R,R′)-fenoterol and other β2-AR agonists, as well as forskolin, stimulated cAMP accumulation in a dose-dependent manner. Accumulation of cAMP induced a decrease in [3H]thymidine incorporation. There was a correlation between concentration required to stimulate cAMP accumulation and inhibit [3H]thymidine incorporation. U118 cells have a reduced number of β2-ARs and a concomitant reduction in the ability of β2-AR agonists to inhibit cell proliferation. These studies demonstrate the efficacy of β2-AR agonists for inhibition of growth of the astrocytoma cell lines. Because a significant portion of brain tumors contain β2-ARs to a greater extent than whole brain, (R,R′)-fenoterol, or some analog, may be useful in the treatment of brain tumors after biopsy to determine β2-AR expression. PMID:21071556

  20. The orphan G protein-coupled receptor 25 (GPR25) is activated by Apelin and Apela in non-mammalian vertebrates.

    PubMed

    Zhang, Jiannan; Wan, Yiping; Fang, Chao; Chen, Junan; Ouyang, Wangan; Li, Juan; Wang, Yajun

    2018-06-22

    G protein-coupled receptor 25 (GPR25) is an orphan G protein-coupled receptor in vertebrates, that has been implicated to be associated with autoimmune diseases and regulate blood pressure in humans. However, the endogenous ligand of GPR25 remains unknown in vertebrates. Here, we reported that in non-mammalian vertebrates (zebrafish, spotted gars, and pigeons), GPR25 could be activated by Apelin and Apela peptides, which are also the two endogenous ligands of vertebrate Apelin receptor (APLNR). Using the pGL3-CRE-luciferase reporter assay and confocal microscopy, we first demonstrated that like APLNR, zebrafish GPR25 expressing in HEK293 cells could be effectively activated by zebrafish Apelin and Apela peptides, leading to the inhibition of forskolin-stimulated cAMP production and receptor internalization. Like zebrafish GPR25, pigeon and spotted gar GPR25 could also be activated by Apelin and Apela, and their activation could inhibit forskolin-induced cAMP accumulation. Interestingly, unlike zebrafish (/spotted gar/pigeon) GPR25, human GPR25 could not be activated by Apelin and Apela under the same experimental conditions. RNA-seq analysis further revealed that GPR25 is expressed in a variety of tissues, including the testes and intestine of zebrafish/spotted gars/humans, implying the potential roles of GPR25 signaling in many physiological processes in vertebrates. Taken together, our data not only provides the first proof that the orphan receptor GPR25 possesses two potential ligands 'Apelin and Apela' and its activation decreases intracellular cAMP levels in non-mammalian vertebrates, but also facilitates to unravel the physiological roles of GPR25 signaling in vertebrates. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. cap alpha. /sub 2/-Adrenergic receptor-mediated sensitization of forskolin-stimulated cyclic AMP production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Toews, M.L.; Turner, J.T.

    1987-03-01

    Preincubation of HT29 human colonic adenocarcinoma cells with ..cap alpha../sub 2/-adrenergic agonists resulted in a 10- to 20-fold increase in forskolin-stimulated cyclic AMP production as compared to cells preincubated without agonist. Similar results were obtained using either a (/sup 3/H)adenine prelabeling assay or a cyclic AMP radioimmunoassay to measure cyclic AMP levels. This phenomenon, which is termed sensitization, is ..cap alpha../sub 2/-adrenergic receptor-mediated and rapid in onset and reversal. Yohimbine, an ..cap alpha../sub 2/-adrenergic receptor-selective antagonist, blocked norepinephrine-induced sensitization, whereas prazosin (..cap alpha../sub 1/-adrenergic) and sotalol (..beta..-adrenergic) did not. The time for half-maximal sensitization was 5 min and the half-timemore » for reversal was 10 min. Only a 2-fold sensitization of cyclic AMP production stimulated by vasoactive intestinal peptide was observed, indicating that sensitization is relatively selective for forskolin. Sensitization reflects an increased production of cyclic AMP and not a decreased degradation of cyclic AMP, since incubation with a phosphodiesterase inhibitor and forskolin did not mimic sensitization. Increasing the levels of cyclic AMP during the preincubation had no effect on sensitization, indicating that sensitization is not caused by decreased cyclic AMP levels during the preincubation. This rapid and dramatic sensitization of forskolin-stimulated cyclic AMP production is a previously unreported effect that can be added to the growing list of ..cap alpha../sub 2/-adrenergic responses that are not mediated by a decrease in cyclic AMP.« less

  2. The cAMP signaling system inhibits the repair of γ-ray-induced DNA damage by promoting Epac1-mediated proteasomal degradation of XRCC1 protein in human lung cancer cells.

    PubMed

    Cho, Eun-Ah; Juhnn, Yong-Sung

    2012-06-01

    Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on γ-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (GαsQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of GαsQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after γ-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2'-O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2'-O-Me-cAMP and restored XRCC1 protein level following γ-ray irradiation. From these results, we conclude that the cAMP signaling system inhibits the repair of γ-ray-induced DNA damage by promoting the ubiquitin-proteasome dependent degradation of XRCC1 in an Epac-dependent pathway in lung cancer cells. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Somatostatin Signaling in Neuronal Cilia Is Criticalfor Object Recognition Memory

    PubMed Central

    Einstein, Emily B.; Patterson, Carlyn A.; Hon, Beverly J.; Regan, Kathleen A.; Reddi, Jyoti; Melnikoff, David E.; Mateer, Marcus J.; Schulz, Stefan; Johnson, Brian N.

    2010-01-01

    Most neurons possess a single, nonmotile cilium that projects out from the cell surface. These microtubule-based organelles are important in brain development and neurogenesis; however, their function in mature neurons is unknown. Cilia express a complement of proteins distinct from other neuronal compartments, one of which is the somatostatin receptor subtype SST3. We show here that SST3 is critical for object recognition memory in mice. sst3 knock-out mice are severely impaired in discriminating novel objects, whereas they retain normal memory for object location. Further, systemic injection of an SST3 antagonist (ACQ090) disrupts recall of familiar objects in wild-type mice. To examine mechanisms of SST3, we tested synaptic plasticity in CA1 hippocampus. Electrically evoked long-term potentiation (LTP) was normal in sst3 knock-out mice, while adenylyl cyclase/cAMP-mediated LTP was impaired. The SST3 antagonist also disrupted cAMP-mediated LTP. Basal cAMP levels in hippocampal lysate were reduced in sst3 knock-out mice compared with wild-type mice, while the forskolin-induced increase in cAMP levels was normal. The SST3 antagonist inhibited forskolin-stimulated cAMP increases, whereas the SST3 agonist L-796,778 increased basal cAMP levels in hippocampal slices but not hippocampal lysate. Our results show that somatostatin signaling in neuronal cilia is critical for recognition memory and suggest that the cAMP pathway is a conserved signaling motif in cilia. Neuronal cilia therefore represent a novel nonsynaptic compartment crucial for signaling involved in a specific form of synaptic plasticity and in novelty detection. PMID:20335466

  4. Characterization of the homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase.

    PubMed

    Dix, C J; Habberfield, A D; Cooke, B A

    1984-06-15

    The homologous and heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase induced by lutropin (LH) was characterized with the aid of forskolin and cholera toxin. Forskolin stimulated cyclic AMP production in a dose-dependent manner, with linear kinetics up to 2h. Forskolin also potentiated the action of LH on cyclic AMP production, but was only additive with cholera toxin. Preincubation of rat Leydig tumour cells with LH (1.0 micrograms/ml) for 1 h produced a desensitization of the subsequent LH (1.0 micrograms/ml)-stimulated cyclic AMP production, whereas the responses to cholera toxin (5.0 micrograms/ml), forskolin (100 microM), LH plus forskolin or cholera toxin plus forskolin were unaltered. In contrast, preincubation with LH for 20h produced a desensitization to all the stimuli tested. When rat Leydig tumour cells were preincubated for 1h with forskolin or dibutyryl cyclic AMP, the only subsequent response that was significantly altered was that to LH plus forskolin after preincubation with forskolin. However, preincubation for 20h with forskolin or dibutyryl cyclic AMP induced a desensitization to all stimuli subsequently tested. LH produced a rapid (0-1h) homologous desensitization, which was followed by a slower (2-8h)-onset heterologous desensitization. Forskolin and dibutyryl cyclic AMP were only able to induce heterologous desensitization. The rate of desensitization induced by either forskolin or dibutyryl cyclic AMP was similar to the rate of heterologous desensitization induced by LH. These results demonstrate that in purified rat Leydig tumour cells LH produces an initial homologous desensitization of adenylate cyclase that involves a cyclic AMP-independent lesion at or proximal to the guanine nucleotide regulatory protein (G-protein). This is followed by heterologous desensitization, which can also be induced by forskolin or dibutyryl cyclic AMP, thus indicating that LH-induced heterologous desensitization of rat Leydig-tumour-cell adenylate cyclase involves a cyclic AMP-dependent lesion that is after the G-protein.

  5. Caffeine accelerates recovery from general anesthesia via multiple pathways.

    PubMed

    Fong, Robert; Khokhar, Suhail; Chowdhury, Atif N; Xie, Kelvin G; Wong, Josiah Hiu-Yuen; Fox, Aaron P; Xie, Zheng

    2017-09-01

    Various studies have explored different ways to speed emergence from anesthesia. Previously, we have shown that three drugs that elevate intracellular cAMP (forskolin, theophylline, and caffeine) accelerate emergence from anesthesia in rats. However, our earlier studies left two main questions unanswered. First, were cAMP-elevating drugs effective at all anesthetic concentrations? Second, given that caffeine was the most effective of the drugs tested, why was caffeine more effective than forskolin since both drugs elevate cAMP? In our current study, emergence time from anesthesia was measured in adult rats exposed to 3% isoflurane for 60 min. Caffeine dramatically accelerated emergence from anesthesia, even at the high level of anesthetic employed. Caffeine has multiple actions including blockade of adenosine receptors. We show that the selective A 2a adenosine receptor antagonist preladenant or the intracellular cAMP ([cAMP] i )-elevating drug forskolin, accelerated recovery from anesthesia. When preladenant and forskolin were tested together, the effect on anesthesia recovery time was additive indicating that these drugs operate via different pathways. Furthermore, the combination of preladenant and forskolin was about as effective as caffeine suggesting that both A 2A receptor blockade and [cAMP] i elevation play a role in caffeine's ability to accelerate emergence from anesthesia. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in humans at all anesthetic concentrations and that both the elevation of [cAMP] i and adenosine receptor blockade play a role in this response. NEW & NOTEWORTHY Currently, there is no method to accelerate emergence from anesthesia. Patients "wake" when they clear the anesthetic from their systems. Previously, we have shown that caffeine can accelerate emergence from anesthesia. In this study, we show that caffeine is effective even at high levels of anesthetic. We also show that caffeine operates by both elevating intracellular cAMP levels and by blocking adenosine receptors. This complicated pharmacology makes caffeine especially effective in accelerating emergence from anesthesia. Copyright © 2017 the American Physiological Society.

  6. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages.

    PubMed

    Hwang, Tsong-Long; Tang, Ming-Chi; Kuo, Liang-Mou; Chang, Wen-De; Chung, Pei-Jen; Chang, Ya-Wen; Fang, Yao-Ching

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E₁ (a stable PGE₂ analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE₁- or forskolin-induced NO production and iNOS expression in NR8383 alveolar macrophages. Combination treatment with YC-1 and PGE₁ significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE₁-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE₁ also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE₁-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Production of the forskolin precursor 11β-hydroxy-manoyl oxide in yeast using surrogate enzymatic activities.

    PubMed

    Ignea, Codruta; Ioannou, Efstathia; Georgantea, Panagiota; Trikka, Fotini A; Athanasakoglou, Anastasia; Loupassaki, Sofia; Roussis, Vassilios; Makris, Antonios M; Kampranis, Sotirios C

    2016-02-26

    Several plant diterpenes have important biological properties. Among them, forskolin is a complex labdane-type diterpene whose biological activity stems from its ability to activate adenylyl cyclase and to elevate intracellular cAMP levels. As such, it is used in the control of blood pressure, in the protection from congestive heart failure, and in weight-loss supplements. Chemical synthesis of forskolin is challenging, and production of forskolin in engineered microbes could provide a sustainable source. To this end, we set out to establish a platform for the production of forskolin and related epoxy-labdanes in yeast. Since the forskolin biosynthetic pathway has only been partially elucidated, and enzymes involved in terpene biosynthesis frequently exhibit relaxed substrate specificity, we explored the possibility of reconstructing missing steps of this pathway employing surrogate enzymes. Using CYP76AH24, a Salvia pomifera cytochrome P450 responsible for the oxidation of C-12 and C-11 of the abietane skeleton en route to carnosic acid, we were able to produce the forskolin precursor 11β-hydroxy-manoyl oxide in yeast. To improve 11β-hydroxy-manoyl oxide production, we undertook a chassis engineering effort involving the combination of three heterozygous yeast gene deletions (mct1/MCT1, whi2/WHI2, gdh1/GDH1) and obtained a 9.5-fold increase in 11β-hydroxy-manoyl oxide titers, reaching 21.2 mg L(-1). In this study, we identify a surrogate enzyme for the specific and efficient hydroxylation of manoyl oxide at position C-11β and establish a platform that will facilitate the synthesis of a broad range of tricyclic (8,13)-epoxy-labdanes in yeast. This platform forms a basis for the heterologous production of forskolin and will facilitate the elucidation of subsequent steps of forskolin biosynthesis. In addition, this study highlights the usefulness of using surrogate enzymes for the production of intermediates of complex biosynthetic pathways. The combination of heterozygous deletions and the improved yeast strain reported here will provide a useful tool for the production of numerous other isoprenoids.

  8. Angiotensin II inhibits ADH-stimulated cAMP: role on O2- and transport-related oxygen consumption in the loop of Henle.

    PubMed

    Silva, G B; Juncos, L I; Baigorria, S T; Garcia, N H

    2013-01-01

    Dehydration and acute reductions of blood pressure increases ADH and Ang II levels. These hormones increase transport along the distal nephron. In the thick ascending limb (TAL) ADH increases transport via cAMP, while Ang II acts via superoxide (O2-). However, the mechanism of interaction of these hormones in this segment remains unclear. The aim of this study was to explore ADH/Ang II interactions on TAL transport. For this, we measured the effects of ADH/Ang II, added sequentially to TAL suspensions from Wistar rats, on oxygen consumption (QO2) -as a transport index-, cAMP and O2-. Basal QO2 was 112+-5 nmol O2/min/mg protein. Addition of ADH (1nM) increased QO2 by 227 percent. In the presence of ADH, Ang II (1nM) elicited a QO2 transient response. During an initial 3.1+-0.7 minutes after adding Ang II, QO2 decreased 58 percent (p less than 0.03 initial vs. ADH) and then rose by 188 percent (p less than 0.03 late vs initial Ang II). We found that Losartan blocked the initial effects of Ang II and the latter blocked ADH and forskolin-stimulated cAMP. The NOS inhibitor L-NAME or the AT2 receptor antagonist PD123319 showed no effect on transported related oxygen consumption. Then, we assessed the late period after adding Ang II. The O2- scavenger tempol blocked the late Ang II effects on QO2, while Ang II increased O2- production during this period. We conclude that 1) Ang II has a transient effect on ADH-stimulated transport; 2) this effect is mediated by AT1 receptors; 3) the initial period is mediated by decreased cAMP and 4) the late period is mediated by O2-.

  9. STC1 interference on calcitonin family of receptors signaling during osteoblastogenesis via adenylate cyclase inhibition.

    PubMed

    Terra, Silvia R; Cardoso, João Carlos R; Félix, Rute C; Martins, Leo Anderson M; Souza, Diogo Onofre G; Guma, Fatima C R; Canário, Adelino Vicente M; Schein, Vanessa

    2015-03-05

    Stanniocalcin 1 (STC1) and calcitonin gene-related peptide (CGRP) are involved in bone formation/remodeling. Here we investigate the effects of STC1 on functional heterodimer complex CALCRL/RAMP1, expression and activity during osteoblastogenesis. STC1 did not modify CALCRL and ramp1 gene expression during osteoblastogenesis when compared to controls. However, plasma membrane spatial distribution of CALCRL/RAMP1 was modified in 7-day pre-osteoblasts exposed to either CGRP or STC1, and both peptides induced CALCRL and RAMP1 assembly. CGRP, but not STC1 stimulated cAMP accumulation in 7-day osteoblasts and in CALCRL/RAMP1 transfected HEK293 cells. Furthermore, STC1 inhibited forskolin stimulated cAMP accumulation of HEK293 cells, but not in CALCRL/RAMP1 transfected HEK293 cells. However, STC1 inhibited cAMP accumulation in calcitonin receptor (CTR) HEK293 transfected cells stimulated by calcitonin. In conclusion, STC1 signals through inhibitory G-protein modulates CGRP receptor spatial localization during osteoblastogenesis and may function as a regulatory factor interacting with calcitonin peptide members during bone formation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Pharmacologic induction of epidermal melanin and protection against sunburn in a humanized mouse model.

    PubMed

    Amaro-Ortiz, Alexandra; Vanover, Jillian C; Scott, Timothy L; D'Orazio, John A

    2013-09-07

    Fairness of skin, UV sensitivity and skin cancer risk all correlate with the physiologic function of the melanocortin 1 receptor, a Gs-coupled signaling protein found on the surface of melanocytes. Mc1r stimulates adenylyl cyclase and cAMP production which, in turn, up-regulates melanocytic production of melanin in the skin. In order to study the mechanisms by which Mc1r signaling protects the skin against UV injury, this study relies on a mouse model with "humanized skin" based on epidermal expression of stem cell factor (Scf). K14-Scf transgenic mice retain melanocytes in the epidermis and therefore have the ability to deposit melanin in the epidermis. In this animal model, wild type Mc1r status results in robust deposition of black eumelanin pigment and a UV-protected phenotype. In contrast, K14-Scf animals with defective Mc1r signaling ability exhibit a red/blonde pigmentation, very little eumelanin in the skin and a UV-sensitive phenotype. Reasoning that eumelanin deposition might be enhanced by topical agents that mimic Mc1r signaling, we found that direct application of forskolin extract to the skin of Mc1r-defective fair-skinned mice resulted in robust eumelanin induction and UV protection (1). Here we describe the method for preparing and applying a forskolin-containing natural root extract to K14-Scf fair-skinned mice and report a method for measuring UV sensitivity by determining minimal erythematous dose (MED). Using this animal model, it is possible to study how epidermal cAMP induction and melanization of the skin affect physiologic responses to UV exposure.

  11. Modulatory effects of steroid hormones, oxytocin, arachidonic acid, forskolin and cyclic AMP on the expression of aquaporin 1 and aquaporin 5 in the porcine uterus during placentation.

    PubMed

    Skowronska, A; Mlotkowska, P; Okrasa, S; Nielsen, S; Skowronski, M T

    2016-04-01

    Aquaporins (AQPs) are proteins forming trans-membrane channels responsible for water transport. AQP1 and AQP5 are present in structures of the female reproductive system. In the uterus, these AQPs are involved in water movement between the intraluminal, interstitial and capillary compartments and their uterine expression is essential throughout the pregnancy, including its early stages. Thus, the study aimed to assess the influence of P4 (progesterone), E2 (estradiol), OT (oxytocin), AA (arachidonic acid), cAMP and FSK (forskolin) on the AQP1 and AQP5 mRNA and protein expression in the uterine tissue of gilts on Days 30 - 32 of gestation (the placentation period), following short (3 h) and long (24 h) incubations. Steroid hormones influenced the expression of AQP1 and AQP5; E2 up-regulated, but P4 down-regulated mRNAs of these AQPs, whereas the protein level of studied AQPs was increased by both steroids. OT treatment decreased AQP1 (after 24 h), but increased AQP5 (after 3 h) mRNA expression. Treatment with AA significantly reduced the AQP1 expression at the mRNA level, but stimulated at the protein level. The expression of AQP5 mRNA and protein was stimulated by AA. FSK markedly decreased AQP1 mRNA, but increased of AQP5 after 3-h incubation. In turn, cAMP stimulated and inhibited transcription of AQP5 after 3- and 24-h incubations, respectively. Immunohistochemical analysis confirmed the uterine localization of AQP1 in the apical and basal membranes of endothelial cells and AQP5 in the apical membranes of epithelial cells under control condition. Treatments with P4, E2, AA, cAMP or FSK have caused additional appearance of AQP5 labeling in the basolateral membranes of epithelial cells. These results suggest a participation of steroid hormones (P4 and E2), AA derivatives and cAMP in controlling the expression of AQP1 and AQP5 as well as the distribution of AQP5 in the uterine tissue of pregnant gilts during placentation (Days 30 - 32 of gestation).

  12. In vitro effects of diethylstilbestrol, genistein, 4-tert-butylphenol, and 4-tert-octylphenol on steroidogenic activity of isolated immature rat ovarian follicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Myllymaeki, Sari; Haavisto, Tapio; Vainio, Minna

    2005-04-01

    Isolated rat ovarian follicles grow and produce steroid hormones in vitro and so provide a good model for studying the effects of hormonally active compounds on follicular steroidogenesis. We have evaluated the effects of diethylstilbestrol (DES), genistein (GEN) and two alkylphenols, 4-tert-butylphenol (BP) and 4-tert-octylphenol (OP) on the growth, survival, and steroid hormone and cAMP production by isolated 14-day-old rat (Sprague-Dawley) ovarian follicles. During a 5-day culture, FSH was obligatory for follicle growth and increased estradiol and testosterone secretion in a dose-dependent manner. DES (10{sup -6} M) caused the strongest decline in estradiol and testosterone levels but did not havemore » detectable effects on either cAMP production or aromatase enzyme activity. GEN caused a prominent decrease in cAMP and testosterone levels without significant changes in secreted estradiol. The latter, apparently, was due to a dose-dependent stimulation of aromatase enzyme activity in the presence of genistein. Both BP and OP decreased estradiol and testosterone secretion in a dose-dependent manner while no effect on aromatase activity was observed. OP, unlike BP, decreased forskolin-induced cAMP levels. Xenoestrogens at the used concentrations did not interfere with the growth and survival of the follicles. The results indicate that isolated ovarian follicles representing intact morphological and functional units offer a sensitive model system for elucidating the female-specific reproductive effects of environmental chemicals.« less

  13. Pathogenesis of nephrogenic diabetes insipidus due to chronic administration of lithium in rats.

    PubMed Central

    Christensen, S; Kusano, E; Yusufi, A N; Murayama, N; Dousa, T P

    1985-01-01

    A polyuric syndrome with nephrogenic diabetes insipidus (NDI) is a frequent consequence of prolonged administration of lithium (Li) salts. Studies in the past, mainly the acute and in vitro experiments, indicated that Li ions can inhibit hydroosmotic effect of [8-arginine]vasopressin (AVP) at the step of cAMP generation in vitro. However, the pathogenesis of the NDI due to chronic oral administration of low therapeutic doses of Li salts is not yet clarified. We conducted a comprehensive study to clarify the mechanism by which Li administered orally for several weeks induces polyuria and NDI in rats. Albino rats consuming a diet which contained Li (60 mmol/kg) for 4 wk developed marked polyuria and polydipsia; at the end of 4 wk the plasma Li was 0.7 +/- 0.09 mM (mean +/- SEM; n = 36). Li-treated rats had a significantly decreased (-33%) tissue osmolality in papilla and greatly reduced cortico-papillary gradient of urea (cortex--43%; medulla--64%; papilla--74%). Plasma urea was significantly (P less than 0.001) lower in Li-treated rats (5.4 +/- 0.2 mM) compared with controls (6.8 +/- 0.3 mM). Medullary collecting tubules (MCT) and papillary collecting ducts (PCD) microdissected from Li-treated animals had higher content of protein than MCT and PCD from the control rats. The cAMP accumulation in response to AVP added in vitro was significantly (delta = -60%) reduced. Also, the cAMP accumulation in MCT and PCD after incubation with forskolin was markedly lower in Li-treated rats. Addition of 0.5 mM 1-methyl,3-isobutyl-xanthine did not restore the cAMP accumulation in response to AVP and forskolin in MCT from Li-treated animals. In collecting tubule segments from polyuric rats with hypothalamic diabetes insipidus (Brattleboro homozygotes) the AVP-dependent cAMP accumulation was not diminished. The activity of adenylate cyclase (AdC) in MCT of Li-treated rats, both the basal and the activity stimulated by AVP, forskolin, or fluoride, was significantly (delta approximately equal to -30%) reduced, while the activity of cAMP phosphodiesterase (cAMP-PDIE) in the same segment showed no significant difference from the controls. Also, the content of ATP in MCT microdissected from Li-treated rats and incubated in vitro did not differ from controls. The rate of [14C]succinate oxidation to 14CO2 in MAL was inhibited (-77%) by 1 mM furosemide, which indicates that this metabolic process is coupled with NaCl cotransport in MAL. The rate of (14)CO(2) production from [14C]succinate in MAL was not significantly different between control and Li-treated rats. In MCT of control rats, the rate of [14C]succinate oxidation was approximately 3 times lower than in MAL. The rate of (14)CO(2) production from [(14)C]succinate in MCT of Li-treated rats was significantly (delta +33%) higher than in MCT dissected from control rats. Based on these results, we conclude that at least two factors play an important role in the pathogenesis of NDI consequent to chronic oral administration of Li: (a) decreased ability of MCT and PCD to generate and accumulate cAMP in response to stimulation by AVP; this defect is primarily due to diminished activity of AdC in these tubular segments caused by prolonged exposure to Li; and (b) lower osmolality of renal papillary tissue, due to primarily to depletion of urea, which decreases osmotic driving force for water reabsorption in collecting tubules. On the other hand, NaCI reabsorption in MAL is apparently not affected by chronic Li treatment. PMID:2989335

  14. Effect of cAMP on short-circuit current in isolated human ciliary body.

    PubMed

    Wu, Ren-yi; Ma, Ning; Hu, Qian-qian

    2013-07-01

    Cyclic adenosine monophosphate (cAMP) could activate chloride channels in bovine ciliary body and trigger an increase in the ionic current (short-circuit current, Isc) across the ciliary processes in pigs. The purpose of this study was to investigate how cAMP modulates Isc in isolated human ciliary processes and the possible involvement of chloride transport across the tissue in cAMP-induced Isc change. In an Ussing-type chamber system, the Isc changes induced by the cAMP analogue 8-bromo-cAMP and an adenylyl cyclase activator forskolin in isolated human ciliary processes were assessed. The involvement of Cl(-) component in the bath solution was investigated. The effect of Cl(-) channel (10 µmol/L niflumic acid and 1 mmol/L 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS)), K(+) channel (10 mmol/L tetraethylammonium chloride (TEA)), or Na(+) channel blockers (1 mmol/L amiloride) on 8-bromo-cAMP-induced Isc change was also studied. Dose-dependently, 8-bromo-cAMP (10 nmol/L-30 µmol/L) or forskolin (10 nmol/L-3 µmol/L) increased Isc across the ciliary processes with an increase in negative potential difference on the non-pigmented epithelium (NPE) side of the tissue. Isc increase induced by 8-bromo-cAMP was more pronounced when the drug was applied on the NPE side than on the pigmented epithelium side. When the tissue was bathed in low Cl(-) solutions, the Isc increase was significantly inhibited. Finally, niflumic acid and DIDS, but not TEA or amiloride, significantly prevented the Isc increase induced by 8-bromo-cAMP. cAMP stimulates stroma-to-aqueous anionic transport in isolated human ciliary processes. Chloride is likely to be among the ions, the transportation of which across the tissue is triggered by cAMP, suggesting the potential role of cAMP in the process of aqueous humor formation in human eyes.

  15. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, S.B.; Halenda, S.P.; Bylund, D.B.

    1991-02-01

    The effect of alpha 2-adrenergic receptor activation on adenylate cyclase activity in Chinese hamster ovary cells stably transfected with the alpha 2A-adrenergic receptor gene is biphasic. At lower concentrations of epinephrine forskolin-stimulated cyclic AMP production is inhibited, but at higher concentrations the inhibition is reversed. Both of these effects are blocked by the alpha 2 antagonist yohimbine but not by the alpha 1 antagonist prazosin. Pretreatment with pertussis toxin attenuates inhibition at lower concentrations of epinephrine and greatly potentiates forskolin-stimulated cyclic AMP production at higher concentrations of epinephrine. alpha 2-Adrenergic receptor stimulation also causes arachidonic acid mobilization, presumably via phospholipasemore » A2. This effect is blocked by yohimbine, quinacrine, removal of extracellular Ca2+, and pretreatment with pertussis toxin. Quinacrine and removal of extracellular Ca2+, in contrast, have no effect on the enhanced forskolin-stimulated cyclic AMP production. Thus, it appears that the alpha 2-adrenergic receptor in these cells can simultaneously activate distinct signal transduction systems; inhibition of adenylate cyclase and stimulation of phospholipase A2, both via G1, and potentiation of cyclic AMP production by a different (pertussis toxin-insensitive) mechanism.« less

  16. Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific phosphodiesterase-4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kucka, Marek; Pogrmic-Majkic, Kristina; Fa, Svetlana

    2012-11-15

    Atrazine, one of the most commonly used herbicides worldwide, acts as an endocrine disruptor, but the mechanism of its action has not been characterized. In this study, we show that atrazine rapidly increases cAMP levels in cultured rat pituitary and testicular Leydig cells in a concentration-dependent manner, but less effectively than 3-isobutyl-1-methylxanthine, a competitive non-specific inhibitor of phosphodiesterases (PDEs). In forskolin (an activator of adenylyl cyclase)- and probenecid (an inhibitor of cyclic nucleotide transporters)-treated cells, but not in 3-isobutyl-1-methylxanthine-treated cells, atrazine further increased cAMP levels, indicating that inhibition of PDEs accounts for accumulation of cAMP. In contrast to cAMP, atrazinemore » did not alter cGMP levels, further indicating that it inhibits cAMP-specific PDEs. Atrazine-induced changes in cAMP levels were sufficient to stimulate prolactin release in pituitary cells and androgen production in Leydig cells, indicating that it acts as an endocrine disrupter both in cells that secrete by exocytosis of prestored hormones and in cells that secrete by de novo hormone synthesis. Rolipram abolished the stimulatory effect of atrazine on cAMP release in both cell types, suggesting that it acts as an inhibitor of PDE4s, isoforms whose mRNA transcripts dominate in pituitary and Leydig cells together with mRNA for PDE8A. In contrast, immortalized lacto-somatotrophs showed low expression of these mRNA transcripts and several fold higher cAMP levels compared to normal pituitary cells, and atrazine was unable to further increase cAMP levels. These results indicate that atrazine acts as a general endocrine disrupter by inhibiting cAMP-specific PDE4s. -- Highlights: ► Atrazine stimulates cAMP accumulation in pituitary and Leydig cells. ► Atrazine also stimulates PRL and androgens secretion. ► Stimulatory effects of atrazine were abolished in cells with IBMX-inhibited PDEs. ► Atrazine specificity toward cAMP-specific PDEs was indicated by no changes in cGMP. ► Rolipram, a specific PDE4 inhibitor, also prevents stimulatory effects of atrazine. ► Atrazine acts as an endocrine disrupter by inhibiting cAMP-specific PDE4.« less

  17. cAMP inhibits inducible nitric oxide synthase expression and NF-kappaB-binding activity in cultured rat hepatocytes.

    PubMed

    Harbrecht, B G; Taylor, B S; Xu, Z; Ramalakshmi, S; Ganster, R W; Geller, D A

    2001-08-01

    The inducible nitric oxide synthase (iNOS) is strongly expressed following inflammatory stimuli. Adenosine 3',5'-cyclic monophosphate (cAMP) increases iNOS expression and activity in a number of cell types but decreases cytokine-stimulated iNOS expression in hepatocytes. The mechanisms for this effect are unknown. Rat hepatocytes were stimulated with cytokines to induce iNOS and cultured with cAMP agonists dibutyryl-cAMP (dbcAMP), 8-bromo-cAMP, and forskolin (FSK). Nitric oxide synthesis was assessed by supernatant nitrite levels and iNOS expression was measured by Northern and Western blot analyses. Nuclear factor kappaB binding was assessed by electromobility shift assay. Cyclic AMP dose dependently decreased NO synthesis in response to a combination of proinflammatory cytokines or interleukin-1beta (IL-1beta) alone. The adenylate cyclase inhibitor SQ 22,536 increased cytokine- or IL-1beta-stimulated NO synthesis. dbcAMP decreased iNOS mRNA expression and iNOS protein expression. Both dbcAMP and glucagon decreased iNOS promoter activity in rat hepatocytes transfected with the murine iNOS promoter and decreased DNA binding of the transcription factor NF-kappaB. These data suggest that cAMP is important in hepatocyte iNOS expression and agents that alter cAMP levels may profoundly alter the response of hepatocytes to inflammatory stimuli through effects onthe iNOS promoter region and NF-kappaB. Copyright 2001 Academic Press.

  18. Forskolin: upcoming antiglaucoma molecule.

    PubMed

    Wagh, V D; Patil, P N; Surana, S J; Wagh, K V

    2012-01-01

    Forskolin is the first pharmaceutical drug and product derived from a plant to be approved in India by the DCGI in 2006. Forskolin (7beta-acetoxy-8, 13-epoxy-1a, 6β, 9a-trihydroxy-labd-14-en-11-one) is a diterpenoid isolated from plant Coleus forskohlii (Lamiaceae). It is a lipid-soluble compound that can penetrate cell membranes and stimulates the enzyme adenylate cyclase which, in turn, stimulates ciliary epithelium to activate cyclic adenosine monophosphate, which decreases intraocular pressure (IOP) by reducing aqueous humor inflow. The topical application of forskolin is capable of reducing IOP in rabbits, monkeys, and humans. In its drug interactions, forskolin may act synergistically with epinephrine, ephedrine and pseudoephedrine. Whereas the effects of anti-clotting medications like warfarin, clopidogre, aspirin, anoxaparin, etc., may be enhanced by forskolin. Forskolin is contraindicated in the medications for people with ulcers as forskolin may increase acid level. Forskolin has a very good shelf-life of five years. Recently, its Ophthalmic inserts and in situ gels for sustained and delayed-release drug delivery systems were tested in New Zealand Albino Rabbits for its antiglaucoma efficacy. This drug review explains Forskolin as a drug, its antiglaucoma potential and recent findings of forskolin as an antiglaucoma agent. The literature search method used for this review was different databases and search engines like PubMed, International Pharmaceutical Abstracts, Google, Medicinal and Aromatic Plants (MAPA).

  19. Difference in expression between AQP1 and AQP5 in porcine endometrium and myometrium in response to steroid hormones, oxytocin, arachidonic acid, forskolin and cAMP during the mid-luteal phase of the estrous cycle and luteolysis.

    PubMed

    Skowronska, Agnieszka; Mlotkowska, Patrycja; Nielsen, Soren; Skowronski, Mariusz T

    2015-12-01

    Recently, we demonstrated in vitro that AQP1 and AQP5 in the porcine uterus are regulated by steroid hormones (P4, E2), arachidonic acid (AA), forskolin (FSK) and cAMP during the estrous cycle. However, the potential of the porcine separated uterine tissues, the endometrium and myometrium, to express these AQPs remains unknown. Thus, in this study, the responses of AQP1 and AQP5 to P4, E2 oxytocin (OT), AA, FSK and cAMP in the porcine endometrium and myometrium were examined during the mid-luteal phase of the estrous cycle and luteolysis. Real-time PCR and western blot analysis. Progesterone up-regulated the expression of AQP1/AQP5 mRNAs and proteins in the endometrium and myometrium, especially during luteolysis. Similarly, E2 also stimulated the expression of both AQPs, but only in the endometrium. AA led to the upregulation of AQP1/AQP5 in the endometrium during luteolysis. In turn, OT increased the expression of AQP1/AQP5 mRNAs and proteins in the myometrium during mid-luteal phase. Moreover, a stimulatory effect of forskolin and cAMP on the expression of AQP1/AQP5 mRNAs and proteins in the endometrium and myometrium dominated during luteolysis, but during the mid-luteal phase their influence on the expression of these AQPs was differentiated depending on the type of tissue and the incubation duration. These results seem to indicate that uterine tissues; endometrium and myometrium, exhibit their own AQP expression profiles in response to examined factors. Moreover, the responses of AQP1/AQP5 at mRNA and protein levels to the studied factors in the endometrium and myometrium are more pronounced during luteolysis. This suggests that the above effects of the studied factors are connected with morphological and physiological changes taking place in the pig uterus during the estrous cycle.

  20. Deacetylation of forskolin catalyzed by bovine brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Selfe, S.; Storm, D.R.

    1985-11-27

    Radiolabeled forskolin, 7-(/sup 3/H-acetyl)-forskolin, was synthesized to explore interactions between forskolin and bovine brain membrane preparations. The radiolabeled derivative was chemically characterized, and found to be indistinquishable from unlabeled forskolin in its ability to stimulate bovine brain adenylate cyclase. Preliminary binding data demonstrated that binding of 7-(/sup 3/H-acetyl)-forskolin to membranes was concentration dependent. However, competition binding studies using a constant concentration of 7-(/sup 3/H-acetyl)-forskolin with increasing levels of unlabeled forskolin showed enhanced binding of the labeled derivative. This suggested that 7-(/sup 3/H-acetyl)-forskolin was degraded by membranes and protected by native forskolin. Incubation of forskolin with membranes and analysis of themore » products by thin layer chromatography and mass spectroscopy showed the formation of 7-desacetylforskolin. The deacetylation of forskolin was monitored by quantitating the release of (/sup 3/H)acetate from 7-(/sup 3/H-acetyl)-forskolin. The reaction was linear with time and protein concentration. These data illustrate that forskolin can be degraded by membranes and indicate that ligand binding studies using labeled forskolin and membrane preparations should be cautiously interpreted.« less

  1. Atrazine enhances progesterone production through activation of multiple signaling pathways in FSH-stimulated rat granulosa cells: evidence for premature luteinization.

    PubMed

    Pogrmic-Majkic, Kristina; Samardzija, Dragana; Fa, Svetlana; Hrubik, Jelena; Glisic, Branka; Kaisarevic, Sonja; Andric, Nebojsa

    2014-11-01

    Premature luteinization is a possible cause of infertility in women. It is currently unknown whether environmental chemicals can induce changes associated with premature luteinization. Using rat granulosa cells (GC) in vitro, we demonstrated that exposure to atrazine (ATR), a widely used herbicide, causes GC phenotype that resembles that of human premature luteinization. At the end of the 48-h stimulation with FSH, ATR-exposed GC showed (1) higher levels of progesterone, (2) overexpression of luteal markers (Star and Cyp11a1), and (3) an increase in progesterone:estradiol ratio above 1. Mechanistic experiments were conducted to understand the signaling events engaged by ATR that lead to this phenotype. Western blot analysis revealed prolonged phosphorylation of protein kinase B (AKT) and cAMP response element-binding protein (CREB) in ATR- and FSH-exposed GC. An increased level of ERK1/2-dependent transcriptional factor CCATT/enhancer-binding protein beta (CEBPB) was observed after 4 h of ATR exposure. Inhibitors of PI3K (wortmannin) and MEK (U0126) prevented ATR-induced rise in progesterone level and expression of luteal markers in FSH-stimulated GC. Atrazine intensified AKT and CEBPB signaling and caused Star overexpression in forskolin-stimulated GC but not in epidermal growth factor (EGF)-stimulated GC. In the presence of rolipram, a specific inhibitor of phosphodiesterase 4 (PDE4), ATR was not able to further elevate AKT phosphorylation, CEBPB protein level, and Star mRNA in FSH-stimulated GC, suggesting that ATR inhibits PDE4. Overall, this study showed that ATR acts as a FSH sensitizer leading to enhanced cAMP, AKT, and CEBPB signaling and progesterone biosynthesis, which promotes premature luteinization phenotype in GC. © 2014 by the Society for the Study of Reproduction, Inc.

  2. Cholinergic system modulates growth, apoptosis, and secretion of cholangiocytes from bile duct-ligated rats.

    PubMed

    LeSagE, G; Alvaro, D; Benedetti, A; Glaser, S; Marucci, L; Baiocchi, L; Eisel, W; Caligiuri, A; Phinizy, J L; Rodgers, R; Francis, H; Alpini, G

    1999-07-01

    To investigate the role of the cholinergic system in regulation of cholangiocyte functions, we evaluated the effects of vagotomy on cholangiocyte proliferation and secretion in rats that underwent bile duct ligation (BDL rats). After bile duct ligation (BDL), the vagus nerve was resected; 7 days later, expression of M3 acetylcholine receptor was evaluated. Cholangiocyte proliferation was assessed by morphometry and measurement of DNA synthesis. Apoptosis was evaluated by light microscopy and annexin-V staining. Ductal secretion was evaluated by measurement of secretin-induced choleresis, secretin receptor (SR) gene expression, and cyclic adenosine 3',5'-monophosphate (cAMP) levels. Vagotomy decreased the expression of M3 acetylcholine receptors in cholangiocytes. DNA synthesis and ductal mass were markedly decreased, whereas cholangiocyte apoptosis was increased by vagotomy. Vagotomy decreased ductal secretion. Forskolin treatment prevented the decrease in cAMP levels induced by vagotomy, maintained cholangiocyte proliferation, and decreased cholangiocyte apoptosis caused by vagotomy in BDL rats. Cholangiocyte secretion was also maintained by forskolin. Vagotomy impairs cholangiocyte proliferation and enhances apoptosis, leading to decreased ductal mass in response to BDL. Secretin-induced choleresis of BDL rats was virtually eliminated by vagotomy in association with decreased cholangiocyte cAMP levels. Maintenance of cAMP levels by forskolin administration prevents the effects of vagotomy on cholangiocyte proliferation, apoptosis, and secretion.

  3. cAMP Level Modulates Scleral Collagen Remodeling, a Critical Step in the Development of Myopia

    PubMed Central

    Liu, Shufeng; Fang, Fang; Lu, Runxia; Lu, Chanyi; Zheng, Min; An, Jianhong; Xu, Hongjia; Zhao, Fuxin; Chen, Jiang-fan; Qu, Jia; Zhou, Xiangtian

    2013-01-01

    The development of myopia is associated with decreased ocular scleral collagen synthesis in humans and animal models. Collagen synthesis is, in part, under the influence of cyclic adenosine monophosphate (cAMP). We investigated the associations between cAMP, myopia development in guinea pigs, and collagen synthesis by human scleral fibroblasts (HSFs). Form-deprived myopia (FDM) was induced by unilateral masking of guinea pig eyes. Scleral cAMP levels increased selectively in the FDM eyes and returned to normal levels after unmasking and recovery. Unilateral subconjunctival treatment with the adenylyl cyclase (AC) activator forskolin resulted in a myopic shift accompanied by reduced collagen mRNA levels, but it did not affect retinal electroretinograms. The AC inhibitor SQ22536 attenuated the progression of FDM. Moreover, forskolin inhibited collagen mRNA levels and collagen secretion by HSFs. The inhibition was reversed by SQ22536. These results demonstrate a critical role of cAMP in control of myopia development. Selective regulation of cAMP to control scleral collagen synthesis may be a novel therapeutic strategy for preventing and treating myopia. PMID:23951163

  4. cAMP controls rod photoreceptor sensitivity via multiple targets in the phototransduction cascade

    PubMed Central

    Astakhova, Luba A.; Samoiliuk, Evgeniia V.; Govardovskii, Victor I.

    2012-01-01

    In early studies, both cyclic AMP (cAMP) and cGMP were considered as potential secondary messengers regulating the conductivity of the vertebrate photoreceptor plasma membrane. Later discovery of the cGMP specificity of cyclic nucleotide–gated channels has shifted attention to cGMP as the only secondary messenger in the phototransduction cascade, and cAMP is not considered in modern schemes of phototransduction. Here, we report evidence that cAMP may also be involved in regulation of the phototransduction cascade. Using a suction pipette technique, we recorded light responses of isolated solitary rods from the frog retina in normal solution and in the medium containing 2 µM of adenylate cyclase activator forskolin. Under forskolin action, flash sensitivity rose more than twofold because of a retarded photoresponse turn-off. The same concentration of forskolin lead to a 2.5-fold increase in the rod outer segment cAMP, which is close to earlier reported natural day/night cAMP variations. Detailed analysis of cAMP action on the phototransduction cascade suggests that several targets are affected by cAMP increase: (a) basal dark phosphodiesterase (PDE) activity decreases; (b) at the same intensity of light background, steady background-induced PDE activity increases; (c) at light backgrounds, guanylate cyclase activity at a given fraction of open channels is reduced; and (d) the magnitude of the Ca2+ exchanger current rises 1.6-fold, which would correspond to a 1.6-fold elevation of [Ca2+]in. Analysis by a complete model of rod phototransduction suggests that an increase of [Ca2+]in might also explain effects (b) and (c). The mechanism(s) by which cAMP could regulate [Ca2+]in and PDE basal activity is unclear. We suggest that these regulations may have adaptive significance and improve the performance of the visual system when it switches between day and night light conditions. PMID:23008435

  5. Negative feedback exerted by cAMP-dependent protein kinase and cAMP phosphodiesterase on subsarcolemmal cAMP signals in intact cardiac myocytes: an in vivo study using adenovirus-mediated expression of CNG channels.

    PubMed

    Rochais, Francesca; Vandecasteele, Grégoire; Lefebvre, Florence; Lugnier, Claire; Lum, Hazel; Mazet, Jean-Luc; Cooper, Dermot M F; Fischmeister, Rodolphe

    2004-12-10

    Intracardiac cAMP levels are modulated by hormones and neuromediators with specific effects on contractility and metabolism. To understand how the same second messenger conveys different information, mutants of the rat olfactory cyclic nucleotide-gated (CNG) channel alpha-subunit CNGA2, encoded into adenoviruses, were used to monitor cAMP in adult rat ventricular myocytes. CNGA2 was not found in native myocytes but was strongly expressed in infected cells. In whole cell patch-clamp experiments, the forskolin analogue L-858051 (L-85) elicited a non-selective, Mg2+ -sensitive current observed only in infected cells, which was thus identified as the CNG current (ICNG). The beta-adrenergic agonist isoprenaline (ISO) also activated ICNG, although the maximal efficiency was approximately 5 times lower than with L-85. However, ISO and L-85 exerted a similar maximal increase of the L-type Ca2+ current. The use of a CNGA2 mutant with a higher sensitivity for cAMP indicated that this difference is caused by the activation of a localized fraction of CNG channels by ISO. cAMP-dependent protein kinase (PKA) blockade with H89 or PKI, or phosphodiesterase (PDE) inhibition with IBMX, dramatically potentiated ISO- and L-85-stimulated ICNG. A similar potentiation of beta-adrenergic stimulation occurred when PDE4 was blocked, whereas PDE3 inhibition had a smaller effect (by 2-fold). ISO and L-85 increased total PDE3 and PDE4 activities in cardiomyocytes, although this effect was insensitive to H89. However, in the presence of IBMX, H89 had no effect on ISO stimulation of ICNG. This study demonstrates that subsarcolemmal cAMP levels are dynamically regulated by a negative feedback involving PKA stimulation of subsarcolemmal cAMP-PDE.

  6. A New Therapeutic Strategy for Autosomal Dominant Polycystic Kidney Disease: Activation of AMP Kinase by Metformin

    DTIC Science & Technology

    2011-07-01

    control MDCK cells treated with IBMX and forskolin and then CFTR-Inh172 at the indicated times is shown. (c) A similar representative trace of mock...initiate CFTR-mediated secretion, CFTR-expressing and mock-transduced MDCK cells were treated with the cAMP agonists IBMX and forskolin , and the...2c. In CFTR-expressing cells there was generally an early peak in Isc within 1-2 min following forskolin /IBMX treatment, followed by a lower plateau

  7. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.

    PubMed

    Kimura, Tomomi E; Duggirala, Aparna; Smith, Madeleine C; White, Stephen; Sala-Newby, Graciela B; Newby, Andrew C; Bond, Mark

    2016-01-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Forskolin Modifies Retinal Vascular Development in Mrp4-Knockout Mice

    PubMed Central

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D.; Negi, Akira

    2012-01-01

    Purpose. Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. Methods. The retinal vascular phenotype of Mrp4−/− mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. Results. The Mrp4−/− mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4−/− mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4−/− mice showed an increased number of Ki67-positive and cleaved caspase 3–positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4−/− mice showed a significant increase in the unvascularized retinal area. Conclusions. Mrp4−/− mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level. PMID:23154460

  9. Forskolin modifies retinal vascular development in Mrp4-knockout mice.

    PubMed

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D; Negi, Akira

    2012-12-07

    Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. The retinal vascular phenotype of Mrp4(-/-) mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. The Mrp4(-/-) mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4(-/-) mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4(-/-) mice showed an increased number of Ki67-positive and cleaved caspase 3-positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4(-/-) mice showed a significant increase in the unvascularized retinal area. Mrp4(-/-) mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level.

  10. Endogenous Production of Extracellular Adenosine by Trabecular Meshwork Cells: Potential Role in Outflow Regulation

    PubMed Central

    Wu, Jing; Li, Guorong; Luna, Coralia; Spasojevic, Ivan; Epstein, David L.; Gonzalez, Pedro

    2012-01-01

    Purpose. To investigate the mechanisms for endogenous production of extracellular adenosine in trabecular meshwork (TM) cells and evaluate its physiological relevance to the regulation of aqueous humor outflow facility. Methods. Extra-cellular levels of adenosine monophosphate (AMP) and adenosine in porcine trabecular meshwork (PTM) cells treated with adenosine triphosphate (ATP), AMP, cAMP or forskolin with or without specific inhibitors of phosphodiesterases (IBMX) and CD73 (AMPCP) were determined by high-pressure liquid chromatography fluorometry. Extracellular adenosine was also evaluated in cell cultures subjected to cyclic mechanical stress (CMS) (20% stretching; 1 Hz) and after disruption of lipid rafts with methyl-β-cyclodextrin. Expression of CD39 and CD73 in porcine TM cells and tissue were examined by Q-PCR and Western blot. The effect of inhibition of CD73 on outflow facility was evaluated in perfused living mouse eyes. Results. PTM cells generated extracellular adenosine from extracellular ATP and AMP but not from extracellular cAMP. Increased intracellular cAMP mediated by forskolin led to a significant increase in extracellular adenosine production that was not prevented by IBMX. Inhibition of CD73 resulted, in all cases, in a significant decrease in extracellular adenosine. CMS induced a significant activation of extracellular adenosine production. Inhibition of CD73 activity with AMPCP in living mouse eyes resulted in a significant decrease in outflow facility. Conclusions. These results support the concept that the extracellular adenosine pathway might play an important role in the homeostatic regulation of outflow resistance in the TM, and suggest a novel mechanism by which pathologic alteration of the TM, such as increased tissue rigidity, could lead to abnormal elevation of IOP in glaucoma. PMID:22997289

  11. Central and Peripheral Significance of Neuropeptide Y and Its Related Peptides

    DTIC Science & Technology

    1990-11-15

    Forskolin-Stimulated cAMP Concentrations in Neuroblastoma Cells " YI Y2 (SK-N-MC) (SK-N-BE2) pNPY 22 ± 8.1 7.8 _ 3.5 pllle 3 ,Pro314 NPY 9.6 ± 4.0 > 1000...peritoneal mast cells evoked by pNPY 1-36. NPY 22 -36 and NPY 26-36. Mast cells were prepared and i/ studied as described previously," and histamine was...Interestingly, NPY 22 -36 was at least as potent as NPY 1-36. Since, in addition, NPY 26-36 retained some activity on mast cells , while being

  12. Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness

    NASA Astrophysics Data System (ADS)

    Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.

    1989-09-01

    Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.

  13. Decreased glucagon responsiveness by bile acids: a role for protein kinase Calpha and glucagon receptor phosphorylation.

    PubMed

    Ikegami, Tadashi; Krilov, Lada; Meng, Jianping; Patel, Bhumika; Chapin-Kennedy, Kelli; Bouscarel, Bernard

    2006-11-01

    Dihydroxy bile acids like chenodeoxycholic acid (CDCA) induce heterologous glucagon receptor desensitization. We previously demonstrated that protein kinase C (PKC) was activated by certain bile acids and mediated the CDCA-induced decrease in glucagon responsiveness. The aim of the present study was to explore the role of PKC in the phosphorylation and desensitization of the glucagon receptor by CDCA. Desensitization was evaluated by measuring adenylyl cyclase activity. Receptor phosphorylation was assayed by metabolic labeling with [gamma-(32)P] ATP. Protein kinase C (PKC) translocation and activation was visualized by fluorescence microscopy. CDCA decreased cAMP production induced by glucagon in a dose-dependent manner without affecting cAMP synthesis through stimulation of either stimulatory GTP-binding protein (Gs) by NaF or adenylyl cyclase by forskolin. The CDCA-induced inhibition of adenylyl cyclase activity was potentiated by the phosphatase inhibitor, okadaic acid. The desensitizing effect of CDCA was bile acid-specific and was significantly reduced in the presence of PKC inhibitors and after PKC down-regulation by phorbol 12-myristate 13-acetate. CDCA increased glucagon receptor phosphorylation more than 3-fold at concentrations as low as 25 mum. Furthermore, CDCA significantly stimulated human recombinant PKCalpha autophosphorylation in vitro, as well as PKCalpha translocation to the plasma membrane and phosphorylation in vivo at concentrations as low as 25 mum. CDCA also stimulated PKCdelta translocation to the perinuclear region. Activated PKCalpha, PKCzeta, and to a lesser extent, PKCdelta, phosphorylated the glucagon receptor in vitro. This study demonstrates that certain bile acids, such as CDCA, stimulate phosphorylation and heterologous desensitization of the glucagon receptor, involving at least PKCalpha activation.

  14. Regulatory role of melatonin and BMP-4 in prolactin production by rat pituitary lactotrope GH3 cells.

    PubMed

    Ogura-Ochi, Kanako; Fujisawa, Satoshi; Iwata, Nahoko; Komatsubara, Motoshi; Nishiyama, Yuki; Tsukamoto-Yamauchi, Naoko; Inagaki, Kenichi; Wada, Jun; Otsuka, Fumio

    2017-08-01

    The effects of melatonin on prolactin production and its regulatory mechanism remain uncertain. We investigated the regulatory role of melatonin in prolactin production using rat pituitary lactotrope GH3 cells by focusing on the bone morphogenetic protein (BMP) system. Melatonin receptor activation, induced by melatonin and its receptor agonist ramelteon, significantly suppressed basal and forskolin-induced prolactin secretion and prolactin mRNA expression in GH3 cells. The melatonin MT2 receptor was predominantly expressed in GH3 cells, and the inhibitory effects of melatonin on prolactin production were reversed by treatment with the receptor antagonist luzindole, suggesting functional involvement of MT2 action in the suppression of prolactin release. Melatonin receptor activation also suppressed BMP-4-induced prolactin expression by inhibiting phosphorylation of Smad and transcription of the BMP-target gene Id-1, while BMP-4 treatment upregulated MT2 expression. Melatonin receptor activation suppressed basal, BMP-4-induced and forskolin-induced cAMP synthesis; however, BtcAMP-induced prolactin mRNA expression was not affected by melatonin or ramelteon, suggesting that MT2 activation leads to inhibition of prolactin production through the suppression of Smad signaling and cAMP synthesis. Experiments using intracellular signal inhibitors revealed that the ERK pathway is, at least in part, involved in prolactin induction by GH3 cells. Thus, a new regulatory role of melatonin involving BMP-4 in prolactin secretion was uncovered in lactotrope GH3 cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. 5D imaging approaches reveal the formation of distinct intracellular cAMP spatial gradients

    NASA Astrophysics Data System (ADS)

    Rich, Thomas C.; Annamdevula, Naga; Trinh, Kenny; Britain, Andrea L.; Mayes, Samuel A.; Griswold, John R.; Deal, Joshua; Hoffman, Chase; West, Savannah; Leavesley, Silas J.

    2017-02-01

    Cyclic AMP (cAMP) is a ubiquitous second messenger known to differentially regulate many cellular functions. Several lines of evidence suggest that the distribution of cAMP within cells is not uniform. However, to date, no studies have measured the kinetics of 3D cAMP distributions within cells. This is largely due to the low signal-tonoise ratio of FRET-based probes. We previously reported that hyperspectral imaging improves the signal-to-noise ratio of FRET measurements. Here we utilized hyperspectral imaging approaches to measure FRET signals in five dimensions (5D) - three spatial (x, y, z), wavelength (λ), and time (t) - allowing us to visualize cAMP gradients in pulmonary endothelial cells. cAMP levels were measured using a FRET-based sensor (H188) comprised of a cAMP binding domain sandwiched between FRET donor and acceptor - Turquoise and Venus fluorescent proteins. We observed cAMP gradients in response to 0.1 or 1 μM isoproterenol, 0.1 or 1 μM PGE1, or 50 μM forskolin. Forskolin- and isoproterenol-induced cAMP gradients formed from the apical (high cAMP) to basolateral (low cAMP) face of cells. In contrast, PGE1-induced cAMP gradients originated from both the basolateral and apical faces of cells. Data suggest that 2D (x,y) studies of cAMP compartmentalization may lead to erroneous conclusions about the existence of cAMP gradients, and that 3D (x,y,z) studies are required to assess mechanisms of signaling specificity. Results demonstrate that 5D imaging technologies are powerful tools for measuring biochemical processes in discrete subcellular domains.

  16. Repurposing Treprostinil for Enhancing Hematopoietic Progenitor Cell Transplantation

    PubMed Central

    Kazemi, Zahra; Bergmayr, Christian; Prchal-Murphy, Michaela; Javaheri, Tahereh; Themanns, Madeleine; Pham, Ha T. T.; Strohmaier, Wolfgang; Sexl, Veronika; Zebedin-Brandl, Eva

    2016-01-01

    Activation of Gs-coupled receptors enhances engraftment of hematopoietic stem and progenitor cells (HSPCs). We tested the hypothesis that treprostinil, a prostacyclin analog approved for the treatment of pulmonary hypertension, can be repurposed to improve hematopoietic stem cell transplantation. Murine and human HSPCs were isolated from bone marrow and umbilical cord blood, respectively. Prostanoid receptor agonists and the combination thereof with forskolin were tested for their capacity to stimulate [3H]cAMP accumulation in HSPCs. Three independent approaches were employed to verify the ability of agonist-activated HSPCs to reconstitute the bone marrow in lethally irradiated recipient mice. The underlying mechanism was explored in cellular migration assays and by blocking C-X-C motif chemokine receptor 4 (CXCR4). Among several prostanoid agonists tested in combination with forskolin, treprostinil was most efficacious in raising intracellular cAMP levels in murine and human HPSCs. Injection of murine and human HSPCs, which had been pretreated with treprostinil and forskolin, enhanced survival of lethally irradiated recipient mice. Survival was further improved if recipient mice were subcutaneously administered treprostinil (0.15 mg kg−1 8 h−1) for 10 days. This regimen also reduced the number of HSPCs required to rescue lethally irradiated mice. Enhanced survival of recipient mice was causally related to treprostinil-enhanced CXCR4-dependent migration of HSPCs. Treprostinil stimulates the engraftment of human and murine hematopoietic stem cells without impairing their capacity for self-renewal. The investigated dose range corresponds to the dose approved for human use. Hence, these findings may be readily translated into a clinical application. PMID:26989084

  17. cAMP-responsive Element-binding Protein (CREB) and cAMP Co-regulate Activator Protein 1 (AP1)-dependent Regeneration-associated Gene Expression and Neurite Growth*

    PubMed Central

    Ma, Thong C.; Barco, Angel; Ratan, Rajiv R.; Willis, Dianna E.

    2014-01-01

    To regenerate damaged axons, neurons must express a cassette of regeneration-associated genes (RAGs) that increases intrinsic growth capacity and confers resistance to extrinsic inhibitory cues. Here we show that dibutyrl-cAMP or forskolin combined with constitutive-active CREB are superior to either agent alone in driving neurite growth on permissive and inhibitory substrates. Of the RAGs examined, only arginase 1 (Arg1) expression correlated with the increased neurite growth induced by the cAMP/CREB combination, both of which were AP1-dependent. This suggests that cAMP-induced AP1 activity is necessary and interacts with CREB to drive expression of RAGs relevant for regeneration and demonstrates that combining a small molecule (cAMP) with an activated transcription factor (CREB) stimulates the gene expression necessary to enhance axonal regeneration. PMID:25296755

  18. Urocortin 2 stimulates nitric oxide production in ventricular myocytes via Akt- and PKA-mediated phosphorylation of eNOS at serine 1177.

    PubMed

    Walther, Stefanie; Pluteanu, Florentina; Renz, Susanne; Nikonova, Yulia; Maxwell, Joshua T; Yang, Li-Zhen; Schmidt, Kurt; Edwards, Joshua N; Wakula, Paulina; Groschner, Klaus; Maier, Lars S; Spiess, Joachim; Blatter, Lothar A; Pieske, Burkert; Kockskämper, Jens

    2014-09-01

    Urocortin 2 (Ucn2) is a cardioactive peptide exhibiting beneficial effects in normal and failing heart. In cardiomyocytes, it elicits cAMP- and Ca(2+)-dependent positive inotropic and lusitropic effects. We tested the hypothesis that, in addition, Ucn2 activates cardiac nitric oxide (NO) signaling and elucidated the underlying signaling pathways and mechanisms. In isolated rabbit ventricular myocytes, Ucn2 caused concentration- and time-dependent increases in phosphorylation of Akt (Ser473, Thr308), endothelial NO synthase (eNOS) (Ser1177), and ERK1/2 (Thr202/Tyr204). ERK1/2 phosphorylation, but not Akt and eNOS phosphorylation, was suppressed by inhibition of MEK1/2. Increased Akt phosphorylation resulted in increased Akt kinase activity and was mediated by corticotropin-releasing factor 2 (CRF2) receptors (astressin-2B sensitive). Inhibition of phosphatidylinositol 3-kinase (PI3K) diminished both Akt as well as eNOS phosphorylation mediated by Ucn2. Inhibition of protein kinase A (PKA) reduced Ucn2-induced phosphorylation of eNOS but did not affect the increase in phosphorylation of Akt. Conversely, direct receptor-independent elevation of cAMP via forskolin increased phosphorylation of eNOS but not of Akt. Ucn2 increased intracellular NO concentration ([NO]i), [cGMP], [cAMP], and cell shortening. Inhibition of eNOS suppressed the increases in [NO]i and cell shortening. When both PI3K-Akt and cAMP-PKA signaling were inhibited, the Ucn2-induced increases in [NO]i and cell shortening were attenuated. Thus, in rabbit ventricular myocytes, Ucn2 causes activation of cAMP-PKA, PI3K-Akt, and MEK1/2-ERK1/2 signaling. The MEK1/2-ERK1/2 pathway is not required for stimulation of NO signaling in these cells. The other two pathways, cAMP-PKA and PI3K-Akt, converge on eNOS phosphorylation at Ser1177 and result in pronounced and sustained cellular NO production with subsequent stimulation of cGMP signaling. Copyright © 2014 the American Physiological Society.

  19. Mucociliary clearance and submucosal gland secretion in the ex vivo ferret trachea.

    PubMed

    Jeong, Jin Hyeok; Joo, Nam Soo; Hwang, Peter H; Wine, Jeffrey J

    2014-07-01

    In many species submucosal glands are an important source of tracheal mucus, but the extent to which mucociliary clearance (MCC) depends on gland secretion is unknown. To explore this relationship, we measured basal and agonist-stimulated MCC velocities in ex vivo tracheas from adult ferrets and compared the velocities with previously measured rates of ferret glandular mucus secretion (Cho HJ, Joo NS, Wine JJ. Am J Physiol Lung Cell Mol Physiol 299: L124-L136, 2010). Stimulated MCC velocities (mm/min, means ± SE for 10- to 35-min period poststimulation) were as follows: 1 μM carbachol: 19.1 ± 3.3 > 10 μM phenylephrine: 15.3 ± 2.4 ≈ 10 μM isoproterenol: 15.0 ± 1.9 ≈ 10 μM forskolin: 14.6 ± 3.1 > 1 μM vasoactive intestinal peptide (VIP): 10.2 ± 2.2 > basal (t15): 1.8 ± 0.3; n = 5-10 for each condition. Synergistic stimulation of MCC was observed between low concentrations of carbachol (100 nM) and isoproterenol (300 nM). Bumetanide inhibited carbachol-stimulated MCC by ~70% and abolished the increase in MCC stimulated by forskolin + VIP, whereas HCO3 (-)-free solutions did not significantly inhibit MCC to either intracellular Ca(2+) concentration or intracellular cAMP concentration ([cAMP]i)-elevating agonists. Stimulation and inhibition of MCC and gland secretion differed in several respects: most importantly, elevating [cAMP]i increased MCC much more effectively than expected from its effects on gland secretion, and bumetanide almost completely inhibited [cAMP]i-stimulated MCC while it had a smaller effect on gland secretion. We conclude that changes in glandular fluid secretion are complexly related to MCC and discuss possible reasons for this. Copyright © 2014 the American Physiological Society.

  20. Renal Epithelial Cyst Formation and Enlargement in vitro: Dependence on cAMP

    NASA Astrophysics Data System (ADS)

    Mangoo-Karim, Roberto; Uchic, Marie; Lechene, Claude; Grantham, Jared J.

    1989-08-01

    Cysts, a common abnormality of kidneys, are collections of urine-like fluid enclosed by a continuous layer of epithelial cells. Renal cysts derive from nephrons and collecting ducts and progressively enlarge as a consequence of epithelial proliferation and transepithelial fluid secretion. The initiation of cyst formation and the factors that control cyst enlargement are unknown. We used an in vitro model of renal cysts to explore the role of the cAMP signal transduction system in the formation and expansion of cysts. MDCK cells, cultured in hydrated-collagen gel, produced polarized monolayered epithelial cysts when intracellular cAMP was increased by prostaglandin E1, arginine vasopressin, cholera toxin, forskolin, or 8-bromoadenosine 3',5'-cyclic monophosphate. All agonists were potentiated by 3-isobutyl-1-methylxanthine, a nucleotide phosphodiesterase inhibitor. The cell proliferation component of cyst enlargement was accelerated by cAMP agonists, as shown by the increased growth of MDCK cells in subconfluent monolayers. The fluid secretion component, reflected by the transepithelial movement of fluid across polarized monolayers of MDCK cells grown on permeable supports, was stimulated by cAMP agonists in the basolateral medium. Chloride levels were higher in the cyst fluid and the secreted fluid than in the bathing medium. We conclude that the development of MDCK cysts is dependent on cAMP. This signal transduction system may be an important modulator of epithelial cell proliferation and transepithelial fluid secretion in the kidney.

  1. Inhibition of basolateral cAMP permeability in the toad urinary bladder.

    PubMed

    Boom, A; Golstein, P E; Frerotte, M; Sande, J V; Beauwens, R

    2000-10-01

    1. The effect of sulphonylurea drugs on hydrosmotic flow across toad urinary bladder epithelium was re-evaluated in the present study. Glibenclamide, added to the basolateral medium, significantly enhanced the osmotic flow induced by low doses of antidiuretic hormone (ADH) or forskolin (FK), while it inhibited the effect of exogenous cyclic adenosine monophosphate (cAMP) or its non-hydrolysable bromo derivative, 8-Br-cAMP, added to the basolateral medium. These opposite effects of glibenclamide on the transepithelial osmotic flow can be explained by a reduction of cAMP permeability across the basolateral membrane of the epithelium. The decrease in cAMP permeability leads, according to the direction of the cAMP gradient, to firstly an enhanced osmotic flow when cAMP is generated intracellularly by addition of ADH and FK, glibenclamide reducing cAMP exit from the cell, and secondly a decreased osmotic flow in response to cAMP (and 8-Br-cAMP) added to the basolateral medium, glibenclamide inhibiting, in this case, their entry into the cell. 2. The demonstration that glibenclamide actually inhibits the basolateral cAMP permeability rests on the fact that firstly it decreases the release of cAMP into the basolateral medium by about 40 %, at each concentration of ADH or forskolin tested, secondly it increases the cAMP content of paired hemibladders incubated in the presence of ADH or FK, when intracellular degradation was prevented by phosphodiesterase inhibition, and thirdly it decreases also the uptake of basolateral 8-Br-[3H]cAMP into paired toad hemibladders. 3. Taken together, the present data demonstrate that glibenclamide inhibits the toad urinary bladder basolateral membrane permeability to cAMP, most probably by a direct interaction with a membrane protein not yet indentified but distinct from the sulphonylurea receptor.

  2. Involvement of the anion exchanger SLC26A6 in prostaglandin E2- but not forskolin-stimulated duodenal HCO3- secretion.

    PubMed

    Tuo, Biguang; Riederer, Brigitte; Wang, Zhaohui; Colledge, William H; Soleimani, Manoocher; Seidler, Ursula

    2006-02-01

    SLC26A6 is a recently identified apical Cl(-)/HCO(3)(-) exchanger with strong expression in murine duodenum. The present study was designed to examine the role of SLC26A6 in prostaglandin E(2) (PGE(2))-, forskolin-, and carbachol-induced duodenal HCO(3)(-) secretion. Murine duodenal mucosal HCO(3)(-) secretion was examined in vitro in Ussing chambers and mucosal SLC26A6 expression levels were analyzed by semiquantitative reverse-transcription polymerase chain reaction. Basal HCO(3)(-) secretion was diminished by 20%, PGE(2)-stimulated HCO(3)(-) secretory response by 59%, and carbachol-stimulated response was reduced by 35% in SLC26A6-/- compared with +/+ duodenal mucosa, whereas the forskolin-stimulated HCO(3)(-) secretory response was not different. In Cl(-)-free solutions, PGE(2)- and carbachol-stimulated HCO(3)(-) secretion was reduced by 81% and 44%, respectively, whereas forskolin-stimulated HCO(3)(-) secretion was not altered significantly. PGE(2) and carbachol, but not forskolin, were able to elicit a Cl(-)-dependent HCO(3)(-) secretory response in the absence of short-circuit current changes in cystic fibrosis transmembrane conductance regulator knockout mice. In murine duodenum, PGE(2)-mediated HCO(3)(-) secretion is strongly SLC26A6 dependent and cystic fibrosis transmembrane conductance regulator independent, whereas forskolin-stimulated HCO(3)(-) secretion is completely SLC26A6 independent and cystic fibrosis transmembrane conductance regulator dependent. Carbachol-induced secretion is less pronounced, but occurs via both transport pathways. This suggests that PGE(2) and forskolin activate distinct HCO(3)(-) transport pathways in the murine duodenum.

  3. The natural compound forskolin synergizes with dexamethasone to induce cell death in myeloma cells via BIM.

    PubMed

    Follin-Arbelet, Virginie; Misund, Kristine; Naderi, Elin Hallan; Ugland, Hege; Sundan, Anders; Blomhoff, Heidi Kiil

    2015-08-26

    We have previously demonstrated that activation of the cyclic adenosine monophosphate (cAMP) pathway kills multiple myeloma (MM) cells both in vitro and in vivo. In the present study we have investigated the potential of enhancing the killing of MM cell lines and primary MM cells by combining the cAMP-elevating compound forskolin with the commonly used MM therapeutic drugs melphalan, cyclophosphamide, doxorubicin, bortezomib and dexamethasone. We observed that forskolin potentiated the killing induced by all the tested agents as compared to treatment with the single agents alone. In particular, forskolin had a synergistic effect on the dexamethasone-responsive cell lines H929 and OM-2. By knocking down the proapoptotic BCL-2 family member BIM, we proved this protein to be involved in the synergistic induction of apoptosis by dexamethasone and forskolin. The ability of forskolin to maintain the killing of MM cells even at lower concentrations of the conventional agents suggests that forskolin may be used to diminish treatment-associated side effects. Our findings support a potential role of forskolin in combination with current conventional agents in the treatment of MM.

  4. The natural compound forskolin synergizes with dexamethasone to induce cell death in myeloma cells via BIM

    PubMed Central

    Follin-Arbelet, Virginie; Misund, Kristine; Hallan Naderi, Elin; Ugland, Hege; Sundan, Anders; Kiil Blomhoff, Heidi

    2015-01-01

    We have previously demonstrated that activation of the cyclic adenosine monophosphate (cAMP) pathway kills multiple myeloma (MM) cells both in vitro and in vivo. In the present study we have investigated the potential of enhancing the killing of MM cell lines and primary MM cells by combining the cAMP-elevating compound forskolin with the commonly used MM therapeutic drugs melphalan, cyclophosphamide, doxorubicin, bortezomib and dexamethasone. We observed that forskolin potentiated the killing induced by all the tested agents as compared to treatment with the single agents alone. In particular, forskolin had a synergistic effect on the dexamethasone-responsive cell lines H929 and OM-2. By knocking down the proapoptotic BCL-2 family member BIM, we proved this protein to be involved in the synergistic induction of apoptosis by dexamethasone and forskolin. The ability of forskolin to maintain the killing of MM cells even at lower concentrations of the conventional agents suggests that forskolin may be used to diminish treatment-associated side effects. Our findings support a potential role of forskolin in combination with current conventional agents in the treatment of MM. PMID:26306624

  5. Heterogeneity of murine adherent interleukin-2-activated killer cells. Differential effect of prostaglandin E2 and forskolin.

    PubMed

    Vaillier, D; Daculsi, R; Gualde, N

    1995-01-01

    We have studied the relationship between cytotoxic activity, size and granularity of murine interleukin-2-activated adherent killer cells issued from spleen cells cultured with high levels of IL-2. The effects of prostaglandin E2 (PGE2) and forskolin upon these cells were assessed. All adherent spleen cells obtained after 5 days of culture were large granular lymphocytes but presented a heterogeneity in size and granularity. After fractionation on a discontinuous-density Percoll gradient, four cellular subpopulations were isolated. Fluorescence-activated cell sorting analysis showed that cells of the lightest fraction (F1) were the largest, while the cells found in the heaviest fraction (F4) were much more granular than the cells collected in the two intermediate fractions (F2 and F3). The serine esterases level was higher in F4 than in unfractionated cells and diminished to about 40% in cells of fractions F2 and F3, which expressed a cytotoxic activity against YAC-1 cells higher than that in unfractionated cells or in F1 or F4, which presented the lowest cytotoxic activity. When AK cells were cultured for 48 h in the presence of either PGE2 or forskolin, which induce an intracellular increase of cAMP, we observed that PGE2 (1 microM) inhibited the cytotoxic activity, but surprisingly forskolin (2 microM) exerted a stimulating effect on the induction of cytotoxic activity. After fractionation on a discontinuous Percoll gradient we observed the same cellular distribution among PGE2 or forskolin-treated or -untreated cells, but PGE2 induced an increase of size and granularity. This effect of PGE2 was more potent on the cells collected in F4. However this variation of granularity was not associated with any variation in the serine esterase level. The cytotoxic activity of PGE2- or forskolin-treated cells did not present any significant variation relative to the control for cells collected in F2 and F3; on the other hand, forskolin-treated cells collected in F4 showed a significantly higher cytotoxicity than did the corresponding untreated or PGE2-treated cells.

  6. Stimulation of progesterone production by phorbol-12-myristate 13-acetate (PMA) in cultured Leydig tumor cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaudhary, L.R.; Raju, V.S.; Stocco, D.M.

    1987-05-01

    It has been shown that addition of hCG or c-AMP to cultured Leydig tumor cells (MA-10) increases synthesis of progesterone as the major steroid. To investigate the possible involvement of protein kinase C (PK-C) in the regulation of steroid synthesis, the authors have studied the effect of PMA, an activator of PK-C, on progesterone production in MA-10 cells. The addition of PMA (100 ng/ml) stimulated steroid production whereas 4 -phorbol-12,13-didecanoate, an inactive phorbol ester, did not have any effects. Like hCG and c-AMP, PMA-stimulated progesterone production was inhibited by cycloheximide. hCG-stimulated steroid synthesis was inhibited by PMA. The addition ofmore » PMA to MA-10 Leydig cells further increased the c-AMP-stimulated progesterone production. To determine whether c-AMP has a obligatory role in the regulation of steroid production, the effect of adenylate cyclase inhibitor, 9-(tetrahydro-2-furyl)adenine (TFA), was studied on progesterone production in the presence of hCG. At lower dose (17 ng/ml) hCG-stimulated intracellular c-AMP levels and steroid production were inhibited by TFA (300 M). At higher dose of hCG (34 ng/ml) TFA did not inhibit the hCG-stimulated intracellular c-AMP levels, however, progesterone production was inhibited. Results suggest that the action of hCG, c-AMP and PMA in controlling steroidogenesis might be regulated by similar but different mechanisms.« less

  7. YC-1 potentiates cAMP-induced CREB activation and nitric oxide production in alveolar macrophages

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Tsong-Long, E-mail: htl@mail.cgu.edu.tw; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Tang, Ming-Chi

    2012-04-15

    Alveolar macrophages play significant roles in the pathogenesis of several inflammatory lung diseases. Increases in exhaled nitric oxide (NO) are well documented to reflect disease severity in the airway. In this study, we investigated the effect of 3-(5′-hydroxymethyl-2′-furyl)-1-benzyl indazole (YC-1), a known activator of soluble guanylyl cyclase, on prostaglandin (PG)E{sub 1} (a stable PGE{sub 2} analogue) and forskolin (a adenylate cyclase activator) induced NO production and inducible NO synthase (iNOS) expression in rat alveolar macrophages (NR8383). YC-1 did not directly cause NO production or iNOS expression, but drastically potentiated PGE{sub 1}- or forskolin-induced NO production and iNOS expression in NR8383more » alveolar macrophages. Combination treatment with YC-1 and PGE{sub 1} significantly increased phosphorylation of the cAMP response element-binding protein (CREB), but not nuclear factor (NF)-κB activation. The combined effect on NO production, iNOS expression, and CREB phosphorylation was reversed by a protein kinase (PK)A inhibitor (H89), suggesting that the potentiating functions were mediated through a cAMP/PKA signaling pathway. Consistent with this, cAMP analogues, but not the cGMP analogue, caused NO release, iNOS expression, and CREB activation. YC-1 treatment induced an increase in PGE{sub 1}-induced cAMP formation, which occurred through the inhibition of cAMP-specific phosphodiesterase (PDE) activity. Furthermore, the combination of rolipram (an inhibitor of PDE4), but not milronone (an inhibitor of PDE3), and PGE{sub 1} also triggered NO production and iNOS expression. In summary, YC-1 potentiates PGE{sub 1}-induced NO production and iNOS expression in alveolar macrophages through inhibition of cAMP PDE activity and activation of the cAMP/PKA/CREB signaling pathway. Highlights: ► YC-1 potentiated PGE1-induced iNOS expression in alveolar macrophages. ► The combination of YC-1 and PGE1 increased CREB but not NFκB activation. ► The combined effects were reversed by H89. ► The combination of rolipram and PGE1 triggered NO production and iNOS expression. ► Effect of YC-1 occurred through inhibition of cAMP-specific PDE.« less

  8. D2 dopamine receptor activation inhibits basal and forskolin-evoked acetylcholine release from dissociated striatal cholinergic interneurons.

    PubMed

    Login, I S

    1997-02-21

    We tested whether D2 ligands inhibit basal and forskolin-stimulated [3H]ACh release from dissociated striata, as opposed to striatal slices. Quinpirole inhibited both basal (40% maximal inhibition; IC50 approximately 50 nM) and 10 microM forskolin-stimulated release (80% inhibition; IC50 approximately 25 nM quinpirole) and both actions were blocked by a D2 antagonist. Vesamicol prevented the quinpirole and forskolin actions. The ability of D2 agonists to inhibit basal and cyclase-stimulated acetylcholine release emanating from vesamicol-sensitive vesicles appears to be tonically suppressed by inhibitory elements within striatal circuitry.

  9. Abnormalities in intracellular calcium regulation and contractile function in myocardium from dogs with pacing-induced heart failure

    NASA Technical Reports Server (NTRS)

    Perreault, C. L.; Shannon, R. P.; Komamura, K.; Vatner, S. F.; Morgan, J. P.

    1992-01-01

    24 d of rapid ventricular pacing induced dilated cardiomyopathy with both systolic and diastolic dysfunction in conscious, chronically instrumented dogs. We studied mechanical properties and intracellular calcium (Ca2+i) transients of trabeculae carneae isolated from 15 control dogs (n = 32) and 11 dogs with pacing-induced cardiac failure (n = 26). Muscles were stretched to maximum length at 30 degrees C and stimulated at 0.33 Hz; a subset (n = 17 control, n = 17 myopathic) was loaded with the [Ca2+]i indicator aequorin. Peak tension was depressed in the myopathic muscles, even in the presence of maximally effective (i.e., 16 mM) [Ca2+] in the perfusate. However, peak [Ca2+]i was similar (0.80 +/- 0.13 vs. 0.71 +/- 0.05 microM; [Ca2+]o = 2.5 mM), suggesting that a decrease in Cai2+ availability was not responsible for the decreased contractility. The time for decline from the peak of the Cai2+ transient was prolonged in the myopathic group, which correlated with prolongation of isometric contraction and relaxation. However, similar end-diastolic [Ca2+]i was achieved in both groups (0.29 +/- 0.05 vs. 0.31 +/- 0.02 microM), indicating that Cai2+ homeostasis can be maintained in myopathic hearts. The inotropic response of the myopathic muscles to milrinone was depressed compared with the controls. However, when cAMP production was stimulated by pretreatment with forskolin, the response of the myopathic muscles to milrinone was improved. Our findings provide direct evidence that abnormal [Ca2+]i handling is an important cause of contractile dysfunction in dogs with pacing-induced heart failure and suggest that deficient production of cAMP may be an important cause of these changes in excitation-contraction coupling.

  10. The human leukocyte antigen G promotes trophoblast fusion and β-hCG production through the Erk1/2 pathway in human choriocarcinoma cell lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Ji-meng; State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101; Zhao, Hong-xi

    2013-05-10

    Highlights: •HLA-G expression promotes BeWo cells fusion and fusogenic gene expression. •HLA-G is capable of inducing β-hCG production in human choriocarcinoma cell lines. •Up-regulation of β-hCG production by HLA-G is mediated via the Erk1/2 pathway. -- Abstract: The human leukocyte antigen G (HLA-G) is expressed on the fetal–maternal interface and plays a role in protecting fetal-derived trophoblasts from the maternal immune response, allowing trophoblasts to invade the uterus. However, HLA-G also possesses immune suppressing-independent functions. We found that HLA-G expressing BeWo choriocarcinoma cells increased cell–cell fusion compared to control BeWo cells under forskolin treatment. Regardless of forskolin treatment, the expressionmore » of fusogenic gene mRNAs, including syncytin-1, the transcription factor glial cell missing 1 (Gcm1), and beta human chorionic gonadotropin (β-hCG) were elevated. HLA-G up-regulates β-hCG production in human choriocarcinoma cells because HLA-G knockdown in JEG-3 cells induces a dramatic decrease in β-hCG compared with control cells. The defect in β-hCG production in HLA-G knocked-down cells could not be completely overcome by stimulating hCG production through increasing intracellular cAMP levels. HLA-G expressing cells have increased phosphorylation levels for extracellular signal-regulated kinase1/2 (Erk1/2) in BeWo cells. The Erk1/2 pathway is inactivated after the inhibition of HLA-G expression in JEG-3 cells. Finally, Erk1/2 inhibition was able to suppress the increased hCG production induced by HLA-G expression. Together, these data suggest novel roles for HLA-G in regulating β-hCG production via the modulation of the Erk1/2 pathway and by inducing trophoblast cell fusion.« less

  11. Inactivation of the Carney complex gene 1 (PRKAR1A) alters spatiotemporal regulation of cAMP and cAMP-dependent protein kinase: a study using genetically encoded FRET-based reporters.

    PubMed

    Cazabat, Laure; Ragazzon, Bruno; Varin, Audrey; Potier-Cartereau, Marie; Vandier, Christophe; Vezzosi, Delphine; Risk-Rabin, Marthe; Guellich, Aziz; Schittl, Julia; Lechêne, Patrick; Richter, Wito; Nikolaev, Viacheslav O; Zhang, Jin; Bertherat, Jérôme; Vandecasteele, Grégoire

    2014-03-01

    Carney complex (CNC) is a hereditary disease associating cardiac myxoma, spotty skin pigmentation and endocrine overactivity. CNC is caused by inactivating mutations in the PRKAR1A gene encoding PKA type I alpha regulatory subunit (RIα). Although PKA activity is enhanced in CNC, the mechanisms linking PKA dysregulation to endocrine tumorigenesis are poorly understood. In this study, we used Förster resonance energy transfer (FRET)-based sensors for cAMP and PKA activity to define the role of RIα in the spatiotemporal organization of the cAMP/PKA pathway. RIα knockdown in HEK293 cells increased basal as well as forskolin or prostaglandin E1 (PGE1)-stimulated total cellular PKA activity as reported by western blots of endogenous PKA targets and the FRET-based global PKA activity reporter, AKAR3. Using variants of AKAR3 targeted to subcellular compartments, we identified similar increases in the response to PGE1 in the cytoplasm and at the outer mitochondrial membrane. In contrast, at the plasma membrane, the response to PGE1 was decreased along with an increase in basal FRET ratio. These results were confirmed by western blot analysis of basal and PGE1-induced phosphorylation of membrane-associated vasodilator-stimulated phosphoprotein. Similar differences were observed between the cytoplasm and the plasma membrane in human adrenal cells carrying a RIα inactivating mutation. RIα inactivation also increased cAMP in the cytoplasm, at the outer mitochondrial membrane and at the plasma membrane, as reported by targeted versions of the cAMP indicator Epac1-camps. These results show that RIα inactivation leads to multiple, compartment-specific alterations of the cAMP/PKA pathway revealing new aspects of signaling dysregulation in tumorigenesis.

