40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2012 CFR
2012-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired... fossil fuel. If the affected facility (i.e. heat recovery steam generator) is subject to this subpart...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2014 CFR
2014-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired... fossil fuel. If the affected facility (i.e. heat recovery steam generator) is subject to this subpart...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2011 CFR
2011-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired...) heat input of fossil fuel. If the heat recovery steam generator is subject to this subpart, only...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired...) heat input of fossil fuel. If the heat recovery steam generator is subject to this subpart, only...
40 CFR 60.40b - Applicability and delegation of authority.
Code of Federal Regulations, 2013 CFR
2013-07-01
... applicability requirements under subpart D (Standards of performance for fossil-fuel-fired steam generators... meeting the applicability requirements under subpart D (Standards of performance for fossil-fuel-fired... fossil fuel. If the affected facility (i.e. heat recovery steam generator) is subject to this subpart...
40 CFR 97.504 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Ozone Season unit begins to combust fossil fuel or to... date on which it both combusts fossil fuel and serves such generator. (b) Any unit in a State (and...
40 CFR 97.504 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Ozone Season unit begins to combust fossil fuel or to... date on which it both combusts fossil fuel and serves such generator. (b) Any unit in a State (and...
40 CFR 97.204 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.204 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.104 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
Code of Federal Regulations, 2012 CFR
2012-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.404 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Annual unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.204 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
Code of Federal Regulations, 2010 CFR
2010-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.204 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.204 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.404 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Annual unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.104 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 97.404 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Annual unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 97.504 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR NOX Ozone Season unit begins to combust fossil fuel or to... date on which it both combusts fossil fuel and serves such generator. (b) Any unit in a State (and...
Code of Federal Regulations, 2011 CFR
2011-07-01
...: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving... unit begins to combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe... this section on the first date on which it both combusts fossil fuel and serves such generator. (b) The...
40 CFR 96.104 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... through HH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired... section, is not a CAIR NOX unit begins to combust fossil fuel or to serve a generator with nameplate... provided in paragraph (a)(1) of this section on the first date on which it both combusts fossil fuel and...
40 CFR 97.604 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 1 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 96.104 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... through HH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired... section, is not a CAIR NOX unit begins to combust fossil fuel or to serve a generator with nameplate... provided in paragraph (a)(1) of this section on the first date on which it both combusts fossil fuel and...
40 CFR 96.204 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... through HHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired... section, is not a CAIR SO2 unit begins to combust fossil fuel or to serve a generator with nameplate... provided in paragraph (a)(1) of this section on the first date on which it both combusts fossil fuel and...
40 CFR 97.604 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 1 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 96.104 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... through HH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired... section, is not a CAIR NOX unit begins to combust fossil fuel or to serve a generator with nameplate... provided in paragraph (a)(1) of this section on the first date on which it both combusts fossil fuel and...
40 CFR 96.204 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... through HHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired... section, is not a CAIR SO2 unit begins to combust fossil fuel or to serve a generator with nameplate... provided in paragraph (a)(1) of this section on the first date on which it both combusts fossil fuel and...
40 CFR 97.604 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 1 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 96.204 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... through HHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired... section, is not a CAIR SO2 unit begins to combust fossil fuel or to serve a generator with nameplate... provided in paragraph (a)(1) of this section on the first date on which it both combusts fossil fuel and...
40 CFR 96.104 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... through HH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired... section, is not a CAIR NOX unit begins to combust fossil fuel or to serve a generator with nameplate... provided in paragraph (a)(1) of this section on the first date on which it both combusts fossil fuel and...
40 CFR 97.704 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart: Any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 2 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 96.204 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... through HHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired... section, is not a CAIR SO2 unit begins to combust fossil fuel or to serve a generator with nameplate... provided in paragraph (a)(1) of this section on the first date on which it both combusts fossil fuel and...
40 CFR 96.104 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... through HH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired... section, is not a CAIR NOX unit begins to combust fossil fuel or to serve a generator with nameplate... provided in paragraph (a)(1) of this section on the first date on which it both combusts fossil fuel and...
40 CFR 97.704 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart: Any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 2 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 96.204 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... through HHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired... section, is not a CAIR SO2 unit begins to combust fossil fuel or to serve a generator with nameplate... provided in paragraph (a)(1) of this section on the first date on which it both combusts fossil fuel and...
40 CFR 97.704 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart: Any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... paragraph (a)(1) of this section, is not a TR SO2 Group 2 unit begins to combust fossil fuel or to serve a... both combusts fossil fuel and serves such generator. (b) Any unit in a State (and Indian country within...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... for Fossil-Fuel-Fired Steam Generators § 60.40 Applicability and designation of affected facility. (a) The affected facilities to which the provisions of this subpart apply are: (1) Each fossil-fuel-fired... per hour (MMBtu/hr)). (2) Each fossil-fuel and wood-residue-fired steam generating unit capable of...
40 CFR 52.145 - Visibility protection.
Code of Federal Regulations, 2013 CFR
2013-07-01
... paragraph is applicable to the fossil fuel-fired, steam-generating equipment designated as Units 1, 2, and 3... applicable. Unit-Week of Maintenance means a period of 7 days during which a fossil fuel-fired steam... means million British thermal unit(s). Operating hour means any hour that fossil fuel is fired in the...
Code of Federal Regulations, 2013 CFR
2013-07-01
... a Btu basis) fossil fuel. (b) The following types of units are not affected units subject to the... fossil fuels. For solid waste incinerators which began operation before January 1, 1985, the average annual fuel consumption of non-fossil fuels for calendar years 1985 through 1987 must be greater than 80...
Code of Federal Regulations, 2010 CFR
2010-07-01
... a Btu basis) fossil fuel. (b) The following types of units are not affected units subject to the... fossil fuels. For solid waste incinerators which began operation before January 1, 1985, the average annual fuel consumption of non-fossil fuels for calendar years 1985 through 1987 must be greater than 80...
Code of Federal Regulations, 2011 CFR
2011-07-01
... a Btu basis) fossil fuel. (b) The following types of units are not affected units subject to the... fossil fuels. For solid waste incinerators which began operation before January 1, 1985, the average annual fuel consumption of non-fossil fuels for calendar years 1985 through 1987 must be greater than 80...
Code of Federal Regulations, 2012 CFR
2012-07-01
... a Btu basis) fossil fuel. (b) The following types of units are not affected units subject to the... fossil fuels. For solid waste incinerators which began operation before January 1, 1985, the average annual fuel consumption of non-fossil fuels for calendar years 1985 through 1987 must be greater than 80...
Code of Federal Regulations, 2014 CFR
2014-07-01
... a Btu basis) fossil fuel. (b) The following types of units are not affected units subject to the... fossil fuels. For solid waste incinerators which began operation before January 1, 1985, the average annual fuel consumption of non-fossil fuels for calendar years 1985 through 1987 must be greater than 80...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-17
... fossil fuel as applicable to a given water heater. Specifically, the standby loss testing in the existing... important to note that fossil-fueled direct heating equipment and pool heaters typically consume both fossil... procedures for direct heating equipment, fossil-fuel energy consumption is accounted for comprehensively over...
40 CFR 96.304 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements of this subpart and subparts BBBB through HHHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving at any time, since the later of... combust fossil fuel or to serve a generator with nameplate capacity of more than 25 MWe producing...
40 CFR 60.40Da - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... British thermal units per hour (MMBtu/hr)) heat input of fossil fuel (either alone or in combination with... MMBtu/hr) heat input of fossil fuel (either alone or in combination with any other fuel); and (2) The... after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...
40 CFR 60.40Da - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... British thermal units per hour (MMBtu/hr)) heat input of fossil fuel (either alone or in combination with... MMBtu/hr) heat input of fossil fuel (either alone or in combination with any other fuel); and (2) The... after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...
7 CFR 4288.21 - Application review and scoring.
Code of Federal Regulations, 2013 CFR
2013-01-01
... projects based on the cost, cost-effectiveness, and capacity of projects to reduce fossil fuels. The cost... economically produce energy from renewable biomass to replace its dependence on fossil fuels. Projects with... projects on simple payback as well as the percentage of fossil fuel reduction. (a) Review. The Agency will...
7 CFR 4288.21 - Application review and scoring.
Code of Federal Regulations, 2014 CFR
2014-01-01
... projects based on the cost, cost-effectiveness, and capacity of projects to reduce fossil fuels. The cost... economically produce energy from renewable biomass to replace its dependence on fossil fuels. Projects with... projects on simple payback as well as the percentage of fossil fuel reduction. (a) Review. The Agency will...
7 CFR 4288.21 - Application review and scoring.
Code of Federal Regulations, 2012 CFR
2012-01-01
... projects based on the cost, cost-effectiveness, and capacity of projects to reduce fossil fuels. The cost... economically produce energy from renewable biomass to replace its dependence on fossil fuels. Projects with... projects on simple payback as well as the percentage of fossil fuel reduction. (a) Review. The Agency will...
40 CFR 96.304 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... this subpart and subparts BBBB through HHHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving at any time, since the later of November 15, 1990 or... paragraph (a)(1) of this section, is not a CAIR NOX Ozone Season unit begins to combust fossil fuel or to...
40 CFR 96.304 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... this subpart and subparts BBBB through HHHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving at any time, since the later of November 15, 1990 or... paragraph (a)(1) of this section, is not a CAIR NOX Ozone Season unit begins to combust fossil fuel or to...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 97.304 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... subpart and subparts BBBB through HHHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving at any time, since the later of November 15, 1990 or... paragraph (a)(1) of this section, is not a CAIR NOX Ozone Season unit begins to combust fossil fuel or to...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2010 CFR
2010-07-01
... for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971 § 60... provisions of this subpart apply are: (1) Each fossil-fuel-fired steam generating unit of more than 73 megawatts (MW) heat input rate (250 million British thermal units per hour (MMBtu/hr)). (2) Each fossil-fuel...
40 CFR 97.304 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... subpart and subparts BBBB through HHHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving at any time, since the later of November 15, 1990 or... paragraph (a)(1) of this section, is not a CAIR NOX Ozone Season unit begins to combust fossil fuel or to...
40 CFR 97.304 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... subpart and subparts BBBB through HHHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving at any time, since the later of November 15, 1990 or... paragraph (a)(1) of this section, is not a CAIR NOX Ozone Season unit begins to combust fossil fuel or to...
40 CFR 96.304 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... this subpart and subparts BBBB through HHHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving at any time, since the later of November 15, 1990 or... paragraph (a)(1) of this section, is not a CAIR NOX Ozone Season unit begins to combust fossil fuel or to...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 60.40 - Applicability and designation of affected facility.
Code of Federal Regulations, 2011 CFR
2011-07-01
... for Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971 § 60... provisions of this subpart apply are: (1) Each fossil-fuel-fired steam generating unit of more than 73 megawatts (MW) heat input rate (250 million British thermal units per hour (MMBtu/hr)). (2) Each fossil-fuel...
40 CFR 52.125 - Control strategy and regulations: Sulfur oxides.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 7-1-4.2(C) (Fossil fuel-fired steam generators in the Northern Arizona Intrastate Region). (1) This paragraph is applicable to the fossil fuel-fired steam generating equipment designated as Units 1, 2, and 3...) No owner or operator of the fossil fuel-fired steam generating equipment to which this paragraph is...
40 CFR 97.304 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... subpart and subparts BBBB through HHHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving at any time, since the later of November 15, 1990 or... paragraph (a)(1) of this section, is not a CAIR NOX Ozone Season unit begins to combust fossil fuel or to...
40 CFR 96.304 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... this subpart and subparts BBBB through HHHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving at any time, since the later of November 15, 1990 or... paragraph (a)(1) of this section, is not a CAIR NOX Ozone Season unit begins to combust fossil fuel or to...
40 CFR 97.304 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... subpart and subparts BBBB through HHHH of this part: any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine serving at any time, since the later of November 15, 1990 or... paragraph (a)(1) of this section, is not a CAIR NOX Ozone Season unit begins to combust fossil fuel or to...
Exploration for fossil and nuclear fuels from orbital altitudes
NASA Technical Reports Server (NTRS)
Short, N. M.
1977-01-01
The paper discusses the application of remotely sensed data from orbital satellites to the exploration for fossil and nuclear fuels. Geological applications of Landsat data are described including map editing, lithologic identification, structural geology, and mineral exploration. Specific results in fuel exploration are reviewed and a series of related Landsat images is included.
Combined Heat and Power Market Potential for Opportunity Fuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, David; Lemar, Paul
This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.
40 CFR 98.36 - Data reporting requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... consists entirely of non-biogenic CO2 (i.e., CO2 from fossil fuel combustion plus, if applicable, CO2 from... of each gas and in metric tons of CO2e. If any of the units burn both fossil fuels and biomass, report also the annual CO2 emissions from combustion of all fossil fuels combined and annual CO2...
40 CFR 98.36 - Data reporting requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... consists entirely of non-biogenic CO2 (i.e., CO2 from fossil fuel combustion plus, if applicable, CO2 from... of each gas and in metric tons of CO2e. If any of the units burn both fossil fuels and biomass, report also the annual CO2 emissions from combustion of all fossil fuels combined and annual CO2...
40 CFR 98.36 - Data reporting requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... consists entirely of non-biogenic CO2 (i.e., CO2 from fossil fuel combustion plus, if applicable, CO2 from... gas and in metric tons of CO2e. If any of the units burn both fossil fuels and biomass, report also the annual CO2 emissions from combustion of all fossil fuels combined and annual CO2 emissions from...
NASA Astrophysics Data System (ADS)
McNeese, L. E.
1981-01-01
Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.
40 CFR 52.145 - Visibility protection.
Code of Federal Regulations, 2012 CFR
2012-07-01
... paragraph is applicable to the fossil fuel-fired, steam-generating equipment designated as Units 1, 2, and 3... applicable. Unit-Week of Maintenance means a period of 7 days during which a fossil fuel-fired steam... operator shall discharge or cause the discharge of sulfur oxides into the atmosphere in excess of 42 ng/J...
40 CFR 52.145 - Visibility protection.
Code of Federal Regulations, 2011 CFR
2011-07-01
... paragraph is applicable to the fossil fuel-fired, steam-generating equipment designated as Units 1, 2, and 3... applicable. Unit-Week of Maintenance means a period of 7 days during which a fossil fuel-fired steam... operator shall discharge or cause the discharge of sulfur oxides into the atmosphere in excess of 42 ng/J...
75 FR 20073 - Repowering Assistance Payments to Eligible Biorefineries
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-16
... be to encourage the use of renewable biomass as a replacement fuel source for fossil fuels used to.... Oversight and Monitoring F. Forms, Regulations, and Instructions G. Exception Authority H. Applicant... and encourage the use of renewable biomass to replace fossil fuels in the production of heat or power...
40 CFR 60.40Da - Applicability and designation of affected facility.
Code of Federal Regulations, 2014 CFR
2014-07-01
... than 73 megawatts (MW) (250 million British thermal units per hour (MMBtu/hr)) heat input of fossil... capable of combusting more than 73 MW (250 MMBtu/h) heat input of fossil fuel (either alone or in... reconstruction after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...
40 CFR 60.40Da - Applicability and designation of affected facility.
Code of Federal Regulations, 2013 CFR
2013-07-01
... than 73 megawatts (MW) (250 million British thermal units per hour (MMBtu/hr)) heat input of fossil... capable of combusting more than 73 MW (250 MMBtu/h) heat input of fossil fuel (either alone or in... reconstruction after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...
40 CFR 60.40Da - Applicability and designation of affected facility.
Code of Federal Regulations, 2012 CFR
2012-07-01
... than 73 megawatts (MW) (250 million British thermal units per hour (MMBtu/hr)) heat input of fossil... capable of combusting more than 73 MW (250 MMBtu/h) heat input of fossil fuel (either alone or in... reconstruction after February 28, 2005. (c) Any change to an existing fossil-fuel-fired steam generating unit to...
Hydrogen Powered Military Vehicles: A Vision or Reality by 2040
2004-01-01
Energy content of various fuels referenced to gas. 3 U.S. Department of Energy, Office of Fossil ...as a fuel , it 5U.S. Department of Energy, Office of Fossil Energy-Hydrogen Program Plan.June 2003... application of hydrogen as a fuel for transportation vehicles may be solely dependent upon the development of an automotive fuel cell system. To date
Code of Federal Regulations, 2014 CFR
2014-07-01
...) Applicability. The provisions of this section shall apply to each owner or operator of the fossil fuel-fired... the fossil fuel-fired, steam-generating equipment at the NGS, or the auxiliary steam boilers at the... of fires in the boiler with fuel oil, to the time when the electrostatic precipitator is sufficiently...
Code of Federal Regulations, 2013 CFR
2013-07-01
...) Applicability. The provisions of this section shall apply to each owner or operator of the fossil fuel-fired... the fossil fuel-fired, steam-generating equipment at the NGS, or the auxiliary steam boilers at the... of fires in the boiler with fuel oil, to the time when the electrostatic precipitator is sufficiently...
Code of Federal Regulations, 2012 CFR
2012-07-01
...) Applicability. The provisions of this section shall apply to each owner or operator of the fossil fuel-fired... the fossil fuel-fired, steam-generating equipment at the NGS, or the auxiliary steam boilers at the... of fires in the boiler with fuel oil, to the time when the electrostatic precipitator is sufficiently...
7 CFR 4288.10 - Applicant eligibility.
Code of Federal Regulations, 2014 CFR
2014-01-01
... least minimum points for cost-effectiveness under § 4288.21(b)(1). (4) Percentage of reduction of fossil fuel use. The application must be awarded at least minimum points for percentage of reduction of fossil...
7 CFR 4288.10 - Applicant eligibility.
Code of Federal Regulations, 2013 CFR
2013-01-01
... least minimum points for cost-effectiveness under § 4288.21(b)(1). (4) Percentage of reduction of fossil fuel use. The application must be awarded at least minimum points for percentage of reduction of fossil...
7 CFR 4288.10 - Applicant eligibility.
Code of Federal Regulations, 2012 CFR
2012-01-01
... least minimum points for cost-effectiveness under § 4288.21(b)(1). (4) Percentage of reduction of fossil fuel use. The application must be awarded at least minimum points for percentage of reduction of fossil...
40 CFR 60.40c - Applicability and delegation of authority.
Code of Federal Regulations, 2012 CFR
2012-07-01
... that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/h) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/h) heat input of fossil fuel. If the heat recovery steam...
40 CFR 60.40c - Applicability and delegation of authority.
Code of Federal Regulations, 2011 CFR
2011-07-01
... generators that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/hr) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/hr) heat input of fossil fuel. If the heat recovery...
40 CFR 60.40c - Applicability and delegation of authority.
Code of Federal Regulations, 2010 CFR
2010-07-01
... generators that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/hr) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/hr) heat input of fossil fuel. If the heat recovery...
40 CFR 60.40c - Applicability and delegation of authority.
Code of Federal Regulations, 2014 CFR
2014-07-01
... that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/h) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/h) heat input of fossil fuel. If the heat recovery steam...
40 CFR 60.40c - Applicability and delegation of authority.
Code of Federal Regulations, 2013 CFR
2013-07-01
... that are capable of combusting more than or equal to 2.9 MW (10 MMBtu/h) heat input of fossil fuel but less than or equal to 29 MW (100 MMBtu/h) heat input of fossil fuel. If the heat recovery steam...
40 CFR Appendix G to Part 75 - Determination of CO2 Emissions
Code of Federal Regulations, 2014 CFR
2014-07-01
... following procedures to estimate daily CO2 mass emissions from the combustion of fossil fuels. The optional... tons/day) from the combustion of fossil fuels. Where fuel flow is measured in a common pipe header (i.e... discharged to the atmosphere (in tons/day) as the sum of CO2 emissions from combustion and, if applicable...
40 CFR Appendix G to Part 75 - Determination of CO2 Emissions
Code of Federal Regulations, 2011 CFR
2011-07-01
... following procedures to estimate daily CO2 mass emissions from the combustion of fossil fuels. The optional... tons/day) from the combustion of fossil fuels. Where fuel flow is measured in a common pipe header (i.e... discharged to the atmosphere (in tons/day) as the sum of CO2 emissions from combustion and, if applicable...
40 CFR Appendix G to Part 75 - Determination of CO2 Emissions
Code of Federal Regulations, 2013 CFR
2013-07-01
... following procedures to estimate daily CO2 mass emissions from the combustion of fossil fuels. The optional... tons/day) from the combustion of fossil fuels. Where fuel flow is measured in a common pipe header (i.e... discharged to the atmosphere (in tons/day) as the sum of CO2 emissions from combustion and, if applicable...
40 CFR Appendix G to Part 75 - Determination of CO2 Emissions
Code of Federal Regulations, 2012 CFR
2012-07-01
... following procedures to estimate daily CO2 mass emissions from the combustion of fossil fuels. The optional... tons/day) from the combustion of fossil fuels. Where fuel flow is measured in a common pipe header (i.e... discharged to the atmosphere (in tons/day) as the sum of CO2 emissions from combustion and, if applicable...
Fossil energy biotechnology: A research needs assessment. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-11-01
The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects intomore » three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.« less
Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments
NASA Technical Reports Server (NTRS)
Marner, W. J. (Editor); Webb, R. L. (Editor)
1982-01-01
The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.
Graven, Heather D
2015-08-04
Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon ((14)C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio (14)C/C in atmospheric CO2 (Δ(14)CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ(14)CO2 because fossil fuels have lost all (14)C from radioactive decay. Simulations of Δ(14)CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ(14)CO2 near the preindustrial level of 0‰ through 2100, whereas "business-as-usual" emissions will reduce Δ(14)CO2 to -250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial "aging" of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old.
Graven, Heather D.
2015-01-01
Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon (14C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio 14C/C in atmospheric CO2 (Δ14CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ14CO2 because fossil fuels have lost all 14C from radioactive decay. Simulations of Δ14CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ14CO2 near the preindustrial level of 0‰ through 2100, whereas “business-as-usual” emissions will reduce Δ14CO2 to −250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial “aging” of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old. PMID:26195757
Ruppert, Leslie F.; Lentz, Erika E.; Tewalt, Susan J.; Román Colón, Yomayra A.; Ruppert, Leslie F.; Ryder, Robert T.
