Science.gov

Sample records for fossil fueled power

  1. Life optimization for fossil fuel power plants

    SciTech Connect

    McNaughton, W.P.; Richman, R.H. ); Parker, J.D.; McMinn, A. ); Bell, R.J. ); McCabe, P.; Leake, W.H. Jr. ); Dimmer, J.P.; Damon, J.E. ); Brusger, E.C.; Farber, M.

    1990-11-01

    During 1985 and 1986, EPRI funded several major studies of aging fossil-fuel power plants. These were aimed both at evaluation and planning on the plant level (life optimization), and condition assessment of individual components (life assessment). The experience gained during the execution of these projects, along with available international experience on the optimized use of existing power plants, was integrated in Generic Guidelines for the Life Extension of Fossil Fuel Power Plants,'' issued in November 1986 (CS-4778). These guidelines advocated the assessment of residual component life in increasingly detailed stages, the phased evaluation and refurbishment of equipment, the importance of integrated planning, and the requirement for application of data management techniques. To extend the procedures and methods presented in those generic guidelines, and to demonstrate the potential benefits of a formalized approach to the consideration of fossil fuel power plant evaluation, the Electric Power Research Institute initiated a technology transfer demonstration project, RP2596-10. This report provides a summary of the activities in that demonstration project. One of the tools that was developed during the project was a compilation of the condition assessment of 25 critical and major components. This report includes an overview of the Component Condition Assessment Guidelines, as well as other tools and analysis methods that were developed during the project. The project also served as a review of the application of the methods and procedures presented in the basic guidelines document; therefore, this report also includes an evaluation and suggested refinements of the generic guidelines.

  2. Can Geothermal Power Replace Fossil Fuels?

    NASA Astrophysics Data System (ADS)

    Klenner, R.; Gosnold, W. D.

    2009-12-01

    is scaled up to produce power in the MW range. Values needed for these systems are temperatures of 92+ °C and flow rates of 140-1000 gpm. In a detailed analysis of the North Dakota part of the Williston Basin, we used heat flow, bottom-hole temperatures, and measured temperature gradients to calculate the energy contained within specific formations having temperatures in the range of 100 °C to 150 °C. We find that at a 2% recovery factor, approximately 4500 MW/hr can be recovered at depths of 3-4 km. North Dakota currently produces approximately 3100 MW/hr from non-renewable sources such as coal and petroleum. We conclude that the geothermal resource in the Williston Basin could completely replace fossil fuels as an electrical power supply for North Dakota.

  3. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  4. Fossil fuel combined cycle power system

    DOEpatents

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  5. Fossil fuel combined cycle power generation method

    DOEpatents

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  6. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    NASA Technical Reports Server (NTRS)

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  7. Refractory failure in IGCC fossil fuel power systems

    SciTech Connect

    Dogan, Cynthia P.; Kwong, Kyei-Sing; Bennett, James P.; Chinn, Richard E.

    2001-01-01

    Current generation refractory materials used in slagging gasifiers employed in Integrated Gasification Combined Cycle (IGCC) fossil fuel power systems have unacceptably short service lives, limiting the reliability and cost effectiveness of gasification as a means to generate power. The short service life of the refractory lining results from exposure to the extreme environment inside the operating gasifier, where the materials challenges include temperatures to 1650 C, thermal cycling, alternating reducing and oxidizing conditions, and the presence of corrosive slags and gases. Compounding these challenges is the current push within the industry for fuel flexibility, which results in slag chemistries and operating conditions that can vary widely as the feedstock for the gasifier is supplemented with alternative sources of carbon, such as petroleum coke and biomass. As a step toward our goal of developing improved refractory materials for this application, we have characterized refractory-slag interactions, under a variety of simulated gasifier conditions, utilizing laboratory exposure tests such as the static cup test and a gravimetric test. Combining this information with that gained from the post-mortem analyses of spent refractories removed from working gasifiers, we have developed a better understanding of refractory failure in gasifier environments. In this paper, we discuss refractory failures in slagging gasifiers and possible strategies to reduce them. Emphasis focuses on the refractories employed in gasifier systems which utilize coal as the primary feedstock.

  8. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  9. Infrared imaging of fossil fuel power plant boiler interiors

    NASA Astrophysics Data System (ADS)

    Howard, James W.; Cranton, Brian W.; Armstrong, Karen L.; Hammaker, Robert G.

    1997-08-01

    Fossil fuel power plant boilers operate continuously for months at a time, typically shutting down only for routine maintenance or to address serious equipment failures. These shutdowns are very costly, and diagnostic tools and techniques which could be used to minimize shutdown duration and frequency are highly desirable. Due to the extremely hostile environment in these boilers, few tools exist to inspect and monitor operating boiler interiors. This paper presents the design of a passively cooled, infrared borescope used to inspect the interior of operating boilers. The borescope operates at 3.9 micrometer, where flame is partially transparent. The primary obstacles overcome in the instrument design were the harsh industrial environment surrounding the boilers and the high temperatures encountered inside the boilers. A portable yet durable lens system and enclosure was developed to work with a scanning radiometer to address these two problems by both shielding the radiometer from the environment and by extending the optical train into a snout designed to be inserted into access ports on the sides of the boiler. In this manner, interior images of the boiler can be made while keeping the radiometer safely outside the boiler. The lens views a 40 degree field of view through any 2.5' or larger opening in a foot thick boiler wall. Three of these borescopes have been built, and high resolution images of boiler interiors have been obtained.

  10. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    ERIC Educational Resources Information Center

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  11. High Efficiency Direct Carbon and Hydrogen Fuel Cells for Fossil Fuel Power Generation

    SciTech Connect

    Steinberg, M; Cooper, J F; Cherepy, N

    2002-01-02

    generation cycles are: (1) increased efficiency by a factor of up to 2 over many conventional fossil fuel steam plants, (2) reduced power generation cost, especially for increasing fossil fuel cost, (3) reduced CO2 emission per kWh, and (4) direct sequestration or reuse (e.g., in enhanced oil or NG recovery) of the CO{sub 2} product.

  12. Justification of simulators for fossil fuel power plants. Final report

    SciTech Connect

    Beare, A.N.; Gaddy, C.D.; Lewis-Clapper, R.C.; Taylor, J.C.

    1993-10-01

    The cost-benefit analysis of simulators (CBAS) project is part of an overall effort by the Electric Power Research Institute and the fossil power industry to expand and enhance the appropriate use of simulators in the fossil industry. The CBAS project consists of three tasks: (1) quantify operator performance associated with operator-controllable plant parameters and situations, (2) compare the training effectiveness of various types of simulators, and (3) develop and demonstrate a methodology and database for quantifying the benefits of fossil training simulators. This report describes the first and third tasks of the project. For the first task in the project, eight utilities provided data for operator-controllable plant performance. This data collection effort was designed to assess the actual and potential effects of simulator training in improving operator performance and reducing error, as well as determining the dollar value of improved performance and reduced number of errors. Developing a methodology and database for assessing simulator training benefits is the second task in the project. The methodology and database will provide a basis for determining the impact of various types of simulator training on operator performance and the potential savings in plant operating costs. A worksheet developed from a portion of this task is provided in this report. The worksheet steps the user through calculations, based on plant data, to determine if purchasing a simulator is cost-beneficial. This project would benefit from additional tasks to further clarify and validate the objectives. The major emphasis would be to collect follow-up data from utilities that recently implemented simulator training and to collect data from additional utilities. Planned follow-on work includes comparing the training effectiveness of various types of simulators and continuing to transfer the technology studied in this report.

  13. Potentially carcinogenic species emitted to the atmosphere by fossil-fueled power plants.

    PubMed Central

    Natusch, D F

    1978-01-01

    The identities and physicochemical characteristics of potentially carcinogenic species emitted to the atmosphere by fossil-fueled power plants are presented and discussed. It is pointed out that many so-called carcinogens are preferentially concentrated on the surface of respirable fly ash particles thus enabling them to come into intimate contact with lung tissues when inhaled. Relatively little information is available about the identities of particulate polycyclic organic compounds whose emission from coal fired power plants may well be substantially greater than hitherto supposed. The importance of chemical changes, which several species may undergo following emission (but prior to inhalation) in determining their potential carcinogenic impact, is stressed. PMID:648494

  14. The legacy of fossil fuels.

    PubMed

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production.

  15. Evaluation of innovative fossil fuel power plants with CO{sub 2} removal

    SciTech Connect

    2000-07-15

    This interim report presents initial results of an ongoing study of the potential cost of electricity produced in both conventional and innovative fossil fueled power plants that incorporate carbon dioxide (CO{sub 2}) removal for subsequent sequestration or use. The baseline cases are natural gas combined cycle (NGCC) and ultra-supercritical pulverized coal (PC) plants, with and without post combustion CO{sub 2} removal, and integrated gasification combined cycle (IGCC) plants, with and without pre-combustion CO{sub 2} removal.

  16. RADIOACTIVITY IN THE ATMOSPHERIC EFFLUENTS OF POWER PLANTS THAT USE FOSSIL FUELS.

    PubMed

    EISENBUD, M; PETROW, H G

    1964-04-17

    Analysis of the fly ash produced by combustion of pulverized Appalachian coal has shown that a 1000-megawatt coal-burning power plant will discharge into the atmosphere from about 28 millicuries to nearly 1 curie per year of radium-226 and radium-228. An oil-burning plant of similar size will discharge about 0.5 millicurie of radium per year. Comparison of these data with data on the release of fission products from nuclear-powered generating stations shows that when the physical and biological properties of the various radionuclides are taken into consideration, the conventional fossil-fueled plants discharge relatively greater quantities of radioactive materials into the atmosphere than nuclearpowered plants of comparable size. PMID:14169712

  17. Nuclear Power Technology With and Without Policies to Limit Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Edmonds, J. A.; Clarke, J.

    2002-12-01

    The 21st century will see dramatic changes in the global energy system. The precise nature of those changes is impossible to see clearly. Energy supply technologies may become more diverse as the century progresses. That diversity will be driven by both energy supply challenges and by policies such as those associated with climate change. Technology deployment will depend on the outcome of developments in both economic and non-economic dimensions. This paper will explore the economic dimension of the potential nuclear power technology deployment in a future with and without policies to limit fossil fuel CO2 emissions. The analysis is predicated on the presumption that issues associated with safety, health, waste, and weapons are successfully addressed. The potential role of nuclear power will be examined against a background in which other technologies compete for markets.

  18. Results of studies on application of CCMHD to advanced fossil fuel power plant cycles

    SciTech Connect

    Foote, J.P.; Wu, Y.C.L.S.; Lineberry, J.T.

    1998-07-01

    A study was conducted to assess the potential for application of a Closed Cycle MHD disk generator (CCMHD) in advanced fossil fuel power generation systems. Cycle analyses were conducted for a variety of candidate power cycles, including simple cycle CCMHD (MHD); a cycle combining CCMHD and gas turbines (MHD/GT); and a triple combined cycle including CCMHD, gas turbines, and steam turbines (MHD/GT/ST). The above cycles were previously considered in cycle studies reported by Japanese researchers. Also considered was a CCMHD cycle incorporating thermochemical heat recovery through reforming of the fuel stream (MHD/REF), which is the first consideration of this approach. A gas turbine/steam turbine combined cycle (GT/ST) was also analyzed for baseline comparison. The only fuel considered in the study was CH4. Component heat and pressure losses were neglected, and the potential for NOx emission due to high combustion temperatures was not considered. Likewise, engineering limitations for cycle components, particularly the high temperature argon heater, were not considered. This approach was adopted to simplify the analysis for preliminary screening of candidate cycles. Cycle calculations were performed using in-house code. Ideal gas thermodynamic properties were calculated using the NASA SP- 273 data base, and thermodynamic properties for steam were calculated using the computerized ASME Steam Tables. High temperature equilibrium compositions for combustion gas were calculated using tabulated values of the equilibrium constants for the important reactions.

  19. Device for separating CO2 from fossil-fueled power plant emissions

    DOEpatents

    Burchell, Timothy D [Oak Ridge, TN; Judkins, Roddie R [Knoxville, TN; Wilson, Kirk A [Knoxville, TN

    2002-04-23

    A gas separation device includes an inner conduit, and a concentric outer conduit. An electrically conductive filter media, preferably a carbon fiber composite molecular sieve, is provided in the annular space between the inner conduit and the outer conduit. Gas flows through the inner conduit and the annular space between the inner conduit and the outer conduit, so as to contact the filter media. The filter media preferentially adsorbs at least one constituent of the gas stream. The filter media is regenerated by causing an electric current to flow through the filter media. The inner conduit and outer conduit are preferably electrically conductive whereby the regeneration of the filter media can be electrically stimulated. The invention is particularly useful for the removal of CO.sub.2 from the exhaust gases of fossil-fueled power plants.

  20. Generic guidelines for the life extension of fossil fuel power plants: Final report

    SciTech Connect

    McNaughton, W.P.; Richman, R.H.; Pillar, C.S.; Perry, L.W.

    1986-11-01

    These generic guidelines were developed under the EPRI project for fossil-fuel power plant life extension - RP2596. In addition to compiling the findings of four utility life extension projects, the guidelines incorporate worldwide experience in the residual life assessment and life extension of fossil-fuel power plant components. The guidelines are aimed at assisting those utilities without formal life extension programs to formulate initial life extension planning studies and to provide guidance in the subsequent implementation of a life extension strategy. For utilities with existing programs, the guidelines provide technical life assessment guidance and also serve as a checklist for the periodic review and updating of the programs. The guidelines review life extension on three organization levels - (1) corporate and system planning issues, (2) life assesment (plant) planning issues and (3) life extension implementation. They provide a logical, stepwise procedure for establishing or revising a life extension program. The guidelines, particularly the section on life extension implementation, are structured in a three-level approach in which increasingly costly and accurate residual life assessments are performed only as needed. A phased approach to life extension is introduced as a potentially cost- and resource-effective way of implementing life extension activities. Each step of the life extension process is illustrated with examples of the manner in which the implementation may typically occur. However, given the variety of circumstances facing each individual utility, the emphasis is on those steps that are typically performed and not upon recommending the details of a particular life extention program. 51 refs., 68 figs., 26 tabs.

  1. Sustainability of Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  2. Fossil-fueled power plants as a source of atmospheric carbon monoxide.

    PubMed

    Nicks, D K; Holloway, J S; Ryerson, T B; Dissly, R W; Parrish, D D; Frost, G J; Trainer, M; Donnelly, S G; Schauffler, S; Atlas, E L; Hübler, G; Sueper, D T; Fehsenfeld, F C

    2003-02-01

    Elevated carbon monoxide (CO) mixing ratios in excess of those derived from emissions inventories have been observed in plumes from one gas- and coal-fired power plant and three of four lignite coal-fired electric utility power plants observed in east and central Texas. Observations of elevated CO on days characterized by differing wind directions show that CO emissions from the lignite plants were relatively constant over time and cannot be ascribed to separate sources adjacent to the power plants. These three plants were found to be emitting CO at rates 22 to 34 times those tabulated in State and Federal emissions inventories. Elevated CO emissions from the gas- and coal-fired plant were highly variable on time scales of hours to days, in one case changing by a factor of 8 within an hour. Three other fossil-fueled power plants, including one lignite-fired plant observed during this study, did not emit substantial amounts of CO, suggesting that a combination of plant operating conditions and the use of lignite coal may contribute to the enhanced emissions. Observed elevated CO emissions from the three lignite plants, if representative of average operating conditions, represent an additional 30% of the annual total CO emissions from point sources for the state of Texas.

  3. Biodesulfurization of fossil fuels.

    PubMed

    Gray, Kevin A; Mrachko, Gregory T; Squires, Charles H

    2003-06-01

    Biotechnological techniques enabling the specific removal of sulfur from fossil fuels have been developed. In the past three years there have been important advances in the elucidation of the mechanisms of biodesulfurization; some of the most significant relate to the role of a flavin reductase, DszD, in the enzymology of desulfurization, and to the use of new tools that enable enzyme enhancement via DNA manipulation to influence both the rate and the substrate range of Dsz. Also, a clearer understanding of the unique desulfinase step in the pathway has begun to emerge.

  4. FutureGen: Stepping-Stone to Sustainable Fossil-Fuel Power Generation

    SciTech Connect

    Zitney, S.E.

    2006-11-01

    coal--the most abundant fossil fuel in the United States with supplies projected to last 250 years. FutureGen's co-production of power and hydrogen will also serve as a stepping-stone to an environmentally sustainable energy future.

  5. Comparison of AB2588 multipathway risk factors for California fossil-fuel power stations

    SciTech Connect

    Gratt, L.B.; Levin, L.

    1997-12-31

    Substances released from power plants may travel through various exposure pathways resulting in human health and environmental risks. The stack air emission`s primary pathway is inhalation from the ambient air. Multipathway factors (adjustment factors to the inhalation risk) are used to evaluate the importance of non-inhalation pathways (such as ingestion and dermal contact). The multipathway factor for a specific substance is the health risk by all pathways divided by the inhalation health risk for that substance. These factors are compared for fossil fuel power stations that submitted regulatory risk assessments in compliance with California Toxic Hot Spots Act (AB2588). Substances representing the largest contributions to the cancer risk are of primary concern: arsenic, beryllium, cadmium, chromium (+6), formaldehyde, nickel, lead, selenium, and PAHs. Comparisons of the chemical-specific multipathway factors show the impacts of regulatory policy decisions on the estimated health risk for trace substances. As an example, point estimates of the soil mixing depth, varying from 1 cm to 15 cm, relate to the relative importance of the pathway. For the deeper mixing depths, the root-zone uptake by homegrown tomato plants (for assumed consumption rate of 15% for San Diego) may result in high multipathway factors for several trace metals. For shallower mixing depths, soil ingestion may become the dominant non-inhalation pathway. These differences may lead to significantly different risk estimates for similar facilities located at different California locations such as to be under local regulatory authorities. The overall multipathway factor for the total cancer risk is about 2, much smaller than some of the chemical-specific factors. Science-based multipathway analysis should reduce much of the concern that may be due to policy-based decisions on pathway selection and high-value point-estimates of the parameters.

  6. Overall intelligent hybrid control system for a fossil-fuel power unit

    NASA Astrophysics Data System (ADS)

    Garduno-Ramirez, Raul

    2000-10-01

    In response to the multiple and tighter operation requirements already placed on power plants, and anticipating everyday variations on their quantity and relevance due to competition on deregulated energy markets, this dissertation contributes the Intelligent Coordinated Control System (ICCS) paradigm that establishes a reference framework for the design of overall control systems for fossil-fuel power units, and develops a minimum prototype (ICCS-MP) to show its feasibility. The ICCS consists of a multiagent system organization structured as an open set of functionally grouped agent clusters in a two-level hierarchy. The upper level performs the supervisory functions needed to produce self-governing system behavior, while the lower level performs the fast reactive functions necessary for real-time control and protection. The ICCS-MP greatly extends the concept of current coordinated control schemes and embraces a minimum set of ICCS functions for the power unit to participate in load-frequency control in deregulated power systems; provides the means to achieve optimal wide-range load-tracking in multiobjective operating scenarios. The ICCS-MP preserves the ICCS structure. Supervisory functions include optimization and command generation, learning and control tuning, and performance and state monitoring. Direct level control functions realize a nonlinear multivariable feedforward-feedback scheme. These functions are implemented in three modules: reference governor, feedforward control processor (FFCP), and feedback control processor (FBCP). The reference governor provides set-point trajectories for the control loops by solving a multiobjective optimization problem that accommodates the operating scenario at hand. The FFCP facilitates achievement of wide-range operation; it is implemented as a fuzzy system that emulates the inverse static behavior of the power unit, and it is designed using neural networks. The FBCP provides disturbance and uncertainty compensation

  7. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  8. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2

    NASA Astrophysics Data System (ADS)

    Graven, H. D.; Gruber, N.