  12. Regulation of cAMP and GSK3 signaling pathways contributes to the neuronal conversion of glioma

    PubMed Central

    Kim, Yongbo; Che, Lihua; Kim, Jeong Beom; Chang, Gyeong Eon; Cheong, Eunji; Kang, Seok-Gu; Ha, Yoon

    2017-01-01

    Glioma is the most malignant type of primary central nervous system tumors, and has an extremely poor prognosis. One potential therapeutic approach is to induce the terminal differentiation of glioma through the forced expression of pro-neural factors. Our goal is to show the proof of concept of the neuronal conversion of C6 glioma through the combined action of small molecules. We investigated the various changes in gene expression, cell-specific marker expression, signaling pathways, physiological characteristics, and morphology in glioma after combination treatment with two small molecules (CHIR99021, a glycogen synthase kinase 3 [GSK3] inhibitor and forskolin, a cyclic adenosine monophosphate [cAMP] activator). Here, we show that the combined action of CHIR99021 and forskolin converted malignant glioma into fully differentiated neurons with no malignant characteristics; inhibited the proliferation of malignant glioma; and significantly down-regulated gene ontology and gene expression profiles related to cell division, gliogenesis, and angiogenesis in small molecule–induced neurons. In vivo, the combined action of CHIR99021 and forskolin markedly delayed neurological deficits and significantly reduced the tumor volume. We suggest that reprogramming technology may be a potential treatment strategy replacing the therapeutic paradigm of traditional treatment of malignant glioma, and a combination molecule comprising a GSK3 inhibitor and a cAMP inducer could be the next generation of anticancer drugs. PMID:29161257

  13. Effect of Chronic Administration of Forskolin on Glycemia and Oxidative Stress in Rats with and without Experimental Diabetes

    PubMed Central

    Ríos-Silva, Mónica; Trujillo, Xóchitl; Trujillo-Hernández, Benjamín; Sánchez-Pastor, Enrique; Urzúa, Zorayda; Mancilla, Evelyn; Huerta, Miguel

    2014-01-01

    Forskolin is a diterpene derived from the plant Coleus forskohlii. Forskolin activates adenylate cyclase, which increases intracellular cAMP levels. The antioxidant and antiinflammatory action of forskolin is due to inhibition of macrophage activation with a subsequent reduction in thromboxane B2 and superoxide levels. These characteristics have made forskolin an effective medication for heart disease, hypertension, diabetes, and asthma. Here, we evaluated the effects of chronic forskolin administration on blood glucose and oxidative stress in 19 male Wistar rats with streptozotocin-induced diabetes compared to 8 healthy male Wistar rats. Rats were treated with forskolin, delivered daily for 8 weeks. Glucose was assessed by measuring fasting blood glucose in diabetic rats and with an oral glucose tolerance test (OGTT) in healthy rats. Oxidative stress was assessed by measuring 8-hydroxydeoxyguanosine (8‑OHdG) in 24-h urine samples. In diabetic rats, without forskolin, fasting blood glucose was significantly higher at the end than at the beginning of the experiment (8 weeks). In both healthy and diabetic rats, forskolin treatment lowered the fasting glucose at the end of the experiment but no effect was found on oral glucose tolerance. The 8-OHdG levels tended to be less elevated in forskolin-treated than in untreated group. Our results showed that chronic administration of forskolin decreased fasting blood glucose levels; however, the reductions of 8-OHdG were not statistically significant. PMID:24688307

  14. Effect of chronic administration of forskolin on glycemia and oxidative stress in rats with and without experimental diabetes.

    PubMed

    Ríos-Silva, Mónica; Trujillo, Xóchitl; Trujillo-Hernández, Benjamín; Sánchez-Pastor, Enrique; Urzúa, Zorayda; Mancilla, Evelyn; Huerta, Miguel

    2014-01-01

    Forskolin is a diterpene derived from the plant Coleus forskohlii. Forskolin activates adenylate cyclase, which increases intracellular cAMP levels. The antioxidant and antiinflammatory action of forskolin is due to inhibition of macrophage activation with a subsequent reduction in thromboxane B2 and superoxide levels. These characteristics have made forskolin an effective medication for heart disease, hypertension, diabetes, and asthma. Here, we evaluated the effects of chronic forskolin administration on blood glucose and oxidative stress in 19 male Wistar rats with streptozotocin-induced diabetes compared to 8 healthy male Wistar rats. Rats were treated with forskolin, delivered daily for 8 weeks. Glucose was assessed by measuring fasting blood glucose in diabetic rats and with an oral glucose tolerance test (OGTT) in healthy rats. Oxidative stress was assessed by measuring 8-hydroxydeoxyguanosine (8‑OHdG) in 24-h urine samples. In diabetic rats, without forskolin, fasting blood glucose was significantly higher at the end than at the beginning of the experiment (8 weeks). In both healthy and diabetic rats, forskolin treatment lowered the fasting glucose at the end of the experiment but no effect was found on oral glucose tolerance. The 8-OHdG levels tended to be less elevated in forskolin-treated than in untreated group. Our results showed that chronic administration of forskolin decreased fasting blood glucose levels; however, the reductions of 8-OHdG were not statistically significant.

  15. Cloning and characterization of the hamster and guinea pig nicotinic acid receptors.

    PubMed

    Torhan, April Smith; Cheewatrakoolpong, Boonlert; Kwee, Lia; Greenfeder, Scott

    2007-09-01

    In this study, we present the identification and characterization of hamster and guinea pig nicotinic acid receptors. The hamster receptor shares approximately 80-90% identity with the nucleotide and amino acid sequences of human, mouse, and rat receptors. The guinea pig receptor shares 76-80% identity with the nucleotide and amino acid sequences of these other species. [(3)H]nicotinic acid binding affinity at guinea pig and hamster receptors is similar to that in human (dissociation constant = 121 nM for guinea pig, 72 nM for hamster, and 74 nM for human), as are potencies of nicotinic acid analogs in competition binding studies. Inhibition of forskolin-stimulated cAMP production by nicotinic acid and related analogs is also similar to the activity in the human receptor. Analysis of mRNA tissue distribution for the hamster and guinea pig nicotinic acid receptors shows expression across a number of tissues, with higher expression in adipose, lung, skeletal muscle, spleen, testis, and ovary.

  16. Interleukin 2 transcription factors as molecular targets of cAMP inhibition: delayed inhibition kinetics and combinatorial transcription roles

    PubMed Central

    1994-01-01

    Elevation of cAMP can cause gene-specific inhibition of interleukin 2 (IL-2) expression. To investigate the mechanism of this effect, we have combined electrophoretic mobility shift assays and in vivo genomic footprinting to assess both the availability of putative IL-2 transcription factors in forskolin-treated cells and the functional capacity of these factors to engage their sites in vivo. All observed effects of forskolin depended upon protein kinase A, for they were blocked by introduction of a dominant negative mutant subunit of protein kinase A. In the EL4.E1 cell line, we report specific inhibitory effects of cAMP elevation both on NF-kappa B/Rel family factors binding at -200 bp, and on a novel, biochemically distinct "TGGGC" factor binding at -225 bp with respect to the IL-2 transcriptional start site. Neither NF-AT nor AP-1 binding activities are detectably inhibited in gel mobility shift assays. Elevation of cAMP inhibits NF-kappa B activity with delayed kinetics in association with a delayed inhibition of IL-2 RNA accumulation. Activation of cells in the presence of forskolin prevents the maintenance of stable protein- DNA interactions in vivo, not only at the NF-kappa B and TGGGC sites of the IL-2 enhancer, but also at the NF-AT, AP-1, and other sites. This result, and similar results in cyclosporin A-treated cells, imply that individual IL-2 transcription factors cannot stably bind their target sequences in vivo without coengagement of all other distinct factors at neighboring sites. It is proposed that nonhierarchical, cooperative enhancement of binding is a structural basis of combinatorial transcription factor action at the IL-2 locus. PMID:8113685

  17. Effect of beta2-adrenoceptor agonists and other cAMP-elevating agents on inflammatory gene expression in human ASM cells: a role for protein kinase A.

    PubMed

    Kaur, Manminder; Holden, Neil S; Wilson, Sylvia M; Sukkar, Maria B; Chung, Kian Fan; Barnes, Peter J; Newton, Robert; Giembycz, Mark A

    2008-09-01

    In diseases such as asthma, airway smooth muscle (ASM) cells play a synthetic role by secreting inflammatory mediators such as granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-6, or IL-8 and by expressing surface adhesion molecules, including ICAM-1. In the present study, PGE(2), forskolin, and short-acting (salbutamol) and long-acting (salmeterol and formoterol) beta(2)-adrenoceptor agonists reduced the expression of ICAM-1 and the release of GM-CSF evoked by IL-1beta in ASM cells. IL-1beta-induced IL-8 release was also repressed by PGE(2) and forskolin, whereas the beta(2)-adrenoceptor agonists were ineffective. In each case, repression of these inflammatory indexes was prevented by adenoviral overexpression of PKIalpha, a highly selective PKA inhibitor. These data indicate a PKA-dependent mechanism of repression and suggest that agents that elevate intracellular cAMP, and thereby activate PKA, may have a widespread anti-inflammatory effect in ASM cells. Since ICAM-1 and GM-CSF are highly NF-kappaB-dependent genes, we used an adenoviral-delivered NF-kappaB-dependent luciferase reporter to examine the effects of forskolin and the beta(2)-adrenoceptor agonists on NF-kappaB activation. There was no effect on luciferase activity measured in the presence of forskolin or beta(2)-adrenoceptor agonists. This finding is consistent with the observation that IL-1beta-induced expression of IL-6, a known NF-kappaB-dependent gene in ASM, was also unaffected by beta(2)-adrenoceptor agonists, forskolin, PGE(2), 8-bromo-cAMP, or rolipram. Collectively, these results indicate that repression of IL-1beta-induced ICAM-1 expression and GM-CSF release by cAMP-elevating agents, including beta(2)-adrenoceptor agonists, may not occur through a generic effect on NF-kappaB.

  18. Bicarbonate disruption of the pulmonary endothelial barrier via activation of endogenous soluble adenylyl cyclase, isoform 10

    PubMed Central

    Obiako, Boniface; Calchary, Wendy; Xu, Ningyong; Kunstadt, Ryan; Richardson, Bianca; Nix, Jessica

    2013-01-01

    It is becoming increasingly apparent that cAMP signals within the pulmonary endothelium are highly compartmentalized, and this compartmentalization is critical to maintaining endothelial barrier integrity. Studies demonstrate that the exogenous soluble bacterial toxin, ExoY, and heterologous expression of the forskolin-stimulated soluble mammalian adenylyl cyclase (AC) chimera, sACI/II, elevate cytosolic cAMP and disrupt the pulmonary microvascular endothelial barrier. The barrier-disruptive effects of cytosolic cAMP generated by exogenous soluble ACs are in contrast to the barrier-protective effects of subplasma membrane cAMP generated by transmembrane AC, which strengthens endothelial barrier integrity. Endogenous soluble AC isoform 10 (AC10 or commonly known as sAC) lacks transmembrane domains and localizes within the cytosolic compartment. AC10 is uniquely activated by bicarbonate to generate cytosolic cAMP, yet its role in regulation of endothelial barrier integrity has not been addressed. Here we demonstrate that, within the pulmonary circulation, AC10 is expressed in pulmonary microvascular endothelial cells (PMVECs) and pulmonary artery endothelial cells (PAECs), yet expression in PAECs is lower. Furthermore, pulmonary endothelial cells selectively express bicarbonate cotransporters. While extracellular bicarbonate generates a phosphodiesterase 4-sensitive cAMP pool in PMVECs, no such cAMP response is detected in PAECs. Finally, addition of extracellular bicarbonate decreases resistance across the PMVEC monolayer and increases the filtration coefficient in the isolated perfused lung above osmolality controls. Collectively, these findings suggest that PMVECs have a bicarbonate-sensitive cytosolic cAMP pool that disrupts endothelial barrier integrity. These studies could provide an alternative mechanism for the controversial effects of bicarbonate correction of acidosis of acute respiratory distress syndrome patients. PMID:23686854

  19. Induction of chinook salmon growth hormone promoter activity by the adenosine 3',5'-monophosphate (cAMP)-dependent pathway involves two cAMP-response elements with the CGTCA motif and the pituitary-specific transcription factor Pit-1.

    PubMed

    Wong, A O; Le Drean, Y; Liu, D; Hu, Z Z; Du, S J; Hew, C L

    1996-05-01

    In this study, the functional role of two cAMP-response elements (CRE) in the promoter of the chinook salmon GH gene and their interactions with the transcription factor Pit-1 in regulating GH gene expression were examined. A chimeric construct of the chloramphenicol acetyltransferase (CAT) reporter gene with the CRE-containing GH promoter (pGH.CAT) was transiently transfected into primary cultures of rainbow trout pituitary cells. The expression of CAT activity was stimulated by an adenylate cyclase activator forskolin as well as a membrane-permeant cAMP analog 8-bromo-cAMP. Furthermore, these stimulatory responses were inhibited by a protein kinase A inhibitor H89, suggesting that these CREs are functionally coupled to the adenylate cyclase-cAMP-protein kinase A cascade. This hypothesis is supported by parallel studies using GH4ZR7 cells, a rat pituitary cell line stably transfected with dopamine D2 receptors. In this cell line, D2 receptor activation is known to inhibit adenylate cyclase activity and cAMP synthesis. Stimulation with a nonselective dopamine agonist, apomorphine, or a D2-specific agonist, Ly171555, suppressed the expression of pGH.CAT in GH4ZR7 cells, and this inhibition was blocked by simultaneous treatment with forskolin. These results indicate that inhibition of the cAMP-dependent pathway reduces the basal promoter activity of the CRE-containing pGH.CAT. The functionality of these CREs was further confirmed by deletion analysis and site-specific mutagenesis. In trout pituitary cells, the cAMP inducibility of pGH.CAT was inhibited after deleting the CRE-containing sequence from the GH promoter. When the CRE-containing sequence was cloned into a CAT construct with a viral thymidine kinase promoter, a significant elevation of cAMP inducibility was observed. This stimulatory response, however, was abolished by mutating the core sequence, CGTCA, in these CREs, suggesting that these cis-acting elements confer cAMP inducibility to the salmon GH gene. The interactions between CREs and the transcription factor Pit-1 in mediating GH gene expression were also examined. In HeLa cells, a human cervical cancer cell line deficient in Pit-1, both basal and cAMP-induced expression of pGH.CAT were apparent only with the cotransfection of a Pit-1 expression vector. These results taken together indicate that the two CREs in the chinook salmon GH gene are functionally associated with the cAMP-dependent pathway and that their promoter activity is dependent on the presence of Pit-1

  20. β3GnT2 Maintains Adenylyl Cyclase-3 Signaling and Axon Guidance Molecule Expression in the Olfactory Epithelium

    PubMed Central

    Faden, Ashley A.; Knott, Thomas K.

    2011-01-01

    In the olfactory epithelium (OE), odorant receptor stimulation generates cAMP signals that function in both odor detection and the regulation of axon guidance molecule expression. The enzyme that synthesizes cAMP, adenylyl cyclase 3 (AC3), is coexpressed in olfactory sensory neurons (OSNs) with poly-N-acetyllactosamine (PLN) oligosaccharides determined by the glycosyltransferase β3GnT2. The loss of either enzyme results in similar defects in olfactory bulb (OB) innervation and OSN survival, suggesting that glycosylation may be important for AC3 function. We show here that AC3 is extensively modified with N-linked PLN, which is essential for AC3 activity and localization. On Western blots, AC3 from the wild-type OE migrates diffusely as a heavily glycosylated 200 kDa band that interacts with the PLN-binding lectin LEA. AC3 from the β3GnT2−/− OE loses these PLN modifications, migrating instead as a 140 kDa glycoprotein. Furthermore, basal and forskolin-stimulated cAMP production is reduced 80–90% in the β3GnT2−/− OE. Although AC3 traffics normally to null OSN cilia, it is absent from axon projections that aberrantly target the OB. The cAMP-dependent guidance receptor neuropilin-1 is also lost from β3GnT2−/− OSNs and axons, while semaphorin-3A ligand expression is upregulated. In addition, kirrel2, a mosaically expressed adhesion molecule that functions in axon sorting, is absent from β3GnT2−/− OB projections. These results demonstrate that PLN glycans are essential in OSNs for proper AC3 localization and function. We propose that the loss of cAMP-dependent guidance cues is also a critical factor in the severe axon guidance defects observed in β3GnT2−/− mice. PMID:21525298

  1. "Host tissue damage" signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes.

    PubMed

    Kaufmann, Andreas; Musset, Boris; Limberg, Sven H; Renigunta, Vijay; Sus, Rainer; Dalpke, Alexander H; Heeg, Klaus M; Robaye, Bernard; Hanley, Peter J

    2005-09-16

    The activation of Toll-like receptors (TLRs) by lipopolysaccharide or other ligands evokes a proinflammatory immune response, which is not only capable of clearing invading pathogens but can also inflict damage to host tissues. It is therefore important to prevent an overshoot of the TLR-induced response where necessary, and here we show that extracellular ATP is capable of doing this in human monocytes. Using reverse transcription-PCR, we showed that monocytes express P2Y(1), P2Y(2), P2Y(4), P2Y(11), and P2Y(13) receptors, as well as several P2X receptors. To elucidate the function of these receptors, we first studied Ca(2+) signaling in single cells. ATP or UTP induced a biphasic increase in cytosolic Ca(2+), which corresponded to internal Ca(2+) release followed by activation of store-operated Ca(2+) entry. The evoked Ca(2+) signals stimulated Ca(2+)-activated K(+) channels, producing transient membrane hyperpolarization. In addition, ATP promoted cytoskeleton reorganization and cell migration; however, unlike chemoattractants, the migration was non-directional and further analysis showed that ATP did not activate Akt, essential for sensing gradients. When TLR2, TLR4, or TLR2/6 were stimulated with their respective ligands, ATPgammaS profoundly inhibited secretion of proinflammatory cytokines (tumor necrosis factor-alpha and monocyte chemoattractant protein-1) but increased the production of interleukin-10, an anti-inflammatory cytokine. In radioimmune assays, we found that ATP (or ATPgammaS) strongly increased cAMP levels, and, moreover, the TLR-response was inhibited by forskolin, whereas UTP neither increased cAMP nor inhibited the TLR-response. Thus, our data suggest that ATP promotes non-directional migration and, importantly, acts as a "host tissue damage" signal via the G(s) protein-coupled P2Y(11) receptor and increased cAMP to negatively regulate TLR signaling.

  2. Forskolin suppresses delayed-rectifier K+ currents and enhances spike frequency-dependent adaptation of sympathetic neurons.

    PubMed

    Angel-Chavez, Luis I; Acosta-Gómez, Eduardo I; Morales-Avalos, Mario; Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels.

  3. Transcriptional regulation induced by cAMP elevation in mouse Schwann cells

    PubMed Central

    Schmid, Daniela; Zeis, Thomas; Schaeren-Wiemers, Nicole

    2014-01-01

    In peripheral nerves, Schwann cell development is regulated by a variety of signals. Some of the aspects of Schwann cell differentiation can be reproduced in vitro in response to forskolin, an adenylyl cyclase activator elevating intracellular cAMP levels. Herein, the effect of forskolin treatment was investigated by a comprehensive genome-wide expression study on primary mouse Schwann cell cultures. Additional to myelin-related genes, many so far unconsidered genes were ascertained to be modulated by forskolin. One of the strongest differentially regulated gene transcripts was the transcription factor Olig1 (oligodendrocyte transcription factor 1), whose mRNA expression levels were reduced in treated Schwann cells. Olig1 protein was localized in myelinating and nonmyelinating Schwann cells within the sciatic nerve as well as in primary Schwann cells, proposing it as a novel transcription factor of the Schwann cell lineage. Data analysis further revealed that a number of differentially expressed genes in forskolin-treated Schwann cells were associated with the ECM (extracellular matrix), underlining its importance during Schwann cell differentiation in vitro. Comparison of samples derived from postnatal sciatic nerves and from both treated and untreated Schwann cell cultures showed considerable differences in gene expression between in vivo and in vitro, allowing us to separate Schwann cell autonomous from tissue-related changes. The whole data set of the cell culture microarray study is provided to offer an interactive search tool for genes of interest. PMID:24641305

  4. Cyclic AMP Affects Oocyte Maturation and Embryo Development in Prepubertal and Adult Cattle

    PubMed Central

    Bernal-Ulloa, Sandra Milena; Heinzmann, Julia; Herrmann, Doris; Hadeler, Klaus-Gerd; Aldag, Patrick; Winkler, Sylke; Pache, Dorit; Baulain, Ulrich; Lucas-Hahn, Andrea; Niemann, Heiner

    2016-01-01

    High cAMP levels during in vitro maturation (IVM) have been related to improved blastocyst yields. Here, we employed the cAMP/cGMP modulators, forskolin, IBMX, and cilostamide, during IVM to unravel the role of high cAMP in early embryonic development produced from prepubertal and adult bovine oocytes. Oocytes were collected via transvaginal aspiration and randomly assigned to three experimental groups: TCM24 (24h IVM/control), cAMP30 (2h pre-IVM (forskolin-IBMX), 30h IVM-cilostamide), and DMSO30 (Dimethyl Sulfoxide/vehicle control). After IVM, oocytes were fertilized in vitro and zygotes were cultured in vitro to blastocysts. Meiotic progression, cAMP levels, mRNA abundance of selected genes and DNA methylation were evaluated in oocytes. Blastocysts were used for gene expression or DNA methylation analyses. Blastocysts from the cAMP30 groups were transferred to recipients. The cAMP elevation delayed meiotic progression, but developmental rates were not increased. In immature oocytes, mRNA abundance of PRKACA was higher for cAMP30 protocol and no differences were found for PDE3A, SMAD2, ZAR1, PRDX1 and SLC2A8. EGR1 gene was up-regulated in prepubertal cAMP30 immature oocytes and down-regulated in blastocysts from all in vitro treatments. A similar gene expression profile was observed for DNMT3b, BCL2L1, PRDX1 and SLC2A8 in blastocysts. Satellite DNA methylation profiles were different between prepubertal and adult oocytes and blastocysts derived from the TCM24 and DMSO30 groups. Blastocysts obtained from prepubertal and adult oocytes in the cAMP30 treatment displayed normal methylation profiles and produced offspring. These data indicate that cAMP regulates IVM in prepubertal and adult oocytes in a similar manner, with impact on the establishment of epigenetic marks and acquisition of full developmental competency. PMID:26926596

  5. Pendrin protein abundance in the kidney is regulated by nitric oxide and cAMP.

    PubMed

    Thumova, Monika; Pech, Vladimir; Froehlich, Otto; Agazatian, Diana; Wang, Xiaonan; Verlander, Jill W; Kim, Young Hee; Wall, Susan M

    2012-09-15

    Pendrin is a Cl(-)/HCO(3)(-) exchanger, expressed in the apical regions of some intercalated cell subtypes, and is critical in the pressor response to angiotensin II. Since angiotensin type 1 receptor inhibitors reduce renal pendrin protein abundance in mice in vivo through a mechanism that is dependent on nitric oxide (NO), we asked if NO modulates renal pendrin expression in vitro and explored the mechanism by which it occurs. Thus we quantified pendrin protein abundance by confocal fluorescent microscopy in cultured mouse cortical collecting ducts (CCDs) and connecting tubules (CNTs). After overnight culture, CCDs maintain their tubular structure and maintain a solute gradient when perfused in vitro. Pendrin protein abundance increased 67% in CNT and 53% in CCD when NO synthase was inhibited (N(G)-nitro-L-arginine methyl ester, 100 μM), while NO donor (DETA NONOate, 200 μM) application reduced pendrin protein by ∼33% in the CCD and CNT. When CNTs were cultured in the presence of the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (10 μM), NO donors did not alter pendrin abundance. Conversely, pendrin protein abundance rose when cAMP content was increased by the application of an adenylyl cyclase agonist (forskolin, 10 μM), a cAMP analog (8-bromo-cAMP, 1 mM), or a phosphodiesterase inhibitor (BAY60-7550, 50 μM). Since NO reduces cellular cAMP in the CNT, we asked if NO reduces pendrin abundance by reducing cAMP. With blockade of cGMP-stimulated phosphodiesterase II, NO did not alter pendrin protein abundance. We conclude that NO acts through cAMP to reduce pendrin total protein abundance by enhancing cAMP degradation.

  6. Pendrin protein abundance in the kidney is regulated by nitric oxide and cAMP

    PubMed Central

    Thumova, Monika; Pech, Vladimir; Froehlich, Otto; Agazatian, Diana; Wang, Xiaonan; Verlander, Jill W.; Kim, Young Hee

    2012-01-01

    Pendrin is a Cl−/HCO3− exchanger, expressed in the apical regions of some intercalated cell subtypes, and is critical in the pressor response to angiotensin II. Since angiotensin type 1 receptor inhibitors reduce renal pendrin protein abundance in mice in vivo through a mechanism that is dependent on nitric oxide (NO), we asked if NO modulates renal pendrin expression in vitro and explored the mechanism by which it occurs. Thus we quantified pendrin protein abundance by confocal fluorescent microscopy in cultured mouse cortical collecting ducts (CCDs) and connecting tubules (CNTs). After overnight culture, CCDs maintain their tubular structure and maintain a solute gradient when perfused in vitro. Pendrin protein abundance increased 67% in CNT and 53% in CCD when NO synthase was inhibited (NG-nitro-l-arginine methyl ester, 100 μM), while NO donor (DETA NONOate, 200 μM) application reduced pendrin protein by ∼33% in the CCD and CNT. When CNTs were cultured in the presence of the guanylyl cyclase inhibitor 1H-[1,2,4] oxadiazolo[4,3-a]quinoxalin-1-one (10 μM), NO donors did not alter pendrin abundance. Conversely, pendrin protein abundance rose when cAMP content was increased by the application of an adenylyl cyclase agonist (forskolin, 10 μM), a cAMP analog (8-bromo-cAMP, 1 mM), or a phosphodiesterase inhibitor (BAY60-7550, 50 μM). Since NO reduces cellular cAMP in the CNT, we asked if NO reduces pendrin abundance by reducing cAMP. With blockade of cGMP-stimulated phosphodiesterase II, NO did not alter pendrin protein abundance. We conclude that NO acts through cAMP to reduce pendrin total protein abundance by enhancing cAMP degradation. PMID:22811483

  7. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity

    PubMed Central

    Deng, Ruyuan; Wang, Ning; Zhang, Yuqing; Wang, Yao; Liu, Yun; Li, Fengying; Wang, Xiao; Zhou, Libin

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome proliferators-activated receptor γ2 (PPARγ2), and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB) phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX) and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE) stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades. PMID:25928058

  8. Forskolin Suppresses Delayed-Rectifier K+ Currents and Enhances Spike Frequency-Dependent Adaptation of Sympathetic Neurons

    PubMed Central

    Castro, Elena; Cruzblanca, Humberto

    2015-01-01

    In signal transduction research natural or synthetic molecules are commonly used to target a great variety of signaling proteins. For instance, forskolin, a diterpene activator of adenylate cyclase, has been widely used in cellular preparations to increase the intracellular cAMP level. However, it has been shown that forskolin directly inhibits some cloned K+ channels, which in excitable cells set up the resting membrane potential, the shape of action potential and regulate repetitive firing. Despite the growing evidence indicating that K+ channels are blocked by forskolin, there are no studies yet assessing the impact of this mechanism of action on neuron excitability and firing patterns. In sympathetic neurons, we find that forskolin and its derivative 1,9-Dideoxyforskolin, reversibly suppress the delayed rectifier K+ current (IKV). Besides, forskolin reduced the spike afterhyperpolarization and enhanced the spike frequency-dependent adaptation. Given that IKV is mostly generated by Kv2.1 channels, HEK-293 cells were transfected with cDNA encoding for the Kv2.1 α subunit, to characterize the mechanism of forskolin action. Both drugs reversible suppressed the Kv2.1-mediated K+ currents. Forskolin inhibited Kv2.1 currents and IKV with an IC50 of ~32 μM and ~24 µM, respectively. Besides, the drug induced an apparent current inactivation and slowed-down current deactivation. We suggest that forskolin reduces the excitability of sympathetic neurons by enhancing the spike frequency-dependent adaptation, partially through a direct block of their native Kv2.1 channels. PMID:25962132

  9. Suppressive effects of formoterol and salmeterol on eotaxin-1 in bronchial epithelial cells.

    PubMed

    Chu, Yu-Te; Chang, Tai-Tsung; Jong, Yuh-Jyh; Kuo, Po-Lin; Lee, Hsi-Ming; Lee, Min-Sheng; Chang, Hui-Wen; Hung, Chih-Hsing

    2010-03-01

    Eotaxin-1 (CCL11), an eosinophil-specific C-C chemokine, is a potent chemoattractant for mobilization of eosinophils into airways after allergic stimulation. Eotaxin-1 recruits eosinophils into inflammatory sites, and may play a role in the pathogenesis of asthma. Formoterol and salmeterol are two inhaled long acting beta(2) adrenoceptor agonists (LABAs), widely used for the local treatment of asthma. However, little is known about their effects on the eotaxin-1 expression of bronchial epithelial cells. BEAS-2B cells were stimulated by adding IL-4 with or without 2 h pre-treatment of formoterol or salmeterol. The protein and mRNA expression of eotaxin-1 were measured by ELISA assay and real-time PCR, respectively. Effects of formoterol and salmeterol on nuclear and cytosolic pSTAT-6 expression were evaluated by Western blot and immunofluorescence study. Formoterol and salmeterol (10(-7)-10(-10) m) significantly down-regulated IL-4- induced eotaxin-1 expression in BEAS-2B cells. A specific beta(2) adrenoceptor antagonist (ICI 118,551) reversed their suppression of eotaxin-1 production. Forskolin, an cAMP activator, could also suppress the expression of eotaxin-1 by IL-4 in a dose dependent manner (10(-7)-10(-10 )m). The western blot and immunofluorescence studies demonstrated that formoterol 10(-7 )m suppressed the nuclear expression of pSTAT-6. Formoterol and salmeterol, two inhaled long-acting beta(2) agonists, down-regulated IL-4- induced eotaxin-1 expression in BEAS-2B cells. The effect was mediated via the beta(2) adrenoceptor, and cAMP. Formoterol significantly down-regulated pSTAT6 at higher concentration, and further turned off the IL-4 signaling pathway.

  10. Forskolin-induced differentiation of BeWo cells stimulates increased tumor growth in the chorioallantoic membrane (CAM) of the turkey (Meleagris gallopavo) egg.

    PubMed

    Schneider, Ralf; Borges, Marcus; Kadyrov, Mamed

    2011-05-01

    Invasiveness of BeWo cells has been assessed in a variety of assay systems including matrigel and mouse. At the same time BeWo cells are mostly used as model system for trophoblast fusion. Here we aimed to test the properties of BeWo cells in a combined approach. We forced BeWo cells to differentiate by culturing the cells in the presence of forskolin and then used these cells for invasion assays on the chorioallantoic membrane (CAM) of the turkey. The chorioallantoic membranes of turkey eggs were incubated with medium containing forskolin, BeWo cells cultured in medium alone, BeWo cells cultured in forskolin and washed, and BeWo cells cultured in forskolin and used directly for application. Suspensions were applied onto ten CAM per condition. For local tumor formation eggs were checked for tumor development every 24h macroscopically for up to 12 days and immunohistochemistry for cytokeratin 18 and Ki-67 were used for further analysis. Forskolin alone did not have any deleterious effect on the CAM. When the CAM was incubated with BeWo cells cultured in medium 40% of the eggs developed a macroscopically visible tumor. BeWo cells stimulated with forskolin and washed induced tumor growth in 50% of the eggs, while forskolin stimulated BeWo cells applied directly onto the CAM induced tumor growth in 70% of the eggs. Forced differentiation of BeWo cells by forskolin may lead to syncytial fusion in a plastic culture dish. Under the conditions used here, i.e. in direct contact to a living tissue, forskolin-induced differentiation of BeWo cells leads to an increase in tumor formation in the CAM. Thus BeWo cells may use signaling pathways to decide for both differentiation pathways similar to primary trophoblast depending on the environment. Copyright © 2011 Elsevier GmbH. All rights reserved.

  11. cAMP is an essential signal in the induction of antibody production by B cells but inhibits helper function of T cells.

    PubMed

    Gilbert, K M; Hoffmann, M K

    1985-09-01

    Dibutyryl cAMP and IL 1 were found to stimulate antigen-specific and polyclonal antibody production when added together to cultures of highly purified B cells. We propose that IL 1 and an elevation in cytoplasmic cAMP represent minimal signal requirements for B cell activation. In contrast to its effect on B cells, dibutyryl cAMP inhibited helper T cell activity. Cyclic AMP suppressed the production of IL 2 and T cell replacing factor (TRF) by T cells and thus abrogated the ability of helper T cells to enhance SRBC-specific antibody production by B cells. Cyclic AMP did not inhibit the generation by T cells of B cell growth factor (BCGF). BCGF, not normally detected in Con A supernatant, was found in the culture supernatant of spleen cells that were stimulated with Con A in the presence of cAMP. Our findings indicate that cAMP blocks the production of an inhibitor of BCGF activity. cAMP had no effect on the production by macrophages of IL 1.

  12. Tumor-secreted PGE2 inhibits CCL5 production in activated macrophages through cAMP/PKA signaling pathway.

    PubMed

    Qian, Xuesong; Zhang, Jidong; Liu, Jianguo

    2011-01-21

    One of the major characteristics of tumors is their ability to evade immunosurveillance through altering the properties and functions of host stromal and/or immune cells. CCL5 has been shown to play important roles in T cell proliferation, IFN-γ, and IL-2 production, which promotes the differentiation and proliferation of Th1 cells important for immune defense against intracellular infection. In this study we found that tumor-bearing mice were more susceptible to bacterial infection and showed reduced CCL5 levels in serum during endotoxic shock. Our data further demonstrated that the soluble factors secreted by mammary gland tumor cells but not normal mammary gland epithelial cells inhibited CCL5 expression in macrophages in response to LPS, but not to TNF-α stimulation. The inhibitory effect of tumor-secreted molecules on LPS-induced CCL5 expression was regulated at the post-transcriptional level. Blocking PGE(2) synthesis by NS398 or through the use of PGE(2) receptor antagonists AH-6809 (EP2 antagonist) and AH-23848 (EP4 antagonist) completely reversed the inhibitory effect of tumor-conditioned medium (TCM) on LPS-induced CCL5 expression. Moreover, PGE(2) and the cAMP analog forskolin could mimic tumor-mediated CCL5 inhibition, and the inhibitory effects of TCM, PGE(2), and cAMP analog on LPS-induced CCL5 expression could be completely reversed by the PKA inhibitor H89. Furthermore, blocking PGE(2) synthesis in vivo led to partial recovery of CCL5 production during endotoxic shock. Taken together, our data indicate that PGE(2) secreted from breast cancer cells suppresses CCL5 secretion in LPS-activated macrophages through a cAMP/PKA signaling pathway, which may result in suppression of host immune responses against subsequent bacterial infection.

  13. Gi proteins regulate adenylyl cyclase activity independent of receptor activation.

    PubMed

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to G(i), some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. We used the Gs-selective (R,R)- and the Gs- and G(i)-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic G(i) and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents.

  14. Gi Proteins Regulate Adenylyl Cyclase Activity Independent of Receptor Activation

    PubMed Central

    Melsom, Caroline Bull; Ørstavik, Øivind; Osnes, Jan-Bjørn; Skomedal, Tor; Levy, Finn Olav; Krobert, Kurt Allen

    2014-01-01

    Background and purpose Despite the view that only β2- as opposed to β1-adrenoceptors (βARs) couple to Gi, some data indicate that the β1AR-evoked inotropic response is also influenced by the inhibition of Gi. Therefore, we wanted to determine if Gi exerts tonic receptor-independent inhibition upon basal adenylyl cyclase (AC) activity in cardiomyocytes. Experimental approach We used the Gs-selective (R,R)- and the Gs- and Gi-activating (R,S)-fenoterol to selectively activate β2ARs (β1AR blockade present) in combination with Gi inactivation with pertussis toxin (PTX). We also determined the effect of PTX upon basal and forskolin-mediated responses. Contractility was measured ex vivo in left ventricular strips and cAMP accumulation was measured in isolated ventricular cardiomyocytes from adult Wistar rats. Key results PTX amplified both the (R,R)- and (R,S)-fenoterol-evoked maximal inotropic response and concentration-dependent increases in cAMP accumulation. The EC50 values of fenoterol matched published binding affinities. The PTX enhancement of the Gs-selective (R,R)-fenoterol-mediated responses suggests that Gi regulates AC activity independent of receptor coupling to Gi protein. Consistent with this hypothesis, forskolin-evoked cAMP accumulation was increased and inotropic responses to forskolin were potentiated by PTX treatment. In non-PTX-treated tissue, phosphodiesterase (PDE) 3 and 4 inhibition or removal of either constitutive muscarinic receptor activation of Gi with atropine or removal of constitutive adenosine receptor activation with CGS 15943 had no effect upon contractility. However, in PTX-treated tissue, PDE3 and 4 inhibition alone increased basal levels of cAMP and accordingly evoked a large inotropic response. Conclusions and implications Together, these data indicate that Gi exerts intrinsic receptor-independent inhibitory activity upon AC. We propose that PTX treatment shifts the balance of intrinsic Gi and Gs activity upon AC towards Gs, enhancing the effect of all cAMP-mediated inotropic agents. PMID:25203113

  15. Role of the human cytomegalovirus major immediate-early promoter's 19-base-pair-repeat cyclic AMP-response element in acutely infected cells.

    PubMed

    Keller, M J; Wheeler, D G; Cooper, E; Meier, J L

    2003-06-01

    Prior studies have suggested a role of the five copies of the 19-bp-repeat cyclic AMP (cAMP)-response element (CRE) in major immediate-early (MIE) promoter activation, the rate-limiting step in human cytomegalovirus (HCMV) replication. We used two different HCMV genome modification strategies to test this hypothesis in acutely infected cells. We report the following: (i) the CREs do not govern basal levels of MIE promoter activity at a high or low multiplicity of infection (MOI) in human foreskin fibroblast (HFF)- or NTera2-derived neuronal cells; (ii) serum and virion components markedly increase MIE promoter-dependent transcription at a low multiplicity of infection (MOI), but this increase is not mediated by the CREs; (iii) forskolin stimulation of the cAMP signaling pathway induces a two- to threefold increase in MIE RNA levels in a CRE-specific manner at a low MOI in both HFF- and NTera2-derived neuronal cells; and (iv) the CREs do not regulate basal levels of HCMV DNA replication at a high or low MOI in HFF. Their presence does impart a forskolin-induced increase in viral DNA replication at a low MOI but only when basal levels of MIE promoter activity are experimentally diminished. In conclusion, the 19-bp-repeat CREs add to the robust MIE promoter activity that occurs in the acutely infected stimulated cells, although the CREs' greater role may be in other settings.

  16. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts.

    PubMed

    Zhang, Xuemei; Li, Fangping; Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells.

  17. Forskolin Regulates L-Type Calcium Channel through Interaction between Actinin 4 and β3 Subunit in Osteoblasts

    PubMed Central

    Guo, Lin; Hei, Hongya; Tian, Lulu; Peng, Wen; Cai, Hui

    2015-01-01

    Voltage-dependent L-type calcium channels that permit cellular calcium influx are essential in calcium-mediated modulation of cellular signaling. Although the regulation of voltage-dependent L-type calcium channels is linked to many factors including cAMP-dependent protein kinase A (PKA) activity and actin cytoskeleton, little is known about the detailed mechanisms underlying the regulation in osteoblasts. Our present study investigated the modulation of L-type calcium channel activities through the effects of forskolin on actin reorganization and on its functional interaction with actin binding protein actinin 4. The results showed that forskolin did not significantly affect the trafficking of pore forming α1c subunit and its interaction with actin binding protein actinin 4, whereas it significantly increased the expression of β3 subunit and its interaction with actinin 4 in osteoblast cells as assessed by co-immunoprecipitation, pull-down assay, and immunostaining. Further mapping showed that the ABD and EF domains of actinin 4 were interaction sites. This interaction is independent of PKA phosphorylation. Knockdown of actinin 4 significantly decreased the activities of L-type calcium channels. Our study revealed a new aspect of the mechanisms by which the forskolin activation of adenylyl cyclase - cAMP cascade regulates the L-type calcium channel in osteoblast cells, besides the PKA mediated phosphorylation of the channel subunits. These data provide insight into the important role of interconnection among adenylyl cyclase, cAMP, PKA, the actin cytoskeleton, and the channel proteins in the regulation of voltage-dependent L-type calcium channels in osteoblast cells. PMID:25902045

  18. Differential activation of the HCO3− conductance through the cystic fibrosis transmembrane conductance regulator anion channel by genistein and forskolin in murine duodenum

    PubMed Central

    Tuo, Biguang; Wen, Guorong; Seidler, Ursula

    2009-01-01

    Background and purpose: Many cystic fibrosis (CF)-associated mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channels affect CFTR-activated HCO3− transport more than Cl− transport. Targeting the CFTR HCO3− conductance, if possible, may therefore be of major therapeutic benefit. In the present study, we examined the effects of genistein and forskolin on duodenal mucosal HCO3− and Cl− secretion. Experimental approach: Murine duodenal mucosal HCO3− and Cl− secretions were examined in vitro in Ussing chambers by the pH stat and short circuit current (Isc) techniques. Key results: Genistein markedly stimulated duodenal HCO3− secretion and Isc in a dose-dependent manner in CFTR wild-type mice, but not in CFTR null mice. CFTRinh-172, a highly specific CFTR inhibitor, inhibited genistein-stimulated duodenal HCO3− secretion and Isc in wild-type mice. Genistein induced 59% net HCO3− increase and 123% net Isc increase over basal value, whereas forskolin, an activator of adenylate cyclase, induced 94% net HCO3− increase and 507% net Isc increase, indicating that, compared with forskolin, genistein induced a relatively high HCO3−/Isc ratio. Further data showed that CFTR HCO3−/Cl− conductance ratio was 1.05 after genistein stimulation, whereas after forskolin stimulation, the CFTR HCO3−/Cl− conductance ratio was 0.27. Conclusions and implications: Genistein stimulates duodenal HCO3− and Cl− secretion through CFTR, and has a relatively high selectivity for the CFTR HCO3− conductance, compared with forskolin. This may indicate the feasibility of selective targeting of the HCO3− conductance of the CFTR channels. PMID:19788494

  19. Lipoic acid stimulates cAMP production via G protein coupled receptor dependent and independent mechanisms

    PubMed Central

    Salinthone, Sonemany; Schillace, Robynn V.; Tsang, Catherine; Regan, John W.; Bourdette, Dennis N.; Carr, Daniel W.

    2010-01-01

    Lipoic acid (LA) is a naturally occurring fatty acid that exhibits anti-oxidant and anti-inflammatory properties and is being pursued as a therapeutic for many diseases including multiple sclerosis, diabetic polyneuropathy and Alzheimer’s disease. We previously reported on the novel finding that racemic LA (50:50 mixture of R and S LA) stimulates cAMP production, activates prostanoid EP2 and EP4 receptors and adenylyl cyclases (AC), and suppresses activation and cytotoxicity in NK cells. In this study we present evidence that furthers our understanding of the mechanisms of action of LA. Using various LA derivatives, dihydrolipoic acid (DHLA), S,S-dimethyl lipoic acid (DMLA) and lipoamide (LPM), we discovered that only LA is capable of stimulating cAMP production in NK cells. Furthermore, there is no difference in cAMP production after stimulation with either R-LA, S-LA or racemic LA. Competition and synergistic studies indicate that LA may also activate AC independent of the EP2 and EP4 receptors. Pretreatment of PBMCc with KH7 (a specific peptide inhibitor of soluble AC) and the calcium inhibitor (Bapta) prior to LA treatment resulted in reduced cAMP levels, suggesting that soluble AC and calcium signaling mediate LA stimulation of cAMP production. In addition, pharmacological inhibitor studies demonstrate that LA also activates other G- protein coupled receptors, including histamine and adenosine, but not the beta adrenergic receptors. These novel findings provide information to better understand the mechanisms of action of LA, which can help facilitate the use of LA as a therapeutic for various diseases. PMID:21036588

  20. Luteinizing hormone stimulates mammalian target of rapamycin signaling in bovine luteal cells via pathways independent of AKT and mitogen-activated protein kinase: modulation of glycogen synthase kinase 3 and AMP-activated protein kinase.

    PubMed

    Hou, Xiaoying; Arvisais, Edward W; Davis, John S

    2010-06-01

    LH stimulates the production of cAMP in luteal cells, which leads to the production of progesterone, a hormone critical for the maintenance of pregnancy. The mammalian target of rapamycin (MTOR) signaling cascade has recently been examined in ovarian follicles where it regulates granulosa cell proliferation and differentiation. This study examined the actions of LH on the regulation and possible role of the MTOR signaling pathway in primary cultures of bovine corpus luteum cells. Herein, we demonstrate that activation of the LH receptor stimulates the phosphorylation of the MTOR substrates ribosomal protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E binding protein 1. The actions of LH were mimicked by forskolin and 8-bromo-cAMP. LH did not increase AKT or MAPK1/3 phosphorylation. Studies with pathway-specific inhibitors demonstrated that the MAPK kinase 1 (MAP2K1)/MAPK or phosphatidylinositol 3-kinase/AKT signaling pathways were not required for LH-stimulated MTOR/S6K1 activity. However, LH decreased the activity of glycogen synthase kinase 3Beta (GSK3B) and AMP-activated protein kinase (AMPK). The actions of LH on MTOR/S6K1 were mimicked by agents that modulated GSK3B and AMPK activity. The ability of LH to stimulate progesterone secretion was not prevented by rapamycin, a MTOR inhibitor. In contrast, activation of AMPK inhibited LH-stimulated MTOR/S6K1 signaling and progesterone secretion. In summary, the LH receptor stimulates a unique series of intracellular signals to activate MTOR/S6K1 signaling. Furthermore, LH-directed changes in AMPK and GSK3B phosphorylation appear to exert a greater impact on progesterone synthesis in the corpus luteum than rapamycin-sensitive MTOR-mediated events.

  1. Effect of PGE2 on thymocyte proliferation induced by Con A or IL-4 + PMA.

    PubMed

    Daculsi, R; Vaillier, D; Bezian, J H; Gualde, N

    1993-02-01

    Prostaglandin E2 (PGE2) is known to inhibit peripheral T-lymphocyte and thymocyte proliferation activated by antigens, mitogens or anti-CD3 antibodies. In this study, we have investigated, the effect of PGE2 on thymocyte proliferation induced by the combination of IL-4 plus PMA. PGE2 inhibits the proliferation of thymocytes activated by ConA, whatever the culture period; in contrast PGE2 shifts the kinetics of thymocyte proliferation after stimulation by IL-4 plus PMA, but does not sustain the proliferation beyond day 3. This effect depends upon cell density, IL-4 concentration and on the time that PGE2 is added to the culture. By use of the cAMP inducer, forskolin, or a cAMP analog, db-cAMP, we observed the same results, PGE2 increases the proliferation of CD8+ corticoresistant thymocytes (CRT) activated by IL-4 plus PMA, but inhibits that of CD4+ CRT. These results suggest that PGE2 can regulate thymocyte proliferation differently according to the activation pathway and the thymic subpopulations.

  2. Zinc-mediated attenuation of hippocampal mossy fiber long-term potentiation induced by forskolin.

    PubMed

    Ando, Masaki; Oku, Naoto; Takeda, Atsushi

    2010-11-01

    The rise in presynaptic calcium induced by high-frequency stimulation activates the calcium-calmodulin-sensitive adenylyl cyclase (AC) 1 followed by the induction of long-term potentiation (LTP) at the hippocampal mossy fiber-CA3 synapse. Zinc is released with glutamate from mossy fiber terminals. However, the role of the zinc in mossy fiber LTP is controversial. In the present study, the mechanism of zinc-mediated attenuation of mossy fiber LTP was examined in that induced by forskolin, an AC activator. Mossy fiber LTP induced by tetanic stimulation (100 Hz for 1 s) was attenuated in the presence of 5 microM ZnCl(2), whereas that induced by forskolin under test stimulation (0.1 Hz) was not attenuated. Forskolin-induced mossy fiber LTP was attenuated by perfusion with 100 microM ZnCl(2) prior to the induction. However, the zinc (100 microM) pre-perfusion did not attenuate mossy fiber LTP induced by Sp-cAMPS, an activator of protein kinase A, under test stimulation. Zinc is necessary to be taken up into mossy fiber boutons for effectively inhibiting AC activity. In hippocampal slices labeled with ZnAF-2 DA, a membrane-permeable zinc indicator, intracellular ZnAF-2 signal was increased during tetanic stimulation in the presence of 5 microM ZnCl(2), but not under test stimulation. Intracellular ZnAF-2 signal was increased under test stimulation in the presence of 100 microM ZnCl(2). These results suggest that zinc taken up into mossy fibers attenuates forskolin-induced mossy fiber LTP via inhibition of AC activity. The significance of endogenous zinc uptake by mossy fibers is discussed focused on tetanus-induced mossy fiber LTP. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Effects of chlorogenic acid on carbachol-induced contraction of mouse urinary bladder.

    PubMed

    Kaneda, Takeharu; Sasaki, Noriyasu; Urakawa, Norimoto; Shimizu, Kazumasa

    2018-01-01

    Chlorogenic acid (CGA) is a polyphenol found in coffee and medicinal herbs such as Lonicera japonica. In this study, the effect of CGA-induced relaxation on carbachol (CCh)-induced contraction of mouse urinary bladder was investigated. CGA (30-300 μg/ml) inhibited CCh- or U46619-induced contraction in a concentration-dependent manner. SQ22536 (adenylyl cyclase inhibitor) recovered CGA-induced relaxation of CCh-induced contraction; however, ODQ (guanylyl cyclase inhibitor) did not have the same effect. In addition, 3-isobutyl-1-methylxanthine (IBMX) enhanced CGA-induced relaxation; however, forskolin or sodium nitroprusside did not have the same effect. Moreover, Ro 20-1724, a selective phosphodiesterase (PDE) 4 inhibitor, enhanced CGA-induced relaxation, but vardenafil, a selective PDE5 inhibitor, did not have the same effect. In the presence of CCh, CGA increased cyclic adenosine monophosphate (cAMP) level, whereas SQ22536 inhibited the increase of cAMP levels. Moreover, higher cAMP levels were obtained with CGA plus IBMX treatment than the total cAMP levels obtained with separate CGA and IBMX treatments. In conclusion, these results suggest that CGA inhibited CCh-induced contraction of mouse urinary bladder by partly increasing cAMP levels via adenylyl cyclase activation. Copyright © 2018 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  4. Attenuation of tumor necrosis factor-induced endothelial cell cytotoxicity and neutrophil chemiluminescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, H.; Crowley, J.J.; Chan, J.C.

    Our laboratory has previously shown that the administration of tumor necrosis factor (TNF), a cytokine produced by activated mononuclear cells, to guinea pigs produces a syndrome similar to gram-negative sepsis or ARDS. Pentoxifylline (PTX), a methylxanthine, protects against TNF-induced and sepsis-induced acute lung injury in vivo. We now report on in vitro cellular studies of PMN-mediated cellular injury and its attenuation. We studied TNF-induced bovine pulmonary artery endothelial cell (EC) cytotoxicity both with and without PMN. A 51Cr release assay was used to measure EC damage. Further, we investigated PMN function in response to TNF by measuring chemiluminescence. Agents thatmore » attenuate EC damage and PMN activation were evaluated in the above assays. Results revealed that TNF causes EC injury (p less than 0.05) and PMN increase TNF-induced EC injury. Furthermore, PTX, aminophylline (AMPH), caffeine, and forskolin attenuate TNF-induced EC cytotoxicity only in the presence of PMN (p less than 0.05). Of interest, dibutyryl cAMP (DBcAMP) protects EC from TNF-induced injury both with and without PMN. Agents that may increase cAMP levels in PMN (PTX, DBcAMP, forskolin, isobutyl methylxanthine, and terbutaline) significantly attenuate TNF-induced PMN chemiluminescence (p less than 0.05). We conclude that TNF causes EC damage and PMN increase this damage. Furthermore, PTX, AMPH, caffeine, and forskolin can attenuate TNF-induced EC injury in the presence of PMN, whereas DBcAMP attenuates TNF-induced EC injury with and without PMN. In addition, agents that may increase intracellular cAMP levels in PMN can attenuate TNF-induced PMN chemiluminescence. Thus, these agents likely attenuate TNF-induced PMN-mediated EC injury through their inhibitory effects on PMN.« less

  5. Activation of cAMP-dependent signaling pathway induces mouse organic anion transporting polypeptide 2 expression.

    PubMed

    Chen, Chuan; Cheng, Xingguo; Dieter, Matthew Z; Tanaka, Yuji; Klaassen, Curtis D

    2007-04-01

    Rodent Oatp2 is a hepatic uptake transporter for such compounds as cardiac glycosides. In the present study, we found that fasting resulted in a 2-fold induction of Oatp2 expression in liver of mice. Because the cAMP-protein kinase A (PKA) signaling pathway is activated during fasting, the role of this pathway in Oatp2 induction during fasting was examined. In Hepa-1c1c7 cells, adenylyl cyclase activator forskolin as well as two cellular membrane-permeable cAMP analogs, dibutyryl cAMP and 8-bromo-cAMP, induced Oatp2 mRNA expression in a time- and dose-dependent manner. These three chemicals induced reporter gene activity in cells transfected with a luciferase reporter gene construct containing a 7.6-kilobase (kb) 5'-flanking region of mouse Oatp2. Transient transfection of cells with 5'-deletion constructs derived from the 7.6-kb Oatp2 promoter reporter gene construct, as well as 7.6-kb constructs in which a consensus cAMP response element (CRE) half-site CGTCA (-1808/-1804 bp) was mutated or deleted, confirms that this CRE site was required for the induction of luciferase activity by forskolin. Luciferase activity driven by the Oatp2 promoter containing this CRE site was induced in cells cotransfected with a plasmid encoding the protein kinase A catalytic subunit. Cotransfection of cells with a plasmid encoding the dominant-negative CRE binding protein (CREB) completely abolished the inducibility of the reporter gene activity by forskolin. In conclusion, induction of Oatp2 expression in liver of fasted mice may be caused by activation of the cAMP-dependent signaling pathway, with the CRE site (-1808/-1804) and CREB being the cis- and trans-acting factors mediating the induction, respectively.

  6. Expression of aquaporin 1 and 5 and their regulation by ovarian hormones, arachidonic acid, forskolin and cAMP during implantation in pigs.

    PubMed

    Skowronska, A; Mlotkowska, P; Majewski, M; Nielsen, S; Skowronski, M T

    2016-11-08

    Aquaporin proteins (AQPs) are a family of channels expressed in numerous mammalian tissues, where they play a fundamental role in regulating water transport across cell membranes. Based on reports that AQPs are present in the reproductive system and participate in reproductive processes, our aim was to investigate the effect of progesterone (P(4)), estradiol (E(2)), oxytocin (OT), arachidonic acid (AA), forskolin (FSK) and cyclic adenosine monophosphate (cAMP) on AQP1 and AQP5 expression at mRNA and protein levels in porcine uterine explants from Days 14-16 of gestation in order to determine if they play a role in implantation period in pigs. Quantitative real time PCR and Western-blot analysis revealed that the uterine explants treated with FSK and cAMP produce delayed, but long-term effects on AQP1 abundance (24 h) while AQP5 had a rapid and sustained response to FSK and cAMP in protein content (3 and 24 h). AA increases gene and protein content of AQP1 after longer exposition whereas AQP5 increases after 3 h only at the protein level. Both AQPs potentially remains under control of steroid hormones. OT has been shown to increase AQP1, and decrease AQP5 mRNA, without visible changes in protein content. P(4), E(2), AA, FSK and cAMP caused the appearance of AQP5 expression in the basolateral plasma membrane of the epithelial cells. The staining represents most likely AQP5 functioning mechanism for both absorption and reabsorption across the glandular epithelium.

  7. Minocycline inhibits D-amphetamine-elicited action potential bursts in a central snail neuron.

    PubMed

    Chen, Y-H; Lin, P-L; Wong, R-W; Wu, Y-T; Hsu, H-Y; Tsai, M-C; Lin, M-J; Hsu, Y-C; Lin, C-H

    2012-10-25

    Minocycline is a second-generation tetracycline that has been reported to have powerful neuroprotective properties. In our previous studies, we found that d-amphetamine (AMPH) elicited action potential bursts in an identifiable RP4 neuron of the African snail, Achatina fulica Ferussac. This study sought to determine the effects of minocycline on the AMPH-elicited action potential pattern changes in the central snail neuron, using the two-electrode voltage clamping method. Extracellular application of AMPH at 300 μM elicited action potential bursts in the RP4 neuron. Minocycline dose-dependently (300-900 μM) inhibited the action potential bursts elicited by AMPH. The inhibitory effects of minocycline on AMPH-elicited action potential bursts were restored by forskolin (50 μM), an adenylate cyclase activator, and by dibutyryl cAMP (N(6),2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate; 1mM), a membrane-permeable cAMP analog. Co-administration of forskolin (50 μM) plus tetraethylammonium chloride (TEA; 5mM) or co-administration of TEA (5mM) plus dibutyryl cAMP (1mM) also elicited action potential bursts, which were prevented and inhibited by minocycline. In addition, minocycline prevented and inhibited forskolin (100 μM)-elicited action potential bursts. Notably, TEA (50mM)-elicited action potential bursts in the RP4 neuron were not affected by minocycline. Minocycline did not affect steady-state outward currents of the RP4 neuron. However, minocycline did decrease the AMPH-elicited steady-state current changes. Similarly, minocycline decreased the effects of forskolin-elicited steady-state current changes. Pretreatment with H89 (N-[2-(p-Bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide dihydrochloride; 10 μM), a protein kinase A inhibitor, inhibited AMPH-elicited action potential bursts and decreased AMPH-elicited steady-state current changes. These results suggest that the cAMP-protein kinase A signaling pathway and the steady-state current are involved in the inhibitory effects of minocycline upon AMPH-elicited action potential bursts. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Effects of chromium(III) picolinate on cortisol and DHEAs secretion in H295R human adrenocortical cells.

    PubMed

    Kim, Beob G; Adams, Julye M; Jackson, Brian A; Lindemann, Merlin D

    2010-02-01

    Dietary chromium(III) picolinate (CrPic) effects on circulating steroid hormones have been reported in various experimental animals. However, direct effects of CrPic on adrenocortical steroidogenesis are uncertain. Therefore, the objective was to determine the effects of CrPic on cortisol and dehydroepiandrosterone sulfate (DHEAs) secretion from H295R cells. In experiment 1, a 24-h exposure to CrPic (0 to 200 microM) had both linear (p < 0.001) and quadratic (p < 0.001) effects on cortisol secretion from forskolin-stimulated cells with the highest cortisol secretion at 0.1 microM of CrPic and the lowest at 200 microM of CrPic. In experiment 2, a 48-h exposure to CrPic (200 microM) decreased cortisol (p < 0.07) release from forskolin-stimulated cells during a 24-h collection period. In experiment 3, a 48-h exposure to CrPic (100 microM) decreased cortisol (p < 0.05) and DHEAs (p < 0.01) from forskolin-stimulated cells during a 24-h sampling period. In experiment 4, a 24-h exposure to forskolin followed by a 24-h exposure to both forskolin and CrPic (100 and 200 microM) decreased both cortisol and DHEAs secretion (p < 0.01). This study suggests that at high concentrations, CrPic inhibits aspects of steroidogenesis in agonist-stimulated adrenocortical cells.

  9. Melatonin and its precursors in Y79 human retinoblastoma cells - Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei H.; Lopez G.-Coviella, Ignacio; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    We studied the release of melatonin and the production of its precursors, 5-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for three days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine or L-DOPA markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 ceils.

  10. PKA-induced receptor activator of NF-kappaB ligand (RANKL) expression in vascular cells mediates osteoclastogenesis but not matrix calcification.

    PubMed

    Tseng, Wendy; Graham, Lucia S; Geng, Yifan; Reddy, Aneela; Lu, Jinxiu; Effros, Rita B; Demer, Linda; Tintut, Yin

    2010-09-24

    Vascular calcification is a predictor of cardiovascular mortality and is prevalent in patients with atherosclerosis and chronic renal disease. It resembles skeletal osteogenesis, and many bone cells as well as bone-related factors involved in both formation and resorption have been localized in calcified arteries. Previously, we showed that aortic medial cells undergo osteoblastic differentiation and matrix calcification both spontaneously and in response to PKA agonists. The PKA signaling pathway is also involved in regulating bone resorption in skeletal tissue by stimulating osteoblast-production of osteoclast regulating cytokines, including receptor-activator of nuclear κB ligand (RANKL) and interleukins. Therefore, we investigated whether PKA activators regulate osteoclastogenesis in aortic smooth muscle cells (SMC). Treatment of murine SMC with the PKA agonist forskolin stimulated RANKL expression at both mRNA and protein levels. Forskolin also stimulated expression of interleukin-6 but not osteoprotegerin (OPG), an inhibitor of RANKL. Consistent with these results, osteoclastic differentiation was induced when monocytic preosteoclasts (RAW264.7) were cocultured with forskolin-treated aortic SMC. Oxidized phospholipids also slightly induced RANKL expression in T lymphocytes, another potential source of RANKL in the vasculature. Because previous studies have shown that RANKL treatment alone induces matrix calcification of valvular and vascular cells, we next examined whether RANKL mediates forskolin-induced matrix calcification by aortic SMC. RANKL inhibition with OPG had little or no effect on osteoblastic differentiation and matrix calcification of aortic SMC. These findings suggest that, as in skeletal tissues, PKA activation induces bone resorptive factors in the vasculature and that aortic SMC calcification specifically induced by PKA, is not mediated by RANKL.

  11. Inhibitory mechanism of monensin on high K+-induced contraction in guniea-pig urinary bladder.

    PubMed

    Kaneda, Takeharu; Takeuchi, Mayumi; Shimizu, Kazumasa; Urakawa, Norimoto; Nakajyo, Shinjiro; Mochizuki-Kobayashi, Mariko; Ueda, Fukiko; Hondo, Ryo

    2006-02-01

    In this study, we examined the inhibitory mechanism of monensin on high K+-induced contraction in guinea-pig urinary bladder. The relaxant effect of monensin (0.001 - 10 microM) was more potent than those of NaCN (100 microM - 1 mM) and forskolin (3 - 10 microM). Monensin (0.1 microM), NaCN (300 microM), or forskolin (10 microM) inhibited high K+-induced contraction without decreasing [Ca2+]i level. Monensin and NaCN remarkably decreased creatine phosphate and ATP contents. Monensin and NaCN inhibited high K+-induced increases in flavoprotein fluorescence, which is involved in mitochondrial respiration. Forskolin increased cAMP content but monensin did not. Monensin increased Na+ content at 10 microM but not at 0.1 microM that induced maximum relaxation. In the alpha-toxin-permeabilized muscle, forskolin significantly inhibited the Ca2+-induced contraction, but monensin did not affect it. These results suggest that the relaxation mechanism of monensin in smooth muscle of urinary bladder may be an inhibition of oxidative metabolism.

  12. Photoaffinity labelling of MSH receptors on Anolis melanophores: effects of catecholamines, calcium and forskolin.

    PubMed

    Eberle, A N; Girard, J

    1985-01-01

    Photoaffinity labelling of MSH receptors on Anolis melanophores was used as a tool for studying the effects of catecholamines, calcium and forskolin on hormone-receptor interaction and receptor-adenylate cyclase coupling. Covalent attachment of photoreactive alpha-MSH to its receptor was suppressed in calcium-free buffer but was hardly influenced by catecholamines or forskolin. The longlasting signal generated by the covalent MSH-receptor complex was readily and reversibly abolished by adrenaline, noradrenaline, dopamine or clonidine or by the absence of calcium. The suppression of pigment dispersion by catecholamines was blocked by the simultaneous presence of yohimbine but not prazosin, indicating that the catecholamines antagonize the alpha-MSH signal by inhibitory action on the adenylate cyclase system through an alpha-2 receptor. Forskolin, which stimulates melanophores by direct action on the catalytic unit of the adenylate cyclase and at about the same speed as alpha-MSH, produced a slower and weaker response in the presence of noradrenaline. If MSH receptors were covalently labelled and then exposed to noradrenaline, the characteristics of the forskolin-induced response were identical to those of unlabelled cells that had not been exposed to noradrenaline. This may point to a partial restoration of receptor-adenylate cyclase coupling by forskolin. The results show that the longlasting stimulation of Anolis melanophores by photoaffinity labelling proceeds via a permanently stimulated adenylate-cyclase system whose coupling to the receptor depends on calcium and is abolished by alpha-2 receptor agonists. Calcium is also essential for hormone-receptor binding.

  13. Dopamine inhibits somatolactin gene expression in tilapia pituitary cells through the dopamine D2 receptors.

    PubMed

    Jiang, Quan; Lian, Anji; He, Qi

    2016-07-01

    Dopamine (DA) is an important neurotransmitter in the central nervous system of vertebrates and possesses key hypophysiotropic functions. Early studies have shown that DA has a potent inhibitory effect on somatolactin (SL) release in fish. However, the mechanisms responsible for DA inhibition of SL gene expression are largely unknown. To this end, tilapia DA type-1 (D1) and type-2 (D2) receptor transcripts were examined in the neurointermediate lobe (NIL) of the tilapia pituitary by real-time PCR. In tilapia, DA not only was effective in inhibiting SL mRNA levels in vivo and in vitro, but also could abolish pituitary adenylate cyclase-activating polypeptide (PACAP)- and salmon gonadotropin-releasing hormone (sGnRH)-stimulated SL gene expression at the pituitary level. In parallel studies, the specific D2 receptor agonists quinpirole and bromocriptine could mimic the DA-inhibited SL gene expression. Furthermore, the D2 receptor antagonists domperidone and (-)-sulpiride could abolish the SL response to DA or the D2 agonist quinpirole, whereas D1 receptor antagonists SCH23390 and SKF83566 were not effective in this respect. In primary cultures of tilapia NIL cells, D2 agonist quinpirole-inhibited cAMP production could be blocked by co-treatment with the D2 antagonist domperidone and the ability of forskolin to increase cAMP production was also inhibited by quinpirole. Using a pharmacological approach, the AC/cAMP pathway was shown to be involved in quinpirole-inhibited SL mRNA expression. These results provide evidence that DA can directly inhibit SL gene expression at the tilapia pituitary level via D2 receptor through the AC/cAMP-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. cAMP enhances BMP2-signaling through PKA and MKP1-dependent mechanisms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghayor, Chafik; Ehrbar, Martin; Miguel, Blanca San

    2009-04-03

    Recent studies suggest that the elevation of intracellular cyclic adenosine monophosphate (cAMP) and the activation of the protein kinase A regulate BMP-induced osteogenesis. However, the precise mechanisms underlying the enhancing effect of cAMP on BMP2 signaling were not completely revealed. In this study we investigated the effect of elevated cAMP level and PKA activation on the BMP2-induced osteoblastic differentiation in pluripotent C2C12 cells. Alkaline phosphatase activity and its mRNA were consistently induced by BMP2 treatment. The pretreatment of C2C12 cells with Forskolin, a cAMP generating agent, dbcAMP, an analogue of cAMP, or IBMX (3-isobutyl 1-methyl xanthine), and a nonspecific inhibitormore » of phosphodiesterases elicited further activation of alkaline phosphatase. Furthermore, elevated intracellular cAMP level increased BMP2-induced MKP1. On the other hand, BMP2-induced Erk phosphorylation (p44/p42) and cell proliferation were suppressed in the presence of cAMP. Thus, cAMP might enhance BMP2-induced osteoblastic differentiation by a MKP1-Erk-dependent mechanism.« less

  15. cAMP-Mediated Stimulation of Tyrosine Hydroxylase mRNA Translation Is Mediated by Polypyrimidine-Rich Sequences within Its 3′-Untranslated Region and Poly(C)-Binding Protein 2

    PubMed Central

    Xu, Lu; Sterling, Carol R.

    2009-01-01

    Tyrosine hydroxylase (TH) plays a critical role in maintaining the appropriate concentrations of catecholamine neurotransmitters in brain and periphery, particularly during long-term stress, long-term drug treatment, or neurodegenerative diseases. Its expression is controlled by both transcriptional and post-transcriptional mechanisms. In a previous report, we showed that treatment of rat midbrain slice explant cultures or mouse MN9D cells with cAMP analog or forskolin leads to induction of TH protein without concomitant induction of TH mRNA. We further showed that cAMP activates mechanisms that regulate TH mRNA translation via cis-acting sequences within its 3′-untranslated region (UTR). In the present report, we extend these studies to show that MN9D cytoplasmic proteins bind to the same TH mRNA 3′-UTR domain that is required for the cAMP response. RNase T1 mapping demonstrates binding of proteins to a 27-nucleotide polypyrimidine-rich sequence within this domain. A specific mutation within the polypyrimidine-rich sequence inhibits protein binding and cAMP-mediated translational activation. UV-cross-linking studies identify a ∼44-kDa protein as a major TH mRNA 3′-UTR binding factor, and cAMP induces the 40- to 42-kDa poly(C)-binding protein-2 (PCBP2) in MN9D cells. We show that PCBP2 binds to the TH mRNA 3′-UTR domain that participates in the cAMP response. Overexpression of PCBP2 induces TH protein without concomitant induction of TH mRNA. These results support a model in which cAMP induces PCBP2, leading to increased interaction with its cognate polypyrimidine binding site in the TH mRNA 3′-UTR. This increased interaction presumably plays a role in the activation of TH mRNA translation by cAMP in dopaminergic neurons. PMID:19620256

  16. Dynamics of β-adrenergic/cAMP signaling and morphological changes in cultured astrocytes.

    PubMed

    Vardjan, Nina; Kreft, Marko; Zorec, Robert

    2014-04-01

    The morphology of astrocytes, likely regulated by cAMP, determines the structural association between astrocytes and the synapse, consequently modulating synaptic function. β-Adrenergic receptors (β-AR), which increase cytosolic cAMP concentration ([cAMP]i ), may affect cell morphology. However, the real-time dynamics of β-AR-mediated cAMP signaling in single live astrocytes and its effect on cell morphology have not been studied. We used the fluorescence resonance energy transfer (FRET)-based cAMP biosensor Epac1-camps to study time-dependent changes in [cAMP]i ; morphological changes in primary rat astrocytes were monitored by real-time confocal microscopy. Stimulation of β-AR by adrenaline, noradrenaline, and isoprenaline, a specific agonist of β-AR, rapidly increased [cAMP]i (∼15 s). The FRET signal response, mediated via β-AR, was faster than in the presence of forskolin (twofold) and dibutyryl-cAMP (>35-fold), which directly activate adenylyl cyclase and Epac1-camps, respectively, likely due to slow entry of these agents into the cytosol. Oscillations in [cAMP]i have not been recorded, indicating that cAMP-dependent processes operate in a slow time domain. Most Epac1-camps expressing astrocytes revealed a morphological change upon β-AR activation and attained a stellate morphology within 1 h. The morphological changes exhibited a bell-shaped dependency on [cAMP]i . The 5-10% decrease in cell cross-sectional area and the 30-50% increase in cell perimeter are likely due to withdrawal of the cytoplasm to the perinuclear region and the appearance of protrusions on the surface of astrocytes. Because astrocyte processes ensheath neurons, β-AR/cAMP-mediated morphological changes can modify the geometry of the extracellular space, affecting synaptic, neuronal, and astrocyte functions in health and disease. Copyright © 2014 Wiley Periodicals, Inc.

  17. Effect of dibutyryl cyclic adenosine monophosphate on the gene expression of plasminogen activator inhibitor-1 and tissue factor in adipocytes.

    PubMed

    Taniguchi, Makoto; Ono, Naoko; Hayashi, Akira; Yakura, Yuwna; Takeya, Hiroyuki

    2011-10-01

    Hypertrophic adipocytes in obese states express the elevated levels of plasminogen activator inhibitor-1 (PAI-1) and tissue factor (TF). An increase in the intracellular concentration of cyclic adenosine monophosphate (cAMP) promotes triglyceride hydrolysis and may improve dysregulation of adipocyte metabolism. Here, we investigate the effect of dibutyryl-cAMP (a phosphodiesterase-resistant analog of cAMP) on the gene expression of PAI-1 and TF in adipocytes. Differentiated 3T3-L1 adipocytes were treated with dibutyryl-cAMP and agents that would be expected to elevate intracellular cAMP, including cilostazol (a phosphodiesterase inhibitor with anti-platelet and vasodilatory properties), isoproterenol (a beta adrenergic agonist) and forskolin (an adenylyl cyclase activator). The levels of PAI-1 and TF mRNAs were measured using real-time quantitative reverse transcription-PCR. The treatment of adipocytes with dibutyryl-cAMP resulted in the inhibition of both lipid accumulation and TF gene expression. However, PAI-1 gene expression was slightly but significantly increased by dibutyryl-cAMP. On the other hand, cilostazol inhibited the expression of PAI-1 without affecting lipid accumulation. When the adipocytes were treated with cilostazol in combination with isoproterenol or forskolin, the inhibitory effect of cilostazol on PAI-1 gene expression was counteracted, thus suggesting that inhibition by cilostazol may not be the result of intracellular cAMP accumulation by phosphodiesterase inhibition. These results suggest the implication of cAMP in regulation of the gene expression of TF and PAI-1 in adipocytes. Our findings will serve as a useful basis for further research in therapy for obesity-associated thrombosis. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. μ-Opioid Receptor Trafficking on Inhibitory Synapses in the Rat Brainstem

    PubMed Central

    Browning, Kirsteen N.; Kalyuzhny, Alexander E.; Travagli, R. Alberto

    2011-01-01

    Whole-cell recordings were made from identified gastric-projecting rat dorsal motor nucleus of the vagus (DMV) neurons. The amplitude of evoked IPSCs (eIPSCs) was unaffected by perfusion with met-enkephalin (ME) or by μ-, δ-, or κ-opioid receptor selective agonists, namely d-Ala2-N-Me-Phe4-Glycol5-enkephalin (DAMGO), cyclic [d-Pen2-d-Pen5]-enkephalin, or trans-3,4-dichloro-N-methyl-N-[2-(1-pyrolytinil)-cyclohexyl]-benzeneacetamide methane sulfonate (U50,488), respectively. Brief incubation with the adenylate cyclase activator forskolin or the nonhydrolysable cAMP analog 8-bromo-cAMP, thyrotropin releasing hormone, or cholecystokinin revealed the ability of ME and DAMGO to inhibit IPSC amplitude; this inhibition was prevented by pretreatment with the μ-opioid receptor (MOR1) selective antagonist d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH2. Conversely, incubation with the adenylate cyclase inhibitor dideoxyadenosine, with the protein kinase A (PKA) inhibitor N-[2-(p-Bromocinnamyl-amino)ethyl]-5-isoquinolinesulfonamide dihydrochloride (H89), or with the Golgi-disturbing agent brefeldin A, blocked the ability of forskolin to facilitate the inhibitory actions of ME. Immunocytochemical experiments revealed that under control conditions, MOR1 immunoreactivity (MOR1-IR) was colocalized with glutamic acid decarboxylase (GAD)-IR in profiles apposing DMV neurons only after stimulation of the cAMP–PKA pathway. Pretreatment with H89 or brefeldin A or incubation at 4°C prevented the forskolin-mediated insertion of MOR1 on GAD-IR-positive profiles. These results suggest that the cAMP–PKA pathway regulates trafficking of μ-opioid receptors into the cell surface of GABAergic nerve terminals. By consequence, the inhibitory actions of opioid peptides in the dorsal vagal complex may depend on the state of activation of brainstem vagal circuits. PMID:15317860

  19. Lipoic acid stimulates cAMP production via the EP2 and EP4 prostanoid receptors and inhibits IFN gamma synthesis and cellular cytotoxicity in NK cells

    PubMed Central

    Salinthone, Sonemany; Schillace, Robynn V.; Marracci, Gail H.; Bourdette, Dennis N.; Carr, Daniel W.

    2008-01-01

    The antioxidant lipoic acid (LA) treats and prevents the animal model of multiple sclerosis (MS), experimental autoimmune encephalomyelitis (EAE). In an effort to understand the therapeutic potential of LA in MS, we sought to define the cellular mechanisms that mediate the effects of LA on human natural killer (NK) cells, which are important in innate immunity as the first line of defense against invading pathogens and tumor cells. We discovered that LA stimulates cAMP production in NK cells in a dose-dependent manner. Studies using pharmacological inhibitors and receptor transfection experiments indicate that LA stimulates cAMP production via activation of the EP2 and EP4 prostanoid receptors and adenylyl cyclase. In addition, LA suppressed interleukin (IL)-12/IL-18 induced IFNγ secretion and cytotoxicity in NK cells. These novel findings suggest that LA may inhibit NK cell function via the cAMP signaling pathway. PMID:18562016

  20. 2-Arachidonoyl glycerol sensitizes the pars distalis and enhances forskolin-stimulated prolactin secretion in Syrian hamsters.

    PubMed

    Yasuo, Shinobu; Fischer, Claudia; Bojunga, Joerg; Iigo, Masayuki; Korf, Horst-Werner

    2014-04-01

    2-Arachidonoyl glycerol (2-AG) is a major endocannabinoid and an important regulator of neuroendocrine system. In Syrian hamster and human, we found that 2-AG is synthesized in the hypophysial pars tuberalis (PT), an interface between photoperiodic melatonin signals and neuroendocrine output pathways. The target of 2-AG produced in the PT is likely to be the pars distalis (PD). Here we demonstrate that 2-AG in combination with forskolin stimulated prolactin secretion from PD organ cultures of Syrian hamsters, whereas incubation with 2-AG alone had no effect. Forskolin-induced prolactin secretion was also significantly enhanced when cultured PD tissue was preincubated with 2-AG. The stimulatory effects of 2-AG on prolactin secretion were blocked by AM251, a selective CB1 antagonist, and were still observed in the presence of quinpirole, a D2-class dopamine receptor agonist. 2-AG also enhanced prolactin secretion in the presence of adenosine, while it had little effect when applied together with adenosine diphosphate (ADP) and adenosine triphosphate (ATP). Moreover, the effect of forskolin was mimicked by adenosine in a dose-dependent manner. In conclusion, our data suggest that 2-AG sensitizes the PD tissue to potentiate the stimulating effects of forskolin and adenosine on prolactin secretion and thus provide novel insight into the mode of action of 2-AG in the PD.

  1. cAMP-secretion coupling is impaired in diabetic GK/Par rat β-cells: a defect counteracted by GLP-1.

    PubMed

    Dolz, Manuel; Movassat, Jamileh; Bailbé, Danielle; Le Stunff, Hervé; Giroix, Marie-Hélène; Fradet, Magali; Kergoat, Micheline; Portha, Bernard

    2011-11-01

    cAMP-raising agents with glucagon-like peptide-1 (GLP-1) as the first in class, exhibit multiple actions that are beneficial for the treatment of type 2 diabetic (T2D) patients, including improvement of glucose-induced insulin secretion (GIIS). To gain additional insight into the role of cAMP in the disturbed stimulus-secretion coupling within the diabetic β-cell, we examined more thoroughly the relationship between changes in islet cAMP concentration and insulin release in the GK/Par rat model of T2D. Basal cAMP content in GK/Par islets was significantly higher, whereas their basal insulin release was not significantly different from that of Wistar (W) islets. Even in the presence of IBMX or GLP-1, their insulin release did not significantly change despite further enhanced cAMP accumulation in both cases. The high basal cAMP level most likely reflects an increased cAMP generation in GK/Par compared with W islets since 1) forskolin dose-dependently induced an exaggerated cAMP accumulation; 2) adenylyl cyclase (AC)2, AC3, and G(s)α proteins were overexpressed; 3) IBMX-activated cAMP accumulation was less efficient and PDE-3B and PDE-1C mRNA were decreased. Moreover, the GK/Par insulin release apparatus appears less sensitive to cAMP, since GK/Par islets released less insulin at submaximal cAMP levels and required five times more cAMP to reach a maximal secretion rate no longer different from W. GLP-1 was able to reactivate GK/Par insulin secretion so that GIIS became indistinguishable from that of W. The exaggerated cAMP production is instrumental, since GLP-1-induced GIIS reactivation was lost in the presence the AC blocker 2',5'-dideoxyadenosine. This GLP-1 effect takes place in the absence of any improvement of the [Ca(2+)](i) response and correlates with activation of the cAMP-dependent PKA-dependent pathway.

  2. PGE2 is a UVR-inducible autocrine factor for human melanocytes that stimulates tyrosinase activation

    PubMed Central

    Starner, Renny J.; McClelland, Lindy; Abdel-Malek, Zalfa; Fricke, Alex; Scott, Glynis

    2013-01-01

    Melanocyte proliferation, dendrite formation, and pigmentation are controlled by paracrine factors, particularly following exposure to ultraviolet radiation (UVR). Little is known about autocrine factors for melanocytes. Prostaglandins activate signaling pathways involved in growth, differentiation and apoptosis. Prostaglandin E2 (PGE2) is the most abundant prostaglandin released by keratinocytes following UVR, and stimulates the formation of dendrites in melanocytes. Synthesis of PGE2 is controlled by cPLA2, which releases arachidonic acid from membranes, and COX-2 and prostaglandin E2 synthases (PGES), which convert arachidonic acid to PGH2 and PGH2 to PGE2, respectively. In this report we show that multiple irradiations of human melanocytes with UVR stimulates tyrosinase activity, independent of expression of a functional melanocortin 1 receptor, suggesting the presence of a non-melanocortin autocrine factor. Irradiation of melanocytes activated cPLA2, the rate-limiting step in eicosanoid synthesis, and stimulated PGE2 secretion. PGE2 increased cAMP production, tyrosinase activity and proliferation in melanocytes. PGE2 binds to four distinct G-protein coupled receptors (EP1–4). We show that EP4 receptor signaling stimulates cAMP production in melanocytes. Conversely, stimulation of the EP3 receptor lowered basal cAMP levels. These data suggest that relative levels or activity of these receptors controls effects of PGE2 on cAMP in melanocytes. The data are the first to identify PGE2 as an UVR-inducible autocrine factor for melanocytes that stimulates tyrosinase activity and proliferation, and to show that EP3 and EP4 receptor signaling have opposing effects on cAMP production, a critical signaling pathway that regulates proliferation and melanogenesis in melanocytes. PMID:20500768

  3. Immune-regulatory transcriptional responses in multiple organs of Atlantic salmon after tributyltin exposure, alone or in combination with forskolin.

    PubMed

    Pavlikova, Nela; Arukwe, Augustine

    2011-01-01

    Tributyltin (TBT) is a widespread marine pollutant that influences physiological conditions of fish and other aquatic organisms. In addition to effects on reproduction, the immune system has been proposed as a possible target for TBT effects. In the present study, the effects of TBT exposure were examined on the expression of genes involved in immune system compentence in liver and head kidney of Atlantic salmon, in the presence and absence of a second-messenger activator (forskolin). Juvenile salmon were force-fed a diet containing TBT (0-solvent control, 0.1, 1, or 10 mg/kg fish) for 72 h. Consequently, fish from the control group and 10-mg/kg TBT group were exposed to the adenylate cyclase (AC) activator forskolin (200 μg/L) for 2 or 4 h. Forskolin was selected for this study because it is known to exhibit potent immune system enhancement by activating macrophages and lymphocytes. After sacrifice, liver and head kidney were sampled and transcript changes for interleukin (IL)-1β, IL-10, transforming growth factor (TGF) β, interferon (INF) α, INFγ, tumor necrosis factor (TNF) α, Mx3, and insulin-like growth factor (IGF)-1 were determined in both tissues by quantitative polymerase chain reaction (qPCR) using gene-specific primers. TBT, when given alone and also in combination with forskolin, decreased IL-1β, TNFα, IFNγ, IFNα, Mx3, and IGF-1 gene expression. In contrast, IL-10 and TGFβ transcripts were increased after TBT exposure alone and also in combination with forskolin. Generally, these effects were largely dependent on TBT dose and time of exposure when given in combination with forskolin. Overall, our findings suggest a possible immunomodulatory effect of TBT, possibly involving cAMP activation.

  4. Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury.

    PubMed

    Russo, Rossella; Adornetto, Annagrazia; Cavaliere, Federica; Varano, Giuseppe Pasquale; Rusciano, Dario; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Nucci, Carlo

    2015-01-01

    Retinal ganglion cell (RGC) death is the final event leading to visual impairment in glaucoma; therefore, identification of neuroprotective strategies able to slow down or prevent the process is one of the main challenges for glaucoma research. The purpose of this study was to evaluate the neuroprotective potential of RGC death induced by the in vivo transient increase in intraocular pressure (IOP) of a combined treatment with forskolin, homotaurine, and L-carnosine. Forskolin (7beta-acetoxy-8, 13-epoxy-1a, 6β, 9a-trihydroxy-labd-14-en-11-one) is an activator of adenylate cyclase that decreases IOP by reducing aqueous humor production and functions as a neuroprotector due to its neurotrophin-stimulating activity. Homotaurine is a natural aminosulfonate compound endowed with neuromodulatory effects, while the dipeptide L-carnosine is known for its antioxidant properties. Retinal ischemia was induced in the right eye of adult male Wistar rats by acutely increasing the IOP. Forskolin, homotaurine, and L-carnosine were intravitreally injected and RGC survival evaluated following retrograde labeling with FluoroGold. Total and phosphorylated Akt and glycogen synthase kinase-3β (GSK-3β) protein levels, as well as calpain activity, were analyzed with western blot. Protein kinase A (PKA) was inhibited by intravitreal injection of H89. A synergic neuroprotective effect on RGC survival was observed following the combined treatment with forskolin, homotaurine, and L-carnosine compared to forskolin alone. The observed neuroprotection was associated with reduced calpain activity, upregulation of phosphoinositide 3-kinase (PI3K)/Akt pathway, and inhibition of GSK-3β but was independent from PKA activation and distinct from the hypotensive effects of forskolin. A multidrug/multitarget approach, by interfering with several pathways involved in RGC degeneration, may be promising to achieve glaucoma neuroprotection.

  5. Regulation of period 1 expression in cultured rat pineal

    NASA Technical Reports Server (NTRS)

    Fukuhara, Chiaki; Dirden, James C.; Tosini, Gianluca

    2002-01-01

    The aim of the present study was to investigate the in vitro expression of Period 1 (Per1), Period 2 (Per2) and arylalkylamine N-acetyltransferase (AA-NAT) genes in the rat pineal gland to understand the mechanism(s) regulating the expression of these genes in this organ. Pineals, when maintained in vitro for 5 days, did not show circadian rhythmicity in the expression of any of the three genes monitored. Norepinephrine (NE) induced AA-NAT and Per1, whereas its effect on Per2 was negligible. Contrary to what was observed in other systems, NE stimulation did not induce circadian expression of Per1. The effect of NE on Per1 level was dose- and receptor subtype-dependent, and both cAMP and cGMP induced Per1. Per1 was not induced by repeated NE - or forskolin - stimulation. Protein synthesis was not necessary for NE-induced Per1, but it was for reduction of Per1 following NE stimulation. Per1 transcription in pinealocytes was activated by BMAL1/CLOCK. Our results indicate that important differences are present in the regulation of these genes in the mammalian pineal. Copyright 2002 S. Karger AG, Basel.

  6. Binding of (/sup 3/H)forskolin to solubilized preparations of adenylate cyclase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nelson, C.A.; Seamon, K.B.