2014-01-01
The Appalachian basin contains abundant coal and petroleum resources that have been studied and extracted for at least 150 years. In this volume, U.S. Geological Survey (USGS) scientists describe the geologic framework and geochemical character of the fossil-fuel resources of the central and southern Appalachian basin. Separate subchapters (some previously published) contain geologic cross sections; seismic profiles; burial history models; assessments of Carboniferous coalbed methane and Devonian shale gas; distribution information for oil, gas, and coal fields; data on the geochemistry of natural gas and oil; and the fossil-fuel production history of the basin. Although each chapter and subchapter includes references cited, many historical or other important references on Appalachian basin and global fossil-fuel science were omitted because they were not directly applicable to the chapters.
Conversion to a Hydrogen Fuel Transportation Industry, Incremental Route or Direct Route
2005-03-18
applications and direct use applications . Hydrogen fuel cells reverse the hydrolysis process by taking oxygen from the air to produce water, heat and an...exploring platinum/ ruthenium catalysts that are more resistant to CO. PEM fuel cells are used primarily for transportation applications and some stationary...21 vi vii LIST OF ILLUSTRATIONS FIGURE 1 EPOCH OF FOSSIL FUELS IN HUMAN HISTORY
What can nuclear energy do for society.
NASA Technical Reports Server (NTRS)
Rom, F. E.
1972-01-01
It is pointed out that the earth's crust holds 30,000 times as much energy in the form of fissionable atoms as fossil fuel. Moreover, nuclear fuel costs less per unit of energy than fossil fuel. Capital equipment used to release nuclear energy, on the other hand, is expensive. For commercial electric-power production and marine propulsion, advantages of nuclear power have outweighed disadvantages. As to nuclear submarines, applications other than military may prove feasible. The industry has proposed cargo submarines to haul oil from the Alaskan North Slope beneath the Arctic ice. Other possible applications for nuclear power are in air-cushion-vehicles, aircraft, and rockets.-
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharon Falcone Miller; Bruce G. Miller
2007-12-15
This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the modelsmore » showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired... 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities. 921150 Fossil...
Hydrogen as fuel carrier in PEM fuelcell for automobile applications
NASA Astrophysics Data System (ADS)
Sk, Mudassir Ali; Venkateswara Rao, K.; Ramana Rao, Jagirdar V.
2015-02-01
The present work focuses the application of nanostructured materials for storing of hydrogen in different carbon materials by physisorption method. To market a hydrogen-fuel cell vehicle as competitively as the present internal combustion engine vehicles, there is a need for materials that can store a minimum of 6.5wt% of hydrogen. Carbon materials are being heavily investigated because of their promise to offer an economical solution to the challenge of safe storage of large hydrogen quantities. Hydrogen is important as a new source of energy for automotive applications. It is clear that the key challenge in developing this technology is hydrogen storage. Combustion of fossil fuels and their overuse is at present a serious concern as it is creates severe air pollution and global environmental problems; like global warming, acid rains, ozone depletion in stratosphere etc. This necessitated the search for possible alternative sources of energy. Though there are a number of primary energy sources available, such as thermonuclear energy, solar energy, wind energy, hydropower, geothermal energy etc, in contrast to the fossil fuels in most cases, these new primary energy sources cannot be used directly and thus they must be converted into fuels, that is to say, a new energy carrier is needed. Hydrogen fuel cells are two to three times more efficient than combustion engines. As they become more widely available, they will reduce dependence on fossil fuels. In a fuel cell, hydrogen and oxygen are combined in an electrochemical reaction that produces electricity and, as a byproduct, water.
40 CFR Appendix A-7 to Part 60 - Test Methods 19 through 25E
Code of Federal Regulations, 2014 CFR
2014-07-01
... %O include the unavailable hydrogen and oxygen in the form of H2O.) 12.3.2.2 Use applicable sampling... are used during the averaging period. 12.5.2.1 Solid Fossil (Including Waste) Fuel/Sampling and... of the standards) on a dry basis for each gross sample. 12.5.2.2 Liquid Fossil Fuel-Sampling and...
NETL - Fuel Reforming Facilities
None
2018-01-26
Research using NETL's Fuel Reforming Facilities explores catalytic issues inherent in fossil-energy related applications, including catalyst synthesis and characterization, reaction kinetics, catalyst activity and selectivity, catalyst deactivation, and stability.
Estimates of Fossil Fuel Carbon Dioxide Emissions From Mexico at Monthly Time Intervals
NASA Astrophysics Data System (ADS)
Losey, L. M.; Andres, R. J.
2003-12-01
Human consumption of fossil fuels has greatly contributed to the rise of carbon dioxide in the Earth's atmosphere. To better understand the global carbon cycle, it is important to identify the major sources of these fossil fuels. Mexico is among the top fifteen nations in the world for producing fossil fuel carbon dioxide emissions. Based on this information and that emissions from Mexico are a focus of the North American Carbon Program, Mexico was selected for this study. Mexican monthly inland sales volumes for January 1988-May 2003 were collected on natural gas and liquid fuels from the Energy Information Agency in the United States Department of Energy. These sales figures represent a major portion of the total fossil fuel consumption in Mexico. The fraction of a particular fossil fuel consumed in a given month was determined by dividing the monthly sales volumes by the annual sum of monthly sales volumes for a given year. This fraction was then multiplied by the annual carbon dioxide values reported by the Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) to estimate the monthly carbon dioxide emissions from the respective fuels. The advantages of this methodology are: 1) monthly fluxes are consistent with the annual flux as determined by the widely-accepted CDIAC values, and 2) its general application can be easily adapted to other nations for determining their sub-annual time scale emissions. The major disadvantage of this methodology is the proxy nature inherent to it. Only a fraction of the total emissions are used as an estimate in determining the seasonal cycle. The error inherent in this approach increases as the fraction of total emissions represented by the proxy decreases. These data are part of a long-term project between researchers at the University of North Dakota and ORNL which attempts to identify and understand the source(s) of seasonal variations of global, fossil-fuel derived, carbon dioxide emissions. Better knowledge of the temporal variation of the annual fossil fuel flux will lead to a better understanding of the global carbon cycle. This research will be archived at CDIAC for public access.
Last chance for carbon capture and storage
NASA Astrophysics Data System (ADS)
Scott, Vivian; Gilfillan, Stuart; Markusson, Nils; Chalmers, Hannah; Haszeldine, R. Stuart
2013-02-01
Anthropogenic energy-related CO2 emissions are higher than ever. With new fossil-fuel power plants, growing energy-intensive industries and new sources of fossil fuels in development, further emissions increase seems inevitable. The rapid application of carbon capture and storage is a much heralded means to tackle emissions from both existing and future sources. However, despite extensive and successful research and development, progress in deploying carbon capture and storage has stalled. No fossil-fuel power plants, the greatest source of CO2 emissions, are using carbon capture and storage, and publicly supported demonstration programmes are struggling to deliver actual projects. Yet, carbon capture and storage remains a core component of national and global emissions-reduction scenarios. Governments have to either increase commitment to carbon capture and storage through much more active market support and emissions regulation, or accept its failure and recognize that continued expansion of power generation from burning fossil fuels is a severe threat to attaining objectives in mitigating climate change.
Traversing the mountaintop: world fossil fuel production to 2050.
Nehring, Richard
2009-10-27
During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.
Selected technology for the gas industry
NASA Technical Reports Server (NTRS)
1975-01-01
A number of papers were presented at a conference concerned with the application of technical topics from aerospace activities for the gas industry. The following subjects were covered: general future of fossil fuels in America, exploration for fossil and nuclear fuels from orbital altitudes, technology for liquefied gas, safety considerations relative to fires, explosions, and detonations, gas turbomachinery technology, fluid properties, fluid flow, and heat transfer, NASA information and documentation systems, instrumentation and measurement, materials and life prediction, reliability and quality assurance, and advanced energy systems (including synthetic fuels, energy storage, solar energy, and wind energy).
40 CFR 60.43 - Standard for sulfur dioxide (SO2).
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... from liquid fossil fuel or liquid fossil fuel and wood residue. (2) 520 ng/J heat input (1.2 lb/MMBtu) derived from solid fossil fuel or solid fossil fuel and wood residue, except as provided in paragraph (e...
40 CFR 60.44 - Standard for nitrogen oxides (NOX).
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel...) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue, or gaseous fossil fuel and wood residue. (3) 300 ng/J heat input (0...
40 CFR 60.43 - Standard for sulfur dioxide (SO2).
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... from liquid fossil fuel or liquid fossil fuel and wood residue. (2) 520 ng/J heat input (1.2 lb/MMBtu) derived from solid fossil fuel or solid fossil fuel and wood residue, except as provided in paragraph (e...
40 CFR 60.44 - Standard for nitrogen oxides (NOX).
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel...) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue, or gaseous fossil fuel and wood residue. (3) 300 ng/J heat input (0...
40 CFR 423.10 - Applicability.
Code of Federal Regulations, 2011 CFR
2011-07-01
... ELECTRIC POWER GENERATING POINT SOURCE CATEGORY § 423.10 Applicability. The provisions of this part are... engaged in the generation of electricity for distribution and sale which results primarily from a process utilizing fossil-type fuel (coal, oil, or gas) or nuclear fuel in conjunction with a thermal cycle employing...
40 CFR 423.10 - Applicability.
Code of Federal Regulations, 2013 CFR
2013-07-01
... ELECTRIC POWER GENERATING POINT SOURCE CATEGORY § 423.10 Applicability. The provisions of this part are... engaged in the generation of electricity for distribution and sale which results primarily from a process utilizing fossil-type fuel (coal, oil, or gas) or nuclear fuel in conjunction with a thermal cycle employing...
40 CFR 423.10 - Applicability.
Code of Federal Regulations, 2012 CFR
2012-07-01
... ELECTRIC POWER GENERATING POINT SOURCE CATEGORY § 423.10 Applicability. The provisions of this part are... engaged in the generation of electricity for distribution and sale which results primarily from a process utilizing fossil-type fuel (coal, oil, or gas) or nuclear fuel in conjunction with a thermal cycle employing...
40 CFR 423.10 - Applicability.
Code of Federal Regulations, 2010 CFR
2010-07-01
... ELECTRIC POWER GENERATING POINT SOURCE CATEGORY § 423.10 Applicability. The provisions of this part are... engaged in the generation of electricity for distribution and sale which results primarily from a process utilizing fossil-type fuel (coal, oil, or gas) or nuclear fuel in conjunction with a thermal cycle employing...
40 CFR 423.10 - Applicability.
Code of Federal Regulations, 2014 CFR
2014-07-01
... ELECTRIC POWER GENERATING POINT SOURCE CATEGORY § 423.10 Applicability. The provisions of this part are... engaged in the generation of electricity for distribution and sale which results primarily from a process utilizing fossil-type fuel (coal, oil, or gas) or nuclear fuel in conjunction with a thermal cycle employing...
40 CFR 60.43 - Standard for sulfur dioxide (SO2).
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel.../J heat input (0.80 lb/MMBtu) derived from liquid fossil fuel or liquid fossil fuel and wood residue. (2) 520 ng/J heat input (1.2 lb/MMBtu) derived from solid fossil fuel or solid fossil fuel and wood...
40 CFR 60.43 - Standard for sulfur dioxide (SO2).
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel.../J heat input (0.80 lb/MMBtu) derived from liquid fossil fuel or liquid fossil fuel and wood residue. (2) 520 ng/J heat input (1.2 lb/MMBtu) derived from solid fossil fuel or solid fossil fuel and wood...
40 CFR 60.43 - Standard for sulfur dioxide (SO2).
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel.../J heat input (0.80 lb/MMBtu) derived from liquid fossil fuel or liquid fossil fuel and wood residue. (2) 520 ng/J heat input (1.2 lb/MMBtu) derived from solid fossil fuel or solid fossil fuel and wood...
Traversing the mountaintop: world fossil fuel production to 2050
Nehring, Richard
2009-01-01
During the past century, fossil fuels—petroleum liquids, natural gas and coal—were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85–93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios—low, medium and high—are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15–30 years. The subsequent peak plateau will last for 10–15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030. PMID:19770156
40 CFR 63.11194 - What is the affected source of this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... requirements of this subpart after June 4, 2010 due to a fuel switch from gaseous fuel to solid fossil fuel, biomass, or liquid fuel is considered to be an existing source under this subpart as long as the boiler... applicability criteria at the time you commence reconstruction. (e) An existing dual-fuel fired boiler meeting...
40 CFR 63.11194 - What is the affected source of this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... requirements of this subpart after June 4, 2010 due to a fuel switch from gaseous fuel to solid fossil fuel, biomass, or liquid fuel is considered to be an existing source under this subpart as long as the boiler... applicability criteria at the time you commence reconstruction. (e) An existing dual-fuel fired boiler meeting...
Code of Federal Regulations, 2011 CFR
2011-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil-or other-fuel-fired combustion device used... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... enclosed fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... enclosed fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... enclosed fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil-or other-fuel-fired combustion device used... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil-or other-fuel-fired combustion device used... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... enclosed fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil-or other-fuel-fired combustion device used... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... right-of-way tree trimmings. Boiler means an enclosed fossil-or other-fuel-fired combustion device used... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., petroleum, coal, or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired... enclosed fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to... means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Code of Federal Regulations, 2010 CFR
2010-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or gaseous fuel derived... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... any other fuel. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil...
Fuel cell programs in the United States for stationary power applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Singer, M.
1996-04-01
The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued governmentmore » and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.« less
NASA Technical Reports Server (NTRS)
Carr, J. H.; Hurley, P. J.; Martin, P. J.
1978-01-01
Applications of Thermal Energy Storage (TES) in a paper and pulp mill power house were studied as one approach to the transfer of steam production from fossil fuel boilers to waste fuel of (hog fuel) boilers. Data from specific mills were analyzed, and various TES concepts evaluated for application in the process steam supply system. Constant pressure and variable pressure steam accumulators were found to be the most attractive storage concepts for this application.
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2012 CFR
2012-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2014 CFR
2014-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2011 CFR
2011-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2010 CFR
2010-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.109 - Low risk waste exemption.
Code of Federal Regulations, 2013 CFR
2013-07-01
... of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-22
... and Security Act of 2007 (EISA) to reduce the use of fossil fuels and encourage increased production... renewable fuel to replace or reduce the quantity of fossil fuel present in transportation fuel. Under EPA's... quantity of fossil fuel present in home heating oil or jet fuel.\\3\\ In essence, additional renewable fuel...
40 CFR 63.7499 - What are the subcategories of boilers and process heaters?
Code of Federal Regulations, 2013 CFR
2013-07-01
... process heaters, as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel... liquid fuel. (r) Units designed to burn coal/solid fossil fuel. (s) Fluidized bed units with an...
40 CFR 63.7499 - What are the subcategories of boilers and process heaters?
Code of Federal Regulations, 2014 CFR
2014-07-01
... process heaters, as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel... liquid fuel. (r) Units designed to burn coal/solid fossil fuel. (s) Fluidized bed units with an...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-20
... Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial-Institutional, and... following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired electric utility steam...
Code of Federal Regulations, 2012 CFR
2012-07-01
... products), and landscape or right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel... unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... limitation for the source for such control period. Fossil fuel means— (1) Natural gas, petroleum, coal, or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... products), and landscape or right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel... unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... limitation for the source for such control period. Fossil fuel means— (1) Natural gas, petroleum, coal, or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... products), and landscape or right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel... unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine... limitation for the source for such control period. Fossil fuel means— (1) Natural gas, petroleum, coal, or...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2014 CFR
2014-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2010 CFR
2010-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2012 CFR
2012-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2013 CFR
2013-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 266.110 - Waiver of DRE trial burn for boilers.
Code of Federal Regulations, 2011 CFR
2011-07-01
... percent of fuel fired to the device shall be fossil fuel, fuels derived from fossil fuel, tall oil, or, if... comparable to fossil fuel. Such fuels are termed “primary fuel” for purposes of this section. (Tall oil is a...
40 CFR 98.273 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fossil fuels and combustion of biomass in spent liquor solids. (1) Calculate fossil fuel-based CO2 emissions from direct measurement of fossil fuels consumed and default emissions factors according to the Tier 1 methodology for stationary combustion sources in § 98.33(a)(1). (2) Calculate fossil fuel-based...
40 CFR 98.273 - Calculating GHG emissions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... fossil fuels and combustion of biomass in spent liquor solids. (1) Calculate fossil fuel-based CO2 emissions from direct measurement of fossil fuels consumed and default emissions factors according to the...) may be used to calculate fossil fuel-based CO2 emissions if the respective monitoring and QA/QC...
40 CFR 98.273 - Calculating GHG emissions.
Code of Federal Regulations, 2012 CFR
2012-07-01
... fossil fuels and combustion of biomass in spent liquor solids. (1) Calculate fossil fuel-based CO2 emissions from direct measurement of fossil fuels consumed and default emissions factors according to the...) may be used to calculate fossil fuel-based CO2 emissions if the respective monitoring and QA/QC...
40 CFR 98.273 - Calculating GHG emissions.
Code of Federal Regulations, 2013 CFR
2013-07-01
... fossil fuels and combustion of biomass in spent liquor solids. (1) Calculate fossil fuel-based CO2 emissions from direct measurement of fossil fuels consumed and default emissions factors according to the...) may be used to calculate fossil fuel-based CO2 emissions if the respective monitoring and QA/QC...
40 CFR 98.273 - Calculating GHG emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fossil fuels and combustion of biomass in spent liquor solids. (1) Calculate fossil fuel-based CO2 emissions from direct measurement of fossil fuels consumed and default emissions factors according to the...) may be used to calculate fossil fuel-based CO2 emissions if the respective monitoring and QA/QC...
2016-07-01
ER D C/ CH L TR -1 6- 11 Dredging Operations and Environmental Research Program Evaluation of Biodiesel Fuels to Reduce Fossil Fuel Use...Fuels to Reduce Fossil Fuel Use in Corps of Engineers Floating Plant Operations Michael Tubman and Timothy Welp Coastal and Hydraulics Laboratory...sensitive emissions, increase use of renewable energy, and reduce the use of fossil fuels was conducted with funding from the U.S. Army Corps of
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... renewable biomass as a replacement fuel source for fossil fuels used to provide process heat or power in the... Bill) (Pub. L. 110-246), to replace the use of fossil fuels used to produce heat or power at their... reduction in fossil fuel used by the biorefinery (including the quantity of fossil fuels a renewable biomass...
NASA Astrophysics Data System (ADS)
Carlson, Paul T.
1995-04-01
The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification, heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in referred journals, full-length papers in published proceedings of conferences, full-length papers in unreferred journals, and books and book articles.
Well-to-wheels analysis of fast pyrolysis pathways with the GREET model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, J.; Elgowainy, A.; Palou-Rivera, I.
The pyrolysis of biomass can help produce liquid transportation fuels with properties similar to those of petroleum gasoline and diesel fuel. Argonne National Laboratory conducted a life-cycle (i.e., well-to-wheels [WTW]) analysis of various pyrolysis pathways by expanding and employing the Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model. The WTW energy use and greenhouse gas (GHG) emissions from the pyrolysis pathways were compared with those from the baseline petroleum gasoline and diesel pathways. Various pyrolysis pathway scenarios with a wide variety of possible hydrogen sources, liquid fuel yields, and co-product application and treatment methods were considered. Atmore » one extreme, when hydrogen is produced from natural gas and when bio-char is used for process energy needs, the pyrolysis-based liquid fuel yield is high (32% of the dry mass of biomass input). The reductions in WTW fossil energy use and GHG emissions relative to those that occur when baseline petroleum fuels are used, however, is modest, at 50% and 51%, respectively, on a per unit of fuel energy basis. At the other extreme, when hydrogen is produced internally via reforming of pyrolysis oil and when bio-char is sequestered in soil applications, the pyrolysis-based liquid fuel yield is low (15% of the dry mass of biomass input), but the reductions in WTW fossil energy use and GHG emissions are large, at 79% and 96%, respectively, relative to those that occur when baseline petroleum fuels are used. The petroleum energy use in all scenarios was restricted to biomass collection and transportation activities, which resulted in a reduction in WTW petroleum energy use of 92-95% relative to that found when baseline petroleum fuels are used. Internal hydrogen production (i.e., via reforming of pyrolysis oil) significantly reduces fossil fuel use and GHG emissions because the hydrogen from fuel gas or pyrolysis oil (renewable sources) displaces that from fossil fuel natural gas and the amount of fossil natural gas used for hydrogen production is reduced; however, internal hydrogen production also reduces the potential petroleum energy savings (per unit of biomass input basis) because the fuel yield declines dramatically. Typically, a process that has a greater liquid fuel yield results in larger petroleum savings per unit of biomass input but a smaller reduction in life-cycle GHG emissions. Sequestration of the large amount of bio-char co-product (e.g., in soil applications) provides a significant carbon dioxide credit, while electricity generation from bio-char combustion provides a large energy credit. The WTW energy and GHG emissions benefits observed when a pyrolysis oil refinery was integrated with a pyrolysis reactor were small when compared with those that occur when pyrolysis oil is distributed to a distant refinery, since the activities associated with transporting the oil between the pyrolysis reactors and refineries have a smaller energy and emissions footprint than do other activities in the pyrolysis pathway.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nero, A.V.; Quinby-Hunt, M.S.
1977-01-01
This report sets forth methodologies for review of the health and safety aspects of proposed nuclear, geothermal, and fossil-fuel sites and facilities for electric power generation. The review is divided into a Notice of Intention process and an Application for Certification process, in accordance with the structure to be used by the California Energy Resources Conservation and Development Commission, the first emphasizing site-specific considerations, the second examining the detailed facility design as well. The Notice of Intention review is divided into three possible stages: an examination of emissions and site characteristics, a basic impact analysis, and an assessment of publicmore » impacts. The Application for Certification review is divided into five possible stages: a review of the Notice of Intention treatment, review of the emission control equipment, review of the safety design, review of the general facility design, and an overall assessment of site and facility acceptability.« less
7 CFR 4288.1 - Purpose and scope.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., Conservation, and Energy Act of 2008 (the 2008 Farm Bill) (Pub. L. 110-246), to replace the use of fossil fuels... percentage reduction in fossil fuel used by the biorefinery (including the quantity of fossil fuels a... reduction in fossil fuel used by the biorefinery that will result from the installation of the renewable...