    2011-05-01

    Since aged carbon in fossil fuel contains no 14C, 14C/C ratios (Δ14C) measured in atmospheric CO2 can be used to estimate CO2 added by combustion and, potentially, provide verification of fossil CO2 emissions calculated using economic inventories. Sources of 14C from nuclear power generation and spent fuel reprocessing can counteract dilution by fossil CO2. Therefore, these nuclear sources can bias observation-based estimates of fossil fuel-derived CO2 if they are not correctly accounted for or included as a source of uncertainty. We estimate annual 14C emissions from each nuclear site in the world and conduct an Eulerian transport modeling study to investigate the continental-scale, steady-state gradients of Δ14C caused by nuclear activities and fossil fuel combustion. Over Europe, North America and East Asia, nuclear enrichment may offset 0-260 % of the fossil fuel dilution in Δ14C, corresponding to potential biases of 0 to -8 ppm in the CO2 attributed to fossil fuel emissions, larger than the bias from respiration in some areas. Growth of 14C emissions increased the potential nuclear bias over 1985-2005. The magnitude of this potential bias is largely independent of the choice of reference station in the context of Eulerian transport and inversion studies, but could potentially be reduced by an appropriate choice of reference station in the context of local-scale assessments.

  9. Progress of fossil fuel science

    SciTech Connect

    Demirbas, M.F.

    2007-07-01

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal is a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.

  10. An Internet-based interactive module for air emissions from fossil fuel based power generation

    SciTech Connect

    Karman, D.; O`Leary, K.; O`Reilly, S. |

    1997-12-31

    The proliferation of the Internet, Web pages and associated software tools available for developing multimedia material provides significant opportunities in training, education and information transfer. This paper will describe the development, testing and evaluation of an interactive teaching module aimed at college and university students that have previous education in thermodynamics and basic chemistry. The module is currently in development at the Department of Civil and Environmental Engineering at Carleton University with support from Environment Canada. Preliminary testing of this module is expected to begin late January. The module contains options to look at CO, CO{sub 2}, SO{sub 2} and NO{sub x} emissions associated with electric power generation in thermal stations that use coal, natural gas, crude and distillate oil. Factors governing the thermal efficiency of typical boiler systems and the thermodynamic limitations for converting heat into work are discussed. Supporting background information such as emission trends and emission factors used in calculations are also included as part of this module. A simple Rankine cycle without reheat or regeneration is considered to compare the emissions per unit energy delivered from each of the fuels considered. For natural gas and distillate oil, combined cycle operation is considered with a gas turbine-heat recovery steam generator combination replacing the boiler in the simple Rankine cycle. For all fuels, the cogeneration option is investigated by expanding the steam to an intermediate pressure in the turbine and utilizing the remaining heat by condensing the steam in a heat recovery application. Emission factors and basic information on CO, SO{sub 2} and NO{sub x} control technologies are utilized to calculate and report the emissions per unit energy delivered under the various scenarios investigated.

  11. Continental-scale enrichment of atmospheric 14CO2 from the nuclear power industry: potential impact on the estimation of fossil fuel-derived CO2

    NASA Astrophysics Data System (ADS)

    Graven, H. D.; Gruber, N.

    2011-12-01

    The 14C-free fossil carbon added to atmospheric CO2 by combustion dilutes the atmospheric 14C/C ratio (Δ14C), potentially providing a means to verify fossil CO2 emissions calculated using economic inventories. However, sources of 14C from nuclear power generation and spent fuel reprocessing can counteract this dilution and may bias 14C/C-based estimates of fossil fuel-derived CO2 if these nuclear influences are not correctly accounted for. Previous studies have examined nuclear influences on local scales, but the potential for continental-scale influences on Δ14C has not yet been explored. We estimate annual 14C emissions from each nuclear site in the world and conduct an Eulerian transport modeling study to investigate the continental-scale, steady-state gradients of Δ14C caused by nuclear activities and fossil fuel combustion. Over large regions of Europe, North America and East Asia, nuclear enrichment may offset at least 20% of the fossil fuel dilution in Δ14C, corresponding to potential biases of more than -0.25 ppm in the CO2 attributed to fossil fuel emissions, larger than the bias from plant and soil respiration in some areas. Model grid cells including high 14C-release reactors or fuel reprocessing sites showed much larger nuclear enrichment, despite the coarse model resolution of 1.8°×1.8°. The recent growth of nuclear 14C emissions increased the potential nuclear bias over 1985-2005, suggesting that changing nuclear activities may complicate the use of Δ14C observations to identify trends in fossil fuel emissions. The magnitude of the potential nuclear bias is largely independent of the choice of reference station in the context of continental-scale Eulerian transport and inversion studies, but could potentially be reduced by an appropriate choice of reference station in the context of local-scale assessments.

  12. Microbial denitrogenation of fossil fuels.

    PubMed

    Benedik, M J; Gibbs, P R; Riddle, R R; Willson, R C

    1998-09-01

    The microbial degradation of nitrogen compounds from fossil fuels is important because of the contribution these contaminants make to the formation of nitrogen oxides (NOx) and hence to air pollution and acid rain. They also contribute to catalyst poisoning during the refining of crude oil, thus reducing process yields. We review the current status of microbial degradation of aromatic nitrogen compounds and discuss the potential of microbial processes to alleviate these problems.

  13. The Role of Nuclear Power in Reducing Risk of the Fossil Fuel Prices and Diversity of Electricity Generation in Tunisia: A Portfolio Approach

    NASA Astrophysics Data System (ADS)

    Abdelhamid, Mohamed Ben; Aloui, Chaker; Chaton, Corinne; Souissi, Jomâa

    2010-04-01

    This paper applies real options and mean-variance portfolio theories to analyze the electricity generation planning into presence of nuclear power plant for the Tunisian case. First, we analyze the choice between fossil fuel and nuclear production. A dynamic model is presented to illustrate the impact of fossil fuel cost uncertainty on the optimal timing to switch from gas to nuclear. Next, we use the portfolio theory to manage risk of the electricity generation portfolio and to determine the optimal fuel mix with the nuclear alternative. Based on portfolio theory, the results show that there is other optimal mix than the mix fixed for the Tunisian mix for the horizon 2010-2020, with lower cost for the same risk degree. In the presence of nuclear technology, we found that the optimal generating portfolio must include 13% of nuclear power technology share.

  14. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants.

    PubMed

    Talati, Shuchi; Zhai, Haibo; Morgan, M Granger

    2014-10-21

    We employ an integrated systems modeling tool to assess the water impacts of the new source performance standards recently proposed by the U.S. Environmental Protection Agency for limiting CO2 emissions from coal- and gas-fired power plants. The implementation of amine-based carbon capture and storage (CCS) for 40% CO2 capture to meet the current proposal will increase plant water use by roughly 30% in supercritical pulverized coal-fired power plants. The specific amount of added water use varies with power plant and CCS designs. More stringent emission standards than the current proposal would require CO2 emission reductions for natural gas combined-cycle (NGCC) plants via CCS, which would also increase plant water use. When examined over a range of possible future emission standards from 1100 to 300 lb CO2/MWh gross, new baseload NGCC plants consume roughly 60-70% less water than coal-fired plants. A series of adaptation approaches to secure low-carbon energy production and improve the electric power industry's water management in the face of future policy constraints are discussed both quantitatively and qualitatively. PMID:25229670

  15. Water impacts of CO2 emission performance standards for fossil fuel-fired power plants.

    PubMed

    Talati, Shuchi; Zhai, Haibo; Morgan, M Granger

    2014-10-21

    We employ an integrated systems modeling tool to assess the water impacts of the new source performance standards recently proposed by the U.S. Environmental Protection Agency for limiting CO2 emissions from coal- and gas-fired power plants. The implementation of amine-based carbon capture and storage (CCS) for 40% CO2 capture to meet the current proposal will increase plant water use by roughly 30% in supercritical pulverized coal-fired power plants. The specific amount of added water use varies with power plant and CCS designs. More stringent emission standards than the current proposal would require CO2 emission reductions for natural gas combined-cycle (NGCC) plants via CCS, which would also increase plant water use. When examined over a range of possible future emission standards from 1100 to 300 lb CO2/MWh gross, new baseload NGCC plants consume roughly 60-70% less water than coal-fired plants. A series of adaptation approaches to secure low-carbon energy production and improve the electric power industry's water management in the face of future policy constraints are discussed both quantitatively and qualitatively.

  16. Battery-free Wireless Sensor Network For Advanced Fossil-Fuel Based Power Generation

    SciTech Connect

    Yi Jia

    2011-02-28

    This report summarizes technical progress achieved during the project supported by the Department of Energy under Award Number DE-FG26-07NT4306. The aim of the project was to conduct basic research into battery-free wireless sensing mechanism in order to develop novel wireless sensors and sensor network for physical and chemical parameter monitoring in a harsh environment. Passive wireless sensing platform and five wireless sensors including temperature sensor, pressure sensor, humidity sensor, crack sensor and networked sensors developed and demonstrated in our laboratory setup have achieved the objective for the monitoring of various physical and chemical parameters in a harsh environment through remote power and wireless sensor communication, which is critical to intelligent control of advanced power generation system. This report is organized by the sensors developed as detailed in each progress report.

  17. Novel Dual-Functional Membrane for Controlling Carbon Dioxide Emissions from Fossil Fuel Power Plants

    SciTech Connect

    C. Brinker; George Xomeritakis; C.-Y. Tsai; Ying-Bing Jiang

    2009-04-30

    CO{sub 2} captured from coal-fired power plants represents three-quarters of the total cost of an entire carbon sequestration process. Conventional amine absorption or cryogenic separation requires high capital investment and is very energy intensive. Our novel membrane process is energy efficient with great potential for economical CO{sub 2} capture. Three classes of microporous sol-gel derived silica-based membranes were developed for selective CO{sub 2} removal under simulated flue gas conditions (SFG), e.g. feed of 10% vol. CO{sub 22} in N{sub 2}, 1 atm total pressure, T = 50-60 C, RH>50%, SO2>10 ppm. A novel class of amine-functional microporous silica membranes was prepared using an amine-derivatized alkoxysilane precursor, exhibiting enhanced (>70) CO{sub 2}:N{sub 2} selectivity in the presence of H{sub 2}O vapor, but its CO{sub 2} permeance was lagging (<1 MPU). Pure siliceous membranes showed higher CO{sub 2} permeance (1.5-2 MPU) but subsequent densification occurred under prolonged SFG conditions. We incorporated NiO in the microporous network up to a loading of Ni:Si = 0.2 to retard densification and achieved CO2 permeance of 0.5 MPU and CO{sub 2}:N{sub 2} selectivity of 50 after 163 h exposure to SFG conditions. However, CO{sub 2} permeance should reach greater than 2.0 MPU in order to achieve the cost of electricity (COE) goal set by DOE. We introduced the atomic layer deposition (ALD), a molecular deposition technique that substantially reduces membrane thickness with intent to improve permeance and selectivity. The deposition technique also allows the incorporation of Ni or Ag cations by proper selection of metallorganic precursors. In addition, preliminary economic analysis provides a sensitivity study on the performance and cost of the proposed membranes for CO{sub 2} capture. Significant progress has been made toward the practical applications for CO{sub 2} capture. (1 MPU = 1.0 cm{sup 3}(STP){center_dot}cm-2{center_dot}min-1{center_dot}atm-1)

  18. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    SciTech Connect

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude

  19. Do alternative energy sources displace fossil fuels?

    NASA Astrophysics Data System (ADS)

    York, Richard

    2012-06-01

    A fundamental, generally implicit, assumption of the Intergovernmental Panel on Climate Change reports and many energy analysts is that each unit of energy supplied by non-fossil-fuel sources takes the place of a unit of energy supplied by fossil-fuel sources. However, owing to the complexity of economic systems and human behaviour, it is often the case that changes aimed at reducing one type of resource consumption, either through improvements in efficiency of use or by developing substitutes, do not lead to the intended outcome when net effects are considered. Here, I show that the average pattern across most nations of the world over the past fifty years is one where each unit of total national energy use from non-fossil-fuel sources displaced less than one-quarter of a unit of fossil-fuel energy use and, focusing specifically on electricity, each unit of electricity generated by non-fossil-fuel sources displaced less than one-tenth of a unit of fossil-fuel-generated electricity. These results challenge conventional thinking in that they indicate that suppressing the use of fossil fuel will require changes other than simply technical ones such as expanding non-fossil-fuel energy production.

  20. Fossil-fuel power plants: Computer systems for power plant control, maintenance, and operation. October 1976-December 1989 (A Bibliography from the COMPENDEX data base). Report for October 1976-December 1989

    SciTech Connect

    Not Available

    1990-02-01

    This bibliography contains citations concerning fossil-fuel power plant computer systems. Minicomputer and microcomputer systems used for monitoring, process control, performance calculations, alarming, and administrative applications are discussed. Topics emphasize power plant control, maintenance and operation. (Contains 240 citations fully indexed and including a title list.)

  1. Fossil power plant systems description

    SciTech Connect

    Not Available

    1984-01-01

    This single-volume, looseleaf text presents the functions and relationships between each major component and its auxiliaries within a system. The text also describes the relationships between systems. All major components are addressed, and system boundaries are defined for a generic fossil power plant.

  2. Development incentives for fossil fuel subsidy reform

    NASA Astrophysics Data System (ADS)

    Jakob, Michael; Chen, Claudine; Fuss, Sabine; Marxen, Annika; Edenhofer, Ottmar

    2015-08-01

    Reforming fossil fuel subsidies could free up enough funds to finance universal access to water, sanitation, and electricity in many countries, as well as helping to cut global greenhouse-gas emissions.

  3. Fossil fuels in the 21st century.

    PubMed

    Lincoln, Stephen F

    2005-12-01

    An overview of the importance of fossil fuels in supplying the energy requirements of the 21st century, their future supply, and the impact of their use on global climate is presented. Current and potential alternative energy sources are considered. It is concluded that even with substantial increases in energy derived from other sources, fossil fuels will remain a major energy source for much of the 21st century and the sequestration of CO2 will be an increasingly important requirement.

  4. Global impact of fossil fuel combustion on atmospheric NO x

    NASA Astrophysics Data System (ADS)

    Horowitz, Larry W.; Jacob, Daniel J.

    1999-10-01

    Fossil fuel combustion is the largest global source of NOx to the troposphere. This source is concentrated in polluted continental boundary layers, and the extent to which it impacts tropospheric chemistry on a global scale is uncertain. We use a global three-dimensional model of tropospheric chemistry and transport to study the impact of fossil fuel combustion on the global distribution of NOx during nothern hemisphere summer. In the model, we tag fossil fuel NOx and its reservoir NOy species in order to determine the relative contribution of fossil fuel combustion to NOx concentrations in different regions of the world. Our model includes a detailed representation of NOx-O3-nonmethane hydrocarbon (NMHC) chemistry, which is necessary to properly simulate the export of reactive nitrogen, including organic nitrates such as peroxyacyl nitrates (PANs), from the continental boundary layer. We find that fossil fuel combustion accounts for over 40% of NOx. concentrations in the lower and middle troposphere throughout the extratropical northern hemisphere. PANs are shown to provide an important mechanism for transporting NOx from source regions to the remote troposphere, accounting for over 80% of the fossil fuel NOx in the lower troposphere over most of the ocean. Sources in the United States are found to contribute about half of the fossil fuel NOx over the North Atlantic Ocean. Emissions from China, which are expected to increase rapidly in the coming decades, currently account for about half of the fossil fuel NOx over the western North Pacific Ocean; the influence of these emissions extends into the tropics. Because of this tropical influence, emissions from China have more potential than emissions in the United States to perturb the global oxidizing power of the atmosphere.

  5. High Power Diode Laser-Treated HP-HVOF and Twin Wire Arc-Sprayed Coatings for Fossil Fuel Power Plants

    NASA Astrophysics Data System (ADS)

    Mann, B. S.

    2013-08-01

    This article deals with high power diode laser (HPDL) surface modification of twin wire arc-sprayed (TWAS) and high pressure high velocity oxy-fuel (HP-HVOF) coatings to combat solid particle erosion occurring in fossil fuel power plants. To overcome solid particle impact wear above 673 K, Cr3C2-NiCr-, Cr3C2-CoNiCrAlY-, and WC-CrC-Ni-based HVOF coatings are used. WC-CoCr-based HVOF coatings are generally used below 673 K. Twin wire arc (TWA) spraying of Tafa 140 MXC and SHS 7170 cored wires is used for a wide range of applications for a temperature up to 1073 K. Laser surface modification of high chromium stainless steels for steam valve components and LPST blades is carried out regularly. TWA spraying using SHS 7170 cored wire, HP-HVOF coating using WC-CoCr powder, Ti6Al4V alloy, and high chromium stainless steels (X20Cr13, AISI 410, X10CrNiMoV1222, 13Cr4Ni, 17Cr4Ni) were selected in the present study. Using robotically controlled parameters, HPDL surface treatments of TWAS-coated high strength X10CrNiMoV1222 stainless steel and HP-HVOF-coated AISI 410 stainless steel samples were carried out and these were compared with HPDL-treated high chromium stainless steels and titanium alloy for high energy particle impact wear (HEPIW) resistance. The HPDL surface treatment of the coatings has improved the HEPIW resistance manifold. The improvement in HPDL-treated stainless steels and titanium alloys is marginal and it is not comparable with that of HPDL-treated coatings. These coatings were also compared with "as-sprayed" coatings for fracture toughness, microhardness, microstructure, and phase analyses. The HEPIW resistance has a strong relationship with the product of fracture toughness and microhardness of the HPDL-treated HP-HVOF and TWAS SHS 7170 coatings. This development opens up a possibility of using HPDL surface treatments in specialized areas where the problem of HEPIW is very severe. The HEPIW resistance of HPDL-treated high chromium stainless steels and

  6. CO{sub 2}-mitigation measures through reduction of fossil fuel burning in power utilities. Which road to go?

    SciTech Connect

    Kaupp, A.

    1996-12-31

    Five conditions, at minimum, should be examined in the comparative analysis of CO{sub 2}-mitigation options for the power sector. Under the continuing constraint of scarce financial resources for any private or public investment in the power sector, the following combination of requirements characterise a successful CO{sub 2}-mitigation project: (1) Financial attractiveness for private or public investors. (2) Low, or even negative, long range marginal costs per ton of `CO{sub 2} saved`. (3) High impact on CO{sub 2}-mitigation, which indicates a large market potential for the measure. (4) The number of individual investments required to achieve the impact is relatively small. In other words, logistical difficulties in project implementation are minimised. (5) The projects are `socially fair` and have minimal negative impact on any segment of the society. This paper deals with options to reduce carbonaceous fuel burning in the power sector. Part I explains how projects should be selected and classified. Part II describes the technical options. Since reduction of carbonaceous fuel burning may be achieved through Demand Side Management (DSM) and Supply Side Management (SSM) both are treated. Within the context of this paper SSM does not mean to expand power supply as demand grows. It means to economically generate and distribute power as efficiently as possible. In too many instances DSM has degenerated into efficient lighting programs and utility managed incentives and rebate programs. To what extent this is a desirable situation for utilities in Developing Countries that face totally different problems as their counterparts in highly industrialised countries remains to be seen. Which road to go is the topic of this paper.