    1988-01-01

    The binding of (/sup 3/H)forskolin to proteins solubilized from bovine brain membranes was studied by precipitating proteins with polyethylene glycol and separating (/sup 3/H)forskolin bound to protein from free (/sup 3/H)forskolin by rapid filtration. The K/sub d/ for (/sup 3/H)forskolin binding to solubilized proteins was 14 nM which was similar to that for (/sup 3/H)forskolin binding sites in membranes from rat brain and human platelets. Forskolin analogs competed for (/sup 3/H)forskolin binding sites with the same rank potency in both brain membranes and in proteins solubilized from brain membranes. (/sup 3/H)forskolin bound to proteins solubilized from membranes with a Bmaxmore » of 38 fmolmg protein which increased to 94 fmolmg protein when GppNHp was included in the binding assay. In contrast, GppNHp had no effect on (/sup 3/H)forskolin binding to proteins solubilized from membranes preactivated with GppNHp. Solubilized adenylate cyclase from non-preactivated membranes had a basal activity of 130 pmolmgmin which was increased 7-fold by GppNHp. In contrast, adenylate cyclase from preactivated membranes had a basal activity of 850 pmolmgmin which was not stimulated by GppNHp or forskolin« less

  7. Expression and regulation of aromatase cytochrome P450 in THP 1 human myeloid leukaemia cells.

    PubMed

    Jakob, F; Homann, D; Seufert, J; Schneider, D; Köhrle, J

    1995-04-28

    Aromatase cytochrome P450 mRNA and activity was strongly expressed in THP 1 myeloid leukaemia cells after treatment with phorbol-myristate-acetate (PMA) and dexamethasone, low level expression was caused by calcitriol. mRNA species of 4.0, 3.0, 2.4 and 1.1 kb size were differentially stimulated. After calcitriol-mediated differentiation (72 h, measured by CD 14 expression) mRNA expression was further enhanced by PMA (45-fold), dexamethasone (15-fold), oestradiol (3.7-fold), testosterone (2.5-fold) and androstenedione (3.5-fold). Forskolin, cAMP and follicle stimulating hormone had no stimulatory effect. Oestradiol formation from testosterone (oestradiol radioimmunoassay in culture supernatants) increased to > 2000 pg/ml/10(6) cells/24 h after PMA-stimulation, mirrored mRNA expression and was suppressed below 10% of original values in the presence of 4-OH-androstenedione. Exons I.2 and I.4 were expressed in PMA-stimulated cells only, exon I.3 in both PMA- and dexamethasone-stimulated cells. A new splicing variant was expressed after calcitriol-stimulation, which did not hybridize to an exon II-derived oligonucleotide but to an exon III-derived one. Local aromatisation of androgens into oestradiol may be important in the concerted crosstalk of cells of the monocyte/macrophage lineage with their respective tissues in inflammation and bone metabolism.

  8. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes

    PubMed Central

    Santhosh, KT; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, AJ; Dakshinamurti, S

    2011-01-01

    BACKGROUND AND PURPOSE Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor–mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. EXPERIMENTAL APPROACH We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca2+ response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. KEY RESULTS Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. CONCLUSIONS AND IMPLICATIONS TP receptor sensitivity and EC50 for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca2+ mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. PMID:21385177

  9. The ceramide-1-phosphate analogue PCERA-1 modulates tumour necrosis factor-alpha and interleukin-10 production in macrophages via the cAMP-PKA-CREB pathway in a GTP-dependent manner.

    PubMed

    Avni, Dorit; Philosoph, Amir; Meijler, Michael M; Zor, Tsaffrir

    2010-03-01

    The synthetic phospho-ceramide analogue-1 (PCERA-1) down-regulates production of the pro-inflammatory cytokine tumour necrosis factor-alpha (TNF-alpha) and up-regulates production of the anti-inflammatory cytokine interleukin-10 (IL-10) in lipopolysaccharide (LPS) -stimulated macrophages. We have previously reported that PCERA-1 increases cyclic adenosine monophosphate (cAMP) levels. The objective of this study was to delineate the signalling pathway leading from PCERA-1 via cAMP to modulation of TNF-alpha and IL-10 production. We show here that PCERA-1 elevates intra-cellular cAMP level in a guanosine triphosphate-dependent manner in RAW264.7 macrophages. The cell-permeable dibutyryl cAMP was able to mimic the effects of PCERA-1 on cytokine production, whereas 8-chloro-phenylthio-methyladenosine-cAMP, which specifically activates the exchange protein directly activated by cAMP (EPAC) but not protein kinase A (PKA), failed to mimic PCERA-1 activities. Consistently, the PKA inhibitor H89 efficiently blocked PCERA-1-driven cytokine modulation as well as PCERA-1-stimulated phosphorylation of cAMP response element binding protein (CREB) on Ser-133. Finally, PCERA-1 activated cAMP-responsive transcription of a luciferase reporter, in synergism with the phosphodiesterase (PDE)-4 inhibitor rolipram. Our results suggest that PCERA-1 activates a G(s) protein-coupled receptor, leading to elevation of cAMP, which acts via the PKA-CREB pathway to promote TNF-alpha suppression and IL-10 induction in LPS-stimulated macrophages. Identification of the PCERA-1 receptor is expected to set up a new target for development of novel anti-inflammatory drugs.

  10. Hydrogen peroxide stimulation of CFTR reveals an Epac-mediated, soluble AC-dependent cAMP amplification pathway common to GPCR signalling

    PubMed Central

    Ivonnet, P; Salathe, M; Conner, G E

    2015-01-01

    BACKGROUND AND PURPOSE H2O2 is widely understood to regulate intracellular signalling. In airway epithelia, H2O2 stimulates anion secretion primarily by activating an autocrine PGE2 signalling pathway via EP4 and EP1 receptors to initiate cytic fibrosis transmembrane regulator (CFTR)-mediated Cl− secretion. This study investigated signalling downstream of the receptors activated by H2O2. EXPERIMENTAL APPROACH Anion secretion by differentiated bronchial epithelial cells was measured in Ussing chambers during stimulation with H2O2, an EP4 receptor agonist or β2-adrenoceptor agonist in the presence and absence of inhibitors of ACs and downstream effectors. Intracellular calcium ([Ca2+]I) changes were followed by microscopy using fura–2-loaded cells and PKA activation followed by FRET microscopy. KEY RESULTS Transmembrane adenylyl cyclase (tmAC) and soluble AC (sAC) were both necessary for H2O2 and EP4 receptor-mediated CFTR activation in bronchial epithelia. H2O2 and EP4 receptor agonist stimulated tmAC to increase exchange protein activated by cAMP (Epac) activity that drives PLC activation to raise [Ca2+]i via Ca2+ store release (and not entry). Increased [Ca2+]i led to sAC activation and further increases in CFTR activity. Stimulation of sAC did not depend on changes in [HCO3−]. Ca2+-activated apical KCa1.1 channels and cAMP-activated basolateral KV7.1 channels contributed to H2O2-stimulated anion currents. A similar Epac-mediated pathway was seen following β2-adrenoceptor or forskolin stimulation. CONCLUSIONS AND IMPLICATIONS H2O2 initiated a complex signalling cascade that used direct stimulation of tmACs by Gαs followed by Epac-mediated Ca2+ crosstalk to activate sAC. The Epac-mediated Ca2+ signal constituted a positive feedback loop that amplified CFTR anion secretion following stimulation of tmAC by a variety of stimuli. PMID:25220136

  11. Role of gap junctions and protein kinase A during the development of oocyte maturational competence in Ayu (Plecoglossus altivelis)

    USGS Publications Warehouse

    Yamamoto, Y.; Yoshizaki, G.; Takeuchi, T.; Soyano, K.; Patino, R.

    2008-01-01

    Meiotic resumption in teleost oocytes is induced by a maturation-inducing hormone (MIH). The sensitivity of oocytes to MIH, also known as oocyte maturational competence (OMC), is induced by LH via mechanisms that are not fully understood. A previous study of Ayu (Plecoglossus altivelis) showed the presence of functional heterologous gap junctions (GJs) between oocytes and their surrounding granulosa cells. The objectives of this study were to determine the role of ovarian GJs and of protein kinase A (PKA) during the acquisition of OMC. We examined the effects of the specific GJ inhibitor carbenoxolone (CBX) and 18??-glycyrrhetinic acid (??-GA) on the LH-(hCG)-dependent acquisition of OMC and on MIH-(17,20??-dihydroxy-4-pregnen-3-one)-dependent meiotic resumption; measured the cAMP content of ovarian follicles during the hCG-dependent acquisition of OMC; and determined the effects of PK activators and inhibitors on hCG-dependent OMC. Production of follicular cAMP increased during the hCG-dependent acquisition of OMC. Both GJ inhibitors and the PKA inhibitor H8-dihydrochloride, but not the PKC inhibitor GF109203X, suppressed the hCG-dependent acquisition of OMC in a dose-dependent manner. The PKA activator forskolin induced OMC with a similar potency to hCG. Unlike previous observations with teleosts where disruption of heterologous GJ either blocks or stimulates meiotic resumption, treatment with GJ inhibitors did not affect MIH-dependent meiotic resumption in maturationally competent follicles of Ayu. These observations suggest that ovarian GJs are essential for LH-dependent acquisition of OMC but not for MIH-dependent meiotic resumption, and that the stimulation of OMC by LH is mediated by cAMP-dependent PKA. They are also consistent with the view that a precise balance between GJ-mediated signals (positive or negative) and oocyte maturational readiness is required for hormonally regulated meiotic resumption. ?? 2007 Elsevier Inc. All rights reserved.

  12. Sucralose, an activator of the glucose-sensing receptor, increases ATP by calcium-dependent and -independent mechanisms.

    PubMed

    Li, Longfei; Ohtsu, Yoshiaki; Nakagawa, Yuko; Masuda, Katsuyoshi; Kojima, Itaru

    2016-08-31

    Sucralose is an artificial sweetener and activates the glucose-sensing receptor expressed in pancreatic β-cells. Although sucralose does not enter β-cells nor acts as a substrate for glucokinase, it induces a marked elevation of intracellular ATP ([ATP]c). The present study was conducted to identify the signaling pathway responsible for the elevation of [ATP]c induced by sucralose. Previous studies have shown that sucralose elevates cyclic AMP (cAMP), activates phospholipase C (PLC) and stimulates Ca(2+) entry by a Na(+)-dependent mechanism in MIN6 cells. The addition of forskolin induced a marked elevation of cAMP, whereas it did not affect [ATP]c. Carbachol, an activator of PLC, did not increase [ATP]c. In addition, activation of protein kinase C by dioctanoylglycerol did not affect [ATP]c. In contrast, nifedipine, an inhibitor of the voltage-dependent Ca(2+) channel, significantly reduced [ATP]c response to sucralose. Removal of extracellular Na(+) nearly completely blocked sucralose-induced elevation of [ATP]c. Stimulation of Na(+) entry by adding a Na(+) ionophore monensin elevated [ATP]c. The monensin-induced elevation of [ATP]c was only partially inhibited by nifedipine and loading of BAPTA, both of which completely abolished elevation of [Ca(2+)]c. These results suggest that Na(+) entry is critical for the sucralose-induced elevation of [ATP]c. Both calcium-dependent and -independent mechanisms are involved in the action of sucralose.

  13. Modulation of transglutaminase 2 activity in H9c2 cells by PKC and PKA signalling: a role for transglutaminase 2 in cytoprotection

    PubMed Central

    Almami, Ibtesam; Dickenson, John M; Hargreaves, Alan J; Bonner, Philip L R

    2014-01-01

    BACKGROUND AND PURPOSE Tissue transglutaminase (TG2) has been shown to mediate cell survival in many cell types. In this study, we investigated whether the role of TG2 in cytoprotection was mediated by the activation of PKA and PKC in cardiomyocyte-like H9c2 cells. EXPERIMENTAL APPROACH H9c2 cells were extracted following stimulation with phorbol-12-myristate-13-acetate (PMA) and forskolin. Transglutaminase activity was determined using an amine incorporating and a protein crosslinking assay. The presence of TG isoforms (TG1, 2, 3) was determined using Western blot analysis. The role of TG2 in PMA- and forskolin-induced cytoprotection was investigated by monitoring H2O2-induced oxidative stress in H9c2 cells. KEY RESULTS Western blotting showed TG2 >> TG1 protein expression but no detectable TG3. The amine incorporating activity of TG2 in H9c2 cells increased in a time and concentration-dependent manner following stimulation with PMA and forskolin. PMA and forskolin-induced TG2 activity was blocked by PKC (Ro 31-8220) and PKA (KT 5720 and Rp-8-Cl-cAMPS) inhibitors respectively. The PMA- and forskolin-induced increases in TG2 activity were attenuated by the TG2 inhibitors Z-DON and R283. Immunocytochemistry revealed TG2-mediated biotin-X-cadaverine incorporation into proteins and proteomic analysis identified known (β-tubulin) and novel (α-actinin) protein substrates for TG2. Pretreatment with PMA and forskolin reversed H2O2-induced decrease in MTT reduction and release of LDH. TG2 inhibitors R283 and Z-DON blocked PMA- and forskolin-induced cytoprotection. CONCLUSIONS AND IMPLICATIONS TG2 activity was stimulated via PKA- and PKC-dependent signalling pathways in H9c2 cells These results suggest a role for TG2 in cytoprotection induced by these kinases. PMID:24821315

  14. Two CGTCA motifs and a GHF1/Pit1 binding site mediate cAMP-dependent protein kinase A regulation of human growth hormone gene expression in rat anterior pituitary GC cells.

    PubMed

    Shepard, A R; Zhang, W; Eberhardt, N L

    1994-01-21

    We established the cis-acting elements which mediate cAMP responsiveness of the human growth hormone (hGH) gene in transiently transfected rat anterior pituitary tumor GC cells. Analysis of the intact hGH gene or hGH 5'-flanking DNA (5'-FR) coupled to the hGh cDNA or chloramphenicol acetyltransferase or luciferase genes, indicated that cAMP primarily stimulated hGH promoter activity. Cotransfection of a protein kinase A inhibitory protein cDNA demonstrated that the cAMP response was mediated by protein kinase A. Mutational analysis of the hGH promoter identified two core cAMP response element motifs (CGTCA) located at nucleotides -187/-183 (distal cAMP response element; dCRE) and -99/-95 (proximal cAMP response element; pCRE) and a pituitary-specific transcription factor (GHF1/Pit1) binding site at nucleotides -123/-112 (dGHF1) which were required for cAMP responsiveness. GHF1 was not a limiting factor, since overexpression of GHF1 in cotransfections increased basal but not forskolin induction levels. Gel shift analyses indicated that similar, ubiquitous, thermostable protein(s) specifically bound the pCRE and dCRE motifs. The CGTCA motif-binding factors were cAMP response element binding protein (CREB)/activating transcription factor-1 (ATF-1)-related, since the DNA-protein complex was competed by unlabeled CREB consensus oligonucleotide, specifically supershifted by antisera to CREB and ATF-1 but not ATF-2, and was bound by purified CREB with the same relative binding affinity (pCRE < dCRE < CREB) and mobility as the GC nuclear extract. UV cross-linking and Southwestern blot analyses revealed multiple DNA-protein interactions of which approximately 100- and approximately 45-kDa proteins were predominant; the approximately 45-kDa protein may represent CREB. These results indicate that CREB/ATF-1-related factors act coordinately with the cell-specific factor GHF1 to mediate cAMP-dependent regulation of hGH-1 gene transcription in anterior pituitary somatotrophs.

  15. Carbachol inhibits basal and forskolin-evoked adult rat striatal acetylcholine release.

    PubMed

    Login, I S

    1997-05-27

    Acutely dissociated adult rat striatal cholinergic neurons labeled with [3H]choline were used in a perifusion system to study muscarinic regulation of basal and forskolin-stimulated fractional [3H]acetylcholine ([3H]-ACh) efflux in the absence of synaptic modulation. Carbachol inhibited basal (40% maximal inhibition; IC50 approximately 0.7 microM) and forskolin-evoked release (75% inhibition; IC50 approximately 0.05 microM) in a concentration-dependent manner, and both carbachol actions were abolished with atropine. Thus, activation of striatal muscarinic cholinergic autoreceptors potently inhibits basal and adenylate cyclase-stimulated ACh release. Tonic inhibitory control of cholinergic activity by functional striatal circuitry apparently prevents detection of these important physiological interactions in slices or in situ.

  16. Stimulation of Electro-Olfactogram Responses in the Main Olfactory Epithelia by Airflow Depend on the Type 3 Adenylyl Cyclase

    PubMed Central

    Chen, Xuanmao; Xia, Zhengui; Storm, Daniel R.

    2012-01-01

    Cilia of olfactory sensory neurons (OSN) are the primary sensory organelles for olfaction. The detection of odorants by the main olfactory epithelium (MOE) depends on coupling of odorant receptors to the type 3 adenylyl cyclase (AC3) in olfactory cilia. We monitored the effect of airflow on electro-olfactogram (EOG) responses and found that the MOE of mice can sense mechanical forces generated by airflow. The airflow-sensitive EOG response in the MOE was attenuated when cAMP was increased by odorants or by forskolin suggesting a common mechanism for airflow and odorant detection. In addition, the sensitivity to airflow was significantly impaired in the MOE from AC3−/− mice. We conclude that AC3 in the MOE is required for detecting the mechanical force of airflow, which in turn may regulate odorant perception during sniffing. PMID:23136416

  17. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii.

    PubMed

    Pateraki, Irini; Andersen-Ranberg, Johan; Jensen, Niels Bjerg; Wubshet, Sileshi Gizachew; Heskes, Allison Maree; Forman, Victor; Hallström, Björn; Hamberger, Britta; Motawia, Mohammed Saddik; Olsen, Carl Erik; Staerk, Dan; Hansen, Jørgen; Møller, Birger Lindberg; Hamberger, Björn

    2017-03-14

    Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii , in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13 R -manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13 R -manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana . The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L.

  18. The Calcium-Sensing Receptor Couples to Gαs and Regulates PTHrP and ACTH Secretion in Pituitary Cells

    PubMed Central

    Mamillapalli, Ramanaiah; Wysolmerski, John

    2013-01-01

    The calcium-sensing receptor (CaR) is a G-protein-coupled receptor (GPCR) that binds and signals in response to extracellular calcium and other polycations. It is highly expressed on parathyroid and kidney cells, where it participates in the regulation of systemic calcium homeostasis. It is also expressed on many other cell types and is involved in a wide array of biological functions such as cell growth and differentiation, ion transport and hormone secretion. It has been described to couple to several different G-proteins including Gαi/0, Gαq/11 and Gα12/13. Recently, it has also been shown to stimulate cAMP production by coupling to Gαs in immortalized or malignant breast cells. The CaR is expressed on cells in the anterior pituitary and had previously been described to stimulate cAMP production in these cells. In this report, we examined signaling from the CaR in murine pituitary corticotroph-derived, AtT-20 cells. We found that CaR activation led to the stimulation of cAMP production, and PTHrP and ACTH secretion from these cells. Furthermore, manipulation of cAMP levels was able to modulate PTHrP and ACTH secretion independent of changes in extracellular calcium. Finally, we demonstrated that the CaR couples to Gαs in AtT-20 cells. Therefore, in pituitary corticotroph-like cells, as in breast cancer cells, the CaR utilizes Gαs and activates cAMP production to stimulate hormone secretion. PMID:20032198

  19. Pigment Translocation in Caridean Shrimp Chromatophores: Receptor Type, Signal Transduction, Second Messengers, and Cross Talk Among Multiple Signaling Cascades.

    PubMed

    Milograna, Sarah Ribeiro; Ribeiro, Márcia Regina; Bell, Fernanda Tinti; McNamara, John Campbell

    2016-11-01

    Pigment aggregation in shrimp chromatophores is triggered by red pigment concentrating hormone (RPCH), a neurosecretory peptide whose plasma membrane receptor may be a G-protein coupled receptor (GPCR). While RPCH binding activates the Ca 2+ /cGMP signaling cascades, a role for cyclic AMP (cAMP) in pigment aggregation is obscure, as are the steps governing Ca 2+ release from the smooth endoplasmic reticulum (SER). A role for the antagonistic neuropeptide, pigment dispersing homone (α-PDH) is also unclear. In red, ovarian chromatophores from the freshwater shrimp Macrobrachium olfersi, we show that a G-protein antagonist (AntPG) strongly inhibits RPCH-triggered pigment aggregation, suggesting that RPCH binds to a GPCR, activating an inhibitory G-protein. Decreasing cAMP levels may cue pigment aggregation, since cytosolic cAMP titers, when augmented by cholera toxin, forskolin or vinpocentine, completely or partially impair pigment aggregation. Triggering opposing Ca 2+ /cGMP and cAMP cascades by simultaneous perfusion with lipid-soluble cyclic nucleotide analogs induces a "tug-of-war" response, pigments aggregating in some chromatosomes with unpredictable, oscillatory movements in others. Inhibition of cAMP-dependent protein kinase accelerates aggregation and reduces dispersion velocities, suggesting a role in phosphorylation events, possibly regulating SER Ca 2+ release and pigment aggregation. The second messengers IP 3 and cADPR do not stimulate SER Ca 2+ release. α-PDH does not sustain pigment dispersion, suggesting that pigment translocation in caridean chromatophores may be regulated solely by RPCH, since PDH is not required. We propose a working hypothesis to further unravel key steps in the mechanisms of pigment translocation within crustacean chromatophores that have remained obscure for nearly a century. © 2016 Wiley Periodicals, Inc.

  20. Phorbol esters alter adenylate cyclase responses to vasoactive intestinal peptide and forskolin in the GH cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Summers, S.; Florio, T.; Cronin, M.

    1986-05-01

    Activation of protein kinase C with phorbol ester modifies cyclic AMP production in several anterior pituitary cell systems. In the GH cell line from a rat pituitary tumor, exposure to phorbol 12-myristate 13-acetate (PMA: 100 nM) for 30 minutes significantly reduces vasoactive intestinal peptide (VIP: 100 nM) stimulated adenylate cyclase (AC) activity in subsequent membrane preparations to 62 + 4% of control (n = 6 independent studies). In contrast, these same membrane preparations respond to forskolin (1 ..mu..M) with significantly more activity, 130 +/- 6% of controls (n = 6 independent studies). Finally, phorbol ester does not block an inhibitorymore » hormone input into the AC system; somatostatin (100 nM) reduction of VIP-stimulated AC activity is not significantly different in membrane preparations from PMA treated and control cells (n = 3 independent studies). These other findings lead the authors to propose that protein kinase C can modify several sites in the AC complex in anterior pituitary cells.« less

  1. Gene Expression Analysis of Forskolin Treated Basilar Papillae Identifies MicroRNA181a as a Mediator of Proliferation

    PubMed Central

    Frucht, Corey S.; Uduman, Mohamed; Duke, Jamie L.; Kleinstein, Steven H.; Santos-Sacchi, Joseph; Navaratnam, Dhasakumar S.

    2010-01-01

    Background Auditory hair cells spontaneously regenerate following injury in birds but not mammals. A better understanding of the molecular events underlying hair cell regeneration in birds may allow for identification and eventually manipulation of relevant pathways in mammals to stimulate regeneration and restore hearing in deaf patients. Methodology/Principal Findings Gene expression was profiled in forskolin treated (i.e., proliferating) and quiescent control auditory epithelia of post-hatch chicks using an Affymetrix whole-genome chicken array after 24 (n = 6), 48 (n = 6), and 72 (n = 12) hours in culture. In the forskolin-treated epithelia there was significant (p<0.05; >two-fold change) upregulation of many genes thought to be relevant to cell cycle control and inner ear development. Gene set enrichment analysis was performed on the data and identified myriad microRNAs that are likely to be upregulated in the regenerating tissue, including microRNA181a (miR181a), which is known to mediate proliferation in other systems. Functional experiments showed that miR181a overexpression is sufficient to stimulate proliferation within the basilar papilla, as assayed by BrdU incorporation. Further, some of the newly produced cells express the early hair cell marker myosin VI, suggesting that miR181a transfection can result in the production of new hair cells. Conclusions/Significance These studies have identified a single microRNA, miR181a, that can cause proliferation in the chicken auditory epithelium with production of new hair cells. PMID:20634979

  2. Escherichia coli Heat-Stable Enterotoxin Mediates Na+/H+ Exchanger 4 Inhibition Involving cAMP in T84 Human Intestinal Epithelial Cells.

    PubMed

    Beltrán, Ana R; Carraro-Lacroix, Luciene R; Bezerra, Camila N A; Cornejo, Marcelo; Norambuena, Katrina; Toledo, Fernando; Araos, Joaquín; Pardo, Fabián; Leiva, Andrea; Sanhueza, Carlos; Malnic, Gerhard; Sobrevia, Luis; Ramírez, Marco A

    2015-01-01

    The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF-preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 μmol/L STa (30 minutes), 25 μmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 μmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 μmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 μmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (JH+) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and JH+ (~63%), without altering basal pHi (range 7.144-7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and JH+ was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa-decreased dpHi/dt and JH+ was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function promoting human diarrhoea.

  3. Escherichia coli Heat-Stable Enterotoxin Mediates Na+/H+ Exchanger 4 Inhibition Involving cAMP in T84 Human Intestinal Epithelial Cells

    PubMed Central

    Beltrán, Ana R.; Carraro-Lacroix, Luciene R.; Bezerra, Camila N. A.; Cornejo, Marcelo; Norambuena, Katrina; Toledo, Fernando; Araos, Joaquín; Pardo, Fabián; Leiva, Andrea; Sanhueza, Carlos; Malnic, Gerhard; Sobrevia, Luis; Ramírez, Marco A.

    2015-01-01

    The enterotoxigenic Escherichia coli strains lead to diarrhoea in humans due to heat-labile and heat-stable (STa) enterotoxins. STa increases Cl-release in intestinal cells, including the human colonic carcinoma T84 cell line, involving increased cGMP and membrane alkalization due to reduced Na+/H+ exchangers (NHEs) activity. Since NHEs modulate intracellular pH (pHi), and NHE1, NHE2, and NHE4 are expressed in T84 cells, we characterized the STa role as modulator of these exchangers. pHi was assayed by the NH4Cl pulse technique and measured by fluorescence microscopy in BCECF–preloaded cells. pHi recovery rate (dpHi/dt) was determined in the absence or presence of 0.25 μmol/L STa (30 minutes), 25 μmol/L HOE-694 (concentration inhibiting NHE1 and NHE2), 500 μmol/L sodium nitroprusside (SNP, spontaneous nitric oxide donor), 100 μmol/L dibutyryl cyclic GMP (db-cGMP), 100 nmol/L H89 (protein kinase A inhibitor), or 10 μmol/L forskolin (adenylyl cyclase activator). cGMP and cAMP were measured in cell extracts by radioimmunoassay, and buffering capacity (ßi) and H+ efflux (J H +) was determined. NHE4 protein abundance was determined by western blotting. STa and HOE-694 caused comparable reduction in dpHi/dt and J H + (~63%), without altering basal pHi (range 7.144–7.172). STa did not alter ßi value in a range of 1.6 pHi units. The dpHi/dt and J H + was almost abolished (~94% inhibition) by STa + HOE-694. STa effect was unaltered by db-cGMP or SNP. However, STa and forskolin increased cAMP level. STa–decreased dpHi/dt and J H + was mimicked by forskolin, and STa + HOE-694 effect was abolished by H89. Thus, incubation of T84 cells with STa results in reduced NHE4 activity leading to a lower capacity of pHi recovery requiring cAMP, but not cGMP. STa effect results in a causal phenomenon (STa/increased cAMP/increased PKA activity/reduced NHE4 activity) ending with intracellular acidification that could have consequences in the gastrointestinal cells function promoting human diarrhoea. PMID:26713849

  4. Cyclic AMP and alkaline pH downregulate carbonic anhydrase 2 in mouse fibroblasts.

    PubMed

    Mardones, Pablo; Chang, Jung Chin; Oude Elferink, Ronald P J

    2014-06-01

    The hydration of CO2 catalyzed by the ubiquitous carbonic anhydrase 2 (Ca2) is central for bicarbonate transport, bone metabolism and acid-base homeostasis in metazoans. There is evidence that in some tissues Ca2 expression can be acutely induced by cAMP, whereas in other cell types it is unresponsive to cAMP-mediated transcriptional activation. We isolated fibroblasts from wild type and mice lacking the ubiquitous chloride/bicarbonate exchanger (Ae2a,b(-/-) mice). In these cells the regulation of carbonic anhydrase 2 by cAMP was studied. We show that Ca2 expression is strongly inhibited by chronic incubation with dibutyryl-cAMP, forskolin or alkaline pH in cultured mouse fibroblasts. Furthermore, fibroblasts obtained from anion exchanger 2 deficient (Ae2a,b(-/-)) mice, which display intracellular alkalosis and increased cAMP production, express less than 10% of control Ca2 mRNA and protein. Surprisingly, inhibition of the bicarbonate-sensitive soluble adenylyl cyclase (sAC) was found to reduce CA2 expression instead of increasing it. CA2 expression is strongly regulated by intracellular pH and by cAMP, suggesting a role for soluble adenylyl cyclase. Regulation occurs in opposite directions which may be explained by an incoherent feedforward loop consisting of activation by pCREB and repression by ICER. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Total biosynthesis of the cyclic AMP booster forskolin from Coleus forskohlii

    PubMed Central

    Pateraki, Irini; Andersen-Ranberg, Johan; Jensen, Niels Bjerg; Wubshet, Sileshi Gizachew; Heskes, Allison Maree; Forman, Victor; Hallström, Björn; Hamberger, Britta; Motawia, Mohammed Saddik; Olsen, Carl Erik; Staerk, Dan; Hansen, Jørgen; Møller, Birger Lindberg; Hamberger, Björn

    2017-01-01

    Forskolin is a unique structurally complex labdane-type diterpenoid used in the treatment of glaucoma and heart failure based on its activity as a cyclic AMP booster. Commercial production of forskolin relies exclusively on extraction from its only known natural source, the plant Coleus forskohlii, in which forskolin accumulates in the root cork. Here, we report the discovery of five cytochrome P450s and two acetyltransferases which catalyze a cascade of reactions converting the forskolin precursor 13R-manoyl oxide into forskolin and a diverse array of additional labdane-type diterpenoids. A minimal set of three P450s in combination with a single acetyl transferase was identified that catalyzes the conversion of 13R-manoyl oxide into forskolin as demonstrated by transient expression in Nicotiana benthamiana. The entire pathway for forskolin production from glucose encompassing expression of nine genes was stably integrated into Saccharomyces cerevisiae and afforded forskolin titers of 40 mg/L. DOI: http://dx.doi.org/10.7554/eLife.23001.001 PMID:28290983

  6. Effects of forskolin on cerebral blood flow: implications for a role of adenylate cyclase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysham, D.G.; Brotherton, A.F.; Heistad, D.D.

    1986-11-01

    We have studied cerebral vascular effects of forskolin, a drug which stimulates adenylate cyclase and potentiates dilator effects of adenosine in other vascular beds. Our goals were to determine whether forskolin is a cerebral vasodilator and whether it potentiates cerebral vasodilator responses to adenosine. We measured cerebral blood flow with microspheres in anesthetized rabbits. Forskolin (10 micrograms/kg per min) increased blood flow (ml/min per 100 gm) from 39 +/- 5 (mean +/- S.E.) to 56 +/- 9 (p less than 0.05) in cerebrum, and increased flow to myocardium and kidney despite a decrease in mean arterial pressure. Forskolin did notmore » alter cerebral oxygen consumption, which indicates that the increase in cerebral blood flow is a direct vasodilator effect and is not secondary to increased metabolism. We also examined effects of forskolin on the response to infusion of adenosine. Cerebral blood flow was measured during infusion of 1-5 microM/min adenosine into one internal carotid artery, under control conditions and during infusion of forskolin at 3 micrograms/kg per min i.v. Adenosine alone increased ipsilateral cerebral blood flow from 32 +/- 3 to 45 +/- 5 (p less than 0.05). Responses to adenosine were not augmented during infusion of forskolin. We conclude that forskolin is a direct cerebral vasodilator and forskolin does not potentiate cerebral vasodilator responses to adenosine.« less

  7. Butyric acid regulates progesterone and estradiol secretion via cAMP signaling pathway in porcine granulosa cells.

    PubMed

    Lu, Naisheng; Li, Mengjiao; Lei, Hulong; Jiang, Xueyuan; Tu, Weilong; Lu, Yang; Xia, Dong

    2017-09-01

    Butyric acid (BA), one of the short chain fatty acids (SCFAs), has positive actions on the metabolism, inflammation, etc. However, whether it influences the reproductive physiology and if so the detail mechanism involved has not yet been determined. In this study, the porcine granulosa cells (PGCs) were treated with gradient concentrations of BA. After 24h culture, 0.05mM BA significantly stimulated the progesterone (P 4 ) secretion (P<0.05), 5mM and 10mM BA significantly inhibited the P 4 secretion (P<0.05). Simultaneously, BA up-regulated the estradiol (E 2 ) secretion in a dose dependent manner, 5mM and 10mM BA significantly promoted the E 2 level (P<0.05). In addition, 10mM BA significantly promoted the G-protein-coupled receptor 41/43 mRNA (P<0.05). Interestingly, 5mM BA treatment significantly down-regulated cyclic adenosine monophosphate (cAMP) content (P<0.05), steroidogenic acute regulatory (StAR), steroidogenic factor 1 (SF1), P450scc in the mRNA and/or protein level (P<0.05), and these actions were reversed by cAMP activator forskolin (FK). Moreover, the co-treatment of 5mM BA and bupivacaine (BPC, the cAMP inhibitor) significantly accumulated the inhibition action of BPC on cAMP, the secretion of P 4 , and the abundance of StAR mRNA (P<0.05), inhibited the up-regulation of 5mM BA on the E 2 secretion (P<0.05). Further, the Global Proteome and KEGG pathway analysis found that 5mM BA significantly up-regulated the I3LM80 proteins (P<0.05), which is involved in the steroid biosynthesis signaling pathway. 5mM BA significantly decreased the F2Z5G3 protein level (P<0.05), and the cAMP signaling pathway. In conclusion, present findings for the first time demonstrated that BA could regulate the P 4 and E 2 hormone synthesis in PGCs via the cAMP signaling pathway. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Methadone but not morphine inhibits lubiprostone-stimulated Cl- currents in T84 intestinal cells and recombinant human ClC-2, but not CFTR Cl- currents.

    PubMed

    Cuppoletti, John; Chakrabarti, Jayati; Tewari, Kirti; Malinowska, Danuta H

    2013-05-01

    In clinical trials, methadone, but not morphine, appeared to prevent beneficial effects of lubiprostone, a ClC-2 Cl(-) channel activator, on opioid-induced constipation. Effects of methadone and morphine on lubiprostone-stimulated Cl(-) currents were measured by short circuit current (Isc) across T84 cells. Whole cell patch clamp of human ClC-2 (hClC-2) stably expressed in HEK293 cells and in a high expression cell line (HEK293EBNA) as well as human CFTR (hCFTR) stably expressed in HEK293 cells was used to study methadone and morphine effects on recombinant hClC-2 and hCFTR Cl(-) currents. Methadone but not morphine inhibited lubiprostone-stimulated Isc in T84 cells with half-maximal inhibition at 100 nM. Naloxone did not affect lubiprostone stimulation or methadone inhibition of Isc. Lubiprostone-stimulated Cl(-) currents in hClC-2/HEK293 cells, but not forskolin/IBMX-stimulated Cl(-) currents in hCFTR/HEK293 cells, were inhibited by methadone, but not morphine. HEK293EBNA cells expressing hClC-2 showed time-dependent, voltage-activated, CdCl2-inhibited Cl(-) currents in the absence (control) and the presence of lubiprostone. Methadone, but not morphine, inhibited control and lubiprostone-stimulated hClC-2 Cl(-) currents with half-maximal inhibition at 100 and 200-230 nM, respectively. Forskolin/IBMX-stimulated hClC-2 Cl(-) currents were also inhibited by methadone. Myristoylated protein kinase inhibitor (a specific PKA inhibitor) inhibited forskolin/IBMX- but not lubiprostone-stimulated hClC-2 Cl(-) currents. Methadone caused greater inhibition of lubiprostone-stimulated currents added before patching (66.1 %) compared with after patching (28.7 %). Methadone caused inhibition of lubiprostone-stimulated Cl(-) currents in T84 cells and control; lubiprostone- and forskolin/IBMX-stimulated recombinant hClC-2 Cl(-) currents may be the basis for reduced efficacy of lubiprostone in methadone-treated patients.

  9. Inhibition of muscarinic-stimulated polyphosphoinositide hydrolysis and Ca2+ mobilization in cat iris sphincter smooth muscle cells by cAMP-elevating agents.

    PubMed

    Ding, K H; Husain, S; Akhtar, R A; Isales, C M; Abdel-Latif, A A

    1997-09-01

    The effects of carbachol (CCh) on inositol 1,4,5-trisphosphate (IP3) production and intracellular calcium ([Ca2+]i) mobilization, and their regulation by cAMP-elevating agents were investigated in SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. CCh produced time- and dose-dependent increases in IP3 production; the t1/2 and EC50 values were 68 s and 0.5 microM, respectively. The muscarinic agonist provoked a transient increase in [Ca2+]i which reached maximum within 77 s, and increased [Ca2+]i mobilization in a concentration-dependent manner with an EC50 of 1.4 microM. Thapsigargin, a Ca(2+)-pump inhibitor, caused a rapid rise in [Ca2+]i and subsequent addition of CCh was without effect. Both CCh-induced IP3 production and CCh-induced [Ca2+]i mobilization were more potently antagonized by 4-DAMP, an M3 muscarinic receptor antagonist, than by pirenzepine, an M1 receptor antagonist, suggesting that both responses are mediated through the M3 receptor subtype. Treatment of the cells with U73122, a phospholipase C (PLC) inhibitor, resulted in a concentration-dependent decrease in both CCh-stimulated IP3 production and [Ca2+]i mobilization. These data indicate close correlation between enhanced IP3 production and [Ca2+]i mobilization in these smooth muscle cells and suggest that the CCh-stimulated increase in [Ca2+]i could be mediated through increased IP3 production. Isoproterenol (ISO) inhibited CCh-induced IP3 production (IC50 = 80 nM) and [Ca2+]i mobilization (IC50 = 0.17 microM) in a concentration-dependent manner. Microsomal fractions isolated from SV-CISM-2 cells contained phospholipase C (PLC) which was stimulated by CCh (10 microM) and GTP gamma S (0.1 microM). Pretreatment of the cells with ISO or forskolin, 5 microM each, produced membrane fractions in which CCh-stimulated PLC activity was significantly attenuated. Furthermore, when microsomal fractions isolated from SV-CISM-2 cells were phosphorylated with Protein kinase A (PKA), the CCh- and GTP gamma S-stimulated IP3 production were significantly inhibited. It can be concluded from these studies that in SV-CISM-2 cells, activation of M3 muscarinic receptors results in stimulation of PLC-mediated PIP2 hydrolysis, generating IP3 which mobilizes [Ca2+]i. Furthermore, elevation of cAMP may inhibit IP3 production and [Ca2+]i mobilization through mechanisms involving PKA-dependent phosphorylation of PLC, G-proteins, IP3 receptor and/or IP3 metabolizing enzymes.

  10. Presynaptic Dopamine D2 Receptors Modulate [3H]GABA Release at StriatoPallidal Terminals via Activation of PLC → IP3 → Calcineurin and Inhibition of AC → cAMP → PKA Signaling Cascades.

    PubMed

    Jijón-Lorenzo, Rafael; Caballero-Florán, Isaac Hiram; Recillas-Morales, Sergio; Cortés, Hernán; Avalos-Fuentes, José Arturo; Paz-Bermúdez, Francisco Javier; Erlij, David; Florán, Benjamín

    2018-02-21

    Striatal dopamine D2 receptors activate the PLC → IP3 → Calcineurin-signaling pathway to modulate the neural excitability of En+ Medium-sized Spiny GABAergic neurons (MSN) through the regulation of L-type Ca 2+ channels. Presynaptic dopaminergic D2 receptors modulate GABA release at striatopallidal terminals through L-type Ca 2+ channels as well, but their signaling pathway is still undetermined. Since D2 receptors are Gi/o-coupled and negatively modulate adenylyl cyclase (AC), we investigated whether presynaptic D2 receptors modulate GABA release through the same signaling cascade that controls excitability in the striatum or by the inhibition of AC and decreased PKA activity. Activation of D2 receptors stimulated formation of [ 3 H]IP 1 and decreased Forskolin-stimulated [ 3 H]cAMP accumulation in synaptosomes from rat Globus Pallidus. D2 receptor activation with Quinpirole in the presence of L 745,870 decreased, in a dose-dependent manner, K + -induced [ 3 H]GABA release in pallidal slices. The effect was prevented by the pharmacological blockade of Gi/o βγ subunit effects with Gallein, PLC with U 73122, IP3 receptor activation with 4-APB, Calcineurin with FK506. In addition, when release was stimulated with Forskolin to activate AC, D2 receptors also decreased K + -induced [ 3 H]GABA release, an effect occluded with the effect of the blockade of PKA with H89 or stimulation of release with the cAMP analog 8-Br-cAMP. These data indicate that D2 receptors modulate [ 3 H]GABA release at striatopallidal terminals by activating the PLC → IP3 → Calcineurin-signaling cascade, the same one that modulates excitability in soma. Additionally, D2 receptors inhibit release when AC is active. Both mechanisms appear to converge to regulate the activity of presynaptic L-type Ca 2+ channels. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. FRET Imaging in Three-dimensional Hydrogels

    PubMed Central

    Taboas, Juan M.

    2016-01-01

    Imaging of Förster resonance energy transfer (FRET) is a powerful tool for examining cell biology in real-time. Studies utilizing FRET commonly employ two-dimensional (2D) culture, which does not mimic the three-dimensional (3D) cellular microenvironment. A method to perform quenched emission FRET imaging using conventional widefield epifluorescence microscopy of cells within a 3D hydrogel environment is presented. Here an analysis method for ratiometric FRET probes that yields linear ratios over the probe activation range is described. Measurement of intracellular cyclic adenosine monophosphate (cAMP) levels is demonstrated in chondrocytes under forskolin stimulation using a probe for EPAC1 activation (ICUE1) and the ability to detect differences in cAMP signaling dependent on hydrogel material type, herein a photocrosslinking hydrogel (PC-gel, polyethylene glycol dimethacrylate) and a thermoresponsive hydrogel (TR-gel). Compared with 2D FRET methods, this method requires little additional work. Laboratories already utilizing FRET imaging in 2D can easily adopt this method to perform cellular studies in a 3D microenvironment. It can further be applied to high throughput drug screening in engineered 3D microtissues. Additionally, it is compatible with other forms of FRET imaging, such as anisotropy measurement and fluorescence lifetime imaging (FLIM), and with advanced microscopy platforms using confocal, pulsed, or modulated illumination. PMID:27500354

  12. CREB trans-activation of disruptor of telomeric silencing-1 mediates forskolin inhibition of CTGF transcription in mesangial cells.

    PubMed

    Yu, Zhiyuan; Kong, Qun; Kone, Bruce C

    2010-03-01

    Connective tissue growth factor (CTGF) participates in diverse fibrotic processes including glomerulosclerosis. The adenylyl cyclase agonist forskolin inhibits CTGF expression in mesangial cells by unclear mechanisms. We recently reported that the histone H3K79 methyltransferase disruptor of telomeric silencing-1 (Dot1) suppresses CTGF gene expression in collecting duct cells (J Clin Invest 117: 773-783, 2007) and HEK 293 cells (J Biol Chem In press). In the present study, we characterized the involvement of Dot1 in mediating the inhibitory effect of forskolin on CTGF transcription in mouse mesangial cells. Overexpression of Dot1 or treatment with forskolin dramatically suppressed basal CTGF mRNA levels and CTGF promoter-luciferase activity, while hypermethylating H3K79 in chromatin associated with the CTGF promoter. siRNA knockdown of Dot1 abrogated the inhibitory effect of forskolin on CTGF mRNA expression. Analysis of the Dot1 promoter sequence identified a CREB response element (CRE) at -384/-380. Overexpression of CREB enhanced forskolin-stimulated Dot1 promoter activity. A constitutively active CREB mutant (CREB-VP16) strongly induced Dot1 promoter-luciferase activity, whereas overexpression of CREBdLZ-VP16, which lacks the CREB DNA-binding domain, abolished this activation. Mutation of the -384/-380 CRE resulted in 70% lower levels of Dot1 promoter activity. ChIP assays confirmed CREB binding to the Dot1 promoter in chromatin. We conclude that forskolin stimulates CREB-mediated trans-activation of the Dot1 gene, which leads to hypermethylation of histone H3K79 at the CTGF promoter, and inhibition of CTGF transcription. These data are the first to describe regulation of the Dot1 gene, and disclose a complex network of genetic and epigenetic controls on CTGF transcription.

  13. Intravitreal injection of forskolin, homotaurine, and L-carnosine affords neuroprotection to retinal ganglion cells following retinal ischemic injury

    PubMed Central

    Adornetto, Annagrazia; Cavaliere, Federica; Varano, Giuseppe Pasquale; Rusciano, Dario; Morrone, Luigi Antonio; Corasaniti, Maria Tiziana; Bagetta, Giacinto; Nucci, Carlo

    2015-01-01

    Purpose Retinal ganglion cell (RGC) death is the final event leading to visual impairment in glaucoma; therefore, identification of neuroprotective strategies able to slow down or prevent the process is one of the main challenges for glaucoma research. The purpose of this study was to evaluate the neuroprotective potential of RGC death induced by the in vivo transient increase in intraocular pressure (IOP) of a combined treatment with forskolin, homotaurine, and L-carnosine. Forskolin (7beta-acetoxy-8, 13-epoxy-1a, 6β, 9a-trihydroxy-labd-14-en-11-one) is an activator of adenylate cyclase that decreases IOP by reducing aqueous humor production and functions as a neuroprotector due to its neurotrophin-stimulating activity. Homotaurine is a natural aminosulfonate compound endowed with neuromodulatory effects, while the dipeptide L-carnosine is known for its antioxidant properties. Methods Retinal ischemia was induced in the right eye of adult male Wistar rats by acutely increasing the IOP. Forskolin, homotaurine, and L-carnosine were intravitreally injected and RGC survival evaluated following retrograde labeling with FluoroGold. Total and phosphorylated Akt and glycogen synthase kinase-3β (GSK-3β) protein levels, as well as calpain activity, were analyzed with western blot. Protein kinase A (PKA) was inhibited by intravitreal injection of H89. Results A synergic neuroprotective effect on RGC survival was observed following the combined treatment with forskolin, homotaurine, and L-carnosine compared to forskolin alone. The observed neuroprotection was associated with reduced calpain activity, upregulation of phosphoinositide 3-kinase (PI3K)/Akt pathway, and inhibition of GSK-3β but was independent from PKA activation and distinct from the hypotensive effects of forskolin. Conclusions A multidrug/multitarget approach, by interfering with several pathways involved in RGC degeneration, may be promising to achieve glaucoma neuroprotection. PMID:26167113

  14. PTH (parathyroid hormone) elevates inositol polyphosphates and diacylglycerol in a rat osteoblast-like cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Civitelli, R.; Reid, I.R.; Westbrook, S.

    1988-11-01

    Parathyroid hormone (PTH)-stimulated signal transduction through mechanisms alternate to adenosine 3{prime},5{prime}-cyclic monophosphate (cAMP) production were studied in UMR 106-01 cells, a cell line with an osteoblastic phenotype. PTH produced transient, dose-related increases in cytosolic calcium ((Ca{sup 2+}){sub i}), inositol trisphosphates, and diacylglycerol (DAG). Both inositol 1,4,5-trisphosphate (Ins-1,4,5P{sub 3}) and inositol 1,3,4-trisphosphate (Ins-1,3,4P{sub 3}) production were rapidly stimulated by PTH. Consistent with the production of Ins-1,3,4P{sub 3}, rapid stimulation of late eluting inositol tetrakisphosphate was observed. The effects on the inositol phosphates were induced rapidly, consistent with roles as signals for changes in (Ca{sup 2+}){sub i}. In saponin-permeabilized UMR 106-01 cells,more » Ins-1,4,5P{sub 3} stimulated {sup 45}Ca release from a nonmitochondrial intracellular pool. Thus the hypothesis that PTH-stimulated Ins-1,4,5P{sub 3} production initiates Ca{sup 2+} release and contributes to transient elevations of (Ca{sup 2+}){sub i} is supported. These data suggest that stimulation of cAMP production during PTH stimulation may negatively affect production of rises in (Ca{sup 2+}){sub i} during PTH stimulation. The inactivation of the inhibitory G protein of adenylate cyclase by pertussis toxin could explain its action similar to cAMP analogues. Cyclci nucleotides diminish the effects of PTH on (Ca{sup 2+}){sub i}, probably interacting on a biochemical step subsequent to or independent of Ins-1,4,5P{sub 3} release.« less

  15. Milrinone attenuates thromboxane receptor-mediated hyperresponsiveness in hypoxic pulmonary arterial myocytes.

    PubMed

    Santhosh, K T; Elkhateeb, O; Nolette, N; Outbih, O; Halayko, A J; Dakshinamurti, S

    2011-07-01

    Neonatal pulmonary hypertension (PPHN) is characterized by pulmonary vasoconstriction, due in part to dysregulation of the thromboxane prostanoid (TP) receptor. Hypoxia induces TP receptor-mediated hyperresponsiveness, whereas serine phosphorylation mediates desensitization of TP receptors. We hypothesized that prostacyclin (IP) receptor activity induces TP receptor phosphorylation and decreases ligand affinity; that TP receptor sensitization in hypoxic myocytes is due to IP receptor inactivation; and that this would be reversible by the cAMP-specific phosphodiesterase inhibitor milrinone. We examined functional regulation of TP receptors by serine phosphorylation and effects of IP receptor stimulation and protein kinase A (PKA) activity on TP receptor sensitivity in myocytes from neonatal porcine resistance pulmonary arteries after 72 h hypoxia in vitro. Ca(2+) response curves to U46619 (TP receptor agonist) were determined in hypoxic and normoxic myocytes incubated with or without iloprost (IP receptor agonist), forskolin (adenylyl cyclase activator), H8 (PKA inhibitor) or milrinone. TP and IP receptor saturation binding kinetics were measured in presence of iloprost or 8-bromo-cAMP. Ligand affinity for TP receptors was normalized in vitro by IP receptor signalling intermediates. However, IP receptor affinity was compromised in hypoxic myocytes, decreasing cAMP production. Milrinone normalized TP receptor sensitivity in hypoxic myocytes by restoring PKA-mediated regulatory TP receptor phosphorylation. TP receptor sensitivity and EC(50) for TP receptor agonists was regulated by PKA, as TP receptor serine phosphorylation by PKA down-regulated Ca(2+) mobilization. Hypoxia decreased IP receptor activity and cAMP generation, inducing TP receptor hyperresponsiveness, which was reversed by milrinone. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  16. Cannabinoid Type 1 Receptors Transiently Silence Glutamatergic Nerve Terminals of Cultured Cerebellar Granule Cells

    PubMed Central

    Ramírez-Franco, Jorge; Bartolomé-Martín, David; Alonso, Beatris; Torres, Magdalena; Sánchez-Prieto, José

    2014-01-01

    Cannabinoid receptors are the most abundant G protein-coupled receptors in the brain and they mediate retrograde short-term inhibition of neurotransmitter release, as well as long-term depression of synaptic transmission at many excitatory synapses. The induction of presynaptically silent synapses is a means of modulating synaptic strength, which is important for synaptic plasticity. Persistent activation of cannabinoid type 1 receptors (CB1Rs) mutes GABAergic terminals, although it is unclear if CB1Rs can also induce silencing at glutamatergic synapses. Cerebellar granule cells were transfected with VGLUT1-pHluorin to visualise the exo-endocytotic cycle. We found that prolonged stimulation (10 min) of cannabinoid receptors with the agonist HU-210 induces the silencing of previously active synapses. However, the presynaptic silencing induced by HU-210 is transient as it reverses after 20 min. cAMP with forskolin prevented CB1R-induced synaptic silencing, via activation of the Exchange Protein directly Activated by cAMP (Epac). Furthermore, Epac activation accelerated awakening of already silent boutons. Electron microscopy revealed that silencing was associated with synaptic vesicle (SV) redistribution within the nerve terminal, which diminished the number of vesicles close to the active zone of the plasma membrane. Finally, by combining functional and immunocytochemical approaches, we observed a strong correlation between the release capacity of the nerve terminals and RIM1α protein content, but not that of Munc13-1 protein. These results suggest that prolonged stimulation of cannabinoid receptors can transiently silence glutamatergic nerve terminals. PMID:24533119

  17. Multiple Transduction Pathways Mediate Thyrotropin Receptor Signaling in Preosteoblast-Like Cells

    PubMed Central

    Boutin, Alisa; Neumann, Susanne

    2016-01-01

    It has been shown that the TSH receptor (TSHR) couples to a number of different signaling pathways, although the Gs-cAMP pathway has been considered primary. Here, we measured the effects of TSH on bone marker mRNA and protein expression in preosteoblast-like U2OS cells stably expressing TSHRs. We determined which signaling cascades are involved in the regulation of IL-11, osteopontin (OPN), and alkaline phosphatase (ALPL). We demonstrated that TSH-induced up-regulation of IL-11 is primarily mediated via the Gs pathway as IL-11 was up-regulated by forskolin (FSK), an adenylyl cyclase activator, and inhibited by protein kinase A inhibitor H-89 and by silencing of Gαs by small interfering RNA. OPN levels were not affected by FSK, but its up-regulation was inhibited by TSHR/Gi-uncoupling by pertussis toxin. Pertussis toxin decreased p38 MAPK kinase phosphorylation, and a p38 inhibitor and small interfering RNA knockdown of p38α inhibited OPN induction by TSH. Up-regulation of ALPL expression required high doses of TSH (EC50 = 395nM), whereas low doses (EC50 = 19nM) were inhibitory. FSK-stimulated cAMP production decreased basal ALPL expression, whereas protein kinase A inhibition by H-89 and silencing of Gαs increased basal levels of ALPL. Knockdown of Gαq/11 and a protein kinase C inhibitor decreased TSH-stimulated up-regulation of ALPL, whereas a protein kinase C activator increased ALPL levels. A MAPK inhibitor and silencing of ERK1/2 inhibited TSH-stimulated ALPL expression. We conclude that TSH regulates expression of different bone markers via distinct signaling pathways. PMID:26950201

  18. Chloride secretagogues stimulate inositol phosphate formation in shark rectal gland tubules cultured in suspension

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecay, T.W.; Valentich, J.D.

    1991-03-01

    Neuroendocrine activation of transepithelial chloride secretion by shark rectal gland cells is associated with increases in cellular cAMP, cGMP, and free calcium concentrations. We report here on the effects of several chloride secretagogues on inositol phosphate formation in cultured rectal gland tubules. Vasoactive intestinal peptide (VIP), atriopeptin (AP), and ionomycin increase the total inositol phosphate levels of cultured tubules, as measured by ion exchange chromatography. Forskolin, a potent chloride secretagogue, has no effect on inositol phosphate formation. The uptake of {sup 3}H-myo-inositol into phospholipids is very slow, preventing the detection of increased levels of inositol trisphosphate. However, significant increases inmore » inositol monophosphate (IP1) and inositol biphosphate (IP2) were measured. The time course of VIP- and AP-stimulated IP1 and IP2 formation is similar to the effects of these agents on the short-circuit current responses of rectal gland monolayer cultures. In addition, aluminum fluoride, an artificial activator of guanine nucleotide-binding proteins, stimulates IP1 and IP2 formation. We conclude that rectal gland cells contain VIP and AP receptors coupled to the activation of phospholipase C. Coupling may be mediated by G-proteins. Receptor-stimulated increases in inositol phospholipid metabolism is one mechanism leading to increased intracellular free calcium concentrations, an important regulatory event in the activation of transepithelial chloride secretion by shark rectal gland epithelial cells.« less

  19. Cell apoptosis and lipid content of in vitro-produced, vitrified bovine embryos treated with forskolin.

    PubMed

    Paschoal, Daniela Martins; Sudano, Mateus José; Schwarz, Kátia Regina Lancellotti; Maziero, Rosiára Rosário Dias; Guastali, Midyan Daroz; Crocomo, Letícia Ferrari; Magalhães, Luis Carlos Oña; Martins, Alício; Leal, Claudia Lima Verde; Landim-Alvarenga, Fernanda da Cruz

    2017-01-01

    The presence of fetal calf serum in culture medium influences embryo quality, causing a reduction in postcryopreservation survival. Forskolin has been used to induce lipolysis and increase cryotolerance, functioning as an activator of adenylate cyclase and elevating cAMP levels. In the present experiment, bovine zygotes were cultured in synthetic oviduct fluid with amino acid plus 2.5% fetal calf serum for 6 days, when forskolin was added in three concentrations: 2.5, 5, and 10 μM. Treatment with forskolin lasted for 24 hours. Blastocyst formation rate, quantification of lipid granules, total cell numbers, and apoptosis rate were evaluated. In a second assessment, embryos were vitrified, and warming, re-expansion rate, total cell numbers, and apoptosis rate were also evaluated. There was no difference due to forskolin in blastocyst formation or re-expansion rates after vitrification. However, lipid measurements were lower (control: 136.8 and F 2.5 μM: 128.5; P < 0.05), and number of cells per embryo higher (control: 140.1 and F 2.5 μM: 173.5; P < 0.05) than controls for 2.5 μM forskolin but not for higher forskolin concentrations. The number of intact cells per embryo was higher, and the rate of apoptosis was lower in fresh than in vitrified embryos (number of cells of warmed embryos, control: 104.1, F 2.5 μM: 101.3, F 5 μM: 115.4, F 10 μM: 95.1; apoptotic of fresh cells, control: 12.1%, F 2.5 μM: 16.7%, F 5 μM: 11.1%, F 10 μM: 14.2%; and apoptotic warmed embryos, control: 22.3%, F 2.5 μM: 37.3%, F 5 μM: 33.2%, F 10 μM: 30.3%; P < 0.05). It was concluded that forskolin is an effective lipolytic agent even at low concentrations, leading to formation of blastocysts with a comparatively larger number of cells. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. G protein-coupled receptor 30 (GPR30) forms a plasma membrane complex with membrane-associated guanylate kinases (MAGUKs) and protein kinase A-anchoring protein 5 (AKAP5) that constitutively inhibits cAMP production.

    PubMed

    Broselid, Stefan; Berg, Kelly A; Chavera, Teresa A; Kahn, Robin; Clarke, William P; Olde, Björn; Leeb-Lundberg, L M Fredrik

    2014-08-08

    GPR30, or G protein-coupled estrogen receptor, is a G protein-coupled receptor reported to bind 17β-estradiol (E2), couple to the G proteins Gs and Gi/o, and mediate non-genomic estrogenic responses. However, controversies exist regarding the receptor pharmacological profile, effector coupling, and subcellular localization. We addressed the role of the type I PDZ motif at the receptor C terminus in receptor trafficking and coupling to cAMP production in HEK293 cells and CHO cells ectopically expressing the receptor and in Madin-Darby canine kidney cells expressing the native receptor. GPR30 was localized both intracellularly and in the plasma membrane and subject to limited basal endocytosis. E2 and G-1, reported GPR30 agonists, neither stimulated nor inhibited cAMP production through GPR30, nor did they influence receptor localization. Instead, GPR30 constitutively inhibited cAMP production stimulated by a heterologous agonist independently of Gi/o. Moreover, siRNA knockdown of native GPR30 increased cAMP production. Deletion of the receptor PDZ motif interfered with inhibition of cAMP production and increased basal receptor endocytosis. GPR30 interacted with membrane-associated guanylate kinases, including SAP97 and PSD-95, and protein kinase A-anchoring protein (AKAP) 5 in the plasma membrane in a PDZ-dependent manner. Knockdown of AKAP5 or St-Ht31 treatment, to disrupt AKAP interaction with the PKA RIIβ regulatory subunit, decreased inhibition of cAMP production, and St-Ht31 increased basal receptor endocytosis. Therefore, GPR30 forms a plasma membrane complex with a membrane-associated guanylate kinase and AKAP5, which constitutively attenuates cAMP production in response to heterologous agonists independently of Gi/o and retains receptors in the plasma membrane. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Inhibition of basal and stimulated release of endothelin-1 from guinea pig tracheal epithelial cells in culture by beta 2-adrenoceptor agonists and cyclic AMP enhancers.

    PubMed

    Yang, Quan; Battistini, Bruno; Pelletier, Stéphane; Sirois, Pierre

    2007-10-01

    The effects of cyclic AMP-related compounds and beta adrenoceptor agonists on the basal and lipopolysaccharide (LPS)-stimulated release of endothelin-1 (ET-1) from guinea-pig tracheal epithelial cells (GPTEpCs) in culture were studied. Forskolin (a potent activator of adenylyl cyclase), 8-bromo-cyclic AMP (a cyclic AMP analogue), salbutamol and salmeterol (two beta 2-adrenoceptor agonists), were used to increase cyclic AMP levels. Cultured GPTEpCs released ET-1 continuously over a 24 h incubation period. The values reached 1,938 +/- 122 pg/mg of total cell proteins after 24 h. LPS (10 microg/ml) significantly stimulated the release of ET-1 by 1.6- to 1.8-fold, up to 1,262 +/- 56 pg/mg total cell proteins after an 8 h incubation period. Compound 8-bromo-cyclic AMP (10(-5), 10(-4) and 10(-3) M) reduced the basal release of ET-1 from GPTEpCs by up to 31% (P < 0.01) and the LPS stimulated release by up to 42% (P < 0.05), after an 8 h incubation period. Forskolin (10(-6), 10(-5) and 10(-4) M) also inhibited the basal release of ET-1 by up to 28% (P < 0.05) and LPS-stimulated release of ET-1 by up to 50% (P < 0.05), after an 8 h incubation period. At the concentration of 10(-5) M, forskolin increased cyclic AMP levels in GPTEpCs by 17-fold (P < 0.001) in the medium, 15 min after the beginning of the incubation. Salbutamol (10(-8) to 10(-6) M) had no effect on the basal production and release of ET-1 after 8 h. Conversely, this short acting beta 2-adrenoceptor agonist significantly reduced LPS-mediated increase of ET-1 production by up to 55% (P < 0.05) after an 8 h incubation period. Salmeterol (10(-9) M to 10(-5) M) inhibited basal and LPS-stimulated production and release of ET-1 after an 8 h incubation period (between 44 and 51%, P < 0.01). Both salbutamol and salmeterol (10(-6) M) increase cyclic AMP levels by five- and twofold, respectively (P < 0.05). In summary, these observations indicate that beta 2-adrenoceptor agonists or cyclic AMP enhancers can modulate both basal and more markedly, the enhanced production of ET-1 from LPS-activated guinea pig airway EpCs. In addition, these compounds increase cyclic AMP levels in the cells. It is suggested that there is a correlation between cyclic AMP increase and inhibition of ET-1 release by guinea pig airway EpCs. Since ET-1 production was shown to be elevated in asthmatic subjects and in patients suffering from other inflammatory lung disorders, the inhibition of its production by beta adrenoceptor agonists, such as salbutamol and salmeterol, could be added to their therapeutical benefits.

  2. Modulation of steroidogenesis and estrogen signalling in the estuarine killifish (Fundulus heteroclitus) exposed to ethinylestradiol.

    PubMed

    Hogan, Natacha S; Currie, Suzanne; LeBlanc, Sacha; Hewitt, L Mark; MacLatchy, Deborah L

    2010-06-10

    Previous studies have shown that mummichog (Fundulus heteroclitus; a lunar, asynchronous-spawning killifish of the western Atlantic) exposed to 17alpha-ethynylestradiol (EE2) exhibit decreased plasma reproductive steroid levels, decreased gonadal steroid production, increased plasma vitellogenin, decreased fecundity and impaired fertilization. The objective of this study was to determine the potential mechanisms by which EE2 depresses gonadal steroidogenesis and influences estrogen signalling in the mummichog. Adult recrudesced fish were exposed to the potent synthetic estrogen, ethinylestradiol (EE2; 0-270ng/L) for 14 days. Following exposure, gonadal tissue was removed and incubated for 24h with stimulators of steroidogenesis, including forskolin; 25-OH cholesterol; or pregnenolone. Testosterone production was decreased in basal, forskolin-stimulated and pregnenolone-stimulated EE2-exposed males, indicating effects on the steroidogenic pathway both at and downstream of cholesterol mobilization to P450 side-chain cleavage (P450scc) and/or P450scc conversion of cholesterol to pregnenolone. Hepatic transcript levels of estrogen receptor alpha (ERalpha) and vitellogenin were increased in EE2-treated males compared to control recrudescing males and females confirming an estrogenic response. Hepatic heat shock protein 90 (Hsp90), a chaperoning molecule involved in estrogen signalling, was not affected by EE2 exposure at either the transcript or protein level. However, higher levels of Hsp90 observed in the membrane fractions of female fish raise interesting questions regarding the influence of gender on Hsp90's role in estrogen signalling. These results demonstrate that EE2 can alter steroid production at specific sites within the steroidogenic pathway and can stimulate hepatic estrogen signalling, providing important information regarding the molecular mechanisms underlying the endocrine response of the mummichog to exogenous estrogen.

  3. cAMP-dependent insulin modulation of synaptic inhibition in neurons of the dorsal motor nucleus of the vagus is altered in diabetic mice

    PubMed Central

    Blake, Camille B.

    2014-01-01

    Pathologies in which insulin is dysregulated, including diabetes, can disrupt central vagal circuitry, leading to gastrointestinal and other autonomic dysfunction. Insulin affects whole body metabolism through central mechanisms and is transported into the brain stem dorsal motor nucleus of the vagus (DMV) and nucleus tractus solitarius (NTS), which mediate parasympathetic visceral regulation. The NTS receives viscerosensory vagal input and projects heavily to the DMV, which supplies parasympathetic vagal motor output. Normally, insulin inhibits synaptic excitation of DMV neurons, with no effect on synaptic inhibition. Modulation of synaptic inhibition in DMV, however, is often sensitive to cAMP-dependent mechanisms. We hypothesized that an effect of insulin on GABAergic synaptic transmission may be uncovered by elevating resting cAMP levels in GABAergic terminals. We used whole cell patch-clamp recordings in brain stem slices from control and diabetic mice to identify insulin effects on inhibitory neurotransmission in the DMV in the presence of forskolin to elevate cAMP levels. In the presence of forskolin, insulin decreased the frequency of inhibitory postsynaptic currents (IPSCs) and the paired-pulse ratio of evoked IPSCs in DMV neurons from control mice. This effect was blocked by brefeldin-A, a Golgi-disrupting agent, or indinavir, a GLUT4 blocker, indicating that protein trafficking and glucose transport were involved. In streptozotocin-treated, diabetic mice, insulin did not affect IPSCs in DMV neurons in the presence of forskolin. Results suggest an impairment of cAMP-induced insulin effects on GABA release in the DMV, which likely involves disrupted protein trafficking in diabetic mice. These findings provide insight into mechanisms underlying vagal dysregulation associated with diabetes. PMID:24990858

  4. Induction of dopaminergic neurons from human Wharton's jelly mesenchymal stem cell by forskolin.

    PubMed

    Paldino, Emanuela; Cenciarelli, Carlo; Giampaolo, Adele; Milazzo, Luisa; Pescatori, Mario; Hassan, Hamisa Jane; Casalbore, Patrizia

    2014-02-01

    The purpose of this study was to investigate the Wharton's jelly mesenchymal stem cells differentiation ability toward neuronal fate. Human Wharton's jelly mesenchymal stem cells (hWJMSC) have been isolated from human umbilical cord of full-term births and characterized by flow cytometry analysis for their stem mesenchymal properties through specific surface markers expression (CD73, CD90, and CD105). hWJMSC mesodermal lineage differentiation ability and karyotype analysis were assessed. The trans-differentiation of hWJMSC into neural lineage was investigated in presence of forskolin, an agent known to increase the intracellular levels of cAMP. A molecular profile of differentiated hWJMSC was performed by microarray technology which revealed 1,532 statistically significant modulated genes respect to control cells. Most of these genes are mainly involved in functional neuronal signaling pathways and part of them are specifically required for the neuronal dopaminergic induction. The acquisition of the dopaminergic phenotype was evaluated via immunocytochemistry and Western blot analysis revealed the significant induction of Nurr1, NeuroD1, and TH proteins expression in forskolin-induced hWJMSC. Moreover, the treatment with forskolin promoted, in hWJMSC, a strong upregulation of the neurotrophin Trk receptors related to the high release of brain-derived neurotrophic factor. Taken together these findings show that hWJMSC may be represent an optimal therapeutic strategy for neurological diseases. © 2013 Wiley Periodicals, Inc.

  5. Analysis of p21-Activated Kinase Function in Neurofibromatosis Type 2

    DTIC Science & Technology

    2010-01-01

    6,6′-dithiobis) for 10 min, before stimulation with 10% FCS (PAA, Pasching, Austria), 0.5 μM forskolin (Sigma-Aldrich, St. Louis, USA), 10 nM β1...0.5 μM forskolin (Sigma-Aldrich), 10 nM β1- heregulin144–244 (Genentech), 0.5 mM 3-isobutyl-1-methylxanthin (IBMX, Sigma-Aldrich) and 2.5 μg/ml...0.5 μM forskolin (Sigma-Aldrich), 10 nM β1-heregulin144–244 (Genentech), 0.5 mM 3-isobutyl-1-methylxanthin and 2.5 μg/ml insulin (both from Sigma

  6. Evidence that forskolin binds to the glucose transporter of human erythrocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lavis, V.R.; Lee, D.P.; Shenolikar, S.

    1987-10-25

    Binding of (4-/sup 3/H)cytochalasin B and (12-/sup 3/H)forskolin to human erythrocyte membranes was measured by a centrifugation method. Glucose-displaceable binding of cytochalasin B was saturable, with KD = 0.11 microM, and maximum binding approximately 550 pmol/mg of protein. Forskolin inhibited the glucose-displaceable binding of cytochalasin B in an apparently competitive manner, with K1 = 3 microM. Glucose-displaceable binding of (12-/sup 3/H)forskolin was also saturable, with KD = 2.6 microM and maximum binding approximately equal to 400 pmol/mg of protein. The following compounds inhibited binding of (12-/sup 3/H)forskolin and (4-/sup 3/H)cytochalasin B equivalently, with relative potencies parallel to their reported affinitiesmore » for the glucose transport system: cytochalasins A and D, dihydrocytochalasin B, L-rhamnose, L-glucose, D-galactose, D-mannose, D-glucose, 2-deoxy-D-glucose, 3-O-methyl-D-glucose, phloretin, and phlorizin. A water-soluble derivative of forskolin, 7-hemisuccinyl-7-desacetylforskolin, displaced equivalent amounts of (4-/sup 3/H)cytochalasin B or (12-/sup 3/H)forskolin. Rabbit erythrocyte membranes, which are deficient in glucose transporter, did not bind either (4-/sup 3/H)cytochalasin B or (12-/sup 3/H)forskolin in a glucose-displaceable manner. These results indicate that forskolin, in concentrations routinely employed for stimulation of adenylate cyclase, binds to the glucose transporter. Endogenous ligands with similar specificities could be important modulators of cellular metabolism.« less

  7. Forskolin-free cAMP assay for Gi-coupled receptors.

    PubMed

    Gilissen, Julie; Geubelle, Pierre; Dupuis, Nadine; Laschet, Céline; Pirotte, Bernard; Hanson, Julien

    2015-12-01

    G protein-coupled receptors (GPCRs) represent the most successful receptor family for treating human diseases. Many are poorly characterized with few ligands reported or remain completely orphans. Therefore, there is a growing need for screening-compatible and sensitive assays. Measurement of intracellular cyclic AMP (cAMP) levels is a validated strategy for measuring GPCRs activation. However, agonist ligands for Gi-coupled receptors are difficult to track because inducers such as forskolin (FSK) must be used and are sources of variations and errors. We developed a method based on the GloSensor system, a kinetic assay that consists in a luciferase fused with cAMP binding domain. As a proof of concept, we selected the succinate receptor 1 (SUCNR1 or GPR91) which could be an attractive drug target. It has never been validated as such because very few ligands have been described. Following analyses of SUCNR1 signaling pathways, we show that the GloSensor system allows real time, FSK-free detection of an agonist effect. This FSK-free agonist signal was confirmed on other Gi-coupled receptors such as CXCR4. In a test screening on SUCNR1, we compared the results obtained with a FSK vs FSK-free protocol and were able to identify agonists with both methods but with fewer false positives when measuring the basal levels. In this report, we validate a cAMP-inducer free method for the detection of Gi-coupled receptors agonists compatible with high-throughput screening. This method will facilitate the study and screening of Gi-coupled receptors for active ligands. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. REVIEW: Role of cyclic AMP signaling in the production and function of the incretin hormone glucagon-like peptide-1

    NASA Astrophysics Data System (ADS)

    Yu, Zhiwen; Jin, Tianru

    2008-01-01

    Pancreatic cells express the proglucagon gene (gcg) and thereby produce the peptide hormone glucagon, which stimulates hepatic glucose production and thereby increases blood glucose levels. The same gcg gene is also expressed in the intestinal endocrine L cells and certain neural cells in the brain. In the gut, gcg expression leads to the production of glucagon-like peptide-1 (GLP-1). This incretin hormone stimulates insulin secretion when blood glucose level is high. In addition, GLP-1 stimulates pancreatic cell proliferation, inhibits cell apoptosis, and has been utilized in the trans-differentiation of insulin producing cells. Today, a long-term effective GLP-1 receptor agonist has been developed as a drug in treating diabetes and potentially other metabolic disorders. Extensive investigations have shown that the expression of gcg and the production of GLP-1 can be activated by the elevation of the second messenger cyclic AMP (cAMP). Recent studies suggest that in addition to protein kinase A (PKA), exchange protein activated by cAMP (Epac), another effector of cAMP signaling, and the crosstalk between PKA and Wnt signaling pathway, are also involved in cAMP-stimulated gcg expression and GLP-1 production. Furthermore, functions of GLP-1 in pancreatic cells are mainly mediated by cAMP-PKA, cAMP-Epac and Wnt signaling pathways as well.

  9. Protein kinase C is involved in cyclic adenosine monophosphate formation due to PGF2 alpha desensitization in bovine iris sphincter.

    PubMed

    Tachado, S D; Zhang, Y; Abdel-Latif, A A

    1993-05-01

    To examine the mechanisms underlying the effects of PGF2 alpha receptor desensitization on agonist-induced second messenger formation and contraction in bovine iris sphincter. Short-term PGF2 alpha receptor desensitization of the bovine iris sphincter was carried out by incubating the tissue in Krebs-Ringer bicarbonate buffer containing 25 microM PGF2 alpha for 45 min at 37 degrees C. The effects of PGF2 alpha and other pharmacologic agents on inositol 1,4,5-triphosphate (IP3) production and cyclic adenosine monophosphate (cAMP) formation in desensitized and nondesensitized tissues were monitored by anion-exchange chromatography and radioimmunoassay. In the isolated bovine iris sphincter, protein kinase C (PKC) is involved in the activation of adenylate cyclase and the desensitization of prostaglandin F2 alpha receptor-mediated responses supported by these findings. (A) Exposure of the tissue to phorbol 12,13-dibutyrate, used to activate PKC, enhanced basal cAMP formation in a dose (EC50 = 8.8 x 10(-8) M) and time (t1/2 = 7.5 min) dependent manner. Phorbol 12,13-dibutyrate increased cAMP levels by twofold and it potentiated the isoproterenol-induced cAMP formation. The biologically inactive phorbol ester, 4 alpha-phorbol had no effect. Staurosporine, a potent PKC inhibitor, inhibited phorbol 12,13-dibutyrate-induced cAMP formation in a dose-dependent manner (IC50 of 0.25 microM). The increase in cAMP levels by phorbol 12,13-dibutyrate results from stimulation of adenylate cyclase, rather than from inhibition of cAMP phosphodiesterase, and it is not mediated through Ca2+ mobilization. Pretreatment of the tissue with phorbol 12,13-dibutyrate inhibited IP3 production in response to PGF2 alpha. (B) Desensitization of the sphincter with PGF2 alpha for 45 min increased cAMP formation and attenuated IP3 production and contraction. The effects of PGF2 alpha desensitization were reversed by pretreatment of the tissue with staurosporine. Down-regulation of PKC prevented the PGF2 alpha-stimulated increase in cAMP formation. In the desensitized tissue, diacylglycerol, the endogenous activator of PKC, may arise from phosphatidylcholine, via phospholipase D. (A) Activation of PKC in the bovine iris sphincter leads to stimulation of adenylate cyclase and to an increase in cAMP formation. The cAMP formed inhibits IP3 production and muscle contraction. (B) PGF2 alpha desensitization results in adenylate cyclase activation, mediated through PKC. (C) PGF2 alpha desensitization could uncouple the receptor from the Gq and Gi proteins and enhance PG stimulation of adenylate cyclase activity through the Gs protein. (D) Uncoupling of the G proteins from the PG receptor and activation of PKC, both of which result in enhanced cAMP formation, may underlie the mechanism of PGF2 alpha desensitization. (E) These observations demonstrate "cross talk" between the two second messenger systems and their physiologic consequences.

  10. Unsaturated fatty acids promote proliferation via ERK1/2 and Akt pathway in bovine mammary epithelial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yonezawa, Tomo; Haga, Satoshi; Kobayashi, Yosuke

    2008-03-21

    GPR40 has recently been identified as a G protein-coupled cell-surface receptor for long-chain fatty acids (LCFAs). The mRNA of the bovine ortholog of GPR40 (bGPR40) was detected by RT-PCR in cloned bovine mammary epithelial cells (bMEC) and in the bovine mammary gland at various stages of lactation. Oleate and linoleate caused an increase in intracellular Ca{sup 2+} concentrations in these cells, and significantly reduced forskolin-induced cAMP concentrations. Phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and Akt kinase, which regulates cell proliferation and survival, was rapidly increased by oleate. Incubation with oleate and linoleate for 24 h significantly promoted cell proliferation.more » Moreover, in serum-free medium, oleate significantly stimulated cell proliferation during a 7-day culture. These results suggest that bGPR40 mediates LCFA signaling in mammary epithelial cells and thereby plays an important role in cell proliferation and survival.« less

  11. Melatonin and its precursors in Y79 human retinoblastoma cells: Effect of sodium butyrate

    NASA Technical Reports Server (NTRS)

    Deng, Mei Hua; Coviella, Ignacio Lopez G.; Lynch, Harry J.; Wurtman, Richard J.

    1991-01-01

    The release of melatonin and the production of its precursors, S-hydroxytryptophan and serotonin, in cultured Y79 human retinoblastoma cells were studied. This biosynthetic capability was found to be dependent on cell differentiation, which was initiated by culturing Y79 cells for 7 days in dishes coated with poly-D-lysine to promote cell adhesion to the surface of the culture dishes. Differentiation was further induced by exposing the cell monolayer to sodium butyrate (3 mM) for 3 days. This protocol dramatically increased the release of melatonin, and the syntheses of 5-hydroxytryptophan and serotonin in response to forskolin stimulation. Exposure to dopamine (10 micro-M) or L-DOPA (100 micro-M) markedly diminished the forskolin-stimulated release of melatonin, as well as the production of 5-hydroxytryptophan and serotonin. These observations indicate that Y79 cells represent a primitive cell line which, following appropriate differentiation (e.g. treatment with sodium butyrate) can display biochemical characteristics similar to those of the human retina. Moreover, serotonin synthesis and melatonin release appear to be coupled in Y79 cells. The inhibition of melatonin release by dopamine supports the hypothesis that in these cells, melatonin and dopamine are components of a retinal feedback loop.

  12. Differential effect of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) on (/sup 3/H)SCH23390 and (/sup numberH/)forskolin binding in rat striatum

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Norman, A.B.; Wachendorf, T.J.; Sanberg, P.R.

    1989-01-01

    The binding of (/sup 3/H)forskolin to a homogeneous population of binding sites in rat striatum was enhanced by NaF, guanine nucleotides and MgCl/sub 2/. These effects of NaF and guanylylimidodiphosphate (Gpp(NH)p) were synergistic with MgCl/sub 2/, but NaF and Gpp(NH)p together elicited no greater enhancement of (/sup 3/H)forskolin binding. These data suggest that (/sup 3/H)forskolin may label a site which is modulated by the guanine nucleotide regulatory subunit which mediates the stimulation of adenylate cyclase (N/sub S/). The D/sub 1/ dopamine receptor is known to stimulate adenylate cyclase via N/sub S/. In rat striatum, the B/sub max/ of (/sup 3/H)forskolinmore » binding sites in the presence of MgCl/sub 2/ and NaF was approximately two fold greater than the B/sub max/ of (/sup 3/H)SCH23390-labeled D/sub 1/ dopamine receptors. Incubation of striatal homogenates with the protein modifying reagent EEDQ elicited a concentration-dependent decrease in the binding of both (/sup 3/H)SCH23390 and (/sup 3/H)forskolin, although EEDQ was approximately 14 fold more potent at inactivating the D/sub 1/ dopamine receptor. Following in vivo administration of EEDQ there was no significant effect on (/sup 3/H)forskolin binding sites using a dose of EEDQ that irreversibly inactivated greater than 90% of D/sub 1/ dopamine receptors. These data suggest that EEDQ is a suitable tool for investigating changes in the stoichiometry of receptors and their second messenger systems.« less

  13. Differential expression and signaling of the human histamine H3 receptor isoforms of 445 and 365 amino acids expressed in human neuroblastoma SH-SY5Y cells.

    PubMed

    Nieto-Alamilla, Gustavo; Escamilla-Sánchez, Juan; López-Méndez, María-Cristina; Molina-Hernández, Anayansi; Guerrero-Hernández, Agustín; Arias-Montaño, José-Antonio

    2018-04-01

    In stably-transfected human neuroblastoma SH-SY5Y cells, we have compared the effect of activating two isoforms of 445 and 365 amino acids of the human histamine H 3 receptor (hH 3 R 445 and hH 3 R 365 ) on [ 35 S]-GTPγS binding, forskolin-induced cAMP formation, depolarization-induced increase in the intracellular concentration of Ca 2+ ions ([Ca 2+ ]i) and depolarization-evoked [ 3  H]-dopamine release. Maximal specific binding (B max ) of [ 3  H]-N-methyl-histamine to cell membranes was 953 ± 204 and 555 ± 140 fmol/mg protein for SH-SY5Y-hH 3 R 445 and SH-SY5Y-hH 3 R 365 cells, respectively, with similar dissociation constants (K d , 0.86 nM and 0.81 nM). The mRNA of the hH 3 R 365 isoform was 40.9 ± 7.9% of the hH 3 R 445 isoform. No differences in receptor affinity were found for the H 3 R ligands histamine, immepip, (R)(-)-α-methylhistamine (RAMH), A-331440, clobenpropit and ciproxifan. Both the stimulation of [ 35 S]-GTPγS binding and the inhibition of forskolin-stimulated cAMP accumulation by the agonist RAMH were significantly larger in SH-SY5Y-hH 3 R 445 cells ([ 35 S]-GTPγS binding, 158.1 ± 7.5% versus 136.5 ± 3.6% for SH-SY5Y-hH 3 R 365 cells; cAMP accumulation, -74.0 ± 4.9% versus -43.5 ± 5.3%), with no significant effect on agonist potency. In contrast, there were no differences in the efficacy and potency of RAMH to inhibit [ 3  H]-dopamine release evoked by 100 mM K + (-18.9 ± 3.0% and -20.5 ± 3.3%, for SH-SY5Y-hH 3 R 445 and SH-SY5Y-hH 3 R 365 cells), or the inhibition of depolarization-induced increase in [Ca 2+ ]i (S2/S1 ratios: parental cells 0.967 ± 0.069, SH-SY5Y-hH 3 R 445 cells 0.639 ± 0.049, SH-SY5Y-hH 3 R 365 cells 0.737 ± 0.045). These results indicate that in SH-SY5Y cells, hH 3 R 445 and hH 3 R 365 isoforms regulate in a differential manner the signaling pathways triggered by receptor activation.

  14. Heavy isotope labeling study of the turnover of forskolin-stimulated adenylate cyclase in BC/sup 3/H1 cell line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhelal, R.; Bockaert, J.; Mermet-Bouvier, R.

    1987-06-25

    We have used the method of heavy isotope labeling to study the metabolic turnover of adenylate cyclase in a nonfusing muscle cell line, the BC/sup 3/H1 cells. These cells contains an adenylate cyclase coupled to beta-adrenergic receptors and highly stimulated by forskolin, a potent activator of the enzyme. After transfer of the cells from normal medium to heavy medium (a medium containing heavy labeled amino acids, /sup 3/H, /sup 13/C, /sup 15/N), heavy isotope-labeled adenylate cyclase molecules progressively replace pre-existing light molecules. In sucrose gradient differential sedimentation, after a 5-day switch in heavy medium, the enzyme exhibited a higher massmore » (s = 8.40 +/- 0.03 S, n = 13) compared to the control enzyme. Indeed, the increase in the sedimentation coefficient of the heavy molecules was due to the synthesis of new molecules of adenylate cyclase labeled with heavy isotope amino acids since in the presence of cycloheximide, an inhibitor of protein synthesis, no change in the sedimentation pattern of the forskolin-stimulated adenylate cyclase occurred. After incorporation of heavy isotope amino acids in the adenylate cyclase molecules, the kinetics parameters of the enzyme did not change. However, adenylate cyclase from cells incubated with heavy medium exhibits an activity about 2-fold lower than control. After switching the cells to the heavy medium, the decrease of the activity of the enzyme occurred during the first 24 h and thereafter remained at a steady state for at least 4 days. In contrast, 24 h after the switch, the sedimentation coefficient of forskolin-stimulated adenylate cyclase was progressively shifted to a higher value.« less

  15. Zinc attenuates forskolin-stimulated electrolyte secretion without involvement of the enteric nervous system in small intestinal epithelium from weaned piglets.

    PubMed

    Feng, Zike; Carlson, Dorthe; Poulsen, Hanne Damgaard

    2006-11-01

    In a previous study, we found that secretagogue-stimulated electrolyte secretion was attenuated by dietary and serosal zinc in piglet small intestinal epithelium in Ussing chambers. Several studies show that the enteric nervous system (ENS) is involved in regulation of electrolyte and/or fluid transport in intestinal epithelium from many species. The aim of the present study is to examine the mechanisms behind the attenuating effect of zinc on electrolyte secretion and to study whether the ENS is involved in this effect of zinc in vitro. Twenty-four piglets (six litters of four piglets) were allocated randomly to one of two dietary treatments consisting of a basic diet supplemented with 100 mg zinc/kg (Zn(100)) or 2500 mg zinc/kg (Zn(2500)), as ZnO. All the piglets were killed at 5-6 days after weaning and in vitro experiments with small intestinal epithelium in Ussing chambers were carried out. Furthermore, zinc, copper, alkaline phosphatase (AP) and metallothionein (MT) in mucosa, liver, and plasma were measured. These measurements showed that zinc status was increased in the Zn(2500) compared to the Zn(100) fed piglets. The in vitro studies did not confirm previous findings of attenuating effects of dietary zinc and zinc in vitro on the 5-HT induced secretion. But it showed that the addition of zinc at the serosal side attenuated the forskolin (FSK) (cAMP-dependent) induced ion secretion in epithelium from piglets fed with Zn(100) diet. Blocking the ENS with lidocaine or hexamethonium apparently slightly reduced this effect of zinc in vitro, but did not remove the effect of zinc. Consequently, it is suggested that zinc attenuates the cAMP dependent ion secretion mainly due to an effect on epithelial cells rather than affecting the mucosal neuronal pathway.

  16. Different mechanisms of action of beta2-adrenergic receptor agonists: a comparison of reproterol, fenoterol and salbutamol on monocyte cyclic-AMP and leukotriene B4 production in vitro.