40 CFR 60.42 - Standard for particulate matter (PM).
Code of Federal Regulations, 2013 CFR
2013-07-01
... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel (excluding...
40 CFR 60.42 - Standard for particulate matter (PM).
Code of Federal Regulations, 2012 CFR
2012-07-01
... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel (excluding...
7 CFR 4288.1 - Purpose and scope.
Code of Federal Regulations, 2012 CFR
2012-01-01
..., Conservation, and Energy Act of 2008 (the 2008 Farm Bill) (Pub. L. 110-246), to replace the use of fossil fuels... percentage reduction in fossil fuel used by the biorefinery (including the quantity of fossil fuels a... reduction in fossil fuel used by the biorefinery that will result from the installation of the renewable...
7 CFR 4288.1 - Purpose and scope.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., Conservation, and Energy Act of 2008 (the 2008 Farm Bill) (Pub. L. 110-246), to replace the use of fossil fuels... percentage reduction in fossil fuel used by the biorefinery (including the quantity of fossil fuels a... reduction in fossil fuel used by the biorefinery that will result from the installation of the renewable...
40 CFR 60.42 - Standard for particulate matter (PM).
Code of Federal Regulations, 2014 CFR
2014-07-01
... Fossil-Fuel-Fired Steam Generators § 60.42 Standard for particulate matter (PM). (a) Except as provided... fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one... owner or operator of an affected facility that combusts only gaseous or liquid fossil fuel (excluding...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-15
... [Docket No. EERE-2010-BT-STD-0031] RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for... of fossil fuel-generated energy consumption in new Federal buildings and Federal buildings undergoing... full fossil fuel-generated energy consumption reduction level is technically impracticable in light of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-30
.... Treatment of Fossil-Fuel Consumption in Existing Test Procedures for Fossil-Fuel Vented Heaters 2. Specific.... Proposed Test Procedure Amendments for Pool Heaters 1. Treatment of Fossil-Fuel Consumption in Existing.... Fossil-fuel standby mode and off mode energy use is already integrated into the vented [[Page 52895...
An analysis of natural ventilation techniques to achieve indoor comfort in Wal-Mart express
NASA Astrophysics Data System (ADS)
O'Dea, Shona
Despite global efforts to reduce world fossil fuel dependency the world still obtains 81% of its energy from fossil fuels (IEA,2009). Modern renewable alternatives have been around since the mid twentieth century these alternatives have not been integrated into electrical grid systems at the exponential rate required to eradicate fossil fuels dependency. The problem, world energy demand, is too large to be satisfied by anything other than the energy-dense fossil fuels used today. We must change our energy intensive processes in order to conserve energy and hence reduce the demands that alternatives must satisfy. This research aims to identify sustainable design opportunities through the application of innovative technologies for the largest retailer in the US with the view that a viable conservative design measure could be applied to the store model, which is replicated across the country, causing a cumulative and hence larger impact on the company energy consumption as a whole. This paper will present the literature available on the 'big box' industry and Wal-Mart, comfort, natural ventilation and building simulation software and then perform an analysis into the viability of naturally ventilating the Wal-Mart Express sales zone using Monodraught natural ventilation windcatcher products
40 CFR 60.44 - Standard for nitrogen oxides (NOX).
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... NO2 in excess of: (1) 86 ng/J heat input (0.20 lb/MMBtu) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue...
40 CFR 60.44 - Standard for nitrogen oxides (NOX).
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... NO2 in excess of: (1) 86 ng/J heat input (0.20 lb/MMBtu) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue...
40 CFR 60.44 - Standard for nitrogen oxides (NOX).
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... NO2 in excess of: (1) 86 ng/J heat input (0.20 lb/MMBtu) derived from gaseous fossil fuel. (2) 129 ng/J heat input (0.30 lb/MMBtu) derived from liquid fossil fuel, liquid fossil fuel and wood residue...
Criteria for solid recovered fuels as a substitute for fossil fuels--a review.
Beckmann, Michael; Pohl, Martin; Bernhardt, Daniel; Gebauer, Kathrin
2012-04-01
The waste treatment, particularly the thermal treatment of waste has changed fundamentally in the last 20 years, i.e. from facilities solely dedicated to the thermal treatment of waste to facilities, which in addition to that ensure the safe plant operation and fulfill very ambitious criteria regarding emission reduction, resource recovery and energy efficiency as well. Therefore this contributes to the economic use of raw materials and due to the energy recovered from waste also to the energy provision. The development described had the consequence that waste and solid recovered fuels (SRF) has to be evaluated based on fuel criteria as well. Fossil fuels - coal, crude oil, natural gas etc. have been extensively investigated due to their application in plants for energy conversion and also due to their use in the primary industry. Thereby depending on the respective processes, criteria on fuel technical properties can be derived. The methods for engineering analysis of regular fuels (fossil fuels) can be transferred only partially to SRF. For this reason methods are being developed or adapted to current analytical methods for the characterization of SRF. In this paper the possibilities of the energetic utilization of SRF and the characterization of SRF before and during the energetic utilization will be discussed.
40 CFR 52.1470 - Identification of plan.
Code of Federal Regulations, 2013 CFR
2013-07-01
....513 “Fossil fuel” defined 12/4/76 49 FR 11626 (3/27/84) Most recently approved version was submitted... modification or relocation of plants to generate electricity using steam produced by burning of fossil fuels 10... for each source; form of application; issuance or denial; posting 05/04/06 77 FR 59321, 9/27/12...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-07
... Promulgation of Air Quality Implementation Plans; Massachusetts; Revisions to Fossil Fuel Utilization and..., inspection, maintenance and testing requirements for certain fossil fuel utilization facilities, rename and... fossil fuel utilization facility regulation, source registration regulation, and new industrial...
From plant cell wall metabolism and plasticity to cell wall biotechnology.
Hamann, Thorsten; Kärkönen, Anna; Krause, Kirsten
2018-06-28
The greenhouse effect is in part caused by the use of fossil fuels for energy production. The effect in turn leads to climate change, which impairs food crop productivity due to increased biotic and abiotic stress. A major aim at the moment is to replace energy production from fossil fuels with more sustainable methods, which amongst others involve plant biomass as a starting material for energy production through fermentation and other applications. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Technical Reports Server (NTRS)
Lietzke, K. R.
1974-01-01
The application of remotely-sensed information to the mineral, fossil fuel, and geothermal energy extraction industry is investigated. Public and private cost savings are documented in geologic mapping activities. Benefits and capabilities accruing to the ERS system are assessed. It is shown that remote sensing aids in resource extraction, as well as the monitoring of several dynamic phenomena, including disturbed lands, reclamation, erosion, glaciation, and volcanic and seismic activity.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Petitions Petitioning state Named source categories Connecticut Fossil fuel-fired boilers or other indirect.... New Hampshire Fossil fuel-fired indirect heat exchange combustion units and fossil fuel-fired electric generating facilities which emit ten tons of NOX or more per day. New York Fossil fuel-fired boilers or...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Petitions Petitioning state Named source categories Connecticut Fossil fuel-fired boilers or other indirect.... New Hampshire Fossil fuel-fired indirect heat exchange combustion units and fossil fuel-fired electric generating facilities which emit ten tons of NOX or more per day. New York Fossil fuel-fired boilers or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Petitions Petitioning state Named source categories Connecticut Fossil fuel-fired boilers or other indirect.... New Hampshire Fossil fuel-fired indirect heat exchange combustion units and fossil fuel-fired electric generating facilities which emit ten tons of NOX or more per day. New York Fossil fuel-fired boilers or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Petitions Petitioning state Named source categories Connecticut Fossil fuel-fired boilers or other indirect.... New Hampshire Fossil fuel-fired indirect heat exchange combustion units and fossil fuel-fired electric generating facilities which emit ten tons of NOX or more per day. New York Fossil fuel-fired boilers or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Petitions Petitioning state Named source categories Connecticut Fossil fuel-fired boilers or other indirect.... New Hampshire Fossil fuel-fired indirect heat exchange combustion units and fossil fuel-fired electric generating facilities which emit ten tons of NOX or more per day. New York Fossil fuel-fired boilers or...
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
The Coal and Electric Data and Renewables Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy prepares the EPM. This publication provides monthly statistics at the State, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIAmore » publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nozik, Arthur J; Beard, Matthew C
The challenge of photoconversion research is to produce photovoltaic electricity at costs much less than those based on fossil fuels. Novel photoactive semiconductors and molecules of various types and structures are discussed for this purpose.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based emissions...
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based emissions...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based emissions...
A Pilot Study to Evaluate California's Fossil Fuel CO2 Emissions Using Atmospheric Observations
NASA Astrophysics Data System (ADS)
Graven, H. D.; Fischer, M. L.; Lueker, T.; Guilderson, T.; Brophy, K. J.; Keeling, R. F.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Cui, X.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Paplawsky, B.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.
2016-12-01
Atmospheric CO2 concentration is influenced by human activities and by natural exchanges. Studies of CO2 fluxes using atmospheric CO2 measurements typically focus on natural exchanges and assume that CO2 emissions by fossil fuel combustion and cement production are well-known from inventory estimates. However, atmospheric observation-based or "top-down" studies could potentially provide independent methods for evaluating fossil fuel CO2 emissions, in support of policies to reduce greenhouse gas emissions and mitigate climate change. Observation-based estimates of fossil fuel-derived CO2 may also improve estimates of biospheric CO2 exchange, which could help to characterize carbon storage and climate change mitigation by terrestrial ecosystems. We have been developing a top-down framework for estimating fossil fuel CO2 emissions in California that uses atmospheric observations and modeling. California is implementing the "Global Warming Solutions Act of 2006" to reduce total greenhouse gas emissions to 1990 levels by 2020, and it has a diverse array of ecosystems that may serve as CO2 sources or sinks. We performed three month-long field campaigns in different seasons in 2014-15 to collect flask samples from a state-wide network of 10 towers. Using measurements of radiocarbon in CO2, we estimate the fossil fuel-derived CO2 present in the flask samples, relative to marine background air observed at coastal sites. Radiocarbon (14C) is not present in fossil fuel-derived CO2 because of radioactive decay over millions of years, so fossil fuel emissions cause a measurable decrease in the 14C/C ratio in atmospheric CO2. We compare the observations of fossil fuel-derived CO2 to simulations based on atmospheric modeling and published fossil fuel flux estimates, and adjust the fossil fuel flux estimates in a statistical inversion that takes account of several uncertainties. We will present the results of the top-down technique to estimate fossil fuel emissions for our field campaigns in California, and we will give an outlook for future development of the technique in California.
40 CFR 98.36 - Data reporting requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... fossil fuels only, the annual CO2 emissions for all fuels combined. Reporting CO2 emissions by type of fuel is not required. (ii) For units that burn both fossil fuels and biomass, the annual CO2 emissions from combustion of all fossil fuels combined and the annual CO2 emissions from combustion of all...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2013 CFR
2013-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2014 CFR
2014-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2010 CFR
2010-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2012 CFR
2012-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
40 CFR 52.1881 - Control strategy: Sulfur oxides (sulfur dioxide).
Code of Federal Regulations, 2011 CFR
2011-07-01
... sulfur oxides. (iii) Fossil fuel means natural gas, refinery fuel gas, coke oven gas, petroleum, coal and any form of solid, liquid, or gaseous fuel derived from such materials. (iv) Fossil fuel-fired steam generating unit means a furnace or boiler used in the process of burning fossil fuel for the purpose of...
Petzold, Andreas; Lauer, Peter; Fritsche, Uwe; Hasselbach, Jan; Lichtenstern, Michael; Schlager, Hans; Fleischer, Fritz
2011-12-15
The modification of emissions of climate-sensitive exhaust compounds such as CO(2), NO(x), hydrocarbons, and particulate matter from medium-speed marine diesel engines was studied for a set of fossil and biogenic fuels. Applied fossil fuels were the reference heavy fuel oil (HFO) and the low-sulfur marine gas oil (MGO); biogenic fuels were palm oil, soybean oil, sunflower oil, and animal fat. Greenhouse gas (GHG) emissions related to the production of biogenic fuels were treated by means of a fuel life cycle analysis which included land use changes associated with the growth of energy plants. Emissions of CO(2) and NO(x) per kWh were found to be similar for fossil fuels and biogenic fuels. PM mass emission was reduced to 10-15% of HFO emissions for all low-sulfur fuels including MGO as a fossil fuel. Black carbon emissions were reduced significantly to 13-30% of HFO. Changes in emissions were predominantly related to particulate sulfate, while differences between low-sulfur fossil fuels and low-sulfur biogenic fuels were of minor significance. GHG emissions from the biogenic fuel life cycle (FLC) depend crucially on energy plant production conditions and have the potential of shifting the overall GHG budget from positive to negative compared to fossil fuels.
Code of Federal Regulations, 2014 CFR
2014-07-01
... products), and landscape or right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used... that any portion of a ton of excess emissions shall be treated as one ton of excess emissions. Fossil...
Code of Federal Regulations, 2013 CFR
2013-07-01
... products), and landscape or right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used... that any portion of a ton of excess emissions shall be treated as one ton of excess emissions. Fossil...
Code of Federal Regulations, 2012 CFR
2012-07-01
... products), and landscape or right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used... that any portion of a ton of excess emissions shall be treated as one ton of excess emissions. Fossil...
Code of Federal Regulations, 2010 CFR
2010-07-01
... products), and landscape or right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used... that any portion of a ton of excess emissions shall be treated as one ton of excess emissions. Fossil...
Code of Federal Regulations, 2011 CFR
2011-07-01
... products), and landscape or right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel..., fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine: (1) Having equipment used... that any portion of a ton of excess emissions shall be treated as one ton of excess emissions. Fossil...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Carlson, P.T.
1995-04-01
The objective of the Fossil Energy Advanced Research and Technology Development (AR and TD) Materials Program is to conduct research and development on materials for fossil energy applications, with a focus on the longer-term needs for materials with general applicability to the various fossil fuel technologies. The Program includes research aimed at a better understanding of materials behavior in fossil energy environments and on the development of new materials capable of substantial improvement in plant operations and reliability. The scope of the Program addresses materials requirements for all fossil energy systems, including materials for coal preparation, coal liquefaction, coal gasification,more » heat engines and heat recovery, combustion systems, and fuel cells. Work on the Program is conducted at national and government laboratories, universities, and industrial research facilities. This bibliography covers the period of April 1, 1993, through March 31, 1995, and is a supplement to previous bibliographies in this series. It is the intent of this series of bibliographies to list only those publications that can be conveniently obtained by a researcher through relatively normal channels. The publications listed in this document have been limited to topical reports, open literature publications in refereed journals, full-length papers in published proceedings of conferences, full-length papers in unrefereed journals, and books and book articles. 159 refs.« less
Hydrogen turbine power conversion system assessment
NASA Technical Reports Server (NTRS)
Wright, D. E.; Lucci, A. D.; Campbell, J.; Lee, J. C.
1978-01-01
A three part technical study was conducted whereby parametric technical and economic feasibility data were developed on several power conversion systems suitable for the generation of central station electric power through the combustion of hydrogen and the use of the resulting heat energy in turbogenerator equipment. The study assessed potential applications of hydrogen-fueled power conversion systems and identified the three most promising candidates: (1) Ericsson Cycle, (2) gas turbine, and (3) direct steam injection system for fossil fuel as well as nuclear powerplants. A technical and economic evaluation was performed on the three systems from which the direct injection system (fossil fuel only) was selected for a preliminary conceptual design of an integrated hydrogen-fired power conversion system.
The Fossil Fuel Divestment Movement: An Ethical Dilemma for the Geosciences?
NASA Astrophysics Data System (ADS)
Greene, C. H.; Kammen, D. M.
2014-12-01
For over 200 years, fossil fuels have been the basis for an industrial revolution that has delivered a level of prosperity to modern society unimaginable during the previous 5000 years of human civilization. However, society's dependence on fossil fuels is coming to an end for two reasons. The first reason is because our fossil fuel reserves are running out, oil in this century, natural gas during the next century, and coal a few centuries later. The second reason is because fossil fuels are having a devastating impact on the habitability of our planet, disrupting our climate system and acidifying our oceans. So the question is not whether we will discontinue using fossil fuels, but rather whether we will stop using them before they do irreparable damage to the Earth's life-support systems. Within our geoscience community, climate scientists have determined that a majority of existing fossil fuel reserves must remain unburned if dangerous climate change and ocean acidification are to be avoided. In contrast, Exxon-Mobil, Shell, and other members of the fossil fuel industry are pursuing a business model that assumes all of their reserves will be burned and will not become stranded assets. Since the geosciences have had a long and mutually beneficial relationship with the fossil fuel industry, this inherent conflict between climate science and industrial interests presents an ethical dilemma for many geoscientists. This conflict is further heightened by the fossil fuel divestment movement, which is underway at over 400 college and university campuses around the world. This presentation will explore some of the ethical and financial issues being raised by the divestment movement from a geoscientist's perspective.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Season emissions limitation for the source. Fossil fuel means natural gas, petroleum, coal, or any form... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used... any other fuel, during a specified year. Cogeneration unit means a stationary, fossil-fuel-fired...
Code of Federal Regulations, 2013 CFR
2013-07-01
... Season emissions limitation for the source. Fossil fuel means natural gas, petroleum, coal, or any form... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used... any other fuel, during a specified year. Cogeneration unit means a stationary, fossil-fuel-fired...
Code of Federal Regulations, 2012 CFR
2012-07-01
... Season emissions limitation for the source. Fossil fuel means natural gas, petroleum, coal, or any form... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used... any other fuel, during a specified year. Cogeneration unit means a stationary, fossil-fuel-fired...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Season emissions limitation for the source. Fossil fuel means natural gas, petroleum, coal, or any form... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used... any other fuel, during a specified year. Cogeneration unit means a stationary, fossil-fuel-fired...
Code of Federal Regulations, 2011 CFR
2011-07-01
... Season emissions limitation for the source. Fossil fuel means natural gas, petroleum, coal, or any form... right-of-way tree trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used... any other fuel, during a specified year. Cogeneration unit means a stationary, fossil-fuel-fired...
40 CFR 52.1470 - Identification of plan.
Code of Federal Regulations, 2014 CFR
2014-07-01
...). 445.513 “Fossil fuel” defined 12/4/76 49 FR 11626 (3/27/84) Most recently approved version was... produced by burning of fossil fuels 10/31/05 73 FR 20536 (4/16/08) Most recently approved version was... for each source; form of application; issuance or denial; posting 5/4/06 77 FR 59321 (9/27/12...
40 CFR 60.46 - Test methods and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... fossil fuels or fossil fuel and wood residue are fired, the owner or operator (in order to compute the...
40 CFR 60.46 - Test methods and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... fossil fuels or fossil fuel and wood residue are fired, the owner or operator (in order to compute the...
40 CFR 60.46 - Test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... fossil fuels or fossil fuel and wood residue are fired, the owner or operator (in order to compute the...
40 CFR 60.46 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... the results of the four pairs of samples. (c) When combinations of fossil fuels or fossil fuel and...
40 CFR 60.46 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... the results of the four pairs of samples. (c) When combinations of fossil fuels or fossil fuel and...
The Carbon Cycle: Implications for Climate Change and Congress
2008-03-13
burning of fossil fuels, deforestation , and other land use activities, have significantly altered the carbon cycle. As a result, atmospheric...80% of human-related CO2 emissions results from fossil fuel combustion, and 20% from land use change (primarily deforestation ). Fossil fuel burning...warming the planet. At present, the oceans and land surface are acting as sinks for CO2 emitted from fossil fuel combustion and deforestation , but
Perera, Frederica P
2017-02-01
Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141-148; http://dx.doi.org/10.1289/EHP299.
ERIC Educational Resources Information Center
Crank, Ron
This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…
Code of Federal Regulations, 2013 CFR
2013-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel-fired means the... average quantity of fossil fuel consumed by a unit, measured in millions of British Thermal Units... high relative to the reference value. Boiler means an enclosed fossil or other fuel-fired combustion...
Code of Federal Regulations, 2011 CFR
2011-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel-fired means the... average quantity of fossil fuel consumed by a unit, measured in millions of British Thermal Units... high relative to the reference value. Boiler means an enclosed fossil or other fuel-fired combustion...
Code of Federal Regulations, 2012 CFR
2012-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel-fired means the... average quantity of fossil fuel consumed by a unit, measured in millions of British Thermal Units... high relative to the reference value. Boiler means an enclosed fossil or other fuel-fired combustion...
Code of Federal Regulations, 2014 CFR
2014-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel-fired means the... average quantity of fossil fuel consumed by a unit, measured in millions of British Thermal Units... high relative to the reference value. Boiler means an enclosed fossil or other fuel-fired combustion...
Energy properties of solid fossil fuels and solid biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk; Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk
The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison withmore » solid fossil fuels.« less
Material flow analysis of fossil fuels in China during 2000-2010.
Wang, Sheng; Dai, Jing; Su, Meirong
2012-01-01
Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000-2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions.
Material Flow Analysis of Fossil Fuels in China during 2000–2010
Wang, Sheng; Dai, Jing; Su, Meirong
2012-01-01
Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000–2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions. PMID:23365525
Code of Federal Regulations, 2014 CFR
2014-07-01
.... Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of creating useful heat. Fossil fuel and wood residue-fired steam... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators § 60.41...
Code of Federal Regulations, 2013 CFR
2013-07-01
.... Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of creating useful heat. Fossil fuel and wood residue-fired steam... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators § 60.41...
Code of Federal Regulations, 2012 CFR
2012-07-01
.... Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of creating useful heat. Fossil fuel and wood residue-fired steam... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators § 60.41...
2017-01-01
Provides monthly statistics at the state, Census division, and U.S. levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold.