  7. Can UK fossil fuel emissions be determined by radiocarbon measurements?

    NASA Astrophysics Data System (ADS)

    Wenger, Angelina; O'Doherty, Simon; Rigby, Matthew; Manning, Alistair; Palmer, Paul

    2016-04-01

    The GAUGE project evaluates different methods to estimate UK emissions. However, estimating carbon dioxide emissions as a result of fossil fuel burning is challenging as natural fluxes in and out of the atmosphere are very large. Radiocarbon (14C) measurements offer a way to specifically measure the amount of recently added carbon dioxide from fossil fuel burning. This is possible as, due to their age, all the radiocarbon in fossil fuels has decayed. Hence the amount of recently added CO2 from fossil fuel burning can be measured as a depletion of the 14C content in air. While this method has been successfully applied by several groups on a city or a regional scale, this is the first attempt at using the technique for a national emission estimate. Geographically the UK, being an island, is a good location for such an experiment. But are 14CO2 measurements the ideal solution for estimating fossil fuel emissions as they are heralded to be? Previous studies have shown that 14CO2emissions from the nuclear industry mask the 14C depletion caused by fossil fuel burning and result in an underestimation of the fossil fuel CO2. While this might not be a problem in certain regions around the world, many countries like the UK have a substantial nuclear industry. A correction for this enhancement from the nuclear industry can be applied but are invariably difficult as 14CO2emissions from nuclear power plants have a high temporal variability. We will explain how our sampling strategy was chosen to minimize the influence form the nuclear industry and why this proved to be challenging. In addition we present the results from our ground based measurements to show why trying to estimate national emissions using radiocarbon measurements was overambitious, and how practical the technique is for the UK in general.

  8. Fossil fuels in a trillion tonne world

    NASA Astrophysics Data System (ADS)

    Scott, Vivian; Haszeldine, R. Stuart; Tett, Simon F. B.; Oschlies, Andreas

    2015-05-01

    The useful energy services and energy density value of fossil carbon fuels could be retained for longer timescales into the future if their combustion is balanced by CO2 recapture and storage. We assess the global balance between fossil carbon supply and the sufficiency (size) and capability (technology, security) of candidate carbon stores. A hierarchy of value for extraction-to-storage pairings is proposed, which is augmented by classification of CO2 containment as temporary (<1,000 yr) or permanent (>100,000 yr). Using temporary stores is inefficient and defers an intergenerational problem. Permanent storage capacity is adequate to technically match current fossil fuel reserves. However, rates of storage creation cannot balance current and expected rates of fossil fuel extraction and CO2 consequences. Extraction of conventional natural gas is uniquely holistic because it creates the capacity to re-inject an equivalent tonnage of carbon for storage into the same reservoir and can re-use gas-extraction infrastructure for storage. By contrast, balancing the extraction of coal, oil, biomass and unconventional fossil fuels requires the engineering and validation of additional carbon storage. Such storage is, so far, unproven in sufficiency.

  9. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    SciTech Connect

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  10. The Fascinating Story of Fossil Fuels

    ERIC Educational Resources Information Center

    Asimov, Isaac

    1973-01-01

    How this energy source was created, its meaning to mankind, our drastically reduced supply, and why we cannot wait for nature to make more are considered. Today fossil fuels supply 96 percent of the energy used but we must find alternate energy options if we are to combat the energy crisis. (BL)

  11. Thermal dissolution of solid fossil fuels

    SciTech Connect

    E.G. Gorlov

    2007-10-15

    The use of oil shales and coals in the processes of thermal dissolution is considered. It is shown that thermal dissolution is a mode of liquefaction of solid fossil fuels and can be used both independently and in combination with liquefaction of coals and processing of heavy petroleum residues.

  12. Fossil fuels supplies modeling and research

    SciTech Connect

    Leiby, P.N.

    1996-06-01

    The fossil fuel supplies modeling and research effort focuses on models for US Strategic Petroleum Reserve (SPR) planning and management. Topics covered included new SPR oil valuation models, updating models for SPR risk analysis, and fill-draw planning. Another task in this program area is the development of advanced computational tools for three-dimensional seismic analysis.

  13. Diatoms: a fossil fuel of the future.

    PubMed

    Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G

    2014-03-01

    Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area.

  14. Traversing the mountaintop: world fossil fuel production to 2050.

    PubMed

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  15. Evaluation of computer-aided foundation design techniques for fossil fuel power plants. Final report. [Includes list of firms involved, equipment, software, etc

    SciTech Connect

    Kulhawy, F.H.; Dill, J.C.; Trautmann, C.H.

    1984-11-01

    The use of an integrated computer-aided drafting and design system for fossil fuel power plant foundations would offer utilities considerable savings in engineering costs and design time. The technology is available, but research is needed to develop software, a common data base, and data management procedures. An integrated CADD system suitable for designing power plant foundations should include the ability to input, display, and evaluate geologic, geophysical, geotechnical, and survey field data; methods for designing piles, mats, footings, drilled shafts, and other foundation types; and the capability of evaluating various load configurations, soil-structure interactions, and other construction factors that influence design. Although no such integrated system exists, the survey of CADD techniques showed that the technology is available to computerize the whole foundation design process, from single-foundation analysis under single loads to three-dimensional analysis under earthquake loads. The practices of design firms using CADD technology in nonutility applications vary widely. Although all the firms surveyed used computer-aided drafting, only two used computer graphics in routine design procedures, and none had an integrated approach to using CADD for geotechnical engineering. All the firms had developed corporate policies related to system security, supervision, overhead allocation, training, and personnel compensation. A related EPRI project RP2514, is developing guidelines for applying CADD systems to entire generating-plant construction projects. 4 references, 6 figures, 6 tables.

  16. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 1, Executive summary: Final report

    SciTech Connect

    Not Available

    1993-07-01

    This study identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. Specific conclusions are as follows: (1) To implement CO{sub 2} capture and sequestration on a national scale will decrease power plant net efficiencies and significantly increase the cost of electricity. To make responsible societal decisions, accurate and consistent economic and environmental analysis of all alternatives for atmospheric CO{sub 2} mitigation are required. (2) Commercial CO{sub 2} capture technology, though expensive and energy intensive, exists today. (3) The most promising approach to more economical CO{sub 2} capture is to develop power plant systems that facilitate efficient CO{sub 2} capture. (4) While CO{sub 2} disposal in depleted oil and gas reservoirs is feasible today, the ability to dispose of large quantities Of CO{sub 2} is highly uncertain because of both technical and institutional issues. Disposal into the deep ocean or confined aquifers offers the potential for large quantity disposal, but there are technical, safety, liability, and environmental issues to resolve. Therefore, the highest priority research should focus on establishing the feasibility of large scale disposal options.

  17. A research needs assessment for the capture, utilization and disposal of carbon dioxide from fossil fuel-fired power plants. Volume 2, Topical reports: Final report

    SciTech Connect

    Not Available

    1993-07-01

    This study, identifies and assesses system approaches in order to prioritize research needs for the capture and non-atmospheric sequestering of a significant portion of the carbon dioxide (CO{sub 2}) emitted from fossil fuel-fired electric power plants (US power plants presently produce about 7% of the world`s CO{sub 2} emissions). The study considers capture technologies applicable either to existing plants or to those that optimistically might be demonstrated on a commercial scale over the next twenty years. The research needs that have high priority in establishing the technical, environmental, and economic feasibility of large-scale capture and disposal of CO{sub 2} from electric power plants are:(1) survey and assess the capacity, cost, and location of potential depleted gas and oil wells that are suitable CO{sub 2} repositories (with the cooperation of the oil and gas industry); (2) conduct research on the feasibility of ocean disposal, with objectives of determining the cost, residence time, and environmental effects for different methods of CO{sub 2} injection; (3) perform an in-depth survey of knowledge concerning the feasibility of using deep, confined aquifers for disposal and, if feasible, identify potential disposal locations (with the cooperation of the oil and gas industry); (4) evaluate, on a common basis, system and design alternatives for integration of CO{sub 2} capture systems with emerging and advanced technologies for power generation; and prepare a conceptual design, an analysis of barrier issues, and a preliminary cost estimate for pipeline networks necessary to transport a significant portion of the CO{sub 2} to potentially feasible disposal locations.

  18. Microbial biocatalyst developments to upgrade fossil fuels.

    PubMed

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  19. Recent developments in biodesulfurization of fossil fuels.

    PubMed

    Xu, Ping; Feng, Jinhui; Yu, Bo; Li, Fuli; Ma, Cuiqing

    2009-01-01

    The emission of sulfur oxides can have adverse effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some techniques of desulfurization have been used or studied to meet the stricter limitation on sulfur content in China. Recent advances have demonstrated the mechanism and developments for biodesulfurization of gasoline, diesel and crude oils by free cells or immobilized cells. Genetic technology was also used to improve sulfur removal efficiencies. In this review, we summarize recent progress mainly in China on petroleum biodesulfurization.

  20. Fossil fuel conversion--measurement and modeling

    SciTech Connect

    Solomon, P.R.; Smoot, L.D.; Serio, M.A.; Hamblen, D.G.; Brewster, B.S.; Radulovic, P.T.

    1994-10-01

    The main objective of this program is to understand the chemical and physical mechanisms in coal conversion processes and incorporate this knowledge in computer-aided reactor engineering technology for the purposes of development, evaluation, design, scale-up, simulation, control and feedstock evaluation in advanced coal conversion devices. To accomplish this objective, this program will: (1) provide critical data on the physical and chemical processes in fossil fuel gasifiers and combustors; (2) further develop a set of comprehensive codes; and (3) apply these codes to model various types of combustors and gasifiers (fixed-bed, transport reactor, and fluidized-bed for coal and gas turbines for natural gas).

  1. Energy properties of solid fossil fuels and solid biofuels

    NASA Astrophysics Data System (ADS)

    Holubcik, Michal; Kolkova, Zuzana; Jandacka, Jozef

    2016-06-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  2. Fossil fuel biomarkers in sewage sludges: environmental significance

    PubMed

    Payet; Bryselbout; Morel; Lichtfouse

    1999-10-01

    Fossil fuel biomarkers, or "molecular fossils," are specific organic substances found in coals, petroleums, and sedimentary rocks. They are formed during millions of years of sedimentary burial by geochemical alteration of biological molecules, such as cholesterol, under the effect of biodegradation, temperature, pressure, and mineral catalysis, to produce geochemically mature molecules, for example, aromatic steroids (Fig. 1). Since fossil fuel biomarkers have a very specific molecular structure betraying fossil fuel sources, such markers should be useful in assessing the fossil fuel contamination of various modern media such as soils, plants, waters, and modern sediments. Here the identification of fossil fuel biomarkers of high geothermal maturity in sewage sludges provides evidence of the contamination of sludges by petroleum products. The most likely sources of contamination are contaminated vegetal food, road dust, and soil particles carried by rain water.http://link. springer.de/link/service/journals/00114/bibs/9086010/90860484. htm

  3. MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING

    EPA Science Inventory

    The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...

  4. HIGH EFFICIENCY FOSSIL POWER PLANT (HEFPP) CONCEPTUALIZATION PROGRAM

    SciTech Connect

    J.L. Justice

    1999-03-25

    This study confirms the feasibility of a natural gas fueled, 20 MW M-C Power integrated pressurized molten carbonate fuel cell combined in a topping cycle with a gas turbine generator plant. The high efficiency fossil power plant (HEFPP) concept has a 70% efficiency on a LHV basis. The study confirms the HEFPP has a cost advantage on a cost of electricity basis over the gas turbine based combined cycle plants in the 20 MW size range. The study also identifies the areas of further development required for the fuel cell, gas turbine generator, cathode blower, inverter, and power module vessel. The HEFPP concept offers an environmentally friendly power plant with minuscule emission levels when compared with the combined cycle power plant.

  5. Divesting from Fossil Fuels Makes Sense Morally… and Financially

    ERIC Educational Resources Information Center

    Cleveland, Cutler J.; Reibstein, Richard

    2015-01-01

    Should university endowments divest from fossil fuels? A public discussion of this question has seen some university presidents issuing statements that they would not divest--that investments should not be used for "political action." Many universities hold large endowments that have significant positions in fossil fuel companies or…

  6. Catching the fossil fuel biodesulfurization wave

    SciTech Connect

    Campbell, I.M. )

    1993-10-01

    Both coal and oil contain sulfur atoms covalently bound to the carbon skeleton of the fuel. This organic sulfur is located in more complex and more polycyclo-aromatic structures in coals than in petroleum and is modeled (albeit not perfectly) by the simple aromatic compound dibenzothiophene (DBT). Coals, but not petroleum, also contain inorganic forms of sulfur. These are various iron sulfides, most notably iron pyrites. Unlike organic sulfur, inorganic sulfur is not chemically bound to the carbon matrix of coal and can be removed, at least partially, by physical means that depend on differences in density and hydrophobicity between coal and pyrites. Throughout the 1970s and 1980s, DOE/PETC was active in promoting advanced physical methods of coal cleaning and had invested considerable money, effort, and prestige in their development. To address that other coal-sulfur problem--the organic sulfur component--DOE/PETC funded a range of chemistry-based options through the early 1990s. By the early 1980s, and in the wake of the coming of age of genetic engineering, microbially based processes were beginning to make an appearance on the industrial scene. Coal cleaning was no exception. The author discusses his perceptions of the DOE's foray into fossil fuel biodesulfurization.

  7. Renewable hydrogen production for fossil fuel processing

    SciTech Connect

    Greenbaum, E.

    1994-09-01

    The objective of this mission-oriented research program is the production of renewable hydrogen for fossil fuel processing. This program will build upon promising results that have been obtained in the Chemical Technology Division of Oak Ridge National Laboratory on the utilization of intact microalgae for photosynthetic water splitting. In this process, specially adapted algae are used to perform the light-activated cleavage of water into its elemental constituents, molecular hydrogen and oxygen. The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of their hydrogen-producing capability. These are: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the original development of an evacuated photobiological reactor for real-world engineering applications; (6) the potential for using modern methods of molecular biology and genetic engineering to maximize hydrogen production. The significance of each of these points in the context of a practical system for hydrogen production is discussed. This program will be enhanced by collaborative research between Oak Ridge National Laboratory and senior faculty members at Duke University, the University of Chicago, and Iowa State University. The special contribution that these organizations and faculty members will make is access to strains and mutants of unicellular algae that will potentially have useful properties for hydrogen production by microalgal water splitting.

  8. Fossil fuel conversion -- Measurement and modeling

    SciTech Connect

    Solomon, P.R.; Smoot, L.D.; Serio, M.A.; Hamblen, D.G.; Brewster, B.S.; Radulovic, P.T.

    1995-11-01

    The main objective of this program is to understand the chemical and physical mechanisms in coal conversion processes and incorporate this knowledge in computer-aided reactor engineering technology for the purposes of development, evaluation, design, scale up, simulation, control and feedstock evaluation in advanced coal conversion devices. To accomplish this objective, this program will: (1) provide critical data on the physical and chemical processes in fossil fuel gasifier and combustors; (2) further develop a set of comprehensive codes; and (3) apply these codes to model various types of combustors and gasifier (fixed-bed, transport reactor, and fluidized-bed for coal and gas turbines for natural gas). Results are presented on the devolatilization of large coal particles; transport reactor modeling; fluidized bed model; nitrogen evolution from small and large coal particles; modeling of hydrogen cyanide and ammonia release during coal pyrolysis; oxidation rates for large coal particles at high pressures; advanced fixed-bed model development and evaluation; application of ACERC combustion and gasification codes to AFR diagnostic capabilities to systems of interest to METC; and submodel for lean premixed combustion of natural gas in industrial gas turbines.

  9. Fossil Fuel Emission Verification Modeling at LLNL

    SciTech Connect

    Cameron-Smith, P; Kosovic, B; Guilderson, T; Monache, L D; Bergmann, D

    2009-08-06

    We have an established project at LLNL to develop the tools needed to constrain fossil fuel carbon dioxide emissions using measurements of the carbon-14 isotope in atmospheric samples. In Figure 1 we show the fossil fuel plumes from Los Angeles and San Francisco for two different weather patterns. Obviously, a measurement made at any given location is going to depend on the weather leading up to the measurement. Thus, in order to determine the GHG emissions from some region using in situ measurements of those GHGs, we use state-of-the-art global and regional atmospheric chemistry-transport codes to simulate the plumes: the LLNL-IMPACT model (Rotman et al., 2004) and the WRFCHEM community code (http://www.wrf-model.org/index.php). Both codes can use observed (aka assimilated) meteorology in order to recreate the actual transport that occurred. The measured concentration of each tracer at a particular spatio-temporal location is a linear combination of the plumes from each region at that location (for non-reactive species). The challenge is to calculate the emission strengths for each region that fit the observed concentrations. In general this is difficult because there are errors in the measurements and modeling of the plumes. We solve this inversion problem using the strategy illustrated in Figure 2. The Bayesian Inference step combines the a priori estimates of the emissions, and their uncertainty, for each region with the results of the observations, and their uncertainty, and an ensemble of model predicted plumes for each region, and their uncertainty. The result is the mathematical best estimate of the emissions and their errors. In the case of non-linearities, or if we are using a statistical sampling technique such as a Markov Chain Monte Carlo technique, then the process is iterated until it converges (ie reaches stationarity). For the Bayesian inference we can use both a direct inversion capability, which is fast but requires assumptions of linearity and

  10. New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications

    SciTech Connect

    John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

    2006-09-30

    Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

  11. Hydrogen production econometric studies. [hydrogen and fossil fuels

    NASA Technical Reports Server (NTRS)

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  12. Geological setting of U.S. fossil fuels.

    USGS Publications Warehouse

    Masters, C.D.; Mast, R.F.

    1987-01-01

    The USA has a special position in terms of fossil fuel development. Not only is it one of the most important nations in terms of resources of oil, gas and coal, but it has also been by far the dominant producer and consumer. In this thorough review of the regional geological environments in which fossil fuels formed in the USA, the authors point to a variety of models of resource occurrence of global interest.-Authors

  13. Health effects of fossil-fuel combustion products: needed research

    SciTech Connect

    Not Available

    1980-01-01

    An examination is made of the research needed to expand and clarify the understanding of the products of fossil-fuel combustion, chiefly that taking place in stationary sources of power. One of the specific objectives that guided the study on which this report is based was to identify the pollutants potentially hazardous to man that are released into the environment in the course of the combustion of fossil fuels. The hazards of principal concern are those which could cause deleterious, long-term somatic and genetic effects. Another objective was to specify the nature of the research needed to determine the health effects of these pollutants on the general population. Special attention was paid to the interaction of pollutants; the meteorologic and climatic factors that affect the transport, diffusion, and transformation of pollutants; the effects of concentrations of aerosol, particulate, and thermal loads on biologic systems; and the susceptibility of some portions of the population to the effects of pollutants on the skin and cardiovascular, pulmonary, and urinary systems. Other objectives were to evaluate the methods of the proposed research, including analytic and interpretation techniques, to identify fields in which the available scientific information is inadequate for regulatory decision-making and to recommend a research program to meet those deficiencies, and to provide a logical framework within which the necessary information can be developed (the proposed program is presented in terms of subject, methods, and priorities).

  14. Fossil fuels in a sustainable energy future

    SciTech Connect

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  15. Fossil fuel derivatives with reduced carbon. Phase I final report

    SciTech Connect

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  16. Exploration for fossil and nuclear fuels from orbital altitudes

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1977-01-01

    The paper discusses the application of remotely sensed data from orbital satellites to the exploration for fossil and nuclear fuels. Geological applications of Landsat data are described including map editing, lithologic identification, structural geology, and mineral exploration. Specific results in fuel exploration are reviewed and a series of related Landsat images is included.