    PubMed

    Juergens, Uwe R; Stöber, M; Libertus, H; Darlath, W; Gillissen, A; Vetter, H

    2004-07-30

    Beta2-adrenergic receptor agonists have several effects on airway function, most of which are mediated in a variety of cell types resulting in increased c-AMP-production and inhibition of inflammatory mediator production. However, their stimulating effects on cAMP-production became known to be inversed by increasing phosphodiesterase (PDE) activity and degradation of cAMP. Therefore, in this study we have evaluated the efficacy of reproterol, a dual acting beta2-adrenoceptor agonist and PDE-inhibitor, as compared to salbutamol and fenoterol with respect to production of cAMP and LTB4 in cultured monocytes. Isolated human monocytes (10(5)/ml) were incubated (n = 9) in suspension with beta2-adrenoceptor agonists (10(-10) -10(-4) M) for 30 minutes with and without IBMX. Then, cAMP production was determined following treatment with Triton-X100. Production of LTB4 was measured following incubation of beta2-adrenoceptor agonists for 4 hrs in the presence of LPS (10 mg/ml). cAMP and LTB subset 4 were measured in culture supernatants by enzyme immunoassay. At 10(-5) M, production of cAMP was significantly stimulated by reproterol > fenoterol > salbutamol in a dose-dependent manner to an extent of *128%, *65%, 13% (*p<0.04) respectively. In contrast, LTB4-production was inhibited significantly to a similar degree by salbutamol and reproterol in a dose-dependent manner by 59% and 49% (10(-5) M, p<0.03), respectively, with decreasing inhibition (15%) after fenoterol. Following co-incubation with IBMX, cAMP production only increased significantly (p<0.002) after fenoterol (+110%) compared to salbutamol (+29%) and reproterol (+50%) (ANOVA, p<0.001). These data suggest effects of the theophylline constituent of reproterol to inhibit adenylyl cyclase induced phosphodiesterase activity. The advantageous synergistic effects of reproterol on cAMP-production need to be further explored in trials.

  17. Functional desensitization to isoproterenol without reducing cAMP production in canine failing cardiocytes.

    PubMed

    Laurent, C E; Cardinal, R; Rousseau, G; Vermeulen, M; Bouchard, C; Wilkinson, M; Armour, J A; Bouvier, M

    2001-02-01

    To corroborate alterations in the functional responses to beta-adrenergic receptor (beta-AR) stimulation with changes in beta-AR signaling in failing cardiomyocytes, contractile and L-type Ca(2+) current responses to isoproterenol along with stimulated cAMP generation were compared among cardiomyocytes isolated from canines with tachycardia-induced heart failure or healthy hearts. The magnitude of shortening of failing cardiomyocytes was significantly depressed (by 22 +/- 4.4%) under basal conditions, and the maximal response to isoproterenol was significantly reduced (by 45 +/- 18%). Similar results were obtained when the responses in the rate of contraction and rate of relaxation to isoproterenol were considered. The L-type Ca(2+) current amplitude measured in failing cardiomyocytes under basal conditions was unchanged, but the responses to isoproterenol were significantly reduced compared with healthy cells. Isoproterenol-stimulated cAMP generation was similar in sarcolemmal membranes derived from the homogenates of failing (45 +/- 6.8) and healthy cardiomyocytes (52 +/- 8.5 pmol cAMP. mg protein(-1). min(-1)). However, stimulated cAMP generation was found to be significantly reduced when the membranes were derived from the homogenates of whole tissue (failing: 67 +/- 8.1 vs. healthy: 140 +/- 27.8 pmol cAMP. mg protein(-1). min(-1)). Total beta-AR density was not reduced in membranes derived from either whole tissue or isolated cardiomyocyte homogenates, but the beta(1)/beta(2) ratio was significantly reduced in the former (failing: 45/55 vs. healthy: 72/28) without being altered in the latter (failing: 72/28, healthy: 77/23). We thus conclude that, in tachycardia-induced heart failure, reduction in the functional responses of isolated cardiomyocytes to beta-AR stimulation may be attributed to alterations in the excitation-contraction machinery rather than to limitation of cAMP generation.

  18. Inhibitors of protein phosphorylation including the retinoblastoma protein induce germination of Candida albicans.

    PubMed

    Cho, T; Hamatake, H; Hagihara, Y; Kaminishi, H

    2000-02-01

    It has been previously shown that the induction of germination in Candida albicans occurs following its cessation of growth as a yeast. Similarly, mammalian cells undergo a differentiation process that is preceded by a growth cessation associated with a hypophosphorylation of proteins of the retinoblastoma gene family. It is postulated that a similar type of mechanism may be operative in C. albicans and protein phosphorylation inhibitors: forskolin (stimulates cyclic adenosine monophosphate production), okadaic acid (phosphatase inhibitor) and D-erythro-sphingosine (retinoblastoma protein phosphorylation inhibitor) have been used to further strengthen this hypothesis. Okadaic acid (1-1000 nM) and D-erythro-sphingosine (100 microM) significantly inhibited the growth of yeast cells of C. albicans. D-Erythro-sphingosine at 1000 microM was candidicidal. Forskolin did not significantly affect growth. Exponentially grown C. albicans pretreated with forskolin (10 microM), okadaic acid (1000 nM) or D-erythro-sphingosine (100 microM) readily germinated. In comparison, when these inhibitors were incorporated in the same medium, germination of exponentially grown cells did not occur. These results suggest that protein dephosphorylation may be necessary at an early stage of the yeast-hyphae transition in C. albicans.

  19. Epigenetic modifications during sex change repress gonadotropin stimulation of cyp19a1a in a teleost ricefield eel (Monopterus albus).

    PubMed

    Zhang, Yang; Zhang, Shen; Liu, Zhixin; Zhang, Lihong; Zhang, Weimin

    2013-08-01

    In vertebrates, cytochrome P450 aromatase, encoded by cyp19a1, converts androgens to estrogens and plays important roles in gonadal differentiation and development. The present study examines whether epigenetic mechanisms are involved in cyp19a1a expression and subsequent gonadal development in the hermaphroditic ricefield eel. The expression of the ricefield eel cyp19a1a was stimulated by gonadotropin via the cAMP pathway in the ovary but not the ovotestis or testis. The CpG within the cAMP response element (CRE) of the cyp19a1a promoter was hypermethylated in the ovotestis and testis compared with the ovary. The methylation levels of CpG sites around CRE in the distal region (region II) and around steroidogenic factor 1/adrenal 4 binding protein sites and TATA box in the proximal region (region I) were inversely correlated with cyp19a1a expression during the natural sex change from female to male. In vitro DNA methylation decreased the basal and forskolin-induced activities of cyp19a1a promoter. Chromatin immunoprecipitation assays indicated that histone 3 (Lys9) in both regions I and II of the cyp19a1a promoter were deacetylated and trimethylated in the testis, and in contrast to the ovary, phosphorylated CRE-binding protein failed to bind to these regions. Lastly, the DNA methylation inhibitor 5-aza-2'-deoxycytidine reversed the natural sex change of ricefield eels. These results suggested that epigenetic mechanisms involving DNA methylation and histone deacetylation and methylation may abrogate the stimulation of cyp19a1a by gonadotropins in a male-specific fashion. This may be a mechanism widely used to drive natural sex change in teleosts as well as gonadal differentiation in other vertebrates.

  20. Spontaneous water secretion in T84 cells: effects of STa enterotoxin, bumetanide, VIP, forskolin, and A-23187.

    PubMed

    Toriano, R; Kierbel, A; Ramirez, M A; Malnic, G; Parisi, M

    2001-09-01

    The regulated Cl(-) secretory apparatus of T84 cells responds to several pharmacological agents via different second messengers (Ca(2+), cAMP, cGMP). However, information about water movements in T84 cells has not been available. In the absence of osmotic or chemical gradient, we observed a net secretory transepithelial volume flux (J(w) = -0.16 +/- 0.02 microl.min(-1).cm(-2)) in parallel with moderate short-circuit current values (I(sc) = 1.55 +/- 0.23 microA/cm(2)). The secretory J(w) reversibly reverted to an absorptive value when A-23187 was added to the serosal bath. Vasoactive intestinal polypeptide increased I(sc), but, unexpectedly, J(w) was not affected. Bumetanide, an inhibitor of basolateral Na(+)-K(+)-2Cl(-) cotransporter, completely blocked secretory J(w) with no change in I(sc). Conversely, serosal forskolin increased I(sc), but J(w) switched from secretory to absorptive values. Escherichia coli heat-stable enterotoxin increased secretory J(w) and I(sc). No difference between the absorptive and secretory unidirectional Cl(-) fluxes was observed in basal conditions, but after STa stimulation, a significant net secretory Cl(-) flux developed. We conclude that, under these conditions, the presence of secretory or absorptive J(w) values cannot be shown by I(sc) and ion flux studies. Furthermore, RT-PCR experiments indicate that aquaporins were not expressed in T84 cells. The molecular pathway for water secretion appears to be transcellular, moving through the lipid bilayer or, as recently proposed, through water-solute cotransporters.

  1. cAMP-dependent and cholinergic regulation of the electrogenic intestinal/pancreatic Na+/HCO3- cotransporter pNBC1 in human embryonic kidney (HEK293) cells.

    PubMed

    Bachmann, Oliver; Franke, Kristin; Yu, Haoyang; Riederer, Brigitte; Li, Hong C; Soleimani, Manoocher; Manns, Michael P; Seidler, Ursula

    2008-12-22

    The renal (kNBC1) and intestinal (pNBC1) electrogenic Na+/HCO3- cotransporter variants differ in their primary structure, transport direction, and response to secretagogues. Previous studies have suggested that regulatory differences between the two subtypes can be partially explained by unique consensus phosphorylation sites included in the pNBC1, but not the kNBC1 sequence. After having shown activation of NBC by carbachol and forskolin in murine colon, we now investigated these pathways in HEK293 cells transiently expressing a GFP-tagged pNBC1 construct. Na+- and HCO3-dependent pHi recovery from an acid load (measured with BCECF) was enhanced by 5-fold in GFP-positive cells compared to the control cells in the presence of CO2/HCO3-. Forskolin (10(-5) M) had no effect in untransfected cells, but inhibited the pHi recovery in cells expressing pNBC1 by 62%. After preincubation with carbachol (10(-4) M), the pHi recovery was enhanced to the same degree both in transfected and untransfected cells, indicating activation of endogenous alkalizing ion transporters. Acid-activated Na+/HCO3- cotransport via pNBC1 expressed in renal cells is thus inhibited by cAMP and not affected by cholinergic stimulation, as opposed to the findings in native intestinal tissue. Regulation of pNBC1 by secretagogues appears to be not solely dependent on its primary structure, but also on properties of the cell type in which it is expressed.

  2. Forskolin Inhibits Lipopolysaccharide-Induced Modulation of MCP-1 and GPR120 in 3T3-L1 Adipocytes through an Inhibition of NFκB

    PubMed Central

    Chiadak, Jeanne Durendale; Arsenijevic, Tatjana; Verstrepen, Kevin; Gregoire, Françoise; Bolaky, Nargis; Delforge, Valérie; Flamand, Véronique

    2016-01-01

    In an obese state, Toll-like receptor-4 (TLR-4) upregulates proinflammatory adipokines secretion including monocyte chemotactic protein-1 (MCP-1) in adipose tissue. In contrast, G-protein coupled receptor 120 (GPR120) mediates antiobesity effects. The aim of this study was to determine the signaling pathway by which Forskolin (FK), a cyclic adenosine monophosphate- (cAMP-) promoting agent causing positive changes in body composition in overweight and obese adult men, affects MCP-1 and GPR120 expression during an inflammatory response induced by lipopolysaccharide (LPS) in adipocytes, such as in an obese state. 3T3-L1 cells differentiated into adipocytes (DC) were stimulated with LPS in the absence or presence of FK and inhibitors of TLR-4 and inhibitor of kappa B (IκBα). In DC, LPS increased MCP-1, TLR-4, and nuclear factor-κB1 (NFκB1) mRNA levels, whereas it decreased GPR120 mRNA levels. In DC, FK inhibited the LPS-induced increase in MCP-1, TLR-4, and NFκB1 mRNA levels and the LPS-induced decrease in GPR120 mRNA. BAY11-7082 and CLI-095 abolished these LPS-induced effects. In conclusion, FK inhibits LPS-induced increase in MCP-1 mRNA levels and decrease in GPR120 mRNA levels in adipocytes and may be a potential treatment for inflammation in obesity. Furthermore, TLR-4-induced activation of NFκB may be involved in the LPS-induced regulation of these genes. PMID:27881903

  3. Forskolin Inhibits Lipopolysaccharide-Induced Modulation of MCP-1 and GPR120 in 3T3-L1 Adipocytes through an Inhibition of NFκB.

    PubMed

    Chiadak, Jeanne Durendale; Arsenijevic, Tatjana; Verstrepen, Kevin; Gregoire, Françoise; Bolaky, Nargis; Delforge, Valérie; Flamand, Véronique; Perret, Jason; Delporte, Christine

    2016-01-01

    In an obese state, Toll-like receptor-4 (TLR-4) upregulates proinflammatory adipokines secretion including monocyte chemotactic protein-1 (MCP-1) in adipose tissue. In contrast, G-protein coupled receptor 120 (GPR120) mediates antiobesity effects. The aim of this study was to determine the signaling pathway by which Forskolin (FK), a cyclic adenosine monophosphate- (cAMP-) promoting agent causing positive changes in body composition in overweight and obese adult men, affects MCP-1 and GPR120 expression during an inflammatory response induced by lipopolysaccharide (LPS) in adipocytes, such as in an obese state. 3T3-L1 cells differentiated into adipocytes (DC) were stimulated with LPS in the absence or presence of FK and inhibitors of TLR-4 and inhibitor of kappa B (I κ B α ). In DC, LPS increased MCP-1, TLR-4, and nuclear factor- κ B1 (NF κ B1) mRNA levels, whereas it decreased GPR120 mRNA levels. In DC, FK inhibited the LPS-induced increase in MCP-1, TLR-4, and NF κ B1 mRNA levels and the LPS-induced decrease in GPR120 mRNA. BAY11-7082 and CLI-095 abolished these LPS-induced effects. In conclusion, FK inhibits LPS-induced increase in MCP-1 mRNA levels and decrease in GPR120 mRNA levels in adipocytes and may be a potential treatment for inflammation in obesity. Furthermore, TLR-4-induced activation of NF κ B may be involved in the LPS-induced regulation of these genes.

  4. Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4.IL-2.

    PubMed

    Condie, R; Herring, A; Koh, W S; Lee, M; Kaminski, N E

    1996-05-31

    Cannabinoid receptors negatively regulate adenylate cyclase through a pertussis toxin-sensitive GTP-binding protein. In the present studies, signaling via the adenylate cyclase/cAMP pathway was investigated in the murine thymoma-derived T-cell line, EL4.IL-2. Northern analysis of EL4.IL-2 cells identified the presence of 4-kilobase CB2 but not CB1 receptor-subtype mRNA transcripts. Southern analysis of genomic DNA digests for the CB2 receptor demonstrated identical banding patterns for EL4.IL-2 cells and mouse-derived DNA, both of which were dissimilar to DNA isolated from rat. Treatment of EL4.IL-2 cells with either cannabinol or Delta9-THC disrupted the adenylate cyclase signaling cascade by inhibiting forskolin-stimulated cAMP accumulation which consequently led to a decrease in protein kinase A activity and the binding of transcription factors to a CRE consensus sequence. Likewise, an inhibition of phorbol 12-myristate 13-acetate (PMA)/ionomycin-induced interleukin 2 (IL-2) protein secretion, which correlated to decreased IL-2 gene transcription, was induced by both cannabinol and Delta9-THC. Further, cannabinoid treatment also decreased PMA/ionomycin-induced nuclear factor binding to the AP-1 proximal site of the IL-2 promoter. Conversely, forskolin enhanced PMA/ionomycin-induced AP-1 binding. These findings suggest that inhibition of signal transduction via the adenylate cyclase/cAMP pathway induces T-cell dysfunction which leads to a diminution in IL-2 gene transcription.

  5. Inverse agonism at the P2Y12 receptor and ENT1 transporter blockade contribute to platelet inhibition by ticagrelor.

    PubMed

    Aungraheeta, Riyaad; Conibear, Alexandra; Butler, Mark; Kelly, Eamonn; Nylander, Sven; Mumford, Andrew; Mundell, Stuart J

    2016-12-08

    Ticagrelor is a potent antagonist of the P2Y 12 receptor (P2Y 12 R) and consequently an inhibitor of platelet activity effective in the treatment of atherothrombosis. Here, we sought to further characterize its molecular mechanism of action. Initial studies showed that ticagrelor promoted a greater inhibition of adenosine 5'-diphosphate (ADP)-induced Ca 2+ release in washed platelets vs other P2Y 12 R antagonists. This additional effect of ticagrelor beyond P2Y 12 R antagonism was in part as a consequence of ticagrelor inhibiting the equilibrative nucleoside transporter 1 (ENT1) on platelets, leading to accumulation of extracellular adenosine and activation of G s -coupled adenosine A 2A receptors. This contributed to an increase in basal cyclic adenosine monophosphate (cAMP) and vasodilator-stimulated phosphoprotein phosphorylation (VASP-P). In addition, ticagrelor increased platelet cAMP and VASP-P in the absence of ADP in an adenosine receptor-independent manner. We hypothesized that this increase originated from a direct effect on basal agonist-independent P2Y 12 R signaling, and this was validated in 1321N1 cells stably transfected with human P2Y 12 R. In these cells, ticagrelor blocked the constitutive agonist-independent activity of the P2Y 12 R, limiting basal G i -coupled signaling and thereby increasing cAMP levels. These data suggest that ticagrelor has the pharmacological profile of an inverse agonist. Based on our results showing insurmountable inhibition of ADP-induced Ca 2+ release and forskolin-induced cAMP, the mode of antagonism of ticagrelor also appears noncompetitive, at least functionally. In summary, our studies describe 2 novel modes of action of ticagrelor, inhibition of platelet ENT1 and inverse agonism at the P2Y 12 R that contribute to its effective inhibition of platelet activation. © 2016 by The American Society of Hematology.

  6. Cholera Toxin Inhibits the T-Cell Antigen Receptor-Mediated Increases in Inositol Trisphosphate and Cytoplasmic Free Calcium

    NASA Astrophysics Data System (ADS)

    Imboden, John B.; Shoback, Dolores M.; Pattison, Gregory; Stobo, John D.

    1986-08-01

    The addition of monoclonal antibodies to the antigen receptor complex on the malignant human T-cell line Jurkat generates increases in inositol trisphosphate and in the concentration of cytoplasmic free calcium. Exposure of Jurkat cells to cholera toxin for 3 hr inhibited these receptor-mediated events and led to a selective, partial loss of the antigen receptor complex from the cellular surface. None of the effects of cholera toxin on the antigen receptor complex were mimicked by the B subunit of cholera toxin or by increasing intracellular cAMP levels with either forskolin or 8-bromo cAMP. These results suggest that a cholera toxin substrate can regulate signal transduction by the T-cell antigen receptor.

  7. The Identification of Novel Protein-Protein Interactions in Liver that Affect Glucagon Receptor Activity

    PubMed Central

    Froese, Sean; Dai, Feihan F.; Robitaille, Mélanie; Bhattacharjee, Alpana; Huang, Xinyi; Jia, Weiping; Angers, Stéphane; Wheeler, Michael B.; Wei, Li

    2015-01-01

    Glucagon regulates glucose homeostasis by controlling glycogenolysis and gluconeogenesis in the liver. Exaggerated and dysregulated glucagon secretion can exacerbate hyperglycemia contributing to type 2 diabetes (T2D). Thus, it is important to understand how glucagon receptor (GCGR) activity and signaling is controlled in hepatocytes. To better understand this, we sought to identify proteins that interact with the GCGR to affect ligand-dependent receptor activation. A Flag-tagged human GCGR was recombinantly expressed in Chinese hamster ovary (CHO) cells, and GCGR complexes were isolated by affinity purification (AP). Complexes were then analyzed by mass spectrometry (MS), and protein-GCGR interactions were validated by co-immunoprecipitation (Co-IP) and Western blot. This was followed by studies in primary hepatocytes to assess the effects of each interactor on glucagon-dependent glucose production and intracellular cAMP accumulation, and then in immortalized CHO and liver cell lines to further examine cell signaling. Thirty-three unique interactors were identified from the AP-MS screening of GCGR expressing CHO cells in both glucagon liganded and unliganded states. These studies revealed a particularly robust interaction between GCGR and 5 proteins, further validated by Co-IP, Western blot and qPCR. Overexpression of selected interactors in mouse hepatocytes indicated that two interactors, LDLR and TMED2, significantly enhanced glucagon-stimulated glucose production, while YWHAB inhibited glucose production. This was mirrored with glucagon-stimulated cAMP production, with LDLR and TMED2 enhancing and YWHAB inhibiting cAMP accumulation. To further link these interactors to glucose production, key gluconeogenic genes were assessed. Both LDLR and TMED2 stimulated while YWHAB inhibited PEPCK and G6Pase gene expression. In the present study, we have probed the GCGR interactome and found three novel GCGR interactors that control glucagon-stimulated glucose production by modulating cAMP accumulation and genes that control gluconeogenesis. These interactors may be useful targets to control glucose homeostasis in T2D. PMID:26075596

  8. Prolonged treatment of fair-skinned mice with topical forskolin causes persistent tanning and UV protection.

    PubMed

    Spry, Malinda L; Vanover, Jillian C; Scott, Timothy; Abona-Ama, Osama; Wakamatsu, Kazumasa; Ito, Shosuke; D'Orazio, John A

    2009-04-01

    We previously reported that topical application of forskolin to the skin of fair-skinned MC1R-defective mice with epidermal melanocytes resulted in accumulation of eumelanin in the epidermis and was highly protective against UV-mediated cutaneous injury. In this report, we describe the long-term effects of chronic topical forskolin treatment in this animal model. Forskolin-induced eumelanin production persisted through 3 months of daily applications, and forskolin-induced eumelanin remained protective against UV damage as assessed by minimal erythematous dose (MED). No obvious toxic changes were noted in the skin or overall health of animals exposed to prolonged forskolin therapy. Body weights were maintained throughout the course of topical forskolin application. Topical application of forskolin was associated with an increase in the number of melanocytes in the epidermis and thickening of the epidermis due, at least in part, to an accumulation of nucleated keratinocytes. Together, these data suggest in this animal model, short-term topical regular application of forskolin promotes eumelanin induction and that over time, topical forskolin treatment is associated with persistent melanization, epidermal cell accumulation, and skin thickening.

  9. Exposure to a specific time-varying electromagnetic field inhibits cell proliferation via cAMP and ERK signaling in cancer cells.

    PubMed

    Buckner, Carly A; Buckner, Alison L; Koren, Stan A; Persinger, Michael A; Lafrenie, Robert M

    2018-04-01

    Exposure to specific electromagnetic field (EMF) patterns can affect a variety of biological systems. We have shown that exposure to Thomas-EMF, a low-intensity, frequency-modulated (25-6 Hz) EMF pattern, inhibited growth and altered cell signaling in malignant cells. Exposure to Thomas-EMF for 1 h/day inhibited the growth of malignant cells including B16-BL6 mouse melanoma cells, MDA-MB-231, MDA-MB-468, BT-20, and MCF-7 human breast cancer and HeLa cervical cancer cells but did not affect non-malignant cells. The Thomas-EMF-dependent changes in cell proliferation were mediated by adenosine 3',5'-cyclic monophosphate (cAMP) and extracellular-signal-regulated kinase (ERK) signaling pathways. Exposure of malignant cells to Thomas-EMF transiently changed the level of cellular cAMP and promoted ERK phosphorylation. Pharmacologic inhibitors (SQ22536) and activators (forskolin) of cAMP production both blocked the ability of Thomas-EMF to inhibit cell proliferation, and an inhibitor of the MAP kinase pathway (PD98059) was able to partially block Thomas-EMF-dependent inhibition of cell proliferation. Genetic modulation of protein kinase A (PKA) in B16-BL6 cells also altered the effect of Thomas-EMF on cell proliferation. Cells transfected with the constitutively active form of PKA (PKA-CA), which interfered with ERK phosphorylation, also interfered with the Thomas-EMF effect on cell proliferation. The non-malignant cells did not show any EMF-dependent changes in cAMP levels, ERK phosphorylation, or cell growth. These data indicate that exposure to the specific Thomas-EMF pattern can inhibit the growth of malignant cells in a manner dependent on contributions from the cAMP and MAP kinase pathways. Bioelectromagnetics. 39;217-230, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. Down-regulation of parathyroid hormone (PTH) receptors in cultured bone cells is associated with agonist-specific intracellular processing of PTH-receptor complexes.

    PubMed

    Teitelbaum, A P; Silve, C M; Nyiredy, K O; Arnaud, C D

    1986-02-01

    Exposure of cultured embryonic chicken bone cells to the PTH agonists bovine (b) PTH-(1-34) and [8Nle, 18Nle, 34Tyr]bPTH-(1-34)amide [bPTH-(1-34)A] reduces the subsequent cAMP response to the hormone and decreases the specific binding of 125I-labeled PTH to these cultures. To determine whether PTH receptor down-regulation in cultured bone cells is mediated by cellular internalization of PTH-receptor complexes, we measured the uptake of [125I]bPTH-(1-34) into an acid-resistant compartment. Uptake of radioactivity into this compartment was inhibited by incubating cells at 4 C with phenylarsineoxide and unlabeled bPTH-(1-34). Tracer uptake into the acid-resistant compartment at any time was directly proportional to total cell binding at 22 C. Thus, it is likely that PTH-receptor complexes are internalized by bone cells. This mechanism may explain the loss of cell surface receptors after PTH pretreatment. To determine whether internalized PTH-receptor complexes are reinserted into the plasma membrane, we measured PTH binding and PTH stimulation of cAMP production after cells were exposed to monensin, a known inhibitor of receptor recycling. Monensin (25 microM) had no effect on PTH receptor number or affinity and did not alter PTH-stimulated cAMP accumulation. However, monensin (25 microM) incubated with cells pretreated with various concentrations of bPTH-(1-34) for 1 h potentiated the effect of the hormone to reduce subsequent [125I]bPTH-(1-34) binding and PTH-stimulated cAMP accumulation by more than 2 orders of magnitude. Chloroquine also potentiated PTH-induced down-regulation of PTH receptors. By contrast, neither agent influenced PTH binding or PTH-stimulated cAMP production in cells pretreated with the antagonist bPTH-(3-34)A. Thus, monensin potentiated PTH receptor loss only in cells pretreated with PTH agonists, indicating that antagonist-occupied receptors may be processed differently from agonist-occupied receptors in bone cells. The data further suggest that the attenuation of PTH stimulation of cAMP production in treated bone cells may be, at least in part, due to receptor-mediated endocytosis of the hormone.

  11. Voluntary running depreciates the requirement of Ca2+-stimulated cAMP signaling in synaptic potentiation and memory formation

    PubMed Central

    Zheng, Fei; Zhang, Ming; Ding, Qi; Sethna, Ferzin; Yan, Lily; Moon, Changjong; Yang, Miyoung

    2016-01-01

    Mental health and cognitive functions are influenced by both genetic and environmental factors. Although having active lifestyle with physical exercise improves learning and memory, how it interacts with the specific key molecular regulators of synaptic plasticity is largely unknown. Here, we examined the effects of voluntary running on long-term potentiation (LTP) and memory formation in mice lacking type 1 adenylyl cyclase (AC1), a neurospecific synaptic enzyme that contributes to Ca2+-stimulated cAMP production. Following 1 mo of voluntary running-wheel exercise, the impaired LTP and object recognition memory in AC1 knockout (KO) mice were significantly attenuated. Running up-regulated exon II mRNA level of BDNF (brain-derived neurotrophic factor), though it failed to increase exon I and IV mRNAs in the hippocampus of AC1 KO mice. Intrahippocampal infusion of recombinant BDNF was sufficient to rescue LTP and object recognition memory defects in AC1 KO mice. Therefore, voluntary running and exogenous BDNF application overcome the defective Ca2+-stimulated cAMP signaling. Our results also demonstrate that alteration in Ca2+-stimulated cAMP can affect the molecular outcome of physical exercise. PMID:27421897

  12. Modification of adenylate cyclase by photoaffinity analogs of forskolin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, L.T.; Nie, Z.M.; Mende, T.J.

    1989-01-01

    Photoaffinity labeling analogs of the adenylate cyclase activator forskolin (PF) have been synthesized, purified and tested for their effect on preparations of membrane-bound, Lubrol solubilized and forskolin affinity-purified adenylate cyclase (AC). All analogs of forskolin significantly activated AC. However, in the presence of 0.1 to 0.3 microM forskolin, the less active forskolin photoaffinity probes at 100 microM caused inhibition. This inhibition was dose-dependent for PF, suggesting that PF may complete with F for the same binding site(s). After cross-linking (125I)PF-M to either membrane or Lubrol-solubilized AC preparations by photolysis, a radiolabeled 100-110 kDa protein band was observed after autoradiography followingmore » SDS-PAGE. F at 100 microM blocked the photoradiolabeling of this protein. Radioiodination of forskolin-affinity purified AC showed several protein bands on autoradiogram, however, only one band (Mr = 100-110 kDa) was specifically labeled by (125I)PF-M following photolysis. The photoaffinity-labeled protein of 100-110 kDa of AC preparation of rat adipocyte may be the catalytic unit of adenylate cyclase of rat adipocyte itself as supported by the facts that (a) no other AC-regulatory proteins are known to be of this size, (b) the catalytic unit of bovine brain enzyme is in the same range and (c) this PF specifically stimulates AC activity when assayed alone, and weekly inhibits forskolin-activation of cyclase. These studies indicate that radiolabeled PF probes may be useful for photolabeling and detecting the catalytic unit of adenylate cyclase.« less

  13. Toll-like receptor 4-mediated cAMP production up-regulates B-cell activating factor expression in Raw264.7 macrophages.

    PubMed

    Moon, Eun-Yi; Lee, Yu-Sun; Choi, Wahn Soo; Lee, Mi-Hee

    2011-10-15

    B-cell activating factor (BAFF) plays a role in the generation and the maintenance of mature B cells. Lipopolysaccharide (LPS) increased BAFF expression through the activation of toll-like receptor 4 (TLR4)-dependent signal transduction. Here, we investigated the mechanism of action on mouse BAFF (mBAFF) expression by cAMP production in Raw264.7 mouse macrophages. mBAFF expression was increased by the treatment with a cAMP analogue, dibutyryl-cAMP which is the activator of protein kinase A (PKA), cAMP effector protein. PKA activation was measured by the phosphorylation of cAMP-response element binding protein (CREB) on serine 133 (S133). cAMP production and CREB (S133) phosphorylation were augmented by LPS-stimulation. While mBAFF promoter activity was enhanced by the co-transfection with pS6-RSV-CREB, it was reduced by siRNA-CREB. PKA inhibitor, H-89, reduced CREB (S133) phosphorylation and mBAFF expression in control and LPS-stimulated macrophages. Another principal cAMP effector protein is cAMP-responsive guanine nucleotide exchange factor (Epac), a Rap GDP exchange factor. Epac was activated by the treatment with 8-(4-chloro-phenylthio)-2'-O-methyladenosine-3',5'-cyclic monophosphate (CPT), Epac activator, as judged by the measurement of Rap1 activation. Basal level of mBAFF expression was increased by CPT treatment. LPS-stimulated mBAFF expression was also slightly enhanced by co-treatment with CPT. In addition, dibutyryl-cAMP and CPT enhanced mBAFF expression in bone marrow-derived macrophages (BMDM). With these data, it suggests that the activation of PKA and cAMP/Epac1/Rap1 pathways could be required for basal mBAFF expression, as well as being up-regulated in the TLR4-induced mBAFF expression. Crown Copyright © 2011. Published by Elsevier Inc. All rights reserved.

  14. Effect of age and posture on human lymphocyte adenylate cyclase activity.

    PubMed

    Mader, S L; Robbins, A S; Rubenstein, L Z; Tuck, M L; Scarpace, P J

    1988-03-01

    1. A number of age-related changes have been reported in the catecholamine-adrenoceptor-adenylate cyclase system. Most of the data available on these alterations come from resting subjects; the response to acute stress may provide additional insights into the age effect on these responses. 2. We measured supine and 10 min upright plasma noradrenaline and lymphocyte adenylate cyclase activity in ten healthy elderly subjects (age 66-80 years) and seven healthy young subjects (age 27-34 years). 3. Isoprenaline stimulation of lymphocyte adenylate cyclase activity was not significantly different between supine and upright positions or between elderly and young subjects. There was a marked increase in forskolin-stimulated adenylate cyclase activity in the upright posture in both elderly and young subjects. The increment over supine levels was 70% in the elderly (P less than 0.025) and 73% in the young (P less than 0.05). This enhanced forskolin activity was not seen in two young subjects who became syncopal. 4. These data suggest that enhanced forskolin-stimulated adenylate cyclase activity occurs after 10 min of upright posture in both elderly and young subjects, and may be relevant to immediate blood pressure regulation. We were unable to demonstrate any age-related differences in these acute adrenergic responses.

  15. Localized cyclic AMP-dependent protein kinase activity is required for myogenic cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukai, Atsushi; Hashimoto, Naohiro

    2008-01-15

    Multinucleated myotubes are formed by fusion of mononucleated myogenic progenitor cells (myoblasts) during terminal skeletal muscle differentiation. In addition, myoblasts fuse with myotubes, but terminally differentiated myotubes have not been shown to fuse with each other. We show here that an adenylate cyclase activator, forskolin, and other reagents that elevate intracellular cyclic AMP (cAMP) levels induced cell fusion between small bipolar myotubes in vitro. Then an extra-large myotube, designated a 'myosheet,' was produced by both primary and established mouse myogenic cells. Myotube-to-myotube fusion always occurred between the leading edge of lamellipodia at the polar end of one myotube and themore » lateral plasma membrane of the other. Forskolin enhanced the formation of lamellipodia where cAMP-dependent protein kinase (PKA) was accumulated. Blocking enzymatic activity or anchoring of PKA suppressed forskolin-enhanced lamellipodium formation and prevented fusion of multinucleated myotubes. Localized PKA activity was also required for fusion of mononucleated myoblasts. The present results suggest that localized PKA plays a pivotal role in the early steps of myogenic cell fusion, such as cell-to-cell contact/recognition through lamellipodium formation. Furthermore, the localized cAMP-PKA pathway might be involved in the specification of the fusion-competent areas of the plasma membrane in lamellipodia of myogenic cells.« less

  16. Positive effects of Forskolin (stimulator of lipolysis) treatment on cryosurvival of in vitro matured porcine oocytes.

    PubMed

    Fu, Xiang-Wei; Wu, Guo-Quan; Li, Jun-Jie; Hou, Yun-Peng; Zhou, Guang-Bin; Lun-Suo; Wang, Yan-Ping; Zhu, Shi-En

    2011-01-15

    In order to examine its effect on oocyte lipid content and cryosurvival, Forskolin was added to the medium for in vitro maturation of porcine oocytes. Treatments were control (IVM without Forskolin during the 42 h incubation period), addition of 10 μM Forskolin for the entire 42 h (0-42) and addition of 10 μM Forskolin between 24 and 42 h only (24-42). In Experiment 1, treatments did not differ significantly in cleavage rate, but the blastocyst formation rate was lower in the 0-42 group than for control and 24-42 group oocytes (17, 32 and 40%, respectively; P < 0.05). It was shown in Experiment 2 that Forskolin treatment from 0-42 h and from 24-42 h significantly reduced lipid content of oocytes compared to that of control cells (65 and 99 vs. 140 μm(2) intensity of fluorescence, respectively; P < 0.05). In Experiment 3, the percentage of oocyte survival after cryopreservation and thawing was significantly higher in both Forskolin treatment groups than in control oocytes (72% for 0-42, 65% for 24-42 and 52% for control; P < 0.05). However, Forskolin treatment did not increase cleavage rates of vitrified in vitro matured porcine oocytes (Control group 28%, 0-42 h group 0%, 24-42 h group 26.67%). Addition of Forskolin affected the nuclear maturation of porcine oocytes. The percentage of PBE (polar body extrusion) were significantly reduced in the 0-42 h group (0-42 h group 42.00 ± 2.08 vs. Control group 79.70 ± 2.82 and 24-42 h group 70.60 ± 2.83; P < 0.05). The 24-42 h group showed similar nuclear status to that of the Control group. We propose that delipation engendered by incubation with 10 μM Forskolin during 24-42 hours of maturation increased cryosurvival of in vitro-maturated porcine oocytes and that attendant chemical lipolysis did not impair their further development as it may have done in oocytes incubated with Forskolin for the full 42 h. Copyright © 2011 Elsevier Inc. All rights reserved.

  17. Comparison of alpha 1A- and alpha 1B-adrenoceptor coupling to inositol phosphate formation in rat kidney.

    PubMed

    Büscher, R; Erdbrügger, W; Philipp, T; Brodde, O E; Michel, M C

    1994-12-01

    We have compared the coupling mechanisms of rat renal alpha 1A- and alpha 1B-like adrenoceptors to inositol phosphate formation. The experiments were performed in parallel in native renal tissue preparations and in those where alpha 1B-adrenoceptors had been inactivated by treatment with 10 mumol/l chloroethylclonidine for 30 min at 37 degrees C; renal slices were used in most experiments but isolated renal cells were also used in some cases. The Ca2+ chelating agent, EGTA (5 mmol/l), reduced noradrenaline-stimulated inositol phosphate formation in native but enhanced it in chloroethylclonidine-treated renal slices. The inhibitory effect of EGTA was not mimicked by 100 nmol/l nifedipine. Inactivation of 87% of cellular Gi by 16-20 h treatment with 500 ng/ml pertussis toxin did not significantly affect noradrenaline-stimulated inositol phosphate formation in isolated renal cells but abolished the inhibitory effect of chloroethylclonidine. The adenylate cyclase activator, forskolin (20 mumol/l), inhibited noradrenaline-stimulated inositol phosphate formation in native and chloroethylclonidine-treated slices, and the inhibitory effects of chloroethylclonidine treatment and forskolin were additive. We conclude that in rat kidney inositol phosphate formation via alpha 1B-like adrenoceptors may involve the influx of extracellular Ca2+ and a pertussis toxin-sensitive G-protein but is insensitive to inhibition by forskolin. In contrast alpha 1A-like adrenoceptor-mediated inositol phosphate formation does not require the presence of extracellular Ca2+ or of Gi and is sensitive to inhibition by forskolin. In comparison to published data from other model systems we further conclude that the signaling mechanisms of alpha 1-adrenoceptor subtypes may depend on their cellular environment.

  18. cAMP-dependent activation of protein kinase A attenuates respiratory syncytial virus-induced human airway epithelial barrier disruption

    PubMed Central

    Harford, Terri J.; Linfield, Debra T.; Altawallbeh, Ghaith; Midura, Ronald J.; Ivanov, Andrei I.; Piedimonte, Giovanni

    2017-01-01

    Airway epithelium forms a barrier to the outside world and has a crucial role in susceptibility to viral infections. Cyclic adenosine monophosphate (cAMP) is an important second messenger acting via two intracellular signaling molecules: protein kinase A (PKA) and the guanidine nucleotide exchange factor, Epac. We sought to investigate effects of increased cAMP level on the disruption of model airway epithelial barrier caused by RSV infection and the molecular mechanisms underlying cAMP actions. Human bronchial epithelial cells were infected with RSV-A2 and treated with either cAMP releasing agent, forskolin, or cAMP analogs. Structure and functions of the Apical Junctional Complex (AJC) were evaluated by measuring transepithelial electrical resistance and permeability to FITC-dextran, and determining localization of AJC proteins by confocal microscopy. Increased intracellular cAMP level significantly attenuated RSV-induced disassembly of AJC. These barrier-protective effects of cAMP were due to the activation of PKA signaling and did not involve Epac activity. Increased cAMP level reduced RSV-induced reorganization of the actin cytoskeleton, including apical accumulation of an essential actin-binding protein, cortactin, and inhibited expression of the RSV F protein. These barrier-protective and antiviral-function of cAMP signaling were evident even when cAMP level was increased after the onset of RSV infection. Taken together, our study demonstrates that cAMP/PKA signaling attenuated RSV-induced disruption of structure and functions of the model airway epithelial barrier by mechanisms involving the stabilization of epithelial junctions and inhibition of viral biogenesis. Improving our understanding of the mechanisms involved in RSV-induced epithelial dysfunction and viral pathogenesis will help to develop novel anti-viral therapeutic approaches. PMID:28759570

  19. Downregulation of Pink1 influences mitochondrial fusion–fission machinery and sensitizes to neurotoxins in dopaminergic cells

    PubMed Central

    Rojas-Charry, Liliana; Cookson, Mark R.; Niño, Andrea; Arboleda, Humberto; Arboleda, Gonzalo

    2016-01-01

    It is now well established that mitochondria are organelles that, far from being static, are subject to a constant process of change. This process, which has been called mitochondrial dynamics, includes processes of both fusion and fission. Loss of Pink1 (PTEN-induced putative kinase 1) function is associated with early onset recessive Parkinson’s disease and it has been proposed that mitochondrial dynamics might be affected by loss of the mitochondrial kinase. Here, we report the effects of silencing Pink1 on mitochondrial fusion and fission events in dopaminergic neuron cell lines. Cells lacking Pink1 were more sensitive to cell death induced by C2-Ceramide, which inhibits proliferation and induces apoptosis. In the same cell lines, mitochondrial morphology was fragmented and this was enhanced by application of forskolin, which stimulates the cAMP pathway that phosphorylates Drp1 and thereby inactivates it. Cells lacking Pink1 had lower Drp1 and Mfn2 expression. Based on these data, we propose that Pink1 may exert a neuroprotective role in part by limiting mitochondrial fission. PMID:24792327

  20. Fibroblast growth factor 2 and cyclic AMP synergistically regulate bone sialoprotein gene expression.

    PubMed

    Shimizu, Emi; Nakayama, Youhei; Nakajima, Yu; Kato, Naoko; Takai, Hideki; Kim, Dong-Soon; Arai, Masato; Saito, Ryoichiro; Sodek, Jaro; Ogata, Yorimasa

    2006-07-01

    Bone sialoprotein (BSP) is a noncollagenous protein of the mineralized bone extracellular matrix. We here report that FGF2 and cAMP act synergistically to stimulate BSP gene expression. Treatment of ROS 17/2.8 cells with either 10 ng/ml FGF2 or 1 microM FSK for 6 h resulted in 5.4- and 8.2-fold increases, respectively, in the levels of BSP mRNA. However, in the presence of both FGF2 and forskolin (FGF/FSK), BSP mRNA levels were increased synergistically by 20.4-fold. Using a luciferase reporter construct, encompassing BSP promoter nucleotides -116 to +60, transcription was also increased synergistically by 15.0-fold with FGF/FSK, compared to stimulations of 2.6- and 5.3-fold, respectively, for FGF2 and FSK alone. Transcriptional stimulation by FGF/FSK abrogated in constructs included 2 bp mutations in the inverted CCAAT, CRE, FRE and Pit-1 elements. Whereas the FRE-protein complex was increased by FGF2 and FGF/FSK, the Pit-1-protein complex was decreased by FSK and FGF/FSK. Notably, transcriptional activity induced by FGF/FSK was blocked by protein kinase A, tyrosine kinase and MEK inhibitors. These studies indicate that the combinatorial effects of FGF and FSK act through PKA, tyrosine kinase and MAP-kinase-dependent pathways, which target the inverted CCAAT, CRE, FRE and Pit-1 elements in the BSP gene to synergistically increase BSP expression.

  1. Induction of autocrine factor inhibiting cell motility from murine B16-BL6 melanoma cells by alpha-melanocyte stimulating hormone.

    PubMed

    Murata, J; Ayukawa, K; Ogasawara, M; Watanabe, H; Saiki, I

    1999-03-15

    We have previously reported that neuropeptide alpha-melanocyte stimulating hormone (alpha-MSH) successfully inhibited Matrigel invasion and haptotactic migration of B16-BL6 melanoma cells towards both fibronectin and laminin without affecting their growth. In the present study, we investigated the inhibitory mechanism of tumor cell motility by alpha-MSH. Alpha-MSH significantly blocked the autocrine motility factor (AMF)-enhanced cell motility. However, alpha-MSH did neither prevent the secretion of AMF from B16-BL6 cells nor alter the expression level of AMF receptor (gp78). On the other hand, alpha-MSH induced the secretion of the motility inhibitory factor(s) from B16-BL6 cells in a concentration- and time-dependent manner. The induction of the motility inhibitor(s) was proportional to increasing levels of intracellular cAMP induced by alpha-MSH as well as forskolin, and the activity was abolished by an adenylate cyclase inhibitor, 2',5'-dideoxyadenosine (DDA). The motility-inhibiting activity in conditioned medium (CM) from alpha-MSH-treated B16-BL6 cells was found to have a m.w. below 3 kDa after fractionation. This activity was abolished by boiling but insensitive to trypsin. The treatment of tumor cells with cycloheximide reduced the activity in alpha-MSH-stimulated CM. Our results suggest that alpha-MSH inhibited the motility of B16-BL6 cells through induction of autocrine factor(s).

  2. Prostaglandin E2 Stimulates EP2, Adenylate Cyclase, Phospholipase C, and Intracellular Calcium Release to Mediate Cyclic Adenosine Monophosphate Production in Dental Pulp Cells.

    PubMed

    Chang, Mei-Chi; Lin, Szu-I; Lin, Li-Deh; Chan, Chiu-Po; Lee, Ming-Shu; Wang, Tong-Mei; Jeng, Po-Yuan; Yeung, Sin-Yuet; Jeng, Jiiang-Huei

    2016-04-01

    Prostaglandin E2 (PGE2) plays a crucial role in pulpal inflammation and repair. However, its induction of signal transduction pathways is not clear but is crucial for future control of pulpal inflammation. Primary dental pulp cells were exposed to PGE2 and 19R-OH PGE2 (EP2 agonist) or sulprostone (EP1/EP3 agonist) for 5 to 40 minutes. Cellular cyclic adenosine monophosphate (cAMP) levels were measured using the enzyme-linked immunosorbent assay. In some experiments, cells were pretreated with SQ22536 (adenylate cyclase inhibitor), H89 (protein kinase A inhibitor), dorsomorphin (adenosine monophosphate-activated protein kinase inhibitor), U73122 (phospholipase C inhibitor), thapsigargin (inhibitor of intracellular calcium release), W7 (calmodulin antagonist), verapamil (L-type calcium channel blocker), and EGTA (extracellular calcium chelator) for 20 minutes before the addition of PGE2. PGE2 and 19R-OH PGE2 (EP2 agonist) stimulated cAMP production, whereas sulprostone (EP1/EP3 agonist) shows little effect. PGE2-induced cAMP production was attenuated by SQ22536 and U73122 but not H89 and dorsomorphin. Intriguingly, thapsigargin and W7 prevented PGE2-induced cAMP production, but verapamil and EGTA showed little effect. These results indicate that PGE2-induced cAMP production is associated with EP2 receptor and adenylate cyclase activation. These events are mediated by phospholipase C, intracellular calcium release, and calcium-calmodulin signaling. These results are helpful for understanding the role of PGE2 in pulpal inflammation and repair and possible future drug intervention. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  3. Forskolin- and dihydroalprenolol (DHA) binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1987-05-01

    The purpose of the present investigation was to determine if dietary lipids can induce changes in the adenylate cyclase system in rat heart. Three groups of male young Sprague-Dawley rats were fed for 6 weeks diets containing 10% corn oil (I), 8% coconut oil + 2% corn oil (II) or 10% menhaden oil (III). Adenylate cyclase activity (basal, fluoride-, isoproterenol-, and forskolin-stimulated) was higher in heart homogenates of rats in group III than in the other two groups. Concentration of the (/sup 3/H)-forskolin binding sites in the cardiac membranes were significantly higher in rats fed menhaden oil. The values (pmol/mgmore » protein) were 4.8 +/- 0.2 (I), 4.5 +/- 0.7 (II) and 8.4 +/- 0.5 (III). There was no significant difference in the affinity of the forskolin binding sites among the 3 dietary groups. When measured at different concentrations of forskolin, the adenylate cyclase activity in cardiac membranes of rats fed menhaden oil was higher than in the other 2 groups. Concentrations of the (/sup 3/H)DHA binding sites were slightly higher but their affinity was lower in cardiac membranes of rats fed menhaden oil. The results suggest that diets containing fish oil increase the concentration of the forskolin binding sites and may also affect the characteristics of the ..beta..-adrenergic receptor in rat heart.« less

  4. Progesterone, estradiol, arachidonic acid, oxytocin, forskolin and cAMP influence on aquaporin 1 and 5 expression in porcine uterine explants during the mid-luteal phase of the estrous cycle and luteolysis: an in vitro study.

    PubMed

    Skowronska, Agnieszka; Młotkowska, Patrycja; Wojciechowicz, Bartosz; Okrasa, Stanisław; Nielsen, Soren; Skowronski, Mariusz T

    2015-02-18

    The cell membrane water channel protein, aquaporins (AQPs), regulate cellular water transport and cell volume and play a key role in water homeostasis. Recently, AQPs are considered as important players in the field of reproduction. In previous studies, we have established the presence of AQP1 and 5 in porcine uterus. Their expression at protein level altered in distinct tissues of the female reproductive system depending on the phase of the estrous cycle. However, the regulation of aquaporin genes and proteins expression has not been examined in porcine uterine tissue. Therefore, we have designed an in vitro experiment to explain whether steroid hormones, progesterone (P4) and estradiol (E2), and other factors: oxytocine (OT), arachidonic acid (AA; substrate for prostaglandins synthesis) as well as forskolin (FSK; adenylate cyclase activator) and cAMP (second messenger, cyclic adenosine monophosphate) may impact AQPs expression. Uterine tissues were collected on Days 10-12 and 14-16 of the estrous cycle representing the mid-luteal phase and luteolysis. Real-time PCR and Western blot analysis were performed to examine the expression of porcine AQP1 and AQP5. Their expression in the uterine explants was also evaluated by immunohistochemistry. The results indicated that uterine expression of AQP1 and AQP5 potentially remains under control of steroid hormones and AA-derived compounds (e.g. prostaglandins). P4, E2, AA, FSK and cAMP cause translocation of AQP5 from apical to the basolateral plasma membrane of the epithelial cells, which might affect the transcellular water movement (through epithelial cells) between uterine lumen and blood vessels. The AC/cAMP pathway is involved in the intracellular signals transduction connected with the regulation of AQPs expression in the pig uterus. This study documented specific patterns of AQP1 and AQP5 expression in response to P4, E2, AA, FSK and cAMP, thereby providing new indirect evidence of their role in maintaining the local fluid balance within the uterus during the mid-luteal phase of the estrous cycle and luteolysis in pigs.

  5. Epac2 Mediates cAMP-Dependent Potentiation of Neurotransmission in the Hippocampus

    PubMed Central

    Fernandes, Herman B.; Riordan, Sean; Nomura, Toshihiro; Remmers, Christine L.; Kraniotis, Stephen; Marshall, John J.; Kukreja, Lokesh; Vassar, Robert

    2015-01-01

    Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2−/− mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2−/− mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus. PMID:25904804

  6. Adrenocorticotropin receptors: Functional expression from rat adrenal mRNA in Xenopus laevis oocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertz, L.M.; Catt, K.J.

    1991-10-01

    The adrenocorticotropin (ACTH) receptor, which binds corticotropin and stimulates adenylate cyclase and steroidogenesis in adrenocortical cells, was expressed in Xenopus laevis oocytes microinjected with rat adrenal poly(A){sup +} RNA. Expression of the ACTH receptor in individual stage 5 and 6 oocytes was monitored by radioimmunoassay of ligand-stimulated cAMP production. Injection of 5-40 ng of adrenal mRNA caused dose-dependent increases in ACTH-responsive cAMP production. Size fractionation of rat adrenal poly(A){sup +}RNA by sucrose density-gradient centrifugation revealed that mRNA encoding the ACTH receptor was present in the 1.1-to 2.0-kilobase fraction. These data indicate that ACTH receptors can be expressed from adrenal mRNAmore » in Xenopus oocytes and are fully functional in terms of ligand specificity and signal generation. The extracellular cAMP response to ACTH is a sensitive and convenient index of receptor expression. This system should permit more complete characterization and expression cloning of the ACTH receptor.« less

  7. Modulation of chloride, potassium and bicarbonate transport by muscarinic receptors in a human adenocarcinoma cell line.

    PubMed

    Holliday, N D; Cox, H M

    1999-01-01

    1. Short-circuit current (I(SC)) responses to carbachol (CCh) were investigated in Colony 1 epithelia, a subpopulation of the HCA-7 adenocarcinoma cell line. In Krebs-Henseleit (KH) buffer, CCh responses consisted of three I(SC) components: an unusual rapid decrease (the 10 s spike) followed by an upward spike at 30 s and a slower transient increase (the 2 min peak). This response was not potentiated by forskolin; rather, CCh inhibited cyclic AMP-stimulated I(SC). 2. In HCO3- free buffer, the decrease in forskolin-elevated I(SC) after CCh was reduced, although the interactions between CCh and forskolin remained at best additive rather than synergistic. When Cl- anions were replaced by gluconate, both Ca2+- and cyclic AMP-mediated electrogenic responses were significantly inhibited. 3. Basolateral Ba2+ (1-10 mM) and 293B (10 microM) selectively inhibited forskolin stimulation of I(SC), without altering the effects of CCh. Under Ba2+- or 293B-treated conditions, CCh responses were potentiated by pretreatment with forskolin. 4. Basolateral charybdotoxin (50 nM) significantly increased the size of the 10 s spike of CCh responses in both KH and HCO3- free medium, without affecting the 2 min peak. The enhanced 10 s spike was inhibited by prior addition of 5 mM apical Ba2+. Charybdotoxin did not affect forskolin responses. 5. In epithelial layers prestimulated with forskolin, the muscarinic antagonists atropine and 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP, both at 100 nM) abolished subsequent 10 microM CCh responses. Following addition of p-fluoro hexahydro-sila-difenidol (pF-HHSiD, 10 microM) or pirenzepine (1 microM), qualitative changes in the CCh response time-profile also indicated a rightward shift of the agonist concentration-response curve; however, 1 microM gallamine had no effect. These results suggest that a single M3-like receptor subtype mediates the secretory response to CCh. 6. It is concluded that CCh and forskolin activate discrete populations of basolateral K+ channels gated by either Ca2+ or cyclic AMP, but that the Cl- permeability of the apical membrane may limit their combined effects on electrogenic Cl- secretion. In addition, CCh activates a Ba2+-sensitive apical K+ conductance leading to electrogenic K+ transport. Both agents may also modulate HCO3- secretion through a mechanism at least partially dependent on carbonic anhydrase.

  8. Expression of G(alpha)(s) proteins and TSH receptor signalling in hyperfunctioning thyroid nodules with TSH receptor mutations.

    PubMed

    Holzapfel, Hans-Peter; Bergner, Beate; Wonerow, Peter; Paschke, Ralf

    2002-07-01

    Constitutively activating mutations of the thyrotrophin receptor (TSHR) are the main molecular cause of hyperfunctioning thyroid nodules (HTNs). The G protein coupling is an important and critical step in the TSHR signalling which mainly includes G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins. We investigated the in vitro consequences of overexpressing G(alpha) proteins on signalling of the wild-type (WT) or mutated TSHR. Moreover, we investigated whether changes in G(alpha) protein expression are pathophysiologically relevant in HTNs or cold thyroid nodules (CTNs). Wild-type TSH receptor and mutated TSH receptors were coexpressed with G(alpha)(s), G(alpha)(i) or G(alpha)(q)/11, and cAMP and inositol phosphate (IP) production was measured after stimulation with TSH. The expression of G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins was examined by Western blotting in 28 HTNs and 14 CTNs. Coexpression of G(alpha)(s) with the WT TSH receptor in COS 7 cells significantly increased the basal and TSH-stimulated cAMP accumulation while coexpression of the G(alpha)(q) or G(alpha)11 protein significantly increased the production of cAMP and inositol triphosphate (IP(3)). The coexpression of the TSH receptor mutants (I486F, DEL613-621), known to couple constitutively to G(alpha)(s) and G(alpha)(q) with G(alpha)(s) and G(alpha)(q)/11, significantly increased the basal and stimulated cAMP and IP(3) accumulation. Coexpression of the TSH receptor mutant V556F with G(alpha)(s) only increased the basal and stimulated cAMP production while its coexpression with G(alpha)(q)/11 increased the basal and stimulated IP(3) signalling. The expression of G(alpha)(s) protein subunits determined by Western blotting was significantly decreased in 14 HTNs with a constitutively activating TSH receptor mutation in comparison with the corresponding surrounding tissue, while in 14 HTNs without TSH receptor or G(alpha)(s) protein mutation and in 14 CTNs the expression of G(alpha)(s) protein was not different compared with the surrounding tissue. The expression of G(alpha)(i) and G(alpha)(q)/11 proteins in HTNs or CTNs was not significantly different compared with the surrounding tissue. The reduced expression of G(alpha)(s) protein subunits in HTNs with TSHR mutations could act as a feedback mechanism to desensitise the chronically stimulated cAMP cascade. As G(alpha) protein expression was not significantly increased in the majority of CTNs and HTNs an influence of G(alpha) overexpression on TSH signalling could be excluded in these nodules.

  9. Regulation of tyrosine hydroxylase activity and phosphorylation at Ser(19) and Ser(40) via activation of glutamate NMDA receptors in rat striatum.

    PubMed

    Lindgren, N; Xu, Z Q; Lindskog, M; Herrera-Marschitz, M; Goiny, M; Haycock, J; Goldstein, M; Hökfelt, T; Fisone, G

    2000-06-01

    The activity of tyrosine hydroxylase, the rate-limiting enzyme in the biosynthesis of dopamine, is stimulated by phosphorylation. In this study, we examined the effects of activation of NMDA receptors on the state of phosphorylation and activity of tyrosine hydroxylase in rat striatal slices. NMDA produced a time-and concentration-dependent increase in the levels of phospho-Ser(19)-tyrosine hydroxylase in nigrostriatal nerve terminals. This increase was not associated with any changes in the basal activity of tyrosine hydroxylase, measured as DOPA accumulation. Forskolin, an activator of adenylyl cyclase, stimulated tyrosine hydroxylase phosphorylation at Ser(40) and caused a significant increase in DOPA accumulation. NMDA reduced forskolin-mediated increases in both Ser(40) phosphorylation and DOPA accumulation. In addition, NMDA reduced the increase in phospho-Ser(40)-tyrosine hydroxylase produced by okadaic acid, an inhibitor of protein phosphatase 1 and 2A, but not by a cyclic AMP analogue, 8-bromo-cyclic AMP. These results indicate that, in the striatum, glutamate decreases tyrosine hydroxylase phosphorylation at Ser(40) via activation of NMDA receptors by reducing cyclic AMP production. They also provide a mechanism for the demonstrated ability of NMDA to decrease tyrosine hydroxylase activity and dopamine synthesis.

  10. Evening primrose oil or forskolin ameliorates celecoxib-enhanced upregulation of tissue factor expression in mice subjected to lipopolysaccharide-induced endotoxemia.

    PubMed

    Mosaad, Sarah M; Zaitone, Sawsan A; Ahmed, Amal A M; Abo-Elmatty, Dina M; El-Baz, Amani A; Moustafa, Yasser M

    2017-05-01

    Celecoxib, a selective cyclooxygenase-2 inhibitor, produces thrombotic events in patients predisposed to cardiovascular risk factors. One theory reported an increase in endothelial expression of tissue factor (TF) as a predisposing factor. This work explored the effect of evening primrose oil (EPO), a source of prostaglandin E1, and forskolin (a cyclic adenosine monophosphate stimulator) against the prothrombotic effect of celecoxib in mice. Lipopolysaccharide mouse model of endotoxemia was used to induce an upregulation of TF activity. Male mice received celecoxib (25 mg/kg), celecoxib plus EPO, or celecoxib plus forskolin for 4 weeks and then subjected to a prothrombotic challenge in the form of an intraperitoneal injection of lipopolysaccharide. Results showed an increase in plasma TF activity, endothelial TF expression, and thrombin-antithrombin (TAT) but lower antithrombin III (ATIII) level in mice that received celecoxib in comparison to those that received the vehicle. Adding EPO or forskolin to celecoxib regimen significantly decreased the prothrombotic effect of celecoxib. A positive correlation (r = 0.8501) was found between TF activity and TAT. Co-administration of EPO or forskolin decreased the activity of TF and mitigated the prothrombotic effect of celecoxib. Therefore, these combinations may have the utility to abrogate the prothrombotic adverse effect of celecoxib in clinical setting.

  11. Mediation by prostaglandins of the stimulatory effect of substance P on cyclic AMP production in dog iris sphincter smooth muscle.

    PubMed

    Marathe, G K; Yousufzai, S Y; Abdel-Latif, A A

    1996-10-25

    The purpose of the present study was to examine the mechanism of the stimulatory effect of substance P (SP) on cyclic AMP (cAMP) accumulation in dog iris sphincter. We found that: (1) SP increased cAMP accumulation in a time- and concentration-dependent manner, the T1/2 and EC50 values being 1.2 min and 44 nM, respectively. SP has no effect on inositol trisphosphate and muscle contraction in this tissue. (2) SP-stimulated cAMP formation was inhibited by quinacrine, a non-specific phospholipase A2 inhibitor (IC50 = 9.5 microM), and by indomethacin (Indo), a cyclooxygenase inhibitor (IC50 = 3.5 nM), in a concentration-dependent manner, suggesting that SP induces cAMP accumulation via an Indo-sensitive pathway. (3) SP-induced arachidonic acid release and SP-induced prostaglandin E2 (PGE2) release were inhibited concentration dependently by quinacrine and Indo, with IC50 values of 11 microM and 0.8 nM, respectively. (4) PGE2 (1 microM) increased cAMP formation in the sphincter muscle by 94%, and, furthermore, the PG, but not SP, stimulated the activity of adenylyl cyclase in membrane fractions isolated from this tissue. (5) Indo (1 microM) blocked the relaxing effect of SP (1 microM) in iris sphincter precontracted with carbachol (1 microM). (6) The inhibitory effect of Indo on SP-induced cAMP accumulation was species specific. Increases in cAMP represent a mechanism by which extracellular SP can regulate smooth muscle function. Thus, we conclude from these studies that in dog iris sphincter SP-induced cAMP accumulation is mediated through PGs, and that in this cholinergically innervated muscle SP via cAMP could function, in part, to modulate the physiological responses to muscarinic receptor stimulation.

  12. Relaxation of isolated guinea-pig trachea by apigenin, a constituent of celery, via inhibition of phosphodiesterase.

    PubMed

    Chen, Junn-Lain; Ko, Wun-Chang

    2017-09-15

    Apigenin, was reported to have vasodilatory effects by inhibiting Ca 2+ influx through both voltage- and receptor-operated calcium channels, but not by inhibiting cAMP- or cGMP-phosphodiesterases (PDEs) in rat thoracic aorta. However, apigenin was reported to inhibit PDE1, 2 and 3 in guinea-pig lung and heart. The aim of this study was to clarify that guinea-pig tracheal relaxation by apigenin whether via PDE inhibition. We isometrically recorded the tension of isolated guinea-pig tracheal segments on a polygraph. Antagonistic effects of apigenin against cumulative contractile agents or Ca 2+ induced contractions of the trachealis in normal or isotonic high-K + , Ca 2+ -free Krebs solution, respectively. Effects of apigenin (15 and 30μM) on the cumulative forskolin- and nitroprusside-induced relaxations to histamine (30μM)-induced precontraction were performed. The inhibitory effects of 30-300μM apigenin and 3-isobutyl-1-methylxanthine (IBMX, positive control) on the cAMP- and cGMP-PDEs were determined. Apigenin concentration-dependently but non-competitively inhibited cumulative histamine-, carbachol- or Ca 2+ -induced contractions in normal or in the depolarized (K + , 60mM) trachealis, suggesting that Ca 2+ influx through voltage-dependent calcium channels is inhibited. However, apigenin (15-30μM) parallel leftward shifted the concentration-response curves of forskolin and nitroprusside, and significantly increased the pD 2 values of these two cyclase activators. Both apigenin and IBMX, a reference drug, concentration (10-300μM)-dependently and significantly, but non-selectively inhibited the activities of cAMP- and cGMP-PDEs in the trachealis. In conclusion, the relaxant effect of apigenin may be due to inhibition of both enzyme activities and reduction of intracellular Ca 2+ by inhibiting Ca 2+ influx in the trachealis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. In vitro embryos production after oocytes treatment with forskolin.

    PubMed

    Paschoal, Daniela Martins; Maziero, Rosiára Rosária Dias; Sudano, Mateus José; Guastali, Midyan Daroz; Vergara, Luis Eduardo; Crocomo, Letícia Ferrari; Lima-Neto, João Ferreira de; Magalhães, Luis Carlos Oña; Monteiro, Bianca Andriolo; Rascado, Tatiana da Silva; Martins, Alício; Leal, Claudia Lima Verde; Landim-Alvarenga, Fernanda da Cruz

    2016-04-01

    The inhibition of nuclear maturation allows time for the oocyte to accumulate molecules that are important for embryonic development. Thus, the objective of this work was to evaluate the effect of blocking oocyte meiosis with the addition of forskolin, an efficient inhibitor of nuclear maturation, in in vitro maturation (IVM) medium. Forskolin was added to the IVM medium for 6 h at concentrations of 0.1 mM, 0.05 mM or 0.025 mM, then the oocytes were allowed to mature in drug-free medium for 18 h. The oocytes were assessed for the stage of nuclear maturation, the activity and distribution of mitochondria, oocyte ultrastructure, the number of viable cells and the apoptosis rate. After forskolin treatment, the oocytes were fertilized in vitro and cultured for 7 days. On day 7, the blastocyst rate, the ultrastructure, the number of intact cells and the apoptosis rate of the blastocysts were measured. No differences were observed for the stage of nuclear maturation of the oocyte, the mitochondrial activity and distribution, the blastocyst rate or total number of intact cells. However, a higher rate of apoptosis was observed in the blastocysts produced from oocytes blocked for 6 h with the higher concentration of forskolin (P < 0.05). We conclude that all the experimental groups reached the MII stage after the addition of forskolin and that the highest concentration of forskolin caused cellular degeneration without harming embryo production on the 7th day.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krall, J.F.; Morin, A.

    Cells growing in culture with previously described properties of rat uterine smooth muscle accumulated /sup 45/Ca/sup 2 +/ from the medium. Ca/sup 2 +/ uptake by these cells was stimulated by the addition to the medium of 8-bromo-cGMP but not by 8-bromo-cAMP. Ca/sup 2 +/ uptake was also stimulated by carbachol and by the nitro-vasodilator nitroprusside. Although cholinergic agonists have been shown previously to stimulate contraction but not cGMP synthesis in the rat myometrium, both carbachol and nitroprusside stimulated cGMP production by the cultured cells. These results suggested the cells had cholinergic receptor-medicated functions that reflected some neurotransmitter-sensitive properties ofmore » uterine smooth muscle in situ. When determined by a specific radioligand binding assay, subcellular fractions of the cultured cells bound muscarinic cholinergic agonists and antagonists with affinities expected of the muscarinic receptor. The cells were also sensitive to the ..beta..-adrenergic catecholamine agonist isoproterenol, which stimulated cAMP production but not Ca/sup 2 +/ uptake. Carbachol failed to inhibit isoproterenol-dependent cAMP production, which is an important property of the cholinergic receptor in uterine smooth muscle in situ. These results suggest some but not all acetylcholine-sensitive properties of uterine smooth muscle may be retained in cell culture.« less

  15. Mechanisms Restricting Diffusion of Intracellular cAMP.

    PubMed

    Agarwal, Shailesh R; Clancy, Colleen E; Harvey, Robert D

    2016-01-22

    Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells.

  16. Mechanisms Restricting Diffusion of Intracellular cAMP

    PubMed Central

    Agarwal, Shailesh R.; Clancy, Colleen E.; Harvey, Robert D.

    2016-01-01

    Although numerous receptors stimulate cAMP production in a wide array of cells, many elicit distinct, highly localized responses, implying that the subcellular distribution of cAMP is not uniform. One often used explanation is that phosphodiesterases, which breakdown cAMP, act as functional barriers limiting diffusion. However, several studies refute the notion that this is sufficient, suggesting that phosphodiesterase-independent movement of cAMP must occur at rates slower than free diffusion. But, until now this has never been demonstrated. Using Raster Image Correlation Spectroscopy (RICS), we measured the diffusion coefficient of a fluorescently-labeled cAMP derivative (φ450-cAMP) as well as other fluorescent molecules in order to investigate the role that molecular size, cell morphology, and buffering by protein kinase A (PKA) play in restricting cAMP mobility in different cell types. Our results demonstrate that cytosolic movement of cAMP is indeed much slower than the rate of free diffusion and that interactions with PKA, especially type II PKA associated with mitochondria, play a significant role. These findings have important implications with respect to cAMP signaling in all cells. PMID:26795432

  17. Picomolar-affinity binding and inhibition of adenylate cyclase activity by melatonin in Syrian hamster hypothalamus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niles, L.P.; Hashemi, F.

    1. The effect of melatonin on forskolin-stimulated adenylate cyclase activity was measured in homogenates of Syrian hamster hypothalamus. In addition, the saturation binding characteristics of the melatonin receptor ligand, ({sup 125}I)iodomelatonin, was examined using an incubation temperature (30{degree}C) similar to that used in enzyme assays. 2. At concentrations ranging from 10 pM to 1 nM, melatonin caused a significant decrease in stimulated adenylate cyclase activity with a maximum inhibition of approximately 22%. 3. Binding experiments utilizing ({sup 125}I)iodomelatonin in a range of approximately 5-80 pM indicated a single class of high-affinity sites: Kd = 55 +/- 9 pM, Bmax =more » 1.1 +/- 0.3 fmol/mg protein. 4. The ability of picomolar concentrations of melatonin to inhibit forskolin-stimulated adenylate cyclase activity suggests that this affect is mediated by picomolar-affinity receptor binding sites for this hormone in the hypothalamus.« less

  18. Asthma causes inflammation of human pulmonary arteries and decreases vasodilatation induced by prostaglandin I2 analogs.

    PubMed

    Foudi, Nabil; Badi, Aouatef; Amrane, Mounira; Hodroj, Wassim

    2017-12-01

    Asthma is a chronic inflammatory disease associated with increased cardiovascular events. This study assesses the presence of inflammation and the vascular reactivity of pulmonary arteries in patients with acute asthma. Rings of human pulmonary arteries obtained from non-asthmatic and asthmatic patients were set up in organ bath for vascular tone monitoring. Reactivity was induced by vasoconstrictor and vasodilator agents. Protein expression of inflammatory markers was detected by western blot. Prostanoid releases and cyclic adenosine monophosphate (cAMP) levels were quantified using specific enzymatic kits. Protein expression of cluster of differentiation 68, intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and cyclooxygenase-2 was significantly increased in arteries obtained from asthmatic patients. These effects were accompanied by an alteration of vasodilatation induced by iloprost and treprostinil, a decrease in cAMP levels and an increase in prostaglandin (PG) E 2 and PGI 2 synthesis. The use of forskolin (50 µmol/L) has restored the vasodilatation and cAMP release. No difference was observed between the two groups in reactivity induced by norepinephrine, angiotensin II, PGE 2 , KCl, sodium nitroprusside, and acetylcholine. Acute asthma causes inflammation of pulmonary arteries and decreases vasodilation induced by PGI 2 analogs through the impairment of cAMP pathway.

  19. Epac2 Mediates cAMP-Dependent Potentiation of Neurotransmission in the Hippocampus.

    PubMed

    Fernandes, Herman B; Riordan, Sean; Nomura, Toshihiro; Remmers, Christine L; Kraniotis, Stephen; Marshall, John J; Kukreja, Lokesh; Vassar, Robert; Contractor, Anis

    2015-04-22

    Presynaptic terminal cAMP elevation plays a central role in plasticity at the mossy fiber-CA3 synapse of the hippocampus. Prior studies have identified protein kinase A as a downstream effector of cAMP that contributes to mossy fiber LTP (MF-LTP), but the potential contribution of Epac2, another cAMP effector expressed in the MF synapse, has not been considered. We investigated the role of Epac2 in MF-CA3 neurotransmission using Epac2(-/-) mice. The deletion of Epac2 did not cause gross alterations in hippocampal neuroanatomy or basal synaptic transmission. Synaptic facilitation during short trains was not affected by loss of Epac2 activity; however, both long-term plasticity and forskolin-mediated potentiation of MFs were impaired, demonstrating that Epac2 contributes to cAMP-dependent potentiation of transmitter release. Examination of synaptic transmission during long sustained trains of activity suggested that the readily releasable pool of vesicles is reduced in Epac2(-/-) mice. These data suggest that cAMP elevation uses an Epac2-dependent pathway to promote transmitter release, and that Epac2 is required to maintain the readily releasable pool at MF synapses in the hippocampus. Copyright © 2015 the authors 0270-6474/15/356544-10$15.00/0.

  20. Sustained signalling by PTH modulates IP3 accumulation and IP3 receptors through cyclic AMP junctions

    PubMed Central

    Meena, Abha; Tovey, Stephen C.; Taylor, Colin W.

    2015-01-01

    ABSTRACT Parathyroid hormone (PTH) stimulates adenylyl cyclase through type 1 PTH receptors (PTH1R) and potentiates the Ca2+ signals evoked by carbachol, which stimulates formation of inositol 1,4,5-trisphosphate (IP3). We confirmed that in HEK cells expressing PTH1R, acute stimulation with PTH(1-34) potentiated carbachol-evoked Ca2+ release. This was mediated by locally delivered cyclic AMP (cAMP), but unaffected by inhibition of protein kinase A (PKA), exchange proteins activated by cAMP, cAMP phosphodiesterases (PDEs) or substantial inhibition of adenylyl cyclase. Sustained stimulation with PTH(1-34) causes internalization of PTH1R–adenylyl cyclase signalling complexes, but the consequences for delivery of cAMP to IP3R within cAMP signalling junctions are unknown. Here, we show that sustained stimulation with PTH(1-34) or with PTH analogues that do not evoke receptor internalization reduced the potentiated Ca2+ signals and attenuated carbachol-evoked increases in cytosolic IP3. Similar results were obtained after sustained stimulation with NKH477 to directly activate adenylyl cyclase, or with the membrane-permeant analogue of cAMP, 8-Br-cAMP. These responses were independent of PKA and unaffected by substantial inhibition of adenylyl cyclase. During prolonged stimulation with PTH(1-34), hyperactive cAMP signalling junctions, within which cAMP is delivered directly and at saturating concentrations to its targets, mediate sensitization of IP3R and a more slowly developing inhibition of IP3 accumulation. PMID:25431134

  1. Real-time monitoring of intracellular cAMP during acute ethanol exposure

    PubMed Central

    Gupta, Ratna; Qualls-Creekmore, Emily; Yoshimura, Masami

    2013-01-01

    Background In previous studies we have shown that ethanol enhances the activity of Gs-stimulated membrane-bound adenylyl cyclase (AC). The effect is AC isoform specific and the type 7 AC (AC7) is most responsive to ethanol. In this study, we employed a fluorescence resonance energy transfer (FRET) based cAMP sensor, Epac1-camps, to examine real-time temporal dynamics of ethanol effects on cAMP concentrations. To our knowledge, this is the first report on real-time detection of the ethanol effect on intracellular cAMP. Methods Hela cells were transfected with Epac1-camps, dopamine D1A receptor, and one isoform of AC (AC7 or AC3). Fluorescent images were captured using a specific filter set for cyan fluorescent protein (CFP), yellow fluorescent protein (YFP), and FRET, respectively and FRET intensity was calculated on a pixel-by-pixel basis to examine changes in cAMP. Results During 2-minute stimulation with dopamine (DA), the cytoplasmic cAMP level quickly increased, then decreased to a plateau, where the cAMP level was higher than the level prior to stimulation with DA. Ethanol concentration dependently increased cytoplasmic cAMP in cells transfected with AC7, while ethanol did not have effect on cells transfected with AC3. Similar trends were observed for cAMP at the plasma membrane and in the nucleus during 2-minute stimulation with DA. Unexpectedly, when cells expressing AC7 were stimulated with DA or other Gs protein-coupled receptor’s ligand plus ethanol for 5 seconds, ethanol reduced cAMP concentration. Conclusion These results suggest that ethanol has two opposing effects on the cAMP generating system in an AC isoform specific manner, the enhancing effect on AC activity and the short lived inhibitory effect. Thus, ethanol may have a different effect on cAMP depending on not only AC isoform but also the duration of exposure. PMID:23731206

  2. Secretagogue stimulation enhances NBCe1 (electrogenic Na(+)/HCO(3)(-) cotransporter) surface expression in murine colonic crypts.

    PubMed

    Yu, Haoyang; Riederer, Brigitte; Stieger, Nicole; Boron, Walter F; Shull, Gary E; Manns, Michael P; Seidler, Ursula E; Bachmann, Oliver

    2009-12-01

    A Na(+)/HCO(3)(-) cotransporter (NBC) is located in the basolateral membrane of the gastrointestinal epithelium, where it imports HCO(3)(-) during stimulated anion secretion. Having previously demonstrated secretagogue activation of NBC in murine colonic crypts, we now asked whether vesicle traffic and exocytosis are involved in this process. Electrogenic NBCe1-B was expressed at significantly higher levels than electroneutral NBCn1 in colonic crypts as determined by QRT-PCR. In cell surface biotinylation experiments, a time-dependent increase in biotinylated NBCe1 was observed, which occurred with a peak of +54.8% after 20 min with forskolin (P < 0.05) and more rapidly with a peak of +59.8% after 10 min with carbachol (P < 0.05) and which corresponded well with the time course of secretagogue-stimulated colonic bicarbonate secretion in Ussing chamber experiments. Accordingly, in isolated colonic crypts pretreated with forskolin and carbachol for 10 min, respectively, and subjected to immunohistochemistry, the NBCe1 signal showed a markedly stronger colocalization with the E-cadherin signal, which was used as a membrane marker, compared with the untreated control. Cytochalasin D did not change the observed increase in membrane abundance, whereas colchicine alone enhanced NBCe1 membrane expression without an additional increase after carbachol or forskolin, and LY294002 had a marked inhibitory effect. Taken together, our results demonstrate a secretagogue-induced increase of NBCe1 membrane expression. Vesicle traffic and exocytosis might thus represent a novel mechanism of intestinal NBC activation by secretagogues.

  3. LH and hCG Action on the Same Receptor Results in Quantitatively and Qualitatively Different Intracellular Signalling

    PubMed Central

    Casarini, Livio; Lispi, Monica; Longobardi, Salvatore; Milosa, Fabiola; La Marca, Antonio; Tagliasacchi, Daniela; Pignatti, Elisa; Simoni, Manuela

    2012-01-01

    Human luteinizing hormone (hLH) and chorionic gonadotropin (hCG) act on the same receptor (LHCGR) but it is not known whether they elicit the same cellular and molecular response. This study compares for the first time the activation of cell-signalling pathways and gene expression in response to hLH and hCG. Using recombinant hLH and recombinant hCG we evaluated the kinetics of cAMP production in COS-7 and hGL5 cells permanently expressing LHCGR (COS-7/LHCGR, hGL5/LHCGR), as well as cAMP, ERK1/2, AKT activation and progesterone production in primary human granulosa cells (hGLC). The expression of selected target genes was measured in the presence or absence of ERK- or AKT-pathways inhibitors. In COS-7/LHCGR cells, hCG is 5-fold more potent than hLH (cAMP ED50: 107.1±14.3 pM and 530.0±51.2 pM, respectively). hLH maximal effect was significantly faster (10 minutes by hLH; 1 hour by hCG). In hGLC continuous exposure to equipotent doses of gonadotropins up to 36 hours revealed that intracellular cAMP production is oscillating and significantly higher by hCG versus hLH. Conversely, phospho-ERK1/2 and -AKT activation was more potent and sustained by hLH versus hCG. ERK1/2 and AKT inhibition removed the inhibitory effect on NRG1 (neuregulin) expression by hLH but not by hCG; ERK1/2 inhibition significantly increased hLH- but not hCG-stimulated CYP19A1 (aromatase) expression. We conclude that: i) hCG is more potent on cAMP production, while hLH is more potent on ERK and AKT activation; ii) hGLC respond to equipotent, constant hLH or hCG stimulation with a fluctuating cAMP production and progressive progesterone secretion; and iii) the expression of hLH and hCG target genes partly involves the activation of different pathways depending on the ligand. Therefore, the LHCGR is able to differentiate the activity of hLH and hCG. PMID:23071612

  4. Adverse eff ects of polymeric nanoparticle poly(ethylene glycol)- block-polylactide methyl ether (PEG-b-PLA) on steroid hormone secretion by porcine granulosa cells.

    PubMed

    Scsukova, Sona; Bujnakova, Mlynarcikova A; Kiss, A; Rollerova, E

    2017-04-25

    Development of nanoparticles (NPs) for biomedical applications, including medical imaging and drug delivery, is currently undergoing a dramatic expansion. Diverse effects of different type NPs relating to mammalian reproductive tissues have been demonstrated. Th e objective of this study was to explore the in vitro effects of polymeric nanoparticle poly(ethylene glycol)-blockpolylactide methyl ether (PEG-b-PLA NPs) on functional state and viability of ovarian granulosa cells (GCs), which play an important role in maintaining ovarian function and female fertility. The GCs isolated from porcine ovarian follicles were incubated with the different concentrations of PEG-b-PLA NPs (PEG average Mn=350 g/mol and PLA average Mn=1000 g/mol; 0.2-100 μg/ml) or poly(ethylene glycol) with an average molecular weight of 300 (PEG-300; 0.2- 40 mg/ml) in the presence or absence of stimulators, follicle-stimulating hormone (FSH; 1 μg/ml), androstenedione (100 nM), forskolin (10 μM) or 8Br-cAMP (100 μM), for different time periods (24, 48, 72 h). At the end of the incubation, progesterone and estradiol levels produced by GCs were measured in the culture media by radioimmunoassay. Th e viability of GCs was determined by the method using a colorimetric assay with MTT. Treatment of GCs with PEG-b-PLA NPs induced a significant decrease in basal as well as FSH-stimulated progesterone secretion above the concentration of 20 and 4 μg/ml, respectively. Moreover, PEG-b-PLA NPs reduced forskolin-stimulated, but not cAMP-stimulated progesterone production by GCs. A dose-dependent inhibition of androstenedione-stimulated estradiol release by GCs was found by the action of PEG-b-PLA NPs. Incubation of GCs with PEG-300 significantly inhibited basal as well as FSH-stimulated progesterone secretion above the concentration of 40 mg/ml. PEG-b-PLA NPs and PEG-300 significantly reduced the viability of GCs at the highest tested concentrations (100 μg/ml and 40 mg/ml, respectively). The obtained results indicate that polymeric NPs PEG-b-PLA might induce alterations in steroid hormone production by ovarian GCs and thereby could modify reproductive functions.

  5. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    2003-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate CAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of CAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of CAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of CAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of CAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of CAMP by either epinephrine or isoproterenol.

  6. Activation of G proteins mediates flow-induced prostaglandin E2 production in osteoblasts

    NASA Technical Reports Server (NTRS)

    Reich, K. M.; McAllister, T. N.; Gudi, S.; Frangos, J. A.

    1997-01-01

    Interstitial fluid flow may play a role in load-induced bone remodeling. Previously, we have shown that fluid flow stimulates osteoblast production of cAMP inositol trisphosphate (IP3), and PGE2. Flow-induced increases in cAMP and IP3 were shown to be a result of PG production. Thus, PGE2 production appears to be an important component in fluid flow induced signal transduction. In the present study, we investigated the mechanism of flow-induced PGE2 synthesis. Flow-induced a 20-fold increase in PGE2 production in osteoblasts. Increases were also observed with ALF4-(10mM) (98-fold), an activator of guanidine nucleotide-binding proteins (G proteins), and calcium ionophore A23187 (2 microM) (100-fold) in stationary cells. We then investigated whether flow stimulation is mediated by G proteins and increases in intracellular calcium. Flow-induced PGE2 production was inhibited by the G protein inhibitors GDP beta S (100 microM) and pertussis toxin (1 microgram/ml) by 83% and 72%, respectively. Chelation of extracellular calcium by EGTA (2 mM) and intracellular calcium by quin-2/AM (30 microM) blocked flow stimulation by 87% and 67%, respectively. These results suggest that G proteins and calcium play an important role in mediating mechanochemical signal transduction in osteoblasts.

  7. Comparison of vectorial ion transport in primary murine airway and human sinonasal air-liquid interface cultures, models for studies of cystic fibrosis, and other airway diseases.

    PubMed

    Zhang, Shaoyan; Fortenberry, James A; Cohen, Noam A; Sorscher, Eric J; Woodworth, Bradford A

    2009-01-01

    The purpose of this study was to compare vectorial ion transport within murine trachea, murine nasal septa, and human sinonasal cultured epithelium. Our hypothesis is that murine septal epithelium, rather than trachea, will more closely mimic the electrophysiology properties of human sinonasal epithelium. Epithelium from murine trachea, murine septa, and human sinonasal tissue were cultured at an air-liquid interface to confluence and full differentiation. A limited number of homozygous dF508 epithelia were also cultured. Monolayers were mounted in modified Ussing chambers to investigate pharmacologic manipulation of ion transport. The change in forskolin-stimulated current (delta-I(SC), expressed as micro-A/cm(2)) in murine septal (n = 19; 16.84 +/- 2.09) and human sinonasal (n = 18; 12.15 +/- 1.93) cultures was significantly increased over murine tracheal cultures (n = 15; 6.75 +/- 1.35; p = 0.035 and 0.0005, respectively). Forskolin-stimulated I(SC) was inhibited by the specific cystic fibrosis transmembrane regulator (CFTR) inhibitor INH-172 (5 microM). No forskolin-stimulated I(SC) was shown in cultures of dF508 homozygous murine septal epithelium (n = 3). Murine septal I(SC) was largely inhibited by amiloride (12.03 +/- 0.66), whereas human sinonasal cultures had a very limited response (0.70 +/- 0.47; p < 0.0001). The contribution of CFTR to stimulated chloride current as measured by INH-172 was highly significantly different between all groups (murine septa, 19.51 +/- 1.28; human sinonasal, 11.12 +/- 1.58; murine trachea, 4.85 +/- 0.49; p < 0.0001). Human sinonasal and murine septal epithelial cultures represent a useful model for studying CFTR activity and may provide significant advantages over lower airway tissues for investigating upper and lower respiratory pathophysiology.

  8. A possible signal-coupling role for cyclic AMP during endocytosis in Amoeba proteus.

    PubMed

    Prusch, R D; Roscoe, J C

    1993-01-01

    Cytoplasmic levels of cAMP in Amoeba proteus were measured utilizing radioimmunoassays under control conditions and when stimulated by inducers of either pinocytosis or phagocytosis. In control cells, cytoplasmic cAMP levels were approximately 0.39 pM/mg cells. When exposed to either chemotactic peptide or mannose which stimulate phagocytosis in the amoeba, there is a rapid doubling of the cAMP level within 45 sec of stimulation which then returns to the control level within 3-5 min. Theophylline prolongs the elevation of cytoplasmic cAMP in stimulated cells and is also capable of eliciting food vacuole formation in the amoeba. In addition isoproterenol also causes food vacuole formation in the amoeba as well as a large and prolonged increase in cytoplasmic cAMP levels. Inducers of pinocytosis (BSA and Na Cl) also elicit changes in cytoplasmic cAMP in the amoeba, but the response appears to differ from that elicited by inducers of phagocytosis in that the peak cAMP levels are broader and biphasic. It is concluded that cAMP plays a signal-coupling role during the early phases of both forms of endocytosis in Amoeba proteus.