Ancient water supports today's energy needs
NASA Astrophysics Data System (ADS)
D'Odorico, Paolo; Natyzak, Jennifer L.; Castner, Elizabeth A.; Davis, Kyle F.; Emery, Kyle A.; Gephart, Jessica A.; Leach, Allison M.; Pace, Michael L.; Galloway, James N.
2017-05-01
The water footprint for fossil fuels typically accounts for water utilized in mining and fuel processing, whereas the water footprint of biofuels assesses the agricultural water used by crops through their lifetime. Fossil fuels have an additional water footprint that is not easily accounted for: ancient water that was used by plants millions of years ago, before they were transformed into fossil fuel. How much water is mankind using from the past to sustain current energy needs? We evaluate the link between ancient water virtually embodied in fossil fuels to current global energy demands by determining the water demand required to replace fossil fuels with biomass produced with water from the present. Using equal energy units of wood, bioethanol, and biodiesel to replace coal, natural gas, and crude oil, respectively, the resulting water demand is 7.39 × 1013 m3 y-1, approximately the same as the total annual evaporation from all land masses and transpiration from all terrestrial vegetation. Thus, there are strong hydrologic constraints to a reliance on biofuel energy produced with water from the present because the conversion from fossil fuels to biofuels would have a disproportionate and unsustainable impact on the modern water. By using fossil fuels to meet today's energy needs, we are virtually using water from a geological past. The water cycle is insufficient to sustain the production of the fuel presently consumed by human societies. Thus, non-fuel-based renewable energy sources are needed to decrease mankind's reliance on fossil fuel energy without placing an overwhelming pressure on global freshwater resources.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willenbrock, J.H.; Thomas, H.R. Jr.; Burati, J.J. Jr.
1978-12-01
A summary of two reports, COO/4120-1 and COO/4120-2, is given. A comparative analysis was made of the Quality Assurance practices related to the structural concrete phase on nine nuclear and three fossil fuel power plant projects which are (or have been) under construction in the United States in the past ten years. For the nuclear projects the analysis identified the response of each Quality Assurance program to the applicable criteria of 10 CFR Part 50, Appendix B as well as to the pertinent regulatory requirements and industry standards. For the fossil projects the analysis identified the response of each Qualitymore » Assurance program to criteria similar to those which were applicable in the nuclear situation. The major emphasis was placed on the construction aspects of the structural concrete phase of each project. The engineering and design aspects were examined whenever they interfaced with the construction aspects.« less
Hydrogen: A Future Energy Mediator?
ERIC Educational Resources Information Center
Environmental Science and Technology, 1975
1975-01-01
Hydrogen may be the fuel to help the United States to a non fossil energy source. Although hydrogen may not be widely used as a fuel until after the turn of the century, special applications may become feasible in the short term. Costs, uses, safety, and production methods are discussed. (BT)
Armaroli, Nicola; Balzani, Vincenzo
2011-03-01
Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
40 CFR 63.7480 - What is the purpose of this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
..., as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel. (d...
40 CFR 63.7480 - What is the purpose of this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
..., as defined in § 63.7575 are: (a) Pulverized coal/solid fossil fuel units. (b) Stokers designed to burn coal/solid fossil fuel. (c) Fluidized bed units designed to burn coal/solid fossil fuel. (d...
40 CFR 63.10042 - What definitions apply to this subpart?
Code of Federal Regulations, 2013 CFR
2013-07-01
... gas stream. Fossil fuel means natural gas, oil, coal, and any form of solid, liquid, or gaseous fuel... administrative proceeding. Anthracite coal means solid fossil fuel classified as anthracite coal by American... utility steam generating unit meeting the definition of “fossil fuel-fired” that burns coal for more than...
40 CFR 63.10042 - What definitions apply to this subpart?
Code of Federal Regulations, 2012 CFR
2012-07-01
... gas stream. Fossil fuel means natural gas, oil, coal, and any form of solid, liquid, or gaseous fuel... administrative proceeding. Anthracite coal means solid fossil fuel classified as anthracite coal by American... utility steam generating unit meeting the definition of “fossil fuel-fired” that burns coal for more than...
40 CFR 63.10042 - What definitions apply to this subpart?
Code of Federal Regulations, 2014 CFR
2014-07-01
... gas stream. Fossil fuel means natural gas, oil, coal, and any form of solid, liquid, or gaseous fuel... administrative proceeding. Anthracite coal means solid fossil fuel classified as anthracite coal by American... utility steam generating unit meeting the definition of “fossil fuel-fired” that burns coal for more than...
Perera, Frederica P.
2016-01-01
Background: Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. Objective: This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. Discussion: The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Conclusion: Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141–148; http://dx.doi.org/10.1289/EHP299 PMID:27323709
Lichtfouse, Eric; Lichtfouse, Michel; Jaffrézic, Anne
2003-01-01
A novel fossil fuel pollution indicator based on the 13C/12C isotopic composition of plants has been designed. This bioindicator is a promising tool for future mapping of the sequestration of fossil fuel CO2 into urban vegetation. Theoretically, plants growing in fossil-fuel-CO2-contaminated areas, such as major cities, industrial centers, and highway borders, should assimilate a mixture of global atmospheric CO2 of delta13C value of -8.02 per thousand and of fossil fuel CO2 of average delta13C value of -27.28 per thousand. This isotopic difference should, thus, be recorded in plant carbon. Indeed, this study reveals that grasses growing near a major highway in Paris, France, have strikingly depleted delta13C values, averaging at -35.08 per thousand, versus rural grasses that show an average delta13C value of -30.59 per thousand. A simple mixing model was used to calculate the contributions of fossil-fuel-derived CO2 to the plant tissue. Calculation based on contaminated and noncontaminated isotopic end members shows that urban grasses assimilate up to 29.1% of fossil-fuel-CO2-derived carbon in their tissues. The 13C isotopic composition of grasses thus represents a promising new tool for the study of the impact of fossil fuel CO2 in major cities.
NASA Astrophysics Data System (ADS)
Park, J. H.; Hong, W.; Park, G.; Sung, K. S.; Lee, K. H.; Kim, Y. E.; Kim, J. K.; Choi, H. W.; Kim, G. D.; Woo, H. J.
2013-01-01
We collected a batch of ginkgo (Ginkgo biloba Linnaeus) leaf samples at five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) in 2009 to obtain the regional distribution of fossil fuel originated CO2 (fossil fuel CO2) in the atmosphere. Regions assumed to be free of fossil fuel CO2 were also selected, namely Mt. Chiak, Mt. Kyeryong, Mt. Jiri, Anmyeon Island, and Jeju Island and ginkgo leaf samples were collected in those areas during the same period. The Δ14C values of the samples were measured using Accelerator Mass Spectrometry (AMS) and the fossil fuel CO2 ratios in the atmosphere were obtained in the five metropolitan areas. The average ratio of fossil fuel CO2 in Seoul was higher than that in the other four cities. The leaves from the Sajik Tunnel in Seoul recorded the highest FFCTC (fossil fuel CO2 over total CO2 in atmosphere), 13.9 ± 0.5%, as the air flow of the surrounding neighborhood of the Sajik Tunnel was blocked.
Code of Federal Regulations, 2013 CFR
2013-10-01
... submitted by the designated State agency using the standard forms contained in Attachment M of Office of... plans for agricultural development or existence of fossil fuel reserves, the State's anticipated...
Code of Federal Regulations, 2012 CFR
2012-10-01
... submitted by the designated State agency using the standard forms contained in Attachment M of Office of... plans for agricultural development or existence of fossil fuel reserves, the State's anticipated...
Code of Federal Regulations, 2014 CFR
2014-10-01
... submitted by the designated State agency using the standard forms contained in Attachment M of Office of... plans for agricultural development or existence of fossil fuel reserves, the State's anticipated...
Code of Federal Regulations, 2010 CFR
2010-10-01
... submitted by the designated State agency using the standard forms contained in Attachment M of Office of... plans for agricultural development or existence of fossil fuel reserves, the State's anticipated...
Code of Federal Regulations, 2011 CFR
2011-10-01
... submitted by the designated State agency using the standard forms contained in Attachment M of Office of... plans for agricultural development or existence of fossil fuel reserves, the State's anticipated...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-27
... Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major Renovations of Federal Buildings; Correction AGENCY: Office of Energy Efficiency and Renewable Energy, Department of... the fossil fuel- generated energy consumption [[Page 66009
Upward revision of global fossil fuel methane emissions based on isotope database.
Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P
2016-10-06
Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.
3 CFR - Improving Energy Security, American Competitiveness and Job Creation, and Environmental...
Code of Federal Regulations, 2011 CFR
2011-01-01
... source of fossil fuel consumption and greenhouse gas pollution. I therefore request that the... annual progress in reducing transportation sector emissions and fossil fuel consumption consistent with... substantial annual progress in reducing transportation sector greenhouse gas emissions and fossil fuel...
O'Sullivan, M; Rap, A; Reddington, C L; Spracklen, D V; Gloor, M; Buermann, W
2016-08-16
The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998-2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-11
... renewable biomass as a replacement fuel source for fossil fuels used to provide process heat or power in the... Farm Bill) (Pub. L. 110-246), to replace the use of fossil fuels used to produce heat or power at their... to a biorefinery taking into consideration the percentage reduction in fossil fuel used by the...
40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?
Code of Federal Regulations, 2011 CFR
2011-07-01
... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...
40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?
Code of Federal Regulations, 2013 CFR
2013-07-01
... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...
40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?
Code of Federal Regulations, 2010 CFR
2010-07-01
... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...
40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...
40 CFR 80.1151 - What are the recordkeeping requirements under the RFS program?
Code of Federal Regulations, 2012 CFR
2012-07-01
... records of the following: (1) The amount and type of fossil fuel and waste material-derived fuel used in... biomass ethanol through the displacement of 90 percent or more of the fossil fuel normally used in the... producing cellulosic biomass ethanol as defined in § 80.1101(a)(1). (3) The equivalent amount of fossil fuel...
Code of Federal Regulations, 2013 CFR
2013-07-01
..., or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired means...) If a State elects to impose control measures on fossil fuel-fired non-EGUs that are boilers or... chapter. (ii) If the SIP revision contains measures to control fossil fuel-fired non-EGUs that are boilers...
Code of Federal Regulations, 2014 CFR
2014-07-01
..., or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired means...) If a State elects to impose control measures on fossil fuel-fired non-EGUs that are boilers or... chapter. (ii) If the SIP revision contains measures to control fossil fuel-fired non-EGUs that are boilers...
Code of Federal Regulations, 2010 CFR
2010-07-01
..., or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired means...) If a State elects to impose control measures on fossil fuel-fired non-EGUs that are boilers or... chapter. (ii) If the SIP revision contains measures to control fossil fuel-fired non-EGUs that are boilers...
Code of Federal Regulations, 2012 CFR
2012-07-01
..., or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired means...) If a State elects to impose control measures on fossil fuel-fired non-EGUs that are boilers or... chapter. (ii) If the SIP revision contains measures to control fossil fuel-fired non-EGUs that are boilers...
Code of Federal Regulations, 2011 CFR
2011-07-01
..., or any form of solid, liquid, or gaseous fuel derived from such material. Fossil-fuel-fired means...) If a State elects to impose control measures on fossil fuel-fired non-EGUs that are boilers or... chapter. (ii) If the SIP revision contains measures to control fossil fuel-fired non-EGUs that are boilers...
Fossil-Fuel C02 Emissions Database and Exploration System
NASA Astrophysics Data System (ADS)
Krassovski, M.; Boden, T.
2012-04-01
Fossil-Fuel C02 Emissions Database and Exploration System Misha Krassovski and Tom Boden Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production each year at global, regional, and national spatial scales. These estimates are vital to climate change research given the strong evidence suggesting fossil-fuel emissions are responsible for unprecedented levels of carbon dioxide (CO2) in the atmosphere. The CDIAC fossil-fuel emissions time series are based largely on annual energy statistics published for all nations by the United Nations (UN). Publications containing historical energy statistics make it possible to estimate fossil-fuel CO2 emissions back to 1751 before the Industrial Revolution. From these core fossil-fuel CO2 emission time series, CDIAC has developed a number of additional data products to satisfy modeling needs and to address other questions aimed at improving our understanding of the global carbon cycle budget. For example, CDIAC also produces a time series of gridded fossil-fuel CO2 emission estimates and isotopic (e.g., C13) emissions estimates. The gridded data are generated using the methodology described in Andres et al. (2011) and provide monthly and annual estimates for 1751-2008 at 1° latitude by 1° longitude resolution. These gridded emission estimates are being used in the latest IPCC Scientific Assessment (AR4). Isotopic estimates are possible thanks to detailed information for individual nations regarding the carbon content of select fuels (e.g., the carbon signature of natural gas from Russia). CDIAC has recently developed a relational database to house these baseline emissions estimates and associated derived products and a web-based interface to help users worldwide query these data holdings. Users can identify, explore and download desired CDIAC fossil-fuel CO2 emissions data. This presentation introduces the architecture and design of the new relational database and web interface, summarizes the present state and functionality of the Fossil-Fuel CO2 Emissions Database and Exploration System, and highlights future plans for expansion of the relational database and interface.
40 CFR 52.1470 - Identification of plan.
Code of Federal Regulations, 2012 CFR
2012-07-01
.... See 40 CFR 52.1490(c)(25)(i)(A). 445.513 “Fossil fuel” defined 12/4/76 49 FR 11626 (3/27/84) Most... modification or relocation of plants to generate electricity using steam produced by burning of fossil fuels 10... [relates to application forms] 11/7/75 43 FR 1341 (1/9/78) Submitted on 10/31/75. See 40 CFR 52.1490(c)(11...
Code of Federal Regulations, 2014 CFR
2014-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
40 CFR 52.536 - Original identification of plan section.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Florida Department of Pollution Control. (15) Revised limits on sulfur dioxide emissions from fossil-fuel... specific Fossil Fuel Steam Generators, submitted on November 6, 1978, and February 3, 1979, by the Florida..., fossil fuel steam generators-visible emissions, submitted on October 19, 1979; revision describing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2014 CFR
2014-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2012 CFR
2012-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2014 CFR
2014-07-01
... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...
Code of Federal Regulations, 2013 CFR
2013-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
Code of Federal Regulations, 2013 CFR
2013-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...
Code of Federal Regulations, 2010 CFR
2010-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...
Code of Federal Regulations, 2014 CFR
2014-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...
Code of Federal Regulations, 2011 CFR
2011-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...
40 CFR 52.536 - Original identification of plan section.
Code of Federal Regulations, 2010 CFR
2010-07-01
... Florida Department of Pollution Control. (15) Revised limits on sulfur dioxide emissions from fossil-fuel... specific Fossil Fuel Steam Generators, submitted on November 6, 1978, and February 3, 1979, by the Florida..., fossil fuel steam generators-visible emissions, submitted on October 19, 1979; revision describing...
40 CFR 52.536 - Original identification of plan section.
Code of Federal Regulations, 2011 CFR
2011-07-01
... Florida Department of Pollution Control. (15) Revised limits on sulfur dioxide emissions from fossil-fuel... specific Fossil Fuel Steam Generators, submitted on November 6, 1978, and February 3, 1979, by the Florida..., fossil fuel steam generators-visible emissions, submitted on October 19, 1979; revision describing...
40 CFR 52.536 - Original identification of plan section.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Florida Department of Pollution Control. (15) Revised limits on sulfur dioxide emissions from fossil-fuel... specific Fossil Fuel Steam Generators, submitted on November 6, 1978, and February 3, 1979, by the Florida..., fossil fuel steam generators-visible emissions, submitted on October 19, 1979; revision describing...
Code of Federal Regulations, 2012 CFR
2012-07-01
... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...
Code of Federal Regulations, 2012 CFR
2012-07-01
... any form of solid, liquid, or gaseous fuel derived from such material. Fossil fuel fired means, with... subpart H of this part. Boiler means an enclosed fossil or other fuel-fired combustion device used to... efficiency of electricity generation or steam production. Combustion turbine means an enclosed fossil or...
Code of Federal Regulations, 2013 CFR
2013-07-01
... fossil- or other-fuel-fired combustion device used to produce heat and to transfer heat to recirculating... the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming-cycle unit: (1...
Code of Federal Regulations, 2010 CFR
2010-07-01
... component failure or condition. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid... average quantity of fossil fuel consumed by a unit, measured in millions of British Thermal Units... high relative to the reference value. Boiler means an enclosed fossil or other fuel-fired combustion...
Code of Federal Regulations, 2013 CFR
2013-07-01
... trimmings. Boiler means an enclosed fossil- or other-fuel-fired combustion device used to produce heat and... electricity through the sequential use of energy. Cogeneration unit means a stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine that is a topping-cycle unit or a bottoming...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2012 CFR
2012-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2014 CFR
2014-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2013 CFR
2013-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2010 CFR
2010-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-12
... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial...- and Oil-fired Electric Utility Steam Generating Units and Standards of Performance for Fossil-Fuel... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial...
40 CFR Appendix P to Part 51 - Minimum Emission Monitoring Requirements
Code of Federal Regulations, 2011 CFR
2011-07-01
... respective monitoring requirements are listed below. 1.1.1 Fossil fuel-fired steam generators, as specified... this appendix to meet the following basic requirements. 2.1 Fossil fuel-fired steam generators. Each fossil fuel-fired steam generator, except as provided in the following subparagraphs, with an annual...
40 CFR 51.166 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
... pollutant: Fossil fuel-fired steam electric plants of more than 250 million British thermal units per hour... ethanol by natural fermentation included in NAICS codes 325193 or 312140), fossil-fuel boilers (or... that produce ethanol by natural fermentation included in NAICS codes 325193 or 312140; (u) Fossil-fuel...
40 CFR 51.308 - Regional haze program requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... for fossil-fuel fired power plants having a total generating capacity greater than 750 megawatts must...-eligible fossil fuel-fired steam electric plants in the State to install, operate, and maintain BART for... fossil fuel-fired steam electric plants in the State to install, operate, and maintain BART for the...
40 CFR 52.21 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... regulated NSR pollutant: Fossil fuel-fired steam electric plants of more than 250 million British thermal... ethanol by natural fermentation included in NAICS codes 325193 or 312140), fossil-fuel boilers (or... that produce ethanol by natural fermentation included in NAICS codes 325193 or 312140; (u) Fossil-fuel...
40 CFR 51.166 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... pollutant: Fossil fuel-fired steam electric plants of more than 250 million British thermal units per hour... ethanol by natural fermentation included in NAICS codes 325193 or 312140), fossil-fuel boilers (or... that produce ethanol by natural fermentation included in NAICS codes 325193 or 312140; (u) Fossil-fuel...
40 CFR 51.308 - Regional haze program requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... for fossil-fuel fired power plants having a total generating capacity greater than 750 megawatts must...-eligible fossil fuel-fired steam electric plants in the State to install, operate, and maintain BART for... fossil fuel-fired steam electric plants in the State to install, operate, and maintain BART for the...
40 CFR 52.21 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2012 CFR
2012-07-01
... regulated NSR pollutant: Fossil fuel-fired steam electric plants of more than 250 million British thermal... ethanol by natural fermentation included in NAICS codes 325193 or 312140), fossil-fuel boilers (or... that produce ethanol by natural fermentation included in NAICS codes 325193 or 312140; (u) Fossil-fuel...
40 CFR 51.166 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2013 CFR
2013-07-01
... pollutant: Fossil fuel-fired steam electric plants of more than 250 million British thermal units per hour... ethanol by natural fermentation included in NAICS codes 325193 or 312140), fossil-fuel boilers (or... that produce ethanol by natural fermentation included in NAICS codes 325193 or 312140; (u) Fossil-fuel...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-16
... Utility Steam Generating Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility... Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial-Institutional, and Small Industrial... electric utility steam generating units (EGUs) and standards of performance for fossil-fuel-fired electric...
40 CFR 51.166 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... pollutant: Fossil fuel-fired steam electric plants of more than 250 million British thermal units per hour... ethanol by natural fermentation included in NAICS codes 325193 or 312140), fossil-fuel boilers (or... that produce ethanol by natural fermentation included in NAICS codes 325193 or 312140; (u) Fossil-fuel...
Fossil fuel burning is considered a major contributor to global climate change. The outlook for production and consumption of fossil fuels int he US indicates continued growth to support growing energy demands. For example, coal-generated electricity is projected ot increase from...
Divesting from Fossil Fuels Makes Sense Morally… and Financially
ERIC Educational Resources Information Center
Cleveland, Cutler J.; Reibstein, Richard
2015-01-01
Should university endowments divest from fossil fuels? A public discussion of this question has seen some university presidents issuing statements that they would not divest--that investments should not be used for "political action." Many universities hold large endowments that have significant positions in fossil fuel companies or…
Special Section: ;Microbial fuel cells: From fundamentals to applications;: Guest Editors' note
NASA Astrophysics Data System (ADS)
Santoro, Carlo; Arbizzani, Catia; Erable, Benjamin; Ieropoulos, Ioannis
2017-07-01
Water scarcity and production of non-renewable energy are among the most serious challenges faced by humankind at present. Water-related problems such as insufficient freshwater for drinking or irrigation or, even worse, unavailability of freshwater exist in many parts of the world. Over a billion people lack access to clean water, and approximately two million people die every year because of inadequate water sanitation. Fossil fuel combustion has also become problematic because of the depletion of fossil fuels, which are finite energy sources. This together with the emissions of greenhouse gases has increased the CO2 concentration in atmosphere to an unprecedented level of >400 ppm. Therefore, it is of paramount importance to identify new renewable energy sources and more efficient ways of energy consumption and hybridization with existing technologies.