  17. Fossil-Fuel C02 Emissions Database and Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.

    2012-04-01

    Fossil-Fuel C02 Emissions Database and Exploration System Misha Krassovski and Tom Boden Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production each year at global, regional, and national spatial scales. These estimates are vital to climate change research given the strong evidence suggesting fossil-fuel emissions are responsible for unprecedented levels of carbon dioxide (CO2) in the atmosphere. The CDIAC fossil-fuel emissions time series are based largely on annual energy statistics published for all nations by the United Nations (UN). Publications containing historical energy statistics make it possible to estimate fossil-fuel CO2 emissions back to 1751 before the Industrial Revolution. From these core fossil-fuel CO2 emission time series, CDIAC has developed a number of additional data products to satisfy modeling needs and to address other questions aimed at improving our understanding of the global carbon cycle budget. For example, CDIAC also produces a time series of gridded fossil-fuel CO2 emission estimates and isotopic (e.g., C13) emissions estimates. The gridded data are generated using the methodology described in Andres et al. (2011) and provide monthly and annual estimates for 1751-2008 at 1° latitude by 1° longitude resolution. These gridded emission estimates are being used in the latest IPCC Scientific Assessment (AR4). Isotopic estimates are possible thanks to detailed information for individual nations regarding the carbon content of select fuels (e.g., the carbon signature of natural gas from Russia). CDIAC has recently developed a relational database to house these baseline emissions estimates and associated derived products and a web-based interface to help users worldwide query these data holdings. Users can identify, explore and download desired CDIAC

  18. US fossil fuel technologies for Thailand

    SciTech Connect

    Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

    1990-10-01

    The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

  19. Carbon dioxide emissions from fossil-fuel use, 1751 1950

    NASA Astrophysics Data System (ADS)

    Andres, R. J.; Fielding, D. J.; Marland, G.; Boden, T. A.; Kumar, N.; Kearney, A. T.

    1999-09-01

    Newly compiled energy statistics allow for an estimation of the complete time series of carbon dioxide (CO2) emissions from fossil-fuel use for the years 1751 to the present. The time series begins with 3×106 metric tonnes carbon (C). This initial flux represents the early stages of the fossil-fuel era. The CO2 flux increased exponentially until World War I. The time series derived here seamlessly joins the modern 1950 to present time series. Total cumulative CO2 emissions through 1949 were 61.0×109 tonnes C from fossil-fuel use, virtually all since the beginning of the Industrial Revolution around 1860. The rate of growth continues to grow during present times, generating debate on the probability of enhanced greenhouse warming. In addition to global totals, national totals and 1° global distributions of the data have been calculated.

  20. Atmospheric Verification of Point Source Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Norris, M. W.; Wiltshire, R.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.

    2015-12-01

    Large point sources (electricity generation and large-scale industry) make up roughly one third of all fossil fuel CO2 (CO2ff) emissions. Currently, these emissions are determined from self-reported inventory data, and sometimes from smokestack emissions monitoring, and the uncertainty in emissions from individual power plants is about 20%. We examine the utility of atmospheric 14C measurements combined with atmospheric transport modelling as a tool for independently quantifying point source CO2ff emissions, to both improve the accuracy of the reported emissions and for verification as we move towards a regulatory environment. We use the Kapuni Gas Treatment Facility as a test case. It is located in rural New Zealand with no other significant fossil fuel CO2 sources nearby, and emits CO2ff at ~0.1 Tg carbon per year. We use several different sampling methods to determine the 14C and hence the CO2ff content downwind of the emission source: grab flask samples of whole air; absorption of CO2 into sodium hydroxide integrated over many hours; and plant material which faithfully records the 14C content of assimilated CO2. We use a plume dispersion model to compare the reported emissions with our observed CO2ff mole fractions. We show that the short-term variability in plume dispersion makes it difficult to interpret the grab flask sample results, whereas the variability is averaged out in the integrated samples and we obtain excellent agreement between the reported and observed emissions, indicating that the 14C method can reliably be used to evaluated point source emissions.

  1. Combined Heat and Power Market Potential for Opportunity Fuels

    SciTech Connect

    Jones, David; Lemar, Paul

    2015-12-01

    This report estimates the potential for opportunity fuel combined heat and power (CHP) applications in the United States, and provides estimates for the technical and economic market potential compared to those included in an earlier report. An opportunity fuel is any type of fuel that is not widely used when compared to traditional fossil fuels. Opportunity fuels primarily consist of biomass fuels, industrial waste products and fossil fuel derivatives. These fuels have the potential to be an economically viable source of power generation in various CHP applications.

  2. The dilemma of fossil fuel use and global climate change

    SciTech Connect

    Judkins, R.R.; Fulkerson, W. ); Sanghvi, M.K. )

    1991-01-01

    The use of fossil fuels and relationship to climate change is discussed. As the use of fossil fuels has grown, the problems of protecting the environment and human health and safety have also grown, providing a continuing challenge to technological and managerial innovation. Today that challenge is to control atmospheric emissions from combustion, particularly those emissions that cause acidic deposition, urban pollution, and increasing concentrations of greenhouse gases. Technology for reducing acidic deposition is available and needs only to be adopted, and the remedies for urban pollution are being developed and tested. How effective or expensive these will be remains to be determined. The control of emissions of the greenhouse gas, CO{sub 2}, seems possible only be reducing the total amounts of fossil fuels used worldwide, and by substituting efficient natural gas technologies for coal. Long before physical depletion forces the transition away from fossil fuels, it is at least plausible and even likely that the greenhouse effect will impose a show-stopping constraint. If such a transition were soon to be necessary, the costs would be very high because substitute energy sources are either limited or expensive or undesirable for other reasons. Furthermore, the costs would be unevenly felt and would be more oppressive for developing nations because they would be least able to pay and, on average, their use rates of fossil fuels are growing much faster than those of many industrialized countries. It is prudent, therefore, to try to manage the use of fossil fuels as if a greenhouse constraint is an important possibility.

  3. Nuclear Magnetic Resonance Applications to Unconventional Fossil Fuel Resources

    NASA Astrophysics Data System (ADS)

    Kleinberg, R. L.; Leu, G.

    2008-12-01

    Technical and economic projections strongly suggest that fossil fuels will continue to play a dominant role in the global energy market through at least the mid twenty-first century. However, low-cost conventional oil and gas will be depleted in that time frame. Therefore new sources of energy will be needed. We discuss two relatively untapped unconventional fossil fuels: heavy oil and gas hydrate. In both cases, nuclear magnetic resonance plays a key role in appraising the resource and providing information needed for designing production processes.

  4. A study on the impact of nuclear power plant construction relative to decommissioning Fossil Fuel Power Plant in order to reduce carbon dioxide emissions using a modified Nordhaus Vensim DICE model

    NASA Astrophysics Data System (ADS)

    Colpetzer, Jason Lee

    The current levels of CO2 emissions and high levels accumulating in the atmosphere have climate scientists concerned. The Dynamic Integrated Climate Economy Model or "DICE" for short is a highly developed model that has been used to simulate climate change and evaluate factors addressing global warming. The model was developed by Yale's Nordhaus along with collaborators and the compilation of numerous scientific publications. The purpose of this study is to recreate DICE using Vensim and modify it to evaluate the use of nuclear power plants (NPPs) as a means to counter global temperature increases in the atmosphere and oceans and the associated cost of damages. The amount of greenhouse gas emissions from a NPP are about 6% per Megawatt as that from a Fossil Fuel Power Plant (FFPP). Based on this, a model was developed to simulate construction of NPPs with subsequent decommissioning of FFPPs with an equivalent power output. The results produced through multiple simulation runs utilizing variable NPP construction rates show that some minor benefit is achievable if all of the more than 10,000 FFPPs currently in operation in the U.S. are replaced with NPPs. The results show that a reduction in CO 2 emissions of 2.48% will occur if all of the FFPPs are decommissioned. At a minimum rate of 50 NPPs constructed per year, the largest reduction in CO2 in the atmosphere, 1.94% or 44.5 billion tons of carbon, is possible. This results in a reduction in global warming of 0.068°C or 1.31%. The results also show that this reduction in global warming will be equivalent to a reduction of 8.2% or $148 B in anticipated annual spending as a result of climate change damages. Further results indicate that using NPPs to address climate change will provide a small benefit; ultimately, it will not be enough to reduce CO2 emissions or atmospheric CO 2 to control global warming. The amount of CO2 in the atmosphere is predicted to be 1055 parts per million (ppm) even in the best case

  5. The future of oil: unconventional fossil fuels.

    PubMed

    Chew, Kenneth J

    2014-01-13

    Unconventional fossil hydrocarbons fall into two categories: resource plays and conversion-sourced hydrocarbons. Resource plays involve the production of accumulations of solid, liquid or gaseous hydro-carbons that have been generated over geological time from organic matter in source rocks. The character of these hydrocarbons may have been modified subsequently, especially in the case of solids and extra-heavy liquids. These unconventional hydrocarbons therefore comprise accumulations of hydrocarbons that are trapped in an unconventional manner and/or whose economic exploitation requires complex and technically advanced production methods. This review focuses primarily on unconventional liquid hydro-carbons. The future potential of unconventional gas, especially shale gas, is also discussed, as it is revolutionizing the energy outlook in North America and elsewhere.

  6. Rationale of Early Adopters of Fossil Fuel Divestment

    ERIC Educational Resources Information Center

    Beer, Christopher Todd

    2016-01-01

    Purpose: This research uses the social science perspectives of institutions, ecological modernization and social movements to analyze the rationale used by the early-adopting universities of fossil fuel divestment in the USA. Design/methodology/approach: Through analysis of qualitative data from interviews with key actors at the universities that…

  7. Changing Biomass, Fossil, and Nuclear Fuel Cycles for Sustainability

    SciTech Connect

    Forsberg, Charles W

    2007-01-01

    The energy and chemical industries face two great sustainability challenges: the need to avoid climate change and the need to replace crude oil as the basis of our transport and chemical industries. These challenges can be met by changing and synergistically combining the fossil, biomass, and nuclear fuel cycles.

  8. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    SciTech Connect

    Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

  9. Norwegian carbon taxes and their implication for fossil fuels

    SciTech Connect

    Kaarstad, O.

    1995-12-31

    The Scandinavian countries, and in particular Norway and Sweden, have since 1990/91 taxed CO{sub 2}-emissions with carbon tax of about US $150 per ton of CO{sub 2}. One may therefore say that these countries have placed themselves in a role as {open_quotes}carbon tax laboratories{close_quotes}. These very high CO{sub 2}-taxes have been in place for about four years and the first lessons from this experience are reported. In general it would seem as if the taxation mechanism is less efficient than economists have expected. The CO{sub 2}-emissions are increasing in both Norway and Sweden and the stabilization goal to the year 2000 will not be achieved in spite of the high taxation. The fossil fuel industry will have to learn to live with the climate change question which is inherently hostile to fossil fuels. It is argued that a more informed and active participation by the fossil fuel industry is needed in the climate change discussion. In addition the image of fossil fuels will benefit from showing real and potential improvement in the area of greenhouse gas emissions in the whole energy chain from production to combustion. The R&D effort being done into CO{sub 2}-capture and -disposal is creating such an option for the future. It is argued that the image of the entire fossil fuel industry will benefit from the creation of a {open_quotes}CO{sub 2}-free{close_quote} option or vision for oil, gas and coal. A number of examples are shown where today (or in the near future) actual CO{sub 2}-disposal in underground formations are taking place.

  10. Modulation of fossil fuel production by global temperature variations, 2

    SciTech Connect

    Rust, B.W.; Crosby, F.J.

    1994-01-01

    The report includes the inverse modulation of global fossil production by variations in Northern Hemispheric temperatures. The present study incorporates recent revisions and extensions of the fuel production record and uses a much improved temperature record. The authors show that the new data are consistent with the predictions of the original Rust-Kirk model which they then extend to allow for time lag between variations in the temperature and the corresponding responses in fuel production. The modulation enters the new model through the convolution of a lagged averaging function with the temperature time-series. The authors also include explicit terms to account for the perturbations caused by the Great Depression and World War II. The final model accounts for 99.84% of the total variance in the production record. This modulation represents a feedback which is consistent with the carbon dioxide problem; climate change; fossil fuel production; global warming Gaia hypothesis; temperature variations.

  11. Fossil-Fuel C02 Emissions Database and Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.; Andres, R. J.; Blasing, T. J.

    2012-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production at global, regional, and national spatial scales. The CDIAC emission time series estimates are based largely on annual energy statistics published at the national level by the United Nations (UN). CDIAC has developed a relational database to house collected data and information and a web-based interface to help users worldwide identify, explore and download desired emission data. The available information is divided in two major group: time series and gridded data. The time series data is offered for global, regional and national scales. Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). The gridded data presents annual and monthly estimates. Annual data presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2008. The monthly, fossil-fuel CO2 emissions estimates from 1950-2008 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2011), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these

  12. Relative importance of thermal versus carbon dioxide induced warming from fossil-fuel combustion

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Caldeira, K.

    2015-12-01

    The Earth is heated both when reduced carbon is oxidized to carbon dioxide and when outgoing longwave radiation is trapped by carbon dioxide in the atmosphere (CO2 greenhouse effect). The purpose of this study is to improve our understanding of time scales and relative magnitudes of climate forcing increase over time from pulse, continuous, and historical CO2 and thermal emissions. To estimate the amount of global warming that would be produced by thermal and CO2 emissions from fossil fuel combustion, we calculate thermal emissions with thermal contents of fossil fuels and estimate CO2 emissions with emission factors from Intergovernmental Panel on Climate Change (IPCC) AR5. We then use a schematic climate model mimicking Coupled Model Intercomparison Project Phase 5 to investigate the climate forcing and the time-integrated climate forcing. We show that, considered globally, direct thermal forcing from fossil fuel combustion is about 1.71% the radiative forcing from CO2 that has accumulated in the atmosphere from past fossil fuel combustion. When a new power plant comes on line, the radiative forcing from the accumulation of released CO2 exceeds the thermal emissions from the power plant in less than half a year (and about 3 months for coal plants). Due to the long lifetime of CO2 in the atmosphere, CO2 radiative forcing greatly overwhelms direct thermal forcing on longer time scales. Ultimately, the cumulative radiative forcing from the CO2 exceeds the direct thermal forcing by a factor of ~100,000.

  13. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 4: Energy from fossil fuels

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.

  14. Renewable hydrogen production for fossil fuel processing

    SciTech Connect

    Greenbaum, E.; Lee, J.W.; Tevault, C.V.

    1995-06-01

    In the fundamental biological process of photosynthesis, atmospheric carbon dioxide is reduced to carbohydrate using water as the source of electrons with simultaneous evolution of molecular oxygen: H{sub 2}O + CO{sub 2} + light {yields} O{sub 2} + (CH{sub 2}O). It is well established that two light reactions, Photosystems I and II (PSI and PSII) working in series, are required to perform oxygenic photosynthesis. Experimental data supporting the two-light reaction model are based on the quantum requirement for complete photosynthesis, spectroscopy, and direct biochemical analysis. Some algae also have the capability to evolve molecular hydrogen in a reaction energized by the light reactions of photosynthesis. This process, now known as biophotolysis, can use water as the electron donor and lead to simultaneous evolution of molecular hydrogen and oxygen. In green algae, hydrogen evolution requires prior incubation under anaerobic conditions. Atmospheric oxygen inhibits hydrogen evolution and also represses the synthesis of hydrogenase enzyme. CO{sub 2} fixation competes with proton reduction for electrons relased from the photosystems. Interest in biophotolysis arises from both the questions that it raises concerning photosynthesis and its potential practical application as a process for converting solar energy to a non-carbon-based fuel. Prior data supported the requirement for both Photosystem I and Photosystem II in spanning the energy gap necessary for biophotolysis of water to oxygen and hydrogen. In this paper we report the at PSII alone is capable of driving sustained simultaneous photoevolution of molecular hydrogen and oxygen in an anaerobically adapted PSI-deficient strain of Chlamydomonas reinhardtii, mutant B4, and that CO{sub 2} competes as an electron acceptor.

  15. Brown clouds over South Asia: biomass or fossil fuel combustion?

    PubMed

    Gustafsson, Orjan; Kruså, Martin; Zencak, Zdenek; Sheesley, Rebecca J; Granat, Lennart; Engström, Erik; Praveen, P S; Rao, P S P; Leck, Caroline; Rodhe, Henning

    2009-01-23

    Carbonaceous aerosols cause strong atmospheric heating and large surface cooling that is as important to South Asian climate forcing as greenhouse gases, yet the aerosol sources are poorly understood. Emission inventory models suggest that biofuel burning accounts for 50 to 90% of emissions, whereas the elemental composition of ambient aerosols points to fossil fuel combustion. We used radiocarbon measurements of winter monsoon aerosols from western India and the Indian Ocean to determine that biomass combustion produced two-thirds of the bulk carbonaceous aerosols, as well as one-half and two-thirds of two black carbon subfractions, respectively. These constraints show that both biomass combustion (such as residential cooking and agricultural burning) and fossil fuel combustion should be targeted to mitigate climate effects and improve air quality.

  16. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    PubMed

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets.

  17. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    PubMed

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets. PMID:27506422

  18. Presence of estrogenic activity from emission of fossil fuel combustion as detected by a recombinant yeast bioassay

    NASA Astrophysics Data System (ADS)

    Wang, Jingxian; Wu, Wenzhong; Henkelmann, Bernhard; You, Li; Kettrup, Antonius; Schramm, Karl-Werner

    Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, PAHs and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources.

  19. Decadal trends in fossil fuel energy consumption and related air pollutant emissions

    NASA Astrophysics Data System (ADS)

    Shekar Reddy, M.; Venkataraman, C.; Boucher, O.

    2003-04-01

    The economic liberalization in the early 1990s in India fuelled the industrial production, enabled the decadal annual average rate of 5.9% in the gross domestic product (GDP) during 1990-2000. This resulted in a steady increase of fossil fuels energy consumption throughout the decade. This paper investigates the trends in the GDP growth rate, sectoral fossil fuels consumption and resultant atmospheric air pollutant emissions during the above period. The fossil fuels energy consumption in the 1990 was 6875 PJ, and increased to 10801 PJ in 2000, with a decadal annual average growth rate of 5.7%. Share of the coal and petroleum fuels are 52% and 35%, respectively during 2000. The relative share contribution of power, industrial, transport, and domestic sectors are 40%, 48%, 5% and 7%, respectively. The contribution of various sectors to fossil fuels energy consumption, and the relative distribution of the different fuels within each sector will be discussed. The annual sulfur dioxide (SO_2) and aerosols (particulate matter, black carbon, organic carbon) emissions are estimated using sector and fuel specific average emission factors (mass of pollutant per unit mass of fuel burnt). The estimates take into account the changes in the fuel characteristics and technology during the study period. The estimated SO_2 emissions are 1.7 Tg S yr-1 in 1990 and increased to 2.5 Tg S yr-1 in 2000, with an annual average increase of 5%. Majority of the SO_2 emissions are from coal consumption accounting 62%, predominantly from the power plants. Trends in fuel and sectoral contributions to SO2 emissions over the decade will be presented. In the transportation sector, diesels contribute significantly to BC. Notably, in India, two-stroke engines account for 78% of total vehicle fleet, and contribute significantly to organic carbon emissions. An analysis of available SO_2 and aerosols concentration measurements will be made to explore the possible correlations between trends in the

  20. Dependence of the radiative forcing of the climate system on fossil fuel type

    NASA Astrophysics Data System (ADS)

    Nunez, L. I.

    2015-12-01

    Climate change mitigation strategies are greatly directed towards the reduction of CO2 emissions and other greenhouse gases from fossil fuel combustion to limit warming to 2º C in this century. For example, the Clean Power Plan aims to reduce CO2 emissions from the power sector by 32% of 2005 levels by 2030 by increasing power plant efficiency but also by switching from coal-fired power plants to natural gas-fired power plants. It is important to understand the impact of such fuel switching on climate change. While all fossil fuels emit CO2, they also emit other pollutants with varying effects on climate, health and agriculture. First, The emission of CO2 per joule of energy produced varies significantly between coal, oil and natural gas. Second, the complexity that the co-emitted pollutants add to the perturbations in the climate system necessitates the detangling of radiative forcing for each type of fossil fuel. The historical (1850-2011) net radiative forcing of climate as a function of fuel type (coal, oil, natural gas and biofuel) is reconstructed. The results reveal the significant dependence of the CO2 and the non-CO2 forcing on fuel type. The CO2 forcing per joule of energy is largest for coal. Radiative forcing from the co-emitted pollutants (black carbon, methane, nitrogen oxides, organic carbon, sulfate aerosols) changes the global mean CO2 forcing attributed to coal and oil significantly. For natural gas, the CO2-only radiative forcing from gas is increased by about 60% when the co-emitted pollutants are included.