  9. Ultraviolet radiation directly induces pigment production by cultured human melanocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedmann, P.S.; Gilchrest, B.A.

    1987-10-01

    In humans the major stimulus for cutaneous pigmentation is ultraviolet radiation (UVR). Little is known about the mechanism underlying this response, in part because of the complexity of interactions in whole epidermis. Using a recently developed culture system, human melanocytes were exposed daily to a physiologic range of UVR doses from a solar simulator. Responses were determined 24 hours after the last exposure. There was a dose-related increase in melanin content per cell and uptake of /sup 14/C-DOPA, accompanied by growth inhibition. Cells from donors of different racial origin gave proportionately similar increases in melanin, although there were approximately tenfoldmore » differences in basal values. Light and electron microscopy revealed UVR-stimulated increases in dendricity as well as melanosome number and degree of melanization, analogous to the well-recognized melanocyte changes following sun exposure of intact skin. Similar responses were seen with Cloudman S91 melanoma cells, although this murine cell line required lower UVR dosages and fewer exposures for maximal stimulation. These data establish that UVR is capable of directly stimulating melanogenesis. Because cyclic AMP elevation has been associated in some settings with increased pigment production by cultured melanocytes, preliminary experiments were conducted to see if the effects of UVR were mediated by cAMP. Both alpha-MSH and isobutylmethylxanthine (IBMX), as positive controls, caused a fourfold increase in cAMP level in human melanocytes and/or S91 cells, but following a dose of UVR sufficient to stimulate pigment production there was no change in cAMP level up to 4 hours after exposure. Thus, it appears that the UVR-induced melanogenesis is mediated by cAMP-independent mechanisms.« less

  10. A New Small-Molecule Antagonist Inhibits Graves' Disease Antibody Activation of the TSH Receptor

    PubMed Central

    Eliseeva, Elena; McCoy, Joshua G.; Napolitano, Giorgio; Giuliani, Cesidio; Monaco, Fabrizio; Huang, Wenwei; Gershengorn, Marvin C.

    2011-01-01

    Context: Graves' disease (GD) is caused by persistent, unregulated stimulation of thyrocytes by thyroid-stimulating antibodies (TSAbs) that activate the TSH receptor (TSHR). We previously reported the first small-molecule antagonist of human TSHR and showed that it inhibited receptor signaling stimulated by sera from four patients with GD. Objective: Our objective was to develop a better TSHR antagonist and use it to determine whether inhibition of TSAb activation of TSHR is a general phenomenon. Design: We aimed to chemically modify a previously reported small-molecule TSHR ligand to develop a better antagonist and determine whether it inhibits TSHR signaling by 30 GD sera. TSHR signaling was measured in two in vitro systems: model HEK-EM293 cells stably overexpressing human TSHRs and primary cultures of human thyrocytes. TSHR signaling was measured as cAMP production and by effects on thyroid peroxidase mRNA. Results: We tested analogs of a previously reported small-molecule TSHR inverse agonist and selected the best NCGC00229600 for further study. In the model system, NCGC00229600 inhibited basal and TSH-stimulated cAMP production. NCGC00229600 inhibition of TSH signaling was competitive even though it did not compete for TSH binding; that is, NCGC00229600 is an allosteric inverse agonist. NCGC00229600 inhibited cAMP production by 39 ± 2.6% by all 30 GD sera tested. In primary cultures of human thyrocytes, NCGC00229600 inhibited TSHR-mediated basal and GD sera up-regulation of thyroperoxidase mRNA levels by 65 ± 2.0%. Conclusion: NCGC00229600, a small-molecule allosteric inverse agonist of TSHR, is a general antagonist of TSH receptor activation by TSAbs in GD patient sera. PMID:21123444

  11. A new small-molecule antagonist inhibits Graves' disease antibody activation of the TSH receptor.

    PubMed

    Neumann, Susanne; Eliseeva, Elena; McCoy, Joshua G; Napolitano, Giorgio; Giuliani, Cesidio; Monaco, Fabrizio; Huang, Wenwei; Gershengorn, Marvin C

    2011-02-01

    Graves' disease (GD) is caused by persistent, unregulated stimulation of thyrocytes by thyroid-stimulating antibodies (TSAbs) that activate the TSH receptor (TSHR). We previously reported the first small-molecule antagonist of human TSHR and showed that it inhibited receptor signaling stimulated by sera from four patients with GD. Our objective was to develop a better TSHR antagonist and use it to determine whether inhibition of TSAb activation of TSHR is a general phenomenon. We aimed to chemically modify a previously reported small-molecule TSHR ligand to develop a better antagonist and determine whether it inhibits TSHR signaling by 30 GD sera. TSHR signaling was measured in two in vitro systems: model HEK-EM293 cells stably overexpressing human TSHRs and primary cultures of human thyrocytes. TSHR signaling was measured as cAMP production and by effects on thyroid peroxidase mRNA. We tested analogs of a previously reported small-molecule TSHR inverse agonist and selected the best NCGC00229600 for further study. In the model system, NCGC00229600 inhibited basal and TSH-stimulated cAMP production. NCGC00229600 inhibition of TSH signaling was competitive even though it did not compete for TSH binding; that is, NCGC00229600 is an allosteric inverse agonist. NCGC00229600 inhibited cAMP production by 39 ± 2.6% by all 30 GD sera tested. In primary cultures of human thyrocytes, NCGC00229600 inhibited TSHR-mediated basal and GD sera up-regulation of thyroperoxidase mRNA levels by 65 ± 2.0%. NCGC00229600, a small-molecule allosteric inverse agonist of TSHR, is a general antagonist of TSH receptor activation by TSAbs in GD patient sera.

  12. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa

    PubMed Central

    Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F

    2015-01-01

    Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (Isc). Subsequent Isc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. Isc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation. PMID:26038704

  13. A comparison of linaclotide and lubiprostone dosing regimens on ion transport responses in human colonic mucosa.

    PubMed

    Kang, Sang Bum; Marchelletta, Ronald R; Penrose, Harrison; Docherty, Michael J; McCole, Declan F

    2015-03-01

    Linaclotide, a synthetic guanylyl cyclase C (GC-C) agonist, and the prostone analog, Lubiprostone, are approved to manage chronic idiopathic constipation and constipation-predominant irritable bowel syndrome. Lubiprostone also protects intestinal mucosal barrier function in ischemia. GC-C signaling regulates local fluid balance and other components of intestinal mucosal homeostasis including epithelial barrier function. The aim of this study was to compare if select dosing regimens differentially affect linaclotide and lubiprostone modulation of ion transport and barrier properties of normal human colonic mucosa. Normal sigmoid colon biopsies from healthy subjects were mounted in Ussing chambers. Tissues were treated with linaclotide, lubiprostone, or vehicle to determine effects on short-circuit current (I sc). Subsequent I sc responses to the cAMP agonist, forskolin, and the calcium agonist, carbachol, were also measured to assess if either drug caused desensitization. Barrier properties were assessed by measuring transepithelial electrical resistance. I sc responses to linaclotide and lubiprostone were significantly higher than vehicle control when administered bilaterally or to the mucosal side only. Single versus cumulative concentrations of linaclotide showed differences in efficacy while cumulative but not single dosing caused desensitization to forskolin. Lubiprostone reduced forskolin responses under all conditions. Linaclotide and lubiprostone exerted a positive effect on TER that was dependent on the dosing regimen. Linaclotide and lubiprostone increase ion transport responses across normal human colon but linaclotide displays increased sensitivity to the dosing regimen used. These findings may have implications for dosing protocols of these agents in patients with constipation.

  14. (/sup 3/H)forskolin- and (/sup 3/H)dihydroalprenolol-binding sites and adenylate cyclase activity in heart of rats fed diets containing different oils

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alam, S.Q.; Ren, Y.F.; Alam, B.S.

    1988-03-01

    The characteristics of the cardiac adenylate cyclase system were studied in rats fed diets containing fish oil (menhaden oil) and other oils. Adenylate cyclase activity generally was higher in cardiac homogenates and membranes of rats fed diet containing 10% menhaden oil than in the other oils. The increase in enzyme activity, especially in forskolin-stimulated activity, was associated with an increase in the concentration of the (/sup 3/H) forskolin-binding sites in cardiac membranes of rats fed menhaden oil. The beta-adrenergic receptor concentration was not significantly altered although the affinity for (/sup 3/H)dihydroalprenolol-binding was lower in membranes of rats fed menhaden oilmore » than those fed the other oils. omega-3 fatty acids from menhaden oil were incorporated into the cardiac membrane phospholipids. The results suggest that the observed increase in myocardial adenylate cyclase activity of rats fed menhaden oil may be due to an increase in the number of the catalytic subunits of the enzyme or due to a greater availability of the forskolin-binding sites.« less

  15. Measurement of Basal and Forskolin-stimulated Lipolysis in Inguinal Adipose Fat Pads.

    PubMed

    Baskaran, Padmamalini; Thyagarajan, Baskaran

    2017-07-21

    Lipolysis is a process by which the lipid stored as triglycerides in adipose tissues are hydrolyzed into glycerol and fatty acids. This article describes the method for the measurement of basal and forskolin (FSK)-stimulated lipolysis in the inguinal fat pads isolated from wild type mice fed either normal chow diet (NCD), high fat diet (HFD) or a high fat diet containing 0.01% of capsaicin (CAP; transient receptor potential vanilloid subfamily 1 (TRPV1) agonist) for 32 weeks. The method described here for performing ex vivo lipolysis is adopted from Schweiger et al. 1 We present a detailed protocol for measuring glycerol levels by UV-Visible (UV/VIS) spectrophotometry. The method described here can be used to successfully isolate inguinal fat pads for lipolysis measurements to obtain consistent results. The protocol described for inguinal fat pads can readily be extended to measure lipolysis in other tissues.

  16. Activation of Cyclic AMP Synthesis by Full and Partial Beta-Adrenergic Receptor Agonists in Chicken Skeletal Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Cureri, Peter A. (Technical Monitor)

    2002-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Accordingly, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax concentrations were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. When cimaterol and clenbuterol were added to culture media at concentrations known to cause significant muscle hypertrophy in animals, there was no detectable effect on stimulation of cAMP synthesis. Finally, these same levels of cimaterol and clenbuterol did not antagonize the stimulation of cAMP by either epinephrine or isoproterenol.

  17. Functional Characterization of Vasopressin Type 2 Receptor Substitutions (R137H/C/L) Leading to Nephrogenic Diabetes Insipidus and Nephrogenic Syndrome of Inappropriate Antidiuresis: Implications for TreatmentsS⃞

    PubMed Central

    Rochdi, Moulay D.; Vargas, Gabriel A.; Carpentier, Eric; Oligny-Longpré, Geneviève; Chen, Stanford; Kovoor, Abraham; Gitelman, Stephen E.; Rosenthal, Stephen M.; von Zastrow, Mark

    2010-01-01

    Substitution of arginine-137 of the vasopressin type 2 receptor (V2R) for histidine (R137H-V2R) leads to nephrogenic diabetes insipidus (NDI), whereas substitution of the same residue to cysteine or leucine (R137C/L-V2R) causes the nephrogenic syndrome of inappropriate antidiuresis (NSIAD). These two diseases have opposite clinical outcomes. Still, the three mutant receptors were shown to share constitutive β-arrestin recruitment and endocytosis, resistance to vasopressin-stimulated cAMP production and mitogen-activated protein kinase activation, and compromised cell surface targeting, raising questions about the contribution of these phenomenons to the diseases and their potential treatments. Blocking endocytosis exacerbated the elevated basal cAMP levels promoted by R137C/L-V2R but not the cAMP production elicited by R137H-V2R, demonstrating that substitution of Arg137 to Cys/Leu, but not His, leads to constitutive V2R-stimulated cAMP accumulation that most likely underlies NSIAD. The constitutively elevated endocytosis of R137C/L-V2R attenuates the signaling and most likely reduces the severity of NSIAD, whereas the elevated endocytosis of R137H-V2R probably contributes to NDI. The constitutive signaling of R137C/L-V2R was not inhibited by treatment with the V2R inverse agonist satavaptan (SR121463). In contrast, owing to its pharmacological chaperone property, SR121463 increased the R137C/L-V2R maturation and cell surface targeting, leading to a further increase in basal cAMP production, thus disqualifying it as a potential treatment for patients with R137C/L-V2R-induced NSIAD. However, vasopressin was found to promote β-arrestin/AP-2-dependent internalization of R137H/C/L-V2R beyond their already elevated endocytosis levels, raising the possibility that vasopressin could have a therapeutic value for patients with R137C/L-V2R-induced NSIAD by reducing steady-state surface receptor levels, thus lowering basal cAMP production. PMID:20159941

  18. Functional characterization of vasopressin type 2 receptor substitutions (R137H/C/L) leading to nephrogenic diabetes insipidus and nephrogenic syndrome of inappropriate antidiuresis: implications for treatments.

    PubMed

    Rochdi, Moulay D; Vargas, Gabriel A; Carpentier, Eric; Oligny-Longpré, Geneviève; Chen, Stanford; Kovoor, Abraham; Gitelman, Stephen E; Rosenthal, Stephen M; von Zastrow, Mark; Bouvier, Michel

    2010-05-01

    Substitution of arginine-137 of the vasopressin type 2 receptor (V2R) for histidine (R137H-V2R) leads to nephrogenic diabetes insipidus (NDI), whereas substitution of the same residue to cysteine or leucine (R137C/L-V2R) causes the nephrogenic syndrome of inappropriate antidiuresis (NSIAD). These two diseases have opposite clinical outcomes. Still, the three mutant receptors were shown to share constitutive beta-arrestin recruitment and endocytosis, resistance to vasopressin-stimulated cAMP production and mitogen-activated protein kinase activation, and compromised cell surface targeting, raising questions about the contribution of these phenomenons to the diseases and their potential treatments. Blocking endocytosis exacerbated the elevated basal cAMP levels promoted by R137C/L-V2R but not the cAMP production elicited by R137H-V2R, demonstrating that substitution of Arg137 to Cys/Leu, but not His, leads to constitutive V2R-stimulated cAMP accumulation that most likely underlies NSIAD. The constitutively elevated endocytosis of R137C/L-V2R attenuates the signaling and most likely reduces the severity of NSIAD, whereas the elevated endocytosis of R137H-V2R probably contributes to NDI. The constitutive signaling of R137C/L-V2R was not inhibited by treatment with the V2R inverse agonist satavaptan (SR121463). In contrast, owing to its pharmacological chaperone property, SR121463 increased the R137C/L-V2R maturation and cell surface targeting, leading to a further increase in basal cAMP production, thus disqualifying it as a potential treatment for patients with R137C/L-V2R-induced NSIAD. However, vasopressin was found to promote beta-arrestin/AP-2-dependent internalization of R137H/C/L-V2R beyond their already elevated endocytosis levels, raising the possibility that vasopressin could have a therapeutic value for patients with R137C/L-V2R-induced NSIAD by reducing steady-state surface receptor levels, thus lowering basal cAMP production.

  19. Synergistic action of cyclic adenosine monophosphate- and calcium-mediated chloride secretion in a colonic epithelial cell line.

    PubMed Central

    Cartwright, C A; McRoberts, J A; Mandel, K G; Dharmsathaphorn, K

    1985-01-01

    Vasoactive intestinal polypeptide (VIP) and the calcium ionophore A23187 caused dose-dependent changes in the potential difference and the short circuit current (Isc) across confluent T84 cell monolayers mounted in modified Ussing chambers. Both VIP and A23187 stimulated net chloride secretion without altering sodium transport. Net chloride secretion accounted for the increase in Isc. When A23187 was tested in combination with VIP, net chloride secretion was significantly greater than predicted from the calculated sum of their individual responses indicating a synergistic effect. VIP increased cellular cyclic AMP (cAMP) production in a dose-dependent manner, whereas A23187 had no effect on cellular cAMP. We then determined whether VIP and A23187 activated different transport pathways. Earlier studies suggest that VIP activates a basolaterally localized, barium-sensitive potassium channel as well as an apically localized chloride conductance pathway. In this study, stimulation of basolateral membrane potassium efflux by A23187 was documented by preloading the monolayers with 86Rb+. Stimulation of potassium efflux by A23187 was additive to the VIP-stimulated potassium efflux. By itself, 0.3 microM A23187 did not alter transepithelial chloride permeability, and its stimulation of basolateral membrane potassium efflux caused only a relatively small amount of chloride secretion. However, in the presence of an increased transepithelial chloride permeability induced by VIP, the effectiveness of A23187 on chloride secretion was greatly augmented. Our studies suggest that cAMP and calcium each activate basolateral potassium channels, but cAMP also activates an apically localized chloride channel. Synergism results from cooperative interaction of potassium channels and the chloride channel. PMID:2997291

  20. Pharmacological characterization of emerging synthetic cannabinoids in HEK293T cells and hippocampal neurons.

    PubMed

    Costain, Willard J; Tauskela, Joseph S; Rasquinha, Ingrid; Comas, Tanya; Hewitt, Melissa; Marleau, Vincent; Soo, Evelyn C

    2016-09-05

    There has been a worldwide proliferation of synthetic cannabinoids that have become marketed as legal alternatives to cannabis (marijuana). Unfortunately, there is a dearth of information about the pharmacological effects of many of these emerging synthetic cannabinoids (ESCs), which presents a challenge for regulatory authorities that need to take such scientific evidence into consideration in order to regulate ECSs as controlled substances. We aimed to characterize the pharmacological properties of ten ESCs using two cell based assays that enabled the determination of potency and efficacy relative to a panel of well-characterized cannabinoids. Agonist-mediated inhibition of forskolin-stimulated cyclic adenosine monophosphate (cAMP) levels was monitored in live HEK293T cells transfected with human cannabinoid receptor 1 gene (CNR1) and pGloSensor-22F. Pharmacological analysis of this data indicated that all of the ESCs tested were full agonists, with the following rank order of potency: Win 55212-2≈5F-PB-22≈AB-PINACA≈EAM-2201≈MAM-2201>JWH-250≈ PB-22>AKB48 N-(5FP)>AKB-48≈STS-135>XLR-11. Assessment of agonist-stimulated depression of Ca(2+) transients was also used to confirm the efficacy of five ESCs (XLR-11, JWH-250, AB-PINACA, 5F-PB-22, and MAM-2201) in cultured primary hippocampal neurons. This work aims to help inform decisions made by regulatory agencies concerned with the profusion of these poorly characterized recreational drugs. Copyright © 2016. Published by Elsevier B.V.

  1. Stable, sensitive, fluorescence-based method for detecting cAMP.

    PubMed

    Hesley, Jayne; Daijo, Janet; Ferguson, Anne T

    2002-09-01

    cAMP is a universal secondary messenger that connects changes in the extracellular environment, as detected by cell surface receptors, to transcriptional changes in the nucleus. Since cAMP-mediated signal transduction plays a role in critical cell functions and human diseases, monitoring its activity can aid in understanding these responses and the process of drug discovery. This report examines the performance of a fluorescence-based competitive immunoassay in 384-well microplate format. Using purified cAMP as a competitor the estimated detection limit was determined to be 0.1 nM and Z'-factor was greater than 0.83, which indicates that the assay is of high quality and one of the most sensitive assays currently on the market. Of note, the results obtained were similar whether the reaction was allowed to proceed for 10 min or up to 60 min. Next, HEK 293 cells were treated with the promiscuous adenylate cyclase activator, forskolin, and the beta-adrenoceptor agonist, isoproterenol. The resultant average EC50 values were 11 microM and 123 nM, respectively, which correspond to those found in the literature. Together, these results demonstrate that this assay is afast, accurate, non-radioactive method that is ideal for high-throughput screening.

  2. Glucose and cyclic adenosine monophosphate stimulate activities of adenylate cyclase and guanylate cyclase of Tetrahymena pyriformis infusoria.

    PubMed

    Shpakov, A O; Derkach, K V; Uspenskaya, Z I

    2012-02-01

    The sensitivities of cyclase enzymes adenylate cyclase and guanylate cyclase to glucose and extracellular cAMP were studied in Tetrahymena pyriformis infusoria. Glucose effectively stimulated activities of both cyclase enzymes, while cAMP more effectively stimulated adenylate cyclase. It was shown that [6-(14)C]glucose specifically bound to Tetrahymena pyriformis infusoria at dissociation constant (K(D)) and number of binding sites (B(max)) 43 nM and 7.53 fmol glucose per 100,000 cells and [8-(3)H]cAMP bound at 19 nM and 4.46 fmol cAMP per 100,000 cells, respectively. Hence, glucose and cAMP specifically bound to Tetrahymena pyriformis cells and stimulated activities of cyclases in these infusoria.

  3. Cardiovascular and adenylate cyclase stimulating effects of colforsin daropate, a water-soluble forskolin derivative, compared with those of isoproterenol, dopamine and dobutamine.

    PubMed

    Yoneyama, Masahiko; Sugiyama, Atsushi; Satoh, Yoshioki; Takahara, Akira; Nakamura, Yuji; Hashimoto, Keitaro

    2002-12-01

    Colforsin daropate is a recently developed water-soluble derivative of forskolin that directly stimulates adenylate cyclase, unlike the catecholamines. The chronotropic, inotropic and coronary vasodilator actions of colforsin daropate were compared with those of isoproterenol, dopamine and dobutamine, using canine isolated, blood-perfused heart preparations. The stimulating effect of each drug on adenylate cyclase activity was also assessed. Colforsin daropate, as well as each of the catecholamines, exerted positive chronotropic, inotropic and coronary vasodilator actions. The order of selectivity for the cardiovascular variables of colforsin daropate was coronary vasodilation > positive inotropy > positive chronotropy; whereas that of isoproterenol, dopamine and dobutamine was positive inotropy > coronary vasodilation > positive chronotropy. Thus, a marked characteristic of colforsin daropate is its potent coronary vasodilator action. On the other hand, each drug significantly increased the adenylate cyclase activity in a dose-related manner: colforsin daropate > isoproterenol > dopamine = dobutamine. These results suggest that colforsin daropate may be preferable in the treatment of severe heart failure where the coronary blood flow is reduced and beta-adrenoceptor-dependent signal transduction pathway is down-regulated.

  4. Renal proximal tubule function is preserved in Cftrtm2camΔF508 cystic fibrosis mice

    PubMed Central

    Kibble, J D; Balloch, K J D; Neal, A M; Hill, C; White, S; Robson, L; Green, R; Taylor, C J

    2001-01-01

    Changes in proximal tubule function have been reported in cystic fibrosis patients. The aim of this study was to investigate proximal tubule function in the Cftrtm2camΔF508 cystic fibrosis (CF) mouse model. A range of techniques were used including renal clearance studies, in situ microperfusion, RT-PCR and whole-cell patch clamping. Renal Na+ clearance was similar in wild-type (1.4 ± 0.3 μl min−1, number of animals, N= 12) and CF mice (1.6 ± 0.4 μl min−1, N= 7) under control conditions. Acute extracellular volume expansion resulted in significant natriuresis in wild-type (7.0 ± 0.8 μl min−1, N= 8) and CF mice (9.3 ± 1.4 μl min−1, N= 9); no difference between genotypes was observed. In situ microperfusion revealed that fluid absorptive rate (Jv) was similar under control conditions between wild-type (2.2 ± 0.4 nl mm−1 min−1, n= 10) and CF mice (1.9 ± 0.3 nl mm−1 min−1, n= 11). Addition of a forskolin-dibutyryl cAMP (db-cAMP) cocktail to the perfusate caused no significant change in Jv in either wild-type (2.6 ± 0.7 nl mm−1 min−1, n= 10) or Cftrtm2camΔF508 mice (2.0 ± 0.5 nl mm−1 min−1, n= 10). CFTR expression was confirmed in samples of outer cortex using RT-PCR. However, no evidence for functional CFTR was obtained when outer cortical cells were stimulated with protein kinase A or forskolin-db-cAMP using whole-cell patch clamping. In conclusion, no functional deficit in proximal tubule function was found in Cftrtm2camΔF508 mice. This may be a consequence of a lack of whole-cell cAMP-dependent Cl− conductance in mouse proximal tubule cells. PMID:11306663

  5. Functional Mapping of Protein Kinase A Reveals Its Importance in Adult Schistosoma mansoni Motor Activity

    PubMed Central

    de Saram, Paulu S. R.; Ressurreição, Margarida; Davies, Angela J.; Rollinson, David; Emery, Aidan M.; Walker, Anthony J.

    2013-01-01

    Cyclic AMP (cAMP)-dependent protein kinase/protein kinase A (PKA) is the major transducer of cAMP signalling in eukaryotic cells. Here, using laser scanning confocal microscopy and ‘smart’ anti-phospho PKA antibodies that exclusively detect activated PKA, we provide a detailed in situ analysis of PKA signalling in intact adult Schistosoma mansoni, a causative agent of debilitating human intestinal schistosomiasis. In both adult male and female worms, activated PKA was consistently found associated with the tegument, oral and ventral suckers, oesophagus and somatic musculature. In addition, the seminal vesicle and gynaecophoric canal muscles of the male displayed activated PKA whereas in female worms activated PKA localized to the ootype wall, the ovary, and the uterus particularly around eggs during expulsion. Exposure of live worms to the PKA activator forskolin (50 µM) resulted in striking PKA activation in the central and peripheral nervous system including at nerve endings at/near the tegument surface. Such neuronal PKA activation was also observed without forskolin treatment, but only in a single batch of worms. In addition, PKA activation within the central and peripheral nervous systems visibly increased within 15 min of worm-pair separation when compared to that observed in closely coupled worm pairs. Finally, exposure of adult worms to forskolin induced hyperkinesias in a time and dose dependent manner with 100 µM forskolin significantly increasing the frequency of gross worm movements to 5.3 times that of control worms (P≤0.001). Collectively these data are consistent with PKA playing a central part in motor activity and neuronal communication, and possibly interplay between these two systems in S. mansoni. This study, the first to localize a protein kinase when exclusively in an activated state in adult S. mansoni, provides valuable insight into the intricacies of functional protein kinase signalling in the context of whole schistosome physiology. PMID:23326613

  6. Modulation of acute steroidogenesis, peroxisome proliferator-activated receptors and CYP3A/PXR in salmon interrenal tissues by tributyltin and the second messenger activator, forskolin.

    PubMed

    Pavlikova, Nela; Kortner, Trond M; Arukwe, Augustine

    2010-04-29

    There are uncertainties regarding the role of sex steroids in sexual development and reproduction of gastropods, leading to the recent doubts as to whether organotin compounds do inhibit steroidogenic enzymes in these species. These doubts have led us to suspect that organotin compounds may affect other target molecules, particularly signal transduction molecules or secondary mediators of steroid hormone and lipid synthesis/metabolism. Therefore, we have studied the effects of TBT exposure through food on acute steroidogenesis, PPARs and CYP3A responses in the presence and absence of a cyclic AMP (cAMP) activator, forskolin. Two experiments were performed. Firstly, juvenile salmon were force-fed once with diet containing TBT doses (0.1, 1 and 10mg/kg fish) dissolved in ethanol and sampled after 72h. Secondly, fish exposed to solvent control and 10mg/kg TBT for 72h were transferred to new tanks and exposed to waterborne forskolin (200microg/L) for 2 and 4h. Our data show that juvenile salmon force-fed TBT showed modulations of multiple biological responses in interrenal tissues that include, steroidogenesis (cAMP/PKA activities; StAR and P450scc mRNA, and plasma cortisol), and mRNA for peroxisome proliferator-activated receptor (PPAR) isoforms (alpha, beta, gamma), acyl-CoA oxidase-1 (ACOX1) and CYP3A/PXR (pregnan X receptor). In addition, forskolin produced differential effects on these responses both singly and also in combination with TBT. Overall, combined forskolin and TBT exposure produced higher effects compared with TBT exposure alone, for most of the responses (cortisol, PPARbeta, ACOX1 and CYP3A). Interestingly, forskolin produced PPAR isoform-specific effects when given singly or in combination with TBT. Several TBT mediated toxicity in fish that includes thymus reduction, decrease in numbers of lymphocytes, inhibition of gonad development and masculinization, including the imposex phenomenon have been reported. When these effects are considered with the present findings, it suggests that studies on mechanisms of action or field studies may reveal endocrine, reproductive or other effects of TBT at lower concentrations than those reported to date from subchronic tests of fishes. Since the metabolic fate of organotin compounds may contribute to the toxicity of these chemicals, the present findings may represent some new aspects of TBT toxicity not previously reported. 2010 Elsevier Ireland Ltd. All rights reserved.

  7. Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis.

    PubMed

    Linnemann, Amelia K; Neuman, Joshua C; Battiola, Therese J; Wisinski, Jaclyn A; Kimple, Michelle E; Davis, Dawn Belt

    2015-07-01

    Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptin(ob/ob)) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis.

  8. Glucagon-Like Peptide-1 Regulates Cholecystokinin Production in β-Cells to Protect From Apoptosis

    PubMed Central

    Linnemann, Amelia K.; Neuman, Joshua C.; Battiola, Therese J.; Wisinski, Jaclyn A.; Kimple, Michelle E.

    2015-01-01

    Cholecystokinin (CCK) is a classic gut hormone that is also expressed in the pancreatic islet, where it is highly up-regulated with obesity. Loss of CCK results in increased β-cell apoptosis in obese mice. Similarly, islet α-cells produce increased amounts of another gut peptide, glucagon-like peptide 1 (GLP-1), in response to cytokine and nutrient stimulation. GLP-1 also protects β-cells from apoptosis via cAMP-mediated mechanisms. Therefore, we hypothesized that the activation of islet-derived CCK and GLP-1 may be linked. We show here that both human and mouse islets secrete active GLP-1 as a function of body mass index/obesity. Furthermore, GLP-1 can rapidly stimulate β-cell CCK production and secretion through direct targeting by the cAMP-modulated transcription factor, cAMP response element binding protein (CREB). We find that cAMP-mediated signaling is required for Cck expression, but CCK regulation by cAMP does not require stimulatory levels of glucose or insulin secretion. We also show that CREB directly targets the Cck promoter in islets from obese (Leptinob/ob) mice. Finally, we demonstrate that the ability of GLP-1 to protect β-cells from cytokine-induced apoptosis is partially dependent on CCK receptor signaling. Taken together, our work suggests that in obesity, active GLP-1 produced in the islet stimulates CCK production and secretion in a paracrine manner via cAMP and CREB. This intraislet incretin loop may be one mechanism whereby GLP-1 protects β-cells from apoptosis. PMID:25984632

  9. Cyclic AMP-elevating Agents Promote Cumulus Cell Survival and Hyaluronan Matrix Stability, Thereby Prolonging the Time of Mouse Oocyte Fertilizability*

    PubMed Central

    Di Giacomo, Monica; Camaioni, Antonella; Klinger, Francesca G.; Bonfiglio, Rita; Salustri, Antonietta

    2016-01-01

    Cumulus cells sustain the development and fertilization of the mammalian oocyte. These cells are retained around the oocyte by a hyaluronan-rich extracellular matrix synthesized before ovulation, a process called cumulus cell-oocyte complex (COC) expansion. Hyaluronan release and dispersion of the cumulus cells progressively occur after ovulation, paralleling the decline of oocyte fertilization. We show here that, in mice, postovulatory changes of matrix are temporally correlated to cumulus cell death. Cumulus cell apoptosis and matrix disassembly also occurred in ovulated COCs cultured in vitro. COCs expanded in vitro with FSH or EGF underwent the same changes, whereas those expanded with 8-bromo-adenosine-3′,5′-cyclic monophosphate (8-Br-cAMP) maintained integrity for a longer time. It is noteworthy that 8-Br-cAMP treatment was also effective on ovulated COCs cultured in vitro, prolonging the vitality of the cumulus cells and the stability of the matrix from a few hours to >2 days. Stimulation of endogenous adenylate cyclase with forskolin or inhibition of phosphodiesterase with rolipram produced similar effects. The treatment with selective cAMP analogues suggests that the effects of cAMP elevation are exerted through an EPAC-independent, PKA type II-dependent signaling pathway, probably acting at the post-transcriptional level. Finally, overnight culture of ovulated COCs with 8-Br-cAMP significantly counteracted the decrease of fertilization rate, doubling the number of fertilized oocytes compared with control conditions. In conclusion, these studies suggest that cAMP-elevating agents prevent cumulus cell senescence and allow them to continue to exert beneficial effects on oocyte and sperm, thereby extending in vitro the time frame of oocyte fertilizability. PMID:26694612

  10. Activation of intestinal Cl- secretion by lubiprostone requires the cystic fibrosis transmembrane conductance regulator.

    PubMed

    Bijvelds, Marcel J C; Bot, Alice G M; Escher, Johanna C; De Jonge, Hugo R

    2009-09-01

    Lubiprostone alleviates constipation by stimulating intestinal fluid secretion, purportedly through activation of ClC-2-type Cl(-) channels. Intestinal obstruction is also a recurrent cause of distress in cystic fibrosis (CF) patients, caused by loss of CF transmembrane conductance regulator (CFTR) Cl(-) channel activity. Because ClC-2 recruitment might be beneficial to CF patients, we investigated lubiprostone's mode of action. Cl(-) transport was measured in an Ussing chamber, in 3 model systems: (1) T84 colonocytes, (2) intestinal epithelium of wild-type and CF mice, and (3) intestinal epithelium of CF patients and controls. In T84 monolayers, lubiprostone induced a robust secretory response. Selective permeabilization of the basolateral plasma membrane revealed that lubiprostone activated an apical Cl(-) conductance. The lubiprostone response was attenuated by H89, an inhibitor of the cAMP-dependent protein kinase, and lubiprostone precluded responsiveness to the cAMP agonist forskolin. CFTR blockage by CFTRinh172, but not ClC-2 blockage by CdCl(2), inhibited the lubiprostone response. Lubiprostone induced a CdCl(2)-insensitive secretory response in mouse intestine, but failed to induce intestinal Cl(-) secretion in Cftr-null mice. Correspondingly, lubiprostone induced a secretory response in human intestinal epithelium, but not in tissue of CF patients. The EP(4)-type prostanoid receptor antagonist L-161,982 blocked the lubiprostone response in all 3 models studied. In T84 cells, lubiprostone induced a rise in cAMP levels that was sensitive to EP(4)-receptor blockage. Lubiprostone enhances intestinal Cl(-) and fluid secretion via prostanoid receptor signaling, triggering activation of CFTR. Therefore, it is of limited use for treatment of CF-related intestinal disease.

  11. Vasodilator responses to nitric oxide are enhanced in mesenteric arteries of portal hypertensive rats.

    PubMed

    Heinemann, A; Stauber, R E

    1996-09-01

    Nitric oxide (NO) is discussed as a mediator of the splanchnic hyperaemia in portal hypertension. We assessed the vasorelaxation by the NO-dependent vasodilator acetylcholine, the NO donor 3-morpholino-sydnonimine (SIN-1) and forskolin, a stimulator of the adenylate cyclase pathway in potassium-preconstricted isolated perfused mesenteric arteries of portal vein-ligated and sham-operated rats. Dilator responses to acetylcholine and SIN-1 were significantly enhanced in vessels of portal vein-ligated rats as compared to sham-operated rats, whereas no difference was found in forskolin-induced vasodilatation. This suggests enhanced reactivity of the vasculature to NO in experimental portal hypertension.

  12. Hypergravity signal transduction in HeLa cells with concomitant phosphorylation of proteins immunoprecipitated with anti-microtubule-associated protein antibodies

    NASA Technical Reports Server (NTRS)

    Kumei, Yasuhiro; Whitson, Peggy A.; Sato, Atsushige; Cintron, Nitza M.

    1991-01-01

    It is shown that hypergravity (35g) stimulates the production of inositol 1,4,5-trisphosphate (IP3) and decreases adenosine 3-prime,5-prime-cyclic monophosphate (cAMP) levels in HeLa cells. It is proposed that IP3 and cAMP may act as second messengers in hypergravity signal transduction. Phosphorylation of microtubule-associated proteins in both the detergent-soluble and -insoluble fractions suggests that cytoskeletal structures may be influenced by gravity.

  13. Acute ENaC stimulation by cAMP in a kidney cell line is mediated by exocytic insertion from a recycling channel pool.

    PubMed

    Butterworth, Michael B; Edinger, Robert S; Johnson, John P; Frizzell, Raymond A

    2005-01-01

    Acute hormonal regulation of the epithelial sodium channel (ENaC) in tight epithelia increases transcellular Na(+) transport via trafficking of intracellular channels to the apical surface. The fate of the channels removed from the apical surface following agonist washout is less clear. By repetitively stimulating polarized mouse cortical collecting duct (mCCD, (MPK)CCD(14)) epithelia, we evaluated the hypothesis that ENaC recycles through an intracellular pool to be available for reinsertion into the apical membrane. Short circuit current (I(SC)), membrane capacitance (C(T)), and conductance (G(T)) were recorded from mCCD epithelia mounted in modified Ussing chambers. Surface biotinylation of ENaC demonstrated an increase in channel number in the apical membrane following cAMP stimulation. This increase was accompanied by a 83 +/- 6% (n = 31) increase in I(SC) and a 15.3 +/- 1.5% (n = 15) increase in C(T). Selective membrane permeabilization demonstrated that the C(T) increase was due to an increase in apical membrane capacitance. I(SC) and C(T) declined to basal levels on stimulus washout. Repetitive cAMP stimulation and washout (approximately 1 h each cycle) resulted in response fatigue; DeltaI(SC) decreased approximately 10% per stimulation-recovery cycle. When channel production was blocked by cycloheximide, DeltaI(SC) decreased approximately 15% per stimulation cycle, indicating that newly synthesized ENaC contributed a relatively small fraction of the channels mobilized to the apical membrane. Selective block of surface ENaC by benzamil demonstrated that channels inserted from a subapical pool made up >90% of the stimulated I(SC), and that on restimulation a large proportion of channels retrieved from the apical surface were reinserted into the apical membrane. Channel recycling was disrupted by brefeldin A, which inhibited ENaC exocytosis, by chloroquine, which inhibited ENaC endocytosis and recycling, and by latrunculin A, which blocked ENaC exocytosis. A compartment model featuring channel populations in the apical membrane and intracellular recycling pool provided an adequate kinetic description of the I(SC) responses to repetitive stimulation. The model supports the concept of ENaC recycling in response to repetitive cAMP stimulation.

  14. PCB 126 and Other Dioxin-Like PCBs Specifically Suppress Hepatic PEPCK Expression via the Aryl Hydrocarbon Receptor

    PubMed Central

    Zhang, Wenshuo; Sargis, Robert M.; Volden, Paul A.; Carmean, Christopher M.; Sun, Xiao J.; Brady, Matthew J.

    2012-01-01

    Dioxins and dioxin-like compounds encompass a group of structurally related heterocyclic compounds that bind to and activate the aryl hydrocarbon receptor (AhR). The prototypical dioxin is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a highly toxic industrial byproduct that incites numerous adverse physiological effects. Global commercial production of the structurally similar polychlorinated biphenyls (PCBs), however, commenced early in the 20th century and continued for decades; dioxin-like PCBs therefore contribute significantly to total dioxin-associated toxicity. In this study, PCB 126, the most potent dioxin-like PCB, was evaluated with respect to its direct effects on hepatic glucose metabolism using primary mouse hepatocytes. Overnight treatment with PCB 126 reduced hepatic glycogen stores in a dose-dependent manner. Additionally, PCB 126 suppressed forskolin-stimulated gluconeogenesis from lactate. These effects were independent of acute toxicity, as PCB 126 did not increase lactate dehydrogenase release nor affect lipid metabolism or total intracellular ATP. Interestingly, provision of cells with glycerol instead of lactate as the carbon source completely restored hepatic glucose production, indicating specific impairment in the distal arm of gluconeogenesis. In concordance with this finding, PCB 126 blunted the forskolin-stimulated increase in phosphoenolpyruvate carboxykinase (PEPCK) mRNA levels without affecting glucose-6-phosphatase expression. Myricetin, a putative competitive AhR antagonist, reversed the suppression of PEPCK induction by PCB 126. Furthermore, other dioxin-like PCBs demonstrated similar effects on PEPCK expression in parallel with their ability to activate AhR. It therefore appears that AhR activation mediates the suppression of PEPCK expression by dioxin-like PCBs, suggesting a role for these pollutants as disruptors of energy metabolism. PMID:22615911

  15. Pituitary hyperplasia and gigantism in mice caused by a cholera toxin transgene.

    PubMed

    Burton, F H; Hasel, K W; Bloom, F E; Sutcliffe, J G

    1991-03-07

    Cyclic AMP is thought to act as an intracellular second messenger, mediating the physiological response of many cell types to extracellular signals. In the pituitary, growth hormone (GH)-producing cells (somatotrophs) proliferate and produce GH in response to hypothalamic GH-releasing factor, which binds a receptor that stimulates Gs protein activation of adenylyl cyclase. We have now determined whether somatotroph proliferation and GH production are stimulated by cAMP alone, or require concurrent, non-Gs-mediated induction of other regulatory molecules by designing a transgene to induce chronic supraphysiological concentrations of cAMP in somatotrophs. The rat GH promoter was used to express an intracellular form of cholera toxin, a non-cytotoxic and irreversible activator of Gs. Introduction of this transgene into mice caused gigantism, elevated serum GH levels, somatotroph proliferation and pituitary hyperplasia. These results support the direct triggering of these events by cAMP, and illustrate the utility of cholera toxin transgenes as a tool for physiological engineering.

  16. A novel extract SB-300 from the stem bark latex of Croton lechleri inhibits CFTR-mediated chloride secretion in human colonic epithelial cells.

    PubMed

    Fischer, Horst; Machen, Terry E; Widdicombe, Jonathan H; Carlson, Thomas J S; King, Steven R; Chow, John W S; Illek, Beate

    2004-08-01

    An oligomeric proanthocyanidin (SP-303) extracted from the bark latex of the tree Croton lechleri (family Euphorbiaceae) is a potent inhibitor of cholera toxin-induced fluid accumulation and chloride secretion. The manufacturing process for SP-303 was optimized and simplified to produce an increased yield of the herbal extract. The novel extract (named SB-300) contained on average 70.6+/-7.2% SP-303 by weight (mean +/- S.D.; n=56 lots). Here, we describe the effectiveness of SB-300 on cAMP-regulated chloride secretion, which is mediated by the cystic fibrosis transmembrane conductance regulator Cl- channel (CFTR) in human colonic T84 cells. Exposure of the apical surface to SB-300 blocked forskolin-stimulated Cl- secretion by 92.2+/-3.0% with a half-maximal inhibition constant (KB) of 4.8+/-0.8 microM. For SP-303, stimulated Cl- currents were decreased by 98.0+/-7.2 % and KB averaged 4.1+/-1.3 microM. There was no significant difference between the blocking kinetics of SP-303 and SB-300. Forskolin-stimulated whole cell Cl- currents were effectively blocked by extracellular addition of SB-300 (63+/-8.5%; n=3) and to a similar extent by SP-303 (83 +/- 0.6%; n=2; at 50 microM each). Both extracts inhibited a time- and voltage-independent Cl- conductance, which indicated the involvement of CFTR Cl- channels. We conclude that both SP-303 (used in Provir) and SB-300 (used in NSF Normal Stool Formula) are novel natural products that target the CFTR Cl- channel. SB-300 is a low cost herbal extract and may present a complementary and alternative medicine approach for the treatment of fluid loss in watery diarrhea.

  17. Further investigation into the signal transduction mechanism of the 5-HT4-like receptor in the circular smooth muscle of human colon.

    PubMed Central

    McLean, P. G.; Coupar, I. M.

    1996-01-01

    1. The nature of the receptor coupling mechanism of the 5-hydroxytryptamine4 (5-HT4) receptor in the circular smooth muscle of the human colon has been further investigated. 2. 5-HT stimulated cyclic AMP generation and caused a relaxation in a concentration-dependent fashion, with EC50 values of 175.5 and 274.9 nM respectively. DAU 6236 increased cyclic AMP formation and caused a relaxant effect but was a partial agonist relative to 5-HT. 3. The 5-HT4 receptor antagonist, GR 113808, inhibited cyclic AMP formation and relaxation induced by 5-HT with -log Ki values of 9.1 (cyclic AMP) and 8.9 (relaxation) and apparent pA2 values of 9.2 (cyclic AMP) and 9.5 (relaxation). 4. Ondansetron and methysergide failed to inhibit cyclic AMP formation or the relaxation induced by 5-HT. 5. The phosphodiesterase inhibitor, IBMX, produced a concentration-dependent relaxation (EC50 = 30 microM) and at 1 microM it enhanced the 5-HT-induced relaxation producing a leftward shift of the 5-HT concentration-effect curve with a concentration-ratio of 4.1. Rolipram caused a concentration-dependent relaxation (EC50 = 564.8 nM) and at 200 nm caused a leftward shift of the concentration-effect curve to 5-HT with a concentration-ratio of 5.5. 6. Application of the adenylyl cyclase inhibitor, SQ 22536 (0.1 mM), and the protein kinase inhibitors, H7 (100 nM) and H89 (200 nM), inhibited the relaxant effect of 5-HT inducing a rightward shift of the concentration-effect curve with concentration-ratios of 10.1, 2.7 and 4.2 respectively. 7. Forskolin stimulated cyclic AMP production and caused a relaxation. The maximum relaxant effect of forskolin (6 microM, 13.8 +/- 1.9 cm.s) was not significantly different from the maximum relaxant effect of 5-HT (10 microM, 12.7 +/- 4.9 cm.s). However, the cyclic AMP levels stimulated by forskolin (6 microM, 49.3 +/- 6.6 pmol mg-1) were markedly greater than those stimulated by 5-HT (10 microM, 7.6 +/- 2.0 pmol mg-1). 8. In conclusion, these results indicate that the 5-HT4 receptors of the circular smooth muscle of human colon mediate relaxation and inhibition of spontaneous contractions via activation of adenylyl cyclase, formation of cyclic AMP and activation of protein kinase A. PMID:8799582

  18. Further investigation into the signal transduction mechanism of the 5-HT4-like receptor in the circular smooth muscle of human colon.

    PubMed

    McLean, P G; Coupar, I M

    1996-06-01

    1. The nature of the receptor coupling mechanism of the 5-hydroxytryptamine4 (5-HT4) receptor in the circular smooth muscle of the human colon has been further investigated. 2. 5-HT stimulated cyclic AMP generation and caused a relaxation in a concentration-dependent fashion, with EC50 values of 175.5 and 274.9 nM respectively. DAU 6236 increased cyclic AMP formation and caused a relaxant effect but was a partial agonist relative to 5-HT. 3. The 5-HT4 receptor antagonist, GR 113808, inhibited cyclic AMP formation and relaxation induced by 5-HT with -log Ki values of 9.1 (cyclic AMP) and 8.9 (relaxation) and apparent pA2 values of 9.2 (cyclic AMP) and 9.5 (relaxation). 4. Ondansetron and methysergide failed to inhibit cyclic AMP formation or the relaxation induced by 5-HT. 5. The phosphodiesterase inhibitor, IBMX, produced a concentration-dependent relaxation (EC50 = 30 microM) and at 1 microM it enhanced the 5-HT-induced relaxation producing a leftward shift of the 5-HT concentration-effect curve with a concentration-ratio of 4.1. Rolipram caused a concentration-dependent relaxation (EC50 = 564.8 nM) and at 200 nm caused a leftward shift of the concentration-effect curve to 5-HT with a concentration-ratio of 5.5. 6. Application of the adenylyl cyclase inhibitor, SQ 22536 (0.1 mM), and the protein kinase inhibitors, H7 (100 nM) and H89 (200 nM), inhibited the relaxant effect of 5-HT inducing a rightward shift of the concentration-effect curve with concentration-ratios of 10.1, 2.7 and 4.2 respectively. 7. Forskolin stimulated cyclic AMP production and caused a relaxation. The maximum relaxant effect of forskolin (6 microM, 13.8 +/- 1.9 cm.s) was not significantly different from the maximum relaxant effect of 5-HT (10 microM, 12.7 +/- 4.9 cm.s). However, the cyclic AMP levels stimulated by forskolin (6 microM, 49.3 +/- 6.6 pmol mg-1) were markedly greater than those stimulated by 5-HT (10 microM, 7.6 +/- 2.0 pmol mg-1). 8. In conclusion, these results indicate that the 5-HT4 receptors of the circular smooth muscle of human colon mediate relaxation and inhibition of spontaneous contractions via activation of adenylyl cyclase, formation of cyclic AMP and activation of protein kinase A.

  19. Does stimulation of NaCl secretion in in vitro perfused rectal gland tubules of Squalus acanthias increase membrane capacitance?

    PubMed

    Greger, R; Thiele, I; Warth, R; Bleich, M

    1998-07-01

    NaCl secretion in rectal gland tubules (RGT) of Squalus acanthias requires the activation of Cl– channels in the luminal membrane. The RGT and its mechanism of activation are an early evolutionary paradigm of exocrine secretion. The respective Cl– channels probably resemble the shark equivalent of the cystic fibrosis transmembrane conductance regulator (CFTR). Activation of these Cl– channels occurs via cAMP. It has been hypothesized that the activation of CFTR occurs via exocytosis or inhibited endocytosis. To examine this question directly by electrical measurements we have performed whole-cell patch-clamp analyses of in vitro perfused RGT. NaCl secretion was stimulated by a solution (Stim) containing forskolin (10 µmol/l), dibutyryl-cAMP (0.5 mmol/l) and adenosine (0.5 mmol/l). This led to the expected strong depolarization and an increase in membrane conductance (G m). The membrane capacitance (C m) was measured by a newly devised two-frequency synchronous detector method. It was increased by Stim significantly from 5.00±0.22 to 5.17±0.21 pF (n=50). The increase in C m correlated with the increase in G m with a slope of 51 fF/nS. Next the effect of furosemide (500 µmol/l) was examined in previously stimulated RGT. Furosemide was supposed to inhibit coupled Na+2Cl–K+ uptake and to reduce cell volume but not membrane trafficking of Cl– channels. Furosemide reduced G m slightly (due to the fall in cytosolic Cl– concentration) and C m to the same extent by which Stim had increased it. Both changes were statistically significant, and the slope of ΔC m/ΔG m was similar to that caused by Stim. Inhibitors of microtubules or actin (colchicine, phalloidin and cytochalasin D added at 10 µmol/l to the pipette solution and dialysed for >10 min) did not alter cell voltage, G m or C m, nor did these inhibitors abolish the stimulatory effect of cAMP. These data suggest that the small C m changes observed with Stim reflect a minor cell volume increase and an ”unfolding” of the plasma membrane. The present data do not support the exocytosis/endocytosis hypothesis of cAMP-mediated activation of Cl– channels in these cells.

  20. Intracellular interactions of umeclidinium and vilanterol in human airway smooth muscle.

    PubMed

    Shaikh, Nooreen; Johnson, Malcolm; Hall, David A; Chung, Kian Fan; Riley, John H; Worsley, Sally; Bhavsar, Pankaj K

    2017-01-01

    Intracellular mechanisms of action of umeclidinium (UMEC), a long-acting muscarinic receptor antagonist, and vilanterol (VI), a long-acting β 2 -adrenoceptor (β 2 R) agonist, were investigated in target cells: human airway smooth-muscle cells (ASMCs). ASMCs from tracheas of healthy lung-transplant donors were treated with VI, UMEC, UMEC and VI combined, or control compounds (salmeterol, propranolol, ICI 118.551, or methacholine [MCh]). Cyclic adenosine monophosphate (cAMP) was measured using an enzyme-linked immunosorbent assay, intracellular free calcium ([Ca 2+ ] i ) using a fluorescence assay, and regulator of G-protein signaling 2 (RGS2) messenger RNA using real-time quantitative polymerase chain reaction. VI and salmeterol (10 -12 -10 -6 M) induced cAMP production from ASMCs in a concentration-dependent manner, which was greater for VI at all concentrations. β 2 R antagonism by propranolol or ICI 118.551 (10 -12 -10 -4 M) resulted in concentration-dependent inhibition of VI-induced cAMP production, and ICI 118.551 was more potent. MCh (5×10 -6 M, 30 minutes) attenuated VI-induced cAMP production ( P <0.05), whereas pretreatment with UMEC (10 -8 M, 1 hour) restored the magnitude of VI-induced cAMP production. ASMC stimulation with MCh (10 -11 -5×10 -6 M) resulted in a concentration-dependent increase in [Ca 2+ ] i , which was attenuated with UMEC pretreatment. Reduction of MCh-induced [Ca 2+ ] i release was greater with UMEC + VI versus UMEC. UMEC enhanced VI-induced RGS2 messenger RNA expression. These data indicate that UMEC reverses cholinergic inhibition of VI-induced cAMP production, and is a more potent muscarinic receptor antagonist when in combination with VI versus either alone.

  1. The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle.

    PubMed

    Mizuta, Kentaro; Zhang, Yi; Xu, Dingbang; Mizuta, Fumiko; D'Ovidio, Frank; Masaki, Eiji; Emala, Charles W

    2013-09-02

    Dopamine signaling is mediated by Gs protein-coupled "D1-like" receptors (D1 and D5) and Gi-coupled "D2-like" receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling. The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576. These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM.

  2. The dopamine D1 receptor is expressed and facilitates relaxation in airway smooth muscle

    PubMed Central

    2013-01-01

    Background Dopamine signaling is mediated by Gs protein-coupled “D1-like” receptors (D1 and D5) and Gi-coupled “D2-like” receptors (D2-4). In asthmatic patients, inhaled dopamine induces bronchodilation. Although the Gi-coupled dopamine D2 receptor is expressed and sensitizes adenylyl cyclase activity in airway smooth muscle (ASM) cells, the Gs-coupled dopamine D1-like receptor subtypes have never been identified on these cells. Activation of Gs-coupled receptors stimulates cyclic AMP (cAMP) production through the stimulation of adenylyl cyclase, which promotes ASM relaxation. We questioned whether the dopamine D1-like receptor is expressed on ASM, and modulates its function through Gs-coupling. Methods The mRNA and protein expression of dopamine D1-like receptor subtypes in both native human and guinea pig ASM tissue and cultured human ASM (HASM) cells was measured. To characterize the stimulation of cAMP through the dopamine D1 receptor, HASM cells were treated with dopamine or the dopamine D1-like receptor agonists (A68930 or SKF38393) before cAMP measurements. To evaluate whether the activation of dopamine D1 receptor induces ASM relaxation, guinea pig tracheal rings suspended under isometric tension in organ baths were treated with cumulatively increasing concentrations of dopamine or A68930, following an acetylcholine-induced contraction with or without the cAMP-dependent protein kinase (PKA) inhibitor Rp-cAMPS, the large-conductance calcium-activated potassium (BKCa) channel blocker iberiotoxin, or the exchange proteins directly activated by cAMP (Epac) antagonist NSC45576. Results Messenger RNA encoding the dopamine D1 and D5 receptors were detected in native human ASM tissue and cultured HASM cells. Immunoblots confirmed the protein expression of the dopamine D1 receptor in both native human and guinea pig ASM tissue and cultured HASM cells. The dopamine D1 receptor was also immunohistochemically localized to both human and guinea pig ASM. The dopamine D1-like receptor agonists stimulated cAMP production in HASM cells, which was reversed by the selective dopamine D1-like receptor antagonists SCH23390 or SCH39166. A68930 relaxed acetylcholine-contracted guinea pig tracheal rings, which was attenuated by Rp-cAMPS but not by iberiotoxin or NSC45576. Conclusions These results demonstrate that the dopamine D1 receptors are expressed on ASM and regulate smooth muscle force via cAMP activation of PKA, and offer a novel target for therapeutic relaxation of ASM. PMID:24004608

  3. Acute ENaC Stimulation by cAMP in a Kidney Cell Line is Mediated by Exocytic Insertion from a Recycling Channel Pool

    PubMed Central

    Butterworth, Michael B.; Edinger, Robert S.; Johnson, John P.; Frizzell, Raymond A.

    2005-01-01

    Acute hormonal regulation of the epithelial sodium channel (ENaC) in tight epithelia increases transcellular Na+ transport via trafficking of intracellular channels to the apical surface. The fate of the channels removed from the apical surface following agonist washout is less clear. By repetitively stimulating polarized mouse cortical collecting duct (mCCD, MPKCCD14) epithelia, we evaluated the hypothesis that ENaC recycles through an intracellular pool to be available for reinsertion into the apical membrane. Short circuit current (ISC), membrane capacitance (CT), and conductance (GT) were recorded from mCCD epithelia mounted in modified Ussing chambers. Surface biotinylation of ENaC demonstrated an increase in channel number in the apical membrane following cAMP stimulation. This increase was accompanied by a 83 ± 6% (n = 31) increase in ISC and a 15.3 ± 1.5% (n = 15) increase in CT. Selective membrane permeabilization demonstrated that the CT increase was due to an increase in apical membrane capacitance. ISC and CT declined to basal levels on stimulus washout. Repetitive cAMP stimulation and washout (∼1 h each cycle) resulted in response fatigue; ΔISC decreased ∼10% per stimulation–recovery cycle. When channel production was blocked by cycloheximide, ΔISC decreased ∼15% per stimulation cycle, indicating that newly synthesized ENaC contributed a relatively small fraction of the channels mobilized to the apical membrane. Selective block of surface ENaC by benzamil demonstrated that channels inserted from a subapical pool made up >90% of the stimulated ISC, and that on restimulation a large proportion of channels retrieved from the apical surface were reinserted into the apical membrane. Channel recycling was disrupted by brefeldin A, which inhibited ENaC exocytosis, by chloroquine, which inhibited ENaC endocytosis and recycling, and by latrunculin A, which blocked ENaC exocytosis. A compartment model featuring channel populations in the apical membrane and intracellular recycling pool provided an adequate kinetic description of the ISC responses to repetitive stimulation. The model supports the concept of ENaC recycling in response to repetitive cAMP stimulation. PMID:15623897

  4. In Vitro Endocrine Disruption Screening of 3-nitro-1,2,4-triazol-5-one (NTO)

    DTIC Science & Technology

    2012-09-25

    8 4 NTO does not significantly induce or inhibit testosterone in H295R cells compared to 10 µM forskolin and 1 µM prochloraz...controls for low basal production of estradiol. Dilutions of the known inducer Forskolin (Cat# F3917, Sigma Aldrich, St. Louis MO and inhibitor...Concentration µM µg/mL equivalent Forskolin 1, 10 1, 10 Prochloraz 0.1, 1 0.1, 1 NTO 0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30 0.01, 0.03, 0.1, 0.3

  5. Effect of beta-ADrenergic Agonist on Cyclic AMP Synthesis in Chicken Skeletal Muscle Cells in Culture

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    Several beta-adrenergic receptor (bAR) agonists are known to cause hypertrophy of skeletal muscle tissue. Because it seems logical that these agonists exert their action on muscle through stimulation of cAMP synthesis, five bAR agonists encompassing a range in activity from strong to weak were evaluated for their ability to stimulate cAMP accumulation in embryonic chicken skeletal muscle cells in culture. Two strong agonists (epinephrine and isoproterenol), one moderate agonist (albuterol), and two weak agonists known to cause hypertrophy in animals (clenbuterol and cimaterol) were studied. Dose response curves were determined over six orders of magnitude in concentration for each agonist, and values were determined for their maximum stimulation of cAMP synthesis rate (Bmax) and the agonist concentration at which 50% stimulation of cAMP synthesis (EC50) occurred. Bmax values decreased in the following order: isoproterenol, epinephrine, albuterol, cimaterol, clenbuterol. Cimaterol and clenbuterol at their Bmax levels were approximately 15-fold weaker than isoproterenol in stimulating the rate of cAMP synthesis. In addition, the EC50 values for isoproterenol, cimaterol, clenbuterol, epinephrine, and albuterol were 360 nM, 630 nM, 900 nM, 2,470 nM, and 3,650 nM, respectively. Finally, dose response curves show that the concentrations of cimaterol and clenbuterol in culture media at concentrations known to cause significant muscle hypertrophy in animals had no detectable effect on stimulation of CAMP accumulation in chicken skeletal muscle cells.

  6. Regulation by PGE2 of IL-2, IL-3 and IFN production by cortico-resistant thymocytes.

    PubMed

    Daculsi, R; Vaillier, D; Gualde, N

    1993-11-01

    We have investigated the role of prostaglandin E2 (PGE2) in the regulation of cytokine release (IL-2, IL-3 and IFN) by cortico-resistant thymocytes (CRT) stimulated or not through the T-cell antigen receptor by an anti-CD3 monoclonal antibody (mAb). CRT were found to spontaneously produce IL-2 and IL-3 on day 4 of culture, but not IFN. After activation with an anti-CD3 mAb, the maximal levels for IL-2 and IFN were observed on day 1 and for IL-3 on day 4. Addition of PGE2 inhibits IL-2 production and has no effect on IFN production. Indomethacin, an inhibitor of the cyclooxygenase pathway, enhanced both IL-2 and IFN production. In contrast, IL-3 secretion by anti-CD3 activated CRT was up-regulated by PGE2, and its level was decreased in the presence of indomethacin in both stimulated or unstimulated cells. As has been observed with PGE2, forskolin which activates adenylate cyclase increases the IL-3 level. Thus PGE2 may interfere in the process of thymocyte proliferation and/or differentiation by regulating differentially the interleukin production.

  7. Calcitonin gene-related peptide stimulates proliferation of human endothelial cells.

    PubMed Central

    Haegerstrand, A; Dalsgaard, C J; Jonzon, B; Larsson, O; Nilsson, J

    1990-01-01

    The effects of the vasoactive perivascular neuropeptides calcitonin gene-related peptide (CGRP), neurokinin A (NKA), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) on proliferation of cultured human umbilical vein endothelial cells (HUVECs) were investigated. CGRP was shown to increase both cell number and DNA synthesis, whereas NKA, NPY, and VIP were ineffective. 125I-labeled CGRP was shown to bind to HUVECs and this binding was displaced by addition of unlabeled CGRP, suggesting the existence of specific CGRP receptors. The effect of CGRP on formation of adenosine 3',5'-cyclic monophosphate (cAMP) and inositol phosphates (InsP), two intracellular messengers known to be involved in regulation of cell proliferation, was investigated. CGRP stimulated cAMP formation but was without effect on the formation of InsP. Proliferation, as well as cAMP formation, was also stimulated by cholera toxin. Basic fibroblast growth factor stimulated growth without affecting cAMP or InsP formation, whereas thrombin, which increased InsP formation, did not stimulate proliferation. We thus suggest that CGRP may act as a local factor stimulating proliferation of endothelial cells; that the mechanism of action is associated with cAMP formation; and that this effect of CGRP may be important for formation of new vessels during physiological and pathophysiological events such as ischemia, inflammation, and wound healing. PMID:2159144

  8. Calcitonin gene-related peptide stimulates proliferation of human endothelial cells.

    PubMed

    Haegerstrand, A; Dalsgaard, C J; Jonzon, B; Larsson, O; Nilsson, J

    1990-05-01

    The effects of the vasoactive perivascular neuropeptides calcitonin gene-related peptide (CGRP), neurokinin A (NKA), neuropeptide Y (NPY), and vasoactive intestinal polypeptide (VIP) on proliferation of cultured human umbilical vein endothelial cells (HUVECs) were investigated. CGRP was shown to increase both cell number and DNA synthesis, whereas NKA, NPY, and VIP were ineffective. 125I-labeled CGRP was shown to bind to HUVECs and this binding was displaced by addition of unlabeled CGRP, suggesting the existence of specific CGRP receptors. The effect of CGRP on formation of adenosine 3',5'-cyclic monophosphate (cAMP) and inositol phosphates (InsP), two intracellular messengers known to be involved in regulation of cell proliferation, was investigated. CGRP stimulated cAMP formation but was without effect on the formation of InsP. Proliferation, as well as cAMP formation, was also stimulated by cholera toxin. Basic fibroblast growth factor stimulated growth without affecting cAMP or InsP formation, whereas thrombin, which increased InsP formation, did not stimulate proliferation. We thus suggest that CGRP may act as a local factor stimulating proliferation of endothelial cells; that the mechanism of action is associated with cAMP formation; and that this effect of CGRP may be important for formation of new vessels during physiological and pathophysiological events such as ischemia, inflammation, and wound healing.

  9. Forskolin stimulation promotes urea transporter UT-A1 ubiquitination, endocytosis, and degradation in MDCK cells

    PubMed Central

    Su, Hua; Carter, Conner B.; Laur, Oskar; Sands, Jeff M.

    2012-01-01

    The adenylyl cyclase stimulator forskolin (FSK) stimulates UT-A1 phosphorylation, membrane trafficking, and urea transport activity. Here, we found that FSK stimulation induces UT-A1 ubiquitination in UT-A1 Madin-Darby canine kidney (MDCK) cells. This suggests that phosphorylation by FSK also triggers the protein degradation machinery for UT-A1. UT-A1-MDCK cells were treated with 100 μg/ml cycloheximide to inhibit protein synthesis, with or without 10 μM FSK. Total UT-A1 protein abundance was significantly reduced after FSK treatment, concomitantly ubiquitinated UT-A1 was increased. We then specifically investigated the effect of FSK on UT-A1 expressed on the cell plasma membrane. FSK treatment accelerated UT-A1 removal from the cell plasma membrane by increasing UT-A1 endocytosis as judged by biotinylation/MesNa treatment and confocal microscopy. We further found that inhibition of the clathrin-mediated endocytic pathway, but not the caveolin-mediated endocytic pathway, significantly blocks FSK-stimulated UT-A1 endocytosis. The PKA inhibitor H89 and the proteasome inhibitors MG132 and lactacystin reduced FSK-induced membrane UT-A1 reduction. Our study shows that FSK activates the UT-A1 urea transporter and the activation/phosphorylation subsequently triggers the downregulation of UT-A1, which represents an important mechanism for the cell to return to the basal conditions after vasopressin stimulation. PMID:22914781

  10. Cyclic AMP-dependent modification of gonad-selective TAF(II)105 in a human ovarian granulosa cell line.

    PubMed

    Wu, Yimin; Lu, Yunzhe; Hu, Yanfen; Li, Rong

    2005-11-01

    In response to gonadotropins, the elevated level of intracellular-cyclic AMP (cAMP) in ovarian granulosa cells triggers an ordered activation of multiple ovarian genes, which in turn promotes various ovarian functions including folliculogenesis and steroidogenesis. Identification and characterization of transcription factors that control ovarian gene expression are pivotal to the understanding of the molecular basis of the tissue-specific gene regulation programs. The recent discovery of the mouse TATA binding protein (TBP)-associated factor 105 (TAF(II)105) as a gonad-selective transcriptional co-activator strongly suggests that general transcription factors such as TFIID may play a key role in regulating tissue-specific gene expression. Here we show that the human TAF(II)105 protein is preferentially expressed in ovarian granulosa cells. We also identified a novel TAF(II)105 mRNA isoform that results from alternative exon inclusion and is predicted to encode a dominant negative mutant of TAF(II)105. Following stimulation by the adenylyl cyclase activator forskolin, TAF(II)105 in granulosa cells undergoes rapid and transient phosphorylation that is dependent upon protein kinase A (PKA). Thus, our work suggests that pre-mRNA processing and post-translational modification represent two important regulatory steps for the gonad-specific functions of human TAF(II)105. Copyright 2005 Wiley-Liss, Inc.

  11. Basolateral cholesterol depletion alters Aquaporin-2 post-translational modifications and disrupts apical plasma membrane targeting.

    PubMed

    Moeller, Hanne B; Fuglsang, Cecilia Hvitfeldt; Pedersen, Cecilie Nøhr; Fenton, Robert A

    2018-01-01

    Apical plasma membrane accumulation of the water channel Aquaporin-2 (AQP2) in kidney collecting duct principal cells is critical for body water homeostasis. Posttranslational modification (PTM) of AQP2 is important for regulating AQP2 trafficking. The aim of this study was to determine the role of cholesterol in regulation of AQP2 PTM and in apical plasma membrane targeting of AQP2. Cholesterol depletion from the basolateral plasma membrane of a collecting duct cell line (mpkCCD14) using methyl-beta-cyclodextrin (MBCD) increased AQP2 ubiquitylation. Forskolin, cAMP or dDAVP-mediated AQP2 phosphorylation at Ser269 (pS269-AQP2) was prevented by cholesterol depletion from the basolateral membrane. None of these effects on pS269-AQP2 were observed when cholesterol was depleted from the apical side of cells, or when MBCD was applied subsequent to dDAVP stimulation. Basolateral, but not apical, MBCD application prevented cAMP-induced apical plasma membrane accumulation of AQP2. These studies indicate that manipulation of the cholesterol content of the basolateral plasma membrane interferes with AQP2 PTM and subsequently regulated apical plasma membrane targeting of AQP2. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Studies on the synergistic effect of androgen on the stimulation of progestin secretion by FSH in cultured rat granulosa cells: a search for the mechanism of action.

    PubMed

    Nimrod, A

    1977-09-01

    Cultures of granulosa cells from immature hypophysectomized DES-treated rats were unable to maintain progestin production of more than 48 h in medium without hormone supplementation or in the presence of FSH only. Production of progestin (20alpha-dihydroprogesterone, as measured by radioimmunoassay) remained unimpaired in the presence of androstenedione (Ad) and was markedly increased in the presence of both Ad and FSH. The combined treatment with FSH and Ad during the first 48 h of culture brought about persistent changes in the cultured cells, since progestin accumulation did not decline upon subsequent removal of these hormones during days 3 and 4 of culture. Dibutyryl cyclic AMP (DBC) was able to mimic the changes in steroidogenic capability induced by the combined action of FSH and Ad. The extent of [125I]-FSH binding, FSH-stimulable cAMP accumulation and cyclic 3',5'-nucleotide phosphodiesterase activity were not affected by addition of Ad to the culture medium. Ad synergized with DBC in the stimulation of progestin accumulation in granulosa cell cultures. It is suggested that androgen acts at a step in the regulation of progestin biosynthesis distal to cAMP production.

  13. Protective Effects of Forskolin on Behavioral Deficits and Neuropathological Changes in a Mouse Model of Cerebral Amyloidosis

    PubMed Central

    Zug, Caroline; Schluesener, Hermann J.; Zhang, Zhi-Yuan

    2016-01-01

    The production of amyloid-β peptides in the brains of patients with Alzheimer disease (AD) may contribute to memory loss and impairments in social behavior. Here, an efficient adenylate cyclase activator, forskolin, was orally administered by gavage (100 mg/kg body weight) to 5-month-old transgenic APP/PS1 mice, which serve as an animal model of cerebral amyloidosis. Analyses of nest construction, sociability, and immunohistochemical features were used to determine the effects of forskolin treatment. After a relatively short term of treatment (10 days), forskolin-treated transgenic mice showed restored nest construction ability (p < 0.05) and their sociability (p < 0.01). There was a reduction of Aβ plaque deposition in the cortex and in the hippocampus. Furthermore, expression of transforming growth factor β, glial fibrillary acidic protein, and Iba-1 in the cortex was reduced in the forskolin-treated group, suggesting regulation of the inflammatory response mediated by activated microglia and astrocytes in the brains of the APP/PS1 mice (p < 0.01). Taken together, these findings suggest that forskolin shows neuroprotective effects in APP/PS1 Tg mice and may be a promising drug in the treatment of patients with AD. PMID:27251043

  14. Protective Effects of Forskolin on Behavioral Deficits and Neuropathological Changes in a Mouse Model of Cerebral Amyloidosis.

    PubMed

    Owona, Brice Ayissi; Zug, Caroline; Schluesener, Hermann J; Zhang, Zhi-Yuan

    2016-07-01

    The production of amyloid-β peptides in the brains of patients with Alzheimer disease (AD) may contribute to memory loss and impairments in social behavior. Here, an efficient adenylate cyclase activator, forskolin, was orally administered by gavage (100 mg/kg body weight) to 5-month-old transgenic APP/PS1 mice, which serve as an animal model of cerebral amyloidosis. Analyses of nest construction, sociability, and immunohistochemical features were used to determine the effects of forskolin treatment. After a relatively short term of treatment (10 days), forskolin-treated transgenic mice showed restored nest construction ability (p < 0.05) and their sociability (p < 0.01). There was a reduction of Aβ plaque deposition in the cortex and in the hippocampus. Furthermore, expression of transforming growth factor β, glial fibrillary acidic protein, and Iba-1 in the cortex was reduced in the forskolin-treated group, suggesting regulation of the inflammatory response mediated by activated microglia and astrocytes in the brains of the APP/PS1 mice (p < 0.01). Taken together, these findings suggest that forskolin shows neuroprotective effects in APP/PS1 Tg mice and may be a promising drug in the treatment of patients with AD. © 2016 American Association of Neuropathologists, Inc. All rights reserved.

  15. Aging has the opposite effect on cAMP and cGMP circadian variations in rat Leydig cells.

    PubMed

    Baburski, Aleksandar Z; Sokanovic, Srdjan J; Andric, Silvana A; Kostic, Tatjana S

    2017-05-01

    The Leydig cell physiology displays a circadian rhythm driven by a complex interaction of the reproductive axis hormones and circadian system. The final output of this regulatory process is circadian pattern of steroidogenic genes expression and testosterone production. Aging gradually decreases robustness of rhythmic testosterone secretion without change in pattern of LH secretion. Here, we analyzed effect of aging on circadian variation of cAMP and cGMP signaling in Leydig cells. Results showed opposite effect of aging on cAMP and cGMP daily variation. Reduced amplitude of cAMP circadian oscillation was probably associated with changed expression of genes involved in cAMP production (increased circadian pattern of Adcy7, Adcy9, Adcy10 and decreased Adcy3); cAMP degradation (increased Pde4a, decreased Pde8b, canceled rhythm of Pde4d, completely reversed circadian pattern of Pde7b and Pde8a); and circadian expression of protein kinase A subunits (Prkac/PRKAC and Prkar2a). Aging stimulates expression of genes responsible for cGMP production (Nos2, Gucy1a3 and Gucy1b3/GUCYB3) and degradation (Pde5a, Pde6a and Pde6h) but the overall net effect is elevation of cGMP circadian oscillations in Leydig cells. In addition, the expression of cGMP-dependent kinase, Prkg1/PRKG1 is up-regulated. It seems that aging potentiate cGMP- and reduce cAMP-signaling in Leydig cells. Since both signaling pathways affect testosterone production and clockwork in the cells, further insights into these signaling pathways will help to unravel disorders linked to the circadian timing system, aging and reproduction.

  16. Salt-inducible Kinase 3 Signaling Is Important for the Gluconeogenic Programs in Mouse Hepatocytes*

    PubMed Central

    Itoh, Yumi; Sanosaka, Masato; Fuchino, Hiroyuki; Yahara, Yasuhito; Kumagai, Ayako; Takemoto, Daisaku; Kagawa, Mai; Doi, Junko; Ohta, Miho; Tsumaki, Noriyuki; Kawahara, Nobuo; Takemori, Hiroshi

    2015-01-01

    Salt-inducible kinases (SIKs), members of the 5′-AMP-activated protein kinase (AMPK) family, are proposed to be important suppressors of gluconeogenic programs in the liver via the phosphorylation-dependent inactivation of the CREB-specific coactivator CRTC2. Although a dramatic phenotype for glucose metabolism has been found in SIK3-KO mice, additional complex phenotypes, dysregulation of bile acids, cholesterol, and fat homeostasis can render it difficult to discuss the hepatic functions of SIK3. The aim of this study was to examine the cell autonomous actions of SIK3 in hepatocytes. To eliminate systemic effects, we prepared primary hepatocytes and screened the small compounds suppressing SIK3 signaling cascades. SIK3-KO primary hepatocytes produced glucose more quickly after treatment with the cAMP agonist forskolin than the WT hepatocytes, which was accompanied by enhanced gluconeogenic gene expression and CRTC2 dephosphorylation. Reporter-based screening identified pterosin B as a SIK3 signaling-specific inhibitor. Pterosin B suppressed SIK3 downstream cascades by up-regulating the phosphorylation levels in the SIK3 C-terminal regulatory domain. When pterosin B promoted glucose production by up-regulating gluconeogenic gene expression in mouse hepatoma AML-12 cells, it decreased the glycogen content and stimulated an association between the glycogen phosphorylase kinase gamma subunit (PHKG2) and SIK3. PHKG2 phosphorylated the peptides with sequences of the C-terminal domain of SIK3. Here we found that the levels of active AMPK were higher both in the SIK3-KO hepatocytes and in pterosin B-treated AML-12 cells than in their controls. These results suggest that SIK3, rather than SIK1, SIK2, or AMPKs, acts as the predominant suppressor in gluconeogenic gene expression in the hepatocytes. PMID:26048985

  17. Lipopolysaccharide-induced endothelial barrier breakdown is cyclic adenosine monophosphate dependent in vivo and in vitro.

    PubMed

    Schlegel, Nicolas; Baumer, Yvonne; Drenckhahn, Detlev; Waschke, Jens

    2009-05-01

    To determine whether cyclic adenosine monophosphate (cAMP) is critically involved in lipopolysaccharide (LPS)-induced breakdown of endothelial barrier functions in vivo and in vitro. Experimental laboratory research. Research laboratory. Wistar rats and cultured human microvascular endothelial cells. Permeability measurements in single postcapillary venules in vivo and permeability measurements and cell biology techniques in vitro. We demonstrate that within 120 minutes LPS increased endothelial permeability in rat mesenteric postcapillary venules in vivo and caused a barrier breakdown in human dermal microvascular endothelial cells in vitro. This was associated with the formation of large intercellular gaps and fragmentation of vascular endothelial cadherin immunostaining. Furthermore, claudin 5 immunostaining at cell borders was drastically reduced after LPS treatment. Interestingly, activity of the small GTPase Rho A, which has previously been suggested to mediate the LPS-induced endothelial barrier breakdown, was not increased after 2 hours. However, activity of Rac 1, which is known to be important for maintenance of endothelial barrier functions, was significantly reduced to 64 +/- 8% after 2 hours. All LPS-induced changes of endothelial cells were blocked by a forskolin-mediated or rolipram-mediated increase of cAMP. Consistently, enzyme-linked immunosorbent assay-based measurements demonstrated that LPS significantly decreased intracellular cAMP. In summary, our data demonstrate that LPS disrupts endothelial barrier properties by decreasing intracellular cAMP. This mechanism may involve inactivation of Rac 1 rather than activation of Rho A.

  18. Elevated cAMP improves signal-to-noise ratio in amphibian rod photoreceptors

    PubMed Central

    Govardovskii, Victor I.

    2017-01-01

    The absolute sensitivity of vertebrate retinas is set by a background noise, called dark noise, which originates from several different cell types and is generated by different molecular mechanisms. The major share of dark noise is produced by photoreceptors and consists of two components, discrete and continuous. Discrete noise is generated by spontaneous thermal activations of visual pigment. These events are undistinguishable from real single-photon responses (SPRs) and might be considered an equivalent of the signal. Continuous noise is produced by spontaneous fluctuations of the catalytic activity of the cGMP phosphodiesterase. This masks both SPR and spontaneous SPR-like responses. Circadian rhythms affect photoreceptors, among other systems by periodically increasing intracellular cAMP levels ([cAMP]in), which increases the size and changes the shape of SPRs. Here, we show that forskolin, a tool that increases [cAMP]in, affects the magnitude and frequency spectrum of the continuous and discrete components of dark noise in photoreceptors. By changing both components of rod signaling, the signal and the noise, cAMP is able to increase the photoreceptor signal-to-noise ratio by twofold. We propose that this results in a substantial improvement of signal detection, without compromising noise rejection, at the rod bipolar cell synapse. PMID:28611079

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tseng, F.Y.; Rani, C.S.; Field, J.B.

    Since iodide (I-) inhibits TSH stimulation of cAMP formation, which mediates most of the effects of the hormone, it has been assumed that this accounts for the inhibitory action of iodide on the thyroid. However, TSH stimulation of 32P incorporation into phospholipids and stimulation of thyroid metabolism by other agonists, such as carbachol, phorbol esters, and ionophore A23187, is not cAMP mediated. The present studies examined the effect of iodide on stimulation of glucose oxidation and 32P incorporation into phospholipids by TSH and other agonists to determine if the inhibition of cAMP formation was responsible for the action of iodide.more » Preincubation of dog thyroid slices for 1 h with iodide (10(-4) M) inhibited TSH-, (Bu)2cAMP-, carbachol-, methylene blue-, 12-O-tetradecanoyl phorbol-13-acetate-, ionophore A23187-, prostaglandin E1-, and cholera toxin-stimulated glucose oxidation. I- also inhibited the stimulation by TSH, 12-O-tetradecanoyl phorbol-13-acetate, carbachol, and ionophore A23187 of 32P incorporation into phospholipids. The inhibition was similar whether iodide was added 2 h before or simultaneously with the agonist. I- itself sometimes stimulated basal glucose oxidation, but had no effect on basal 32P incorporation into phospholipids. The effects of iodide on basal and agonist-stimulated thyroid metabolism were blocked by methimazole (10(-3) M). When dog thyroid slices were preloaded with 32PO4 or (1-14C)glucose, the iodide inhibition of agonist stimulation disappeared, suggesting that the effect of iodide involves the transport process. In conclusion, I- inhibited stimulation of glucose oxidation and 32P incorporation into phospholipids by all agonists, indicating that the effect is independent of the cAMP system and that iodide autoregulation does not only involve this system. Oxidation and organification of iodide are necessary for the inhibition.« less

  20. Suppression of Adenosine-Activated Chloride Transport by Ethanol in Airway Epithelia

    PubMed Central

    Raju, Sammeta V.; Wang, Guoshun

    2012-01-01

    Alcohol abuse is associated with increased lung infections. Molecular understanding of the underlying mechanisms is not complete. Airway epithelial ion transport regulates the homeostasis of airway surface liquid, essential for airway mucosal immunity and lung host defense. Here, air-liquid interface cultures of Calu-3 epithelial cells were basolaterally exposed to physiologically relevant concentrations of ethanol (0, 25, 50 and 100 mM) for 24 hours and adenosine-stimulated ion transport was measured by Ussing chamber. The ethanol exposure reduced the epithelial short-circuit currents (ISC) in a dose-dependent manner. The ion currents activated by adenosine were chloride conductance mediated by cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-activated chloride channel. Alloxazine, a specific inhibitor for A2B adenosine receptor (A2BAR), largely abolished the adenosine-stimulated chloride transport, suggesting that A2BAR is a major receptor responsible for regulating the chloride transport of the cells. Ethanol significantly reduced intracellular cAMP production upon adenosine stimulation. Moreover, ethanol-suppression of the chloride secretion was able to be restored by cAMP analogs or by inhibitors to block cAMP degradation. These results imply that ethanol exposure dysregulates CFTR-mediated chloride transport in airways by suppression of adenosine-A2BAR-cAMP signaling pathway, which might contribute to alcohol-associated lung infections. PMID:22442662

  1. The role of G-protein receptor 84 in experimental neuropathic pain.

    PubMed

    Nicol, Louise S C; Dawes, John M; La Russa, Federica; Didangelos, Athanasios; Clark, Anna K; Gentry, Clive; Grist, John; Davies, John B; Malcangio, Marzia; McMahon, Stephen B

    2015-06-10

    G-protein receptor 84 (GPR84) is an orphan receptor that is induced markedly in monocytes/macrophages and microglia during inflammation, but its pathophysiological function is unknown. Here, we investigate the role of GPR84 in a murine model of traumatic nerve injury. Naive GPR84 knock-out (KO) mice exhibited normal behavioral responses to acute noxious stimuli, but subsequent to partial sciatic nerve ligation (PNL), KOs did not develop mechanical or thermal hypersensitivity, in contrast to wild-type (WT) littermates. Nerve injury increased ionized calcium binding adapter molecule 1 (Iba1) and phosphorylated p38 MAPK immunoreactivity in the dorsal horn and Iba1 and cluster of differentiation 45 expression in the sciatic nerve, with no difference between genotypes. PCR array analysis revealed that Gpr84 expression was upregulated in the spinal cord and sciatic nerve of WT mice. In addition, the expression of arginase-1, a marker for anti-inflammatory macrophages, was upregulated in KO sciatic nerve. Based on this evidence, we investigated whether peripheral macrophages behave differently in the absence of GPR84. We found that lipopolysaccharide-stimulated KO macrophages exhibited attenuated expression of several proinflammatory mediators, including IL-1β, IL-6, and TNF-α. Forskolin-stimulated KO macrophages also showed greater cAMP induction, a second messenger associated with immunosuppression. In summary, our results demonstrate that GPR84 is a proinflammatory receptor that contributes to nociceptive signaling via the modulation of macrophages, whereas in its absence the response of these cells to an inflammatory insult is impaired. Copyright © 2015 Nicol et al.

  2. The Role of G-Protein Receptor 84 in Experimental Neuropathic Pain

    PubMed Central

    Nicol, Louise S.C.; Dawes, John M.; La Russa, Federica; Didangelos, Athanasios; Clark, Anna K.; Gentry, Clive; Grist, John; Davies, John B.; Malcangio, Marzia

    2015-01-01

    G-protein receptor 84 (GPR84) is an orphan receptor that is induced markedly in monocytes/macrophages and microglia during inflammation, but its pathophysiological function is unknown. Here, we investigate the role of GPR84 in a murine model of traumatic nerve injury. Naive GPR84 knock-out (KO) mice exhibited normal behavioral responses to acute noxious stimuli, but subsequent to partial sciatic nerve ligation (PNL), KOs did not develop mechanical or thermal hypersensitivity, in contrast to wild-type (WT) littermates. Nerve injury increased ionized calcium binding adapter molecule 1 (Iba1) and phosphorylated p38 MAPK immunoreactivity in the dorsal horn and Iba1 and cluster of differentiation 45 expression in the sciatic nerve, with no difference between genotypes. PCR array analysis revealed that Gpr84 expression was upregulated in the spinal cord and sciatic nerve of WT mice. In addition, the expression of arginase-1, a marker for anti-inflammatory macrophages, was upregulated in KO sciatic nerve. Based on this evidence, we investigated whether peripheral macrophages behave differently in the absence of GPR84. We found that lipopolysaccharide-stimulated KO macrophages exhibited attenuated expression of several proinflammatory mediators, including IL-1β, IL-6, and TNF-α. Forskolin-stimulated KO macrophages also showed greater cAMP induction, a second messenger associated with immunosuppression. In summary, our results demonstrate that GPR84 is a proinflammatory receptor that contributes to nociceptive signaling via the modulation of macrophages, whereas in its absence the response of these cells to an inflammatory insult is impaired. PMID:26063927

  3. Partial agonist clonidine mediates alpha(2)-AR subtypes specific regulation of cAMP accumulation in adenylyl cyclase II transfected DDT1-MF2 cells.