Kim, Byeong-Uk; Kim, Okgil; Kim, Hyun Cheol; Kim, Soontae
2016-09-01
The South Korean government plans to reduce region-wide annual PM2.5 (particulate matter with an aerodynamic diameter ≤2.5 μm) concentrations in the Seoul Capital Area (SCA) from 2010 levels of 27 µg/m(3) to 20 µg/m(3) by 2024. At the same time, it is inevitable that emissions from fossil-fuel power plants will continue to increase if electricity generation expands and the generation portfolio remains the same in the future. To estimate incremental PM2.5 contributions due to projected electricity generation growth in South Korea, we utilized an ensemble forecasting member of the Integrated Multidimensional Air Quality System for Korea based on the Community Multi-scale Air Quality model. We performed sensitivity runs with across-the-board emission reductions for all fossil-fuel power plants in South Korea to estimate the contribution of PM2.5 from domestic fossil-fuel power plants. We estimated that fossil-fuel power plants are responsible for 2.4% of the annual PM2.5 national ambient air quality standard in the SCA as of 2010. Based on the electricity generation and the annual contribution of fossil-fuel power plants in 2010, we estimated that annual PM2.5 concentrations may increase by 0.2 µg/m(3) per 100 TWhr due to additional electricity generation. With currently available information on future electricity demands, we estimated that the total future contribution of fossil-fuel power plants would be 0.87 µg/m(3), which is 12.4% of the target reduction amount of the annual PM2.5 concentration by 2024. We also approximated that the number of premature deaths caused by existing fossil-fuel power plants would be 736 in 2024. Since the proximity of power plants to the SCA and the types of fuel used significantly impact this estimation, further studies are warranted on the impact of physical parameters of plants, such as location and stack height, on PM2.5 concentrations in the SCA due to each precursor. Improving air quality by reducing fine particle pollution is challenging when fossil-fuel-based electricity production is increasing. We show that an air quality forecasting system based on a photochemical model can be utilized to efficiently estimate PM2.5 contributions from and health impacts of domestic power plants. We derived PM2.5 concentrations per unit amount of electricity production from existing fossil-fuel power plants in South Korea. We assessed the health impacts of existing fossil-fuel power plants and the PM2.5 concentrations per unit electricity production to quantify the significance of existing and future fossil-fuel power plants with respect to the planned PM2.5 reduction target.
10 CFR 451.8 - Application content requirements.
Code of Federal Regulations, 2014 CFR
2014-01-01
... of a qualified renewable energy facility which generates electric energy using a fossil fuel, nuclear... 10 Energy 3 2014-01-01 2014-01-01 false Application content requirements. 451.8 Section 451.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.8...
10 CFR 451.8 - Application content requirements.
Code of Federal Regulations, 2013 CFR
2013-01-01
... of a qualified renewable energy facility which generates electric energy using a fossil fuel, nuclear... 10 Energy 3 2013-01-01 2013-01-01 false Application content requirements. 451.8 Section 451.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.8...
10 CFR 451.8 - Application content requirements.
Code of Federal Regulations, 2012 CFR
2012-01-01
... of a qualified renewable energy facility which generates electric energy using a fossil fuel, nuclear... 10 Energy 3 2012-01-01 2012-01-01 false Application content requirements. 451.8 Section 451.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.8...
10 CFR 451.8 - Application content requirements.
Code of Federal Regulations, 2010 CFR
2010-01-01
... of a qualified renewable energy facility which generates electric energy using a fossil fuel, nuclear... 10 Energy 3 2010-01-01 2010-01-01 false Application content requirements. 451.8 Section 451.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.8...
10 CFR 451.8 - Application content requirements.
Code of Federal Regulations, 2011 CFR
2011-01-01
... of a qualified renewable energy facility which generates electric energy using a fossil fuel, nuclear... 10 Energy 3 2011-01-01 2011-01-01 false Application content requirements. 451.8 Section 451.8 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION RENEWABLE ENERGY PRODUCTION INCENTIVES § 451.8...
Code of Federal Regulations, 2013 CFR
2013-07-01
... otherwise used onsite to displace 90 percent or more of the fossil fuel that is combusted to produce thermal...) Renewable fuel is any motor vehicle fuel that is used to replace or reduce the quantity of fossil fuel...
77 FR 5755 - Request for Proposals: 2012 Hazardous Fuels Woody Biomass Utilization Grant Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-06
... appropriate grant officer. A grant awarded under this program will generate an IRS Form 1099 Miscellaneous.... Total Points 15. d. Amount and type of fossil fuel offset in therms/year once project is operational.... The application template form FPL-1500-4 is in Word format. After completing the template, the...
40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the large liquid fuel subcategory or the limited use liquid fuel subcategory that burn only fossil... Notification of Compliance Status report required in § 63.7545(e) that indicates you burn only liquid fossil... you burn only liquid fossil fuels other than residual oils, either alone or in combination with...
40 CFR 60.49b - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... into the oxidation zone. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted, the NOX emission limit for fossil fuel in § 60.44b(a) applies. (ii) When natural gas and chemical by... back into the combustion air. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-31
... Activities; Submission to OMB for Review and Approval; Comment Request; NSPS for Fossil Fuel Fired Steam... www.regulations.gov . Title: NSPS for Fossil Fuel Fired Steam Generating Units(Renewal). ICR Numbers.... Respondents/Affected Entities: Owners or operators of fossil fuel fired steam generating units. Estimated...
40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?
Code of Federal Regulations, 2012 CFR
2012-07-01
... the large liquid fuel subcategory or the limited use liquid fuel subcategory that burn only fossil... Notification of Compliance Status report required in § 63.7545(e) that indicates you burn only liquid fossil... you burn only liquid fossil fuels other than residual oils, either alone or in combination with...
40 CFR 98.33 - Calculating GHG emissions.
Code of Federal Regulations, 2010 CFR
2010-07-01
... you co-fire biomass fuels with fossil fuels, report CO2 emissions from the combustion of biomass... quarterly totals are summed to determine the annual CO2 mass emissions. (vii) If both biomass and fossil... by 1.1 to convert it to metric tons. (D) If both biomass and fossil fuel are combusted during the...
40 CFR 60.49b - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... into the oxidation zone. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted, the NOX emission limit for fossil fuel in § 60.44b(a) applies. (ii) When natural gas and chemical by... back into the combustion air. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted...
40 CFR 63.7506 - Do any boilers or process heaters have limited requirements?
Code of Federal Regulations, 2011 CFR
2011-07-01
... the large liquid fuel subcategory or the limited use liquid fuel subcategory that burn only fossil... Notification of Compliance Status report required in § 63.7545(e) that indicates you burn only liquid fossil... you burn only liquid fossil fuels other than residual oils, either alone or in combination with...
40 CFR 60.49b - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... into the oxidation zone. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted, the NOX emission limit for fossil fuel in § 60.44b(a) applies. (ii) When natural gas and chemical by... back into the combustion air. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted...
40 CFR 52.21 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2010 CFR
2010-07-01
... potential to emit, 100 tons per year or more of any regulated NSR pollutant: Fossil fuel-fired steam... NAICS codes 325193 or 312140), fossil-fuel boilers (or combinations thereof) totaling more than 250... included in NAICS codes 325193 or 312140; (u) Fossil-fuel boilers (or combination thereof) totaling more...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-20
... and oil-fired furnaces and boilers consume both fossil fuel and electricity. Electric furnaces and boilers only consume electricity. In this test procedure, fossil-fuel energy consumption is accounted for comprehensively over a full-year cycle, thereby satisfying EISA 2007 requirements for fossil-fuel standby mode and...
40 CFR 52.21 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., or has the potential to emit, 100 tons per year or more of any regulated NSR pollutant: Fossil fuel... included in NAICS codes 325193 or 312140), fossil-fuel boilers (or combinations thereof) totaling more than... included in NAICS codes 325193 or 312140; (u) Fossil-fuel boilers (or combination thereof) totaling more...
40 CFR 52.21 - Prevention of significant deterioration of air quality.
Code of Federal Regulations, 2011 CFR
2011-07-01
..., or has the potential to emit, 100 tons per year or more of any regulated NSR pollutant: Fossil fuel... included in NAICS codes 325193 or 312140), fossil-fuel boilers (or combinations thereof) totaling more than... included in NAICS codes 325193 or 312140; (u) Fossil-fuel boilers (or combination thereof) totaling more...
40 CFR 60.49b - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... into the oxidation zone. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted, the NOX emission limit for fossil fuel in § 60.44b(a) applies. (ii) When natural gas and chemical by... back into the combustion air. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted...
40 CFR 60.49b - Reporting and recordkeeping requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... into the oxidation zone. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted, the NOX emission limit for fossil fuel in § 60.44b(a) applies. (ii) When natural gas and chemical by... back into the combustion air. (2) Standard for nitrogen oxides. (i) When fossil fuel alone is combusted...
40 CFR 60.106 - Test methods and procedures.
Code of Federal Regulations, 2012 CFR
2012-07-01
... determine opacity. (c) If auxiliary liquid or solid fossil-fuels are burned in an incinerator-waste heat... rate from solid or liquid fossil fuel, million J/hr (million Btu/hr). Rc = Coke burn-off rate, Mg coke... supplemental gaseous, liquid, or solid fossil fuel is burned, testing shall be conducted at a point between the...
40 CFR 60.106 - Test methods and procedures.
Code of Federal Regulations, 2010 CFR
2010-07-01
... determine opacity. (c) If auxiliary liquid or solid fossil-fuels are burned in an incinerator-waste heat... rate from solid or liquid fossil fuel, million J/hr (million Btu/hr). Rc = Coke burn-off rate, Mg coke... supplemental gaseous, liquid, or solid fossil fuel is burned, testing shall be conducted at a point between the...
40 CFR 60.106 - Test methods and procedures.
Code of Federal Regulations, 2011 CFR
2011-07-01
... determine opacity. (c) If auxiliary liquid or solid fossil-fuels are burned in an incinerator-waste heat... rate from solid or liquid fossil fuel, million J/hr (million Btu/hr). Rc = Coke burn-off rate, Mg coke... supplemental gaseous, liquid, or solid fossil fuel is burned, testing shall be conducted at a point between the...
O'Sullivan, M.; Rap, A.; Reddington, C. L.; ...
2016-07-29
The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbonmore » uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Sullivan, M.; Rap, A.; Reddington, C. L.
The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbonmore » uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen-carbon interactions.« less
Code of Federal Regulations, 2014 CFR
2014-07-01
.../solid fossil fuels on an annual heat input basis a. Particulate Matter 0.008 lb per MMBtu of heat input... all subcategories designed to burn solid fuel that combust at least 10 percent coal/solid fossil fuels.../solid fossil fuel a. CO 90 ppm by volume on a dry basis corrected to 3 percent oxygen 1 hr minimum...
Code of Federal Regulations, 2013 CFR
2013-07-01
.../solid fossil fuels on an annual heat input basis a. Particulate Matter 0.008 lb per MMBtu of heat input... all subcategories designed to burn solid fuel that combust at least 10 percent coal/solid fossil fuels.../solid fossil fuel a. CO 90 ppm by volume on a dry basis corrected to 3 percent oxygen 1 hr minimum...
Comparative study of fuel cell, battery and hybrid buses for renewable energy constrained areas
NASA Astrophysics Data System (ADS)
Stempien, J. P.; Chan, S. H.
2017-02-01
Fuel cell- and battery-based public bus technologies are reviewed and compared for application in tropical urban areas. This paper scrutinizes the reported literature on fuel cell bus, fuel cell electric bus, battery electric bus, hybrid electric bus, internal combustion diesel bus and compressed natural gas bus. The comparison includes the capital and operating costs, fuel consumption and fuel cycle emissions. To the best of authors knowledge, this is the first study to holistically compare hydrogen and battery powered buses, which is the original contribution of this paper. Moreover, this is the first study to focus on supplying hydrogen and electricity from fossil resources, while including the associated emissions. The study shows that compressed natural gas and hybrid electric buses appear to be the cheapest options in terms of total cost of ownership, but they are unable to meet the EURO VI emissions' standard requirement. Only fuel cell based buses have the potential to achieve the emissions' standard when the fuel cycle based on fossil energy was considered. Fuel cell electric buses are identified as a technology allowing for the largest CO2 emission reduction, making ∼61% decrease in annual emissions possible.
NASA Astrophysics Data System (ADS)
Lee, H. H.; Iraqui, O.; Gu, Y.; Yim, S. H. L.; Wang, C.
2017-12-01
Severe haze events in Southeast Asia have attracted the attention of governments and the general public in recent years, due to their impact on local economies, air quality and public health. Widespread biomass burning activities are a major source of severe haze events in Southeast Asia. On the other hand, particulate pollutants from human activities other than biomass burning also play an important role in degrading air quality in Southeast Asia. These pollutants can be locally produced or brought in from neighboring regions by long-range transport. A better understanding of the respective contributions of fossil fuel and biomass burning aerosols to air quality degradation becomes an urgent task in forming effective air pollution mitigation policies in Southeast Asia. In this study, to examine and quantify the contributions of fossil fuel and biomass burning aerosols to air quality and visibility degradation over Southeast Asia, we conducted three numerical simulations using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem). These simulations were driven by different aerosol emissions from: (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. By comparing the simulation results, we examined the corresponding impacts of fossil fuel and biomass burning emissions, separately and combined, on the air quality and visibility of the region. The results also showed that the major contributors to low visibility days (LVDs) among 50 ASEAN cities are fossil fuel burning aerosols (59%), while biomass burning aerosols provided an additional 13% of LVDs in Southeast Asia. In addition, the number of premature mortalities among ASEAN cities has increased from 4110 in 2002 to 6540 in 2008, caused primarily by fossil fuel burning aerosols. This study suggests that reductions in both fossil fuel and biomass burning emissions are necessary to improve the air quality in Southeast Asia.
Idaho National Laboratory - Steve Herring, Jim O'Brien, Carl Stoots
2017-12-09
Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhouse gass Two global energy priorities today are finding environmentally friendly alternatives to fossil fuels, and reducing greenhous
A synthesis of carbon dioxide emissions from fossil-fuel combustion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.
2012-01-01
This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of themore » emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.« less
Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.
Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J
2011-08-10
Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.
Implications of ``peak oil'' for atmospheric CO2 and climate
NASA Astrophysics Data System (ADS)
Kharecha, Pushker A.; Hansen, James E.
2008-09-01
Unconstrained CO2 emission from fossil fuel burning has been the dominant cause of observed anthropogenic global warming. The amounts of "proven" and potential fossil fuel reserves are uncertain and debated. Regardless of the true values, society has flexibility in the degree to which it chooses to exploit these reserves, especially unconventional fossil fuels and those located in extreme or pristine environments. If conventional oil production peaks within the next few decades, it may have a large effect on future atmospheric CO2 and climate change, depending upon subsequent energy choices. Assuming that proven oil and gas reserves do not greatly exceed estimates of the Energy Information Administration, and recent trends are toward lower estimates, we show that it is feasible to keep atmospheric CO2 from exceeding about 450 ppm by 2100, provided that emissions from coal, unconventional fossil fuels, and land use are constrained. Coal-fired power plants without sequestration must be phased out before midcentury to achieve this CO2 limit. It is also important to "stretch" conventional oil reserves via energy conservation and efficiency, thus averting strong pressures to extract liquid fuels from coal or unconventional fossil fuels while clean technologies are being developed for the era "beyond fossil fuels". We argue that a rising price on carbon emissions is needed to discourage conversion of the vast fossil resources into usable reserves, and to keep CO2 beneath the 450 ppm ceiling.
Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.
ERIC Educational Resources Information Center
Soprovich, William, Comp.
When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…
40 CFR 98.36 - Data reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... measured by the CEMS consists entirely of non-biogenic CO2 (i.e., CO2 from fossil fuel combustion plus, if... tons of CO2e. If any of the units burn both fossil fuels and biomass, report also the annual CO2 emissions from combustion of all fossil fuels combined and annual CO2 emissions from combustion of all...
40 CFR 60.42 - Standard for particulate matter (PM).
Code of Federal Regulations, 2011 CFR
2011-07-01
... Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971 § 60.42... PM in excess of 43 nanograms per joule (ng/J) heat input (0.10 lb/MMBtu) derived from fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one six-minute...
40 CFR 60.42 - Standard for particulate matter (PM).
Code of Federal Regulations, 2010 CFR
2010-07-01
... Fossil-Fuel-Fired Steam Generators for Which Construction Is Commenced After August 17, 1971 § 60.42... PM in excess of 43 nanograms per joule (ng/J) heat input (0.10 lb/MMBtu) derived from fossil fuel or fossil fuel and wood residue. (2) Exhibit greater than 20 percent opacity except for one six-minute...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-18
... other than fossil fuels and mineral sources of carbon. Examples of ``biogenic CO 2 emissions'' include... biomass can be part of the national strategy to reduce dependence on fossil fuels. Efforts are underway at.... In that event, Virginia may revise its SIP accordingly. For stationary sources co-firing fossil fuel...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-07
... characters, avoid any form of encryption, and be free of any defects or viruses. For additional information... any stationary, fossil-fuel-fired boiler or stationary, fossil-fuel-fired combustion turbine located... included any fossil-fuel-fired unit serving a generator greater than 25 MWe producing electricity for sale...
40 CFR Appendix Y to Part 51 - Guidelines for BART Determinations Under the Regional Haze Rule
Code of Federal Regulations, 2012 CFR
2012-07-01
... establishing BART emission limitations for fossil-fuel fired power plants having a capacity in excess of 750...: (1) Fossil-fuel fired steam electric plants of more than 250 million British thermal units (BTU) per...) Sintering plants, (20) Secondary metal production facilities, (21) Chemical process plants, (22) Fossil-fuel...
40 CFR Appendix Y to Part 51 - Guidelines for BART Determinations Under the Regional Haze Rule
Code of Federal Regulations, 2014 CFR
2014-07-01
... establishing BART emission limitations for fossil-fuel fired power plants having a capacity in excess of 750...: (1) Fossil-fuel fired steam electric plants of more than 250 million British thermal units (BTU) per...) Sintering plants, (20) Secondary metal production facilities, (21) Chemical process plants, (22) Fossil-fuel...
40 CFR Appendix Y to Part 51 - Guidelines for BART Determinations Under the Regional Haze Rule
Code of Federal Regulations, 2011 CFR
2011-07-01
... establishing BART emission limitations for fossil-fuel fired power plants having a capacity in excess of 750...: (1) Fossil-fuel fired steam electric plants of more than 250 million British thermal units (BTU) per...) Sintering plants, (20) Secondary metal production facilities, (21) Chemical process plants, (22) Fossil-fuel...
40 CFR Appendix Y to Part 51 - Guidelines for BART Determinations Under the Regional Haze Rule
Code of Federal Regulations, 2010 CFR
2010-07-01
... establishing BART emission limitations for fossil-fuel fired power plants having a capacity in excess of 750...: (1) Fossil-fuel fired steam electric plants of more than 250 million British thermal units (BTU) per...) Sintering plants, (20) Secondary metal production facilities, (21) Chemical process plants, (22) Fossil-fuel...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-24
... generate electricity by using steam produced by the burning of fossil fuel within the State of Nevada. The... plants which generate electricity by using steam produced by the burning of fossil fuel, which are... burning of fossil fuel, see NRS 445B.500) within the nonattainment portions of Clark County. Table 2...
40 CFR Appendix Y to Part 51 - Guidelines for BART Determinations Under the Regional Haze Rule
Code of Federal Regulations, 2013 CFR
2013-07-01
... establishing BART emission limitations for fossil-fuel fired power plants having a capacity in excess of 750...: (1) Fossil-fuel fired steam electric plants of more than 250 million British thermal units (BTU) per...) Sintering plants, (20) Secondary metal production facilities, (21) Chemical process plants, (22) Fossil-fuel...
40 CFR 60.106 - Test methods and procedures.
Code of Federal Regulations, 2014 CFR
2014-07-01
... determine opacity. (c) If auxiliary liquid or solid fossil-fuels are burned in an incinerator-waste heat... rate from solid or liquid fossil fuel, GJ/hr (million Btu/hr). Rc = Coke burn-off rate, Mg coke/hr (ton... supplemental gaseous, liquid, or solid fossil fuel is burned, testing shall be conducted at a point between the...
40 CFR 60.106 - Test methods and procedures.
Code of Federal Regulations, 2013 CFR
2013-07-01
... determine opacity. (c) If auxiliary liquid or solid fossil-fuels are burned in an incinerator-waste heat... rate from solid or liquid fossil fuel, GJ/hr (million Btu/hr). Rc = Coke burn-off rate, Mg coke/hr (ton... supplemental gaseous, liquid, or solid fossil fuel is burned, testing shall be conducted at a point between the...
A fuel conservation study for transport aircraft utilizing advanced technology and hydrogen fuel
NASA Technical Reports Server (NTRS)
Berry, W.; Calleson, R.; Espil, J.; Quartero, C.; Swanson, E.
1972-01-01
The conservation of fossil fuels in commercial aviation was investigated. Four categories of aircraft were selected for investigation: (1) conventional, medium range, low take-off gross weight; (2) conventional, long range, high take-off gross weights; (3) large take-off gross weight aircraft that might find future applications using both conventional and advanced technology; and (4) advanced technology aircraft of the future powered with liquid hydrogen fuel. It is concluded that the hydrogen fueled aircraft can perform at reduced size and gross weight the same payload/range mission as conventionally fueled aircraft.
Children are likely to suffer most from our fossil fuel addiction.
Perera, Frederica P
2008-08-01
The periods of fetal and child development arguably represent the stages of greatest vulnerability to the dual impacts of fossil fuel combustion: the multiple toxic effects of emitted pollutants (polycyclic aromatic hydrocarbons, particles, sulfur oxides, nitrogen oxides, metals) and the broad health impacts of global climate change attributable in large part to carbon dioxide released by fossil fuel burning. In this commentary I highlight current scientific evidence indicating that the fetus and young child are at heightened risk of developmental impairment, asthma, and cancer from fossil fuel pollutants and from the predicted effects of climate disruption such as heat waves, flooding, infectious disease, malnutrition, and trauma. Increased risk during early development derives from the inherently greater biologic vulnerability of the developing fetus and child and from their long future lifetime, during which early insults can potentially manifest as adult as well as childhood disease. I cite recent reports concluding that reducing dependence on fossil fuel and promoting clean and sustainable energy is economically feasible. Although much has been written separately about the toxicity of fossil fuel burning emissions and the effects of climate change on health, these two faces of the problem have not been viewed together with a focus on the developing fetus and child. Adolescence and old age are also periods of vulnerability, but the potential for both immediate and long-term adverse effects is greatest when exposure occurs prenatally or in the early years. Consideration of the full spectrum of health risks to children from fossil fuel combustion underscores the urgent need for environmental and energy policies to reduce fossil fuel dependence and maximize the health benefits to this susceptible population. We do not have to leave our children a double legacy of ill health and ecologic disaster.