  1. Solar thermal technologies as a bridge from fossil fuels to renewables

    NASA Astrophysics Data System (ADS)

    Dalvi, Vishwanath Haily; Panse, Sudhir V.; Joshi, Jyeshtharaj B.

    2015-11-01

    Integrating solar thermal systems into Rankine-cycle power plants can be done with minimal modification to the existing infrastructure. This presents an opportunity to introduce these technologies into the commercial space incrementally, to allow engineers to build familiarity with the systems before phasing out fossil-fuel energy with solar electricity. This paper shows that there is no thermodynamic barrier to injecting solar thermal heat into Rankine-cycle plants to offset even up to 50% fossil-fuel combustion with existing technology: with better solar-to-electricity efficiencies than conventionally deployed solar-thermal power plants. This strategy is economically preferable to installing carbon-capture and compression equipment for mitigating an equivalent amount of greenhouse-gas emissions. We suggest that such projects be encouraged by extending the same subsidy/incentives to the solar-thermal fraction of a `solar-aided’ plant that would be offered to a conventionally deployed solar-thermal power plant of similar capacity. Such a policy would prepare the ground for an incremental solar-thermal takeover of fossil-fuel power plants.

  2. Quantifying fossil fuel CO2 from continuous measurements of APO: a novel approach

    NASA Astrophysics Data System (ADS)

    Pickers, Penelope; Manning, Andrew C.; Forster, Grant L.; van der Laan, Sander; Wilson, Phil A.; Wenger, Angelina; Meijer, Harro A. J.; Oram, David E.; Sturges, William T.

    2016-04-01

    Using atmospheric measurements to accurately quantify CO2 emissions from fossil fuel sources requires the separation of biospheric and anthropogenic CO2 fluxes. The ability to quantify the fossil fuel component of CO2 (ffCO2) from atmospheric measurements enables more accurate 'top-down' verification of CO2 emissions inventories, which frequently have large uncertainty. Typically, ffCO2 is quantified (in ppm units) from discrete atmospheric measurements of Δ14CO2, combined with higher resolution atmospheric CO measurements, and with knowledge of CO:ffCO2 ratios. In the United Kingdom (UK), however, measurements of Δ14CO2 are often significantly biased by nuclear power plant influences, which limit the use of this approach. We present a novel approach for quantifying ffCO2 using measurements of APO (Atmospheric Potential Oxygen; a tracer derived from concurrent measurements of CO2 and O2) from two measurement sites in Norfolk, UK. Our approach is similar to that used for quantifying ffCO2 from CO measurements (ffCO2(CO)), whereby ffCO2(APO) = (APOmeas - APObg)/RAPO, where (APOmeas - APObg) is the APO deviation from the background, and RAPO is the APO:CO2 combustion ratio for fossil fuel. Time varying values of RAPO are calculated from the global gridded COFFEE (CO2 release and Oxygen uptake from Fossil Fuel Emission Estimate) dataset, combined with NAME (Numerical Atmospheric-dispersion Modelling Environment) transport model footprints. We compare our ffCO2(APO) results to results obtained using the ffCO2(CO) method, using CO:CO2 fossil fuel emission ratios (RCO) from the EDGAR (Emission Database for Global Atmospheric Research) database. We find that the APO ffCO2 quantification method is more precise than the CO method, owing primarily to a smaller range of possible APO:CO2 fossil fuel emission ratios, compared to the CO:CO2 emission ratio range. Using a long-term dataset of atmospheric O2, CO2, CO and Δ14CO2 from Lutjewad, The Netherlands, we examine the

  3. Coal and biomass to fuels and power.

    PubMed

    Williams, Robert H; Liu, Guangjian; Kreutz, Thomas G; Larson, Eric D

    2011-01-01

    Systems with CO(2) capture and storage (CCS) that coproduce transportation fuels and electricity from coal plus biomass can address simultaneously challenges of climate change from fossil energy and dependence on imported oil. Under a strong carbon policy, such systems can provide competitively clean low-carbon energy from secure domestic feedstocks by exploiting the negative emissions benefit of underground storage of biomass-derived CO(2), the low cost of coal, the scale economies of coal energy conversion, the inherently low cost of CO(2) capture, the thermodynamic advantages of coproduction, and expected high oil prices. Such systems require much less biomass to make low-carbon fuels than do biofuels processes. The economics are especially attractive when these coproduction systems are deployed as alternatives to CCS for stand-alone fossil fuel power plants. If CCS proves to be viable as a major carbon mitigation option, the main obstacles to deployment of coproduction systems as power generators would be institutional.

  4. Assessment of the US EPA's determination of the role for CO2 capture and storage in new fossil fuel-fired power plants.

    PubMed

    Clark, Victoria R; Herzog, Howard J

    2014-07-15

    On September 20, 2013, the US Environmental and Protection Agency (EPA) proposed a revised rule for "Standards of Performance for Greenhouse Gas Emissions from New Stationary Sources: Electric Utility Generating Units". These performance standards set limits on the amount of carbon dioxide (CO2) that can be emitted per megawatt-hour (MWh) of electricity generation from new coal-fired and natural gas-fired power plants built in the US. These limits were based on determinations of "best system of emission reduction (BSER) adequately demonstrated". Central in this determination was evaluating whether Carbon Dioxide Capture and Storage (CCS) qualified as BSER. The proposed rule states that CCS qualifies as BSER for coal-fired generation but not for natural gas-fired generation. In this paper, we assess the EPA's analysis that resulted in this determination. We are not trying to judge what the absolute criteria are for CCS as the BSER but only the relative differences as related to coal- vs natural gas-fired technologies. We conclude that there are not enough differences between "base load" coal-fired and natural gas-fired power plants to justify the EPA's determination that CCS is the BSER for coal-fired power plants but not for natural gas-fired power plants.

  5. Large historical changes of fossil-fuel black carbon aerosols

    NASA Astrophysics Data System (ADS)

    Novakov, T.; Ramanathan, V.; Hansen, J. E.; Kirchstetter, T. W.; Sato, M.; Sinton, J. E.; Sathaye, J. A.

    2003-03-01

    Anthropogenic emissions of fine black carbon (BC) particles, the principal light-absorbing atmospheric aerosol, have varied during the past century in response to changes of fossil-fuel utilization, technology developments, and emission controls. We estimate historical trends of fossil-fuel BC emissions in six regions that represent about two-thirds of present day emissions and extrapolate these to global emissions from 1875 onward. Qualitative features in these trends show rapid increase in the latter part of the 1800s, the leveling off in the first half of the 1900s, and the re-acceleration in the past 50 years as China and India developed. We find that historical changes of fuel utilization have caused large temporal change in aerosol absorption, and thus substantial change of aerosol single scatter albedo in some regions, which suggests that BC may have contributed to global temperature changes in the past century. This implies that the BC history needs to be represented realistically in climate change assessments.

  6. Large historical changes of fossil-fuel black carbon aerosols

    SciTech Connect

    Novakov, T.; Ramanathan, V.; Hansen, J.E.; Kirchstetter, T.W.; Sato, M.; Sinton, J.E.; Sathaye, J.A.

    2002-09-26

    Anthropogenic emissions of fine black carbon (BC) particles, the principal light-absorbing atmospheric aerosol, have varied during the past century in response to changes of fossil-fuel utilization, technology developments, and emission controls. We estimate historical trends of fossil-fuel BC emissions in six regions that represent about two-thirds of present day emissions and extrapolate these to global emissions from 1875 onward. Qualitative features in these trends show rapid increase in the latter part of the 1800s, the leveling off in the first half of the 1900s, and the re-acceleration in the past 50 years as China and India developed. We find that historical changes of fuel utilization have caused large temporal change in aerosol absorption, and thus substantial change of aerosol single scatter albedo in some regions, which suggests that BC may have contributed to global temperature changes in the past century. This implies that the BC history needs to be represented realistically in climate change assessments.

  7. Burning Fossil Fuels: Impact of Climate Change on Health.

    PubMed

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases.

  8. Burning Fossil Fuels: Impact of Climate Change on Health.

    PubMed

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases. PMID:26721565

  9. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    PubMed

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-01

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  10. PERSPECTIVE: Keeping a closer eye on fossil fuel CO2

    NASA Astrophysics Data System (ADS)

    Nelson, Peter F.

    2009-12-01

    2007 Saturation of the Southern Ocean CO2 sink due to recent climate change Science 316 1735-8 Levi M A 2009 Copenhagen's inconvenient truth: how to salvage the climate conference Foreign Affairs 92-103 Myhre G, Alterskjaer K and Lowe D 2009 A fast method for updating global fossil fuel carbon dioxide emissions Environ. Res. Lett. 4 034012 Pan J 2009 China expects leadership from rich nations Nature 461 1055 Raupach M R, Marland G, Ciais P, Le Quere C, Canadell J G, Klepper G and Field C B 2007 Global and regional drivers of accelerating CO2 emissions Proc. Natl Acad. Sci. USA 104 10288-93 Shindell D T, Faluvegi G, Koch D M, Schmidt G A, Unger N and Bauer S E 2009 Improved attribution of climate forcing to emissions Science 326 716-8 Skodvin T and Andresen S 2009 An agenda for change in US climate policies? Presidential ambitions and congressional powers Int. Environ. Agreements: Politics Law Econ. 9 263-80 Vaughan N E, Lenton T M and Shepherd J G 2009 Climate change mitigation: trade-offs between delay and strength of action required Climatic Change 96 29-43

  11. In-situ FT-IR diagnostics for monitoring and control of fossil fuel combustion

    SciTech Connect

    Bonanno, A.S.; Wojtowicz, M.A.; Serio, M.A.; Nelson, C.M.; Solomon, P.R.

    1995-12-31

    This paper describes the development and testing of a prototype fourier transform infrared (FT-IR) based measurement system for continuous emission monitoring (CEM) and process control in fossil fuel-fired power plants. On several occasions, prototype systems have been transported and assembled at full-scale and pilot-scale fossil fuel-fired combustors. The in-situ version of the prototype is able to measure NH{sub 3} and HCl concentrations, which are difficult to measure extractively, as well as CO, CO{sub 2}, NO{sub x}, H{sub 2}O, and SO{sub x} concentrations. The results of recent tests will be presented which involve in-situ monitoring of selective non-catalytic reduction (SNCR) of NO{sub x} based on simultaneous measurement of NO, NH{sub 3} and CO.

  12. High-resolution global fossil fuel CO2 emissions for 1992 to 2010 using integrated in-situ and remotely sensed data in a fossil fuel data assimilation system

    NASA Astrophysics Data System (ADS)

    Asefi-Najafabady, S.; Gurney, K. R.; Rayner, P.; Huang, J.; Song, Y.

    2012-12-01

    The largest single net source of CO2 into the Earth's atmosphere is due to the combustion of fossil fuel and an accurate quantification of the fossil fuel flux is needed to better address the concern of rising atmospheric greenhouse gas concentrations. In the last decade, there has been a growing need, from both the science and policymaking communities for quantification of global fossil fuel CO2 emissions at finer space and time scales. Motivated by this concern, we have built a global fossil fuel CO2 emission inventory at 0.25° and 0.1° resolutions for the years of 1992 - 2010 using a combination of in situ and remotely sensed data in a fossil fuel data assimilation system (FFDAS). A suite of observations which include nightlights, population, sectoral national emissions and power plant stations are used to constrain the FFDAS model. FFDAS is based on a modified Kaya identity which expresses emissions as the product of areal population density, per capita economic activity, energy intensity of economic activity, and carbon intensity of energy consumption. Nightlights has been shown to correlate well with national and regional GDP and its relationship with population has been used as an initial means of downscaling fossil fuel emissions. However nightlights data are subject to instrumental saturation, causing areas of bright nightlights, such as urban cores, to be truncated. To address the saturation problem during several time periods, the National Geophysical Data Center (NGDC) has requested and received data collected at multiple fixed gain settings to observe the bright areas with no saturation. However, this dataset is limited to only four years (1999, 2002, 2006 and 2010). We have applied a numerical technique to these four years of data to estimate the unsaturated values for all years from 1992 to 2010. The corrected nightlights time series is then used in FFDAS to generate a multiyear fossil fuel CO2 emissions data product. Nightlights and population

  13. Geochemical controls of vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  14. Geochemical controls on vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  15. Krakow clean fossil fuels and energy efficiency project

    SciTech Connect

    Butcher, T.A.; Pierce, B.L.

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  16. Krakow clean fossil fuels and energy efficiency project

    SciTech Connect

    Butcher, T.A.; Pierce, B.L.

    1995-12-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the {open_quotes}Krakow Clean Fossil Fuels and Energy Efficiency Project.{close_quotes} Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100, 000 home stoves. These are collectively referred to as the {open_quotes}low emission sources{close_quotes} and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  17. Krakow clean fossil fuels and energy efficiency project

    SciTech Connect

    Pierce, B.L.; Butcher, T.A.

    1994-06-01

    Almost half of the energy used for beating in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 boilerhouses with a total capacity of 1,071 MW, and about 100,000 home furnaces with a total capacity of about 300 MW. More than 600 boilerhouses and 60 percent of the home furnaces are situated near the city center. These facilities are referred to as ``low emission sources`` because they have low stacks. They are the primary sources of particulates and hydrocarbons in the city, and major contributors of sulfur dioxide and carbon monoxide. The Support for Eastern European Democracy (SEED) Act of 1989 directed the US Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in Krakow as the ``Krakow Clean Fossil Fuels and Energy Efficiency Project.`` Funding is provided through the US Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe.

  18. Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect

    Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

    2001-11-06

    Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

  19. A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results

    NASA Astrophysics Data System (ADS)

    Asefi-Najafabady, S.; Rayner, P. J.; Gurney, K. R.; McRobert, A.; Song, Y.; Coltin, K.; Huang, J.; Elvidge, C.; Baugh, K.

    2014-09-01

    High-resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long-term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long-term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter-term variations reveals the impact of the 2008-2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set.

  20. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    SciTech Connect

    Andres, Robert Joseph; Gregg, JS; Losey, London M; Marland, Gregg; Boden, Thomas A

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

  1. The U.S. Department of Energy, Office of Fossil Energy Stationary Fuel Cell Program

    NASA Astrophysics Data System (ADS)

    Williams, Mark C.; Strakey, Joseph P.; Surdoval, Wayne A.

    The U.S. Department of Energy (DOE) Office of Fossil Energy's (FE) National Energy Technology Laboratory (NETL), in partnership with private industries, is leading a program for the development and demonstration of high efficiency solid oxide fuel cells (SOFCs) and fuel cell/turbine hybrid power generation systems for near-term distributed generation markets, with emphasis on premium power and high reliability. NETL is partnering with Pacific Northwest National Laboratory (PNNL) in developing new directions for research under the Solid State Energy Conversion Alliance (SECA) initiative to develop and commercialize modular, low cost, and fuel flexible SOFC systems. Through advanced materials, processing and system integration research and development (R&D), the SECA initiative will reduce the fuel cell cost to $400 kW -1 for stationary and auxiliary power unit markets. The SECA industry teams and core program have made significant progress in scale-up and performance. Presidential initiatives are focusing research toward a new hydrogen economy. The movement to a hydrogen economy would accomplish several strategic goals, namely that SOFCs have no emissions, and hence figure significantly in DOE strategies. The SOFC hybrid is a key part of the FutureGen plant, a major new DOE FE initiative to produce hydrogen from coal. The highly efficient SOFC hybrid plant will produce electric power while other parts of the plant could produce hydrogen and sequester CO 2. The produced hydrogen can be used in fuel cell cars and for SOFC distributed generation applications.

  2. Challenges faced when using radiocarbon measurements to estimate fossil fuel emissions in the UK.

    NASA Astrophysics Data System (ADS)

    Wenger, A.; O'Doherty, S.; Rigby, M. L.; Ganesan, A.; Manning, A.; Allen, G.

    2015-12-01

    Estimating the anthropogenic component of carbon dioxide emissions from direct atmospheric measurements is difficult, due to the large natural carbon dioxide fluxes. One way of determining the fossil fuel component of atmospheric carbon dioxide is the use of radiocarbon measurements. Whilst carbon reservoirs with a reasonably fast carbon exchange rate all have a similar radiocarbon content, fossil fuels are completely devoid of radiocarbon due to their age. Previous studies have 14CO2 (UK) this approach is compromised by the high density of 14CO2 emitting nuclear power plants. Of the 16 nuclear reactors in the UK, 14 are advanced gas cooled reactors, which have one of the highest 14CO2 emission rates of all reactor types. These radiocarbon emissions not only lead to a serious underestimation of the recently added fossil fuel CO2, by masking the depletion of 14C in CO2, but can in fact overshadow the depletion by a factor of 2 or more. While a correction for this enhancement can be applied, the emissions from the nuclear power plants are highly variable, and an accurate correction is therefore not straightforward. We present the first attempt to quantify UK fossil fuel CO2 emissions through the use of 14CO2. We employ a sampling strategy that makes use of a Lagrangian particle dispersion model, in combination with nuclear industry emission estimates, to forecast "good" sampling times, in an attempt to minimize the correction due to emissions from the nuclear industry. As part of the Greenhouse gAs Uk and Global Emissions (GAUGE) project, 14CO2measurements are performed at two measurement sites in the UK and Ireland, as well as during science flights around the UK. The measurement locations have been chosen with a focus on high emitting regions such as London and the Midlands. We discuss the unique challenges that face the determination of fossil fuel emissions through radiocarbon measurements in the UK and our sampling strategy to deal with them. In addition we

  3. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    ERIC Educational Resources Information Center

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  4. Krakow Clean Fossil Fuels and Energy Efficiency Program

    SciTech Connect

    Butcher, T.; Pierce, B.; Krishna, C.R.

    1992-09-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the US Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The project is being conducted in three phases. In Phase I, testing and analytical activities will establish the current level of emissions from existing equipment and operating practices, and will provide estimates of the costs and emission reductions of various options. Phase II consists of a series of public meetings in both Poland and the United States to present the results of Phase I activities. In Phase III, DOE will issue a solicitation for Polish/US joint ventures to perform commercial feasibility studies for the use of US technology in one or more of the areas under consideration. This report provides interim results from Phase 1.

  5. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    PubMed

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  6. On Corporate Accountability: Lead, Asbestos, and Fossil Fuel Lawsuits.

    PubMed

    Shearer, Christine

    2015-08-01

    This paper examines the use of lawsuits against three industries that were eventually found to be selling products damaging to human heath and the environment: lead paint, asbestos, and fossil fuels. These industries are similar in that some companies tried to hide or distort information showing their products were harmful. Common law claims were eventually filed to hold the corporations accountable and compensate the injured. This paper considers the important role the lawsuits played in helping establish some accountability for the industries while also noting the limitations of the lawsuits. It will be argued that the lawsuits helped create pressure for government regulation of the industries' products but were less successful at securing compensation for the injured. Thus, the common law claims strengthened and supported administrative regulation and the adoption of industry alternatives more than they provided a means of legal redress.