    PubMed

    Limon-Boulez, I; Bouet-Alard, R; Gettys, T W; Lanier, S M; Maltier, J P; Legrand, C

    2001-02-01

    alpha2-Adrenergic receptor (alpha(2)-AR) activation in the pregnant rat myometrium at midterm potentiates beta(2)-AR stimulation of adenylyl cyclase (AC) via Gbetagamma regulation of the type II isoform of adenylyl cyclase. However, at term, alpha(2)-AR activation inhibits beta(2)-AR stimulation of AC. This phenomenon is associated with changes in alpha(2)-AR subtype expression (midterm alpha(2A/D)-AR > alpha(2B)-AR; term alpha(2B) >or =alpha(2A/D)-AR), without any change in ACII mRNA, suggesting that alpha(2A/D)- and alpha(2B)-AR differentially regulate beta(2)-cAMP production. To address this issue, we have stably expressed the same density of alpha(2A/D)- or alpha(2B)-AR with AC II in DDT1-MF2 cells. Clonidine (partial agonist) increased beta(2)-AR-stimulated cAMP production in alpha(2A/D)-AR-ACII transfectants but inhibited it in alpha(2B)-AR-ACII transfectants. In contrast, epinephrine (full agonist) enhanced beta(2)-stimulated ACII in both alpha(2A)- and alpha(2B)-ACII clonal cell lines. 4-Azidoanilido-[alpha-(32)P]GTP-labeling of activated G proteins indicated that, in alpha(2B)-AR transfectants, clonidine activated only Gi(2), whereas epinephrine, the full agonist, effectively coupled to Gi(2) and Gi(3). Thus, partial and full agonists selectively activate G proteins that lead to drug specific effects on effectors. Moreover, these data indicate that Gi(3) activation is required for potentiation of beta(2)-AR stimulation of AC by alpha(2A/D) and alpha(2B)-AR in DDT1-MF2 cells. This may reflect an issue of the amount of Gbetagamma released upon receptor activation and/or betagamma composition of Gi(3) versus Gi(2).

  4. Enhancement of Astroglial Aerobic Glycolysis by Extracellular Lactate-Mediated Increase in cAMP

    PubMed Central

    Vardjan, Nina; Chowdhury, Helena H.; Horvat, Anemari; Velebit, Jelena; Malnar, Maja; Muhič, Marko; Kreft, Marko; Krivec, Špela G.; Bobnar, Saša T.; Miš, Katarina; Pirkmajer, Sergej; Offermanns, Stefan; Henriksen, Gjermund; Storm-Mathisen, Jon; Bergersen, Linda H.; Zorec, Robert

    2018-01-01

    Besides being a neuronal fuel, L-lactate is also a signal in the brain. Whether extracellular L-lactate affects brain metabolism, in particular astrocytes, abundant neuroglial cells, which produce L-lactate in aerobic glycolysis, is unclear. Recent studies suggested that astrocytes express low levels of the L-lactate GPR81 receptor (EC50 ≈ 5 mM) that is in fat cells part of an autocrine loop, in which the Gi-protein mediates reduction of cytosolic cyclic adenosine monophosphate (cAMP). To study whether a similar signaling loop is present in astrocytes, affecting aerobic glycolysis, we measured the cytosolic levels of cAMP, D-glucose and L-lactate in single astrocytes using fluorescence resonance energy transfer (FRET)-based nanosensors. In contrast to the situation in fat cells, stimulation by extracellular L-lactate and the selective GPR81 agonists, 3-chloro-5-hydroxybenzoic acid (3Cl-5OH-BA) or 4-methyl-N-(5-(2-(4-methylpiperazin-1-yl)-2-oxoethyl)-4-(2-thienyl)-1,3-thiazol-2-yl)cyclohexanecarboxamide (Compound 2), like adrenergic stimulation, elevated intracellular cAMP and L-lactate in astrocytes, which was reduced by the inhibition of adenylate cyclase. Surprisingly, 3Cl-5OH-BA and Compound 2 increased cytosolic cAMP also in GPR81-knock out astrocytes, indicating that the effect is GPR81-independent and mediated by a novel, yet unidentified, excitatory L-lactate receptor-like mechanism in astrocytes that enhances aerobic glycolysis and L-lactate production via a positive feedback mechanism. PMID:29867342

  5. Mechanism of bisphenol AF-induced progesterone inhibition in human chorionic gonadotrophin-stimulated mouse Leydig tumor cell line (mLTC-1) cells.

    PubMed

    Feng, Yixing; Shi, Jiachen; Jiao, Zhihao; Duan, Hejun; Shao, Bing

    2018-06-01

    Bisphenol AF (BPAF) has been shown to inhibit testicular steroidogenesis in male rats. However, the precise mechanisms related to the toxic effects of BPAF on reproduction remain poorly understood. In the present study, a mouse Leydig tumor cell line (mLTC-1) was used as a model to investigate the mechanism of steroidogenic inhibition and to identify the molecular target of BPAF. Levels of progesterone and the concentration of cyclic adenosine monophosphate (cAMP) in cells exposed to BPAF were detected, and expression of key genes and proteins in steroid biosynthesis was assessed. The results showed that BPAF exposure decreased human chorionic gonadotrophin (hCG)-stimulated progesterone production in a dose-dependent manner. The 24-h IC 50 (half maximal inhibitory concentration) value for BPAF regarding progesterone production was 70.2 µM. A dramatic decrease in cellular cAMP concentration was also observed. Furthermore, BPAF exposure inhibited expression of genes and proteins involved in cholesterol transport and progesterone biosynthesis. Conversely, the protein levels of steroidogenic acute regulatory protein (StAR) were not altered, and those of progesterone were still decreased upon 22R-hydroxycholesterol treatment of cells exposed to higher doses of BPAF. Together, these data indicate that BPAF exposure inhibits progesterone secretion in hCG-stimulated mLTC-1 cells by reducing expression of scavenger receptor class B type I (SR-B1) and cytochrome P450 (P450scc) due to the adverse effects of cAMP. However, StAR might not be the molecular target in this process. © 2018 Wiley Periodicals, Inc.

  6. Adenylyl cyclase 3/adenylyl cyclase-associated protein 1 (CAP1) complex mediates the anti-migratory effect of forskolin in pancreatic cancer cells.

    PubMed

    Quinn, Sierra N; Graves, Sarai H; Dains-McGahee, Clayton; Friedman, Emilee M; Hassan, Humma; Witkowski, Piotr; Sabbatini, Maria E

    2017-04-01

    Pancreatic cancer is one of the most lethal human malignancies. A better understanding of the intracellular mechanism of migration and invasion is urgently needed to develop treatment that will suppress metastases and improve overall survival. Cyclic adenosine monophosphate (cyclic AMP) is a second messenger that has shown to regulate migration and invasion of pancreatic cancer cells. The rise of cyclic AMP suppressed migration and invasion of pancreatic ductal adenocarcinoma cells. Cyclic AMP is formed from cytosolic ATP by the enzyme adenylyl cyclase (AC). There are ten isoforms of ACs; nine are anchored in the plasma membrane and one is soluble. What remains unknown is the extent to which the expression of transmembrane AC isoforms is both modified in pancreatic cancer and mediates the inhibitory effect of forskolin on cell motility. Using real-time PCR analysis, ADCY3 was found to be highly expressed in pancreatic tumor tissues, resulting in a constitutive increase in cyclic AMP levels. On the other hand, ADCY2 was down-regulated. Migration, invasion, and filopodia formation in two different pancreatic adenocarcinoma cell lines, HPAC and PANC-1 deficient in AC1 or AC3, were studied. We found that AC3, upon stimulation with forskolin, enhanced cyclic AMP levels and inhibited cell migration and invasion. Unlikely to be due to a cytotoxic effect, the inhibitory effects of forskolin involved the quick formation of AC3/adenylyl cyclase-associated protein 1 (CAP1)/G-actin complex, which inhibited filopodia formation and cell motility. Using Western blotting analysis, forskolin, through AC3 activation, caused phosphorylation of CREB, but not ERK. The effect of CREB phosphorylation is likely to be associated with long-term signaling changes. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes.

    PubMed

    Agarwal, Shailesh R; Gratwohl, Jackson; Cozad, Mia; Yang, Pei-Chi; Clancy, Colleen E; Harvey, Robert D

    2018-01-01

    Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane domains contribute to the formation of distinct pools of cAMP under basal conditions as well as following receptor stimulation in adult ventricular myocytes.

  8. Selective inhibition of histamine-evoked Ca2+ signals by compartmentalized cAMP in human bronchial airway smooth muscle cells.

    PubMed

    Dale, Philippa; Head, Victoria; Dowling, Mark R; Taylor, Colin W

    2018-05-01

    Intracellular Ca 2+ and cAMP typically cause opposing effects on airway smooth muscle contraction. Receptors that stimulate these pathways are therapeutic targets in asthma and chronic obstructive pulmonary disease. However, the interactions between different G protein-coupled receptors (GPCRs) that evoke cAMP and Ca 2+ signals in human bronchial airway smooth muscle cells (hBASMCs) are poorly understood. We measured Ca 2+ signals in cultures of fluo-4-loaded hBASMCs alongside measurements of intracellular cAMP using mass spectrometry or [ 3 H]-adenine labeling. Interactions between the signaling pathways were examined using selective ligands of GPCRs, and inhibitors of Ca 2+ and cAMP signaling pathways. Histamine stimulated Ca 2+ release through inositol 1,4,5-trisphosphate (IP 3 ) receptors in hBASMCs. β 2 -adrenoceptors, through cAMP and protein kinase A (PKA), substantially inhibited histamine-evoked Ca 2+ signals. Responses to other Ca 2+ -mobilizing stimuli were unaffected by cAMP (carbachol and bradykinin) or minimally affected (lysophosphatidic acid). Prostaglandin E 2 (PGE 2 ), through EP 2 and EP 4 receptors, stimulated formation of cAMP and inhibited histamine-evoked Ca 2+ signals. There was no consistent relationship between the inhibition of Ca 2+ signals and the amounts of intracellular cAMP produced by different stimuli. We conclude that β-adrenoceptors, EP 2 and EP 4 receptors, through cAMP and PKA, selectively inhibit Ca 2+ signals evoked by histamine in hBASMCs, suggesting that PKA inhibits an early step in H 1 receptor signaling. Local delivery of cAMP within hyperactive signaling junctions mediates the inhibition. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Functions of transmembrane domain 3 of human melanocortin-4 receptor.

    PubMed

    Mo, Xiu-Lei; Yang, Rui; Tao, Ya-Xiong

    2012-12-01

    The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor critical for maintaining energy homeostasis. Transmembrane domain 3 (TM3) of MC4R contains residues that were suggested to be essential in ligand binding and signaling. Several MC4R mutations in TM3 are associated with human obesity. To gain a better understanding of the functions of TM3, we analyzed the functions of 26 residues in TM3 using alanine-scanning mutagenesis. We showed that all mutants had normal cell-surface expression. Four mutants were defective in ligand binding and signaling and six mutants had normal ligand binding but impaired cAMP production. L140A had increased basal cAMP level. To further characterize the function of L140, we generated 17 additional L140 mutants. Fifteen L140 mutants had significantly decreased cell-surface expression, with L140R and L140V expressed normally. Ten L140 mutants had increased basal cAMP activities. Four L140 mutants were defective in ligand-stimulated cAMP generation. Interestingly, with the ERK1/2 pathway, we showed that nine constitutively active mutants had similar levels of basal pERK1/2 as that of WT, and two signaling defective mutants had similar levels of pERK1/2 as that of WT upon agonist stimulation, different from their cAMP signaling properties, suggesting biased signaling in these mutant receptors. In summary, we identified 13 residues in TM3 that were essential for ligand binding and/or signaling. Moreover, L140 was critical for locking MC4R in inactive conformation and several mutants showed biased signaling in cAMP and ERK1/2 signaling pathways.

  10. G protein-coupled receptors: the inside story.

    PubMed

    Jalink, Kees; Moolenaar, Wouter H

    2010-01-01

    Recent findings necessitate revision of the traditional view of G protein-coupled receptor (GPCR) signaling and expand the diversity of mechanisms by which receptor signaling influences cell behavior in general. GPCRs elicit signals at the plasma membrane and are then rapidly removed from the cell surface by endocytosis. Internalization of GPCRs has long been thought to serve as a mechanism to terminate the production of second messengers such as cAMP. However, recent studies show that internalized GPCRs can continue to either stimulate or inhibit cAMP production in a sustained manner. They do so by remaining associated with their cognate G protein subunit and adenylyl cyclase at endosomal compartments. Once internalized, the GPCRs produce cellular responses distinct from those elicited at the cell surface.

  11. Intracellular interactions of umeclidinium and vilanterol in human airway smooth muscle

    PubMed Central

    Shaikh, Nooreen; Johnson, Malcolm; Hall, David A; Chung, Kian Fan; Riley, John H; Worsley, Sally; Bhavsar, Pankaj K

    2017-01-01

    Background Intracellular mechanisms of action of umeclidinium (UMEC), a long-acting muscarinic receptor antagonist, and vilanterol (VI), a long-acting β2-adrenoceptor (β2R) agonist, were investigated in target cells: human airway smooth-muscle cells (ASMCs). Materials and methods ASMCs from tracheas of healthy lung-transplant donors were treated with VI, UMEC, UMEC and VI combined, or control compounds (salmeterol, propranolol, ICI 118.551, or methacholine [MCh]). Cyclic adenosine monophosphate (cAMP) was measured using an enzyme-linked immunosorbent assay, intracellular free calcium ([Ca2+]i) using a fluorescence assay, and regulator of G-protein signaling 2 (RGS2) messenger RNA using real-time quantitative polymerase chain reaction. Results VI and salmeterol (10−12–10−6 M) induced cAMP production from ASMCs in a concentration-dependent manner, which was greater for VI at all concentrations. β2R antagonism by propranolol or ICI 118.551 (10−12–10−4 M) resulted in concentration-dependent inhibition of VI-induced cAMP production, and ICI 118.551 was more potent. MCh (5×10−6 M, 30 minutes) attenuated VI-induced cAMP production (P<0.05), whereas pretreatment with UMEC (10−8 M, 1 hour) restored the magnitude of VI-induced cAMP production. ASMC stimulation with MCh (10−11–5×10−6 M) resulted in a concentration-dependent increase in [Ca2+]i, which was attenuated with UMEC pretreatment. Reduction of MCh-induced [Ca2+]i release was greater with UMEC + VI versus UMEC. UMEC enhanced VI-induced RGS2 messenger RNA expression. Conclusion These data indicate that UMEC reverses cholinergic inhibition of VI-induced cAMP production, and is a more potent muscarinic receptor antagonist when in combination with VI versus either alone. PMID:28721035

  12. Inhibition of Gαs/cAMP Signaling Decreases TCR-Stimulated IL-2 transcription in CD4(+) T Helper Cells.

    PubMed

    Hynes, Thomas R; Yost, Evan A; Yost, Stacy M; Hartle, Cassandra M; Ott, Braden J; Berlot, Catherine H

    2015-07-06

    The role of cAMP in regulating T cell activation and function has been controversial. cAMP is generally known as an immunosuppressant, but it is also required for generating optimal immune responses. As the effect of cAMP is likely to depend on its cellular context, the current study investigated whether the mechanism of activation of Gαs and adenylyl cyclase influences their effect on T cell receptor (TCR)-stimulated interleukin-2 (IL-2) mRNA levels. The effect of blocking Gs-coupled receptor (GsPCR)-mediated Gs activation on TCR-stimulated IL-2 mRNA levels in CD4(+) T cells was compared with that of knocking down Gαs expression or inhibiting adenylyl cyclase activity. The effect of knocking down Gαs expression on TCR-stimulated cAMP accumulation was compared with that of blocking GsPCR signaling. ZM-241385, an antagonist to the Gs-coupled A2A adenosine receptor (A2AR), enhanced TCR-stimulated IL-2 mRNA levels in primary human CD4(+) T helper cells and in Jurkat T cells. A dominant negative Gαs construct, GαsDN3, also enhanced TCR-stimulated IL-2 mRNA levels. Similar to GsPCR antagonists, GαsDN3 blocked GsPCR-dependent activation of both Gαs and Gβγ. In contrast, Gαs siRNA and 2',5'-dideoxyadenosine (ddA), an adenylyl cyclase inhibitor, decreased TCR-stimulated IL-2 mRNA levels. Gαs siRNA, but not GαsDN3, decreased TCR-stimulated cAMP synthesis. Potentiation of IL-2 mRNA levels by ZM-241385 required at least two days of TCR stimulation, and addition of ddA after three days of TCR stimulation enhanced IL-2 mRNA levels. GsPCRs play an inhibitory role in the regulation of TCR-stimulated IL-2 mRNA levels whereas Gαs and cAMP can play a stimulatory one. Additionally, TCR-dependent activation of Gαs does not appear to involve GsPCRs. These results suggest that the context of Gαs/cAMP activation and the stage of T cell activation and differentiation determine the effect on TCR-stimulated IL-2 mRNA levels.

  13. The relationship between reinforcing effects and in vitro effects of D1 agonists in monkeys.

    PubMed

    Weed, M R; Paul, I A; Dwoskin, L P; Moore, S E; Woolverton, W L

    1997-10-01

    The reinforcing effects of many psychomotor stimulants have been related to increased dopaminergic neurotransmission and stimulation of central nervous system (CNS) dopamine (DA) receptors. Consistent with this notion, some drugs that directly stimulate DA receptors have been found to function as positive reinforcers. The present experiments were designed to examine why some, but not all, D1 receptor agonists can function as reinforcers in rhesus monkeys by comparing behavioral and CNS in vitro measures of potency and efficacy. Seven rhesus monkeys were allowed to self-administer cocaine under a progressive-ratio (PR) schedule until stable responding was established. Various doses of D1 agonists, previously reported to function as positive reinforcers, were then made available for self-administration. Stimulation of cAMP production in rhesus and rat striatal tissue was studied for these compounds and for D1 agonists previously reported not to function as positive reinforcers in monkeys (SKF 38393, SKF 77434 and S(-)-6-BrAPB). Blockade of DA uptake in rat striata was also examined for all compounds. SKF 81297, SKF 82958 and R(+)-6-BrAPB maintained responding under the PR schedule and did not differ significantly in efficacy as positive reinforcers; SKF 81297 was less potent than the other two agonists. SKF 81297, SKF 82958 and R(+)-6-BrAPB stimulated higher levels of cAMP production in rhesus striata than did SKF 38393, SKF 77434 and S(-)-6-BrAPB. In contrast, all compounds blocked DA uptake. Thus, reinforcing efficacy among D1 agonists increases with efficacy in stimulating D1 receptors.

  14. [Role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia].

    PubMed

    Yang, Yang; Wang, Wen-Sheng; Qiu, Yuan; Sun, Li-Hua; Yang, Hua

    2013-05-01

    To investigate the role of cyclic adenosine monophosphate(cAMP) in the regulation of intestinal epithelial barrier function under hypoxia. Intestinal epithelial barrier was established by Caco-2 monolayers. Cells were divided into four groups: normoxia (Nx), normoxia plus Forskolin(Nx+FSK), hypoxia(Hx), hypoxia plus SQ22536(Hx+SQ22536). cAMP concentrations of different groups were assessed by cAMP enzyme immunoassay kit. RT-PCR and Western blotting were used to detect the mRNA and protein expressions of claudin-1 and occludin under normoxic and hypoxic condition. Caco-2 monolayers were grown on Millicell filters, and transepithelial electrical resistance(TER) was measured using a Millipore electric resistance system. The concentration of cAMP under hypoxic conditions(Hx group) was higher compared with Nx group [(6.30±0.50) pmol/L vs. (2.38±0.18) pmol/L, P<0.01]. At the same time, both mRNA and protein expressions of claudin-1 and occluding were lower in Hx group than those in Nx group(all P<0.05). TER decreased by 76.30±0.64(P<0.01). When the monolayers were exposed to hypoxia plus SQ22536 (Hx+SQ22536 group), the concentration of cAMP was(2.12±0.23) pmol/L, which was lower than that under hypoxic conditions(Hx group, P<0.01). Both mRNA and protein expressions of claudin-1 and occludin were higher compared to Hx group (all P<0.01). TER increased by 32.96±2.16 (P<0.05). When Caco-2 cells are exposed to hypoxia, barrier function, claudin-1 and occludin expression are diminished in parallel with a high level of intracellular cAMP compared with the normoxic condition. Inhibition of the intracellular cAMP level under hypoxia can maintain the intestinal epithelial function through regulating the claudin-1 and occludin expression and attenuate the permeability of intestinal mucosa.

  15. Distinct pools of cAMP centre on different isoforms of adenylyl cyclase in pituitary-derived GH3B6 cells.

    PubMed

    Wachten, Sebastian; Masada, Nanako; Ayling, Laura-Jo; Ciruela, Antonio; Nikolaev, Viacheslav O; Lohse, Martin J; Cooper, Dermot M F

    2010-01-01

    Microdomains have been proposed to explain specificity in the myriad of possible cellular targets of cAMP. Local differences in cAMP levels can be generated by phosphodiesterases, which control the diffusion of cAMP. Here, we address the possibility that adenylyl cyclases, the source of cAMP, can be primary architects of such microdomains. Distinctly regulated adenylyl cyclases often contribute to total cAMP levels in endogenous cellular settings, making it virtually impossible to determine the contribution of a specific isoform. To investigate cAMP dynamics with high precision at the single-isoform level, we developed a targeted version of Epac2-camps, a cAMP sensor, in which the sensor was tagged to a catalytically inactive version of the Ca(2+)-stimulable adenylyl cyclase 8 (AC8). This sensor, and less stringently targeted versions of Epac2-camps, revealed opposite regulation of cAMP synthesis in response to Ca(2+) in GH(3)B(6) pituitary cells. Ca(2+) release triggered by thyrotropin-releasing hormone stimulated the minor endogenous AC8 species. cAMP levels were decreased by inhibition of AC5 and AC6, and simultaneous activation of phosphodiesterases, in different compartments of the same cell. These findings demonstrate the existence of distinct adenylyl-cyclase-centered cAMP microdomains in live cells and open the door to their molecular micro-dissection.

  16. CO2/HCO3−- and Calcium-regulated Soluble Adenylyl Cyclase as a Physiological ATP Sensor*

    PubMed Central

    Zippin, Jonathan H.; Chen, Yanqiu; Straub, Susanne G.; Hess, Kenneth C.; Diaz, Ana; Lee, Dana; Tso, Patrick; Holz, George G.; Sharp, Geoffrey W. G.; Levin, Lonny R.; Buck, Jochen

    2013-01-01

    The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo. PMID:24100033

  17. CacyBP/SIP as a regulator of transcriptional responses in brain cells

    PubMed Central

    Kilanczyk, Ewa; Filipek, Anna; Hetman, Michal

    2014-01-01

    Summary The Calcyclin-Binding Protein/Siah-1-Interacting Protein (CacyBP/SIP) is highly expressed in the brain and was shown to regulate the β-catenin-driven transcription in thymocytes. Therefore, it was investigated whether in brain cells CacyBP/SIP might play a role as a transcriptional regulator. In BDNF- or forskolin-stimulated rat primary cortical neurons, overexpression of CacyBP/SIP enhanced transcriptional activity of the cAMP-response element (CRE). In addition, overexpressed CacyBP/SIP enhanced BDNF-mediated activation of the Nuclear Factor of Activated T-cells (NFAT) but not the Serum Response Element (SRE). These stimulatory effects required an intact C-terminal domain of CacyBP/SIP. Moreover, in C6 rat glioma cells, the overexpressed CacyBP/SIP enhanced activation of CRE- or NFAT- following forskolin- or serum stimulation, respectively. Conversely, knockdown of endogenous CacyBP/SIP reduced activation of CRE- and NFAT but not SRE. Taken together, these results indicate that CacyBP/SIP is a novel regulator of CRE- and NFAT-driven transcription. PMID:25163685

  18. Unique allosteric regulation of 5-hydroxytryptamine receptor-mediated signal transduction by oleamide

    PubMed Central

    Thomas, Elizabeth A.; Carson, Monica J.; Neal, Michael J.; Sutcliffe, J. Gregor

    1997-01-01

    The effects of oleamide, an amidated lipid isolated from the cerebrospinal fluid of sleep-deprived cats, on serotonin receptor-mediated responses were investigated in cultured mammalian cells. In rat P11 cells, which endogenously express the 5-hydroxytryptamine2A (5HT2A) receptor, oleamide significantly potentiated 5HT-induced phosphoinositide hydrolysis. In HeLa cells expressing the 5HT7 receptor subtype, oleamide caused a concentration-dependent increase in cAMP accumulation but with lower efficacy than that observed by 5HT. This effect was not observed in untransfected HeLa cells. Clozapine did not prevent the increase in cAMP elicited by oleamide, and ketanserin caused an ≈65% decrease. In the presence of 5HT, oleamide had the opposite effect on cAMP, causing insurmountable antagonism of the concentration-effect curve to 5HT, but had no effect on cAMP levels elicited by isoproterenol or forskolin. These results indicate that oleamide can modulate 5HT-mediated signal transduction at different subtypes of mammalian 5HT receptors. Additionally, our data indicate that oleamide acts at an apparent allosteric site on the 5HT7 receptor and elicits functional responses via activation of this site. This represents a unique mechanism of activation for 5HT G protein-coupled receptors and suggests that G protein-coupled neurotransmitter receptors may act like their iontropic counterparts (i.e., γ-aminobutyric acid type A receptors) in that there may be several binding sites on the receptor that regulate functional activity with varying efficacies. PMID:9391162

  19. Cyclic Adenosine Monophosphate Accumulation and beta-Adrenergic Binding in Unweighted and Denervated Rat Soleus Muscle

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Woodman, Christopher R.; Woolridge, Dale; Tischler, Marc E.

    1992-01-01

    Unweighting, but not denervation, of muscle reportedly "spares" insulin receptors, increasing insulin sensitivity. Unweighting also increases beta-adrenergic responses of carbohydrate metabolism. These differential characteristics were studied further by comparing cyclic adenosine monophosphate (cAMP) accumulation and beta-adrenergic binding in normal and 3-day unweighted or denervated soleus muscle. Submaximal amounts of isoproterenol, a p-agonist, increased cAMP accumulation in vitro and in vivo (by intramuscular (IM) injection) to a greater degree (P less than .05) in unweighted muscles. Forskolin or maximal isoproterenol had similar in vitro effects in all muscles, suggesting increased beta-adrenergic sensitivity following unweighting. Increased sensitivity was confirmed by a greater receptor density (B(sub max)) for iodo-125(-)-pindolol in particulate preparations of unweighted (420 x 10(exp -18) mol/mg muscle) than of control or denervated muscles (285 x 10(exp-18) mol/mg muscle). The three dissociation constant (Kd) values were similar (20.3 to 25.8 pmol/L). Total binding capacity (11.4 fmol/muscle) did not change during 3 days of unweighting, but diminished by 30% with denervation. This result illustrates the "sparing" and loss of receptors, respectively, in these two atrophy models. In diabetic animals, IM injection of insulin diminished CAMP accumulation in the presence of theophylline in unweighted muscle (-66% +/- 2%) more than in controls (-42% +'- 6%, P less than .001). These results show that insulin affects CAMP formation in muscle, and support a greater in vivo insulin response following unweighting atrophy. These various data support a role for lysosomal proteolysis in denervation, but not in unweighting, atrophy.

  20. MEF2 Cooperates With Forskolin/cAMP and GATA4 to Regulate Star Gene Expression in Mouse MA-10 Leydig Cells.

    PubMed

    Daems, Caroline; Di-Luoffo, Mickaël; Paradis, Élise; Tremblay, Jacques J

    2015-07-01

    In Leydig cells, steroidogenic acute regulatory protein (STAR) participates in cholesterol shuttling from the outer to the inner mitochondrial membrane, the rate-limiting step in steroidogenesis. Steroid hormone biosynthesis and steroidogenic gene expression are regulated by LH, which activates various signaling pathways and transcription factors, including cAMP/Ca(2+)/CAMK (Ca(2+)/calmodulin-dependent kinase)-myocyte enhancer factor 2 (MEF2). The 4 MEF2 transcription factors are essential regulators of cell differentiation and organogenesis in numerous tissues. Recently, MEF2 was identified in Sertoli and Leydig cells of the testis. Here, we report that MEF2 regulates steroidogenesis in mouse MA-10 Leydig cells by acting on the Star gene. In MA-10 cells depleted of MEF2 using siRNAs (small interfering RNAs), STAR protein levels, Star mRNA levels, and promoter activity were significantly decreased. On its own, MEF2 did not activate the mouse Star promoter but was found to cooperate with forskolin/cAMP. By chromatin immunoprecipitation and DNA precipitation assays, we confirmed MEF2 binding to a consensus element located at -232 bp of the Star promoter. Mutation or deletion of the MEF2 element reduced but did not abrogate the MEF2/cAMP cooperation, indicating that MEF2 cooperates with other DNA-bound transcription factor(s). We identified GATA4 (GATA binding protein 4) as a partner for MEF2 in Leydig cells, because mutation of the GATA element abrogated the MEF2/cAMP cooperation on a reporter lacking a MEF2 element. MEF2 and GATA4 interact as revealed by coimmunoprecipitation, and MEF2 and GATA4 transcriptionally cooperate on the Star promoter. Altogether, our results define MEF2 as a novel regulator of steroidogenesis and Star transcription in Leydig cells and identify GATA4 as a key partner for MEF2-mediated action.

  1. Modafinil inhibits K(Ca)3.1 currents and muscle contraction via a cAMP-dependent mechanism.

    PubMed

    Choi, Shinkyu; Kim, Moon Young; Joo, Ka Young; Park, Seonghee; Kim, Ji Aee; Jung, Jae-Chul; Oh, Seikwan; Suh, Suk Hyo

    2012-07-01

    Modafinil has been used as a psychostimulant for the treatment of narcolepsy. However, its primary mechanism of action remains elusive. Therefore, we examined the effects of modafinil on K(Ca)3.1 channels and vascular smooth muscle contraction. K(Ca)3.1 currents and channel activity were measured using a voltage-clamp technique and inside-out patches in mouse embryonic fibroblast cell line, NIH-3T3 fibroblasts. Intracellular adenosine 3',5'-cyclic monophosphate (cAMP) concentration was measured, and the phosphorylation of K(Ca)3.1 channel protein was examined using western blotting in NIH-3T3 fibroblasts and/or primary cultured mouse aortic smooth muscle cells (SMCs). Muscle contractions were recorded from mouse aorta and rat pulmonary artery by using a myograph developed in-house. Modafinil was found to inhibit K(Ca)3.1 currents in a concentration-dependent manner, and the half-maximal inhibition (IC(50)) of modafinil for the current inhibition was 6.8 ± 0.7 nM. The protein kinase A (PKA) activator forskolin also inhibited K(Ca)3.1 currents. The inhibitory effects of modafinil and forskolin on K(Ca)3.1 currents were blocked by the PKA inhibitors PKI(14-22) or H-89. In addition, modafinil relaxed blood vessels (mouse aorta and rat pulmonary artery) in a concentration-dependent manner. Modafinil increased cAMP concentrations in NIH-3T3 fibroblasts or primary cultured mouse aortic SMCs and phosphorylated K(Ca)3.1 channel protein in NIH-3T3 fibroblasts. However, open probability and single-channel current amplitudes of K(Ca)3.1 channels were not changed by modafinil. From these results, we conclude that modafinil inhibits K(Ca)3.1 channels and vascular smooth muscle contraction by cAMP-dependent phosphorylation, suggesting that modafinil can be used as a cAMP-dependent K(Ca)3.1 channel blocker and vasodilator. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Regulation of β1- and β3-adrenergic agonist-stimulated lipolytic response in hyperthyroid and hypothyroid rat white adipocytes

    PubMed Central

    Germack, Renée; Starzec, Anna; Perret, Gérard Y

    2000-01-01

    This study examined the effects of thyroid status on the lipolytic responses of rat white adipocytes to β-adrenoceptor (β-AR) stimulation. The β1- and β3-AR mRNAs and proteins were measured by Northern and saturation analyses, respectively. Glycerol production and adenyl cyclase (AC) activity induced by various non-selective and selective β1/β3-AR agonists and drugs which act distal to the receptor in the signalling cascade were measured in cells from untreated, tri-iodothyronine (T3)-treated and thyroidectomized rats. The β3-AR density was enhanced (72%) by T3-treatment and reduced (50%) by introduction of a hypothyroid state while β1-AR number remained unaffected. The β1- and β3-AR density was correlated with the specific mRNA level in all thyroid status. The lipolytic responses to isoprenaline, noradrenaline (β1/β3/β3-AR agonists) and BRL 37344 (β3-AR agonist) were potentiated by 48, 58 and 48%, respectively in hyperthyroidism and reduced by about 80% in hypothyroidism. T3-treatment increased the maximal lipolytic response to the partial β3-AR (CGP 12177) and β1-AR (xamoterol) agonists by 234 and 260%, respectively, increasing their efficacy (intrinsic activity: 0.95 versus 0.43 and 1.02 versus 0.42). The maximal AC response to these agonists was increased by 84 and 58%, respectively, without changing their efficacy. In the hypothyroid state, the maximal lipolytic and AC responses were decreased with CGP (0.17±0.03 versus 0.41±0.08 μmol glycerol/106 adipocytes; 0.048±0.005 versus 0.114±0.006 pmol cyclic AMP min−1 mg−1) but not changed with xamoterol. The changes in lipolytic responses to postreceptor-acting agents (forskolin, enprofylline and dibutenyl cyclic AMP, (Bu)2cAMP) suggest the modifications on receptor coupling and phosphodiesterase levels in both thyroid states. Thyroid status affects lipolysis by modifying β3-AR density and postreceptor events without changes in the β1-AR functionality. PMID:10711342

  3. Cross talk between cyclic AMP and the polyphosphoinositide signaling cascade in iris sphincter and other nonvascular smooth muscle.

    PubMed

    Abdel-Latif, A A

    1996-02-01

    Nonvascular smooth muscle, such as the iris sphincter, receives double reciprocal innervation: stimulation of the parasympathetic nervous system (cholinergic muscarinic), which functions through the polyphosphoinositide (PPI) signaling pathway, contracts it, while activation of the sympathetic nervous system (beta-adrenergic), which functions through the cAMP system, relaxes it. Interactions between the two second messenger systems are important in regulation of smooth muscle tone and represent an important focal point for pharmacological manipulation. Here, I have summarized the experimental evidence in support of the hypothesis that the cross talk between cAMP and the PPI cascade could constitute a biochemical correlate for this functional antagonism. Recent studies suggest that cAMP inhibition is on Ca2+ mobilization rather than myosin light chain phosphorylation. Thus, cAMP-elevating agents, which inhibit agonist-induced PPI hydrolysis, are effective relaxants. Furthermore, inositol 1,4,5-trisphosphate (IP3) appears to be involved in both Ca2+ release from the sarcoplasmic reticulum and in Ca2+ influx through the plasma membrane, and since a reduction in intracellular Ca2+ ([Ca2+]i) is the underlying mechanism for cAMP-mediated relaxation, an important target for cAMP inhibition would be either to inhibit IP3 production or to stimulate IP3 inactivation. In the iris sphincter and other nonvascular smooth muscle there is reasonable experimental evidence that shows that cAMP inhibits phospholipase C activation and stimulates IP3 3-kinase activity, both of which can result in: [i) reduction in IP3 concentrations and (ii) reduction in IP3-dependent Ca2+ mobilization, which may lead to muscle relaxation. In addition to IP3-induced Ca2+ mobilization, changes in [Ca2+]i are the result of the interplay of many processes which may also serve as potential sites for cAMP inhibition. A great deal of progress has been made on the cross talk between cAMP and the PPI signaling cascade in the past decade, and there will be more on the regulation of the second messenger systems and their involvement in smooth muscle tone in the coming years. Clearly, an understanding of the physiological and pathophysiological regulation of smooth muscle tone is central to the development of novel therapeutic agents for the treatment of diseases such as asthma and glaucoma, where cAMP-elevating drugs are currently employed.

  4. Bicarbonate-dependent chloride transport drives fluid secretion by the human airway epithelial cell line Calu-3

    PubMed Central

    Shan, Jiajie; Liao, Jie; Huang, Junwei; Robert, Renaud; Palmer, Melissa L; Fahrenkrug, Scott C; O'Grady, Scott M; Hanrahan, John W

    2012-01-01

    Anion and fluid secretion are both defective in cystic fibrosis (CF); however, the transport mechanisms are not well understood. In this study, Cl− and HCO3− secretion was measured using genetically matched CF transmembrane conductance regulator (CFTR)-deficient and CFTR-expressing cell lines derived from the human airway epithelial cell line Calu-3. Forskolin stimulated the short-circuit current (Isc) across voltage-clamped monolayers, and also increased the equivalent short-circuit current (Ieq) calculated under open-circuit conditions. Isc was equivalent to the HCO3− net flux measured using the pH-stat technique, whereas Ieq was the sum of the Cl− and HCO3− net fluxes. Ieq and HCO3− fluxes were increased by bafilomycin and ZnCl2, suggesting that some secreted HCO3− is neutralized by parallel electrogenic H+ secretion. Ieq and fluid secretion were dependent on the presence of both Na+ and HCO3−. The carbonic anhydrase inhibitor acetazolamide abolished forskolin stimulation of Ieq and HCO3− secretion, suggesting that HCO3− transport under these conditions requires catalysed synthesis of carbonic acid. Cl− was the predominant anion in secretions under all conditions studied and thus drives most of the fluid transport. Nevertheless, 50–70% of Cl− and fluid transport was bumetanide-insensitive, suggesting basolateral Cl− loading by a sodium–potassium–chloride cotransporter 1 (NKCC1)-independent mechanism. Imposing a transepithelial HCO3− gradient across basolaterally permeabilized Calu-3 cells sustained a forskolin-stimulated current, which was sensitive to CFTR inhibitors and drastically reduced in CFTR-deficient cells. Net HCO3− secretion was increased by bilateral Cl− removal and therefore did not require apical Cl−/HCO3− exchange. The results suggest a model in which most HCO3− is recycled basolaterally by exchange with Cl−, and the resulting HCO3−-dependent Cl− transport provides an osmotic driving force for fluid secretion. PMID:22777674

  5. Quantitative Proteomics Analysis of the cAMP/Protein Kinase A Signaling Pathway

    PubMed Central

    2012-01-01

    To define the proteins whose expression is regulated by cAMP and protein kinase A (PKA), we used a quantitative proteomics approach in studies of wild-type (WT) and kin- (PKA-null) S49 murine T lymphoma cells. We also compared the impact of endogenous increases in the level of cAMP [by forskolin (Fsk) and the phosphodiesterase inhibitor isobutylmethylxanthine (IBMX)] or by a cAMP analogue (8-CPT-cAMP). We identified 1056 proteins in WT and kin- S49 cells and found that 8-CPT-cAMP and Fsk with IBMX produced differences in protein expression. WT S49 cells had a correlation coefficient of 0.41 between DNA microarray data and the proteomics analysis in cells incubated with 8-CPT-cAMP for 24 h and a correlation coefficient of 0.42 between the DNA microarray data obtained at 6 h and the changes in protein expression after incubation with 8-CPT-cAMP for 24 h. Glutathione reductase (Gsr) had a higher level of basal expression in kin- S49 cells than in WT cells. Consistent with this finding, kin- cells are less sensitive to cell killing and generation of malondialdehyde than are WT cells incubated with H2O2. Cyclic AMP acting via PKA thus has a broad impact on protein expression in mammalian cells, including in the regulation of Gsr and oxidative stress. PMID:23110364

  6. Structural Evidence for a Sequential Release Mechanism for Activation of Heterotrimeric G Proteins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, Neeraj; Menon, Santosh T.; Chauhan, Radha

    2010-01-12

    Heptahelical G-protein (heterotrimeric guanine nucleotide-binding protein)-coupled receptors couple to heterotrimeric G proteins to relay extracellular signals to intracellular signaling networks, but the molecular mechanism underlying guanosine 5'-diphosphate (GDP) release by the G protein {alpha}-subunit is not well understood. Amino acid substitutions in the conserved {alpha}5 helix of Gi, which extends from the C-terminal region to the nucleotide-binding pocket, cause dramatic increases in basal (receptor-independent) GDP release rates. For example, mutant G{alpha}{sub i1}-T329A shows an 18-fold increase in basal GDP release rate and, when expressed in culture, it causes a significant decrease in forskolin-stimulated cAMP accumulation. The crystal structure of G{alpha}{submore » i1}-T329A {center_dot} GDP shows substantial conformational rearrangement of the switch I region and additional striking alterations of side chains lining the catalytic pocket that disrupt the Mg{sup +2} coordination sphere and dislodge bound Mg{sup +2}. We propose a 'sequential release' mechanism whereby a transient conformational change in the {alpha}5 helix alters switch I to induce GDP release. Interestingly, this mechanistic model for heterotrimeric G protein activation is similar to that suggested for the activation of the plant small G protein Rop4 by RopGEF8.« less

  7. Cyclotides Isolated from an Ipecac Root Extract Antagonize the Corticotropin Releasing Factor Type 1 Receptor

    PubMed Central

    Fahradpour, Mohsen; Keov, Peter; Tognola, Carlotta; Perez-Santamarina, Estela; McCormick, Peter J.; Ghassempour, Alireza; Gruber, Christian W.

    2017-01-01

    Cyclotides are plant derived, cystine-knot stabilized peptides characterized by their natural abundance, sequence variability and structural plasticity. They are abundantly expressed in Rubiaceae, Psychotrieae in particular. Previously the cyclotide kalata B7 was identified to modulate the human oxytocin and vasopressin G protein-coupled receptors (GPCRs), providing molecular validation of the plants’ uterotonic properties and further establishing cyclotides as valuable source for GPCR ligand design. In this study we screened a cyclotide extract derived from the root powder of the South American medicinal plant ipecac (Carapichea ipecacuanha) for its GPCR modulating activity of the corticotropin-releasing factor type 1 receptor (CRF1R). We identified and characterized seven novel cyclotides. One cyclotide, caripe 8, isolated from the most active fraction, was further analyzed and found to antagonize the CRF1R. A nanomolar concentration of this cyclotide (260 nM) reduced CRF potency by ∼4.5-fold. In contrast, caripe 8 did not inhibit forskolin-, or vasopressin-stimulated cAMP responses at the vasopressin V2 receptor, suggesting a CRF1R-specific mode-of-action. These results in conjunction with our previous findings establish cyclotides as modulators of both classes A and B GPCRs. Given the diversity of cyclotides, our data point to other cyclotide-GPCR interactions as potentially important sources of drug-like molecules. PMID:29033832

  8. Affinity and Efficacy Studies of Tetrahydrocannabinolic Acid A at Cannabinoid Receptor Types One and Two.

    PubMed

    McPartland, John M; MacDonald, Christa; Young, Michelle; Grant, Phillip S; Furkert, Daniel P; Glass, Michelle

    2017-01-01

    Introduction: Cannabis biosynthesizes Δ 9 -tetrahydrocannabinolic acid (THCA-A), which decarboxylates into Δ 9 -tetrahydrocannabinol (THC). There is growing interest in the therapeutic use of THCA-A, but its clinical application may be hampered by instability. THCA-A lacks cannabimimetic effects; we hypothesize that it has little binding affinity at cannabinoid receptor 1 (CB 1 ). Materials and Methods: Purity of certified reference standards were tested with high performance liquid chromatography (HPLC). Binding affinity of THCA-A and THC at human (h) CB 1 and hCB 2 was measured in competition binding assays, using transfected HEK cells and [ 3 H]CP55,940. Efficacy at hCB 1 and hCB 2 was measured in a cyclic adenosine monophosphase (cAMP) assay, using a Bioluminescence Resonance Energy Transfer (BRET) biosensor. Results: The THCA-A reagent contained 2% THC. THCA-A displayed small but measurable binding at both hCB 1 and hCB 2 , equating to approximate K i values of 3.1μM and 12.5μM, respectively. THC showed 62-fold greater affinity at hCB 1 and 125-fold greater affinity at hCB 2 . In efficacy tests, THCA-A (10μM) slightly inhibited forskolin-stimulated cAMP at hCB 1 , suggestive of weak agonist activity, and no measurable efficacy at hCB 2 . Discussion: The presence of THC in our THCA-A certified standard agrees with decarboxylation kinetics (literature reviewed herein), which indicate contamination with THC is nearly unavoidable. THCA-A binding at 10μM approximated THC binding at 200nM. We therefore suspect some of our THCA-A binding curve was artifact-from its inevitable decarboxylation into THC-and the binding affinity of THCA-A is even weaker than our estimated values. We conclude that THCA-A has little affinity or efficacy at CB 1 or CB 2 .

  9. Comparative effects of sub-stimulating concentrations of non-human versus human Luteinizing Hormones (LH) or chorionic gonadotropins (CG) on adenylate cyclase activation by forskolin in MLTC cells.

    PubMed

    Nguyen, Thi-Mong Diep; Filliatreau, Laura; Klett, Danièle; Combarnous, Yves

    2018-05-15

    We have compared various Luteinizing Hormone (LH) and Chorionic Gonadotropin (CG) preparations from non-human and human species in their ability to synergize with 10 µM forskolin (FSK) for cyclic AMP intracellular accumulation, in MLTC cells. LH from rat pituitary as well as various isoforms of pituitary ovine, bovine, porcine, equine and human LHs and equine and human CG were studied. In addition, recombinant human LH and CG were also compared with the natural human and non-human hormones. Sub-stimulating concentrations of all LHs and CGs (2-100 pM) were found to stimulate cyclic AMP accumulation in MLTC cells in the presence of an also non-stimulating FSK concentration (10 µM). Like rat LH, the most homologous available hormone for mouse MLTC cells, all non-human LHs and CG exhibit a strong potentiating effect on FSK response. The human, natural and recombinant hLH and hCG also do so but in addition, they were found to elicit a permissive effect on FSK stimulation. Indeed, when incubated alone with MLTC cells at non-stimulating concentrations (2-70 pM) hLH and hCG permit, after being removed, a dose-dependent cyclic AMP accumulation with 10 µM FSK. Our data show a clearcut difference between human LH and CG compared to their non-human counterparts on MLTC cells adenylate cyclase activity control. This points out the risk of using hCG as a reference ligand for LHR in studies using non-human cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Human osteocalcin and bone sialoprotein mediating osteomimicry of prostate cancer cells: role of cAMP-dependent protein kinase A signaling pathway.

    PubMed

    Huang, Wen-Chin; Xie, Zhihui; Konaka, Hiroyuki; Sodek, Jaro; Zhau, Haiyen E; Chung, Leland W K

    2005-03-15

    Osteocalcin and bone sialoprotein are the most abundant noncollagenous bone matrix proteins expressed by osteoblasts. Surprisingly, osteocalcin and bone sialoprotein are also expressed by malignant but not normal prostate epithelial cells. The purpose of this study is to investigate how osteocalcin and bone sialoprotein expression is regulated in prostate cancer cells. Our investigation revealed that (a) human osteocalcin and bone sialoprotein promoter activities in an androgen-independent prostate cancer cell line of LNCaP lineage, C4-2B, were markedly enhanced 7- to 12-fold in a concentration-dependent manner by conditioned medium collected from prostate cancer and bone stromal cells. (b) Deletion analysis of human osteocalcin and bone sialoprotein promoter regions identified cyclic AMP (cAMP)-responsive elements (CRE) as the critical determinants for conditioned medium-mediated osteocalcin and bone sialoprotein gene expression in prostate cancer cells. Consistent with these results, the protein kinase A (PKA) pathway activators forskolin and dibutyryl cAMP and the PKA pathway inhibitor H-89, respectively, increased or repressed human osteocalcin and bone sialoprotein promoter activities. (c) Electrophoretic mobility shift assay showed that conditioned medium-mediated stimulation of human osteocalcin and bone sialoprotein promoter activities occurs through increased interaction between CRE and CRE-binding protein. (d) Conditioned medium was found to induce human osteocalcin and bone sialoprotein promoter activities via increased CRE/CRE-binding protein interaction in a cell background-dependent manner, with marked stimulation in selected prostate cancer but not bone stromal cells. Collectively, these results suggest that osteocalcin and bone sialoprotein expression is coordinated and regulated through cAMP-dependent PKA signaling, which may define the molecular basis of the osteomimicry exhibited by prostate cancer cells.

  11. Rapid increase of inositol 1,4,5-trisphosphate in the HeLa cells after hypergravity exposure

    NASA Technical Reports Server (NTRS)

    Kumei, Yasuhiro; Whitson, Peggy A.; Cintron, Nitza M.; Sato, Atsushige

    1990-01-01

    The IP3 level in HeLa cells has been elevated through the application in hypergravity in a time-dependent manner. The data obtained for the hydrolytic products of PIP2, IP3, and DG are noted to modulate c-myc gene expression. It is also established that the cAMP accumulation by the IBMX in hypergravity-exposed cells was suppressed relative to the control. In light of IP3 increase and cAMP decrease results, a single GTP-binding protein may play a role in the hypergravity signal transduction of HeLa cells by stimulating PLC while inhibiting adenylate cyclase.

  12. Internalization and desensitization of the human glucose-dependent-insulinotropic receptor is affected by N-terminal acetylation of the agonist.

    PubMed

    Ismail, Sadek; Dubois-Vedrenne, Ingrid; Laval, Marie; Tikhonova, Irina G; D'Angelo, Romina; Sanchez, Claire; Clerc, Pascal; Gherardi, Marie-Julie; Gigoux, Véronique; Magnan, Remi; Fourmy, Daniel

    2015-10-15

    How incretins regulate presence of their receptors at the cell surface and their activity is of paramount importance for the development of therapeutic strategies targeting these receptors. We have studied internalization of the human Glucose-Insulinotropic Polypeptide receptor (GIPR). GIP stimulated rapid robust internalization of the GIPR, the major part being directed to lysosomes. GIPR internalization involved mainly clathrin-coated pits, AP-2 and dynamin. However, neither GIPR C-terminal region nor β-arrestin1/2 was required. Finally, N-acetyl-GIP recognized as a dipeptidyl-IV resistant analogue, fully stimulated cAMP production with a ∼15-fold lower potency than GIP and weakly stimulated GIPR internalization and desensitization of cAMP response. Furthermore, docking N-acetyl-GIP in the binding site of modeled GIPR showed slighter interactions with residues of helices 6 and 7 of GIPR compared to GIP. Therefore, incomplete or partial activity of N-acetyl-GIP on signaling involved in GIPR desensitization and internalization contributes to the enhanced incretin activity of this peptide. Copyright © 2015. Published by Elsevier Ireland Ltd.

  13. Inhibition of vascular smooth muscle growth via signaling crosstalk between AMP-activated protein kinase and cAMP-dependent protein kinase

    PubMed Central

    Stone, Joshua D.; Narine, Avinash; Tulis, David A.

    2012-01-01

    Abnormal vascular smooth muscle (VSM) growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP)-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remain unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells (VSMC), the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-β-stimulated VSMC migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashion. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth. PMID:23112775

  14. Transcutaneous electrical nerve stimulation (TENS) improves the diabetic cytopathy (DCP) via up-regulation of CGRP and cAMP.

    PubMed

    Ding, Liucheng; Song, Tao; Yi, Chaoran; Huang, Yi; Yu, Wen; Ling, Lin; Dai, Yutian; Wei, Zhongqing

    2013-01-01

    The objective of this study was to investigate the effects and mechanism of Transcutaneous Electrical Nerve Stimulation (TENS) on the diabetic cytopathy (DCP) in the diabetic bladder. A total of 45 rats were randomly divided into diabetes mellitus (DM)/TENS group (n=15), DM group (n=15) and control group (n=15). The rats in the DM/TENS and TENS groups were electronically stimulated (stimulating parameters: intensity-31 V, frequency-31 Hz, and duration of stimulation of 15 min) for three weeks. Bladder histology, urodynamics and contractile responses to field stimulation and carbachol were determined. The expression of calcitonin gene-related peptide (CGRP) was analyzed by RT-PCR and Western blotting. The results showed that contractile responses of the DM rats were ameliorated after 3 weeks of TENS. Furthermore, TENS significantly increased bladder wet weight, volume threshold for micturition and reduced PVR, V% and cAMP content of the bladder. The mRNA and protein levels of CGRP in dorsal root ganglion (DRG) in the DM/TENS group were higher than those in the DM group. TENS also significantly up-regulated the cAMP content in the bladder body and base compared with diabetic rats. We conclude that TENS can significantly improve the urine contractility and ameliorate the feeling of bladder fullness in DM rats possibly via up-regulation of cAMP and CGRP in DRG.

  15. CFTR is restricted to a small population of high expresser cells that provide a forskolin-sensitive transepithelial Cl- conductance in the proximal colon of the possum, Trichosurus vulpecula.

    PubMed

    Fan, Shujun; Harfoot, Natalie; Bartolo, Ray C; Butt, A Grant

    2012-04-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is central to anion secretion in both the possum and eutherian small intestine. Here, we investigated its role in the possum proximal colon, which has novel transport properties compared with the eutherian proximal colon. Despite considerable CFTR expression, high doses of the CFTR activator forskolin (EC(50)≈10 μmol l(-1)) were required for a modest, CFTR-dependent increase in short-circuit current (I(sc)) in the proximal colon. Presumably, this is because CFTR is restricted to the apical membrane of a small population of CFTR high expresser (CHE) cells in the surface and upper crypt epithelium. Furthermore, although the forskolin-stimulated I(sc) was dependent on serosal Na(+), Cl(-) and HCO(3)(-), consistent with anion secretion, inhibition of the basolateral Na-K-2Cl(-) (NKCC1) or Na-HCO(3) (pNBCe1) cotransporters did not prevent it. Therefore, although NKCC1 and pNBCe1 are expressed in the colonic epithelium they do not appear to be expressed in CHE cells. At low doses (IC(50)≈1 μmol l(-1)), forskolin also decreased the transepithelial conductance (G(T)) of the colon through inhibition of a 4,4'-diisothiocyano-2,2'-stilbenedisulphonic acid-sensitive anion conductance in the basolateral membrane of the CHE cells. This conductance is arranged in series with CFTR in the CHE cells and, therefore, the CHE cells provide a transepithelial Cl(-) conductance for passive Cl(-) absorption across the epithelium. Inhibition of the basolateral Cl(-) conductance of the CHE cells by forskolin will inhibit Na(+) absorption by restricting the movement of its counter-ion Cl(-), assisting in the conversion of the tissue from an absorptive to a secretory state.

  16. Coordinated induction of GST and MRP2 by cAMP in Caco-2 cells: Role of protein kinase A signaling pathway and toxicological relevance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arana, Maite Rocío, E-mail: arana@ifise-conicet.gov.ar; Tocchetti, Guillermo Nicolás, E-mail: gtocchetti@live.com.ar; Domizi, Pablo, E-mail: domizi@ibr-conicet.gov.ar

    2015-09-01

    The cAMP pathway is a universal signaling pathway regulating many cellular processes including metabolic routes, growth and differentiation. However, its effects on xenobiotic biotransformation and transport systems are poorly characterized. The effect of cAMP on expression and activity of GST and MRP2 was evaluated in Caco-2 cells, a model of intestinal epithelium. Cells incubated with the cAMP permeable analog dibutyryl cyclic AMP (db-cAMP: 1,10,100 μM) for 48 h exhibited a dose–response increase in GST class α and MRP2 protein expression. Incubation with forskolin, an activator of adenylyl cyclase, confirmed the association between intracellular cAMP and upregulation of MRP2. Consistent withmore » increased expression of GSTα and MRP2, db-cAMP enhanced their activities, as well as cytoprotection against the common substrate 1-chloro-2,4-dinitrobenzene. Pretreatment with protein kinase A (PKA) inhibitors totally abolished upregulation of MRP2 and GSTα induced by db-cAMP. In silico analysis together with experiments consisting of treatment with db-cAMP of Caco-2 cells transfected with a reporter construct containing CRE and AP-1 sites evidenced participation of these sites in MRP2 upregulation. Further studies involving the transcription factors CREB and AP-1 (c-JUN, c-FOS and ATF2) demonstrated increased levels of total c-JUN and phosphorylation of c-JUN and ATF2 by db-cAMP, which were suppressed by a PKA inhibitor. Co-immunoprecipitation and ChIP assay studies demonstrated that db-cAMP increased c-JUN/ATF2 interaction, with further recruitment to the region of the MRP2 promoter containing CRE and AP-1 sites. We conclude that cAMP induces GSTα and MRP2 expression and activity in Caco-2 cells via the PKA pathway, thus regulating detoxification of specific xenobiotics. - Highlights: • cAMP positively modulates the expression and activity of GST and MRP2 in Caco-2 cells. • Such induction resulted in increased cytoprotection against chemical injury. • PKA signaling pathway is involved downstream of cAMP. • Transcriptional MRP2 regulation ultimately involved participation of c-JUN and ATF2.« less

  17. Reactive oxygen species potentiate the negative inotropic effect of cardiac M2-muscarinic receptor stimulation.

    PubMed

    Peters, S L; Sand, C; Batinik, H D; Pfaffendorf, M; van Zwieten, P A

    2001-08-01

    The aim of the present study was to investigate the influence of reactive oxygen species (ROS) on the contractile responses of rat isolated left atria to muscarinic receptor stimulation. ROS were generated by means of electrolysis (30 mA, 75 s) of the organ bath fluid. Twenty minutes after the electrolysis period, the electrically paced atria (3 Hz) were stimulated with the adenylyl cyclase activator forskolin (1 microM). Subsequently, cumulative acetylcholine concentration-response curves were constructed (0.01 nM-10 microM). In addition, phosphoinositide turnover and adenylyl cyclase activity under basal and stimulated conditions were measured. For these biochemical experiments we used the stable acetylcholine analogue carbachol. The atria exposed to reactive oxygen species were influenced more potently (pD2 control: 6.2 vs. 7.1 for electrolysis-treated atria, P<0.05) and more effectively (Emax control: 40% vs. 90% reduction of the initial amplitude, P<0.05) by acetylcholine. In contrast, ROS exposure did not alter the responses to adenosine, whose receptor is also coupled via a Gi-protein to adenylyl cyclase. The basal (40% vs. control, P<0.05) as well as the carbachol-stimulated (-85% vs. control, P<0.05) inositol-phosphate formation was reduced in atria exposed to ROS. The forskolin-stimulated adenylyl cyclase activity was identical in both groups but carbachol stimulation induced a more pronounced reduction in adenylyl cyclase activity in the electrolysis-treated atria. Accordingly we may conclude that ROS enhance the negative inotropic response of isolated rat atria to acetylcholine by both a reduction of the positive (inositide turnover) and increase of the negative (adenylyl cyclase inhibition) inotropic components of cardiac muscarinic receptor stimulation. This phenomenon is most likely M2-receptor specific, since the negative inotropic response to adenosine is unaltered by ROS exposure.

  18. Why Do Staff Return?

    ERIC Educational Resources Information Center

    Magnuson, Connie

    1992-01-01

    Surveyed 211 returning staff from 25 camps and interviewed 19 returning staff to study factors that influence a counselor's decision to return to camp. Examined the following dimensions of motivation and hygiene factors: (1) stimulation or inspiration; (2) personal; (3) job-related experience; (4) living conditions and camp life; (5) camp…

  19. Effect of cAMP signaling on expression of glucocorticoid receptor, Bim and Bad in glucocorticoid-sensitive and resistant leukemic and multiple myeloma cells.

    PubMed

    Dong, Hongli; Carlton, Michael E; Lerner, Adam; Epstein, Paul M

    2015-01-01

    Stimulation of cAMP signaling induces apoptosis in glucocorticoid-sensitive and resistant CEM leukemic and MM.1 multiple myeloma cell lines, and this effect is enhanced by dexamethasone in both glucocorticoid-sensitive cell types and in glucocorticoid-resistant CEM cells. Expression of the mRNA for the glucocorticoid receptor alpha (GR) promoters 1A3, 1B and 1C, expression of mRNA and protein for GR, and the BH3-only proapoptotic proteins, Bim and Bad, and the phosphorylation state of Bad were examined following stimulation of the cAMP and glucocorticoid signaling pathways. Expression levels of GR promoters were increased by cAMP and glucocorticoid signaling, but GR protein expression was little changed in CEM and decreased in MM.1 cells. Stimulation of these two signaling pathways induced Bim in CEM cells, induced Bad in MM.1 cells, and activated Bad, as indicated by its dephosphorylation on ser112, in both cell types. This study shows that leukemic and multiple myeloma cells, including those resistant to glucocorticoids, can be induced to undergo apoptosis by stimulating the cAMP signaling pathway, with enhancement by glucocorticoids, and the mechanism by which this occurs may be related to changes in Bim and Bad expression, and in all cases, to activation of Bad.

  20. Mercury toxicity in the shark (Squalus acanthias) rectal gland: apical CFTR chloride channels are inhibited by mercuric chloride.

    PubMed

    Ratner, Martha A; Decker, Sarah E; Aller, Stephen G; Weber, Gerhard; Forrest, John N

    2006-03-01

    In the shark rectal gland, basolateral membrane proteins have been suggested as targets for mercury. To examine the membrane polarity of mercury toxicity, we performed experiments in three preparations: isolated perfused rectal glands, primary monolayer cultures of rectal gland epithelial cells, and Xenopus oocytes expressing the shark cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel. In perfused rectal glands we observed: (1) a dose-dependent inhibition by mercury of forskolin/3-isobutyl-1-methylxanthine (IBMX)-stimulated chloride secretion; (2) inhibition was maximal when mercury was added before stimulation with forskolin/IBMX; (3) dithiothrietol (DTT) and glutathione (GSH) completely prevented inhibition of chloride secretion. Short-circuit current (Isc) measurements in monolayers of rectal gland epithelial cells were performed to examine the membrane polarity of this effect. Mercuric chloride inhibited Isc more potently when applied to the solution bathing the apical vs. the basolateral membrane (23 +/- 5% and 68 +/- 5% inhibition at 1 and 10 microM HgCl2 in the apical solution vs. 2 +/- 0.9% and 14 +/- 5% in the basolateral solution). This inhibition was prevented by pre-treatment with apical DTT or GSH; however, only the permeant reducing agent DTT reversed mercury inhibition when added after exposure. When the shark rectal gland CFTR channel was expressed in Xenopus oocytes and chloride conductance was measured by two-electrode voltage clamping, we found that 1 microM HgCl2 inhibited forskolin/IBMX conductance by 69.2 +/- 2.0%. We conclude that in the shark rectal gland, mercury inhibits chloride secretion by interacting with the apical membrane and that CFTR is the likely site of this action. Copyright 2006 Wiley-Liss, Inc.

  1. Controlling fertilization and cAMP signaling in sperm by optogenetics.

    PubMed

    Jansen, Vera; Alvarez, Luis; Balbach, Melanie; Strünker, Timo; Hegemann, Peter; Kaupp, U Benjamin; Wachten, Dagmar

    2015-01-20

    Optogenetics is a powerful technique to control cellular activity by light. The light-gated Channelrhodopsin has been widely used to study and manipulate neuronal activity in vivo, whereas optogenetic control of second messengers in vivo has not been examined in depth. In this study, we present a transgenic mouse model expressing a photoactivated adenylyl cyclase (bPAC) in sperm. In transgenic sperm, bPAC mimics the action of the endogenous soluble adenylyl cyclase (SACY) that is required for motility and fertilization: light-stimulation rapidly elevates cAMP, accelerates the flagellar beat, and, thereby, changes swimming behavior of sperm. Furthermore, bPAC replaces endogenous adenylyl cyclase activity. In mutant sperm lacking the bicarbonate-stimulated SACY activity, bPAC restored motility after light-stimulation and, thereby, enabled sperm to fertilize oocytes in vitro. We show that optogenetic control of cAMP in vivo allows to non-invasively study cAMP signaling, to control behaviors of single cells, and to restore a fundamental biological process such as fertilization.

  2. Bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP production

    PubMed Central

    Pulliainen, Arto T.; Pieles, Kathrin; Brand, Cameron S.; Hauert, Barbara; Böhm, Alex; Quebatte, Maxime; Wepf, Alexander; Gstaiger, Matthias; Aebersold, Ruedi; Dessauer, Carmen W.; Dehio, Christoph

    2012-01-01

    Subversion of host organism cAMP signaling is an efficient and widespread mechanism of microbial pathogenesis. Bartonella effector protein A (BepA) of vasculotumorigenic Bartonella henselae protects the infected human endothelial cells against apoptotic stimuli by elevation of cellular cAMP levels by an as yet unknown mechanism. Here, adenylyl cyclase (AC) and the α-subunit of the AC-stimulating G protein (Gαs) were identified as potential cellular target proteins for BepA by gel-free proteomics. Results of the proteomics screen were evaluated for physical and functional interaction by: (i) a heterologous in vivo coexpression system, where human AC activity was reconstituted under the regulation of Gαs and BepA in Escherichia coli; (ii) in vitro AC assays with membrane-anchored full-length human AC and recombinant BepA and Gαs; (iii) surface plasmon resonance experiments; and (iv) an in vivo fluorescence bimolecular complementation-analysis. The data demonstrate that BepA directly binds host cell AC to potentiate the Gαs-dependent cAMP production. As opposed to the known microbial mechanisms, such as ADP ribosylation of G protein α-subunits by cholera and pertussis toxins, the fundamentally different BepA-mediated elevation of host cell cAMP concentration appears subtle and is dependent on the stimulus of a G protein-coupled receptor-released Gαs. We propose that this mechanism contributes to the persistence of Bartonella henselae in the chronically infected vascular endothelium. PMID:22635269

  3. Fibroblast growth factor and cyclic AMP (cAMP) synergistically activate gene expression at a cAMP response element.

    PubMed Central

    Tan, Y; Low, K G; Boccia, C; Grossman, J; Comb, M J

    1994-01-01

    Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways. Images PMID:7935470

  4. Intestinal permeability of forskolin by in situ single pass perfusion in rats.

    PubMed

    Liu, Zhen-Jun; Jiang, Dong-bo; Tian, Lu-Lu; Yin, Jia-Jun; Huang, Jian-Ming; Weng, Wei-Yu

    2012-05-01

    The intestinal permeability of forskolin was investigated using a single pass intestinal perfusion (SPIP) technique in rats. SPIP was performed in different intestinal segments (duodenum, jejunum, ileum, and colon) with three concentrations of forskolin (11.90, 29.75, and 59.90 µg/mL). The investigations of adsorption and stability were performed to ensure that the disappearance of forskolin from the perfusate was due to intestinal absorption. The results of the SPIP study indicated that forskolin could be absorbed in all segments of the intestine. The effective permeability (P (eff)) of forskolin was in the range of drugs with high intestinal permeability. The P (eff) was highest in the duodenum as compared to other intestinal segments. The decreases of P (eff) in the duodenum and ileum at the highest forskolin concentration suggested a saturable transport process. The addition of verapamil, a P-glycoprotein inhibitor, significantly enhanced the permeability of forskolin across the rat jejunum. The absorbed fraction of dissolved forskolin after oral administration in humans was estimated to be 100 % calculated from rat P (eff). In conclusion, dissolved forskolin can be absorbed readily in the intestine. The low aqueous solubility of forskolin might be a crucial factor for its poor oral bioavailability. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Optimization of a cAMP response element signal pathway reporter system.

    PubMed

    Shan, Qiang; Storm, Daniel R

    2010-08-15

    A sensitive cAMP response element (CRE) reporter system is essential for studying the cAMP/protein kinase A/cAMP response element binding protein signal pathway. Here we have tested a few CRE promoters and found one with high sensitivity to external stimuli. Using this optimal CRE promoter and the enhanced green fluorescent protein as the reporter, we have established a CRE reporter cell line. This cell line can be used to study the signal pathway by fluorescent microscope, fluorescence-activated cell analysis and luciferase assay. This cell line's sensitivity to forskolin, using the technique of fluorescence-activated cell sorting, was increased to approximately seven times that of its parental HEK 293 cell line, which is currently the most commonly used cell line in the field for the signal pathway study. Therefore, this newly created cell line is potentially useful for studying the signal pathway's modulators, which generally have weaker effect than its mediators. Our research has also established a general procedure for optimizing transcription-based reporter cell lines, which might be useful in performing the same task when studying many other transcription-based signal pathways. (c) 2010 Elsevier B.V. All rights reserved.

  6. Regulation of aromatase activity in bone-derived cells: possible role of mitogen-activated protein kinase.

    PubMed

    Shozu, M; Sumitani, H; Murakami, K; Segawa, T; Yang, H J; Inoue, M

    2001-12-01

    Fetal human osteoblast-like cells and the THP-1 cell line that differentiates into macrophage/osteoblast-like cells in the presence of Vitamin D3 and which possesses high aromatase activity, constitute a useful model with which to study the regulation of aromatase in bone. We showed that dexamethasone (DEX)-induced aromatase activity in the THP-1 cell line is completely suppressed by forskolin and by dibutyryl cAMP. We therefore investigated the contribution of mitogen-activated protein kinase (MAPK) to the regulation of aromatase, because cAMP inhibits MAPK in many cells. We examined the role of MAPK on aromatase activity using PD98059, a selective inhibitor of MEK-1. PD98059 (100 microM) reduced DEX+interleukin (IL)-1beta-induced aromatase activity in human osteoblast-like cells by more than 90%, whereas 50% of the aromatase mRNA concentration was retained compared with the control incubated with DEX+IL-1beta. PD98059 (50 microM) reduced the activity of aromatase in THP-1 cells by 80% without significantly affecting the mRNA level. These results indicated that MAPK plays an important role in aromatase activation at the post-transcriptional level.

  7. Bitter tastant quinine modulates glucagon-like peptide-1 exocytosis from clonal GLUTag enteroendocrine L cells via actin reorganization.

    PubMed

    Harada, Kazuki; Sakaguchi, Hidekazu; Sada, Shoko; Ishida, Rika; Hayasaka, Yuki; Tsuboi, Takashi

    2018-06-07

    Enteroendocrine L cells in the gastrointestinal tract secrete glucagon-like peptide-1 (GLP-1), which plays an important role in glucose homeostasis. Here we investigated the effect of bitter tastant quinine on GLP-1 secretion using clonal GLUTag mouse enteroendocrine L cells. We found that GLUTag cells expressed putative quinine receptors at mRNA levels. Although application of quinine resulted in an increase of intracellular Ca 2+ levels, which was mediated by Ca 2+ release from the endoplasmic reticulum and Ca 2+ influx through voltage-sensitive Ca 2+ channels, quinine had little effect on GLP-1 secretion. Total internal reflection fluorescence microscopy and immunocytochemistry revealed that GLP-1-containing vesicles remained unfused with the plasma membrane and facilitated actin polymerization beneath the plasma membrane after application of quinine, respectively. Interestingly, application of forskolin together with quinine induced GLP-1 exocytosis from the cells. These results suggest that quinine does not induce GLP-1 secretion because it facilitates Ca 2+ increase and actin reorganization but not cAMP increase, and both Ca 2+ and cAMP are essential for GLP-1 secretion. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Comprehensive analysis of chemokine-induced cAMP-inhibitory responses using a real-time luminescent biosensor.

    PubMed

    Felouzis, Virginia; Hermand, Patricia; de Laissardière, Guy Trambly; Combadière, Christophe; Deterre, Philippe

    2016-01-01

    Chemokine receptors are members of the G-protein-coupled receptor (GPCR) family coupled to members of the Gi class, whose primary function is to inhibit the cellular adenylate cyclase. We used a cAMP-related and PKA-based luminescent biosensor (GloSensor™ F-22) to monitor the real-time downstream response of chemokine receptors, especially CX3CR1 and CXCR4, after activation with their cognate ligands CX3CL1 and CXCL12. We found that the amplitudes and kinetic profiles of the chemokine responses were conserved in various cell types and were independent of the nature and concentration of the molecules used for cAMP prestimulation, including either the adenylate cyclase activator forskolin or ligands mediating Gs-mediated responses like prostaglandin E2 or beta-adrenergic agonist. We conclude that the cAMP chemokine response is robustly conserved in various inflammatory conditions. Moreover, the cAMP-related luminescent biosensor appears as a valuable tool to analyze the details of Gi-mediated cAMP-inhibitory cellular responses, even in native conditions and could help to decipher their precise role in cell function. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Heterogeneity in Kv7 channel function in the cerebral and coronary circulation.

    PubMed

    Lee, Sewon; Yang, Yan; Tanner, Miles A; Li, Min; Hill, Michael A

    2015-02-01

    Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study aimed to examine the hypotheses that (i) Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity and (ii) regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and LAD arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50 μM) was significantly greater in the basilar artery compared to the LAD artery. Similarly, the Kv7 channel inhibitor, linopirdine (10 μM) caused a stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than in the coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. © 2014 John Wiley & Sons Ltd.

  10. Heterogeneity in Kv7 channel function in the Cerebral and Coronary Circulation

    PubMed Central

    Tanner, Miles A.; Li, Min; Hill, Michael A.

    2014-01-01

    Kv7 channels are considered important regulators of vascular smooth muscle contractility. The present study examined the hypotheses that 1. Kv7 channels are present in mouse cerebral and coronary arteries and regulate vascular reactivity, and 2. regional differences exist in the activity of these channels. PCR confirmed that basilar, Circle of Willis and left anterior descending (LAD) arteries express predominantly Kv7.1 and 7.4. Western blot analysis, however, showed greater Kv7.4 protein levels in the cerebral vessels. Relaxation to the Kv7 channel activator, retigabine (1-50μM) was significantly greater in basilar compared to LAD. Similarly, the Kv7 channel inhibitor, linopirdine (10μM) caused stronger contraction of the basilar artery. Furthermore, pre-incubation with linopirdine reduced forskolin (cAMP activator)-induced vasorelaxation in basilar while not altering forskolin-induced vasorelaxation of the LAD, suggesting that Kv7 channels play a more prominent role in the cerebral than coronary circulation. Consistent with the vessel data, whole cell Kv7 currents in cerebral VSMCs were potentiated by retigabine and inhibited by linopirdine, while these responses were blunted in coronary VSMCs. This study provides evidence that mouse Kv7 channels may contribute differently to regulating the functional properties of cerebral and coronary arteries. Such heterogeneity has important implications for developing novel therapeutics for cardiovascular dysfunction. PMID:25476662

  11. Labdane-type diterpenoids from hairy root cultures of Coleus forskohlii, possible intermediates in the biosynthesis of forskolin.

    PubMed

    Asada, Yoshihisa; Li, Wei; Terada, Tomohiro; Kuang, Xinzhu; Li, Qin; Yoshikawa, Takafumi; Hamaguchi, Shogo; Namekata, Iyuki; Tanaka, Hikaru; Koike, Kazuo

    2012-07-01

    Significant attention has been devoted to studying hairy root cultures as a promising strategy for production of various valuable secondary metabolites. These offer many advantages, such as high growth rate, genetic stability and being hormone-free. In this study, a detailed phytochemical investigation of the secondary metabolites of Coleus forskohlii hairy root cultures was undertaken and which resulted in the isolation of 22 compounds, including four forskolin derivatives and a monoterpene. Their structures were elucidated by extensive spectroscopic analyses. These compounds could be classified into four groups viz.: labdane-type diterpenes, monoterpenes, triterpenes and phenylpropanoid dimers. Apart from one compound, all labdane type diterpenes are oxygenated at C-11 as in forskolin and a scheme showing their biosynthetic relationships is proposed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Subunit profiling and functional characteristics of acetylcholine receptors in GT1-7 cells.

    PubMed

    Arai, Yuki; Ishii, Hirotaka; Kobayashi, Makito; Ozawa, Hitoshi

    2017-03-01

    GnRH neurons form a final common pathway for the central regulation of reproduction. Although the involvement of acetylcholine in GnRH secretion has been reported, direct effects of acetylcholine and expression profiles of acetylcholine receptors (AChRs) still remain to be studied. Using immortalized GnRH neurons (GT1-7 cells), we analyzed molecular expression and functionality of AChRs. Expression of the mRNAs were identified in the order α7 > β2 = β1 ≧ α4 ≧ α5 = β4 = δ > α3 for nicotinic acetylcholine receptor (nAChR) subunits and m4 > m2 for muscarinic acetylcholine receptor (mAChR) subtypes. Furthermore, this study revealed that α7 nAChRs contributed to Ca 2+ influx and GnRH release and that m2 and m4 mAChRs inhibited forskolin-induced cAMP production and isobutylmethylxanthine-induced GnRH secretion. These findings demonstrate the molecular profiles of AChRs, which directly contribute to GnRH secretion in GT1-7 cells, and provide one possible regulatory action of acetylcholine in GnRH neurons.

  13. Involvement of ERK1/2 signaling pathway in atrazine action on FSH-stimulated LHR and CYP19A1 expression in rat granulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fa, Svetlana; Pogrmic-Majkic, Kristina; Samardzija, Dragana

    Worldwide used herbicide atrazine is linked to reproductive dysfunction in females. In this study, we investigated the effects and the mechanism of atrazine action in the ovary using a primary culture of immature granulosa cells. In granulosa cells, follicle-stimulating hormone (FSH) activates both cyclic adenosine monophosphate (cAMP) and extracellular-regulated kinase 1/2 (ERK1/2) cascades, with cAMP pathway being more important for luteinizing hormone receptor (LHR) and aromatase (CYP19A1) mRNA expression. We report that 48 h after atrazine exposure the FSH-stimulated LHR and CYP19A1 mRNA expression and estradiol synthesis were decreased, with LHR mRNA being more sensitive to atrazine than CYP19A1 mRNA.more » Inadequate acquisition of LHR in the FSH-stimulated and atrazine-exposed granulosa cells renders human chorionic gonadotropin (hCG) ineffective to stimulate amphiregulin (Areg), epiregulin (Ereg), and progesterone receptor (Pgr) mRNA expression, suggesting anti-ovulatory effect of atrazine. To dissect the signaling cascade involved in atrazine action in granulosa cells, we used U0126, a pharmacological inhibitor of ERK1/2. U0126 prevents atrazine-induced decrease in LHR and CYP19A1 mRNA levels and estradiol production in the FSH-stimulated granulosa cells. ERK1/2 inactivation restores the ability of hCG to induce expression of the ovulatory genes in atrazine-exposed granulosa cells. Cell-based ELISA assay revealed that atrazine does not change the FSH-stimulated ERK1/2 phosphorylation in granulosa cells. The results from this study reveal that atrazine does not affect but requires ERK1/2 phosphorylation to cause decrease in the FSH-induced LHR and CYP19A1 mRNA levels and estradiol production in immature granulosa cells, thus compromising ovulation and female fertility. - Highlights: • Atrazine inhibits estradiol production in FSH-stimulated granulosa cells. • Atrazine inhibits LHR and Cyp19a1 mRNA expression in FSH-stimulated granulosa cells. • Atrazine prevents hCG-induced expression of the ovulatory genes. • ERK1/2 activation is required for atrazine action in granulosa cells. • Atrazine does not interfere with FSH-stimulated ERK1/2 phosphorylation.« less

  14. Activation of particulate guanylate cyclase by adrenomedullin in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells.

    PubMed

    Ali, N; Yousufzai, S Y; Abdel-Latif, A A

    2000-07-01

    We investigated the effects of adrenomedullin (ADM) on cGMP production in cultured SV-40 transformed cat iris sphincter smooth muscle (SV-CISM-2) cells. ADM increased cGMP accumulation in a time- and concentration- dependent manner. The peptide increased cGMP formation in the transformed cells by 405-fold as compared to 1. 6-fold in primary cultured CISM cells. The basal cGMP concentrations in both cell types were comparable. In addition, ADM increased cAMP accumulation in SV-CISM-2 cells and in primary cultured cells by 18. 9- and 5.8-fold, respectively. The ADM receptor antagonist, ADM(26-52), but not the atrial natriuretic peptide (ANP) receptor antagonist, anantin, inhibited ADM-induced cGMP formation. The phorbol ester, phorbol 12, 13-dibutyrate (PDBu), which inhibits particulate guanylate cyclases in smooth muscle, blocked ADM-stimulated cGMP accumulation. In contrast, inhibitors of the soluble guanylate cyclases, such as LY83583 and ODQ, and inhibitors of the nitric oxide cascade had little effect on ADM-stimulated cGMP production. The stimulatory effect of ADM on cGMP formation is due to activation of the guanylate cyclase system and not to a much reduced phosphodiesterase activity. ADM stimulated guanylate cyclase activity in membrane fractions isolated from SV-CISM-2 cells in a concentration-dependent manner with EC(50) value of 72 nM. Pertussis toxin, an activator of the G-protein, Gi, inhibited ADM-stimulated cGMP accumulation, whereas cholera toxin, a stimulator of the Gs G-protein and subsequently cAMP accumulation, had little effect. Pretreatment of the plasma membrane fraction with Gialpha antibody attenuated ADM-stimulated guanylate cyclase activity by 75%. We conclude that ADM increases intracellular cGMP levels in SV-CISM-2 cells through activation of the ADM receptor and subsequent stimulation of a Gi-mediated membrane-bound guanylate cyclase.

  15. Thyrotropin-induced hydrogen peroxide production in FRTL-5 thyroid cells is mediated not by adenosine 3',5'-monophosphate, but by Ca2+ signaling followed by phospholipase-A2 activation and potentiated by an adenosine derivative.

    PubMed

    Kimura, T; Okajima, F; Sho, K; Kobayashi, I; Kondo, Y

    1995-01-01

    The production of hydrogen peroxide (H2O2) as an essential process for iodide organification is a key reaction in TSH-induced thyroid hormone synthesis. Here we characterize the signal transduction pathway involved in TSH-induced H2O2 production in FRTL-5 thyroid cells. At higher than 1 nM TSH, N6-(L-2-phenylisopropyl)adenosine (PIA), an adenosine receptor agonist having, by itself, no influence on H2O2 generation, potentiated this TSH action, whereas the TSH increase and PIA addition reduced cAMP accumulation. RO 20-1724, a phosphodiesterase inhibitor, amplified the TSH-induced cAMP accumulation, but did not change H2O2 generation in the whole range of TSH used. Ca(2+)-mobilizing agonists, GTP and ATP, also induced H2O2 production without stimulating cAMP accumulation. Chelation of intracellular Ca2+ markedly inhibited the TSH action, but intracellular Ca2+ increases by either thapsigargin or ionomycin mimicking it. All of the findings show the participation of Ca2+, but not cAMP, in the action of TSH. Desensitization of protein kinase-C (PKC) did not influence the receptor-mediated H2O2 production, suggesting the reduced importance of PKC activation compared to Ca2+ signaling to the reaction. A rise in intracellular Ca2+ independent of receptor activation also induced H2O2 production as well as arachidonate release, and both were potentiated by PIA. In addition, inhibitors of phospholipase-A2 and the arachidonate metabolic pathway depressed H2O2 generation, suggesting the participation of an arachidonate cascade in the Ca(2+)-dependent H2O2 production. Lipoxygenase inhibitors depressed the Ca2+ action without influencing arachidonate release, suggesting the involvement of a lipoxygenase product(s) of arachidonate in the Ca(2+)-signaling mechanism. In conclusion, in FRTL-5 cells, TSH-induced H2O2 production is mediated not by cAMP, but by the phospholipase-C/Ca2+ cascade, possibly followed by the Ca(2+)-dependent phospholipase-A2/arachidonate cascade. PIA amplifies TSH-induced H2O2 production at the steps of phospholipase-C and phospholipase-A2 activation in a pertussis toxin-sensitive manner.

  16. Simultaneous Quantification of Forskolin and Iso-Forskolin in Coleus forskohlii (Wild.) Briq. and Identification of Elite Chemotype, Collected from Eastern Ghats (India).

    PubMed

    Shukla, Pushpendra Kumar; Misra, Ankita; Kumar, Manish; Jaichand; Singh, Kuldeep; Akhtar, Juber; Srivastava, Sharad; Agrawal, Pawan K; Singh Rawat, Ajay K

    2018-01-01

    Coleus forskohlii is a well-known industrially important medicinal plant, for its high forskolin content. A simple, selective, and sensitive high-performance thin layer chromatography (HPTLC) method was developed and validated for simultaneous quantification of forskolin and iso-forskolin in C. forskohlii germplasm collected from the Eastern Ghats, India. Chromatographic separation of the targeted marker(s) was obtained on precoated silica plates using toluene: ethyl acetate: methanol (90:30:0.5, v/v/v) as the mobile phase. Densitometric quantification of forskolin and iso-forskolin was carried out at 545 nm. Forskolin and iso-forskolin were identified by comparing the ultraviolet spectra of standard and sample track at R f of 0.64 ± 0.02 and 0.36 ± 0.01, after derivatization with anisaldehyde sulfuric acid reagent. The linearity of both the analytes was obtained in the range of 300-1200 ng/spot with the regression coefficient ( R 2 ) of 0.991 and 0.986. Recovery of analyte (s) at three levels, namely, 100, 150, and 200 ng/spot was found to be 100.46% ± 0.29%, 99.64% ± 0.33%, 100.02% ± 0.76% and 99.76% ± 0.62%, 99.56% ± 0.35%, 100.02% ± 0.22%, respectively, for forskolin and iso-forskolin. The content of forskolin and iso-forskolin varies from 0.046% to 0.187% and 0.002% to 0.077%, respectively (dry weight basis), the maximum content of both the markers was found in NBC-31, from Thakurwada, Maharashtra. The developed HPTLC method was linear, accurate, and reliable as per the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines. The study aids in the identification of elite chemotype for commercial prospection of industrially viable medicinal crop. 12 Samples are collected from different locations of the eastern ghat regionsQuantification of two major marker forskolin and iso forskolinThe maximum content of both the markers was found in NBC -31, from Thakurwada, MaharashtraIdentification of elite chemotype of collected samples may be useful for commercial prospection in industries.

  17. Aldosterone does not alter endothelin B receptor signaling in the inner medullary collecting duct.

    PubMed

    Ramkumar, Nirupama; Stuart, Deborah; Yang, Tianxin; Kohan, Donald E

    2017-03-01

    Recent studies suggest that aldosterone-mediated sulfenic acid modification of the endothelin B receptor (ETB) promotes renal injury in an ischemia/reperfusion model through reduced ETB-stimulated nitric oxide production. Similarly, aldosterone inactivation of ETB signaling promotes pulmonary artery hypertension. Consequently, we asked whether aldosterone inhibits collecting duct ETB signaling; this could promote fluid retention since CD ETB exerts natriuretic and diuretic effects. A mouse inner medullary collecting duct cell line (IMCD3) was treated with aldosterone for 48 h followed by sarafotoxin-6c, an ETB-selective agonist, and extracellular signal-related kinase 1/2 (ERK) phosphorylation assessed. S6c increased the phospho/total-ERK ratio similarly in control and aldosterone-treated cells (aldosterone alone increased phospho/total-ERK). Since cultured IMCD cell lines lack ETB inhibited AVP signaling, the effect of S6c on AVP-stimulated cAMP in acutely isolated IMCD was assessed. Rats (have much higher CD ETB expression than mice) were exposed to 3 days of a normal or low Na + diet, or low Na + diet + desoxycorticosterone acetate. S6c inhibited AVP-stimulated cAMP in rat IMCD by the same degree in the high mineralocorticoid groups compared to controls. Finally, S6c-stimulated cGMP accumulation in cultured IMCD, or S6c-stimulated nitric oxide or cGMP in acutely isolated IMCD, was not affected by prior aldosterone exposure. These findings provide evidence that aldosterone does not modify ETB effects on ERK phosphorylation, AVP-dependent cAMP inhibition, or NO/cGMP accumulation in the IMCD Thus, while aldosterone can inhibit endothelial cell ETB activity to promote hypertension and injury, this response does not appear to occur in the IMCD. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Bacillus anthracis-derived edema toxin (ET) counter-regulates movement of neutrophils and macromolecules through the endothelial paracellular pathway.