Children Are Likely to Suffer Most from Our Fossil Fuel Addiction
Perera, Frederica P.
2008-01-01
Background The periods of fetal and child development arguably represent the stages of greatest vulnerability to the dual impacts of fossil fuel combustion: the multiple toxic effects of emitted pollutants (polycyclic aromatic hydrocarbons, particles, sulfur oxides, nitrogen oxides, metals) and the broad health impacts of global climate change attributable in large part to carbon dioxide released by fossil fuel burning. Objectives In this commentary I highlight current scientific evidence indicating that the fetus and young child are at heightened risk of developmental impairment, asthma, and cancer from fossil fuel pollutants and from the predicted effects of climate disruption such as heat waves, flooding, infectious disease, malnutrition, and trauma. Increased risk during early development derives from the inherently greater biologic vulnerability of the developing fetus and child and from their long future lifetime, during which early insults can potentially manifest as adult as well as childhood disease. I cite recent reports concluding that reducing dependence on fossil fuel and promoting clean and sustainable energy is economically feasible. Discussion Although much has been written separately about the toxicity of fossil fuel burning emissions and the effects of climate change on health, these two faces of the problem have not been viewed together with a focus on the developing fetus and child. Adolescence and old age are also periods of vulnerability, but the potential for both immediate and long-term adverse effects is greatest when exposure occurs prenatally or in the early years. Conclusions Consideration of the full spectrum of health risks to children from fossil fuel combustion underscores the urgent need for environmental and energy policies to reduce fossil fuel dependence and maximize the health benefits to this susceptible population. We do not have to leave our children a double legacy of ill health and ecologic disaster. PMID:18709169
Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).
Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J
2016-06-05
Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).
Global combustion: the connection between fossil fuel and biomass burning emissions (1997–2010)
Balch, Jennifer K.; Nagy, R. Chelsea; Archibald, Sally; Moritz, Max A.; Williamson, Grant J.
2016-01-01
Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997–2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216509
Andres, R.J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marland, G. [Appalachian State University, Boone, NC (United States)
2016-01-01
The monthly, fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).
Andres, R.J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marland, J. [Appalachian State University, Boone, NC (United States)
2015-01-01
The monthly, fossil-fuel CO2 emissions estimates from 1950-2011 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2015), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).
Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.
2010-01-01
The monthly, fossil-fuel CO2 emissions estimates from 1950-2010 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2013), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).
Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA_; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.
2011-01-01
The monthly, fossil-fuel CO2 emissions estimates from 1950-2010 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2013), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).
Andres, R. J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boden, T.A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Marland, G. [Appalachain State University, Boone, NC (United States)
1996-01-01
The monthly, fossil-fuel CO2 emissions estimates from 1950-2010 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2013), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).
Hellier, Paul; Purton, Saul; Ladommatos, Nicos
2015-01-01
The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes. PMID:25941673
Hellier, Paul; Purton, Saul; Ladommatos, Nicos
2015-01-01
The metabolic engineering of photosynthetic microbes for production of novel hydrocarbons presents an opportunity for development of advanced designer biofuels. These can be significantly more sustainable, throughout the production-to-consumption lifecycle, than the fossil fuels and crop-based biofuels they might replace. Current biofuels, such as bioethanol and fatty acid methyl esters, have been developed primarily as drop-in replacements for existing fossil fuels, based on their physical properties and autoignition characteristics under specific combustion regimes. However, advances in the genetic engineering of microalgae and cyanobacteria, and the application of synthetic biology approaches offer the potential of designer strains capable of producing hydrocarbons and oxygenates with specific molecular structures. Furthermore, these fuel molecules can be designed for higher efficiency of energy release and lower exhaust emissions during combustion. This paper presents a review of potential fuel molecules from photosynthetic microbes and the performance of these possible fuels in modern internal combustion engines, highlighting which modifications to the molecular structure of such fuels may enhance their suitability for specific combustion regimes.
Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.
Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick
2016-01-01
Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.
Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy
NASA Technical Reports Server (NTRS)
Smith, K. R.; Weyant, J.; Holdren, J. P.
1975-01-01
The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.
Manufactured caverns in carbonate rock
Bruce, David A.; Falta, Ronald W.; Castle, James W.; Murdoch, Lawrence C.
2007-01-02
Disclosed is a process for manufacturing underground caverns suitable in one embodiment for storage of large volumes of gaseous or liquid materials. The method is an acid dissolution process that can be utilized to form caverns in carbonate rock formations. The caverns can be used to store large quantities of materials near transportation facilities or destination markets. The caverns can be used for storage of materials including fossil fuels, such as natural gas, refined products formed from fossil fuels, or waste materials, such as hazardous waste materials. The caverns can also be utilized for applications involving human access such as recreation or research. The method can also be utilized to form calcium chloride as a by-product of the cavern formation process.
2010-03-01
this would complete the fossil fuel cycle, as algae are understood to be the progenitors of our current oil based fossil fuel stocks. As primary... oil . However, considering the scope of the world’s energy uses, these sources cannot possibly replace the fossil fuels currently in use. Some...122 Jatropha 1892 140 77 Coconut 2689 99 54 Oil Palm 5950 45 24 * For meeting 50% of transport fuel requirements in the United States
Code of Federal Regulations, 2014 CFR
2014-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2012 CFR
2012-07-01
... incinerator or waste heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel... fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6-minute average... burn auxiliary or supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed...
Code of Federal Regulations, 2012 CFR
2012-07-01
... State elect to impose control measures on fossil fuel-fired NOX sources serving electric generators with... (g) of this section. (3) For purposes of paragraph (f)(2) of this section, the term “fossil fuel-fired” means, with regard to a NOX source: (i) The combustion of fossil fuel, alone or in combination...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2013 CFR
2013-07-01
... waste heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel, the... British thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and... auxiliary or supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ...
Code of Federal Regulations, 2013 CFR
2013-07-01
... State elect to impose control measures on fossil fuel-fired NOX sources serving electric generators with... (g) of this section. (3) For purposes of paragraph (f)(2) of this section, the term “fossil fuel-fired” means, with regard to a NOX source: (i) The combustion of fossil fuel, alone or in combination...
Code of Federal Regulations, 2011 CFR
2011-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... State elect to impose control measures on fossil fuel-fired NOX sources serving electric generators with... (g) of this section. (3) For purposes of paragraph (f)(2) of this section, the term “fossil fuel-fired” means, with regard to a NOX source: (i) The combustion of fossil fuel, alone or in combination...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2014 CFR
2014-07-01
... incinerator or waste heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel... fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6-minute average... burn auxiliary or supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed...
Code of Federal Regulations, 2013 CFR
2013-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2010 CFR
2010-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Code of Federal Regulations, 2011 CFR
2011-07-01
... State elect to impose control measures on fossil fuel-fired NOX sources serving electric generators with... (g) of this section. (3) For purposes of paragraph (f)(2) of this section, the term “fossil fuel-fired” means, with regard to a NOX source: (i) The combustion of fossil fuel, alone or in combination...
Code of Federal Regulations, 2012 CFR
2012-07-01
... previously approved in 40 CFR 52.223 is retained. (iii) The addition of Rule 209, Fossil Fuel-Steam Generator... CFR 52.223 are retained. (ii) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on July 22...) Rule 209, Fossil Fuel-Steam Generator Facility, submitted on February 10, 1977, is disapproved and the...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-13
... dioxide (CO 2 ) for new affected fossil fuel-fired electric utility generating units (EGUs). The EPA is proposing these requirements because CO 2 is a greenhouse gas (GHG) and fossil fuel-fired power plants are... new fossil fuel-fired EGUs greater than 25 megawatt electric (MWe) to meet an output-based standard of...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Svendsen, R.L.
1996-12-31
Information is outlined on the Council of Industrial Boiler Owners (CIBO) special project on non-utility fossil fuel ash classification. Data are presented on; current (1996) regulatory status of fossil-fuel combustion wastes; FBC technology identified for further study; CIBO special project methods; Bevill amendment study factors; data collection; and CIBO special project status.
The Increasing Concentrations of Atmospheric CO2: How Much, When and Why?
Marland, Gregg [Environmental Sciences Division, Oak Ridge National Laboratory (ORNL); Boden, Tom [Environmental Sciences Division, Oak Ridge National Laboratory (ORNL)
2009-01-01
There is now a sense that the world community has achieved a broad consensus that: 1.) the atmospheric concentration of carbon dioxide (CO2) is increasing, 2.) this increase is due largely to the combustion of fossil fuels, and 3.) this increase is likely to lead to changes in the global climate. This consensus is sufficiently strong that virtually all countries are involved in trying to achieve a functioning agreement on how to confront, and mitigate, these changes in climate. This paper reviews the first two of these components in a quantitative way. We look at the data on the atmospheric concentration of carbon dioxide and on the magnitude of fossil-fuel combustion, and we examine the trends in both. We review the extent to which cause and effect can be demonstrated between the trends in fossil-fuel burning and the trends in atmospheric CO2 concentration. Finally, we look at scenarios for the future use of fossil fuels and what these portend for the future of atmospheric chemistry. Along the way we examine how and where fossil fuels are used on the Earth and some of the issues that are raised by any effort to reduce fossil-fuel use.
Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.
Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha
2011-01-01
The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 0.138 74.49 Fossil fuel-derived fuels (solid) mmBtu/short ton kg CO2/mmBtu Municipal Solid Waste 1 9.95 90.7 Tires 26.87 85.97 Fossil fuel-derived fuels (gaseous) mmBtu/scf kg CO2/mmBtu Blast Furnace...
Special issue: Application of biotechnology for biofuels: transforming biomass to biofuels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mittal, Ashutosh; Decker, Stephen R.
2013-02-19
Rising energy prices and depleting reserves of fossil fuels continue to renew interest in the conversion of biomass to biofuels production. Biofuels derived from renewable feedstocks are environmentally friendly fuels and have the potential to meet more than a quarter of world demand for transportation fuels by 2050. Moreover, biofuels are expected to reduce reliance on imported petroleum, reduce greenhouse gas emissions, and stimulate regional economies by creating jobs and increasing demand and prices for bioproducts.
Improved Fossil/Industrial CO2 Emissions Modeling for the North American Carbon Program
NASA Astrophysics Data System (ADS)
Gurney, K. R.; Seib, B.; Mendoza, D.; Knox, S.; Fischer, M.; Murtishaw, S.
2005-05-01
The quantification of fossil fuel CO2 emissions has implications for a wide variety of scientific and policy- related questions. Improvement in inverse-estimated carbon fluxes, country-level carbon budgeting, analysis of regional emissions trading systems, and targeting of observational systems are all important applications better served by improvements in understanding where and when fossil fuel/industrial CO2 is emitted. Traditional approaches to quantifying fossil/industrial CO2 emissions have relied on national sales/consumption of fossil fuels with secondary spatial footprints performed via proxies such as population. This approach has provided global spatiotemporal resolution of one degree/monthly. In recent years the need has arisen for emission estimates that not only achieve higher spatiotemporal scales but include a process- level component. This latter attribute provides dynamic linkages between energy policy/decisionmaking and emissions for use in projecting changes to energy systems and the implications these changes may have on climate change. We have embarked on a NASA-funded research strategy to construct a process-level fossil/industrial CO2 emissions model/database for North America that will resolve fossil/industrial CO2 emissions hourly and at 36 km. This project is a critical component of the North American Carbon Program. Our approach builds off of many decades of air quality monitoring for regulated pollutants such as NOx, VOCs and CO that has been performed by regional air quality managers, states, and the Environmental Protection Agency in the United States. By using the highly resolved monitoring data supplied to the EPA, we have computed CO2 emissions for residential, commercial/industrial, transportation, and biogenic sources. This effort employs a new emissions modeling system (CONCEPT) that spatially and temporally distributes the monitored emissions across the US. We will provide a description of the methodology we have employed, the difficulties encountered and some preliminary results. We will then compare our results to the traditional fossil/industrial CO2 emissions based on national sale/consumption statistics.
Improved Fossil/Industrial CO2 Emissions Modeling for the North American Carbon Program
NASA Astrophysics Data System (ADS)
Gurney, K. R.; Seib, B.; Mendoza, D.; Knox, S.; Fischer, M.; Murtishaw, S.
2006-12-01
The quantification of fossil fuel CO2 emissions has implications for a wide variety of scientific and policy- related questions. Improvement in inverse-estimated carbon fluxes, country-level carbon budgeting, analysis of regional emissions trading systems, and targeting of observational systems are all important applications better served by improvements in understanding where and when fossil fuel/industrial CO2 is emitted. Traditional approaches to quantifying fossil/industrial CO2 emissions have relied on national sales/consumption of fossil fuels with secondary spatial footprints performed via proxies such as population. This approach has provided global spatiotemporal resolution of one degree/monthly. In recent years the need has arisen for emission estimates that not only achieve higher spatiotemporal scales but include a process- level component. This latter attribute provides dynamic linkages between energy policy/decisionmaking and emissions for use in projecting changes to energy systems and the implications these changes may have on climate change. We have embarked on a NASA-funded research strategy to construct a process-level fossil/industrial CO2 emissions model/database for North America that will resolve fossil/industrial CO2 emissions hourly and at 36 km. This project is a critical component of the North American Carbon Program. Our approach builds off of many decades of air quality monitoring for regulated pollutants such as NOx, VOCs and CO that has been performed by regional air quality managers, states, and the Environmental Protection Agency in the United States. By using the highly resolved monitoring data supplied to the EPA, we have computed CO2 emissions for residential, commercial/industrial, transportation, and biogenic sources. This effort employs a new emissions modeling system (CONCEPT) that spatially and temporally distributes the monitored emissions across the US. We will provide a description of the methodology we have employed, the difficulties encountered and some preliminary results. We will then compare our results to the traditional fossil/industrial CO2 emissions based on national sale/consumption statistics.
Final Scientific/Technical Report – BISfuel EFRC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gust, Devens
2015-07-13
The vast majority of the country’s energy needs are met with fossil fuels in the form of natural gas, coal and oil. The use of these fossil fuels contributes to climate change, the unequal distribution of fossil fuel deposits in the earth leads to geopolitical and economic problems, and eventually, fossil fuels will be exhausted. Thus, a renewable, widely distributed, environmentally benign, and inexpensive substitute large enough to meet the needs of society is required. Solar energy meets these criteria. Solar energy may be converted to electricity by photovoltaics, but the need for a continuous energy supply and high-density energymore » requirements for transportation necessitate technology for storage of energy from sunlight in a fuel. Cost-effective technologies for solar fuel production do not exist, prompting the need for new fundamental science. Fuel production requires not only energy, but also a source of electrons and precursor materials suitable for reduction to useful fuels. Given the immense magnitude of the human energy requirement, the most reasonable source of electrons is water oxidation, and suitable precursor materials are hydrogen ions (for hydrogen gas production) and carbon dioxide (for production of reduced carbon fuels such as methane or methanol). Natural photosynthesis is the only proven “technology” for solar fuel production. It harvests solar energy on a magnitude much larger than that necessary to fill human needs, and has done so for billions of years, creating fossil fuels along the way. BISfuel has approached the design of a complete system for solar water oxidation and hydrogen production by applying the fundamental principles of photosynthesis to the construction of synthetic components and their incorporation into an operational unit. In this artificial photosynthetic approach, the functional blueprint of photosynthesis is followed using non-biological materials. BISfuel brought together a group of investigators from the Department of Chemistry and Biochemistry at Arizona State University and integrated them into a cohesive, highly collaborative unit to attack the solar fuel problem. The investigators came from many disciplines, and worked together to apply their expertise in new areas in order to pursue Center goals. The primary goal, construction of a complete functional system for producing hydrogen fuel from water using sunlight, was realized, although much more work would be necessary to develop a practical device for doing so. The Center investigators discovered a great deal of important new chemistry, as is reported in 100 research publications and several patents and invention disclosures. A spin-off company was established based on some of the Center discoveries. Fundamental discoveries were made in the areas of molecular biotechnology, organic chemistry, inorganic chemistry, photochemistry, catalysis, materials science, physical chemistry and chemical physics. New instrumental techniques were developed, including femtosecond X-ray crystallography, which is an exciting approach to determination of the structures of both biological and synthetic molecules. The fundamental discoveries made by the Center will contribute to the development of not only solar fuel technologies, but also biomedical applications; technological uses of DNA; new materials for (opto)electronic, electrochemical, computational and display applications; fuel cells; industrial catalytic processes and related areas. In addition, Center studies of synthetic systems are leading to a better understanding of important natural biological systems, including natural photosynthesis.« less
40 CFR Table 3 to Subpart Ddddd of... - Work Practice Standards
Code of Federal Regulations, 2013 CFR
2013-07-01
...: natural gas, synthetic natural gas, propane, distillate oil, syngas, ultra-low sulfur diesel, fuel oil... start firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases....While firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases...
40 CFR Table 3 to Subpart Ddddd of... - Work Practice Standards
Code of Federal Regulations, 2014 CFR
2014-07-01
...: natural gas, synthetic natural gas, propane, distillate oil, syngas, ultra-low sulfur diesel, fuel oil... start firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases....While firing coal/solid fossil fuel, biomass/bio-based solids, heavy liquid fuel, or gas 2 (other) gases...
2017-10-01
e.g., when burned) or sinks (when growing) for carbon, depending upon its state. Fossil fuels (coal, oil, and gas) are formed over long periods of...world (Solar Energy Industries Association (SEIA) 2013). Most of the DoD’s energy comes from fossil fuels. In 2011, it was estimated that the DoD...energy consumption and fossil fuel use. Lowering carbon emissions can be equated to lower fuel consumption, reducing costs, and making DoD entities less
40 CFR 98.276 - Data reporting requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... (metric tons per year). (b) Annual quantities fossil fuels by type used in chemical recovery furnaces and...) Annual quantities of fossil fuels by type used in pulp mill lime kilns in short tons for solid fuels...
Code of Federal Regulations, 2011 CFR
2011-07-01
... incinerator or waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... liquid or solid fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6... liquid or solid fossil fuels (liters/hour or kilograms/hour) and the hours of operation during which...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2010 CFR
2010-07-01
... heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel, the incremental... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the... supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million...
Code of Federal Regulations, 2011 CFR
2011-07-01
... waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the.../million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the Notification of...
40 CFR Table 1 to Subpart Uuu of... - Metal HAP Emission Limits for Catalytic Cracking Units
Code of Federal Regulations, 2011 CFR
2011-07-01
... heat boiler in which you burn auxiliary or in supplemental liquid or solid fossil fuel, the incremental... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the... supplemental liquid or solid fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million...
Code of Federal Regulations, 2010 CFR
2010-07-01
... incinerator or waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... liquid or solid fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6... liquid or solid fossil fuels (liters/hour or kilograms/hour) and the hours of operation during which...
Code of Federal Regulations, 2010 CFR
2010-07-01
... waste heat boiler in which you burn auxiliary or supplemental liquid or solid fossil fuel, the... thermal units (lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the.../million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the Notification of...
Code of Federal Regulations, 2014 CFR
2014-07-01
... the source: (i) For EGUs and for fossil-fuel-fired non-EGUs that are boilers or combustion turbines... sources in the State. (ii) If a State elects to impose control measures on fossil fuel-fired non-EGUs that... part 75 of this chapter. (ii) If the SIP revision contains measures to control fossil fuel-fired non...
Code of Federal Regulations, 2011 CFR
2011-07-01
... the source: (i) For EGUs and for fossil-fuel-fired non-EGUs that are boilers or combustion turbines... sources in the State. (ii) If a State elects to impose control measures on fossil fuel-fired non-EGUs that... part 75 of this chapter. (ii) If the SIP revision contains measures to control fossil fuel-fired non...
Code of Federal Regulations, 2012 CFR
2012-07-01
... the source: (i) For EGUs and for fossil-fuel-fired non-EGUs that are boilers or combustion turbines... sources in the State. (ii) If a State elects to impose control measures on fossil fuel-fired non-EGUs that... part 75 of this chapter. (ii) If the SIP revision contains measures to control fossil fuel-fired non...
Code of Federal Regulations, 2010 CFR
2010-07-01
... the source: (i) For EGUs and for fossil-fuel-fired non-EGUs that are boilers or combustion turbines... sources in the State. (ii) If a State elects to impose control measures on fossil fuel-fired non-EGUs that... part 75 of this chapter. (ii) If the SIP revision contains measures to control fossil fuel-fired non...
Code of Federal Regulations, 2013 CFR
2013-07-01
... the source: (i) For EGUs and for fossil-fuel-fired non-EGUs that are boilers or combustion turbines... sources in the State. (ii) If a State elects to impose control measures on fossil fuel-fired non-EGUs that... part 75 of this chapter. (ii) If the SIP revision contains measures to control fossil fuel-fired non...
NASA Astrophysics Data System (ADS)
Sherwood, Owen A.; Schwietzke, Stefan; Arling, Victoria A.; Etiope, Giuseppe
2017-08-01
The concentration of atmospheric methane (CH4) has more than doubled over the industrial era. To help constrain global and regional CH4 budgets, inverse (top-down) models incorporate data on the concentration and stable carbon (δ13C) and hydrogen (δ2H) isotopic ratios of atmospheric CH4. These models depend on accurate δ13C and δ2H end-member source signatures for each of the main emissions categories. Compared with meticulous measurement and calibration of isotopic CH4 in the atmosphere, there has been relatively less effort to characterize globally representative isotopic source signatures, particularly for fossil fuel sources. Most global CH4 budget models have so far relied on outdated source signature values derived from globally nonrepresentative data. To correct this deficiency, we present a comprehensive, globally representative end-member database of the δ13C and δ2H of CH4 from fossil fuel (conventional natural gas, shale gas, and coal), modern microbial (wetlands, rice paddies, ruminants, termites, and landfills and/or waste) and biomass burning sources. Gas molecular compositional data for fossil fuel categories are also included with the database. The database comprises 10 706 samples (8734 fossil fuel, 1972 non-fossil) from 190 published references. Mean (unweighted) δ13C signatures for fossil fuel CH4 are significantly lighter than values commonly used in CH4 budget models, thus highlighting potential underestimation of fossil fuel CH4 emissions in previous CH4 budget models. This living database will be updated every 2-3 years to provide the atmospheric modeling community with the most complete CH4 source signature data possible. Database digital object identifier (DOI): https://doi.org/10.15138/G3201T.