  7. On Corporate Accountability: Lead, Asbestos, and Fossil Fuel Lawsuits.

    PubMed

    Shearer, Christine

    2015-08-01

    This paper examines the use of lawsuits against three industries that were eventually found to be selling products damaging to human heath and the environment: lead paint, asbestos, and fossil fuels. These industries are similar in that some companies tried to hide or distort information showing their products were harmful. Common law claims were eventually filed to hold the corporations accountable and compensate the injured. This paper considers the important role the lawsuits played in helping establish some accountability for the industries while also noting the limitations of the lawsuits. It will be argued that the lawsuits helped create pressure for government regulation of the industries' products but were less successful at securing compensation for the injured. Thus, the common law claims strengthened and supported administrative regulation and the adoption of industry alternatives more than they provided a means of legal redress. PMID:25910492

  8. Progress performance report of clean uses of fossil fuels

    SciTech Connect

    Todd, Jr., Lee T.; Boggess, Ronald J.; Carson, Ronald J.; Falkenberg, Virginia P.; Flanagan, Patrick; Hettinger, Jr., William P.; Kimel, Kris; Kupchella, Charles E.; Magid, Lee J.; McLaughlin, Barbara; Royster, Wimberly C.; Streepey, Judi L.; Wells, James H.; Stencel, John; Derbyshire, Frank J.; Hanley, Thomas R.; Magid, Lee J.; McEllistrem, Marc T.; Riley, John T.; Steffen, Joseph M.

    1992-01-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled Clean Uses of Fossil Fuels.'' was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  9. Progress performance report of clean uses of fossil fuels

    SciTech Connect

    Not Available

    1992-09-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled ``Clean Uses of Fossil Fuels.`` was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  10. Fuel processor for fuel cell power system

    DOEpatents

    Vanderborgh, Nicholas E.; Springer, Thomas E.; Huff, James R.

    1987-01-01

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  11. Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment

    SciTech Connect

    Sayer, J.H.

    1995-06-01

    The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

  12. Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.

    ERIC Educational Resources Information Center

    Soprovich, William, Comp.

    When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…

  13. Ecological consequences of elevated total dissolved solids associated with fossil fuel extraction in the United States

    EPA Science Inventory

    Fossil fuel burning is considered a major contributor to global climate change. The outlook for production and consumption of fossil fuels int he US indicates continued growth to support growing energy demands. For example, coal-generated electricity is projected ot increase from...

  14. The Fuel Cell Powered Club Car Carryall

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2005-01-01

    The NASA Glenn Research Center initiated development of the Fuel Cell Powered Club Car Carryall as a way to reduce pollution in industrial settings, reduce fossil fuel consumption and reduce operating costs for transportation systems. The Club Car Carryall provides an inexpensive approach to advance the state of the art in electric vehicle technology in a practical application. The project transfers space technology to terrestrial use via non-traditional partners, and provides power system data valuable for future aeronautics and space applications. The work was done under the Hybrid Power Management (HPM) Program. The Carryall is a state of the art, dedicated, electric utility vehicle. Hydrogen powered proton exchange membrane (PEM) fuel cells are the primary power source. Ultracapacitors were used for energy storage as long life, maintenance free operation, and excellent low temperature performance is essential. Metal hydride hydrogen storage was used to store hydrogen in a safe and efficient low-pressure solid form. The report concludes that the Fuel Cell Powered Club Car Carryall can provide excellent performance, and that the implementation of fuel cells in conjunction with ultracapacitors in the power system can provide significant reliability and performance improvements.

  15. Distributed renewable power from biomass and other waste fuels

    NASA Astrophysics Data System (ADS)

    Lyons, Chris

    2012-03-01

    The world population is continually growing and putting a burden on our fossil fuels. These fossil fuels such as coal, oil and natural gas are used for a variety of critical needs such as power production and transportation. While significant environmental improvements have been made, the uses of these fuels are still causing significant ecological impacts. Coal power production efficiency has not improved over the past thirty years and with relatively cheap petroleum cost, transportation mileage has not improved significantly either. With the demand for these fossil fuels increasing, ultimately price will also have to increase. This presentation will evaluate alternative power production methods using localized distributed generation from biomass, municipal solid waste and other waste sources of organic materials. The presentation will review various gasification processes that produce a synthetic gas that can be utilized as a fuel source in combustion turbines for clean and efficient combined heat and power. This fuel source can produce base load renewable power. In addition tail gases from the production of bio-diesel and methanol fuels can be used to produce renewable power. Being localized can reduce the need for long and costly transmission lines making the production of fuels and power from waste a viable alternative energy source for the future.

  16. Long-term tradeoffs between nuclear- and fossil-fuel burning

    SciTech Connect

    Krakowski, R.A.

    1996-12-31

    A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

  17. Replacing fossil diesel by biodiesel fuel: expected impact on health.

    PubMed

    Hutter, Hans-Peter; Kundi, Michael; Moshammer, Hanns; Shelton, Janie; Krüger, Bernd; Schicker, Irene; Wallner, Peter

    2015-01-01

    Biofuels have become an alternative to fossil fuel, but consequences on human health from changes to emissions compositions are not well understood. By combining information on composition of vehicle exhaust, dispersion models, and relationship between exposure to air contaminants and health, the authors determined expected mortality outcomes in 2 scenarios: a blend of 10% biodiesel and 90% standard diesel (B10) and biodiesel only (B100), for a rural and an urban environment. Vehicle exhaust for both fuel compositions contained lower fine particle mass but higher NO2 levels. Ambient air concentrations in scenario B10 were almost unchanged. In scenario B100, PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) levels decreased by 4-8% and NO2 levels increased 7-11%. Reduction of PM2.5 is expected to reduce mortality rate by 5 × 10(-6) and 31 × 10(-6) per year, whereas NO2 increase adds 17 × 10(-6) and 30 × 10(-6) to mortality rate for B10 and B100, respectively. Since effects of PM2.5 and NO2 are not independent, a positive net effect is possible. PMID:24965323

  18. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect

    Shane E. Roark; Tony F. Sammells; Adam Calihman; Andy Girard; Pamela M. Van Calcar; Richard Mackay; Tom Barton; Sara Rolfe

    2001-01-30

    Eltron Research Inc., and team members CoorsTek, McDermott Technology, Inc., Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. Membranes testing during this reporting period were greater than 1 mm thick and had the general perovskite composition AB{sub 1-x}B'{sub x}O{sub 3-{delta}}, where 0.05 {<=} x {<=} 0.3. These materials demonstrated hydrogen separation rates between 1 and 2 mL/min/cm{sup 2}, which represents roughly 20% of the target goal for

  19. Criteria for solid recovered fuels as a substitute for fossil fuels--a review.

    PubMed

    Beckmann, Michael; Pohl, Martin; Bernhardt, Daniel; Gebauer, Kathrin

    2012-04-01

    The waste treatment, particularly the thermal treatment of waste has changed fundamentally in the last 20 years, i.e. from facilities solely dedicated to the thermal treatment of waste to facilities, which in addition to that ensure the safe plant operation and fulfill very ambitious criteria regarding emission reduction, resource recovery and energy efficiency as well. Therefore this contributes to the economic use of raw materials and due to the energy recovered from waste also to the energy provision. The development described had the consequence that waste and solid recovered fuels (SRF) has to be evaluated based on fuel criteria as well. Fossil fuels - coal, crude oil, natural gas etc. have been extensively investigated due to their application in plants for energy conversion and also due to their use in the primary industry. Thereby depending on the respective processes, criteria on fuel technical properties can be derived. The methods for engineering analysis of regular fuels (fossil fuels) can be transferred only partially to SRF. For this reason methods are being developed or adapted to current analytical methods for the characterization of SRF. In this paper the possibilities of the energetic utilization of SRF and the characterization of SRF before and during the energetic utilization will be discussed.

  20. Criteria for solid recovered fuels as a substitute for fossil fuels--a review.

    PubMed

    Beckmann, Michael; Pohl, Martin; Bernhardt, Daniel; Gebauer, Kathrin

    2012-04-01

    The waste treatment, particularly the thermal treatment of waste has changed fundamentally in the last 20 years, i.e. from facilities solely dedicated to the thermal treatment of waste to facilities, which in addition to that ensure the safe plant operation and fulfill very ambitious criteria regarding emission reduction, resource recovery and energy efficiency as well. Therefore this contributes to the economic use of raw materials and due to the energy recovered from waste also to the energy provision. The development described had the consequence that waste and solid recovered fuels (SRF) has to be evaluated based on fuel criteria as well. Fossil fuels - coal, crude oil, natural gas etc. have been extensively investigated due to their application in plants for energy conversion and also due to their use in the primary industry. Thereby depending on the respective processes, criteria on fuel technical properties can be derived. The methods for engineering analysis of regular fuels (fossil fuels) can be transferred only partially to SRF. For this reason methods are being developed or adapted to current analytical methods for the characterization of SRF. In this paper the possibilities of the energetic utilization of SRF and the characterization of SRF before and during the energetic utilization will be discussed. PMID:22467662

  1. Orimulsion conversion boosts prospects of `fourth` fossil fuel

    SciTech Connect

    1995-04-01

    This article describes how, by retrofitting a 100-MW oil-fired and a 215-MW coal-fired unit, one utility turned a plant destined for peaking service into a base-load asset with a predictable fuel bill and manageable emissions-even in environmentally sensitive Atlantic Canada. Six years ago, New Brunswick Power Corp (NB Power) found itself on the horns of a dilemma. For years, the utility had been searching for a powerplant fuel with a more stable price than oil, which at the time was fueling one-third of its generating capacity. Buying and burning more domestic coal-even at twice the price of offshore supplies-was the preferred option, because that would also help keep New Brunswick`s coal mines open. But by 1989, federal and provincial legislation had begun to plan for stringent limits on SO{sub 2} emissions that would take the local-coal card out of NB Power`s hand. Containing up to 8% sulfur, New Brunswick coal would be too dirty to burn by itself; emissions from a 200-MW unit would alone use up nearly half of the utility`s system-wide annual quota for SO{sub 2} emissions schedules for imposition in 1994. Enter Bitor America Corp, the Boca Raton (Fla) marketing subsidiary of the world`s third-largest oil company, Petroleos de Venezuela SA (PdVSA). Looking to further the fortunes of Orimulsion, a liquid emulsion of bitumen and water from the Orinoco region of Venezuela, Bitor funded and provided technical support for the first large-scale test burn of the fuel in the 100-MW Unit 1 of NB Power`s Dalhousie station in northern New Brunswick. After making the required modifications, NB Power burned Orimulsion in Unit 1 for two years. By 1991, the utility had cleanly converted more than a million barrels of the fuel to nearly half a million megawatt-hours of electricity-in the process finding few reasons not to commit to permanently converting Dalhousie`s Unit 1, as well as coal fired 215-MW Unit 2, to burn Orimulsion.

  2. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    PubMed

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-01

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources. PMID:26332865

  3. Krakow Clean Fossil Fuels and Energy Efficiency Project

    SciTech Connect

    Butcher, T.A.; Pierce, B.; Krajewski, R.; LaMontagne, J.; Kirchstetter, T.

    1992-05-01

    In Karkow, Poland almost half of the energy used for heating is supplied by local, solid-fuel-fired boilerhouses and home stoves. These facilities are referred to as the ``low emission sources`` and are primary contributors of particulates and hydrocarbon air pollution in the city and secondary contributors of sulfur dioxide and carbon monoxide. The Support of Eastern European Democracy Act of 1989 directed the US Department of Energy to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The Project is being conducted in a manner that can be generalized to all of Poland and uito the rest of Eastern Europe. The project plan includes three phases which have been developed around five specific subprojects. In Phase 1, technical and economic assessments will be made of pollution reduction options for the five subprojects. Phase 2 plans call for public meetings in the US and Poland for companies interested in forming joint ventures. Information will be available in these meetings to enable companies to identify markets and select potential partners that meet with their capabilities and interests. In Phase 3, DOE will issue a solicitation for Polish/American joint ventures to perform commercial feasibility studies for the supply of US technology applicable to one or more of the five subprojects. The selected joint venture companies would receive assistance in the form of cooperative agreements requiring at least 50% cost-sharing to perform those activities necessary to permit them to conduct business in Poland.

  4. Krakow Clean Fossil Fuels and Energy Efficiency Project

    SciTech Connect

    Butcher, T.A.; Pierce, B.; Krajewski, R.; LaMontagne, J.; Kirchstetter, T.

    1992-05-01

    In Karkow, Poland almost half of the energy used for heating is supplied by local, solid-fuel-fired boilerhouses and home stoves. These facilities are referred to as the low emission sources'' and are primary contributors of particulates and hydrocarbon air pollution in the city and secondary contributors of sulfur dioxide and carbon monoxide. The Support of Eastern European Democracy Act of 1989 directed the US Department of Energy to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The Project is being conducted in a manner that can be generalized to all of Poland and uito the rest of Eastern Europe. The project plan includes three phases which have been developed around five specific subprojects. In Phase 1, technical and economic assessments will be made of pollution reduction options for the five subprojects. Phase 2 plans call for public meetings in the US and Poland for companies interested in forming joint ventures. Information will be available in these meetings to enable companies to identify markets and select potential partners that meet with their capabilities and interests. In Phase 3, DOE will issue a solicitation for Polish/American joint ventures to perform commercial feasibility studies for the supply of US technology applicable to one or more of the five subprojects. The selected joint venture companies would receive assistance in the form of cooperative agreements requiring at least 50% cost-sharing to perform those activities necessary to permit them to conduct business in Poland.

  5. Multiple timescales for neutralization of fossil fuel CO2

    NASA Astrophysics Data System (ADS)

    Archer, David; Kheshgi, Haroon; Maier-Reimer, Ernst

    The long term abiological sinks for anthropogenic CO2 will be dissolution in the oceans and chemical neutralization by reaction with carbonates and basic igneous rocks. We use a detailed ocean/sediment carbon cycle model to simulate the response of the carbonate cycle in the ocean to a range of anthropogenic CO2 release scenarios. CaCO3 will play only a secondary role in buffering the CO2 concentration of the atmosphere because CaCO3 reaction uptake capacity and kinetics are limited by the dynamics of the ocean carbon cycle. Dissolution into ocean water sequesters 70-80% of the CO2 release on a time scale of several hundred years. Chemical neutralization of CO2 by reaction with CaCO3 on the sea floor accounts for another 9-15% decrease in the atmospheric concentration on a time scale of 5.5-6.8 kyr. Reaction with CaCO3 on land accounts for another 3-8%, with a time scale of 8.2 kyr. The final equilibrium with CaCO3 leaves 7.5-8% of the CO2 release remaining in the atmosphere. The carbonate chemistry of the oceans in contact with CaCO3 will act to buffer atmospheric CO2 at this higher concentration until the entire fossil fuel CO2 release is consumed by weathering of basic igneous rocks on a time scale of 200 kyr.

  6. Modules for estimating solid waste from fossil-fuel technologies

    SciTech Connect

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

  7. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect

    Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

    2006-04-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

  8. Transalkylation reactions in fossil fuels and related model compounds

    SciTech Connect

    Farcasiu, M.; Forbus, T.R.; LaPierre, R.B.

    1983-02-01

    The alkyl substituents of high molecular weight polycyclic aromatic constituents of petroleum residues are transferable to exogenous monocyclic aromatics (benzene, toluene, o-xylene, etc.) by acid catalyzed (CF/sub 3/SO/sub 3/H) Friedel Crafts transalkylation. Analysis (GC-MS) of the volatile alkylated monocyclic aromatic products provides a method for the determination of the alkyl group content/structure of the starting fossil fuel mixture. Both model systems, using alkylated naphthalenes, phenanthrenes, pyrenes and dibenzothiophenes and demineralized shale oil or petroleum resid were studied. The model studies (alkyl chain length 2-10 carbons) revealed the following reaction pathways to predominate: (1) transalkylation rates/equilibria are independent of chain length; (2) n-alkyl groups are transfered without rearrangement or fragmentation; (3) reaction rate depends upon the aromatic moiety; (4) formation of dixylylmethanes via benzyl carbenium ions is significant (12 to 25% of product; and (5) significant minor products at longer reaction times are alkyl tetralins, tetralins, napthalenes and alkylated acceptors having a chain length reduced by (-CH/sub 2/-)/sub 4/.

  9. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  10. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUELS PLANTS

    SciTech Connect

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart Schesnack; Scott Morrison; Thomas A. Zirbel; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-07-31

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, and Argonne National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This report presents hydrogen permeation data during long term tests and tests at high pressure in addition to progress with cermet, ceramic/ceramic, and thin film membranes.

  11. The Fossil Fuel Divestment Movement: An Ethical Dilemma for the Geosciences?

    NASA Astrophysics Data System (ADS)

    Greene, C. H.; Kammen, D. M.

    2014-12-01

    For over 200 years, fossil fuels have been the basis for an industrial revolution that has delivered a level of prosperity to modern society unimaginable during the previous 5000 years of human civilization. However, society's dependence on fossil fuels is coming to an end for two reasons. The first reason is because our fossil fuel reserves are running out, oil in this century, natural gas during the next century, and coal a few centuries later. The second reason is because fossil fuels are having a devastating impact on the habitability of our planet, disrupting our climate system and acidifying our oceans. So the question is not whether we will discontinue using fossil fuels, but rather whether we will stop using them before they do irreparable damage to the Earth's life-support systems. Within our geoscience community, climate scientists have determined that a majority of existing fossil fuel reserves must remain unburned if dangerous climate change and ocean acidification are to be avoided. In contrast, Exxon-Mobil, Shell, and other members of the fossil fuel industry are pursuing a business model that assumes all of their reserves will be burned and will not become stranded assets. Since the geosciences have had a long and mutually beneficial relationship with the fossil fuel industry, this inherent conflict between climate science and industrial interests presents an ethical dilemma for many geoscientists. This conflict is further heightened by the fossil fuel divestment movement, which is underway at over 400 college and university campuses around the world. This presentation will explore some of the ethical and financial issues being raised by the divestment movement from a geoscientist's perspective.

  12. Emissions from ethanol-blended fossil fuel flames

    SciTech Connect

    Akcayoglu, Azize

    2011-01-15

    A fundamental study to investigate the emission characteristics of ethanol-blended fossil fuels is presented. Employing a heterogeneous experimental setup, emissions are measured from diffusion flames around spherical porous particles. Using an infusion pump, ethanol-fossil fuel blend is transpired into a porous sphere kept in an upward flowing air stream. A typical probe of portable digital exhaust gas analyzer is placed in and around the flame with the help of a multi-direction traversing mechanism to measure emissions such as un-burnt hydrocarbons, carbon monoxide and carbon dioxide. Since ethanol readily mixes with water, emission characteristics of ethanol-water blends are also studied. For comparison purpose, emissions from pure ethanol diffusion flames are also presented. A simplified theoretical analysis has been carried out to determine equilibrium surface temperature, composition of the fuel components in vapor-phase and heat of reaction of each blend. These theoretical predictions are used in explaining the emission characteristics of flames from ethanol blends. (author) This paper presents the results of an experimental study of flow structure in horizontal equilateral triangular ducts having double rows of half delta-wing type vortex generators mounted on the duct's slant surfaces. The test ducts have the same axial length and hydraulic diameter of 4 m and 58.3 mm, respectively. Each duct consists of double rows of half delta wing pairs arranged either in common flow-up or common flow-down configurations. Flow field measurements were performed using a Particle Image Velocimetry Technique for hydraulic diameter based Reynolds numbers in the range of 1000-8000. The secondary flow field differences generated by two different vortex generator configurations were examined in detail. The secondary flow is found stronger behind the second vortex generator pair than behind the first pair but becomes weaker far from the second pair in the case of Duct1. However

  13. Advanced thermometrics for fossil power plant process improvement

    SciTech Connect

    Shepard, R.L.; Weiss, J.M.; Holcomb, D.E.