    PubMed

    Nguyen, Chinh; Feng, Chiguang; Zhan, Min; Cross, Alan S; Goldblum, Simeon E

    2012-01-09

    A common finding amongst patients with inhalational anthrax is a paucity of polymorphonuclear leukocytes (PMNs) in infected tissues in the face of abundant circulating PMNs. A major virulence determinant of anthrax is edema toxin (ET), which is formed by the combination of two proteins produced by the organism, edema factor (EF), which is an adenyl cyclase, and protective antigen (PA). Since cAMP, a product of adenyl cyclase, is known to enhance endothelial barrier integrity, we asked whether ET might decrease extravasation of PMNs into tissues through closure of the paracellular pathway through which PMNs traverse. Pretreatment of human microvascular endothelial cell(EC)s of the lung (HMVEC-L) with ET decreased interleukin (IL)-8-driven transendothelial migration (TEM) of PMNs with a maximal reduction of nearly 60%. This effect required the presence of both EF and PA. Conversely, ET did not diminish PMN chemotaxis in an EC-free system. Pretreatment of subconfluent HMVEC-Ls decreased transendothelial 14 C-albumin flux by ~ 50% compared to medium controls. Coadministration of ET with either tumor necrosis factor-α or bacterial lipopolysaccharide, each at 100 ng/mL, attenuated the increase of transendothelial 14 C-albumin flux caused by either agent alone. The inhibitory effect of ET on TEM paralleled increases in protein kinase A (PKA) activity, but could not be blocked by inhibition of PKA with either H-89 or KT-5720. Finally, we were unable to replicate the ET effect with either forskolin or 3-isobutyl-1-methylxanthine, two agents known to increase cAMP. We conclude that ET decreases IL-8-driven TEM of PMNs across HMVEC-L monolayers independent of cAMP/PKA activity.

  19. Antioxidant Protection of NADPH-Depleted Oligodendrocyte Precursor Cells Is Dependent on Supply of Reduced Glutathione.

    PubMed

    Kilanczyk, Ewa; Saraswat Ohri, Sujata; Whittemore, Scott R; Hetman, Michal

    2016-08-01

    The pentose phosphate pathway is the main source of NADPH, which by reducing oxidized glutathione, contributes to antioxidant defenses. Although oxidative stress plays a major role in white matter injury, significance of NADPH for oligodendrocyte survival has not been yet investigated. It is reported here that the NADPH antimetabolite 6-amino-NADP (6AN) was cytotoxic to cultured adult rat spinal cord oligodendrocyte precursor cells (OPCs) as well as OPC-derived oligodendrocytes. The 6AN-induced necrosis was preceded by increased production of superoxide, NADPH depletion, and lower supply of reduced glutathione. Moreover, survival of NADPH-depleted OPCs was improved by the antioxidant drug trolox. Such cells were also protected by physiological concentrations of the neurosteroid dehydroepiandrosterone (10(-8) M). The protection by dehydroepiandrosterone was associated with restoration of reduced glutathione, but not NADPH, and was sensitive to inhibition of glutathione synthesis. A similar protective mechanism was engaged by the cAMP activator forskolin or the G protein-coupled estrogen receptor (GPER/GPR30) ligand G1. Finally, treatment with the glutathione precursor N-acetyl cysteine reduced cytotoxicity of 6AN. Taken together, NADPH is critical for survival of OPCs by supporting their antioxidant defenses. Consequently, injury-associated inhibition of the pentose phosphate pathway may be detrimental for the myelination or remyelination potential of the white matter. Conversely, steroid hormones and cAMP activators may promote survival of NADPH-deprived OPCs by increasing a NADPH-independent supply of reduced glutathione. Therefore, maintenance of glutathione homeostasis appears as a critical effector mechanism for OPC protection against NADPH depletion and preservation of the regenerative potential of the injured white matter. © The Author(s) 2016.

  20. Low free drug concentration prevents inhibition of F508del CFTR functional expression by the potentiator VX-770 (ivacaftor).

    PubMed

    Matthes, Elizabeth; Goepp, Julie; Carlile, Graeme W; Luo, Yishan; Dejgaard, Kurt; Billet, Arnaud; Robert, Renaud; Thomas, David Y; Hanrahan, John W

    2016-02-01

    The most common cystic fibrosis (CF) mutation F508del inhibits the gating and surface expression of CFTR, a plasma membrane anion channel. Optimal pharmacotherapies will probably require both a 'potentiator' to increase channel open probability and a 'corrector' that improves folding and trafficking of the mutant protein and its stability at the cell surface. Interaction between CF drugs has been reported but remains poorly understood. CF bronchial epithelial cells were exposed to the corrector VX-809 (lumacaftor) and potentiator VX-770 (ivacaftor) individually or in combination. Functional expression of CFTR was assayed as the forskolin-stimulated short-circuit current (Isc ) across airway epithelial monolayers expressing F508del CFTR. The potentiated Isc response during forskolin stimulation was increased sixfold after pretreatment with VX-809 alone and reached ~11% that measured across non-CF monolayers. VX-770 (100 nM) and genistein (50 μM) caused similar levels of potentiation, which were not additive and were abolished by the CFTR inhibitor CFTRinh -172. The unbound fraction of VX-770 in plasma was 0.13 ± 0.04%, which together with previous measurements in patients given 250 mg p.o. twice daily, suggests a peak free plasma concentration of 1.5-8.5 nM. Chronic exposure to high VX-770 concentrations (>1 μM) inhibited functional correction by VX-809 but not in the presence of physiological protein levels (20-40 mg·mL(-1) ). Chronic exposure to a low concentration of VX-770 (100 nM) together with VX-809 (1 μM) also did not reduce the forskolin-stimulated Isc , relative to cells chronically exposed to VX-809 alone, provided it was assayed acutely using the same, clinically relevant concentration of potentiator. Chronic exposure to clinically relevant concentrations of VX-770 did not reduce F508del CFTR function. Therapeutic benefit of VX-770 + VX-809 (Orkambi) is probably limited by the efficacy of VX-809 rather than by inhibition by VX-770. © 2015 The British Pharmacological Society.

  1. Regulation of follitropin-sensitive adenylate cyclase by stimulatory and inhibitory forms of the guanine nucleotide regulatory protein in immature rat Sertoli cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, G.P.

    1987-01-01

    Studies have been designed to examine the role of guanine nucleotides in mediating FSH-sensitive adenylate cyclase activity in Sertoli cell plasma membranes. Analysis of ({sup 3}H)GDP binding to plasma membranes suggested a single high affinity site with a K{sub d} = 0.24 uM. Competition studies indicated that GTP{sub {gamma}}S was 7-fold more potent than GDP{sub {beta}}S. Bound GDP could be released by FSH in the presence of GTP{sub {gamma}}S, but not by FSH alone. Adenylate cyclase activity was enhanced 5-fold by FSH in the presence of GTP. Addition of GDP{sub {beta}}S to the activated enzyme (FSH plus GTP) resulted inmore » a time-dependent decay to basal activity within 20 sec. GDP{sub {beta}}S competitively inhibited GTP{sub {gamma}}S-stimulated adenylate cyclase activity with a K{sub i} = 0.18 uM. Adenylate cyclase activity was also demonstrated to be sensitive to the nucleotide bound state. In the presence of FSH, only the GTP{sub {gamma}}S-bound form persisted even if GDP{sub {beta}}S previously occupied all available binding sites. Two membrane proteins, M{sub r} = 43,000 and 48,000, were ADP{centered dot}ribosylated using cholera toxin and labeling was enhanced 2 to 4-fold by GTP{sub {gamma}}S but not by GDP{sub {beta}}S. The M{sub r} = 43,000 and 48,000 proteins represented variant forms of G{sub S}. A single protein of M{sub r} = 40,000 (G{sub i}) was ADP-ribosylated by pertussis toxin in vitro. GTP inhibited forskolin-stimulated adenylate cyclase activity with an IC{sub 50} = 0.1 uM. The adenosine analog, N{sup 6}{centered dot}phenylisopropyl adenosine enhanced GTP inhibition of forskolin-stimulated adenylate cyclase activity by an additional 15%. GTP-dependent inhibition of forskolin-sensitive adenylate cyclase activity was abolished in membranes prepared from Sertoli cells treated in culture with pertussis toxin.« less

  2. Effects of fluorotelomer alcohol 8:2 FTOH on steroidogenesis in H295R cells: Targeting the cAMP signalling cascade

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu Chunsheng; Graduate School of the Chinese Academy of Sciences, Beijing 100039; Zhang Xiaowei, E-mail: howard50003250@yahoo.co

    2010-09-15

    Previous studies have demonstrated that perfluorinated chemicals (PFCs) can affect reproduction by disruption of steroidogenesis in experimental animals. However, the underlying mechanism(s) of this disruption remain unknown. Here we investigated the effects and mechanisms of action of 1H, 1H, 2H, 2H-perfluoro-decan-1-ol (8:2 FTOH) on steroidogenesis using a human adrenocortical carcinoma cell line (H295R) as a model. H295R cells were exposed to 0, 7.4, 22.2 or 66.6 {mu}M 8:2 FTOH for 24 h and productions of progesterone, 17{alpha}-OH-progesterone, androstenedione, testosterone, deoxycorticosterone, corticosterone and cortisol were quantified by HPLC-MS/MS. With the exception of progesterone, 8:2 FTOH treatment significantly decreased production of allmore » hormones in the high dose group. Exposure to 8:2 FTOH significantly down-regulated cAMP-dependent mRNA expression and protein abundance of several key steroidogenic enzymes, including StAR, CYP11A, CYP11B1, CYP11B2, CYP17 and CYP21. Furthermore, a dose-dependent decrease of cellular cAMP levels was observed in H295R cells exposed to 8:2 FTOH. The observed responses are consistent with reduced cellular cAMP levels. Exposure to 8:2 FTOH resulted in significantly less basal (+ GTP) and isoproterenol-stimulated adenylate cyclase activities, but affected neither total cellular ATP level nor basal (-GTP) or NaF-stimulated adenylate cyclase activities, suggesting that inhibition of steroidogenesis may be due to an alteration in membrane properties. Metabolites of 8:2 FTOH were not detected by HPLC-MS/MS, suggesting that 8:2 FTOH was not metabolized by H295R cells. Overall, the results show that 8:2 FTOH may inhibit steroidogenesis by disrupting the cAMP signalling cascade.« less

  3. CXCL4L1 and CXCL4 signaling in human lymphatic and microvascular endothelial cells and activated lymphocytes: involvement of mitogen-activated protein (MAP) kinases, Src and p70S6 kinase.

    PubMed

    Van Raemdonck, Katrien; Gouwy, Mieke; Lepers, Stefanie Antoinette; Van Damme, Jo; Struyf, Sofie

    2014-07-01

    CXC chemokines influence a variety of biological processes, such as angiogenesis, both in a physiological and pathological context. Platelet factor-4 (PF-4)/CXCL4 and its variant PF-4var/CXCL4L1 are known to favor angiostasis by inhibiting endothelial cell proliferation and chemotaxis. CXCL4L1 in particular is a potent inhibitor of angiogenesis with anti-tumoral characteristics, both through regulation of neovascularization and through attraction of activated lymphocytes. However, its underlying signaling pathways remain to be elucidated. Here, we have identified various intracellular pathways activated by CXCL4L1 in comparison with other CXCR3 ligands, including CXCL4 and interferon-γ-induced protein 10/CXCL10. Signaling experiments show involvement of the mitogen-activated protein kinase (MAPK) family in CXCR3A-transfected cells, activated lymphocytes and human microvascular endothelial cells (HMVEC). In CXCR3A transfectants, CXCL4 and CXCL4L1 activated p38 MAPK, as well as Src kinase within 30 and 5 min, respectively. Extracellular signal-regulated kinase (ERK) phosphorylation occurred in activated lymphocytes, yet was inhibited in microvascular and lymphatic endothelial cells. CXCL4L1 and CXCL4 counterbalanced the angiogenic chemokine stromal cell-derived factor-1/CXCL12 in both endothelial cell types. Notably, inhibition of ERK signaling by CXCL4L1 and CXCL4 in lymphatic endothelial cells implies that these chemokines might also regulate lymphangiogenesis. Furthermore, CXCL4, CXCL4L1 and CXCL10 slightly enhanced forskolin-stimulated cAMP production in HMVEC. Finally, CXCL4, but not CXCL4L1, induced activation of p70S6 kinase within 5 min in HMVEC. Our findings confirm that the angiostatic chemokines CXCL4L1 and CXCL4 activate both CXCR3A and CXCR3B and bring new insights into the complexity of their signaling cascades.

  4. Molecular and functional characterization of tumor-induced factor (TIF): Hamster homolog of CXCL3 (GROγ) displays tumor suppressive activity.

    PubMed

    Jin, Lili; Li, Zhou-Fang; Wang, Da-Kui; Sun, Meina; Qi, Wei; Ma, Qiang; Zhang, Li; Chu, Chun; Chan, Elaine Y M; Lee, Susanna S T; Wise, Helen; To, Ka-Fai; Shi, Ying; Zhou, Naiming; Cheung, Wing-Tai

    2018-02-01

    Previously our lab has created a mouse ovarian xenograft model of copy number variation (CNV)-mediated G protein-coupled receptor (GPCR) MAS-driven tumorigenesis, and RNA profiling identified a putative chemokine tumor-induced factor (Tif). Sequence analysis and chemotactic study suggested that Tif was likely to be a hamster homolog of human GROγ (CXCL3) [IJC 125 (2009): 1316-1327]. In the present study, we report the molecular and functional characterization of the Tif gene. Genomic study of CHO-K1 cells indicated that Tif gene consisted of 4 exons, characterized with an antisense B1 element which is embedded in the fourth exon. Two Tif transcripts were identified which shared identical sequences except that a string of 71-nt derived from the antisense B1 element was deficient in the shorter transcript. Of interests, B1-like RNA ladder was detected in xenografts. Functional studies showed that TIF induced chemotaxis and neovessel formation. Pharmacological studies suggested that TIF activated Gi-coupled CXCR2 and induced both calcium mobilization and ERK1/2 phosphorylation, and suppressed forskolin-stimulated cAMP accumulation. In addition, secreted matured TIF functioned as an autocrine factor and promoted anchorage-independent growth. Unexpectedly, TIF delayed the onset of tumor formation, possibly via suppressing proliferation of stromal fibroblasts. However, TIF did not exert any inhibitory effect on tumor growth. Potentially, TIF could be used for preventing cancer relapse. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Radioligand binding and functional characterization of recombinant human NmU1 and NmU2 receptors stably expressed in clonal human embryonic kidney-293 cells.

    PubMed

    Aiyar, Nambi; Disa, Jyoti; Foley, James J; Buckley, Peter T; Wixted, William E; Pullen, Mark; Shabon, Usman; Dul, Edward; Szekeres, Philip G; Elshourbagy, Nabil A; Sarau, Henry M; Appelbaum, Edward; Bolaky, Jane

    2004-09-01

    Neuromedin U (NmU) is a smooth muscle contracting peptide. Recently, two G-protein-coupled receptors for NmU (NmU1R and NmU2R) have been cloned having approximately 50% homology. They have distinct patterns of expression suggesting they may have different biological functions. This study provides a comprehensive characterization of both NmU receptors expressed in human embryonic kidney 293 cells. [125I]hNmU binding to the recombinant NmU receptors was rapid, saturable, of high affinity and to a single population of binding sites. Exposure of these cells to NmU isopeptides resulted in an increase in intracellular [Ca2+]i release (EC50 value of 0.50 +/- 0.10 nmol/l) and inositol phosphate formation (EC50 1.6 +/- 0.2 and 1.50 +/- 0.4 nmol/l for NmU1R and NmU2R respectively). Furthermore, hNmU inhibited forskolin (3 micromol/l)-stimulated accumulation of cAMP in intact HEK-293 cells expressing either NmU1R or NmU2R. The inhibitory effect was significant for the cells expressing NmU2R with IC50 value of 0.80 +/- 0.21 nmol/l. In summary, both NmU1R and NmU2R in HEK-293 cells have similar signaling capability. Copyright 2004 S. Karger AG, Basel

  6. Fat area and lipid droplet morphology of porcine oocytes during in vitro maturation with trans-10, cis-12 conjugated linoleic acid and forskolin.

    PubMed

    Prates, E G; Marques, C C; Baptista, M C; Vasques, M I; Carolino, N; Horta, A E M; Charneca, R; Nunes, J T; Pereira, R M

    2013-04-01

    Lipid droplets (LD) in porcine oocytes form a dark mass reaching almost all cytoplasm. Herein we investigated changes in fat areas, cytoplasmic tone and LD morphology during in vitro maturation (IVM) of porcine oocytes cultured with 100 μM trans-10, cis-12 conjugated linoleic acid (t10,c12 CLA) or 10 μM forskolin at different time periods. Four groups were constituted: control, excipient, t10,c12 CLA and forskolin, with drugs being supplemented during 44 to 48 h and the initial 22 to 24 h in Experiments 1 and 2, respectively. In Experiment 3, forskolin was supplemented for the first 2 h. Matured oocytes were inseminated with frozen-thawed boar semen and cleavage rate recorded. Before and during IVM, samples of oocytes were evaluated for LD, total and fat areas and fat gray value or for meiotic progression. Results showed that forskolin supplementation during 44 to 48 h or 22 to 24 h inhibits oocyte maturation (exp. 1: forskolin = 5.1 ± 8.0%, control = 72.6 ± 5.0%; exp. 2: forskolin = 24.3 ± 7.4%, control = 71.6 ± 5.6%) and cleavage (exp. 1: forskolin = 0.0 ± 0.0%, control = 55.4 ± 4.1%; exp. 2: forskolin = 8.3 ± 3.3%, control = 54.5 ± 3.0%). Forskolin also reduced oocyte and fat areas. In Experiment 3, forskolin negative effect on oocyte maturation and cleavage disappeared, although minor (P ⩽ 0.03) LD and oocyte fat areas were identified at 22 to 24 h of IVM. Oocytes supplemented with t10,c12 CLA during 44 to 48 h presented a lighter (P ⩽ 0.04) colour tone cytoplasm than those of control and forskolin. In conclusion, t10,c12 CLA and forskolin were capable of modifying the distribution and morphology of cytoplasmic LD during porcine oocyte maturation, thus reducing its lipid content in a time-dependent manner.

  7. Simultaneous Quantification of Forskolin and Iso-Forskolin in Coleus forskohlii (Wild.) Briq. and Identification of Elite Chemotype, Collected from Eastern Ghats (India)

    PubMed Central

    Shukla, Pushpendra Kumar; Misra, Ankita; Kumar, Manish; Jaichand; Singh, Kuldeep; Akhtar, Juber; Srivastava, Sharad; Agrawal, Pawan K; Singh Rawat, Ajay K

    2017-01-01

    Background: Coleus forskohlii is a well-known industrially important medicinal plant, for its high forskolin content. Objective: A simple, selective, and sensitive high-performance thin layer chromatography (HPTLC) method was developed and validated for simultaneous quantification of forskolin and iso-forskolin in C. forskohlii germplasm collected from the Eastern Ghats, India. Materials and Methods: Chromatographic separation of the targeted marker(s) was obtained on precoated silica plates using toluene: ethyl acetate: methanol (90:30:0.5, v/v/v) as the mobile phase. Results: Densitometric quantification of forskolin and iso-forskolin was carried out at 545 nm. Forskolin and iso-forskolin were identified by comparing the ultraviolet spectra of standard and sample track at Rf of 0.64 ± 0.02 and 0.36 ± 0.01, after derivatization with anisaldehyde sulfuric acid reagent. The linearity of both the analytes was obtained in the range of 300–1200 ng/spot with the regression coefficient (R2) of 0.991 and 0.986. Recovery of analyte (s) at three levels, namely, 100, 150, and 200 ng/spot was found to be 100.46% ± 0.29%, 99.64% ± 0.33%, 100.02% ± 0.76% and 99.76% ± 0.62%, 99.56% ± 0.35%, 100.02% ± 0.22%, respectively, for forskolin and iso-forskolin. The content of forskolin and iso-forskolin varies from 0.046% to 0.187% and 0.002% to 0.077%, respectively (dry weight basis), the maximum content of both the markers was found in NBC-31, from Thakurwada, Maharashtra. Conclusion: The developed HPTLC method was linear, accurate, and reliable as per the International Council for Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use guidelines. The study aids in the identification of elite chemotype for commercial prospection of industrially viable medicinal crop. SUMMARY 12 Samples are collected from different locations of the eastern ghat regionsQuantification of two major marker forskolin and iso forskolinThe maximum content of both the markers was found in NBC -31, from Thakurwada, MaharashtraIdentification of elite chemotype of collected samples may be useful for commercial prospection in industries. PMID:29491648

  8. Interaction of forskolin with the P-glycoprotein multidrug transporter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ming s, D.I.; Seamon, K.B.; Speicher, L.A.

    1991-08-27

    Forskolin and 1,9-dideoxyforskolin, an analogue that does not activate adenylyl cyclase, were tested for their ability to enhance the cytotoxic effects of adriamycin in human ovarian carcinoma cells, SKOV3, which are sensitive to adriamycin and express low levels of P-glycoprotein, and a variant cell line, SKVLB, which overexpresses the P-glycoprotein and has the multidrug reing ance (MDR) phenotype. Forskolin and 1,9-dideoxyforskolin both increased the cytotoxic effects of adriamycin in SKVLB cells, yet had no effect on SKOV3 cells. Two photoactive derivatives of forskolin have been synthesized, 7-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, and 6-O-((2-(3-(4-azido-3-({sup 125}I)iodophenyl)propionamido)ethyl)carbamyl)forskolin, {sup 125}I-6-AIPP-Fsk, which exhibit specificity for labelingmore » the glucose transporter and aing lyl cyclase, respectively. Both photolabels identified a 140-kDa protein in membranes from SKVLB cells whose labeling was inhibited by forskolin and 1,9-dideoxyforskolin. The data are consistent with forskolin binding to the P-glycoprotein analogous to that of other chemosensitizing drugs that have been shown to partially reverse MDR. The ability of forskolin photolabels to specifically label the transporter, the adenylyl cyclase, and the P-glycoprotein suggests that these proteins may share a common biing g domain for forskolin analogues.« less

  9. Defective Fluid Secretion from Submucosal Glands of Nasal Turbinates from CFTR-/- and CFTRΔF508/ΔF508 Pigs

    PubMed Central

    Cho, Hyung-Ju; Joo, Nam Soo; Wine, Jeffrey J.

    2011-01-01

    Background Cystic fibrosis (CF), caused by reduced CFTR function, includes severe sinonasal disease which may predispose to lung disease. Newly developed CF pigs provide models to study the onset of CF pathophysiology. We asked if glands from pig nasal turbinates have secretory responses similar to those of tracheal glands and if CF nasal glands show reduced fluid secretion. Methodology/Principal Findings Unexpectedly, we found that nasal glands differed from tracheal glands in five ways, being smaller, more numerous (density per airway surface area), more sensitive to carbachol, more sensitive to forskolin, and nonresponsive to Substance P (a potent agonist for pig tracheal glands). Nasal gland fluid secretion from newborn piglets (12 CF and 12 controls) in response to agonists was measured using digital imaging of mucus bubbles formed under oil. Secretion rates were significantly reduced in all conditions tested. Fluid secretory rates (Controls vs. CF, in pl/min/gland) were as follows: 3 µM forskolin: 9.2±2.2 vs. 0.6±0.3; 1 µM carbachol: 143.5±35.5 vs. 52.2±10.3; 3 µM forskolin + 0.1 µM carbachol: 25.8±5.8 vs. CF 4.5±0.9. We also compared CFΔF508/ΔF508 with CFTR-/- piglets and found significantly greater forskolin-stimulated secretion rates in the ΔF508 vs. the null piglets (1.4±0.8, n = 4 vs. 0.2±0.1, n = 7). An unexpected age effect was also discovered: the ratio of secretion to 3 µM forskolin vs. 1 µM carbachol was ∼4 times greater in adult than in neonatal nasal glands. Conclusions/Significance These findings reveal differences between nasal and tracheal glands, show defective fluid secretion in nasal glands of CF pigs, reveal some spared function in the ΔF508 vs. null piglets, and show unexpected age-dependent differences. Reduced nasal gland fluid secretion may predispose to sinonasal and lung infections. PMID:21935358

  10. Low reversibility of intracellular cAMP accumulation in mouse Leydig tumor cells (MLTC-1) stimulated by human Luteinizing Hormone (hLH) and Chorionic Gonadotropin (hCG).

    PubMed

    Klett, Danièle; Meslin, Philippine; Relav, Lauriane; Nguyen, Thi Mong Diep; Mariot, Julie; Jégot, Gwenhaël; Cahoreau, Claire; Combarnous, Yves

    2016-10-15

    In order to study the intracellular cAMP response kinetics of Leydig cells to hormones with LH activity, we used MLTC-1 cells transiently expressing a chimeric cAMP-responsive luciferase so that real-time variations of intracellular cAMP concentration could be followed using oxiluciferin luminescence produced from catalyzed luciferin oxidation. The potencies of the different LHs and CGs were evaluated using areas under the curves (AUC) of their kinetics over 60 min stimulation. All mammalian LHs and CGs tested were found to stimulate cAMP accumulation in these cells. The reversibility of this stimulation was studied by removing the hormone from the culture medium after 10 min of incubation. The ratios of kinetics AUC after removing or not the hormone were used to evaluate the stimulation reversibility of each hormone. Natural and recombinant hLHs and hCGs were found to exhibit slowly reversible activation compared to pituitary rat, ovine, porcine, camel and equine LHs, serum-derived eCG (PMSG) and recombinant eLH/CGs. Carbohydrate side chains are not involved in this phenomenon since natural and recombinant homologous hormones exhibit the same reversibility rates. It is still unknown whether only one human subunit, α or β, is responsible for this behaviour or whether it is due to a particular feature of the hLH and hCG quaternary structure. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Restitution of defective glucose-stimulated insulin secretion in diabetic GK rat by acetylcholine uncovers paradoxical stimulatory effect of beta-cell muscarinic receptor activation on cAMP production.

    PubMed

    Dolz, Manuel; Bailbé, Danielle; Giroix, Marie-Hélène; Calderari, Sophie; Gangnerau, Marie-Noelle; Serradas, Patricia; Rickenbach, Katharina; Irminger, Jean-Claude; Portha, Bernard

    2005-11-01

    Because acetylcholine (ACh) is a recognized potentiator of glucose-stimulated insulin release in the normal beta-cell, we have studied ACh's effect on islets of the Goto-Kakizaki (GK) rat, a spontaneous model of type 2 diabetes. We first verified that ACh was able to restore the insulin secretory glucose competence of the GK beta-cell. Then, we demonstrated that in GK islets 1) ACh elicited a first-phase insulin release at low glucose, whereas it had no effect in Wistar; 2) total phospholipase C activity, ACh-induced inositol phosphate production, and intracellular free calcium concentration ([Ca2+]i) elevation were normal; 3) ACh triggered insulin release, even in the presence of thapsigargin, which induced a reduction of the ACh-induced [Ca2+]i response (suggesting that ACh produces amplification signals that augment the efficacy of elevated [Ca2+]i on GK exocytosis); 4) inhibition of protein kinase C did not affect [Ca2+]i nor the insulin release responses to ACh; and 5) inhibition of cAMP-dependent protein kinases (PKAs), adenylyl cyclases, or cAMP generation, while not affecting the [Ca2+]i response, significantly lowered the insulinotropic response to ACh (at low and high glucose). In conclusion, ACh acts mainly through activation of the cAMP/PKA pathway to potently enhance Ca2+-stimulated insulin release in the GK beta-cell and, in doing so, normalizes its defective glucose responsiveness.

  12. Intracellular mechanism of the action of inhibin on the secretion of follicular stimulating hormone and of luteinizing hormone induced by LH-RH in vitro

    NASA Technical Reports Server (NTRS)

    Lecomte-Yerna, M. J.; Hazee-Hagelstein, M. T.; Charlet-Renard, C.; Franchimont, P.

    1982-01-01

    The FSH secretion-inhibiting action of inhibin in vitro under basal conditions and also in the presence of LH-RH is suppressed by the addition of MIX, a phosphodiesterase inhibitor. In the presence of LH-RH, inhibin reduces significantly the intracellular level of cAMP in isolated pituitary cells. In contrast, the simultaneous addition of MIX and inhibin raises the cAMP level, and this stimulation is comparable to the increase observed when MIX is added alone. These observations suggest that one mode of action of inhibin could be mediated by a reduction in cAMP within the pituitary gonadotropic cell.

  13. The Orphan G Protein-coupled Receptor Gpr175 (Tpra40) Enhances Hedgehog Signaling by Modulating cAMP Levels.

    PubMed

    Singh, Jaskirat; Wen, Xiaohui; Scales, Suzie J

    2015-12-04

    The Hedgehog (Hh) signaling pathway plays an essential role in vertebrate embryonic tissue patterning of many developing organs. Signaling occurs predominantly in primary cilia and is initiated by the entry of the G protein-coupled receptor (GPCR)-like protein Smoothened into cilia and culminates in gene transcription via the Gli family of transcription factors upon their nuclear entry. Here we identify an orphan GPCR, Gpr175 (also known as Tpra1 or Tpra40: transmembrane protein, adipocyte associated 1 or of 40 kDa), which also localizes to primary cilia upon Hh stimulation and positively regulates Hh signaling. Interaction experiments place Gpr175 at the level of PKA and upstream of the Gαi component of heterotrimeric G proteins, which itself localizes to cilia and can modulate Hh signaling. Gpr175 or Gαi1 depletion leads to increases in cellular cAMP levels and in Gli3 processing into its repressor form. Thus we propose that Gpr175 coupled to Gαi1 normally functions to inhibit the production of cAMP by adenylyl cyclase upon Hh stimulation, thus maximizing signaling by turning off PKA activity and hence Gli3 repressor formation. Taken together our data suggest that Gpr175 is a novel positive regulator of the Hh signaling pathway. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  14. Phytonutrient genistein is a survival factor for pancreatic β-cells via GPR30-mediated mechanism.

    PubMed

    Luo, Jing; Wang, Aihua; Zhen, Wei; Wang, Yao; Si, Hongwei; Jia, Zhenquan; Alkhalidy, Hana; Cheng, Zhiyong; Gilbert, Elizabeth; Xu, Bin; Liu, Dongmin

    2018-05-12

    We previously discovered that phytonutrient genistein rapidly activates cAMP signaling in β-cells and improves islet mass in diabetic mice. However, the mechanism underlying these actions of genistein is still unclear. Here, we show that pharmacological or molecular inhibition of Gαs blocked genistein-stimulated adenylate cyclase activity in plasma membrane and intracellular cAMP production in INS1 cells and islets. Further, genistein stimulation of cAMP generation was abolished in islets exposed to a specific GPR30 inhibitor G15 or islets from GPR30 deficient (GPR30-/-) mice. In vivo, dietary provision of genistein (0.5 g/kg diet) significantly mitigated streptozotocin-induced hyperglycemia in male WT mice, which was associated with improved blood insulin levels and pancreatic islet mass and survival, whereas these effects were absent in Gpr30-/- mice. Genistein treatment promoted survival of INS1 cells and human islets chronically exposed to palmitate and high glucose. At molecular level, genistein activated CREB phosphorylation and subsequently induced Bcl-2 expression, and knockdown of CREB diminished the protective effect of genistein on β-cells induced by lipoglucotoxicity. Finally, deletion of GPR30 in β-cells or islets ablated genistein-induced CREB phosphorylation and its cytoprotective effect. These findings demonstrate that genistein is a survival factor for β-cells via GPR30-initiated, Gαs-mediated activation of CREB. Copyright © 2018 Elsevier Inc. All rights reserved.

  15. Combined activity of post-exercise concentrations of NA and eHsp72 on human neutrophil function: role of cAMP.

    PubMed

    Giraldo, Esther; Hinchado, María D; Ortega, Eduardo

    2013-09-01

    Extracellular heat shock proteins of 72 kDa (eHsp72) and noradrenaline (NA) can act as "danger signals" during exercise-induced stress by activating neutrophil function (chemotaxis, phagocytosis, and fungicidal capacity). In addition, post-exercise concentrations of NA increase the expression and release of Hsp72 by human neutrophils, and adrenoreceptors and cAMP are involved in the stimulation of neutrophils by eHsp72. This suggests an interaction between the two molecules in the modulation of neutrophils during exercise-induced stress. Given this context, the aim of the present investigation was to study the combined activity of post-exercise circulating concentrations of NA and eHsp72 on the neutrophil phagocytic process, and to evaluate the role of cAMP as intracellular signal in these effects. Results showed an accumulative stimulation of chemotaxis induced by NA and eHsp72. However, while NA and eHsp72, separately, stimulate the phagocytosis and fungicidal activity of neutrophils, when they act together they do not modify these capacities of neutrophils. Similarly, post-exercise concentrations of NA and eHsp72 separately increased the intracellular level of cAMP, but NA and eHsp72 acting together did not modify the intracellular concentration of cAMP. These results confirm that cAMP can be involved in the autocrine/paracrine physiological regulation of phagocytosis and fungicidal capacity of human neutrophils mediated by NA and eHsp72 in the context of exercise-induced stress. Copyright © 2013 Wiley Periodicals, Inc.

  16. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    NASA Astrophysics Data System (ADS)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  17. A High Throughput Screening Assay System for the Identification of Small Molecule Inhibitors of gsp

    PubMed Central

    Bhattacharyya, Nisan; Hu, Xin; Chen, Catherine Z.; Mathews Griner, Lesley A.; Zheng, Wei; Inglese, James; Austin, Christopher P.; Marugan, Juan J.; Southall, Noel; Neumann, Susanne; Northup, John K.; Ferrer, Marc; Collins, Michael T.

    2014-01-01

    Mis-sense mutations in the α-subunit of the G-protein, Gsα, cause fibrous dysplasia of bone/McCune-Albright syndrome. The biochemical outcome of these mutations is constitutively active Gsα and increased levels of cAMP. The aim of this study was to develop an assay system that would allow the identification of small molecule inhibitors specific for the mutant Gsα protein, the so-called gsp oncogene. Commercially available Chinese hamster ovary cells were stably transfected with either wild-type (WT) or mutant Gsα proteins (R201C and R201H). Stable cell lines with equivalent transfected Gsα protein expression that had relatively lower (WT) or higher (R201C and R201H) cAMP levels were generated. These cell lines were used to develop a fluorescence resonance energy transfer (FRET)–based cAMP assay in 1536-well microplate format for high throughput screening of small molecule libraries. A small molecule library of 343,768 compounds was screened to identify modulators of gsp activity. A total of 1,356 compounds with inhibitory activity were initially identified and reconfirmed when tested in concentration dose responses. Six hundred eighty-six molecules were selected for further analysis after removing cytotoxic compounds and those that were active in forskolin-induced WT cells. These molecules were grouped by potency, efficacy, and structural similarities to yield 22 clusters with more than 5 of structurally similar members and 144 singleton molecules. Seven chemotypes of the major clusters were identified for further testing and analyses. PMID:24667240

  18. Rosmarinic acid suppresses adipogenesis, lipolysis in 3T3-L1 adipocytes, lipopolysaccharide-stimulated tumor necrosis factor-α secretion in macrophages, and inflammatory mediators in 3T3-L1 adipocytes

    PubMed Central

    Rui, Yehua; Tong, Lingxia; Cheng, Jinbo; Wang, Guiping; Qin, Liqiang; Wan, Zhongxiao

    2017-01-01

    ABSTRACT Background: Rosmarinic acid (RA) is a natural phenol carboxylic acid with many promising biological effects. It may be a suitable candidate for improving obesity-related adipose tissue dysfunction. Objective: We aimed to investigate the therapeutic use of RA as an anti-obesity agent by measuring its effects on adipogenesis, lipolysis, and messenger RNA (mRNA) expression of major adipokines in 3T3-L1 adipocytes; and its effects on lipopolysaccharide (LPS)-induced tumor necrosis factor-α (TNF-α) secretion in macrophages and inflammatory mediators in 3T3-L1 adipocytes incubated with macrophage-conditioned medium (MCM). Methods: 3T3-L1 preadipocytes were used to explore how RA affects adipogenesis, as well as the involvement of phosphorylated extracellular signal-regulated kinase-1/2 (p-ERK1/2) and mothers against decapentaplegic homolog 3 (p-Smad3). 3T3-L1 preadipocytes were also differentiated into mature adipocytes to explore how RA affects basal and isoproterenol- and forskolin-stimulated lipolysis; and how RA affects key adipokines’ mRNA expression. RAW 264.7 macrophages were stimulated with LPS in the absence or presence of RA to explore RA’s effects on TNF-α secretion. MCM was collected and 3T3-L1 adipocytes were incubated with MCM to explore RA’s effects on interleukin-6 (IL-6), IL-1β, monocyte chemoattractant protein-1 (MCP-1), and RANTES mRNA expression. Results: During the preadipocyte differentiation process, RA suppressed peroxisome proliferator-activated receptor-γ and CCAAT/enhancer binding protein-α, and activated p-ERK1/2 and p-Smad3; inhibition of adipogenesis by RA was partially restored following treatment with p-ERK1/2 and p-Smad3 inhibitors. In mature adipocytes, RA inhibited basal lipolysis; phosphodiesterase-3 inhibitor reversed this. RA also inhibited isoproterenol- and forskolin-stimulated glycerol and free fatty acid release, and the phosphorylation of hormone-sensitive lipase and perilipin. RA had no effects on leptin, adiponectin, resistin, or visfatin mRNA expression. RA suppressed TNF-α mRNA expression and secretion in LPS-stimulated RAW 264.7 macrophages; and reduced LPS-MCM-induced IL-6, IL-1β, MCP-1, and RANTES mRNA expression in 3T3-L1 adipocytes. Conclusions: RA exerts inhibitory effects on adipogenesis, lipolysis, and inflammation. RA could be a promising natural product for improving adipose mobilization in obesity. PMID:28659738

  19. Calcium-dependent phosphodiesterase 1C inhibits renin release from isolated juxtaglomerular cells

    PubMed Central

    Ortiz-Capisano, M. Cecilia; Liao, Tang-Dong; Ortiz, Pablo A.

    2009-01-01

    Renin release from the juxtaglomerular (JG) cell is stimulated by the second messenger cAMP and inhibited by calcium. We previously showed JG cells contain a calcium sensing receptor (CaSR), which, when stimulated, decreases cAMP formation and inhibits renin release. We hypothesize CaSR activation decreases cAMP and renin release, in part, by stimulating a calcium calmodulin-activated phosphodiesterase 1 (PDE1). We incubated our primary culture of JG cells with two selective PDE1 inhibitors [8-methoxymethil-IBMX (8-MM-IBMX; 20 μM) and vinpocetine (40 μM)] and the calmodulin inhibitor W-7 (10 μM) and measured cAMP and renin release. Stimulation of the JG cell CaSR with the calcimimetic cinacalcet (1 μM) resulted in decreased cAMP from a basal of 1.13 ± 0.14 to 0.69 ± 0.08 pM/mg protein (P < 0.001) and in renin release from 0.89 ± 0.16 to 0.38 ± 0.08 μg ANG I/ml·h−1·mg protein−1 (P < 0.001). However, the addition of 8-MM-IBMX with cinacalcet returned both cAMP (1.10 ± 0.19 pM/mg protein) and renin (0.57 ± 0.16 μg ANG I/ml·h−1·mg protein−1) to basal levels. Similar results were obtained with vinpocetine, and also with W-7. Combining 8-MM-IBMX and W-7 had no additive effect. To determine which PDE1 isoform is involved, we performed Western blot analysis for PDE1A, B, and C. Only Western blot analysis for PDE1C showed a characteristic band apparent at 80 kDa. Immunofluorescence showed cytoplasmic distribution of PDE1C and renin in the JG cells. In conclusion, PDE1C is expressed in isolated JG cells, and contributes to calcium's inhibitory modulation of renin release from JG cells. PMID:19741056

  20. G-protein βγ subunits in vasorelaxing and anti-endothelinergic effects of calcitonin gene-related peptide.

    PubMed

    Meens, M J P M T; Mattheij, N J A; van Loenen, P B; Spijkers, L J A; Lemkens, P; Nelissen, J; Compeer, M G; Alewijnse, A E; De Mey, J G R

    2012-05-01

    Calcitonin gene-related peptide (CGRP) has been proposed to relax vascular smooth muscle cells (VSMC) via cAMP and can promote dissociation of endothelin-1 (ET-1) from ET(A) receptors. The latter is not mimicked by other stimuli of adenylate cyclases. Therefore, we evaluated the involvement of G-protein βγ subunits (Gβγ) in the arterial effects of CGRP receptor stimulation. To test the hypothesis that instead of α subunits of G-proteins (Gαs), Gβγ mediates the effects of CGRP receptor activation, we used (i) rat isolated mesenteric resistance arteries (MRA), (ii) pharmacological modulators of cyclic nucleotides; and (iii) low molecular weight inhibitors of the functions of Gβγ, gallein and M119. To validate these tools with respect to CGRP receptor function, we performed organ bath studies with rat isolated MRA, radioligand binding on membranes from CHO cells expressing human CGRP receptors and cAMP production assays in rat cultured VSMC. In isolated arteries contracted with K(+) or ET-1, IBMX (PDE inhibitor) increased sodium nitroprusside (SNP)- and isoprenaline (ISO)- but not CGRP-induced relaxations. While fluorescein (negative control) was without effects, gallein increased binding of [(125) I]-CGRP in the absence and presence of GTPγS. Gallein also increased CGRP-induced cAMP production in VSMC. Despite these stimulating effects, gallein and M119 selectively inhibited the relaxing and anti-endothelinergic effects of CGRP in isolated arteries while not altering contractile responses to K(+) or ET-1 or relaxing responses to ISO or SNP. Activated CGRP receptors induce cyclic nucleotide-independent relaxation of VSMC and terminate arterial effects of ET-1 via Gβγ. © 2011 The Authors. British Journal of Pharmacology © 2011 The British Pharmacological Society.

  1. Compartmentalized PDE4A5 Signaling Impairs Hippocampal Synaptic Plasticity and Long-Term Memory.

    PubMed

    Havekes, Robbert; Park, Alan J; Tolentino, Rosa E; Bruinenberg, Vibeke M; Tudor, Jennifer C; Lee, Yool; Hansen, Rolf T; Guercio, Leonardo A; Linton, Edward; Neves-Zaph, Susana R; Meerlo, Peter; Baillie, George S; Houslay, Miles D; Abel, Ted

    2016-08-24

    Alterations in cAMP signaling are thought to contribute to neurocognitive and neuropsychiatric disorders. Members of the cAMP-specific phosphodiesterase 4 (PDE4) family, which contains >25 different isoforms, play a key role in determining spatial cAMP degradation so as to orchestrate compartmentalized cAMP signaling in cells. Each isoform binds to a different set of protein complexes through its unique N-terminal domain, thereby leading to targeted degradation of cAMP in specific intracellular compartments. However, the functional role of specific compartmentalized PDE4 isoforms has not been examined in vivo Here, we show that increasing protein levels of the PDE4A5 isoform in mouse hippocampal excitatory neurons impairs a long-lasting form of hippocampal synaptic plasticity and attenuates hippocampus-dependent long-term memories without affecting anxiety. In contrast, viral expression of a truncated version of PDE4A5, which lacks the unique N-terminal targeting domain, does not affect long-term memory. Further, overexpression of the PDE4A1 isoform, which targets a different subset of signalosomes, leaves memory undisturbed. Fluorescence resonance energy transfer sensor-based cAMP measurements reveal that the full-length PDE4A5, in contrast to the truncated form, hampers forskolin-mediated increases in neuronal cAMP levels. Our study indicates that the unique N-terminal localization domain of PDE4A5 is essential for the targeting of specific cAMP-dependent signaling underlying synaptic plasticity and memory. The development of compounds to disrupt the compartmentalization of individual PDE4 isoforms by targeting their unique N-terminal domains may provide a fruitful approach to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. Neurons exhibit localized signaling processes that enable biochemical cascades to be activated selectively in specific subcellular compartments. The phosphodiesterase 4 (PDE4) family coordinates the degradation of cAMP, leading to the local attenuation of cAMP-dependent signaling pathways. Sleep deprivation leads to increased hippocampal expression of the PDE4A5 isoform. Here, we explored whether PDE4A5 overexpression mimics behavioral and synaptic plasticity phenotypes associated with sleep deprivation. Viral expression of PDE4A5 in hippocampal neurons impairs long-term potentiation and attenuates the formation of hippocampus-dependent long-term memories. Our findings suggest that PDE4A5 is a molecular constraint on cognitive processes and may contribute to the development of novel therapeutic approaches to prevent cognitive deficits in neuropsychiatric and neurocognitive disorders that are associated with alterations in cAMP signaling. Copyright © 2016 Havekes et al.

  2. Elevated leukocyte phosphodiesterase as a basis for depressed cyclic adenosine monophosphate responses in the Basenji greyhound dog model of asthma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, S.C.; Hanifin, J.M.; Holden, C.A.

    1985-08-01

    The BG dog manifests various characteristics of human asthma, including airway hyperreactivity to low concentrations of methacholine. Studies have suggested that airway hyperreactivity in asthma is related to inadequate intracellular cAMP responses. The authors studied cAMP characteristics in MNL from 19 BG and 14 mongrel dogs. beta-Adrenergic receptors were assessed by /sup 125/I CYP in the presence and absence of propranolol. The responses of cAMP to ISO were measured by radioimmunoassay. Adenylate cyclase activity was determined in homogenized MNL preparations by cAMP generation. PDE activity was quantitated by radioenzyme assay. Mongrel dog leukocyte ISO-stimulated cAMP levels doubled, whereas there weremore » negligible increases in MNL from BG dogs. Basal PDE levels were higher in BG dogs than in mongrel dogs. The PDE inhibitor Ro 20-1724 restored ISO-stimulated cAMP responses in MNL of BG dogs. Adenylate cyclase activity was not lower in MNL homogenates from BG dogs than in mongrel dogs. Cells from both BG and mongrel dogs demonstrated similar receptor numbers and affinities of saturable, specific beta-adrenergic binding over a 10 pM to 400 pM range. The results suggest that depressed cAMP responses in BG dogs are due to high PDE activity rather than to a defect in the beta-adrenergic receptor adenylate cyclase system.« less

  3. Pertussis toxin treatment does not block inhibition by atrial natriuretic factor of aldosterone secretion in cultured bovine zona glomerulosa cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Lean, A.; Cantin, M.

    1986-03-05

    The authors have previously reported that atrial natriuretic factor (ANF) potently inhibits PGE or forskolin-stimulation aldosterone secretion in bovine zona glomerulosa (ZG) by acting through specific high affinity receptors. In order to evaluate the functional role of the regulatory protein N/sub i/ and the inhibition of adenylate cyclase activity (AC) in ZG, the authors have studied the effect of treatment with PT on inhibition by ANF of aldosterone production. Primary cultures of ZG were treated for 18 hours in serum-free F12 medium with (0-100 ng/ml PT). No effect of PT pretreatment was observed either on basal, PGE-stimulated or ANF-inhibited levelsmore » of steroidogenesis. When membranes prepared from control ZG were ADP-ribosylated with (/sup 32/P) NAD in the presence of PT, two toxin-specific bands with 39 Kd and 41 Kd were documented on SDS gel. Cell pretreatment with as low as 1 ng/ml drastically reduced further labelling of these two bands while higher doses completely abolished them. Since PT treatment covalently modifies completely the toxin substrate without altering ANF inhibition of adrenal steroidogenesis, the authors conclude that N/sub i/ is not involved in the mode of action of ANF on aldosterone production.« less

  4. Decreased hepatic response to glucagon, adrenergic agonists, and cAMP in glycogenolysis, gluconeogenesis, and glycolysis in tumor-bearing rats.

    PubMed

    Biazi, Giuliana R; Frasson, Isabele G; Miksza, Daniele R; de Morais, Hely; de Fatima Silva, Flaviane; Bertolini, Gisele L; de Souza, Helenir M

    2018-05-15

    The response to glucagon and adrenaline in cancer cachexia is poorly known. The aim of this study was to investigate the response to glucagon, adrenergic agonists (α and β) and cyclic adenosine monophosphate (cAMP) on glycogenolysis, gluconeogenesis, and glycolysis in liver perfusion of Walker-256 tumor-bearing rats with advanced cachexia. Liver ATP content was also investigated. Rats without tumor (healthy) were used as controls. Agonists α (phenylephrine) and β (isoproterenol) adrenergic, instead of adrenaline, and cAMP, the second messenger of glucagon and isoproterenol, were used in an attempt to identify mechanisms involved in the responses. Glucagon (1 nM) stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis in the liver of healthy and tumor-bearing rats, but their effects were lower in tumor-bearing rats. Isoproterenol (20 µM) stimulated glycogenolysis, gluconeogenesis, and glycolysis in healthy rats and had virtually no effect in tumor-bearing rats. cAMP (9 µM) also stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis in healthy rats but had practically no effect in tumor-bearing rats. Phenylephrine (2 µM) stimulated glycogenolysis and gluconeogenesis and inhibited glycolysis and these effects were also lower in tumor-bearing rats than in healthy. Liver ATP content was lower in tumor-bearing rats. In conclusion, tumor-bearing rats with advanced cachexia showed a decreased hepatic response to glucagon, adrenergic agonists (α and β), and cAMP in glycogenolysis, gluconeogenesis, and glycolysis, which may be due to a reduced rate of regulatory enzyme phosphorylation caused by the low ATP levels in the liver. © 2018 Wiley Periodicals, Inc.

  5. Regulation of cyclic AMP metabolism by prostaglandins in rabbit cortical collecting tubule cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenburg, W.K.

    1987-01-01

    In the rabbit cortical collecting tubule (RCCT), prostaglandin E/sub 1/ (PGE/sub 1/) and prostaglandin E/sub 2/ (PGE/sub 2/) at 1 nM inhibit arginine-vasopressin (AVP)-induced water reabsorption, while 100 nM PGE/sub 1/ and PGE/sub 2/ alone stimulate water reabsorption. Reported here are studies designed to investigate the molecular basis for the biphasic physiological action of PGE/sub 1/ and PGE/sub 2/ in the collecting duct. In freshly isolated RCCT cells, PGE/sub 1/, PGE/sub 2/, and 16,16-dimethyl-PGE/sub 2/ (DM-PGE/sub 2/) stimulated cAMP synthesis at concentrations ranging from 0.1 to 10 M. Other prostaglandins including the synthetic PGE/sub 2/ analogue, sulprostone, failed to stimulatemore » cAMP synthesis. Moreover, sulprostone did not antagonize PGE/sub 2/-stimulated cAMP formation. In contrast, PGE/sub 2/ and sulprostone at concentrations ranging from 1 to 100 nM, inhibited AVP-induced cAMP accumulation in freshly isolated RCCT cells. PGE/sub 2/, PGE/sub 1/, DM-PGE/sub 2/ and sulprostone at 100 nM were equally effective in inhibiting AVP-induced cAMP formation. Moreover sulprostone inhibited AVP-stimulated adenylate cyclase activity. These results suggest that PGE derivatives mediate either inhibition or activation of adenylate cyclase by stimulating different PGE receptors. To further test this concept, PGE/sub 2/ binding to freshly isolated RCCT cell membranes was characterized. Two different classes of PGE/sub 2/ binding were detected. //sup 3/H/PGE/sub 2/ binding to the high affinity class of sites was increased by the GTP-analogue, GTP S, while pertussis toxin pretreatment blocked the stimulatory action. In contrast, //sup 3/H/ PGE/sub 2/ binding to the low affinity class of sites was decreased by GTP S; this inhibitory effect was not blocked by pertussis toxin pretreatment.« less

  6. AMP-activated protein kinase and adenosine are both metabolic modulators that regulate chloride secretion in the shark rectal gland ( Squalus acanthias).

    PubMed

    Neuman, Rugina I; van Kalmthout, Juliette A M; Pfau, Daniel J; Menendez, Dhariyat M; Young, Lawrence H; Forrest, John N

    2018-04-01

    The production of endogenous adenosine during secretagogue stimulation of CFTR leads to feedback inhibition limiting further chloride secretion in the rectal gland of the dogfish shark (Squalus acanthias). In the present study, we examined the role of AMP-kinase (AMPK) as an energy sensor also modulating chloride secretion through CFTR. We found that glands perfused with forskolin and isobutylmethylxanthine (F + I), potent stimulators of chloride secretion in this ancient model, caused significant phosphorylation of the catalytic subunit Thr 172 of AMPK. These findings indicate that AMPK is activated during energy-requiring stimulated chloride secretion. In molecular studies, we confirmed that the activating Thr 172 site is indeed present in the α-catalytic subunit of AMPK in this ancient gland, which reveals striking homology to AMPKα subunits sequenced in other vertebrates. When perfused rectal glands stimulated with F + I were subjected to severe hypoxic stress or perfused with pharmacologic inhibitors of metabolism (FCCP or oligomycin), phosphorylation of AMPK Thr 172 was further increased and chloride secretion was dramatically diminished. The pharmacologic activation of AMPK with AICAR-inhibited chloride secretion, as measured by short-circuit current, when applied to the apical side of shark rectal gland monolayers in primary culture. These results indicate that that activated AMPK, similar to adenosine, transmits an inhibitory signal from metabolism, that limits chloride secretion in the shark rectal gland.

  7. Agonist-dependent modulation of G-protein coupling and transduction of 5-HT1A receptors in rat dorsal raphe nucleus.

    PubMed

    Valdizán, Elsa Maria; Castro, Elena; Pazos, Angel

    2010-08-01

    5-HT1A receptors couple to different Go/Gi proteins in order to mediate a wide range of physiological actions. While activation of post-synaptic 5-HT1A receptors is mainly related to inhibition of adenylyl cyclase activity, functionality of autoreceptors located in raphe nuclei has been classically ascribed to modifications of the activity of potassium and calcium channels. In order to evaluate the possible existence of agonist-directed trafficking for 5-HT1A autoreceptors in the rat dorsal raphe nucleus, we studied their activation by two agonists with a different profile of efficacy [(+)8-OH-DPAT and buspirone], addressing simultaneously the identification of the specific Galpha subtypes ([35S]GTPgammaS labelling and immunoprecipitation) involved and the subsequent changes in cAMP formation. A significant increase (32%, p<0.05) in (+)8-OH-DPAT-induced [35S]GTPgammaS labelling of immunoprecipitates was obtained with anti-Galphai3 antibodies but not with anti-Galphao, anti-Galphai1, anti-Galphai2, anti-Galphaz or anti-Galphas antibodies. In contrast, in the presence of buspirone, significant [35S]GTPgammaS labelling of immunoprecipitates was obtained with anti-Galphai3 (50%, p<0.01), anti-Galphao (32%, p<0.01) and anti-Galphai2 (29%, p<0.05) antibodies, without any labelling with anti-Galphai1, anti-Galphaz or anti-Galphas. The selective 5-HT1A antagonist WAY 100635 blocked the labelling induced by both agonists. Furthermore, (+)8-OH-DPAT failed to modify forskolin-stimulated cAMP accumulation, while buspirone induced a dose-dependent, WAY 100635-sensitive, inhibition of this response (Imax 30.8+/-4.9, pIC50 5.95+/-0.46). These results demonstrate the existence of an agonist-dependency pattern of G-protein coupling and transduction for 5-HT1A autoreceptors in native brain tissue. These data also open new perspectives for the understanding of the differential profiles of agonist efficacy in pre- vs. post-synaptic 5-HT1A receptor-associated responses.

  8. Differential homologous desensitization of the human histamine H3 receptors of 445 and 365 amino acids expressed in CHO-K1 cells.

    PubMed

    García-Gálvez, Ana-Maricela; Escamilla-Sánchez, Juan; Flores-Maldonado, Catalina; Contreras, Rubén-Gerardo; Arias, Juan-Manuel; Arias-Montaño, José-Antonio

    2018-01-01

    Histamine H 3 receptors (H 3 Rs) signal through Gα i/o proteins and are found in neuronal cells as auto- and hetero-receptors. Alternative splicing of the human H 3 R (hH 3 R) originates 20 isoforms, and the mRNAs of two receptors of 445 and 365 amino acids (hH 3 R 445 and hH 3 R 365 ) are widely expressed in the human brain. We previously showed that the hH 3 R 445 stably expressed in CHO-K1 cells experiences homologous desensitization. The hH 3 R 365 lacks 80 residues in the third intracellular loop, and in this work we therefore studied whether this isoform also experiences homologous desensitization and the possible differences with the hH 3 R 445 . In clones of CHO-K1 cells stably expressing similar receptor levels (211 ± 12 and 199 ± 16 fmol/mg protein for hH 3 R 445 and hH 3 R 365 , respectively), there were no differences in receptor affinity for selective H 3 R ligands or for agonist-induced [ 35 S]-GTPγS binding to membranes and inhibition of forskolin-stimulated cAMP accumulation in intact cells. For both cell clones, pre-incubation with the H 3 R agonist RAMH (1 μM) resulted in functional receptor desensitization, as indicated by cAMP accumulation assays, and loss of receptors from the cell surface and reduced affinity for the agonist immepip in cell membranes, evaluated by radioligand binding. However, functional desensitization differed in the maximal extent (96 ± 15% and 58 ± 8% for hH 3 R 445 and hH 3 R 365 , respectively) and the length of pre-exposure required to reach the maximum desensitization (60 and 30 min, respectively). Furthermore, the isoforms differed in their recovery from desensitization. These results indicate that the hH 3 R 365 experiences homologous desensitization, but that the process differs between the isoforms in time-course, magnitude and re-sensitization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents.

    PubMed

    Mani, Bharath K; Robakowski, Christina; Brueggemann, Lyubov I; Cribbs, Leanne L; Tripathi, Abhishek; Majetschak, Matthias; Byron, Kenneth L

    2016-03-01

    Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K(+) currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 > Kv7.4/Kv7.5 > Kv7.4. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  10. Kv7.5 Potassium Channel Subunits Are the Primary Targets for PKA-Dependent Enhancement of Vascular Smooth Muscle Kv7 Currents

    PubMed Central

    Mani, Bharath K.; Robakowski, Christina; Brueggemann, Lyubov I.; Cribbs, Leanne L.; Tripathi, Abhishek; Majetschak, Matthias

    2016-01-01

    Kv7 (KCNQ) channels, formed as homo- or heterotetramers of Kv7.4 and Kv7.5 α-subunits, are important regulators of vascular smooth muscle cell (VSMC) membrane voltage. Recent studies demonstrate that direct pharmacological modulation of VSMC Kv7 channel activity can influence blood vessel contractility and diameter. However, the physiologic regulation of Kv7 channel activity is still poorly understood. Here, we study the effect of cAMP/protein kinase A (PKA) activation on whole cell K+ currents through endogenous Kv7.5 channels in A7r5 rat aortic smooth muscle cells or through Kv7.4/Kv7.5 heteromeric channels natively expressed in rat mesenteric artery smooth muscle cells. The contributions of specific α-subunits are further dissected using exogenously expressed human Kv7.4 and Kv7.5 homo- or heterotetrameric channels in A7r5 cells. Stimulation of Gαs-coupled β-adrenergic receptors with isoproterenol induced PKA-dependent activation of endogenous Kv7.5 currents in A7r5 cells. The receptor-mediated enhancement of Kv7.5 currents was mimicked by pharmacological agents that increase [cAMP] (forskolin, rolipram, 3-isobutyl-1-methylxanthine, and papaverine) or mimic cAMP (8-bromo-cAMP); the 2- to 4-fold PKA-dependent enhancement of currents was also observed with exogenously expressed Kv7.5 channels. In contrast, exogenously-expressed heterotetrameric Kv7.4/7.5 channels in A7r5 cells or native mesenteric artery smooth muscle Kv7.4/7.5 channels were only modestly enhanced, and homo-tetrameric Kv7.4 channels were insensitive to this regulatory pathway. Correspondingly, proximity ligation assays indicated that isoproterenol induced PKA-dependent phosphorylation of exogenously expressed Kv7.5 channel subunits, but not of Kv7.4 subunits. These results suggest that signal transduction-mediated responsiveness of vascular smooth muscle Kv7 channel subunits to cAMP/PKA activation follows the order of Kv7.5 >> Kv7.4/Kv7.5 > Kv7.4. PMID:26700561

  11. Identification of the fatty acid activation site on human ClC-2.

    PubMed

    Cuppoletti, John; Tewari, Kirti P; Chakrabarti, Jayati; Malinowska, Danuta H

    2017-06-01

    Fatty acids (including lubiprostone and cobiprostone) are human ClC-2 (hClC-2) Cl - channel activators. Molecular and cellular mechanisms underlying this activation were examined. Role of a four-amino acid PKA activation site, RGET 691 , of hClC-2 was investigated using wild-type (WT) and mutant (AGET, RGEA, and AGAA) hClC-2 expressed in 293EBNA cells as well as involvement of PKA, intracellular cAMP concentration ([cAMP] i ), EP 2 , or EP 4 receptor agonist activity. All fatty acids [lubiprostone, cobiprostone, eicosatetraynoic acid (ETYA), oleic acid, and elaidic acid] caused significant rightward shifts in concentration-dependent Cl - current activation (increasing EC 50 s) with mutant compared with WT hClC-2 channels, without changing time and voltage dependence, current-voltage rectification, or methadone inhibition of the channel. As with lubiprostone, cobiprostone activation of hClC-2 occurred with PKA inhibitor (myristoylated protein kinase inhibitor) present or when using double PKA activation site (RRAA 655 /RGEA 691 ) mutant. Cobiprostone did not activate human CFTR. Fatty acids did not increase [cAMP] i in hClC-2/293EBNA or T84 cells. Using T84 CFTR knockdown cells, cobiprostone increased hClC-2 Cl - currents without increasing [cAMP] i, while PGE 2 and forskolin-IBMX increased both. Fatty acids were not agonists of EP 2 or EP 4 receptors. L-161,982, a supposed EP 4 -selective inhibitor, had no effect on lubiprostone-activated hClC-2 Cl - currents but significantly decreased T84 cell barrier function measured by transepithelial resistance and fluorescent dextran transepithelial movement. The present findings show that RGET 691 of hClC-2 (possible binding site) plays an important functional role in fatty acid activation of hClC-2. PKA, [cAMP] i , and EP 2 or EP 4 receptors are not involved. These studies provide the molecular basis for fatty acid regulation of hClC-2. Copyright © 2017 the American Physiological Society.

  12. Parathyroid Hormone-Related Protein Negatively Regulates Tumor Cell Dormancy Genes in a PTHR1/Cyclic AMP-Independent Manner

    PubMed Central

    Johnson, Rachelle W.; Sun, Yao; Ho, Patricia W. M.; Chan, Audrey S. M.; Johnson, Jasmine A.; Pavlos, Nathan J.; Sims, Natalie A.; Martin, T. John

    2018-01-01

    Parathyroid hormone-related protein (PTHrP) expression in breast cancer is enriched in bone metastases compared to primary tumors. Human MCF7 breast cancer cells “home” to the bones of immune deficient mice following intracardiac inoculation, but do not grow well and stain negatively for Ki67, thus serving as a model of breast cancer dormancy in vivo. We have previously shown that PTHrP overexpression in MCF7 cells overcomes this dormant phenotype, causing them to grow as osteolytic deposits, and that PTHrP-overexpressing MCF7 cells showed significantly lower expression of genes associated with dormancy compared to vector controls. Since early work showed a lack of cyclic AMP (cAMP) response to parathyroid hormone (PTH) in MCF7 cells, and cAMP is activated by PTH/PTHrP receptor (PTHR1) signaling, we hypothesized that the effects of PTHrP on dormancy in MCF7 cells occur through non-canonical (i.e., PTHR1/cAMP-independent) signaling. The data presented here demonstrate the lack of cAMP response in MCF7 cells to full length PTHrP(1–141) and PTH(1–34) in a wide range of doses, while maintaining a response to three known activators of adenylyl cyclase: calcitonin, prostaglandin E2 (PGE2), and forskolin. PTHR1 mRNA was detectable in MCF7 cells and was found in eight other human breast and murine mammary carcinoma cell lines. Although PTHrP overexpression in MCF7 cells changed expression levels of many genes, RNAseq analysis revealed that PTHR1 was unaltered, and only 2/32 previous PTHR1/cAMP responsive genes were significantly upregulated. Instead, PTHrP overexpression in MCF7 cells resulted in significant enrichment of the calcium signaling pathway. We conclude that PTHR1 in MCF7 breast cancer cells is not functionally linked to activation of the cAMP pathway. Gene expression responses to PTHrP overexpression must, therefore, result from autocrine or intracrine actions of PTHrP independent of PTHR1, through signals emanating from other domains within the PTHrP molecule. PMID:29867773

  13. Bifunctional Bisphosphonates for Delivering Biomolecules to Bone

    DTIC Science & Technology

    2012-01-13

    targeted PTH stimulated greater synthesis of cAMP in preosteoblasts compared to surfaces with simply adsorbed PTH. HBPs were also found to have similar pro...targeted PTH stimulated greater synthesis of cAMP in pre- osteoblasts compared to surfaces with simply adsorbed PTH. HBPs were also found to have similar...30 Chapter Two: Synthesis and Characterization of Bifunctional Bisphosphonates….31 Experimental Section……………………………………………………….……38 Reagents

  14. Aniracetam improves behavioural responses and facilitates signal transduction in the rat brain.

    PubMed

    Ventra, C; Grimaldi, M; Meucci, O; Scorziello, A; Apicella, A; Filetti, E; Marino, A; Schettini, G

    1994-01-01

    The effect of aniracetam (10, 50, 100 mg/kg i.p. daily for 15 days) on both behavioural and biochemical parameters was investigated in the adult rat. Animals given aniracetam (50 mg/kg 1 h before the trial) showed a significant increase in the percentage of conditioned active avoidance responses and a reduction of latency times. Aniracetam significantly counteracted the scopolamine-induced memory failure at the passive avoidance (step down) test, while it did not modify the locomotion of the animals. In purified frontocortical and hippocampal synaptic membranes of rats treated with aniracetam (50 mg/kg i.p. daily for 15 days) a potentiation of basal, carbamylcholine-, dopamine- and norepinephrine-stimulated adenylyl cyclase activity was observed, while forskolin-stimulated enzyme activity was not modified. With regard to inositol phosphate production measured in fronto-cortical synaptoneurosomes, aniracetam potentiated the stimulation by angiotensin II, while the stimulation by carbamylcholine, not affected by 10 and 50 mg/kg aniracetam, was notably, although not significantly, decreased by 100 mg/kg aniracetam. Furthermore, in synaptosomes derived from hippocampus, aniracetam (50 mg/kg i.p. daily for 15 days) caused an increase of both basal and K(+)-stimulated intrasynaptosomal Ca(2+) concentration. In conclusion, a correlation between the improvement of behavioural performance and the modulation of transducing systems by aniracetam seems to take place in brain areas, such as frontal cortex and hippocampus, known to play a major role in the control of cognitive functions.

  15. Regulation of gonadotropin receptors, gonadotropin responsiveness, and cell multiplication by somatomedin-C and insulin in cultured pig Leydig cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernier, M.; Chatelain, P.; Mather, J.P.

    1986-11-01

    The author have investigated the effects of insulin and somatomedin-C/insulin like growth factor I(Sm-C) in purified porcine Leydig cells in vitro on gonadotrophins (hCG) receptor number, hCG responsiveness (cAMP and testosterone production), and thymidine incorporation into DNA. Leydig cells cultured in a serum-free medium containing transferrin, vitamin E, and insulin (5 ..mu..g/ml) maintained fairly constant both hCG receptors and hCG responsiveness. When they were cultured for 3 days in the same medium without insulin, there was a dramatic decline (more than 80%) in both hCG receptor number and hCG responsiveness. However the cAMP but not the testosterone response to forskolinmore » was normal. Both insulin and Sm-C at nanomolar concentrations prevent the decline of both hCG receptors and hCG-induced cAMP production. At nanomolar concentrations, Sm-C and insulin enhanced hCG-induced testosterone production but the effect of Sm-C was significantly higher than that of insulin. However, the effect of insulin at higher concentrations (5 ..mu..g/ml) was significantly higher than that of Sm-C at 50 ng/ml. In contrast, at nanomolar concentrations only Sm-C stimulated (/sup 3/H)-thymidine incorporation into DNA and cell multiplication, the stimulatory effect of insulin on these parameters, was seen only at micromolar concentrations. These results indicate that both Sm-C and insulin acting through the receptors increase Leydig cell steroidogenic responsiveness to hCG by increasing hCG receptor number and improving some step beyond cAMP formation. In contrast, the mitogenic effects of insulin are mediated only through Sm-C receptors.« less

  16. Forskolin effect on the cryosurvival of in vitro-produced bovine embryos in the presence or absence of fetal calf serum.

    PubMed

    Paschoal, Daniela Martins; Sudano, Mateus José; Guastali, Midyan Daroz; Dias Maziero, Rosiára Rosária; Crocomo, Letícia Ferrari; Oña Magalhães, Luis Carlos; da Silva Rascado, Tatiana; Martins, Alicio; da Cruz Landim-Alvarenga, Fernanda

    2014-05-01

    The objective of this study was to assess the viability and cryotolerance of zebu embryos produced in vitro with or without the addition of fetal calf serum (FCS) and forskolin (F). Embryos produced in vivo were used as a control. Presumptive zygotes were cultured in modified synthetic oviductal fluid supplemented with amino acids (SOFaa), bovine serum albumin (BSA) and with (2.5%) or without (0%) FCS. On day 6 of growth, the embryos from each group were divided into treatments with or without 10 μM F to induce embryonic lipolysis, comprising a total of four experimental groups: 2.5% FCS, 0% FCS, 2.5% + F and 0% + F. For vitrification, embryos were exposed to vitrification solution 1 (5 M EG (ethylene glycol)) for 3 min and then transferred to vitrification solution 2 (7 M EG, 0.5 M galactose solution and 18% (w/v) Ficoll 70) before being introduced to liquid nitrogen. The presence of FCS in the culture medium resulted in the production of embryos with a similar rate of damaged cells compared with in vivo-produced embryos. After vitrification, the 2.5% FCS group had a significantly higher rate of damaged cells when compared with the other groups (P < 0.05). The results of this experiment indicated that the omission of FCS and the addition of forskolin do not have deleterious effect on embryo production rates. In addition, embryos produced in the presence of FCS had greater sensitivity to cryopreservation, but this effect was reversed when forskolin was added to the medium, which improved embryo survival without affecting embryo development and quality after vitrification.

  17. Intracellular pH homeostasis and serotonin-induced pH changes in Calliphora salivary glands: the contribution of V-ATPase and carbonic anhydrase.

    PubMed

    Schewe, Bettina; Schmälzlin, Elmar; Walz, Bernd

    2008-03-01

    Blowfly salivary gland cells have a vacuolar-type H(+)-ATPase (V-ATPase) in their apical membrane that energizes secretion of a KCl-rich saliva upon stimulation with serotonin (5-hydroxytryptamine, 5-HT). We have used BCECF to study microfluometrically whether V-ATPase and carbonic anhydrase (CA) are involved in intracellular pH (pH(i)) regulation, and we have localized CA activity by histochemistry. We show: (1) mean pH(i) in salivary gland cells is 7.5+/-0.3 pH units (N=96), higher than that expected from passive H(+) distribution; (2) low 5-HT concentrations (0.3-3 nmol l(-1)) induce a dose-dependent acidification of up to 0.2 pH units, with 5-HT concentrations >10 nmol l(-1), causing monophasic or multiphasic pH changes; (3) the acidifying effect of 5-HT is mimicked by bath application of cAMP, forskolin or IBMX; (4) salivary gland cells exhibit CA activity; (5) CA inhibition with acetazolamide and V-ATPase inhibition with concanamycin A lead to a slow acidification of steady-state pH(i); (6) 5-HT stimuli in the presence of acetazolamide induce an alkalinization that can be decreased by simultaneous application of the V-ATPase inhibitor concanamycin A; (7) concanamycin A removes alkali-going components from multiphasic 5-HT-induced pH changes; (8) NHE activity and a Cl(-)-dependent process are involved in generating 5-HT-induced pH changes; (9) the salivary glands probably contain a Na(+)-driven amino acid transporter. We conclude that V-ATPase and CA contribute to steady-state pH(i) regulation and 5-HT-induced outward H(+) pumping does not cause an alkalinization of pH(i) because of cytosolic H(+) accumulation attributable to stimulated cellular respiration and AE activity, masking the alkalizing effect of V-ATPase-mediated acid extrusion.

  18. Characterization of mammalian glucose transport proteins using photoaffinity labeling techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wadzinski, B.E.

    1989-01-01

    A carrier-free radioiodinated phenylazide derivative of forskolin, 3-iodo-4-azidophenethylamido-7-O-succinyl-deacetyl-forskolin (({sup 125}I)IAPS-forskolin), has been shown to be a highly selective photoaffinity probe for the human erythrocyte glucose transported and the glucose transport proteins found in several mammalian tissues and cultured cells where the glucose transport protein is present at a low concentration. The photoincorporation of ({sup 125}I)IAPS-forskolin into these glucose transporters was blocked by D- (but not L-) glucose, cytochalasin B, and forskolin. In addition to labeling the mammalian glucose transport proteins, ({sup 125}I)IAPS-forskolin also labeled the L-arabinose transporter from E. coli. In muscle and adipose tissues, glucose transport is markedly increasedmore » in response to insulin. ({sup 125}I)IAPS-forskolin was shown to selectivity tag the glucose transporter in membranes derived from these cells. In addition, the covalent derivatization of the transport protein in subcellular fractions of the adipocyte has provided a means to study the hormonal regulation of glucose transport. ({sup 125}I)IAPS-forskolin has also been used to label the purified human erythrocyte glucose transporter. The site of insertion has therefore been localized by analysis of the radiolabeled peptides which were produced following chemical and proteolytic digestion of the labeled transport protein.« less

  19. Transcriptional and post-transcriptional down-regulation of cyclin D1 contributes to C6 glioma cell differentiation induced by forskolin.

    PubMed

    He, Songmin; Zhu, Wenbo; Zhou, Yuxi; Huang, Yijun; Ou, Yanqiu; Li, Yan; Yan, Guangmei

    2011-09-01

    Malignant gliomas are the most common and lethal intracranial tumors, and differentiation therapy shows great potential to be a promising candidate for their treatment. Here, we have elaborated that a PKA activator, forskolin, represses cell growth via cell cycle arrest in the G0/G1 phase and induces cell differentiation characteristic with elongated processes and restoration of GFAP expression. In mechanisms, we verified that forskolin significantly diminishes the mRNA and protein level of a key cell cycle regulator cyclin D1, and maintenance of low cyclin D1 expression level was required for forskolin-induced proliferation inhibition and differentiation by gain and loss of function approaches. In addition, that forskolin down-regulated the cyclin D1 by proteolytic (post-transcriptional) mechanisms was dependent on GSK-3β activation at Ser9. The pro-differentiation activity of forskolin and related molecular mechanisms imply that forskolin can be developed into a candidate for the future in differentiation therapy of glioma, and cyclin D1 is a promising target for pro-differentiation strategy. Copyright © 2011 Wiley-Liss, Inc.

  20. A Positive Feedback Loop between Glial Cells Missing 1 and Human Chorionic Gonadotropin (hCG) Regulates Placental hCGβ Expression and Cell Differentiation

    PubMed Central

    Cheong, Mei-Leng; Wang, Liang-Jie; Chuang, Pei-Yun; Chang, Ching-Wen; Lee, Yun-Shien; Lo, Hsiao-Fan; Tsai, Ming-Song

    2015-01-01

    Human chorionic gonadotropin (hCG) is composed of a common α subunit and a placenta-specific β subunit. Importantly, hCG is highly expressed in the differentiated and multinucleated syncytiotrophoblast, which is formed via trophoblast cell fusion and stimulated by cyclic AMP (cAMP). Although the ubiquitous activating protein 2 (AP2) transcription factors TFAP2A and TFAP2C may regulate hCGβ expression, it remains unclear how cAMP stimulates placenta-specific hCGβ gene expression and trophoblastic differentiation. Here we demonstrated that the placental transcription factor glial cells missing 1 (GCM1) binds to a highly conserved promoter region in all six hCGβ paralogues by chromatin immunoprecipitation-on-chip (ChIP-chip) analyses. We further showed that cAMP stimulates GCM1 and the CBP coactivator to activate the hCGβ promoter through a GCM1-binding site (GBS1), which also constitutes a previously identified AP2 site. Given that TFAP2C may compete with GCM1 for GBS1, cAMP enhances the association between the hCGβ promoter and GCM1 but not TFAP2C. Indeed, the hCG-cAMP-protein kinase A (PKA) signaling pathway also stimulates Ser269 and Ser275 phosphorylation of GCM1, which recruits CBP to mediate GCM1 acetylation and stabilization. Consequently, hCG stimulates the expression of GCM1 target genes, including the fusogenic protein syncytin-1, to promote placental cell fusion. Our study reveals a positive feedback loop between GCM1 and hCG regulating placental hCGβ expression and cell differentiation. PMID:26503785

  1. Effects of papaverine on carbachol- and high K+ -induced contraction in the bovine abomasum.

    PubMed

    Kaneda, Takeharu; Saito, Erika; Kanda, Hidenori; Urakawa, Norimoto; Shimizu, Kazumasa

    2015-10-01

    The effects of papaverine on carbachol (CCh) -and high K(+)- induced contraction in the bovine abomasum were investigated. Papaverine inhibited CCh (1 µM) -and KCl (65 mM) -induced contractions in a concentration-dependent manner. Forskolin or sodium nitroprusside inhibited CCh-induced contractions in a concentration-dependent manner in association with increases in the cAMP or cGMP contents, whereas papaverine increased cGMP contents only at 30 µM. Changes in the extracellular Ca(2+) from 1.5 mM to 7.5 mM reduced verapamil-induced relaxation in high K(+)-depolarized muscles, but papaverine-induced relaxation did not change. Furthermore, papaverine (30 µM) and NaCN (300 µM) decreased the creatine phosphate contents. These results suggest that the relaxing effects of papaverine on the bovine abomasum are mainly due to the inhibition of aerobic energy metabolism.

  2. Seafloor Science and Remotely Operated Vehicle (SSROV) Day Camp: A Week-Long, Hands-On STEM Summer Camp

    NASA Astrophysics Data System (ADS)

    Wheat, C. G.; Fournier, T.; Monahan, K.; Paul, C.

    2015-12-01

    RETINA (Robotic Exploration Technologies IN Astrobiology) has developed a program geared towards stimulating our youth with innovative and relevant hands-on learning modules under a STEM umbrella. Given the breadth of potential science and engineering topics that excite children, the RETINA Program focuses on interactive participation in the design and development of simple robotic and sensor systems, providing a range of challenges to engage students through project-based learning (PBL). Thus, young students experience scientific discovery through the use and understanding of technology. This groundwork serves as the foundation for SSROV Camp, a week-long, summer day camp for 6th-8th grade students. The camp is centered on the sensors and platforms that guide seafloor exploration and discovery and builds upon the notion that transformative discoveries in the deep sea result from either sampling new environments or making new measurements with sensors adapted to this extreme environment. These technical and scientific needs are folded into the curriculum. Each of the first four days of the camp includes four team-based, hands-on technical challenges, communication among peer groups, and competition. The fifth day includes additional activities, culminating in camper-led presentations to describe a planned mission based on a given geologic setting. Presentations include hypotheses, operational requirements and expected data products. SSROV Camp was initiated last summer for three sessions, two in Monterey, CA and one in Oxford, MS. Campers from both regions grasped key elements of the program, based on written responses to questions before and after the camp. On average, 32% of the pre-test questions were answered correctly compared with 80% of the post-test questions. Additional confirmation of gains in campers' knowledge, skills, and critical thinking on environmental issues and engineering problems were apparent during the "jeopardy" competition, nightly homework, and mission presentations. On the basis of this successful effort, we hope to expand to other towns.

  3. Evaluation of uridine 5'-eicosylphosphate as a stimulant of cyclic AMP-dependent cellular function.

    PubMed

    Yutani, Masahiro; Ogita, Akira; Fujita, Ken-Ichi; Usuki, Yoshinosuke; Tanaka, Toshio

    2011-03-01

    Sporulation of the yeast Saccharomyces cerevisiae is negatively regulated by cyclic AMP (cAMP). This microbial cell differentiation process was applied for the screening of a substance that can elevate the intracellular cAMP level. Among nucleoside 5'-alkylphosphates, uridine 5'-eicosylphosphate (UMPC20) selectively and predominantly inhibited ascospore formation of the yeast cells. We suppose the inhibitory effect of UMPC20 could indeed reflect the elevation of the cellular cAMP level.

  4. Evaluation of the Nature-Computer Camp: Summer 1993.

    ERIC Educational Resources Information Center

    Negero, Arega

    The purpose of the Nature Computer Camp (NCC) is to provide sixth-graders in District of Columbia Public Schools an opportunity to explore and appreciate nature in its natural setting. The program also aspires to develop computer proficiency, enhance students' social and interpersonal skills, stimulate group interaction, and strengthen students'…

  5. Duodeno-jejunal bypass restores β-cell hypersecretion and islet hypertrophy in western diet obese rats.

    PubMed

    Mendes, Mariana Carla; Bonfleur, Maria Lúcia; Ribeiro, Rosane Aparecida; Lubaczeuski, Camila; Fêo, Ana Flavia Justino; Vargas, Rodrigo; Carneiro, Everardo Magalhães; Boschero, Antonio Carlos; Araujo, Allan Cezar Faria; Balbo, Sandra Lucinei

    2018-06-01

    Duodeno-jejunal bypass (DJB) operation improves glucose homeostasis in morbid obesity, independently of weight loss or reductions in adiposity, through mechanisms not yet fully elucidated. Herein, we evaluated the effects of DJB upon glucose homeostasis, endocrine pancreatic morphology, and β-cell responsiveness to potentiating agents of cholinergic and cAMP pathways, in western diet (WD) obese rats, at 2 months after operation. From 8 to 18 weeks of age male Wistar rats fed on a WD. After this period, a sham (WD Sham group) or DJB (WD DJB) operations were performed. At 2 months after operation glucose homeostasis was verified. Body weight was similar between WD DJB and WD Sham rats, but WD DJB rats showed a decrease in Lee index, retroperitoneal and perigonadal fat pads. Also, WD DJB rats displayed reduced fasting glycemia and insulinemia, and increased insulin-induced Akt activation in the gastrocnemius. Islets from WD DJB rats secreted less amounts of insulin, in response to activators of the cholinergic (carbachol and phorbol 12-myristate 13-acetate) and cAMP (forskolin and 3-isobutyl-1-methyl-xantine) pathways. Islets of WD DJB rats had higher sintaxin-1 protein content than WD Sham, but without modification in muscarinic-3 receptor, protein kinase (PK)-Cα, and (PK)-Aα protein amounts. In addition, islets of WD DJB animals showed reduction in islets and β-cell masses. DJB surgery improves fasting glycemia and insulin action in skeletal muscle. Better endocrine pancreatic morphofunction was associated, at least in part, with the regulation of the cholinergic and cAMP pathways, and improvements in syntaxin-1 islet protein content induced by DJB.

  6. PDE4 and mAKAPβ are nodal organizers of β2-ARs nuclear PKA signaling in cardiac myocytes.

    PubMed

    Bedioune, Ibrahim; Lefebvre, Florence; Lechêne, Patrick; Varin, Audrey; Domergue, Valérie; Kapiloff, Michael S; Fischmeister, Rodolphe; Vandecasteele, Grégoire

    2018-05-03

    β1- and β2-adrenergic receptors (β-ARs) produce different acute contractile effects on the heart partly because they impact on different cytosolic pools of cAMP-dependent protein kinase (PKA). They also exert different effects on gene expression but the underlying mechanisms remain unknown. The aim of this study was to understand the mechanisms by which β1- and β2-ARs regulate nuclear PKA activity in cardiomyocytes. We used cytoplasmic and nuclear targeted biosensors to examine cAMP signals and PKA activity in adult rat ventricular myocytes upon selective β1- or β2-ARs stimulation. Both β1- and β2-AR stimulation increased cAMP and activated PKA in the cytoplasm. While the two receptors also increased cAMP in the nucleus, only β1-ARs increased nuclear PKA activity and up-regulated the PKA target gene and pro-apoptotic factor, inducible cAMP element repressor (ICER). Inhibition of PDE4, but not Gi, PDE3, GRK2 nor caveolae disruption disclosed nuclear PKA activation and ICER induction by β2-ARs. Both nuclear and cytoplasmic PKI prevented nuclear PKA activation and ICER induction by β1-ARs, indicating that PKA activation outside the nucleus is required for subsequent nuclear PKA activation and ICER mRNA expression. Cytoplasmic PKI also blocked ICER induction by β2-AR stimulation (with concomitant PDE4 inhibition). However, in this case nuclear PKI decreased ICER up-regulation by only 30%, indicating that other mechanisms are involved. Down-regulation of mAKAPβ partially inhibited nuclear PKA activation upon β1-AR stimulation, and drastically decreased nuclear PKA activation upon β2-AR stimulation in the presence of PDE4 inhibition. β1- and β2-ARs differentially regulate nuclear PKA activity and ICER expression in cardiomyocytes. PDE4 insulates a mAKAPβ-targeted PKA pool at the nuclear envelope that prevents nuclear PKA activation upon β2-AR stimulation.

  7. Kinin effects on electrogenic ion transport in primary cultures of pig renal papillary collecting tubule cells.

    PubMed

    Cuthbert, A W; George, A M; MacVinish, L

    1985-09-01

    Confluent monolayers of pig renal papillary collecting tubule (RPCT) cells were formed on Millipore filters coated with collagen. They were clamped in Ussing-type chambers and used to measure short-circuit current (SCC). The monolayers had low potentials (0.1 mV) with the basolateral side positive. Small inward currents flowed under short-circuit conditions. Increases in SCC were obtained following addition of a number of agents. Receptors associated with SCC changes were disposed as follows: for kinins (e.g., lysyl-bradykinin) they were present on both sides of the tissue, while those for arginine vasopressin and norepinephrine were present on the basolateral side only. Epithelia responded to PGE2 added to the apical or basolateral face of the tissue; application to one side prevented the response from the contralateral side. The tissues also responded to forskolin, an activator of adenylate cyclase, with a sustained inward current that was sensitive to furosemide. Similar sustained inward currents were recorded following exposure to 8-bromoadenosine-3',5'-cyclic monophosphate (BrcAMP). Responses to kinins were attenuated by inhibition of fatty acid cyclooxygenase with either indomethacin or piroxicam or by replacing chloride with impermeant ions. If the SCC was first increased with forskolin, BrcAMP, or norepinephrine, the kinin effects on SCC were either abolished or reversed. It is concluded that kinin can cause chloride secretion in RPCT monolayers, possibly via a prostaglandin or a prostaglandin-adenylate cyclase mechanism. Secondary effects of kinin, exposed by first raising tissue cAMP levels, are not precluded.

  8. Midbrain Raphe Stimulation Improves Behavioral and Anatomical Recovery from Fluid-Percussion Brain Injury

    PubMed Central

    Carballosa Gonzalez, Melissa M.; Blaya, Meghan O.; Alonso, Ofelia F.; Bramlett, Helen M.