Code of Federal Regulations, 2014 CFR
2014-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2013 CFR
2013-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2010 CFR
2010-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2011 CFR
2011-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2012 CFR
2012-07-01
... continuously monitor relative particulate matter loadings. (c) Bituminous coal means solid fossil fuel... units constructed, reconstructed, or modified on or before May 27, 2009, all solid fossil fuels... § 60.17). (2) For units constructed, reconstructed, or modified after May 27, 2009, all solid fossil...
Code of Federal Regulations, 2013 CFR
2013-07-01
... crude-based renewable fuels produced in a facility or unit that coprocesses renewable crudes and fossil... renewable crudes and fossil fuels may submit a petition to the Agency requesting the use of volumes of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... crude-based renewable fuels produced in a facility or unit that coprocesses renewable crudes and fossil... renewable crudes and fossil fuels may submit a petition to the Agency requesting the use of volumes of...
Progress of fossil fuel science
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demirbas, M.F.
2007-07-01
Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal ismore » a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.« less
Greenhouse gas emissions from production chain of a cigarette manufacturing industry in Pakistan.
Hussain, Majid; Zaidi, Syed Mujtaba Hasnian; Malik, Riffat Naseem; Sharma, Benktesh Dash
2014-10-01
This study quantified greenhouse gas (GHG) emissions from the Pakistan Tobacco Company (PTC) production using a life cycle approach. The PTC production chain comprises of two phases: agricultural activities (Phase I) and industrial activities (Phase II). Data related to agricultural and industrial activities of PTC production chain were collected through questionnaire survey from tobacco growers and records from PTC manufacturing units. The results showed that total GHG emissions from PTC production chain were 44,965, 42,875, and 43,839 tCO2e respectively in 2009, 2010, and 2011. Among the agricultural activities, firewood burning for tobacco curing accounted for about 3117, 3565, and 3264 tCO2e, fertilizer application accounted for 754, 3251, and 4761 tCO2e in 2009, 2010, and 2011, respectively. Among the industrial activities, fossil fuels consumption in stationary sources accounted for 15,582, 12,733, and 13,203 tCO2e, fossil fuels used in mobile sources contributed to 2693, 3038, and 3260 tCO2e, and purchased electricity consumed resulted in 15,177, 13,556, and 11,380 tCO2e in 2009, 2010, and 2011, respectively. The GHG emissions related to the transportation of raw materials and processed tobacco amounted to 6800, 6301, and 7317 respectively in 2009, 2010, and 2011. GHG emissions from energy use in the industrial activities constituted the largest emissions (i.e., over 80%) of GHG emissions as PTC relies on fossil fuels and fossil fuel based electrical power in industrial processes. The total emissions of carbon footprint (CFP) from PTC production were 0.647 tCO2e per million cigarettes produced in 2009, 0.675 tCO2e per million cigarettes in 2010 and 0.59 tCO2e per million cigarettes in 2011. Potential strategies for GHG emissions reductions for PTC production chain include energy efficiency, reducing reliance on fossil fuels in non-mobile sources, adoption of renewable fuels including solar energy, energy from crop residues, and promotion of organic fertilizers. Copyright © 2014 Elsevier Inc. All rights reserved.
Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lew, D.; Brinkman, G.; Kumar, N.
2012-08-01
High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-statemore » operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.« less
Displacement efficiency of alternative energy and trans-provincial imported electricity in China.
Hu, Yuanan; Cheng, Hefa
2017-02-17
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.
Displacement efficiency of alternative energy and trans-provincial imported electricity in China
NASA Astrophysics Data System (ADS)
Hu, Yuanan; Cheng, Hefa
2017-02-01
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ~0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ~10%, which is accompanied by 10-50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy.
Andres, R. J. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Boden, Thomas A. [Carbon Dioxide Information Analysis Center (CDIAC), Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (USA); Marlad, Greg [Appalachian State University, Boone, NC (USA)
2012-01-01
The annual, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1751-2009 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2012) and references therein. The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).
Gaunt, John L; Lehmann, Johannes
2008-06-01
The implications for greenhouse gas emissions of optimizing a slow pyrolysis-based bioenergy system for biochar and energy production rather than solely for energy production were assessed. Scenarios for feedstock production were examined using a life-cycle approach. We considered both purpose grown bioenergy crops (BEC) and the use of crop wastes (CW) as feedstocks. The BEC scenarios involved a change from growing winter wheat to purpose grown miscanthus, switchgrass, and corn as bioenergy crops. The CW scenarios consider both corn stover and winter wheat straw as feedstocks. Our findings show that the avoided emissions are between 2 and 5 times greater when biochar is applied to agricultural land (2--19 Mg CO2 ha(-1) y(-1)) than used solely for fossil energy offsets. 41--64% of these emission reductions are related to the retention of C in biochar, the rest to offsetting fossil fuel use for energy, fertilizer savings, and avoided soil emissions other than CO2. Despite a reduction in energy output of approximately 30% where the slow pyrolysis technology is optimized to produce biochar for land application, the energy produced per unit energy input at 2--7 MJ/MJ is greater than that of comparable technologies such as ethanol from corn. The C emissions per MWh of electricity production range from 91-360 kg CO2 MWh(-1), before accounting for C offset due to the use of biochar are considerably below the lifecycle emissions associated with fossil fuel use for electricity generation (600-900 kg CO2 MWh(-1)). Low-temperature slow pyrolysis offers an energetically efficient strategy for bioenergy production, and the land application of biochar reduces greenhouse emissions to a greater extent than when the biochar is used to offset fossil fuel emissions.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-12-30
... comment. Electronic files should avoid the use of special characters, any form of encryption, and be free..., will be publicly available only in hard copy form. Publicly available docket materials are available... for each applicable source. In making a BART-applicability determination for a fossil fuel-fired...
Code of Federal Regulations, 2013 CFR
2013-07-01
... fossil fuel, the incremental rate of PM must not exceed 43.0 grams per Gigajoule (g/GJ) or 0.10 pounds... fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6-minute average... lb/million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the...
Code of Federal Regulations, 2012 CFR
2012-07-01
... fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the opacity of emissions must not exceed 30 percent... combustion of liquid or solid fossil fuels (liters/hour or kilograms/hour) and the hours of operation during...
Code of Federal Regulations, 2013 CFR
2013-07-01
... fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the opacity of emissions must not exceed 30 percent... combustion of liquid or solid fossil fuels (liters/hour or kilograms/hour) and the hours of operation during...
Code of Federal Regulations, 2014 CFR
2014-07-01
... fossil fuel, the incremental rate of PM must not exceed 43.0 grams per Gigajoule (g/GJ) or 0.10 pounds... fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6-minute average... lb/million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the...
Code of Federal Regulations, 2014 CFR
2014-07-01
... fossil fuel, the incremental rate of PM must not exceed 43.0 g/GJ (0.10 lb/million Btu) of heat input attributable to the liquid or solid fossil fuel; and the opacity of emissions must not exceed 30 percent... combustion of liquid or solid fossil fuels (liters/hour or kilograms/hour) and the hours of operation during...
Code of Federal Regulations, 2012 CFR
2012-07-01
... fossil fuel, the incremental rate of PM must not exceed 43.0 grams per Gigajoule (g/GJ) or 0.10 pounds... fossil fuel; and the opacity of emissions must not exceed 30 percent, except for one 6-minute average... lb/million Btu) of heat input attributable to the liquid or solid fossil fuel. As part of the...
Assessing global fossil fuel availability in a scenario framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauer, Nico; Hilaire, Jérôme; Brecha, Robert J.
This study assesses global, long-term economic availability of coal, oil and gas within the Shared Socio-economic Pathway (SSP) scenario framework considering alternative assumptions as to highly uncertain future developments of technology, policy and the economy. Diverse sets of trajectories are formulated varying the challenges to mitigation and adaptation of climate change. The potential CO2 emissions from fossil fuels make it a crucial element subject to deep uncertainties. The analysis is based on a well-established data set of cost-quantity combinations that assumes favorable techno-economic developments, but ignores additional constraints on the extraction sector. This study significantly extends that analysis to includemore » alternative assumptions for the fossil fuel sector consistent with the SSP scenario families and applies these filters to the original data set, thus resulting in alternative cumulative fossil fuel availability curves. In a Middle-of-the-Road scenario, low cost fossil fuels embody carbon consistent with a RCP6.0 emission profile, if all the CO2 were emitted freely during the 21st century. In scenarios with high challenges to mitigation, the assumed embodied carbon in low-cost fossil fuels can trigger a RCP8.5 scenario; low mitigation challenges scenarios are still consistent with a RCP4.5 scenario.« less
MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING
The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...
NASA Astrophysics Data System (ADS)
Graven, H. D.; Gruber, N.
2011-12-01
The 14C-free fossil carbon added to atmospheric CO2 by combustion dilutes the atmospheric 14C/C ratio (Δ14C), potentially providing a means to verify fossil CO2 emissions calculated using economic inventories. However, sources of 14C from nuclear power generation and spent fuel reprocessing can counteract this dilution and may bias 14C/C-based estimates of fossil fuel-derived CO2 if these nuclear influences are not correctly accounted for. Previous studies have examined nuclear influences on local scales, but the potential for continental-scale influences on Δ14C has not yet been explored. We estimate annual 14C emissions from each nuclear site in the world and conduct an Eulerian transport modeling study to investigate the continental-scale, steady-state gradients of Δ14C caused by nuclear activities and fossil fuel combustion. Over large regions of Europe, North America and East Asia, nuclear enrichment may offset at least 20% of the fossil fuel dilution in Δ14C, corresponding to potential biases of more than -0.25 ppm in the CO2 attributed to fossil fuel emissions, larger than the bias from plant and soil respiration in some areas. Model grid cells including high 14C-release reactors or fuel reprocessing sites showed much larger nuclear enrichment, despite the coarse model resolution of 1.8°×1.8°. The recent growth of nuclear 14C emissions increased the potential nuclear bias over 1985-2005, suggesting that changing nuclear activities may complicate the use of Δ14C observations to identify trends in fossil fuel emissions. The magnitude of the potential nuclear bias is largely independent of the choice of reference station in the context of continental-scale Eulerian transport and inversion studies, but could potentially be reduced by an appropriate choice of reference station in the context of local-scale assessments.
Economic value of U.S. fossil fuel electricity health impacts.
Machol, Ben; Rizk, Sarah
2013-02-01
Fossil fuel energy has several externalities not accounted for in the retail price, including associated adverse human health impacts, future costs from climate change, and other environmental damages. Here, we quantify the economic value of health impacts associated with PM(2.5) and PM(2.5) precursors (NO(x) and SO(2)) on a per kilowatt hour basis. We provide figures based on state electricity profiles, national averages and fossil fuel type. We find that the economic value of improved human health associated with avoiding emissions from fossil fuel electricity in the United States ranges from a low of $0.005-$0.013/kWh in California to a high of $0.41-$1.01/kWh in Maryland. When accounting for the adverse health impacts of imported electricity, the California figure increases to $0.03-$0.07/kWh. Nationally, the average economic value of health impacts associated with fossil fuel usage is $0.14-$0.35/kWh. For coal, oil, and natural gas, respectively, associated economic values of health impacts are $0.19-$0.45/kWh, $0.08-$0.19/kWh, and $0.01-$0.02/kWh. For coal and oil, these costs are larger than the typical retail price of electricity, demonstrating the magnitude of the externality. When the economic value of health impacts resulting from air emissions is considered, our analysis suggests that on average, U.S. consumers of electricity should be willing to pay $0.24-$0.45/kWh for alternatives such as energy efficiency investments or emission-free renewable sources that avoid fossil fuel combustion. The economic value of health impacts is approximately an order of magnitude larger than estimates of the social cost of carbon for fossil fuel electricity. In total, we estimate that the economic value of health impacts from fossil fuel electricity in the United States is $361.7-886.5 billion annually, representing 2.5-6.0% of the national GDP. Published by Elsevier Ltd.
Assessment of bio-fuel options for solid oxide fuel cell applications
NASA Astrophysics Data System (ADS)
Lin, Jiefeng
Rising concerns of inadequate petroleum supply, volatile crude oil price, and adverse environmental impacts from using fossil fuels have spurred the United States to promote bio-fuel domestic production and develop advanced energy systems such as fuel cells. The present dissertation analyzed the bio-fuel applications in a solid oxide fuel cell-based auxiliary power unit from environmental, economic, and technological perspectives. Life cycle assessment integrated with thermodynamics was applied to evaluate the environmental impacts (e.g., greenhouse gas emission, fossil energy consumption) of producing bio-fuels from waste biomass. Landfill gas from municipal solid wastes and biodiesel from waste cooking oil are both suggested as the promising bio-fuel options. A nonlinear optimization model was developed with a multi-objective optimization technique to analyze the economic aspect of biodiesel-ethanol-diesel ternary blends used in transportation sectors and capture the dynamic variables affecting bio-fuel productions and applications (e.g., market disturbances, bio-fuel tax credit, policy changes, fuel specification, and technological innovation). A single-tube catalytic reformer with rhodium/ceria-zirconia catalyst was used for autothermal reformation of various heavy hydrocarbon fuels (e.g., diesel, biodiesel, biodiesel-diesel, and biodiesel-ethanol-diesel) to produce a hydrogen-rich stream reformates suitable for use in solid oxide fuel cell systems. A customized mixing chamber was designed and integrated with the reformer to overcome the technical challenges of heavy hydrocarbon reformation. A thermodynamic analysis, based on total Gibbs free energy minimization, was implemented to optimize the operating environment for the reformations of various fuels. This was complimented by experimental investigations of fuel autothermal reformation. 25% biodiesel blended with 10% ethanol and 65% diesel was determined to be viable fuel for use on a truck travelling with diesel engine and truck idling with fuel cell auxiliary power unit system. The customized nozzle used for fuel vaporization and mixing achieved homogenous atomization of input hydrocarbon fuels (e.g., diesel, biodiesel, diesel-biodiesel blend, and biodiesel-ethanol-diesel), and improved the performance of fuel catalytic reformation. Given the same operating condition (reforming temperature, total oxygen content, water input flow, and gas hourly space velocity), the hydrocarbon reforming performance follows the trend of diesel > biodiesel-ethanol-diesel > diesel-biodiesel blend > biodiesel (i.e., diesel catalytic reformation has the highest hydrogen production, lowest risk of carbon formation, and least possibility of hot spot occurrence). These results provide important new insight into the use of bio-fuels and bio-fuel blends as a primary fuel source for solid oxide fuel cell applications.
Sustainability aspects of biofuel production
NASA Astrophysics Data System (ADS)
Pawłowski, L.; Cel, W.; Wójcik Oliveira, K.
2018-05-01
Nowadays, world development depends on the energy supply. The use of fossil fuels leads to two threats: depletion of resources within a single century and climate changes caused by the emission of CO2 from fossil fuels combustion. Widespread application of renewable energy sources, in which biofuels play a major role, is proposed as a counter-measure. The paper made an attempt to evaluate to what extent biofuels meet the criteria of sustainable development. It was shown that excessive development of biofuels may threaten the sustainable development paradigms both in the aspect of: intergenerational equity, leading to an increase of food prices, as well as intergenerational equity, resulting in degradation of the environment. The paper presents the possibility of sustainable biofuels production increase.
40 CFR 80.1100 - How is the statutory default requirement for 2006 implemented?
Code of Federal Regulations, 2010 CFR
2010-07-01
... the quantity of fossil fuel present in a fuel mixture used to operate a motor vehicle, and which: (A... more of the fossil fuel normally used in the production of ethanol. (3) Waste derived ethanol means...
40 CFR 80.1100 - How is the statutory default requirement for 2006 implemented?
Code of Federal Regulations, 2014 CFR
2014-07-01
... the quantity of fossil fuel present in a fuel mixture used to operate a motor vehicle, and which: (A... more of the fossil fuel normally used in the production of ethanol. (3) Waste derived ethanol means...
40 CFR 80.1100 - How is the statutory default requirement for 2006 implemented?
Code of Federal Regulations, 2013 CFR
2013-07-01
... the quantity of fossil fuel present in a fuel mixture used to operate a motor vehicle, and which: (A... more of the fossil fuel normally used in the production of ethanol. (3) Waste derived ethanol means...
Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.
ERIC Educational Resources Information Center
Lloyd, William G.; Davenport, Derek A.
1980-01-01
Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)
40 CFR Table 2 to Subpart Ddddd of... - Emission Limits for Existing Boilers and Process Heaters
Code of Federal Regulations, 2014 CFR
2014-07-01
... collect a minimum of 3 dscm. 2. Units design to burn coal/solid fossil fuel a. Filterable PM (or TSM) 4.0E... minimum of 2 dscm per run. 3. Pulverized coal boilers designed to burn coal/solid fossil fuel a. CO (or.../solid fossil fuel a. CO (or CEMS) 160 ppm by volume on a dry basis corrected to 3 percent oxygen, 3-run...
Code of Federal Regulations, 2014 CFR
2014-07-01
... coal boilers designed to burn coal/solid fossil fuel a. Carbon monoxide (CO) (or CEMS) 130 ppm by... dscm per run. 3. Stokers designed to burn coal/solid fossil fuel a. CO (or CEMS) 130 ppm by volume on a... per run. 4. Fluidized bed units designed to burn coal/solid fossil fuel a. CO (or CEMS) 130 ppm by...
Richard Nixon, Barack Obama, and the Road to American Climate Change Policy
2016-10-24
Moynihan explained to Ehrlichman. The burning of fossil fuels J. Brooks Flippen received his doctorate from the University of Maryland and is...Climate Change & Policy conclude that, yes, CO2 released by the burning of fossil fuels did in fact con- tribute to the greenhouse effect. It had been...mandate that environmentalists would continue to employ to block questionable fossil fuel operations during the Obama years. The Environmental
DOE Office of Scientific and Technical Information (OSTI.GOV)
Korkmaz, S.; Kara-Gulbay, R.; Turan, M.
Since Turkey is a developing country with tremendous economic growth, its energy demand is also getting increased. Of this energy, about 70% is supplied from fossil fuels and the remaining 30% is from renewable sources. Among the fossil fuels, 90% of oil, natural gas, and coal are imported, and only 10% is from domestic sources. All the lignite is supplied from domestic sources. The total share of renewable sources and lignite in the total energy production is 45%. In order for Turkey to have sufficient and reliable energy sources, first the renewable energy sources must be developed, and energy productionmore » from fossil fuels, except for lignite, must be minimized. Particularly, scarcity of fossil fuels and increasing oil prices have a strong effect on economic growth of the country.« less
Code of Federal Regulations, 2010 CFR
2010-07-01
... limitation for the unit. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or... in the measurement units required by subpart H of this part. Boiler means an enclosed fossil or other... generation or steam production. Combustion turbine means an enclosed fossil or other fuel-fired device that...
Code of Federal Regulations, 2014 CFR
2014-07-01
... limitation for the unit. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or... in the measurement units required by subpart H of this part. Boiler means an enclosed fossil or other... generation or steam production. Combustion turbine means an enclosed fossil or other fuel-fired device that...
Code of Federal Regulations, 2012 CFR
2012-07-01
... limitation for the unit. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or... in the measurement units required by subpart H of this part. Boiler means an enclosed fossil or other... generation or steam production. Combustion turbine means an enclosed fossil or other fuel-fired device that...
Code of Federal Regulations, 2011 CFR
2011-07-01
... limitation for the unit. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or... in the measurement units required by subpart H of this part. Boiler means an enclosed fossil or other... generation or steam production. Combustion turbine means an enclosed fossil or other fuel-fired device that...
Code of Federal Regulations, 2013 CFR
2013-07-01
... limitation for the unit. Fossil fuel means natural gas, petroleum, coal, or any form of solid, liquid, or... in the measurement units required by subpart H of this part. Boiler means an enclosed fossil or other... generation or steam production. Combustion turbine means an enclosed fossil or other fuel-fired device that...
Energy Conversion in Natural and Artificial Photosynthesis
McConnell, Iain; Li, Gonghu; Brudvig, Gary W.
2010-01-01
Summary Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil fuel dependence has severe consequences including energy security issues and greenhouse gas emissions. The consequences of fossil fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices including photoelectrochemical cells for solar energy conversion. PMID:20534342
NASA Astrophysics Data System (ADS)
Hiete, Michael; Berner, Ulrich; Richter, Otto
2001-03-01
Anthropogenic carbon dioxide emissions resulting from fossil fuel consumption play a major role in the current debate on climate change. Carbon dioxide emissions are calculated on the basis of a carbon dioxide emission factor (CEF) for each type of fuel. Published CEFs are reviewed in this paper. It was found that for nearly all CEFs, fuel quality is not adequately taken into account. This is especially true in the case of the CEFs for coal. Published CEFs are often based on generalized assumptions and inexact conversions. In particular, conversions from gross calorific value to net calorific value were examined. A new method for determining CEFs as a function of calorific value (for coal, peat, and natural gas) and specific gravity (for crude oil) is presented that permits CEFs to be calculated for specific fuel qualities. A review of proportions of fossil fuels that remain unoxidized owing to incomplete combustion or inclusion in petrochemical products, etc., (stored carbon) shows that these figures need to be updated and checked for their applicability on a global scale, since they are mostly based on U.S. data.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-23
.... Visibility impairment is primarily caused by fine particulate matter (PM 2.5 ) or secondary aerosol formed in.... 70 FR 39104. In making a BART applicability determination for a fossil fuel-fired electric generating...