    1996-04-30

    Improved temperature measurements in fossil power plants can reduce heat rate and uncertainties in power production efficiencies, extend the life of plant components, reduce maintenance costs, and lessen emissions. Conventional instruments for measurement of combustion temperatures, steam temperatures, and structural component temperatures can be improved by better specification, in situ calibration, signal processing, and performance monitoring. Innovative instruments can enhance, augment, or replace conventional instruments. Several critical temperatures can be accessed using new methods that were impossible with conventional instruments. Such instruments include high temperature resistance temperature detectors (RTDs), thermometric phosphors, inductive thermometry, and ultrasonic thermometry.

  14. Quantification of fossil fuel CO2 emissions on the building/street scale for a large U.S. city.

    PubMed

    Gurney, Kevin R; Razlivanov, Igor; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul-Massih, Michel

    2012-11-01

    In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system, and contribute to quantitatively based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO(2) emissions, the primary greenhouse gas, is essential. Called the "Hestia Project", this research effort is the first to use bottom-up methods to quantify all fossil fuel CO(2) emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. Here, we describe the methods used to quantify the on-site fossil fuel CO(2) emissions across the city of Indianapolis, IN. This effort combines a series of data sets and simulation tools such as a building energy simulation model, traffic data, power production reporting, and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon-monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare the natural gas component of our fossil fuel CO(2) emissions estimate to consumption data provided by the local gas utility. At the zip code level, we achieve a bias-adjusted Pearson r correlation value of 0.92 (p < 0.001).

  15. Quantification of fossil fuel CO2 emissions on the building/street scale for a large U.S. city.

    PubMed

    Gurney, Kevin R; Razlivanov, Igor; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul-Massih, Michel

    2012-11-01

    In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system, and contribute to quantitatively based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO(2) emissions, the primary greenhouse gas, is essential. Called the "Hestia Project", this research effort is the first to use bottom-up methods to quantify all fossil fuel CO(2) emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. Here, we describe the methods used to quantify the on-site fossil fuel CO(2) emissions across the city of Indianapolis, IN. This effort combines a series of data sets and simulation tools such as a building energy simulation model, traffic data, power production reporting, and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon-monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare the natural gas component of our fossil fuel CO(2) emissions estimate to consumption data provided by the local gas utility. At the zip code level, we achieve a bias-adjusted Pearson r correlation value of 0.92 (p < 0.001). PMID:22891924

  16. Quantification of fossil fuel CO2 emissions at the building/street scale for a large US city

    SciTech Connect

    Gurney, Kevin R.; Razlivanov, I.; Song, Yang; Zhou, Yuyu; Benes, Bedrich; Abdul- Massih, Michel

    2012-08-15

    In order to advance the scientific understanding of carbon exchange with the land surface, build an effective carbon monitoring system and contribute to quantitatively-based U.S. climate change policy interests, fine spatial and temporal quantification of fossil fuel CO2 emissions, the primary greenhouse gas, is essential. Called the ‘Hestia Project’, this research effort is the first to use bottom-up methods to quantify all fossil fuel CO2 emissions down to the scale of individual buildings, road segments, and industrial/electricity production facilities on an hourly basis for an entire urban landscape. a large city (Indianapolis, Indiana USA). Here, we describe the methods used to quantify the on-site fossil fuel CO2 emissions across the city of Indianapolis, Indiana. This effort combines a series of datasets and simulation tools such as a building energy simulation model, traffic data, power production reporting and local air pollution reporting. The system is general enough to be applied to any large U.S. city and holds tremendous potential as a key component of a carbon monitoring system in addition to enabling efficient greenhouse gas mitigation and planning. We compare our estimate of fossil fuel emissions from natural gas to consumption data provided by the local gas utility. At the zip code level, we achieve a bias adjusted pearson r correlation value of 0.92 (p<0.001).

  17. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  18. Upward revision of global fossil fuel methane emissions based on isotope database

    NASA Astrophysics Data System (ADS)

    Schwietzke, Stefan; Sherwood, Owen A.; Bruhwiler, Lori M. P.; Miller, John B.; Etiope, Giuseppe; Dlugokencky, Edward J.; Michel, Sylvia Englund; Arling, Victoria A.; Vaughn, Bruce H.; White, James W. C.; Tans, Pieter P.

    2016-10-01

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  19. Material flow analysis of fossil fuels in China during 2000-2010.

    PubMed

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000-2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions.

  20. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    PubMed

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  1. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    SciTech Connect

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.; Erickson, D; Gregg, J. S.; Jacobson, Andrew; Marland, Gregg; Miller, J.; Oda, T; Raupach, Michael; Rayner, P; Treanton, K.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  2. Material Flow Analysis of Fossil Fuels in China during 2000–2010

    PubMed Central

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000–2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions. PMID:23365525

  3. Material flow analysis of fossil fuels in China during 2000-2010.

    PubMed

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000-2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions. PMID:23365525

  4. Nitrogen Stable Isotope Composition of Various Fossil-fuel Combustion Nitrogen Oxide Sources

    NASA Astrophysics Data System (ADS)

    Walters, W.; Michalski, G. M.; Fang, H.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) are important trace gases that impact atmospheric chemistry, air quality, and climate. In order to help constrain NOx source contributions, the nitrogen (N) stable isotope composition of NOx (δ15N-NOx) may be a useful indicator for NOx source partitioning. However, despite anthropogenic emissions being the most prevalent source of NOx, there is still large uncertainty in the δ15N-NOx values for anthropogenic sources. To this end, this study provides a detailed analysis of several fossil-fuel combustion NOx sources and their δ15N-NOx values. To accomplish this, exhaust or flue samples from several fossil-fuel combustion sources were sampled and analyzed for their δ15N-NOx that included airplanes, gasoline-powered vehicles not equipped with a catalytic converter, gasoline-powered lawn tools and utility vehicles, diesel-electric buses, diesel semi-trucks, and natural gas-burning home furnace and power plant. A relatively large range of δ15N-NOx values were measured from -28.1 to 0.3‰ for individual exhaust/flue samples with cold started diesel-electric buses contributing on average the lowest δ15N-NOx values at -20.9‰, and warm-started diesel-electric buses contributing on average the highest values of -1.7‰. The NOx sources analyzed in this study primarily originated from the "thermal production" of NOx and generally emitted negative δ15N-NOx values, likely due to the kinetic isotope effect associated with its production. It was found that there is a negative correlation between NOx concentrations and δ15N-NOx for fossil-fuel combustion sources equipped with catalytic NOx reduction technology, suggesting that the catalytic reduction of NOx may have an influence on δ15N-NOx values. Based on the δ15N-NOx values reported in this study and in previous studies, a δ15N-NOx regional and seasonal isoscape was constructed for the contiguous United States. The constructed isoscape demonstrates the seasonal importance of various

  5. US fossil fuel technologies for developing countries: Costa Rica country packet

    SciTech Connect

    Not Available

    1988-07-21

    Costa Rica presents long-term opportunities for US participation in the power generation sector. A growing industrial base, high economic growth, and an increasing living standard will continue to require more reliable electric generation. Although the country has depended upon hydropower to meet much of its energy needs, coal could become a more reliable form of energy in the near term, based on estimated indigenous resources and proximity to food quality imports. Thus, trade opportunities exist for the United States, in the electric power sector, for the US advanced fossil fuel technologies and related services. This report describes the Costa Rican energy situation; examines the financial, economic, and trade issues; and discusses project opportunities in Costa Rica. Costa Rica appears to have a positive climate for trade and investment activities, stimulated by the Caribbean Basin Initiative. Although the economy has recently slowed, the economic outlook appears healthy. Application for membership in the General Agreement on Tariffs and Trade is pending. Due to an unexpectedly large growth in electricity demand, the Costa Rican utility Instituto Costarricense de Electricidad is evaluating the need for construction of a coal-fired power plant in the size range of 60 to 125 MW, with an in-service data of the mid-1990s. A decision is expected by the end of 1988 concerning the required size, source of coal, and timing of this coal-fired plant. Based on conditions in Costa Rica, US advanced fossil-fuel technologies were chosen for continued study in conjunction with the identified potential project opportunities. These technologies are the atmospheric fluidized bed combustor and coal-water mixtures. They could play a major role in meeting the utility expansion and/or industrial conversion opportunities summarized in Table I.1. The value of such projects could approximate US $160 million.

  6. ADVANCED HYDROGEN TRANSPORT MEMBRANES FOR VISION 21 FOSSIL FUEL PLANTS

    SciTech Connect

    Shane E. Roark; Anthony F. Sammells; Richard Mackay; Stewart R. Schesnack; Scott R. Morrison; Thomas F. Barton; Sara L. Rolfe; U. Balachandran; Richard N. Kleiner; James E. Stephan; Frank E. Anderson; Aaron L. Wagner; Jon P. Wagner

    2003-10-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Over the past 12 months, this project has focused on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. The ceramic/ceramic composites demonstrate the lowest hydrogen permeation rates, with a maximum of approximately 0.1 mL/min/cm{sup 2} for 0.5-mm thick membranes at 800 to 950 C. Under equivalent conditions, cermets achieve a hydrogen permeation rate near 1 mL/min/cm{sup 2}, and the metal phase also improves structural stability and surface catalysis for hydrogen dissociation. Furthermore, if metals with high hydrogen permeability are used in cermets, permeation rates near 4 mL/min/cm{sup 2} are achievable with relatively thick membranes. Layered composite membranes have by far the highest permeation rates with a maximum flux in excess of 200 mL {center_dot} min{sup -1} {center_dot} cm{sup -2}. Moreover, these permeation rates were achieved at a total pressure differential across the membrane of 450 psi. Based on these results, effort during the next year will focus on this category of membranes. This report contains long-term hydrogen permeation data over eight

  7. Aircraft Fuel Cell Power Systems

    NASA Technical Reports Server (NTRS)

    Needham, Robert

    2004-01-01

    In recent years, fuel cells have been explored for use in aircraft. While the weight and size of fuel cells allows only the smallest of aircraft to use fuel cells for their primary engines, fuel cells have showed promise for use as auxiliary power units (APUs), which power aircraft accessories and serve as an electrical backup in case of an engine failure. Fuel cell MUS are both more efficient and emit fewer pollutants. However, sea-level fuel cells need modifications to be properly used in aircraft applications. At high altitudes, the ambient air has a much lower pressure than at sea level, which makes it much more difficult to get air into the fuel cell to react and produce electricity. Compressors can be used to pressurize the air, but this leads to added weight, volume, and power usage, all of which are undesirable things. Another problem is that fuel cells require hydrogen to create electricity, and ever since the Hindenburg burst into flames, aircraft carrying large quantities of hydrogen have not been in high demand. However, jet fuel is a hydrocarbon, so it is possible to reform it into hydrogen. Since jet fuel is already used to power conventional APUs, it is very convenient to use this to generate the hydrogen for fuel-cell-based APUs. Fuel cells also tend to get large and heavy when used for applications that require a large amount of power. Reducing the size and weight becomes especially beneficial when it comes to fuel cells for aircraft. My goal this summer is to work on several aspects of Aircraft Fuel Cell Power System project. My first goal is to perform checks on a newly built injector rig designed to test different catalysts to determine the best setup for reforming Jet-A fuel into hydrogen. These checks include testing various thermocouples, transmitters, and transducers, as well making sure that the rig was actually built to the design specifications. These checks will help to ensure that the rig will operate properly and give correct results

  8. Fuel Cell Powered Lift Truck

    SciTech Connect

    Moulden, Steve

    2015-08-20

    This project, entitled “Recovery Act: Fuel Cell-Powered Lift Truck Sysco (Houston) Fleet Deployment”, was in response to DOE funding opportunity announcement DE-PS36-08GO98009, Topic 7B, which promotes the deployment of fuel cell powered material handling equipment in large, multi-shift distribution centers. This project promoted large-volume commercialdeployments and helped to create a market pull for material handling equipment (MHE) powered fuel cell systems. Specific outcomes and benefits involved the proliferation of fuel cell systems in 5-to 20-kW lift trucks at a high-profile, real-world site that demonstrated the benefits of fuel cell technology and served as a focal point for other nascent customers. The project allowed for the creation of expertise in providing service and support for MHE fuel cell powered systems, growth of existing product manufacturing expertise, and promoted existing fuel cell system and component companies. The project also stimulated other MHE fleet conversions helping to speed the adoption of fuel cell systems and hydrogen fueling technology. This document also contains the lessons learned during the project in order to communicate the successes and difficulties experienced, which could potentially assist others planning similar projects.

  9. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    PubMed

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'.

  10. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    PubMed

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-01

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'. PMID:27216509

  11. Energy analysis and break-even distance for transportation for biofuels in comparison to fossil fuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the present analysis various forms fuel from biomass and fossil sources, their mass and energy densities, and their break-even transportation distances to transport them effectively were analyzed. This study gives an insight on how many times more energy spent on transporting the fuels to differe...

  12. Community, environmental, and occupational health risks associated with fossil fuel energy production

    NASA Astrophysics Data System (ADS)

    Shepherd, Mark A.

    Short-term and long-term health risks associated with fossil fuel power production can be grouped into three broad categories: risks to the surrounding community, the natural environment and to plant workers. The results of three studies examining the primary short-term or long-term impacts of fossil fuel power plants are presented within this dissertation. The first study estimates the plausible community health effects associated with peak SO2 emissions from three coal-fired power plants in the Baltimore, Maryland area. Concentrations from mobile and stationary air monitoring were compared to human clinical studies that demonstrated respiratory morbidity. Results indicate that exposure concentrations are below levels associated with respiratory symptoms. A single measurement at one monitoring site, however, may indicate risk of asymptomatic lung function decrement for SO2-sensitive asthmatics. The second study estimates the relationship between operational, environmental and temporal factors at a Texas coastal power plant and fish and shellfish impingement. Impingement is a long-term risk to fish populations near power plants. When large quantities of water are withdrawn from water bodies for cooling, fish and shellfish may be harmed if impinged against screens intended to remove debris. In this study, impingement of fish and shellfish was best explained by dissolved oxygen concentration, sampling month and sampling time. When examined separately, temperature and sampling month were most important in explaining fish impingement, while for shellfish, sampling month and sampling time were most important. Operational factors were not significant predictors of impingement. The third study examines whether the number of worker similar exposure groups classified using observation methods was the same as groups classified using personal exposure monitoring. Using observational techniques and personal monitoring, power plant workers were grouped according to exposure

  13. Cofiring fossil fuels with renewable energy in addressing global climate change and the Kyoto Protocol

    SciTech Connect

    Miller, C.L.; Hoppe, J.A.

    1998-12-31

    In addressing the issue of Global Climate Change, the use of renewable energy resources and energy efficiency has been traditionally touted as the most effective way to mitigate the production of greenhouse gases and to sequester carbon-based emissions resulting from the use of fossil fuels for the worldwide production of power. The goal set by the Kyoto Protocol of ``stabilization of greenhouse gas concentrations in the atmosphere at a level that would prevent dangerous anthropogenic interference with the atmosphere`` will not be met unless the predictions for world energy production based on the use of oil, gas and coal are considered in using renewable energy resources. The use of renewable energy in the US amounted to 7.4 quads in 1997 which was only 7.8% of total domestic gross energy demand. In the US alone the biomass renewable energy economically accessible resource base is estimated at 14 quads per year which can be considered for use in addressing predicted increases in electric power demand. In 1990 the biomass generated power was 3.1 quads in the US alone, and renewable energy accounted for 14.7% of the total world power production allowing for significant increases in the future. The most significant use of renewable energy other than the power sector is the use of biofuels (principally from wood) in the industrial sector which accounts for 21% of the total renewable demand of 7.432 quads in 1997.

  14. Water reactive hydrogen fuel cell power system

    SciTech Connect

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-11-25

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  15. Water reactive hydrogen fuel cell power system

    SciTech Connect

    Wallace, Andrew P; Melack, John M; Lefenfeld, Michael

    2014-01-21

    A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into a fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.

  16. Societal Consequences of Carbon Dioxide Emissions: Impacts to Well Being of Reduced Fossil Fuel Dependence.

    NASA Astrophysics Data System (ADS)

    Krebill-Prather, Rose Louise

    The threat of global warming raises important questions about ways human activities are altering the biophysical environment. The burning of fossil fuels by modern societies is a principal contributor to greenhouse gases implicated in climate change. Furthermore, there is growing concern about how global environmental changes anticipated due to global warming may impact the long-term sustainability of all societies. The threat of global warming challenges scientists and policy makers to further our understanding of relationships among fossil fuel consumption and CO_2, emissions on the one hand, and economic and social well-being on the other. This challenge is especially germane to the industrialized countries, for they are the largest consumers of fossil fuels. This study comprises a multiwave panel design focused on the period 1950-1985 for twenty-three highly industrialized nations. A trend analysis showed that CO _2 emissions diverged along three separate patterns after 1970, grouping countries into one of the three patterns, while measures of societal well -being continued on their historical trajectories. Numerous comparisons made via a path analysis showed that the amount of fossil fuel consumed had a continued positive impact on economic well-being. At the same time overall fossil fuel consumption had a declining and sometimes negligible direct effect on various dimensions of social well-being over the time period. On the general welfare and modern life-style dimensions, the positive impact of economic well-being overshadowed the impact of fossil fuel consumption. Both fossil fuel consumption and economic well-being had a declining negative influence on health and safety and an insignificant effect on life stress. The structure of energy use, reflected in gross land mass, appeared to have an important influence on fossil fuel consumption, with greater geographical dispersion leading to greater fossil fuel consumption. However while the structure of energy

  17. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    PubMed

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  18. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    PubMed

    Levin, Ingeborg; Rödenbeck, Christian

    2008-03-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  19. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    PubMed

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues. PMID:21942396

  20. Zooplankton fecal pellets link fossil fuel and phosphate deposits

    USGS Publications Warehouse

    Porter, K.G.; Robbins, E.I.

    1981-01-01

    Fossil zooplankton fecal pellets found in thinly bedded marine and lacustrine black shales associated with phosphate, oil, and coal deposits, link the deposition of organic matter and biologically associated minerals with planktonic ecosystems. The black shales were probably formed in the anoxic basins of coastal marine waters, inland seas, and rift valley lakes where high productivity was supported by runoff, upwelling, and outwelling. Copyright ?? 1981 AAAS.

  1. Pollutant Emissions and Lean Blowoff Limits of Fuel Flexible Burners Operating on Gaseous Renewable and Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Colorado, Andres

    This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including

  2. Novel Sorbent to Clean Biogas for Fuel Cell Combined Heat and Power

    SciTech Connect

    2009-11-01

    TDA Research Inc., in collaboration with FuelCell Energy, will develop a new, high-capacity sorbent to remove sulfur from anaerobic digester gas. This technology will enable the production of a nearly sulfur-free biogas to replace natural gas in fuel cell power plants while reducing greenhouse gas emissions from fossil fuels.

  3. Combustion system for hybrid solar fossil fuel receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  4. Fossils harbor climate clues and fuel debate over glacier stability

    SciTech Connect

    Not Available

    1993-06-01

    At the edge of the Ross Ice Shelf near McMurdo Station in Antarctica, scientists have discovered fossils of well preserved wood and a mixture of microscopic marine organisms, dating from the Eocene epoch. This discovery promises significant clues to the onset of glaciation in Antarctica. Geologists believe that this discovery may shed light on Antarctica's link to world climate and help predict future climatic change. Debate centers around when glaciation first became extensive, 15 or 20 million years ago, and whether or not the ice sheet was dynamic and responsive to small fluctuations in climate or stable and able to lock up massive amounts of the world's water. 7 refs.

  5. If Fossil and Fissile Fuels Falter, We've Got. . .

    ERIC Educational Resources Information Center

    Klaus, Robert L.

    1977-01-01

    Alternative energy sources and the new systems and techniques required for their development are described: fuel cells, magnetohydrodynamics, thermionics, geothermal, wind, tides, waste consersion, biomass, and ocean thermal energy conversion. (MF)

  6. Sunflower seed hulls as supplementary fuel to coal-fired power plants

    SciTech Connect

    Brudenell, W.N.; Holland, R.J.