    2013-01-01

    Abstract The midbrain median raphe (MR) and dorsal raphe (DR) nuclei were tested for their capacity to regulate recovery from traumatic brain injury (TBI). An implanted, wireless self-powered stimulator delivered intermittent 8-Hz pulse trains for 7 days to the rat's MR or DR, beginning 4–6 h after a moderate parasagittal (right) fluid-percussion injury. MR stimulation was also examined with a higher frequency (24 Hz) or a delayed start (7 days after injury). Controls had sham injuries, inactive stimulators, or both. The stimulation caused no apparent acute responses or adverse long-term changes. In water-maze trials conducted 5 weeks post-injury, early 8-Hz MR and DR stimulation restored the rate of acquisition of reference memory for a hidden platform of fixed location. Short-term spatial working memory, for a variably located hidden platform, was restored only by early 8-Hz MR stimulation. All stimulation protocols reversed injury-induced asymmetry of spontaneous forelimb reaching movements tested 6 weeks post-injury. Post-mortem histological measurement at 8 weeks post-injury revealed volume losses in parietal-occipital cortex and decussating white matter (corpus callosum plus external capsule), but not hippocampus. The cortical losses were significantly reversed by early 8-Hz MR and DR stimulation, the white matter losses by all forms of MR stimulation. The generally most effective protocol, 8-Hz MR stimulation, was tested 3 days post-injury for its acute effect on forebrain cyclic adenosine monophosphate (cAMP), a key trophic signaling molecule. This procedure reversed injury-induced declines of cAMP levels in both cortex and hippocampus. In conclusion, midbrain raphe nuclei can enduringly enhance recovery from early disseminated TBI, possibly in part through increased signaling by cAMP in efferent targets. A neurosurgical treatment for TBI using interim electrical stimulation in raphe repair centers is suggested. PMID:22963112

  9. Effects of cilostamide and forskolin on the meiotic resumption and embryonic development of immature human oocytes.

    PubMed

    Shu, Yi-min; Zeng, Hai-tao; Ren, Zi; Zhuang, Guang-lun; Liang, Xiao-Yan; Shen, Hong-wei; Yao, Shu-zhong; Ke, Pei-qi; Wang, Ning-ning

    2008-03-01

    In an attempt to allow for acquisition of oocyte cytoplasmic maturation, PDE3 specific inhibitor, cilostamide and adenylate cyclase activator, forskolin were used to extend pre-maturation culture of immature human oocytes. Cumulus-oocyte complexes retrieved from unstimulated ovaries were continuously cultured under 20 microM cilostamide or 50 microM forskolin, alone or in combination for 6, 12, 24 or 48 h, respectively. Levels of intercellular gap junction communication (GJC) and maturational status were examined at these designated time points. Metaphase II oocytes obtained following 54 h biphasic culture (with meiotic inhibitors from 0 to 24 h, no meiotic inhibitors from 24 to 54 h) were subject to intracytoplasmic sperm injection and embryos were cultured for five more days. Both cilostamide and forskolin delayed spontaneous meiotic progression after continuous culture with immature human oocytes. Combined treatment of cilostamide and forskolin significantly lowered the rates of germinal vesicle breakdown (GVBD) at 6, 12, 24 or 48 h after meiotic inhibitory culture, when compared with the control (all P < 0.05). A delay of 6 h for the loss of GJC was also observed under the combined treatment of cilostamide and forskolin. The fertilization rate was significantly higher under the combined treatment of cilostamide and forskolin than that of the control. Although the rates of oocyte maturation and embryo cleavage were similar among groups, there was a slight but non-significant increase in blastocyst formation rate with the treatment of cilostamide and forskolin. Combined treatment of cilostamide and forskolin positively influences oocyte developmental competence by exhibiting a synergistic effect on the prevention of GJC loss and resumption of meiosis.

  10. Rate of Homologous Desensitization and Internalization of the GLP-1 Receptor.

    PubMed

    Shaaban, Ghina; Oriowo, Mabayoje; Al-Sabah, Suleiman

    2016-12-26

    The glucagon-like peptide-1 receptor (GLP-1R) is an important target in the treatment of type 2 diabetes mellitus. The aim of this study was to compare the rate of agonist stimulated desensitization and internalization of GLP-1R. To this end, an N-terminally myc-tagged GLP-1R was stably expressed in HEK-293 cells. Homologous desensitization was assessed by measuring the cAMP response to agonist stimulation following pre-incubation with agonist for up to 120 min. Receptor internalization was monitored using an indirect ELISA-based method and confocal microscopy. Pre-incubation with GLP-1 resulted in a time-dependent loss of response to a second stimulation. Washing cells following pre-incubation failed to bring cAMP levels back to basal. Taking this into account, two desensitization rates were calculated: "apparent" (t 1/2 = 19.27 min) and "net" (t 1/2 = 2.99 min). Incubation of cells with GLP-1 also resulted in a time-dependent loss of receptor cell surface expression (t 1/2 = 2.05 min). Rapid agonist-stimulated internalization of GLP-1R was confirmed using confocal microscopy. Stimulation of GLP-1R with GLP-1 results in rapid desensitization and internalization of the receptor. Interestingly, the rate of "net" desensitization closely matches the rate of internalization. Our results suggest that agonist-bound GLP-1R continues to generate cAMP after it has been internalized.

  11. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy

    NASA Astrophysics Data System (ADS)

    Raju, Gajula; Ram Reddy, A.

    2016-02-01

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state.

  12. Transdermal delivery of forskolin from emulsions differing in droplet size.

    PubMed

    Sikora, Elżbieta; Llinas, Meritxell; Garcia-Celma, Maria Jose; Escribano, Elvira; Solans, Conxita

    2015-02-01

    The skin permeation of forskolin, a diterpene isolated from Coleus forsholii, was studied using oil in water (O/W) emulsions as delivery formulations and also an oil solution for comparative purposes. Two forskolin-loaded emulsions of water/Brij 72:Symperonic A7/Miglyol 812:Isohexadecane, at 0.075 wt% forskolin concentration were prepared with the same composition and only differing in droplet size (0.38 μm and 10 μm). The emulsions showed high kinetic stability at 25 °C. In vitro study of forskolin penetration through human skin was carried out using the MicroettePlus(®) system. The concentration of the active in the receptor solution (i.e. ethanol/phosphate buffer 40/60, v/v) was analyzed by high performance liquid chromatography with UV detection. The obtained results showed that forskolin permeation from the emulsions and the oil solution, through human skin, was very high (up to 72.10%), and no effect of droplet size was observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Stimulation of cAMP signalling allows isolation of clonal pancreatic precursor cells from adult mouse pancreas.

    PubMed

    Yamamoto, T; Yamato, E; Taniguchi, H; Shimoda, M; Tashiro, F; Hosoi, M; Sato, T; Fujii, S; Miyazaki, J-I

    2006-10-01

    Duct cells of the pancreas are thought to include latent progenitors of islet endocrine cells that can be induced to differentiate by appropriate morphogens. Here we developed a method for isolating pancreatic ductal epithelial cells from adult mice that overcomes the shortcomings of previous methods. Pancreatic ductal cells were grown in serum-free DMEM/F12 medium in the presence of cholera toxin or 8-bromo-cyclic adenosine monophosphate, which is known to be an intracellular cAMP generator. Single cell cloning was performed by limiting dilution in serum-free medium. The isolated clonal cells expressed high levels of cytokeratin and Ipf1 (formerly known as Pdx-1). Adenovirus-mediated expression of ngn3 (also known as Neurog3) and Ptf1a in these cells induced expression of insulin and somatostatin, and of carboxypeptidase A, respectively. Furthermore, albumin production was induced by dexamethasone or by long-term culture in serum-containing medium. Stimulation of the cAMP-dependent signalling allowed us to isolate clonal pancreatic ductal cells from adult mice. These cells are able to partially differentiate into endocrine cells, exocrine cells and hepatocyte-like cells and are therefore considered to have the characteristics of endodermal progenitor cells.

  14. PER, a Circadian Clock Component, Mediates the Suppression of MMP-1 Expression in HaCaT Keratinocytes by cAMP.

    PubMed

    Yeom, Miji; Lee, HansongI; Shin, Seoungwoo; Park, Deokhoon; Jung, Eunsun

    2018-03-23

    Skin circadian clock system responds to daily changes, thereby regulating skin functions. Exposure of the skin to UV irradiation induces the expression of matrix metalloproteinase-1 (MMP-1) and causes DNA damage. It has been reported both DNA repair and DNA replication are regulated by the circadian clock in mouse skin. However, the molecular link between circadian clock and MMP-1 has little been investigated. We found PERIOD protein, a morning clock component, represses the expression of MMP-1 in human keratinocytes by using a PER-knockdown strategy. Treatment with siPer3 alleviated the suppression of MMP-1 expression induced by forskolin. Results revealed PER3 suppresses the expression of MMP-1 via cAMP signaling pathway. Additionally, we screened for an activator of PER that could repress the expression of MMP-1 using HaCaT cell line containing PER promoter-luciferase reporter gene. Results showed Lespedeza capitate extract (LCE) increased PER promoter activity. LCE inhibited the expression of MMP-1 and its effect of LCE was abolished in knockdown of PER2 or PER3, demonstrating LCE can repress the expression of MMP-1 through PER. Since circadian clock component PER can regulate MMP-1 expression, it might be a new molecular mechanism to develop therapeutics to alleviate skin aging and skin cancer.

  15. Caffeine accelerates recovery from general anesthesia

    PubMed Central

    Wang, Qiang; Fong, Robert; Mason, Peggy; Fox, Aaron P.

    2013-01-01

    General anesthetics inhibit neurotransmitter release from both neurons and secretory cells. If inhibition of neurotransmitter release is part of an anesthetic mechanism of action, then drugs that facilitate neurotransmitter release may aid in reversing general anesthesia. Drugs that elevate intracellular cAMP levels are known to facilitate neurotransmitter release. Three cAMP elevating drugs (forskolin, theophylline, and caffeine) were tested; all three drugs reversed the inhibition of neurotransmitter release produced by isoflurane in PC12 cells in vitro. The drugs were tested in isoflurane-anesthetized rats. Animals were injected with either saline or saline containing drug. All three drugs dramatically accelerated recovery from isoflurane anesthesia, but caffeine was most effective. None of the drugs, at the concentrations tested, had significant effects on breathing rates, O2 saturation, heart rate, or blood pressure in anesthetized animals. Caffeine alone was tested on propofol-anesthetized rats where it dramatically accelerated recovery from anesthesia. The ability of caffeine to accelerate recovery from anesthesia for different chemical classes of anesthetics, isoflurane and propofol, opens the possibility that it will do so for all commonly used general anesthetics, although additional studies will be required to determine whether this is in fact the case. Because anesthesia in rodents is thought to be similar to that in humans, these results suggest that caffeine might allow for rapid and uniform emergence from general anesthesia in human patients. PMID:24375022

  16. Arsenic induced progesterone production in a caspase-3-dependent manner and changed redox status in preovulatory granulosa cells.

    PubMed

    Yuan, Xiao-Hua; Lu, Cai-Ling; Yao, Nan; An, Li-Sha; Yang, Bai-Qing; Zhang, Chuan-Ling; Ma, Xu

    2012-01-01

    Arsenic contamination is a principal environmental health threat throughout the world. However, little is known about the effect of arsenic on steroidogenesis in granulosa cells (GCs). We found that the treatment of preovulatory GCs with arsenite stimulated progesterone production. A significant increase in serum level of progesterone was observed in female Sprague-Dawley rats following arsenite treatment at a dose of 10 mg/L/rat/day for 7 days. Further experiments demonstrated that arsenite treatment did not change the level of intracellular cyclic AMP (cAMP) or phosphorylated ERK1/2 in preovulatory GCs; however, progesterone production was significantly decreased when cAMP-dependent protein kinase (PKA) or ERK1/2 pathway was inhibited. This implied that the effect of arsenite on progesterone production may require cAMP/PKA and ERK1/2 signaling but not depend on them. Furthermore, we found that arsenite decreased intracellular reactive oxygen species (ROS) but increased the antioxidant glutathione (GSH) levels and mitochondrial membrane potential (ΔΨm) in parallel to the changes in progesterone production. Progesterone antagonist blocked the arsenic-stimulated increase of GSH levels. Arsenite treatment induced caspase-3 activation, although no apoptosis was observed. Inhibition of caspase-3 activity significantly decreased progesterone production stimulated by arsenite or follicle-stimulating hormone (FSH). GSH depletion with buthionine sulfoximine led to cell apoptosis in response to arsenite treatment. Collectively, this study demonstrated for the first time that arsenite stimulates progesterone production through cleaved/active caspase-3-dependent pathway, and the increase of GSH level promoted by progesterone production may protect GCs against apoptosis and maintain the steroidogenesis of GCs in response to arsenite treatment. Copyright © 2011 Wiley Periodicals, Inc.

  17. Neurokinin B Exerts Direct Effects on the Ovary to Stimulate Estradiol Production.

    PubMed

    Qi, Xin; Salem, Mohamed; Zhou, Wenyi; Sato-Shimizu, Miwa; Ye, Gang; Smitz, Johan; Peng, Chun

    2016-09-01

    Neurokinin B (NKB) and its receptor, NK3R, play critical roles in reproduction by regulating the secretion of the hypothalamic GnRH. NKB and NK3R genes are also expressed in the ovary; however, their physiological roles within the ovary are unknown. The aim of this study was to determine whether NKB acts directly on the ovary to regulate reproduction. Injection of NKB into zebrafish accelerated follicle development, increased the mRNA levels of cyp11a1 and cyp19a1, and enhanced estradiol production. Similarly, NKB induced cyp11a1 and cyp19a1 expression in primary cultures of zebrafish follicular cells and stimulated estradiol production from cultured follicles. Furthermore, NKB activates cAMP response element-binding protein and ERK, and ERK inhibitors abolished the effect of NKB on cyp11a1, whereas protein kinase A and calmodulin-dependent protein kinase II inhibitors that blocked the activation of cAMP response element-binding protein, attenuated the effect of NKB on cyp19a1 expression. In a human granulosa cell line, COV434, a NKB agonist, senktide, also increased CYP11A1 and CYP19A1 mRNA levels and enhanced aromatase protein levels and activities. Small interfering RNA-mediated knockdown of NK3R reduced senktide-induced CYP11A1 and CYP19A1 mRNA levels. Finally, we found that NK3R mRNA was strongly down-regulated in granulosa cells obtained from polycystic ovary syndrome (PCOS) patients when compared with non-PCOS subjects. Taken together, our findings establish a direct action of NKB to induce ovarian estrogen production and raise the possibility that defective signaling of this pathway may contribute to the development of PCOS.

  18. Receptors for VIP and PACAP in guinea pig cerebral cortex: effects on cyclic AMP synthesis and characterization by 125I-VIP binding.

    PubMed

    Zawilska, Jolanta B; Dejda, Agnieszka; Niewiadomski, Pawel; Gozes, Illana; Nowak, Jerzy Z

    2005-01-01

    Receptors for vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) in guinea pig cerebral cortex were characterized by (1) radioreceptor binding of 125I-labeled VIP (human/rat/porcine), and (2) cyclic AMP (cAMP) formation. Saturation analysis of 125I-VIP binding to membranes of guinea pig cerebral cortex resulted in a linear Scatchard plot, suggesting the presence of a single class of high-affinity receptor-binding sites, with a Kd of 0.63 nM and a B(max) of 77 fmol/mg protein. Various peptides from the PACAP/VIP/secretin family displaced the specific binding of 125I-VIP to guinea pig cerebrum with the relative rank order of potency: chicken VIP (cVIP) > or = PACAP38 approximately PACAP27 approximately guinea pig VIP (gpVIP) > or = mammalian (human/rat/porcine) VIP (mVIP) > peptide histidine-methionine (PHM) > peptide histidine-isoleucine (PHI) > secretin. Analysis of the competition curves revealed displacement of 125I-VIP from high- and lower-affinity binding sites, with IC50 values in the picomolar and the nanomolar range, respectively. About 70% of the specific 125I-VIP-binding sites in guinea pig cerebral cortex were sensitive to Gpp(NH)p, a nonhydrolyzable analog of GTP. Pituitary adenylate cyclase-activating polypeptide 38 (PACAP38), PACAP27, cVIP, gpVIP, mVIP, PHM, and PHI stimulated cAMP production in [3H]adenine-prelabeled slices of guinea pig cerebral cortex in a concentration-dependent manner. Of the tested peptides, the most effective were PACAP38 and PACAP27, which at a 1 microM concentration produced a 17- to 19-fold rise in cAMP synthesis, increasing the nucleotide production to approx 11% conversion above the control value. The three forms of VIP (cVIP, mVIP, and gpVIP) at the highest concentration used, i.e., 3 microM, produced net increases in cAMP production in the range of 8-9% conversion, whereas 5 microM PHM and PHI, by, respectively, 6.7% and 4.9% conversion. It is concluded that cerebral cortex of guinea pig contains VPAC- type receptors positively linked to cAMP formation. In addition, the observed stronger action of PACAP (both PACAP38 and PACAP27), when compared to any form of VIP, on cAMP production in this tissue, suggests its interaction with both PAC1 and VPAC receptors.

  19. Second-messenger regulation of sodium transport in mammalian airway epithelia.

    PubMed Central

    Graham, A; Steel, D M; Alton, E W; Geddes, D M

    1992-01-01

    1. Sodium absorption is the dominant ion transport process in conducting airways and is a major factor regulating the composition of airway surface liquid. However, little is known about the control of airway sodium transport by intracellular regulatory pathways. 2. In sheep tracheae and human bronchi mounted in Ussing chambers under short circuit conditions, the sodium current can be isolated by pretreating tissues with acetazolamide (100 microM) to inhibit bicarbonate secretion, bumetanide (100 microM) to inhibit chloride secretion and phloridzin (200 microM) to inhibit sodium-glucose cotransport. This sodium current consists of amiloride-sensitive (57%) and amiloride-insensitive (43%) components. 3. The regulation of the isolated sodium current by three second messenger pathways was studied using the calcium ionophore A23187 to elevate intracellular calcium, a combination of forskolin and the phosphodiesterase inhibitor zardaverine to elevate intracellular cyclic AMP, and the phorbol ester 12,13-phorbol dibutyrate (PDB) to stimulate protein kinase C. 4. In sheep trachea, A23187 produces a dose-related inhibition of the sodium current with maximal effect (38% of ISC) at 10 microM and IC50 1 microM. This response affects both the amiloride-sensitive and insensitive components of the sodium current and is not altered by prior stimulation of protein kinase C or elevation of intracellular cyclic AMP. In human bronchi, A23187 (10 microM) produced a significantly greater inhibition of ISC (68%), a response which was unaffected by prior treatment with PDB or forskolin-zardaverine. 5. In sheep trachea, stimulation of protein kinase C with PDB produced a dose-related inhibition of ISC maximal (56% of ISC) at 50 nM (IC50 7 nM). This response was abolished by amiloride (100 microM) pretreatment suggesting a selective effect on the amiloride-sensitive component of the sodium current. The response was not altered by prior elevation of intracellular calcium or cyclic AMP. PDB (10 nM) caused a similar inhibition of ISC in human bronchi (43%). The effect of PKC stimulation following pretreatment with A23187 was diminished in human bronchi. Elevating intracellular cyclic AMP did not alter this response. 6. Addition of forskolin (1 microM) together with the phosphodiesterase inhibitor zardaverine (100 microM) produced a mean 35-fold increase in intracellular cyclic AMP in sheep trachea. This was associated with a small, but significant, 6% transient increase in ISC followed by a significant 4% fall. Neither effect could be abolished by amiloride pretreatment. In human bronchi, a small decrease in ISC which could not be distinguished from that occurring in controls was observed.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:1464841

  20. Molecular cloning and functional expression of geranylgeranyl pyrophosphate synthase from Coleus forskohlii Briq

    PubMed Central

    Engprasert, Surang; Taura, Futoshi; Kawamukai, Makoto; Shoyama, Yukihiro

    2004-01-01

    Background Isopentenyl diphosphate (IPP), a common biosynthetic precursor to the labdane diterpene forskolin, has been biosynthesised via a non-mevalonate pathway. Geranylgeranyl diphosphate (GGPP) synthase is an important branch point enzyme in terpenoid biosynthesis. Therefore, GGPP synthase is thought to be a key enzyme in biosynthesis of forskolin. Herein we report the first confirmation of the GGPP synthase gene in Coleus forskohlii Briq. Results The open reading frame for full-length GGPP synthase encodes a protein of 359 amino acids, in which 1,077 nucleotides long with calculated molecular mass of 39.3 kDa. Alignments of C. forskohlii GGPP synthase amino acid sequences revealed high homologies with other plant GGPP synthases. Several highly conserved regions, including two aspartate-rich motifs were identified. Transient expression of the N-terminal region of C. forskohlii GGPP synthase-GFP fusion protein in tobacco cells demonstrated subcellular localization in the chloroplast. Carotenoid production was observed in Escherichia coli harboring pACCAR25ΔcrtE from Erwinia uredovora and plasmid carrying C. forskohlii GGPP synthase. These results suggested that cDNA encoded functional GGPP synthase. Furthermore, C. forskohlii GGPP synthase expression was strong in leaves, decreased in stems and very little expression was observed in roots. Conclusion This investigation proposed that forskolin was synthesised via a non-mevalonate pathway. GGPP synthase is thought to be involved in the biosynthesis of forskolin, which is primarily synthesised in the leaves and subsequently accumulates in the stems and roots. PMID:15550168

  1. Characterization of (/sup 3/H)forskolin binding sites in the iris-ciliary body of the albino rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldman, M.E.; Mallorga, P.; Pettibone, D.J.

    1988-01-01

    (/sup 3/H)forskolin binding sites were identified using membranes prepared from the iris-ciliary body of adult, albino rabbits. Scatchard analysis of saturation binding experiments demonstrated that (/sup 3/H)forskolin bound to a single population of high affinity sites. The K/sub d/ and B/sub max/ values were 8.7 +- 0.9 nM and 119.0 +- 30.9 fmolmg prot. using membranes prepared from frozen tissue and 17.0 +- 6.2 nM and 184.4 +- 47.2 fmolmg prot. using fresh tissue. The binding of (/sup 3/H)forskolin was magnesium-dependent. The B/sub max/ was enhanced by sodium fluoride and Gpp(NH)p, a nonhydrolyzable guanine nucleotide analog. Forskolin was the mostmore » potent inhibitor of (/sup 3/H)forskolin binding; two commercially-available analogs were weaker inhibitors. In an adenylate cyclase assay, there was the same rank order of potency to enhance enzyme activity. Based upon binding affinities, magnesium-dependence, sensitivity to sodium fluoride and Gpp(NH)p, rank order of potencies of analogs and correlation of binding with adenylate cyclase activity, these studies suggest that the (/sup 3/H)forskolin binding site in the iris-ciliary body is similar to the binding site in other tissues« less

  2. Forskolin compared with beclomethasone for prevention of asthma attacks: a single-blind clinical trial.

    PubMed

    Huerta, M; Urzúa, Z; Trujillo, X; González-Sánchez, R; Trujillo-Hernández, B

    2010-01-01

    This single-blind study compared the efficacy of oral forskolin versus inhaled beclomethasone for mild or moderately persistent adult asthma. Patients were randomly assigned to receive forskolin (one 10-mg capsule orally per day; n = 30) or beclomethasone (two 50 microg inhalations every 12 h; n = 30) for 2 months. No statistically significant improvement occurred in any lung function parameter in the forskolin-treated patients. Subjects in the beclomethasone-treated group presented a slight but statistically significant improvement in percentage forced expiratory volume in 1 s (FEV(1)), percentage forced expiratory flow in the middle (25 - 75%) expiratory phase (FEF(25 - 75%)) and percentage forced vital capacity (FVC) after 2 months of treatment, though the improvement in absolute values for FEV(1), FEF(25 - 75%), FVC and FEV(1):FVC did not reach statistical significance. There was no statistically significant difference between the forskolin and beclomethasone treatment groups for any lung function parameter at baseline or after treatment. None of the beclomethasone-treated patients had an asthma attack and one forskolin-treated patient had a mild asthma attack during the 2-month study period. More studies are needed in adult asthma patients to confirm whether forskolin may be a useful preventive treatment for mild or moderately persistent adult asthma.

  3. Novel mechanisms and signaling pathways of esophageal ulcer healing: the role of prostaglandin EP2 receptors, cAMP, and pCREB

    PubMed Central

    Ahluwalia, Amrita; Baatar, Dolgor; Jones, Michael K.

    2014-01-01

    Clinical studies indicate that prostaglandins of E class (PGEs) may promote healing of tissue injury e.g., gastroduodenal and dermal ulcers. However, the precise roles of PGEs, their E-prostanoid (EP) receptors, signaling pathways including cAMP and cAMP response element-binding protein (CREB), and their relation to VEGF and angiogenesis in the tissue injury healing process remain unknown, forming the rationale for this study. Using an esophageal ulcer model in rats, we demonstrated that esophageal mucosa expresses predominantly EP2 receptors and that esophageal ulceration triggers an increase in expression of the EP2 receptor, activation of CREB (the downstream target of the cAMP signaling), and enhanced VEGF gene expression. Treatment of rats with misoprostol, a PGE1 analog capable of activating EP receptors, enhanced phosphorylation of CREB, stimulated VEGF expression and angiogenesis, and accelerated esophageal ulcer healing. In cultured human esophageal epithelial (HET-1A) cells, misoprostol increased intracellular cAMP levels (by 163-fold), induced phosphorylation of CREB, and stimulated VEGF expression. A cAMP analog (Sp-cAMP) mimicked, whereas an inhibitor of cAMP-dependent protein kinase A (Rp-cAMP) blocked, these effects of misoprostol. These results indicate that the EP2/cAMP/protein kinase A pathway mediates the stimulatory effect of PGEs on angiogenesis essential for tissue injury healing via the induction of CREB activity and VEGF expression. PMID:25059824

  4. Absence of PDGF-induced, PKC-independent c-fos expression in a chemically transformed C3H/10T1/2 cell clone.

    PubMed

    Vassbotn, F S; Skar, R; Holmsen, H; Lillehaug, J R

    1992-09-01

    The effect of platelet-derived growth factor (PDGF) on c-fos mRNA transcription was studied in the immortalized mouse embryo fibroblast C3H/10T1/2 Cl 8 (10T1/2) cells and the chemically transformed, tumorigenic subclone C3H/10T1/2 Cl 16 (Cl 16). In the 10T1/2 cells as well as the Cl 16 subclone, the dose-dependent PDGF stimulation of c-fos mRNA synthesis was similar in both logarithmically growing and confluent cultures. c-fos mRNA was induced severalfold by 12-O-tetradecanoylphorbol-13-acetate (TPA) in both 10T1/2 and Cl 16. Down-regulation of protein kinase C (PKC) activity by TPA pretreatment inhibited PDGF-stimulated c-fos mRNA expression in Cl 16 cells but did not affect this induction in the 10T1/2 cells. This inhibition was not a general phenomenon of 3-methylcholanthrene-mediated transformation of 10T1/2 cells since experiments with another transformed 10T1/2 cell clone, C3H/10T1/2 TPA 482, gave qualitatively the same results as the 10T1/2 cells. Receptor binding experiments showed that the nontransformed and transformed cells had a comparable number of PDGF receptors, 1.3 x 10(5) and 0.7 x 10(5) receptors per cell, respectively. Furthermore, cAMP-induced c-fos expression induced by forskolin is formerly shown to be independent of PKC down-regulation. In our experiments, forskolin induced c-fos expression in both clones. However, PKC down-regulation inhibited the forskolin-induced c-fos expression in Cl 16 cells. This apparently demonstrates cross talk between PKC and PKA in the c-fos induction pathway. The present results provide evidence for an impaired mechanism for activating c-fos expression through PKC-independent, PDGF-induced signal transduction in the chemically transformed Cl 16 fibroblasts compared to that in nontransformed 10T1/2 cells.

  5. Glycogen synthase kinase-3 enhances nuclear export of a Dictyostelium STAT protein

    PubMed Central

    Ginger, Rebecca S.; Dalton, Emma C.; Ryves, W.Jonathan; Fukuzawa, Masashi; Williams, Jeffrey G.; Harwood, Adrian J.

    2000-01-01

    Extracellular cAMP stimulates the rapid tyrosine phosphorylation and nuclear translocation of the Dictyostelium STAT protein Dd-STATa. Here we show that it also induces serine phosphorylation by GskA, a homologue of glycogen synthase kinase-3 (GSK-3). Tyrosine phosphorylation occurs within 10 s of stimulation, whereas serine phosphorylation takes 5 min, matching the kinetics observed for the cAMP regulation of GskA. Phosphorylation by GskA enhances nuclear export of Dd-STATa. The phosphorylated region, however, is not itself a nuclear export signal and we identify a region elsewhere in the protein that mediates nuclear export. These results suggest a biphasic regulation of Dd-STATa, in which extracellular cAMP initially directs nuclear import and then, via GskA, promotes its subsequent export. It also raises the possibility of an analogous regulation of STAT nuclear export in higher eukaryotes. PMID:11032815

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, Sun Young; Kim, Ji-Hee; Lee, Sang Joon

    Surfactin, one of the most powerful biosurfactants, is a bacterial cyclic lipopeptide. Here, we investigated the anti-neuroinflammatory properties of surfactin in lipoteichoic acid (LTA)-stimulated BV-2 microglial cells. Surfactin significantly inhibited excessive production of the pro-inflammatory mediators TNF-α, IL-1β, IL-6, monocyte chemoattractant protein-1 (MCP-1), prostaglandin E{sub 2} (PGE{sub 2}), nitric oxide (NO) and reactive oxygen species (ROS), and suppressed the expression of matrix metalloproteinase-9 (MMP-9), inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2). Subsequent mechanistic studies revealed that surfactin inhibited LTA-induced nuclear factor-kappaB (NF-κB) and signal transducer and activator of transcription-1 (STAT-1) activation. However, surfactin increases the phosphorylation of the STAT-3, amore » component of the homeostatic mechanism causing anti-inflammatory events. We also demonstrated that surfactin induces heme oxygenase-1 (HO-1) expression and nuclear factor-regulated factor-2 (Nrf-2) activation, and that the anti-inflammatory effects of surfactin are abrogated by small interfering RNA-mediated knock-down of HO-1 or Nrf-2. Interestingly, we found that surfactin increased the level of cAMP and induced phosphorylation of cAMP responsive element binding protein (CREB) in microglial cells. Furthermore, treatment with the protein kinase A (PKA) inhibitor, H-89, blocked HO-1 induction by surfactin and abolished surfactin's suppressive effects on ROS and NO production. These results indicate that HO-1 and its upstream effector, PKA, play a pivotal role in the anti-neuroinflammatory response of surfactin in LTA-stimulated microglia. Therefore, surfactin might have therapeutic potential for neuroprotective agents to treat inflammatory and neurodegenerative diseases. - Highlights: ► Surfactin inhibits proinflammatory mediator synthesis in LTA-activated BV-2 cells. ► Surfactin suppresses NF-κB and STAT-1, but potentiates phosphorylation of STAT-3. ► Surfactin induces HO-1 expression and Nrf-2 activation. ► Surfactin induces cAMP and CREB phosphorylation. ► PKA inhibitor blocks HO-1 induction and surfactin’s antiinflammatory effects.« less

  7. Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs.

    PubMed

    Pinto, Cibele; Papa, Dan; Hübner, Melanie; Mou, Tung-Chung; Lushington, Gerald H; Seifert, Roland

    2008-04-01

    Adenylyl cyclase (AC) isoforms 1 to 9 are differentially expressed in tissues and constitute an interesting drug target. ACs 1 to 8 are activated by the diterpene, forskolin (FS). It is unfortunate that there is a paucity of AC isoform-selective activators. To develop such compounds, an understanding of the structure/activity relationships of diterpenes is necessary. Therefore, we examined the effects of FS and nine FS analogs on ACs 1, 2, and 5 expressed in Spodoptera frugiperda insect cells. Diterpenes showed the highest potencies at AC1 and the lowest potencies at AC2. We identified full agonists, partial agonists, antagonists, and inverse agonists, i.e., diterpenes that reduced basal AC activity. Each AC isoform exhibited a distinct pharmacological profile. AC2 showed the highest basal activity of all AC isoforms and highest sensitivity to inverse agonistic effects of 1-deoxy-forskolin, 7-deacetyl-1,9-dideoxy-forskolin, and, particularly, BODIPY-forskolin. In contrast, BODIPY-forskolin acted as partial agonist at the other ACs. 1-Deoxy-forskolin analogs were devoid of agonistic activity at ACs but antagonized the effects of FS in a mixed competitive/noncompetitive manner. At purified catalytic AC subunits, BODIPY-forskolin acted as weak partial agonist/strong partial antagonist. Molecular modeling revealed that the BODIPY group rotates promiscuously outside of the FS-binding site. Collectively, ACs are not uniformly activated and inhibited by FS and FS analogs, demonstrating the feasibility to design isoform-selective FS analogs. The two- and multiple-state models, originally developed to conceptualize ligand effects at G-protein-coupled receptors, can be applied to ACs to explain certain experimental data.

  8. Role of endolymphatic anion transport in forskolin-induced Cl- activity increase of scala media.

    PubMed

    Kitano, I; Mori, N; Matsunaga, T

    1995-03-01

    To determine the role of anion transport in the forskolin-induced Cl- increase of scala media (SM), effects of forskolin on the EP (endocochlear potential) and Cl- activity (ACl) in SM were examined with double-barrelled Cl(-)-selective microelectrodes. The experiments were carried out on guinea pig cochleae, using a few anion transport inhibitors: IAA-94 for a Cl- channel blocker, bumetanide (BU) for an Na+/K+/2Cl- cotransport blocker, and SITS and DIDS for Cl-/HCO3- exchange blockers. The application of forskolin (200 microM) into scala vestibuli (SV) caused a 20 mEq increase of endolymphatic ACl and a 15 mV elevation of EP, and IAA-94 with forskolin completely abolished these responses. Although each application of BU, SITS or DIDS did not completely suppress EP elevation, the concurrent application of these inhibitors completely suppressed EP with endolymphatic ACl increase. The results indicate the involvement of Cl- channels, Na+/K+/2Cl- cotransport and Cl-/HCO3- exchange in forskolin-induced increase of ACl and EP. The role of adenylate cyclase activation and Cl- transport in endolymph homeostasis was discussed.

  9. Potential benefits of triethylamine as n-electron donor in the estimation of forskolin by electronic absorption and emission spectroscopy.

    PubMed

    Raju, Gajula; Ram Reddy, A

    2016-02-05

    Diterpenoid forskolin was isolated from Coleus forskolii. The electronic absorption and emission studies of forskolin were investigated in various solvents with an aim to improve its detection limits. The two chromophores present in the diterpenoid are not conjugated leading to the poor absorption and emission of UV light. The absorption and fluorescence spectra were solvent specific. In the presence of a monodentate ligand, triethylamine the detection of forskolin is improved by 3.63 times in ethanol with the fluorescence method and 3.36 times in DMSO by the absorption spectral method. The longer wavelength absorption maximum is blue shifted while the lower energy fluorescence maximum is red shifted in the presence of triethylamine. From the wavelength of fluorescence maxima of the exciplex formed between excited forskolin and triethylamine it is concluded that the order of reactivity of hydroxyl groups in the excited state forskolin is in the reverse order to that of the order of the reactivity of hydroxyl groups in its ground state. Copyright © 2015. Published by Elsevier B.V.

  10. Activation of AMPK Inhibits Cholera Toxin Stimulated Chloride Secretion in Human and Murine Intestine

    PubMed Central

    Hoekstra, Nadia; Collins, Danielle; Collaco, Anne; Baird, Alan W.; Winter, Desmond C.; Ameen, Nadia; Geibel, John P.; Kopic, Sascha

    2013-01-01

    Increased intestinal chloride secretion through chloride channels, such as the cystic fibrosis transmembrane conductance regulator (CFTR), is one of the major molecular mechanisms underlying enterotoxigenic diarrhea. It has been demonstrated in the past that the intracellular energy sensing kinase, the AMP-activated protein kinase (AMPK), can inhibit CFTR opening. We hypothesized that pharmacological activation of AMPK can abrogate the increased chloride flux through CFTR occurring during cholera toxin (CTX) mediated diarrhea. Chloride efflux was measured in isolated rat colonic crypts using real-time fluorescence imaging. AICAR and metformin were used to activate AMPK in the presence of the secretagogues CTX or forskolin (FSK). In order to substantiate our findings on the whole tissue level, short-circuit current (SCC) was monitored in human and murine colonic mucosa using Ussing chambers. Furthermore, fluid accumulation was measured in excised intestinal loops. CTX and forskolin (FSK) significantly increased chloride efflux in isolated colonic crypts. The increase in chloride efflux could be offset by using the AMPK activators AICAR and metformin. In human and mouse mucosal sheets, CTX and FSK increased SCC. AICAR and metformin inhibited the secretagogue induced rise in SCC, thereby confirming the findings made in isolated crypts. Moreover, AICAR decreased CTX stimulated fluid accumulation in excised intestinal segments. The present study suggests that pharmacological activation of AMPK effectively reduces CTX mediated increases in intestinal chloride secretion, which is a key factor for intestinal water accumulation. AMPK activators may therefore represent a supplemental treatment strategy for acute diarrheal illness. PMID:23935921

  11. Effects of adrenomedullin on cyclic AMP formation and on relaxation in iris sphincter smooth muscle.

    PubMed

    Yousufzai, S Y; Ali, N; Abdel-Latif, A A

    1999-12-01

    To determine whether iris sphincter and other tissues of the iris-ciliary body secrete adrenomedullin (ADM), a novel hypotensive peptide that is classified into the calcitonin gene-related peptide (CGRP) family and to determine the binding sites for ADM and compare the effects of ADM and CGRP in the absence and presence of their receptor antagonists on cAMP formation and relaxation in the iris sphincter. Sphincter muscle was incubated in Krebs-Ringer bicarbonate buffer in the absence and presence of ADM for 10 minutes. Accumulation of cAMP in the tissue extract was determined by radioimmunoassay (RIA). The binding of [125I]ADM to iris sphincter membranes was carried out by rapid filtration. Distribution of ADM in the ocular tissues was determined by RIA. Changes in muscle tension were recorded isometrically. Immunoreactive ADM was present in all tissues of the cat iris-ciliary body. In the isolated cat iris sphincter, ADM increased cAMP accumulation in a time- (t1/2 = 2.2 minutes) and concentration- (EC50 = 13 nM) dependent manner, and this effect was sixfold more efficacious than CGRP. ADM, CGRP, vasoactive intestinal peptide, prostaglandin E2, isoproterenol, and forskolin increased cAMP formation in cat sphincter by 12.5-, 2-, 2.2-, 1-, 2.6-, and 2.4-fold, respectively. The rank of the effects of ADM on cAMP formation in iris sphincter isolated from different animal species was in the following order: cat > dog > bovine > human > rabbit. In the cat iris sphincter, the CGRP antagonist, CGRP(8 to 37), was more effective than the ADM antagonist, ADM (26 to 52), in inhibiting both ADM- and CGRP-induced cAMP formation. ADM and CGRP inhibited carbachol-induced contraction in a concentration-dependent manner with IC50 values of 10 and 90 nM, respectively. Both ADM and CGRP displaced the binding of [125I]ADM to sphincter membranes effectively, with IC50 values of 0.81 and 1.15 nM, respectively. In iris sphincter isolated from cat and other mammalian species including human, ADM is a much more efficacious activator of adenylate cyclase and a much more effective relaxant than CGRP. Its biological effects may be due to direct involvement of ADM receptors, but also to activation of CGRP receptors. Activation of ADM receptors by the peptide leads to concentration-dependent increases in cAMP accumulation and subsequent inhibition (relaxation) of smooth muscle contraction. These findings suggest a role for ADM as a local modulator of smooth muscle tone. A possible function for this potent hypotensive peptide in the regulation of intraocular pressure remains to be investigated.

  12. Prostaglandin E2 induces chloride secretion through crosstalk between cAMP and calcium signaling in mouse inner medullary collecting duct cells

    PubMed Central

    Rajagopal, Madhumitha; Thomas, Sheela V.; Kathpalia, Paru P.; Chen, Yu

    2013-01-01

    Under conditions of high dietary salt intake, prostaglandin E2 (PGE2) production is increased in the collecting duct and promotes urinary sodium chloride (NaCl) excretion; however, the molecular mechanisms by which PGE2 increases NaCl excretion in this context have not been clearly defined. We used the mouse inner medullary collecting duct (mIMCD)-K2 cell line to characterize mechanisms underlying PGE2-regulated NaCl transport. When epithelial Na+ channels were inhibited, PGE2 exclusively stimulated basolateral EP4 receptors to increase short-circuit current (IscPGE2). We found that IscPGE2 was sensitive to inhibition by H-89 and CFTR-172, indicating that EP4 receptors signal through protein kinase A to induce Cl− secretion via cystic fibrosis transmembrane conductance regulator (CFTR). Unexpectedly, we also found that IscPGE2 was sensitive to inhibition by BAPTA-AM (Ca2+ chelator), 2-aminoethoxydiphenyl borate (2-APB) (inositol triphosphate receptor blocker), and flufenamic acid (FFA) [Ca2+-activated Cl− channel (CACC) inhibitor], suggesting that EP4 receptors also signal through Ca2+ to induce Cl− secretion via CACC. Additionally, we observed that PGE2 stimulated an increase in Isc through crosstalk between cAMP and Ca2+ signaling; BAPTA-AM or 2-APB inhibited a component of IscPGE2 that was sensitive to CFTR-172 inhibition; H-89 inhibited a component of IscPGE2 that was sensitive to FFA inhibition. Together, our findings indicate that PGE2 activates basolateral EP4 receptors and signals through both cAMP and Ca2+ to stimulate Cl− secretion in IMCD-K2 cells. We propose that these signaling pathways, and the crosstalk between them, may provide a concerted mechanism for enhancing urinary NaCl excretion under conditions of high dietary NaCl intake. PMID:24284792

  13. Daily rhythms in locomotor circuits in Drosophila involve PDF

    PubMed Central

    Pírez, Nicolás; Christmann, Bethany L.

    2013-01-01

    The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep. PMID:23678016

  14. Daily rhythms in locomotor circuits in Drosophila involve PDF.

    PubMed

    Pírez, Nicolás; Christmann, Bethany L; Griffith, Leslie C

    2013-08-01

    The neuropeptide pigment-dispersing factor (PDF) has been studied extensively in Drosophila, and its role in circadian time-keeping has been firmly established. The role of PDF outside of the clock circuit, however, is poorly understood. A recent study suggested that PDF may act on the ellipsoid body (EB) to link the clock and sleep/activity circuits. We performed whole brain optical imaging with the fluorescence resonance energy transfer (FRET)-based cAMP sensor Epac1-camps expressed under control of the pdfR promoter to address how the clock and sleep deprivation affect the physiology of these cells. Basal cAMP levels in EB were regulated both by PDF and synaptic inputs that are controlled by the circadian clock. Acute application of PDF to the brain caused a significant, and PDF-receptor-dependent, increase in cAMP in EB cells. Application of TTX to block circuit-mediated effects of PDF increased the morning response but not the response at night, implying the existence of a temporally regulated, PDF-stimulated input that blocks cAMP generation. ACh produced both direct (TTX-insensitive) and indirect (TTX-sensitive) increases in cAMP during the day but was totally TTX-insensitive at night, indicating that ACh-stimulated inputs to the EB are suppressed at night. Sleep deprivation did not affect the cAMP responses of these cells to either PDF or ACh. These results suggest a novel role for PDF as a modulator of activity outside of the clock circuit. By elucidating the mechanisms by which the neuropeptide PDF act on its target cells, our work contributes to our understating of how the central clock coordinates activity and sleep.

  15. Control of βAR- and N-methyl-D-aspartate (NMDA) Receptor-Dependent cAMP Dynamics in Hippocampal Neurons

    PubMed Central

    Chay, Andrew; Zamparo, Ilaria; Koschinski, Andreas; Zaccolo, Manuela; Blackwell, Kim T.

    2016-01-01

    Norepinephrine, a neuromodulator that activates β-adrenergic receptors (βARs), facilitates learning and memory as well as the induction of synaptic plasticity in the hippocampus. Several forms of long-term potentiation (LTP) at the Schaffer collateral CA1 synapse require stimulation of both βARs and N-methyl-D-aspartate receptors (NMDARs). To understand the mechanisms mediating the interactions between βAR and NMDAR signaling pathways, we combined FRET imaging of cAMP in hippocampal neuron cultures with spatial mechanistic modeling of signaling pathways in the CA1 pyramidal neuron. Previous work implied that cAMP is synergistically produced in the presence of the βAR agonist isoproterenol and intracellular calcium. In contrast, we show that when application of isoproterenol precedes application of NMDA by several minutes, as is typical of βAR-facilitated LTP experiments, the average amplitude of the cAMP response to NMDA is attenuated compared with the response to NMDA alone. Models simulations suggest that, although the negative feedback loop formed by cAMP, cAMP-dependent protein kinase (PKA), and type 4 phosphodiesterase may be involved in attenuating the cAMP response to NMDA, it is insufficient to explain the range of experimental observations. Instead, attenuation of the cAMP response requires mechanisms upstream of adenylyl cyclase. Our model demonstrates that Gs-to-Gi switching due to PKA phosphorylation of βARs as well as Gi inhibition of type 1 adenylyl cyclase may underlie the experimental observations. This suggests that signaling by β-adrenergic receptors depends on temporal pattern of stimulation, and that switching may represent a novel mechanism for recruiting kinases involved in synaptic plasticity and memory. PMID:26901880

  16. Binding of (/sup 3/H)Forskolin to rat brain membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seamon, K.B.; Vaillancourt, R.; Edwards, M.

    1984-08-01

    (12-/sup 3/H)Forskolin (27 Ci/mmol) has been used to study binding sites in rat brain tissue by using both centrifugation and filtration assays. The binding isotherm measured in the presence of 5 mM MgCl/sub 2/ by using the centrifugation assay is described best by a two-site model: K/sub d1/ = 15 nM, B/sub max/sub 1// (maximal binding) = 270 fmol/mg of protein; K/sub d2/ = 1.1 ..mu..M; B/sub max/sub 2// = 4.2 pmol/mg of protein. Only the high-affinity binding sites are detected when the binding is determined by using a filtration assay; K/sub d/ = 26 nM, B/sub max/ = 400more » fmol/mg of protein. Analogs of forskolin that do not activate adenylate cyclase (EC 4.6.1.1) do not compete effectively for (/sup 3/H)forskolin binding sites. Analogs of forskolin that are less potent than forskolin in activating adenylate cyclase are also less potent in competing for forskolin binding sites. The presence of 5 mM MgCl/sub 2/ or MnCl/sub 2/ was found to enhance binding. In the presence of 1 mM EDTA the amount of high-affinity binding is reduced to 110 fmol/mg of protein with no change in K/sub d/. There is no effect of CaCl/sub 2/ (20 mM) or NaCl (100 mM) on the binding. No high-affinity binding can be detected in membranes from ram sperm, which contains an adenylate cyclase that is not activated by forskolin. It is proposed that the high-affinity binding sites for forskolin are associated with the activated complex of catalytic subunit and stimulatory guanine nucleotide binding protein. 23 references, 5 figures, 2 tables.« less

  17. Regulation of protein expression and function of octn2 in forskolin-induced syncytialization in BeWo Cells.

    PubMed

    Huang, F-D; Kung, F-L; Tseng, Y-C; Chen, M-R; Chan, H-S; Lin, C-J

    2009-02-01

    Placental OCTN2 is a high-affinity carnitine transporter that can interact with a number of therapeutic agents. The process of syncytialization is associated with the expression of a variety of genes. However, the association between syncytialization and OCTN2 expression is not yet clear. Given that forskolin induces BeWo cells to undergo biochemical and morphological differentiation, the purpose of the present study was to investigate whether the function and expression of OCTN2 are influenced by forskolin treatment during syncytialization. The forskolin-induced differentiation of BeWo cells was validated by secretion of beta-human chorionic gonadotropin (beta-hCG) and syncytin expression. Cellular localization of OCTN2 was analyzed by confocal microscopy. Expression of OCTN2 and the modular proteins PDZK1, PDZK2, NHERF1 and NHERF2 was analyzed by Western blotting and carnitine uptake by BeWo cells was estimated and the kinetic properties of uptake measured. The results showed that forskolin treatment increased beta-hCG secretion and syncytin expression, suggesting induction of syncytialization. Confocal images of BeWo cells showed the localization of OCTN2 in the brush-border membrane. OCTN2 protein expression was upregulated in isolated brush-border membranes by long-term forskolin treatment, but the V(m) for carnitine uptake was unchanged, although the K(m) increased. PDZK1, NHERF1 and NHERF2 protein expression in the brush-border membrane was downregulated by forskolin treatment, whereas PDZK2 levels remained unchanged. In conclusion, protein expression and function of OCTN2 in BeWo cells can be regulated by forskolin treatment. While the presence of forskolin results in an increase in OCTN2 protein expression, the increase in uptake capacity may be compensated by the decreased expression of PDZK1, NHERF1 or NHERF2.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taguchi, M.; Field, J.B.

    Thyrotropin (TSH) and carbachol stimulated in a dose-dependent manner the accumulation of 3H-glycerophosphoinositol (GPI), 3H-inositol monophosphate (IP1), 3H-inositol bisphosphate (IP2) and 3H-inositol trisphosphate (IP3) in primary cultures of dog thyroid cells prelabeled with myo-(2-3H)inositol. TSH, 250 mU/mL, stimulated 3H-IP3 level after a 10-minute incubation while 10 mU/mL TSH increased it during a 60-minute incubation. The effect of carbachol was more rapid and greater than that of TSH. Carbachol, 100 mumol/L, elevated 3H-IP3 after a 2-minute incubation and 3H-IP3 formation was increased by as little as 1 mumol/L carbachol. TSH stimulation was observed only if the cells were deprived of TSHmore » for 5 days before being labeled with 3H-inositol. Prolongation of the labeling period or addition of TSH, (Bu)2cAMP or carbachol during the labeling increased 3H-inositol incorporation into polyphoinositides (PIPs). When the cells were labeled without any other addition, control and TSH-stimulated 3H-IP3 levels increased in parallel with 3H-PIP levels. However, TSH or carbachol-stimulated 3H-IP3 levels did not increase in proportion to 3H-PIPs level when the cells were labeled with TSH or (Bu)2cAMP. Thus, the ratio of 3H-IP3/3H-PIPs (both control and TSH or carbachol-stimulated) decreased in the cells labeled with TSH or (Bu)2cAMP, which might reflect TSH stimulation of 3H-inositol incorporation into PIPs pool(s) that do not participate in hormone-induced hydrolysis of PIPs.« less

  19. Activation of multiple mitogen-activated protein kinases by recombinant calcitonin gene-related peptide receptor.

    PubMed

    Parameswaran, N; Disa, J; Spielman, W S; Brooks, D P; Nambi, P; Aiyar, N

    2000-02-18

    Calcitonin gene-related peptide is a 37-amino-acid neuropeptide and a potent vasodilator. Although calcitonin gene-related peptide has been shown to have a number of effects in a variety of systems, the mechanisms of action and the intracellular signaling pathways, especially the regulation of mitogen-activated protien kinase (MAPK) pathway, is not known. In the present study we investigated the role of calcitonin gene-related peptide in the regulation of MAPKs in human embryonic kidney (HEK) 293 cells stably transfected with a recombinant porcine calcitonin gene-related peptide-1 receptor. Calcitonin gene-related peptide caused a significant dose-dependent increase in cAMP response and the effect was inhibited by calcitonin gene-related peptide(8-37), the calcitonin gene-related peptide-receptor antagonist. Calcitonin gene-related peptide also caused a time- and concentration-dependent increase in extracellular signal-regulated kinase (ERK) and P38 mitogen-activated protein kinase (P38 MAPK) activities, with apparently no significant change in cjun-N-terminal kinase (JNK) activity. Forskolin, a direct activator of adenylyl cyclase also stimulated ERK and P38 activities in these cells suggesting the invovement of cAMP in this process. Calcitonin gene-related peptide-stimulated ERK and P38 MAPK activities were inhibited significantly by calcitonin gene-related peptide receptor antagonist, calcitonin gene-related peptide-(8-37) suggesting the involvement of calcitonin gene-related peptide-1 receptor. Preincubation of the cells with the cAMP-dependent protein kinase inhibitor, H89 [¿N-[2-((p-bromocinnamyl)amino)ethyl]-5-isoquinolinesulfonamide, hydrochloride¿] inhibited calcitonin gene-related peptide-mediated activation of ERK and p38 kinases. On the other hand, preincubation of the cells with wortmannin ¿[1S-(1alpha,6balpha,9abeta,11alpha, 11bbeta)]-11-(acetyloxy)-1,6b,7,8,9a,10,11, 11b-octahydro-1-(methoxymethyl)-9a,11b-dimethyl-3H-furo[4,3, 2-de]indeno[4,5-h]-2-benzopyran-3,6,9-trione¿, a PI3-kinase inhibitor, attenuated only calcitonin gene-related peptide-induced ERK and not P38 MAPK activation. Thus, these data suggest that activation of ERK by calcitonin gene-related peptide involves a H89-sensitive protein kinase A and a wortmannin-sensitive PI3-kinase while activation of p38 MAPK by calcitonin gene-related peptide involves only the H89 sensitive pathway and is independent of PI3 kinase. This also suggests that although both ERK and P38 can be activated by protein kinase A, the distal signaling components to protein kinase A in the activation of these two kinases (ERK and P38) are different.

  20. The Bile Acid Receptor TGR5 Does Not Interact with β-Arrestins or Traffic to Endosomes but Transmits Sustained Signals from Plasma Membrane Rafts*

    PubMed Central

    Jensen, Dane D.; Godfrey, Cody B.; Niklas, Christian; Canals, Meritxell; Kocan, Martina; Poole, Daniel P.; Murphy, Jane E.; Alemi, Farzad; Cottrell, Graeme S.; Korbmacher, Christoph; Lambert, Nevin A.; Bunnett, Nigel W.; Corvera, Carlos U.

    2013-01-01

    TGR5 is a G protein-coupled receptor that mediates bile acid (BA) effects on energy balance, inflammation, digestion, and sensation. The mechanisms and spatiotemporal control of TGR5 signaling are poorly understood. We investigated TGR5 signaling and trafficking in transfected HEK293 cells and colonocytes (NCM460) that endogenously express TGR5. BAs (deoxycholic acid (DCA), taurolithocholic acid) and the selective agonists oleanolic acid and 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated cAMP formation but did not induce TGR5 endocytosis or recruitment of β-arrestins, as assessed by confocal microscopy. DCA, taurolithocholic acid, and oleanolic acid did not stimulate TGR5 association with β-arrestin 1/2 or G protein-coupled receptor kinase (GRK) 2/5/6, as determined by bioluminescence resonance energy transfer. 3-(2-chlorophenyl)-N-(4-chlorophenyl)-N, 5-dimethylisoxazole-4-carboxamide stimulated a low level of TGR5 interaction with β-arrestin 2 and GRK2. DCA induced cAMP formation at the plasma membrane and cytosol, as determined using exchange factor directly regulated by cAMP (Epac2)-based reporters, but cAMP signals did not desensitize. AG1478, an inhibitor of epidermal growth factor receptor tyrosine kinase, the metalloprotease inhibitor batimastat, and methyl-β-cyclodextrin and filipin, which block lipid raft formation, prevented DCA stimulation of ERK1/2. Bioluminescence resonance energy transfer analysis revealed TGR5 and EGFR interactions that were blocked by disruption of lipid rafts. DCA stimulated TGR5 redistribution to plasma membrane microdomains, as localized by immunogold electron microscopy. Thus, TGR5 does not interact with β-arrestins, desensitize, or traffic to endosomes. TGR5 signals from plasma membrane rafts that facilitate EGFR interaction and transactivation. An understanding of the spatiotemporal control of TGR5 signaling provides insights into the actions of BAs and therapeutic TGR5 agonists/antagonists. PMID:23818521

  1. The relationship between pulsatile GnRH secretion and cAMP production in immortalized GnRH neurons.

    PubMed

    Frattarelli, John L; Krsmanovic, Lazar Z; Catt, Kevin J

    2011-06-01

    In perifused immortalized GnRH neurons (GT1-7), simultaneous measurements of GnRH and cAMP revealed that the secretory profiles for both GnRH and cAMP are pulsatile. An analysis of GnRH and cAMP pulses in 16 independent experiments revealed that 25% of pulses coincide. Inversion of the peak and nadir levels was found in 33% and random relationship between GnRH and cAMP found in 42% of analyzed pulses. The random relation between GnRH and cAMP pulse resets to synchronous after an inverse relation between pulses occurred during the major GnRH release, indicating that GnRH acts as a switching mechanism to synchronize cAMP and GnRH release in perifused GT1-7 neurons. Activation of GnRH receptors with increasing agonist concentrations caused a biphasic change in cAMP levels. Low nanomolar concentrations increased cAMP production, but at high concentrations the initial increase was followed by a rapid decline to below the basal level. Blockade of the GnRH receptors by peptide and nonpeptide antagonists generated monotonic nonpulsatile increases in both GnRH and cAMP production. These findings indicate that cAMP positively regulates GnRH secretion but does not participate in the mechanism of pulsatile GnRH release.

  2. The Physics of Quidditch Summer Camp: An Interdisciplinary Approach

    NASA Astrophysics Data System (ADS)

    Hammer, Donna; Uher, Tim

    The University of Maryland Physics Department has developed an innovative summer camp program that takes an interdisciplinary approach to engaging and teaching physics. The Physics of Quidditch Camp uniquely sits at the intersection of physics, sports, and literature, utilizing the real-life sport of quidditch adapted from the Harry Potter novels to stimulate critical thinking about real laws of physics and leaps of imagination, while actively engaging students in learning the sport and discussing the literature. Throughout the camp, middle school participants become immersed in fun physics experiments and exciting physical activities, which aim to build and enhance skills in problem-solving, analytical thinking, and teamwork. This camp has pioneered new ways of teaching physics to pre-college students, successfully engaged middle school students in learning physics, and grown a large demand for such activities.

  3. Exchange protein activated by cAMP (Epac) mediates cAMP-dependent but protein kinase A-insensitive modulation of vascular ATP-sensitive potassium channels

    PubMed Central

    Purves, Gregor I; Kamishima, Tomoko; Davies, Lowri M; Quayle, John M; Dart, Caroline

    2009-01-01

    Exchange proteins directly activated by cyclic AMP (Epacs or cAMP-GEF) represent a family of novel cAMP-binding effector proteins. The identification of Epacs and the recent development of pharmacological tools that discriminate between cAMP-mediated pathways have revealed previously unrecognized roles for cAMP that are independent of its traditional target cAMP-dependent protein kinase (PKA). Here we show that Epac exists in a complex with vascular ATP-sensitive potassium (KATP) channel subunits and that cAMP-mediated activation of Epac modulates KATP channel activity via a Ca2+-dependent mechanism involving the activation of Ca2+-sensitive protein phosphatase 2B (PP-2B, calcineurin). Application of the Epac-specific cAMP analogue 8-pCPT-2′-O-Me-cAMP, at concentrations that activate Epac but not PKA, caused a 41.6 ± 4.7% inhibition (mean ±s.e.m.; n= 7) of pinacidil-evoked whole-cell KATP currents recorded in isolated rat aortic smooth muscle cells. Importantly, similar results were obtained when cAMP was elevated by addition of the adenylyl cyclase activator forskolin in the presence of the structurally distinct PKA inhibitors, Rp-cAMPS or KT5720. Activation of Epac by 8-pCPT-2′-O-Me-cAMP caused a transient 171.0 ± 18.0 nm (n= 5) increase in intracellular Ca2+ in Fura-2-loaded aortic myocytes, which persisted in the absence of extracellular Ca2+. Inclusion of the Ca2+-specific chelator BAPTA in the pipette-filling solution or preincubation with the calcineurin inhibitors, cyclosporin A or ascomycin, significantly reduced the ability of 8-pCPT-2′-O-Me-cAMP to inhibit whole-cell KATP currents. These results highlight a previously undescribed cAMP-dependent regulatory mechanism that may be essential for understanding the physiological and pathophysiological roles ascribed to arterial KATP channels in the control of vascular tone and blood flow. PMID:19491242

  4. Cellular cAMP uptake as trigger for electrotaxis

    NASA Astrophysics Data System (ADS)

    Guido, Isabella; Bodenschatz, Eberhard

    Cells have the ability to detect continuous current electric fields and respond to them with a directed migratory movement. Dictyostelium discoideum cells, a key model organism for the study of eukaryotic chemotaxis, orient and migrate toward the cathode under the influence of an electric field. The underlying sensing mechanism and whether it is shared by the chemotactic response pathway remains unknown. By investigating the migration in the electric field of cell strains unable to migrate chemotactically (Amib-null) and with defective cAMP relay (ACA-null) we show that the starvation-induced transcription of a set of genes involved in the early developmental stage is not necessary for electrotaxis. However, the analysis of electrotaxis of vegetative cells as well as shortly starved cells shows that cells need to be stimulated with cAMP in order for them to migrate electrotactically. Indeed 30 minutes stimulation with cAMP pulses is enough to let cells orienting with the electric field although during this time the expression of receptors and the beginning of the development has not happened yet. We believe that the reason for this observed phenomenon lies on the endocytosis of the external cAMP which triggers electrotaxis as long as endocytosis and exocytosis are not balanced. This work is part of the MaxSynBio Consortium which is jointly funded by the Federal Ministry of Education and Research of Germany and the Max Planck Society.

  5. Up-regulation of angiotensin II receptors by in vitro differentiation of murine N1E-115 neuroblastoma cells.

    PubMed

    Reagan, L P; Ye, X H; Mir, R; DePalo, L R; Fluharty, S J

    1990-12-01

    In vitro differentiation of murine neuroblastoma N1E-115 cells induced by low serum (0.5%) and dimethyl sulfoxide (1.5%) increased the uptake of 45Ca2+ as well as basal and forskolin-stimulated adenylate cyclase activity. Associated with these biochemical indices of differentiation was an increase in the density of binding sites for the angiotensin II (Ang II) receptor agonist 125I-[Sar1]-Ang II and the antagonist 125I-[Sar1,Ile8]-Ang II (125I-SARILE). This up-regulation was apparent within 24 hr and was maximal at 72 hr. Other manipulations that independently increased intracellular cAMP or Ca2+ levels produced a qualitatively similar up-regulation of Ang II receptors. In vitro differentiation did not diminish the specificity of these receptors for Ang-II related peptides. Sarcosine-substituted Ang II receptor antagonists such as [Sar1,Gly8]-Ang II, [Sar1,Thr8]-Ang II, or SARILE itself competed for 125I-SARILE in a monophasic fashion, whereas the competition displayed by the agonists Ang II, angiotensin III, and Crinia-Ang II for 125I-SARILE-labeled sites was biphasic, consisting of distinct high and low affinity components. Moreover, in vitro differentiation predominantly increased the density of high affinity sites for angiotensin III and Crinia-Ang II, but the lower affinity site for Ang II, and in all three cases the majority of this increased binding was insensitive to guanine nucleotides. Collectively, these results demonstrate that the expression of Ang II receptors on neuron-like cells is regulated by the biochemical events accompanying differentiation and suggest that the biphasic nature of the binding of some angiotensin agonists may be indicative of multiple receptor subtypes.

  6. Prefrontal cortical network activity: Opposite effects of psychedelic hallucinogens and D1/D5 dopamine receptor activation

    PubMed Central

    Lambe, Evelyn K.; Aghajanian, George K.

    2007-01-01

    The fine-tuning of network activity provides a modulating influence on how information is processed and interpreted in the brain. Here, we use brain slices of rat prefrontal cortex to study how recurrent network activity is affected by neuromodulators known to alter normal cortical function. We previously determined that glutamate spillover and stimulation of extrasynaptic NMDA receptors are required to support hallucinogen-induced cortical network activity. Since microdialysis studies suggest that psychedelic hallucinogens and dopamine D1/D5 receptor agonists have opposite effects on extracellular glutamate in prefrontal cortex, we hypothesized that these two families of psychoactive drugs would have opposite effects on cortical network activity. We found that network activity can be enhanced by DOI (a psychedelic hallucinogen that is a partial agonist of serotonin 5-HT2A/2C receptors) and suppressed by the selective D1/D5 agonist SKF 38393. This suppression could be mimicked by direct activation of adenylyl cyclase with forskolin or by addition of a cAMP analog. These findings are consistent with previous work showing that activation of adenylyl cyclase can upregulate neuronal glutamate transporters, thereby decreasing synaptic spillover of glutamate. Consistent with this hypothesis, a low concentration of the glutamate transporter inhibitor TBOA restored electrically-evoked recurrent activity in the presence of a selective D1/D5 agonist, whereas recurrent activity in the presence of a low level of the GABAA antagonist bicuculline was not resistant to suppression by the D1/D5 agonist. The tempering of network UP states by D1/D5 receptor activation may have implications for the proposed use of D1/D5 agonists in the treatment of schizophrenia. PMID:17293055

  7. Phosphorylation regulates the water channel activity of the seed-specific aquaporin alpha-TIP.

    PubMed

    Maurel, C; Kado, R T; Guern, J; Chrispeels, M J

    1995-07-03

    The vacuolar membrane protein alpha-TIP is a seed-specific protein of the Major Intrinsic Protein family. Expression of alpha-TIP in Xenopus oocytes conferred a 4- to 8-fold increase in the osmotic water permeability (Pf) of the oocyte plasma membrane, showing that alpha-TIP forms water channels and is thus a new aquaporin. alpha-TIP has three putative phosphorylation sites on the cytoplasmic side of the membrane (Ser7, Ser23 and Ser99), one of which (Ser7) has been shown to be phosphorylated. We present several lines of evidence that the activity of this aquaporin is regulated by phosphorylation. First, mutation of the putative phosphorylation sites in alpha-TIP (Ser7Ala, Ser23Ala and Ser99Ala) reduced the apparent water transport activity of alpha-TIP in oocytes, suggesting that phosphorylation of alpha-TIP occurs in the oocytes and participates in the control of water channel activity. Second, exposure of oocytes to the cAMP agonists 8-bromoadenosine 3',5'-cyclic monophosphate, forskolin and 3-isobutyl-1-methylxanthine, which stimulate endogenous protein kinase A (PKA), increased the water transport activity of alpha-TIP by 80-100% after 60 min. That the protein can be phosphorylated by PKA was demonstrated by phosphorylating alpha-TIP in isolated oocyte membranes with the bovine PKA catalytic subunit. Third, the integrity of the three sites at positions 7, 23 and 99 was necessary for the cAMP-dependent increase in the Pf of oocytes expressing alpha-TIP, as well as for in vitro phosphorylation of alpha-TIP. These findings demonstrate that the alpha-TIP water channel can be modulated via phosphorylation of Ser7, Ser23 and Ser99.(ABSTRACT TRUNCATED AT 250 WORDS)

  8. Spontaneous Ca2+ spiking in a vascular smooth muscle cell line is independent of the release of intracellular Ca2+ stores.

    PubMed

    Byron, K L; Taylor, C W

    1993-04-05

    Monolayers of fura-2-loaded A7r5 cells, a cell line derived from rat embryonic aorta, generated spontaneous Ca2+ spikes that were synchronized within the cell population. These Ca2+ spikes were abolished by removal of extracellular Ca2+ or addition of nimodipine (50 nM), and their frequency was increased by depolarization with high K+ or by treatment with BAYK 8644 (1 microM), indicating that Ca2+ entry through L-type Ca2+ channels is required for Ca2+ spiking. Several lines of evidence indicate that mobilization of intracellular Ca2+ stores is not necessary for this Ca2+ spiking. 1) Ryanodine (0.1-50 microM) neither stimulated Ca2+ mobilization nor affected Ca2+ spiking; 2) the complex effects of caffeine were mimicked by theophylline, 8-bromo-cyclic adenosine 3':5'-monophosphate (8-bromo-cAMP), and forskolin, suggesting that the caffeine effects may be mediated by cAMP and not by ryanodine receptors; 3) prolonged incubation with thapsigargin (50 nM), which depletes intracellular Ca2+ stores, did not affect the frequency of Ca2+ spiking; 4) Ba2+ or Sr2+ could substitute for Ca2+ in the spike-generating mechanism even when intracellular stores were depleted of Ca2+. Under conditions where the sarcoplasmic reticulum (SR) contained Ca2+, Ba2+ spikes did not cause Ca2+ mobilization. The mechanisms involved in generating spontaneous Ca2+ spiking in A7r5 cells are therefore likely to reside in the sarcolemma and to operate independently of SR Ca2+ uptake and release.

  9. Activation of G-proteins by receptor-stimulated nucleoside diphosphate kinase in Dictyostelium.

    PubMed Central

    Bominaar, A A; Molijn, A C; Pestel, M; Veron, M; Van Haastert, P J

    1993-01-01

    Recently, interest in the enzyme nucleoside diphosphate kinase (EC2.7.4.6) has increased as a result of its possible involvement in cell proliferation and development. Since NDP kinase is one of the major sources of GTP in cells, it has been suggested that the effects of an altered NDP kinase activity on cellular processes might be the result of altered transmembrane signal transduction via guanine nucleotide-binding proteins (G-proteins). In the cellular slime mould Dictyostelium discoideum, extracellular cAMP induces an increase of phospholipase C activity via a surface cAMP receptor and G-proteins. In this paper it is demonstrated that part of the cellular NDP kinase is associated with the membrane and stimulated by cell surface cAMP receptors. The GTP produced by the action of NDP kinase is capable of activating G-proteins as monitored by altered G-protein-receptor interaction and the activation of the effector enzyme phospholipase C. Furthermore, specific monoclonal antibodies inhibit the effect of NDP kinase on G-protein activation. These results suggest that receptor-stimulated NDP kinase contributes to the mediation of hormone action by producing GTP for the activation of GTP-binding proteins. Images PMID:8389692

  10. Cell death sensitization of leukemia cells by opioid receptor activation

    PubMed Central

    Friesen, Claudia; Roscher, Mareike; Hormann, Inis; Fichtner, Iduna; Alt, Andreas; Hilger, Ralf A.; Debatin, Klaus-Michael; Miltner, Erich

    2013-01-01

    Cyclic AMP (cAMP) regulates a number of cellular processes and modulates cell death induction. cAMP levels are altered upon stimulation of specific G-protein-coupled receptors inhibiting or activating adenylyl cyclases. Opioid receptor stimulation can activate inhibitory Gi-proteins which in turn block adenylyl cyclase activity reducing cAMP. Opioids such as D,L-methadone induce cell death in leukemia cells. However, the mechanism how opioids trigger apoptosis and activate caspases in leukemia cells is not understood. In this study, we demonstrate that downregulation of cAMP induced by opioid receptor activation using the opioid D,L-methadone kills and sensitizes leukemia cells for doxorubicin treatment. Enhancing cAMP levels by blocking opioid-receptor signaling strongly reduced D,L-methadone-induced apoptosis, caspase activation and doxorubicin-sensitivity. Induction of cell death in leukemia cells by activation of opioid receptors using the opioid D,L-methadone depends on critical levels of opioid receptor expression on the cell surface. Doxorubicin increased opioid receptor expression in leukemia cells. In addition, the opioid D,L-methadone increased doxorubicin uptake and decreased doxorubicin efflux in leukemia cells, suggesting that the opioid D,L-methadone as well as doxorubicin mutually increase their cytotoxic potential. Furthermore, we found that opioid receptor activation using D,L-methadone alone or in addition to doxorubicin inhibits tumor growth significantly in vivo. These results demonstrate that opioid receptor activation via triggering the downregulation of cAMP induces apoptosis, activates caspases and sensitizes leukemia cells for doxorubicin treatment. Hence, opioid receptor activation seems to be a promising strategy to improve anticancer therapies. PMID:23633472

  11. Effect of brominated flame retardant BDE-47 on androgen production of adult rat Leydig cells.

    PubMed

    Zhao, Yan; Ao, Hong; Chen, Li; Sottas, Chantal M; Ge, Ren-Shan; Zhang, Yunhui

    2011-08-28

    As one of the most abundant polybrominated diphenylethers (PBDEs) detected in adipose tissue and breast milk of humans, 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) is considered as a potential endocrine disruptor. The objective of this study is to explore whether environment-related level of BDE-47 could affect the androgen production in rat Leydig cells. Rat adult Leydig cells (ALCs) were treated with 10(-8) to 10(-4)M BDE-47 in vitro, the production of testosterone (T) and steroidogenic acute regulatory (StAR) protein level were determined. BDE-47 significantly increased basal T production and steroidogenic acute regulatory protein (StAR) level of ALCs after treatment with 10(-4)M BED-47. Overall, LH (0.1ng/ml) stimulated T production in ALCs by 6 folds, however it did not increase T production in BDE-47-treated ALCs when compared to untreated ALC. Both 8-Br-cAMP (for cAMP signaling) and 22R-hydroxycholesterol (22-diol, for P450 cholesterol side chain cleavage enzyme P450scc activity) significantly increased T production in ALCs treated with BDE-47 from 10(-7) to 10(-5)M. The results of this study indicate that environment-related level of BDE-47 in vitro increased T production in a dose-dependent manner. The stimulated effects of BDE-47 on StAR and P450scc might play key roles in BDE-47-mediated stimulation of T production. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  12. Forskolin and rutin prevent intraocular pressure spikes after Nd:YAG laser iridotomy.

    PubMed

    Nebbioso, M; Belcaro, G; Librando, A; Rusciano, D; Steigerwalt, R D; Pescosolido, N

    2012-12-01

    the purpose of this research was to evaluate whether an oral treatment with an association of forskolin and rutin can blunt the intraocular pressure (IOP) spikes and avoid the damage that may occur after laser iridotomy. Ten patients underwent bilateral Neodymium:YAG (Nd:YAG) laser iridotomy (Visulas YAG III Laser, Zeiss), for the prevention of primary closed-angle glaucoma. IOP was measured in subjects before and after 7 days of pretreatment with placebo or forskolin and rutin by Goldman applanation tonometry. The IOP was measured before surgery and after surgery at 30-60-120 minutes, and 4-7 days. Analysis of variance indicated a significant increase of the postoperative values in patients receiving treatment with placebo (p < 0.001), but not in those who received treatment with the forskolin and rutin association. T test analysis confirmed that IOP still remained significantly elevated 7 days after laser intervention in placebo treated patients, whereas it stayed within normal values in forskolin/rutin treated patients. Forskolin and rutin can blunt the increase of IOP that occurs after Nd-YAG laser iridotomy. This can avoid serious risk to the optic nerve of the patients under laser treatment for iridotomy.

  13. Electrical Stimulation Decreases Coupling Efficiency Between Beta-Adrenergic Receptors and Cyclic AMP Production in Cultured Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, R. B.; Bridge, K. Y.

    1999-01-01

    Electrical stimulation of skeletal muscle cells in culture is an effective way to simulate the effects of muscle contraction and its effects on gene expression in muscle cells. Expression of the beta-adrenergic receptor and its coupling to cyclic AMP synthesis are important components of the signaling system that controls muscle atrophy and hypertrophy, and the goal of this project was to determine if electrical stimulation altered the beta-adrenergic response in muscle cells. Chicken skeletal muscle cells that had been grown for seven days in culture were subjected to electrical stimulation for an additional two days at a pulse frequency of 0.5 pulses/sec and a pulse duration of 200 msec. At the end of this two-day stimulation period, beta-adrenergic receptor population was measured by the binding of tritium-labeled CGP-12177 to muscle cells, and coupling to cAMP synthesis was measured by Radioimmunoassay (RIA) after treating the cells for 10 min with the potent (beta)AR agonist, isoproterenol. The number of beta adrenergic receptors and the basal levels of intracellular cyclic AMP were not affected by electrical stimulation. However, the ability of these cells to synthesize cyclic AMP was reduced by approximately 50%. Thus, an enhanced level of contraction reduces the coupling efficiency of beta-adrenergic receptors for cyclic AMP production.

  14. Plasmids encoding PKI(1-31), a specific inhibitor of cAMP-stimulated gene expression, inhibit the basal transcriptional activity of some but not all cAMP-regulated DNA response elements in JEG-3 cells.

    PubMed

    Grove, J R; Deutsch, P J; Price, D J; Habener, J F; Avruch, J

    1989-11-25

    Plasmids that encode a bioactive amino-terminal fragment of the heat-stable inhibitor of the cAMP-dependent protein kinase, PKI(1-31), were employed to characterize the role of this protein kinase in the control of transcriptional activity mediated by three DNA regulatory elements in the JEG-3 human placental cell line. The 5'-flanking sequence of the human collagenase gene contains the heptameric sequence, 5'-TGAGTCA-3', previously identified as a "phorbol ester" response element. Reporter genes containing either the intact 1.2-kilobase 5'-flanking sequence from the human collagenase gene or just the 7-base pair (bp) response element, when coupled to an enhancerless promoter, each exhibit both cAMP and phorbol ester-stimulated expression in JEG-3 cells. Cotransfection of either construct with plasmids encoding PKI(1-31) inhibits cAMP-stimulated but not basal- or phorbol ester-stimulated expression. Pretreatment of cells with phorbol ester for 1 or 2 days abrogates completely the response to rechallenge with phorbol ester but does not alter the basal expression of either construct; cAMP-stimulated expression, while modestly inhibited, remains vigorous. The 5'-flanking sequence of the human chorionic gonadotropin-alpha subunit (HCG alpha) gene has two copies of the sequence, 5'-TGACGTCA-3', contained in directly adjacent identical 18-bp segments, previously identified as a cAMP-response element. Reporter genes containing either the intact 1.5 kilobase of 5'-flanking sequence from the HCG alpha gene, or just the 36-bp tandem repeat cAMP response element, when coupled to an enhancerless promoter, both exhibit a vigorous cAMP stimulation of expression but no response to phorbol ester in JEG-3 cells. Cotransfection with plasmids encoding PKI(1-31) inhibits both basal and cAMP-stimulated expression in a parallel fashion. The 5'-flanking sequence of the human enkephalin gene mediates cAMP-stimulated expression of reporter genes in both JEG-3 and CV-1 cells. Plasmids encoding PKI(1-31) inhibit the expression that is stimulated by the addition of cAMP analogs in both cell lines; basal expression, however, is inhibited by PKI(1-31) only in the JEG-3 cell line and not in the CV-1 cells. These observations indicate that, in JEG-3 cells, PKI(1-31) is a specific inhibitor of kinase A-mediated gene transcription, but it does not modify kinase C-directed transcription.(ABSTRACT TRUNCATED AT 400 WORDS)

  15. Hormonal regulation of the alpha-ketoglutarate dehydrogenase complex in the isolated perfused rat liver.

    PubMed

    Rashed, H M; Waller, F M; Patel, T B

    1988-04-25

    The metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in perfused livers was monitored by measuring the rate of 14CO2 production from [1-14C]alpha-ketoglutarate. The rates of 14CO2 production and glucose production from [1-14C]alpha-ketoglutarate were increased with increasing perfusate alpha-ketoglutarate concentrations. Vasopressin, angiotensin II, and the alpha 1-adrenergic agonist phenylephrine stimulated transiently by 2.5-fold the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction in the presence and absence of Ca2+ in the perfusion medium. High concentrations of glucagon (1 x 10(-8) M) and 8-p-chlorophenylthio-cAMP (100 microM) (data not shown) also stimulated transiently the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction. However, lower glucagon concentrations (1 x 10(-9) M) stimulated the rate of 14CO2 production from [1-14C]alpha-ketoglutarate only under conditions optimized to fix the cellular oxidation-reduction state at an intermediate level, when glucagon (1 x 10(-9) M)-mediated elevation of cAMP content was greater than that observed under highly oxidizing and reducing conditions. These data indicate that agonists which increase cytosolic free Ca2+ levels stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase complex. Furthermore, the data presented here demonstrate for the first time that physiological glucagon concentrations stimulate the metabolic flux through the alpha-ketoglutarate dehydrogenase reaction only under conditions known to be optimal for glucagon-mediated Ca2+ mobilization in the isolated perfused rat liver.

  16. Induction of cell expansion of goldfish melanocytoma cells (GMM-1) by epinephrine and dexamethasone requires external calcium.

    PubMed

    Shih, Y L; Lo, S J

    1993-05-01

    Treatment of GMM-1 (a goldfish melanocytoma cell line) cells with epinephrine induced a rapid cell expansion (flattening of cells, extension and broadening of cellular processes) similar to the effect of dexamethasone reported previously (Shih et al., 1990). Studies on the possible involvement of secondary messengers in cell expansion indicated that (i) both 8-bromo-CAMP and forskolin caused cell shrinking (the opposite of cell expansion); (ii) TPA also caused cell shrinking; (iii) phospholipid derivatives, such as 1,2-dioctanoyl-sn-glycerol, lysophosphatidic acid, and arachidonic acid caused cell expansion; and (iv) EGTA (calcium chelator) and nifedipine (calcium channel blocker) inhibited the effect of epinephrine. Together with the previous findings, these observations indicate that epinephrine and dexamethasone may share a common pathway in triggering an external calcium influx to cause cell expansion. The results of the effects of epinephrine agonists and antagonists, together with those of other workers, also show that there are multiple isoforms of adrenoceptor in the goldfish.

  17. Effects of Forskolin on Trefoil factor 1 expression in cultured ventral mesencephalic dopaminergic neurons.

    PubMed

    Jensen, P; Ducray, A D; Widmer, H R; Meyer, M

    2015-12-03

    Trefoil factor 1 (TFF1) belongs to a family of secreted peptides that are mainly expressed in the gastrointestinal tract. Notably, TFF1 has been suggested to operate as a neuropeptide, however, its specific cellular expression, regulation and function remain largely unknown. We have previously shown that TFF1 is expressed in developing and adult rat ventral mesencephalic tyrosine hydroxylase-immunoreactive (TH-ir) dopaminergic neurons. Here, we investigated the expression of TFF1 in rat ventral mesencephalic dopaminergic neurons (embryonic day 14) grown in culture for 5, 7 or 10 days in the absence (controls) or presence of either glial cell line-derived neurotrophic factor (GDNF), Forskolin or the combination. No TFF1-ir cells were identified at day 5 and only a few at day 7, whereas TH was markedly expressed at both time points. At day 10, several TFF1-ir cells were detected, and their numbers were significantly increased after the addition of GDNF (2.2-fold) or Forskolin (4.1-fold) compared to controls. Furthermore, the combination of GDNF and Forskolin had an additive effect and increased the number of TFF1-ir cells by 5.6-fold compared to controls. TFF1 expression was restricted to neuronal cells, and the percentage of TH/TFF1 co-expressing cells was increased to the same extent in GDNF and Forskolin-treated cultures (4-fold) as compared to controls. Interestingly, the combination of GDNF and Forskolin resulted in a significantly increased co-expression (8-fold) of TH/TFF1, which could indicate that GDNF and Forskolin targeted different subpopulations of TH/TFF1 neurons. Short-term treatment with Forskolin resulted in an increased number of TFF1-ir cells, and this effect was significantly reduced by the MEK1 inhibitor PD98059 or the protein kinase A (PKA) inhibitor H89, suggesting that Forskolin induced TFF1 expression through diverse signaling pathways. In conclusion, distinct populations of cultured dopaminergic neurons express TFF1, and their numbers can be increased by factors known to influence survival and differentiation of dopaminergic cells. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  18. Regulation of basal and reserve cardiac pacemaker function by interactions of cAMP mediated PKA-dependent Ca2+ cycling with surface membrane channels

    PubMed Central

    Vinogradova, Tatiana M.; Lakatta, Edward G.

    2009-01-01

    Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca2+ and, specifically Ca2+-release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca2+ releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cells spontaneous firing. Local Ca2+ releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca2+ releases activate an inward Na+-Ca2+ exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via β-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca2+ releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca2+ cycling in regulation of the heart pacemaker clock, both in the basal state and during β-adrenergic receptor stimulation. PMID:19573534

  19. cGMP may have trophic effects on beta cell function comparable to those of cAMP, implying a role for high-dose biotin in prevention/treatment of diabetes.

    PubMed

    McCarty, Mark F

    2006-01-01

    Incretin hormones have trophic effects on beta cell function that can aid prevention and treatment of diabetes. cAMP is the primary mediator of these effects, and has been shown to potentiate glucose-stimulated insulin secretion, promote proper beta cells differentiation by increasing expression of the crucial transcription factor PDX-1, and prevent beta cell apoptosis. cGMP's role in beta cell function has received far less scrutiny, but there is emerging evidence that it may have a trophic impact on beta cell function analogous to that of cAMP. An increase in plasma glucose boosts beta cell production of cGMP, which acts as a feed-forward mediator to enhance glucose-stimulated insulin secretion. cGMP also has an anti-apoptotic effect in beta cells, and there is now indirect evidence that it promotes expression of PDX-1. Supraphysiological concentrations of biotin can directly activate guanylate cyclase, and there is limited evidence that high intakes of this vitamin can be therapeutically beneficial in diabetics and in rodent models of diabetes. Beneficial effects of cGMP on muscle insulin sensitivity and on control of hepatic glucose output may contribute to biotin's utility in diabetes. The fact that nitric oxide/cGMP exert a range of favorable effects on vascular health should further encourage exploration of biotin's preventive and therapeutic potential. If an appropriate high-dose biotin regimen could achieve a modest systemic increase in guanylate cyclase activity, without entailing unacceptable side effects or risks, such a regimen might have considerable potential for promoting vascular health and preventing or managing diabetes.

  20. The Alternative Epac/cAMP Pathway and the MAPK Pathway Mediate hCG Induction of Leptin in Placental Cells

    PubMed Central

    Maymó, Julieta Lorena; Pérez Pérez, Antonio; Maskin, Bernardo; Dueñas, José Luis; Calvo, Juan Carlos; Sánchez Margalet, Víctor; Varone, Cecilia Laura

    2012-01-01

    Pleiotropic effects of leptin have been identified in reproduction and pregnancy, particularly in the placenta, where it works as an autocrine hormone. In this work, we demonstrated that human chorionic gonadotropin (hCG) added to JEG-3 cell line or to placental explants induces endogenous leptin expression. We also found that hCG increased cAMP intracellular levels in BeWo cells in a dose-dependent manner, stimulated cAMP response element (CRE) activity and the cotransfection with an expression plasmid of a dominant negative mutant of CREB caused a significant inhibition of hCG stimulation of leptin promoter activity. These results demonstrate that hCG indeed activates cAMP/PKA pathway, and that this pathway is involved in leptin expression. Nevertheless, we found leptin induction by hCG is dependent on cAMP levels. Treatment with (Bu)2cAMP in combination with low and non stimulatory hCG concentrations led to an increase in leptin expression, whereas stimulatory concentrations showed the opposite effect. We found that specific PKA inhibition by H89 caused a significant increase of hCG leptin induction, suggesting that probably high cAMP levels might inhibit hCG effect. It was found that hCG enhancement of leptin mRNA expression involved the MAPK pathway. In this work, we demonstrated that hCG leptin induction through the MAPK signaling pathway is inhibited by PKA. We observed that ERK1/2 phosphorylation increased when hCG treatment was combined with H89. In view of these results, the involvement of the alternative cAMP/Epac signaling pathway was studied. We observed that a cAMP analogue that specifically activates Epac (CPT-OMe) stimulated leptin expression by hCG. In addition, the overexpression of Epac and Rap1 proteins increased leptin promoter activity and enhanced hCG. In conclusion, we provide evidence suggesting that hCG induction of leptin gene expression in placenta is mediated not only by activation of the MAPK signaling pathway but also by the alternative cAMP/Epac signaling pathway. PMID:23056265

Top