NASA Astrophysics Data System (ADS)
Asefi-Najafabady, S.; Gurney, K. R.; Rayner, P.; Huang, J.; Song, Y.
2012-12-01
The largest single net source of CO2 into the Earth's atmosphere is due to the combustion of fossil fuel and an accurate quantification of the fossil fuel flux is needed to better address the concern of rising atmospheric greenhouse gas concentrations. In the last decade, there has been a growing need, from both the science and policymaking communities for quantification of global fossil fuel CO2 emissions at finer space and time scales. Motivated by this concern, we have built a global fossil fuel CO2 emission inventory at 0.25° and 0.1° resolutions for the years of 1992 - 2010 using a combination of in situ and remotely sensed data in a fossil fuel data assimilation system (FFDAS). A suite of observations which include nightlights, population, sectoral national emissions and power plant stations are used to constrain the FFDAS model. FFDAS is based on a modified Kaya identity which expresses emissions as the product of areal population density, per capita economic activity, energy intensity of economic activity, and carbon intensity of energy consumption. Nightlights has been shown to correlate well with national and regional GDP and its relationship with population has been used as an initial means of downscaling fossil fuel emissions. However nightlights data are subject to instrumental saturation, causing areas of bright nightlights, such as urban cores, to be truncated. To address the saturation problem during several time periods, the National Geophysical Data Center (NGDC) has requested and received data collected at multiple fixed gain settings to observe the bright areas with no saturation. However, this dataset is limited to only four years (1999, 2002, 2006 and 2010). We have applied a numerical technique to these four years of data to estimate the unsaturated values for all years from 1992 to 2010. The corrected nightlights time series is then used in FFDAS to generate a multiyear fossil fuel CO2 emissions data product. Nightlights and population provide an approximate location and magnitude for fossil fuel CO2 emissions. Some emitting sectors, such as power plant emissions and heavy industry, are not coincident with where people live or lights are on. Therefore, for better accuracy, we used direct emissions information from power stations as a constraint to the FFDAS estimation. We present this new high resolution, multiyear emissions data product with analysis of the space/time patterns, trends and posterior uncertainty. We also compare the FFDAS results to the "bottom-up" high resolution fossil fuel CO2 emissions estimation generated by the Vulcan Project in the United States. Finally, we examine the sensitivity of the results to differences in the procedures used to generate the improved multiyear nightlights time series.
Implications of 'Peak Oil' for Atmospheric CO2 and Climate
NASA Astrophysics Data System (ADS)
Kharecha, P. A.; Hansen, J. E.
2008-12-01
Unconstrained CO2 emission from fossil fuel burning has been the dominant cause of observed anthropogenic global warming. The amounts of "proven" and potential fossil fuel reserves are uncertain and debated. Regardless of the true values, society has flexibility in the degree to which it chooses to exploit these reserves, especially unconventional fossil fuels and those located in extreme or pristine environments. If conventional oil production peaks within the next few decades, it may have a large effect on future atmospheric CO2 and climate change, depending upon subsequent energy choices. Assuming that proven oil and gas reserves do not greatly exceed estimates of the Energy Information Administration -- and recent trends are toward lower estimates -- we show that it is feasible to keep atmospheric CO2 from exceeding about 450 ppm by 2100, provided that emissions from coal, unconventional fossil fuels, and land use are constrained. Coal-fired facilities without sequestration must be phased out before midcentury to achieve this CO2 limit. It is also important to "stretch" conventional oil reserves via energy conservation and efficiency, thus averting strong pressures to extract liquid fuels from coal or unconventional fossil fuels while clean technologies are being developed for the era "beyond fossil fuels". We argue that a rising price on carbon emissions is needed to discourage conversion of the vast fossil resources into usable reserves, and to keep CO2 below 450 ppm. It is also plausible that CO2 can be returned below 350 ppm by 2100 or sooner, if more aggressive mitigation measures are enacted, most notably a phase-out of global coal emissions by circa 2030 and large- scale reforestation, primarily in the tropics but also in temperate regions.
Introducing the global carbon cycle to middle school students with a 14C research project
NASA Astrophysics Data System (ADS)
Brodman Larson, L.; Phillips, C. L.; LaFranchi, B. W.
2012-12-01
Global Climate Change (GCC) is currently not part of the California Science Standards for 7th grade. Required course elements, however, such as the carbon cycle, photosynthesis, and cellular respiration could be linked to global climate change. Here we present a lesson plan developed in collaboration with scientists from Lawrence Livermore National Laboratory, to involve 7th grade students in monitoring of fossil fuel emissions in the Richmond/San Pablo area of California. -The lesson plan is a Greenhouse Gas/Global Climate Change Unit, with an embedded research project in which students will collect plant samples from various locals for analysis of 14C, to determine if there is a correlation between location and how much CO2 is coming from fossil fuel combustion. Main learning objectives are for students to: 1) understand how fossil fuel emissions impact the global carbon cycle, 2) understand how scientists estimate fossil CO2 emissions, and 3) engage in hypothesis development and testing. This project also engages students in active science learning and helps to develop responsibility, two key factors for adolescentsWe expect to see a correlation between proximity to freeways and levels of fossil fuel emissions. This unit will introduce important GCC concepts to students at a younger age, and increase their knowledge about fossil fuel emissions in their local environment, as well as the regional and global impacts of fossil emissions.
Code of Federal Regulations, 2014 CFR
2014-07-01
... fossil fuel a. Filterable PM (or TSM) 1.1E-03 lb per MMBtu of heat input; or (2.3E-05 lb per MMBtu of... designed to burn coal/solid fossil fuel a. Carbon monoxide (CO) (or CEMS) 130 ppm by volume on a dry basis... minimum sampling time. 4. Stokers designed to burn coal/solid fossil fuel a. CO (or CEMS) 130 ppm by...
Hydrogen production econometric studies. [hydrogen and fossil fuels
NASA Technical Reports Server (NTRS)
Howell, J. R.; Bannerot, R. B.
1975-01-01
The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.
Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?
Levin, Ingeborg; Rödenbeck, Christian
2008-03-01
The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.
Code of Federal Regulations, 2011 CFR
2011-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators for..., matrix material, clay, and other organic and inorganic material. Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of...
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel-Fired Steam Generators for..., matrix material, clay, and other organic and inorganic material. Fossil fuel means natural gas, petroleum, coal, and any form of solid, liquid, or gaseous fuel derived from such materials for the purpose of...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-22
... shielding design and the ALARA program would continue in its current form. Offsite Doses at EPU Conditions..., such as fossil fuel or alternative fuel power generation, to provide electric generation capacity to offset future demand. Construction and operation of such a fossil-fueled or alternative-fueled plant may...
ERIC Educational Resources Information Center
Berger, Michael; Goldfarb, Jillian L.
2017-01-01
Engaging undergraduates in the environmental consequences of fossil fuel usage primes them to consider their own anthropogenic impact, and the benefits and trade-offs of converting to renewable fuel strategies. This laboratory activity explores the potential contaminants (both inorganic and organic) present in the raw fuel and solid waste…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ables, L.D.
This paper establishes economic breakeven points for the conversion to various fossil fuels as a function of time and pollution constraints for the main boiler plant at Red River Army Depot in Texarkana, Texas. In carrying out the objectives of this paper, the author develops what he considers to be the basic conversion costs and operating costs for each fossil fuel under investigation. These costs are analyzed by the use of the present worth comparison method, and the minimum cost difference between the present fuel and the proposed fuel which would justify the conversion to the proposed fuel is calculated.more » These calculated breakeven points allow a fast and easy method of determining the feasibility of a fuel by merely knowing the relative price difference between the fuels under consideration. (GRA)« less
Displacement efficiency of alternative energy and trans-provincial imported electricity in China
Hu, Yuanan; Cheng, Hefa
2017-01-01
China has invested heavily on alternative energy, but the effectiveness of such energy sources at substituting the dominant coal-fired generation remains unknown. Here we analyse the displacement of fossil-fuel-generated electricity by alternative energy, primarily hydropower, and by trans-provincial imported electricity in China between 1995 and 2014 using two-way fixed-effects panel regression models. Nationwide, each unit of alternative energy displaces nearly one-quarter of a unit of fossil-fuel-generated electricity, while each unit of imported electricity (regardless of the generation source) displaces ∼0.3 unit of fossil-fuel electricity generated locally. Results from the six regional grids indicate that significant displacement of fossil-fuel-generated electricity occurs once the share of alternative energy in the electricity supply mix exceeds ∼10%, which is accompanied by 10–50% rebound in the consumption of fossil-fuel-generated electricity. These findings indicate the need for a policy that integrates carbon taxation, alternative energy and energy efficiency to facilitate China's transition towards a low-carbon economy. PMID:28211467
Comparing extraction rates of fossil fuel producers against global climate goals
NASA Astrophysics Data System (ADS)
Rekker, Saphira A. C.; O'Brien, Katherine R.; Humphrey, Jacquelyn E.; Pascale, Andrew C.
2018-06-01
Meeting global and national climate goals requires action and cooperation from a multitude of actors1,2. Current methods to define greenhouse gas emission targets for companies fail to acknowledge the unique influence of fossil fuel producers: combustion of reported fossil fuel reserves has the potential to push global warming above 2 °C by 2050, regardless of other efforts to mitigate climate change3. Here, we introduce a method to compare the extraction rates of individual fossil fuel producers against global climate targets, using two different approaches to quantify a burnable fossil fuel allowance (BFFA). BFFAs are calculated and compared with cumulative extraction since 2010 for the world's ten largest investor-owned companies and ten largest state-owned entities (SOEs), for oil and for gas, which together account for the majority of global oil and gas reserves and production. The results are strongly influenced by how BFFAs are quantified; allocating based on reserves favours SOEs over investor-owned companies, while allocating based on production would require most reduction to come from SOEs. Future research could refine the BFFA to account for equity, cost-effectiveness and emissions intensity.
Intergenerational equity and conservation
NASA Technical Reports Server (NTRS)
Otoole, R. P.; Walton, A. L.
1980-01-01
The issue of integenerational equity in the use of natural resources is discussed in the context of coal mining conversion. An attempt to determine if there is a clear-cut benefit to future generations in setting minimum coal extraction efficiency standards in mining is made. It is demonstrated that preserving fossil fuels beyond the economically efficient level is not necessarily beneficial to future generations even in terms of their own preferences. Setting fossil fuel conservation targets for intermediate products (i.e. energy) may increase the quantities of fossil fuels available to future generations and hence lower the costs, but there may be serious disadvantages to future generations as well. The use of relatively inexpensive fossil fuels in this generation may result in more infrastructure development and more knowledge production available to future generations. The value of fossil fuels versus these other endowments in the future depends on many factors which cannot possibly be evaluated at present. Since there is no idea of whether future generations are being helped or harmed, it is recommended that integenerational equity not be used as a factor in setting coal mine extraction efficiency standards, or in establishing requirements.
Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.
2011-01-01
The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).
Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Appalachian State University, Boone, North Carolina (USA)
2015-01-01
The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).
Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.
2013-01-01
The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).
Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy and Economics Appalachian State University Boone, North Carolina 28608 U.S.A.
2012-01-01
The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).
Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37830-6290 U.S.A.; Marland, G. [Appalachian State University, Boone, North Carolina (USA).
2013-01-01
The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).
Federal Register 2010, 2011, 2012, 2013, 2014
2012-04-19
... Coal- and Oil-Fired Electric Utility Steam Generating Units and Standards of Performance for Fossil... Units and Standards of Performance for Fossil-Fuel-Fired Electric Utility, Industrial-Commercial... before March 1, 2005, means a 24-hour period during which fossil fuel is combusted in a steam-generating...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-16
... Program; Petition for Objection to State Operating Permit for Tennessee Valley Authority--Paradise Fossil... for Air Quality to Tennessee Valley Authority (TVA) for its Paradise Fossil Fuel Plant located near... period. Petitioner submitted a petition regarding the Paradise Fossil Fuel Plant on January 9, 2010...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-05
... different in mathematical form, is conceptually the same as the integrated AFUE for fossil fueled furnaces... that gas-fired and oil-fried furnaces and boilers consume both fossil fuel and electricity, while electric furnaces and boilers only consume electricity. The current test procedure accounts for all fossil...
Proceedings of the 18th Annual Conference on Fossil Energy Materials.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Judkins, RR
2004-11-02
The 18th Annual conference on Fossil Energy Materials was held in Knoxville, Tennessee, on June 2 through June 4, 2004. The meeting was sponsored by the U.S. Department of Energy's (DOE) Office of Fossil Energy through the Advanced Research Materials Program (ARM). The objective of the ARM Program is to conduct research and development on materials for longer-term fossil energy applications, as well as for generic needs of various fossil fuel technologies. The management of the program has been decentralized to the DOE Oak Ridge Operations Office and Oak Ridge National Laboratory (ORNL). The research is performed by staff membersmore » at ORNL and by researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) structural, ceramics, (2) new alloys and coatings, (3) functional materials, and (4) technology development and transfer.« less
APPLICATION OF PROTEOMIC METHODS TO ARSENIC EXPOSURE RESEARCH
Arsenic, an environmental contaminant, is introduced to drinking water through the leaching of soil and the result of anthropogenic sources such as industrial effluents and combustion of fossil fuels. It also occurs naturally in ground water sources in some geographic areas. Chro...
... global population has increased and our reliance on fossil fuels (such as coal, oil and natural gas) ... agricultural sources for the gas, some industrial processes (fossil fuel-fired power plants, nylon production, nitric acid ...
Levin, Ingeborg; Hammer, Samuel; Kromer, Bernd; Meinhardt, Frank
2008-03-01
Monthly mean 14CO2 observations at two regional stations in Germany (Schauinsland observatory, Black Forest, and Heidelberg, upper Rhine valley) are compared with free tropospheric background measurements at the High Alpine Research Station Jungfraujoch (Swiss Alps) to estimate the regional fossil fuel CO2 surplus at the regional stations. The long-term mean fossil fuel CO2 surplus at Schauinsland is 1.31+/-0.09 ppm while it is 10.96+/-0.20 ppm in Heidelberg. No significant trend is observed at both sites over the last 20 years. Strong seasonal variations of the fossil fuel CO2 offsets indicate a strong seasonality of emissions but also of atmospheric dilution of ground level emissions by vertical mixing.
Alternative Fuels in Transportation
ERIC Educational Resources Information Center
Kouroussis, Denis; Karimi, Shahram
2006-01-01
The realization of dwindling fossil fuel supplies and their adverse environmental impacts has accelerated research and development activities in the domain of renewable energy sources and technologies. Global energy demand is expected to rise during the next few decades, and the majority of today's energy is based on fossil fuels. Alternative…
Energy conversion in natural and artificial photosynthesis.
McConnell, Iain; Li, Gonghu; Brudvig, Gary W
2010-05-28
Modern civilization is dependent upon fossil fuels, a nonrenewable energy source originally provided by the storage of solar energy. Fossil-fuel dependence has severe consequences, including energy security issues and greenhouse gas emissions. The consequences of fossil-fuel dependence could be avoided by fuel-producing artificial systems that mimic natural photosynthesis, directly converting solar energy to fuel. This review describes the three key components of solar energy conversion in photosynthesis: light harvesting, charge separation, and catalysis. These processes are compared in natural and in artificial systems. Such a comparison can assist in understanding the general principles of photosynthesis and in developing working devices, including photoelectrochemical cells, for solar energy conversion. 2010 Elsevier Ltd. All rights reserved.
10 CFR 431.242 - Test Procedures [Reserved
Code of Federal Regulations, 2011 CFR
2011-01-01
... upstream of the draft control device of an individual, automatically operated, fossil fuel-fired appliance... intended for installation in the venting system of an individual, automatically operated, fossil fuel-fired...
10 CFR 431.242 - Test Procedures [Reserved
Code of Federal Regulations, 2014 CFR
2014-01-01
..., automatically operated, fossil fuel-fired appliance that is designed to automatically open the flue outlet... individual, automatically operated, fossil fuel-fired appliance either in the outlet or downstream of the...
10 CFR 431.242 - Test Procedures [Reserved
Code of Federal Regulations, 2010 CFR
2010-01-01
... upstream of the draft control device of an individual, automatically operated, fossil fuel-fired appliance... intended for installation in the venting system of an individual, automatically operated, fossil fuel-fired...
10 CFR 431.242 - Test Procedures [Reserved
Code of Federal Regulations, 2012 CFR
2012-01-01
..., automatically operated, fossil fuel-fired appliance that is designed to automatically open the flue outlet... individual, automatically operated, fossil fuel-fired appliance either in the outlet or downstream of the...
10 CFR 431.242 - Test Procedures [Reserved
Code of Federal Regulations, 2013 CFR
2013-01-01
..., automatically operated, fossil fuel-fired appliance that is designed to automatically open the flue outlet... individual, automatically operated, fossil fuel-fired appliance either in the outlet or downstream of the...
Fossil fuels in the 21st century.
Lincoln, Stephen F
2005-12-01
An overview of the importance of fossil fuels in supplying the energy requirements of the 21st century, their future supply, and the impact of their use on global climate is presented. Current and potential alternative energy sources are considered. It is concluded that even with substantial increases in energy derived from other sources, fossil fuels will remain a major energy source for much of the 21st century and the sequestration of CO2 will be an increasingly important requirement.
2013-06-01
batteries and 51 power management. Such a concept may lead to an architectural approach using both SSP satellites and fossil fuels . One technical area of...growing concerns regarding long-term accumulation of fossil fuel - driven green-house gases in the earth’s atmosphere. Third, the prospect exists that...global production of petroleum and other fossil fuels will peak and possibly decline in the next few decades. John Mankins is a researcher in SSP and
Andres, R. J. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 U.S.A.; Boden, T. A. [Carbon Dioxide Information Analysis Center Environmental Sciences Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6290 U.S.A.; Marland, G. [Research Institute for Environment, Energy, and Economics Appalachian State University Boone, NC 28608-2131 USA
2010-01-01
The basic data provided in these data files are derived from time series of Global, Regional, and National Fossil-Fuel CO2 Emissions (http://cdiac.ess-dive.lbl.gov/trends/emis/overview_2013.html), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signature (del 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996) for years prior to 1990 and a variable population distribution for later years (Andres et al. 2016). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production). The monthly, isotopic (δ 13C) fossil-fuel CO2 emissions estimates from 1950-2013 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2016), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these tabular, national, mass-emissions data, multiply them by stable carbon isotopic signatures (δ 13C) as described in Andres et al. (2000), and distribute them spatially on a one degree latitude by one degree longitude grid. The within-country spatial distribution is achieved through a fixed population distribution as reported in Andres et al. (1996). Note that the mass-emissions data used here are based on fossil-fuel consumption estimates as these are more representative of within country emissions than fossil-fuel production estimates (see http://cdiac.ess-dive.lbl.gov/faq.html#Q10 for a description why emission totals based upon consumption differ from those based upon production).
Environmental aspects of fossil fuels combustion in Poland
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sekula, R.
Combustion of fossil fuels is the main source of energy in Poland. Coal will probably remain the basic fuel for energy generation for many years. The principal problems connected with fuel utilization in Poland are presented in this study. The major pollutants and ways to reduce air pollution are also described. Data are based on the report of the Polish Academy of Sciences.
Khalequzzaman, Md.; Sakai, Kiyoshi; Hoque, Bilqis Amin; Nakajima, Tamie
2010-01-01
Objectives Indoor air pollution levels are reported to be higher with biomass fuel, and a number of respiratory diseases in children are associated with pollution from burning such fuel. However, little is known about the situation in developing countries. The aim of the study was to compare indoor air pollution levels and prevalence of symptoms in children between biomass- and fossil-fuel-using households in different seasons in Bangladesh. Methods We conducted a cross-sectional study among biomass- (n = 42) and fossil-fuel (n = 66) users having children <5 years in Moulvibazar and Dhaka, Bangladesh. Health-related information of one child from each family was retrieved once in winter (January 2008) and once in summer (June 2008). The measured pollutants were carbon monoxide (CO), carbon dioxide (CO2), dust particles, volatile organic compounds (VOCs), and nitrogen dioxide. Results Mean concentration of dust particles and geometric mean concentrations of VOCs such as benzene, toluene, and xylene, which were significantly higher in biomass- than fossil-fuel-users’ kitchens (p < 0.05), were significantly higher in winter than in summer (p < 0.05). Levels of CO and CO2, which were significantly higher in biomass than fossil-fuel users (p < 0.05), were significantly higher in summer than winter (p < 0.05). However, no significant difference was found in the occurrence of symptoms between biomass- and fossil-fuel users either in winter or in summer. Conclusions It was suggested that the measured indoor air pollution did not directly result in symptoms among children. Other factors may be involved. PMID:21432551
Khalequzzaman, Md; Kamijima, Michihiro; Sakai, Kiyoshi; Hoque, Bilqis Amin; Nakajima, Tamie
2010-07-01
Indoor air pollution levels are reported to be higher with biomass fuel, and a number of respiratory diseases in children are associated with pollution from burning such fuel. However, little is known about the situation in developing countries. The aim of the study was to compare indoor air pollution levels and prevalence of symptoms in children between biomass- and fossil-fuel-using households in different seasons in Bangladesh. We conducted a cross-sectional study among biomass- (n = 42) and fossil-fuel (n = 66) users having children <5 years in Moulvibazar and Dhaka, Bangladesh. Health-related information of one child from each family was retrieved once in winter (January 2008) and once in summer (June 2008). The measured pollutants were carbon monoxide (CO), carbon dioxide (CO(2)), dust particles, volatile organic compounds (VOCs), and nitrogen dioxide. Mean concentration of dust particles and geometric mean concentrations of VOCs such as benzene, toluene, and xylene, which were significantly higher in biomass- than fossil-fuel-users' kitchens (p < 0.05), were significantly higher in winter than in summer (p < 0.05). Levels of CO and CO(2), which were significantly higher in biomass than fossil-fuel users (p < 0.05), were significantly higher in summer than winter (p < 0.05). However, no significant difference was found in the occurrence of symptoms between biomass- and fossil-fuel users either in winter or in summer. It was suggested that the measured indoor air pollution did not directly result in symptoms among children. Other factors may be involved.