    1981-01-01

    The use of biomass as a supplementary fuel to fossil-fuel power plants is gaining increasing attention due to escalating energy costs. The design of a sunflower seed hulls combustion system for an existing lignite-fired power plant is presented in this paper. 5 refs.

  7. CO₂ emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine; Wada, Kenichi; van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  8. CO2 emissions mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine V.; Wada, Kenichi; Van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher and decrease with mitigation. A first deviation from the optimal transition pathway relaxes global emission targets until 2030, in accordance with the Copenhagen pledges and regionally-specific low-carbon technology targets. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger - twice and more - than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear cut across models, as we find carbon leakage effects ranging from positive to negative because leakage and substitution patterns of coal, oil, and gas differ. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  9. Development of Nano-crystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases

    SciTech Connect

    Xiao, Hai; Dong, Junhang; Lin, Jerry; Romero, Van

    2012-03-01

    This is a final technical report for the first project year from July 1, 2005 to Jan 31, 2012 for DoE/NETL funded project DE-FC26-05NT42439: Development of Nanocrystalline Doped-Ceramic Enabled Fiber Sensors for High Temperature In-Situ Monitoring of Fossil Fuel Gases. This report summarizes the technical progresses and achievements towards the development of novel nanocrystalline doped ceramic material-enabled optical fiber sensors for in situ and real time monitoring the gas composition of flue or hot gas streams involved in fossil-fuel based power generation and hydrogen production.

  10. Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity

    SciTech Connect

    Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

    2001-03-07

    We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

  11. Application of advanced austenitic alloys to fossil power system components

    SciTech Connect

    Swindeman, R.W.

    1996-06-01

    Most power and recovery boilers operating in the US produce steam at temperatures below 565{degrees}C (1050{degrees}F) and pressures below 24 MPa (3500 psi). For these operating conditions, carbon steels and low alloy steels may be used for the construction of most of the boiler components. Austenitic stainless steels often are used for superheater/reheater tubing when these components are expected to experience temperatures above 565{degrees}C (1050{degrees}F) or when the environment is too corrosive for low alloys steels. The austenitic stainless steels typically used are the 304H, 321H, and 347H grades. New ferritic steels such as T91 and T92 are now being introduced to replace austenitic: stainless steels in aging fossil power plants. Generally, these high-strength ferritic steels are more expensive to fabricate than austenitic stainless steels because the ferritic steels have more stringent heat treating requirements. Now, annealing requirements are being considered for the stabilized grades of austenitic stainless steels when they receive more than 5% cold work, and these requirements would increase significantly the cost of fabrication of boiler components where bending strains often exceed 15%. It has been shown, however, that advanced stainless steels developed at ORNL greatly benefit from cold work, and these steels could provide an alternative to either conventional stainless steels or high-strength ferritic steels. The purpose of the activities reported here is to examine the potential of advanced stainless steels for construction of tubular components in power boilers. The work is being carried out with collaboration of a commercial boiler manufacturer.

  12. High resolution fossil fuel combustion CO{sub 2} emission fluxes for the United States

    SciTech Connect

    Kevin R. Gurney; Daniel L. Mendoza; Yuyu Zhou; Marc L. Fischer; Chris C. Miller; Sarath Geethakumar; Stephane de la Rue du Can

    2009-07-15

    Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of about 100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach. 39 refs., 5 figs., 1 tab.

  13. Environmental review for the conversion of Bellefonte Nuclear Plant to fossil fuel

    SciTech Connect

    Carter, R.; Rucker, H.; Summers, R.

    1998-07-01

    The Tennessee Valley Authority recently issued for public review a Draft Environmental Impact Statement for the conversion of the unfinished Bellefonte Nuclear Plant to fossil fuel. The DEIS was structured to support three tiers of decision making. Tier 1 is to decide between the No-Action Alternative, which is to leave Bellefonte as a partially completed nuclear plant into the indefinite future, and the Proposed Action Alternative, which is to proceed with converting Bellefonte to fossil fuel. Tier 2 is to select one of five conversion options. In the DEIS, TVA indicated no preference among the five competing fossil conversion options. The five conversion pathways would fully repower the plant consistent with fossil fuel availability, would use commercially ready systems and technologies and be designed to fully utilize the capacity of transmission lines serving Bellefonte. Conversion options addressed were pulverized coal (PC), natural gas combined cycle (NGCC), integrated gasification combined cycle (IGCC), IGCC with joint production of electricity and chemicals, and an option, which combines elements of NGCC and IGCC with coproduction. Tier 3 involves decisions about eight sub-option choices, basically types of processes, equipment, and modes of operation, which is part of two or more conversion options. An example of a sub-option choice would be the type of gasifier that would be used in conversion options involving coal or petroleum coke gasification. Other sub-option choices addressed in the DEIS were natural gas pipeline corridors; fuels, feedstocks, and by-products transportation modes; types of combustion turbines; solid fuels; types of boilers for conventional coal-fired options; chemical production mixes; and modes of onsite solid fuel conveyance. The impact of constructing and operating each proposed fossil conversion option at Bellefonte were evaluated for 18 environmental resource and economic categories.

  14. High resolution fossil fuel combustion CO2 emission fluxes for the United States

    SciTech Connect

    Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-03-19

    Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  15. High resolution fossil fuel combustion CO2 emission fluxes for the United States.

    PubMed

    Gurney, Kevin R; Mendoza, Daniel L; Zhou, Yuyu; Fischer, Marc L; Miller, Chris C; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-07-15

    Quantification of fossil fuel CO2 emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO2 measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of approximately 100 km2 and daily time scales requires fossil fuel CO2 inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the "Vulcan" inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO2 emissions for the contiguous U.S. at spatial scales less than 100 km2 and temporal scales as small as hours. This data product completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO2 emissions. Comparison to the global 1degree x 1 degree fossil fuel CO2 inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  16. High resolution fossil fuel combustion CO2 emission fluxes for the United States.

    PubMed

    Gurney, Kevin R; Mendoza, Daniel L; Zhou, Yuyu; Fischer, Marc L; Miller, Chris C; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-07-15

    Quantification of fossil fuel CO2 emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO2 measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of approximately 100 km2 and daily time scales requires fossil fuel CO2 inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the "Vulcan" inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO2 emissions for the contiguous U.S. at spatial scales less than 100 km2 and temporal scales as small as hours. This data product completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO2 emissions. Comparison to the global 1degree x 1 degree fossil fuel CO2 inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach. PMID:19708393

  17. Geology, fossil fuel potential and environmental concerns of the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Rabinowitz, P.; Yusifov, M.; Arnoldi, J.

    2003-04-01

    The fossil fuel producing areas of the Caspian region consists primarily of two basins, the Precaspian and South Caspian basins, both containing sediments in excess of 20km. The South Caspian Basin, a remnant of Tethys, was formed commencing in the Early-Middle Jurassic as a result of opening of back-arc basins behind volcanic arcs. The PreCaspian Basin extends onshore onto Kazakhstan and Russia and commenced its complicated geological evolution in the Middle Devonian. These basins are presently producing oil and gas in excess of one million barrels per day and two trillion cubic feet per day, respectively. They contain oil and gas reserves that are comparable to those of most other of the world's fossil fuel producing regions, excluding the Middle East. It is anticipated that within a decade these basins will produce over three million barrels of oil and four trillion cubic feet of gas per day. We review the economic, environmental, and geopolitical concerns with respect to exploration and recovery of the region’s fossil fuels. For one, the presence of mud volcanoes, gas hydrates, and earthquakes are a hazard for installation of oil platforms and other facilities. Pollution, attributed in large part to the fossil fuel industry, has created health and other environmental problems such as mass die-off of the Caspian seal, and in part to the large decrease in sturgeon population. Other important environmental concerns include the relatively rapid changes in sea level and desertification of the surrounding regions. There are also important legal questions with respect to ownership of resources beneath the seafloor. In addition, the transportation routes (pipelines) of fossil fuels that are anticipated to be recovered over the next decades have yet to be fully determined. Despite many of the political uncertainties, significant advances have been made in the short time since the breakup of the Soviet Union fueling optimism for the future of the region.

  18. Aluminum-26 in the early solar system - Fossil or fuel

    NASA Technical Reports Server (NTRS)

    Lee, T.; Papanastassiou, D. A.; Wasserburg, G. J.

    1977-01-01

    The isotopic composition of Mg was measured in different phases of a Ca-Al-rich inclusion in the Allende meteorite. Large excesses of Mg-26 of up to 10% were found. These excesses correlate strictly with the Al-27/Mg-24 ratio for four coexisting phases with distinctive chemical compositions. Models of in situ decay of Al-26 within the solar system and of mixing of interstellar dust grains containing fossil Al-26 with normal solar system material are presented. The observed correlation provides definitive evidence for the presence of Al-26 in the early solar system. This requires either injection of freshly synthesized nucleosynthetic material into the solar system immediately before condensation and planet formation, or local production within the solar system by intense activity of the early sun. Planets promptly produced from material with the inferred Al-26/Al-27 would melt within about 300,000 years.

  19. Specification for integrated controls and monitoring for fossil power plants

    SciTech Connect

    McKinley, J.H.; Papilla, R.P.; Shendrikar, U.D. )

    1991-06-01

    This specification was prepared by Southern California Edison Co. and used to bid the contract for a state-of-the-art integrated control and monitoring system for the El Segundo control system retrofit project. The system will be installed on Units 3 and 4 during a 12 week scheduled outage beginning in January, 1991. Since early 1989, EPRI has been cost sharing this project with SCE under research project RP2922-2. This specification is one of seven supplemental EPRI reports that will be generated from the project besides interim and final guidelines for integrated controls and monitoring for fossil power plants. The specification is a first-of-a-kind, requiring bidders to apply enhanced control logic and advanced control algorithms, and integrate various diagnostic, expert systems, performance monitoring, and other condition monitoring applications with a DCS. The proof of the quality and comprehensiveness of this specification is apparent as the project moves forward with only a few months before system delivery: There are few issues that have had to be addressed separately from the specification. The information contained in this report should be useful for any utility launching a control system upgrade project.

  20. Advanced austenitic alloys for fossil power systems. CRADA final report

    SciTech Connect

    Swindeman, R.W.; Cole, N.C.; Canonico, D.A.; Henry, J.F.

    1998-08-01

    In 1993, a Cooperative Research and Development Agreement (CRADA) was undertaken between Oak Ridge National Laboratory and ABB Combustion Engineering t examine advanced alloys for fossil power systems. Specifically, the use of advanced austenitic stainless steels for superheater/reheater construction in supercritical boilers was examined. The strength of cold-worked austenitic stainless steels was reviewed and compared to the strength and ductility of advanced austenitic stainless steels. The advanced stainless steels were found to retain their strength to very long times at temperatures where cold-worked standard grades of austenitic stainless steels became weak. Further, the steels exhibited better long-time stability than the stabilized 300 series stainless steels in either the annealed or cold worked conditions. Type 304H mill-annealed tubing was provided to ORNL for testing of base metal and butt welds. The tubing was found to fall within range of expected strength for 304H stainless steel. The composite 304/308 stainless steel was found to be stronger than typical for the weldment. Boiler tubing was removed from a commercial boiler for replacement by newer steels, but restraints imposed by the boiler owners did not permit the installation of the advanced steels, so a standard 32 stainless steel was used as a replacement. The T91 removed from the boiler was characterized.

  1. A FEASIBILITY STUDY FOR THE COPROCESSING OF FOSSIL FUELS WITH BIOMASS BY THE HYDROCARB PROCESS

    EPA Science Inventory

    The report describes and gives results of an assessment of a new process concept for the production of carbon and methanol from fossil fuels. The Hydrocarb Process consists of the hydrogasification of carbonaceous material to produce methane, which is subsequently thermally decom...

  2. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    NASA Technical Reports Server (NTRS)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  3. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century.

    PubMed

    Graven, Heather D

    2015-08-01

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon ((14)C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio (14)C/C in atmospheric CO2 (Δ(14)CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ(14)CO2 because fossil fuels have lost all (14)C from radioactive decay. Simulations of Δ(14)CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ(14)CO2 near the preindustrial level of 0‰ through 2100, whereas "business-as-usual" emissions will reduce Δ(14)CO2 to -250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial "aging" of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old.

  4. EPA/IFP EUROPEAN WORKSHOP ON THE EMISSION ON NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION

    EPA Science Inventory

    The report summarizes the proceedings of an EPA/Institut Francais du Petrole (IFP) cosponsored workshop addressing direct nitrous oxide (N2O) emission from fossil fuel combustion. The third in a series, it was held at the IFP in Rueil-Malmaison, France, on June 1-2, 1988. Increas...

  5. The effects of hygroscopicity of fossil fuel BC on mixed-phase and cirrus ice clouds

    NASA Astrophysics Data System (ADS)

    Yun, Y.; Penner, J. E.

    2010-12-01

    Fossil fuel burning BC aerosols are often emitted together with sulfate, which coats the surface of these BC particles and changes their hygroscopicity. The ice forming capability of the fossil fuel burning BC can differ widely as a result of the amount of soluble coating on their surface. Due to the abundance of fossil fuel burning BC particles, a small change in their activated fraction can produce a large difference in their climate forcing. To better quantify the role of fossil fuel burning BC in climate change, a 3-BC (hydrophobic, hydrophilic and hygroscopic BC) scheme is developed to replace the 1-BC scheme in a coupled climate and aerosol transport model (CAM-IMPACT). The new scheme explicitly calculates the condensation and coagulation of sulfate on BC particles and keeps track of their coating in the 3-BC states. The hygroscopicity of BC is determined by the layers of sulfate coating on their surface according to criteria developed in laboratory observations. The ice formation scheme in mixed-phase and cirrus clouds is also updated to treat the 3 hygroscopicity BC groups separately according to their different ice freezing capabilities. This paper will report the climate forcing associated with the new BC scheme as well as comparison with observations.

  6. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Federal Register on October 15, 2010 (75 FR 63404), announcing a public meeting and seeking comments... received, please refer to the October 15, 2010, notice (75 FR 63404). Issued in Washington, DC, on October... Parts 433 and 435 RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for New...

  7. Sources of black carbon in aerosols: fossil fuel burning vs. biomass burning

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.

    2013-12-01

    The uncertainty in black carbon (BC) analysis and our inability to directly quantify the BC sources in the atmosphere has led to the uncertainty in compiling a regional or global BC emission inventory attributed to biomass burnings. We initiate this study to demonstrate a new approach, which quantifies the source of BC in the atmosphere between biomass and fossil fuel burnings. We applied the newly developed multi-element scanning thermal analysis (MESTA) technology to quantify BC and organic carbon (OC), respectively, in aerosol samples. MESTA can also separate BC from OC for subsequent radiocarbon analyses. Because fossil fuel has been depleted of radiocarbon and biomass has radiocarbon of the modern atmospheric level, we can quantify the sources of BC between fossil fuel and biomass burnings. We sampled the PM2.5 in the ambient air of central Tallahassee and its rural areas during the May-June (prescribed burning) and Nov-Dec (non-burning) periods. The results indicate that biomass burning contributed 89×1% and 67×2% of BC, respectively, during May-June and Nov.-Dec. periods. The rest of PM2.5 BC was contributed from fossil fuel burning. The radiocarbon contents of the OC was 103.42×0.55 percent modern carbon (pmC), which is consistent with the current atmospheric level with a trace of the bomb radiocarbon remained from the open atmosphere nuclear testing.

  8. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century

    PubMed Central

    Graven, Heather D.

    2015-01-01

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon (14C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio 14C/C in atmospheric CO2 (Δ14CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ14CO2 because fossil fuels have lost all 14C from radioactive decay. Simulations of Δ14CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ14CO2 near the preindustrial level of 0‰ through 2100, whereas “business-as-usual” emissions will reduce Δ14CO2 to −250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial “aging” of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old. PMID:26195757

  9. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    SciTech Connect

    Linville, B.

    1982-10-01

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  10. Health effects of fossil fuel combustion products: report of a workshop.

    PubMed Central

    Comar, C L; Nelson, N

    1975-01-01

    Judgemental positions are presented on research priorities in regard to the health effects from stationary sources of fossil fuel combustion products. Hopefully, they can provide guidance for efforts to ensure that national energy needs are met with minimum environmental and economic burdens on the public. The major areas include epidemiological studies, controlled biological studies, mutagenesis and carcinogenesis, trace elements, monitoring and analysis. PMID:1227856

  11. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century.

    PubMed

    Graven, Heather D

    2015-08-01

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon ((14)C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio (14)C/C in atmospheric CO2 (Δ(14)CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ(14)CO2 because fossil fuels have lost all (14)C from radioactive decay. Simulations of Δ(14)CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ(14)CO2 near the preindustrial level of 0‰ through 2100, whereas "business-as-usual" emissions will reduce Δ(14)CO2 to -250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial "aging" of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old. PMID:26195757

  12. Fuel-Powered Artificial Muscles

    NASA Astrophysics Data System (ADS)

    Ebron, Von Howard; Yang, Zhiwei; Seyer, Daniel J.; Kozlov, Mikhail E.; Oh, Jiyoung; Xie, Hui; Razal, Joselito; Hall, Lee J.; Ferraris, John P.; MacDiarmid, Alan G.; Baughman, Ray H.

    2006-03-01

    Artificial muscles and electric motors found in autonomous robots and prosthetic limbs are typically battery-powered, which severely restricts the duration of their performance and can necessitate long inactivity during battery recharge. To help solve these problems, we demonstrated two types of artificial muscles that convert the chemical energy of high-energy-density fuels to mechanical energy. The first type stores electrical charge and uses changes in stored charge for mechanical actuation. In contrast with electrically powered electrochemical muscles, only half of the actuator cycle is electrochemical. The second type of fuel-powered muscle provides a demonstrated actuator stroke and power density comparable to those of natural skeletal muscle and generated stresses that are over a hundred times higher.

  13. Economic value of U.S. fossil fuel electricity health impacts.

    PubMed

    Machol, Ben; Rizk, Sarah

    2013-02-01

    Fossil fuel energy has several externalities not accounted for in the retail price, including associated adverse human health impacts, future costs from climate change, and other environmental damages. Here, we quantify the economic value of health impacts associated with PM(2.5) and PM(2.5) precursors (NO(x) and SO(2)) on a per kilowatt hour basis. We provide figures based on state electricity profiles, national averages and fossil fuel type. We find that the economic value of improved human health associated with avoiding emissions from fossil fuel electricity in the United States ranges from a low of $0.005-$0.013/kWh in California to a high of $0.41-$1.01/kWh in Maryland. When accounting for the adverse health impacts of imported electricity, the California figure increases to $0.03-$0.07/kWh. Nationally, the average economic value of health impacts associated with fossil fuel usage is $0.14-$0.35/kWh. For coal, oil, and natural gas, respectively, associated economic values of health impacts are $0.19-$0.45/kWh, $0.08-$0.19/kWh, and $0.01-$0.02/kWh. For coal and oil, these costs are larger than the typical retail price of electricity, demonstrating the magnitude of the externality. When the economic value of health impacts resulting from air emissions is considered, our analysis suggests that on average, U.S. consumers of electricity should be willing to pay $0.24-$0.45/kWh for alternatives such as energy efficiency investments or emission-free renewable sources that avoid fossil fuel combustion. The economic value of health impacts is approximately an order of magnitude larger than estimates of the social cost of carbon for fossil fuel electricity. In total, we estimate that the economic value of health impacts from fossil fuel electricity in the United States is $361.7-886.5 billion annually, representing 2.5-6.0% of the national GDP.

  14. Economic value of U.S. fossil fuel electricity health impacts.

    PubMed

    Machol, Ben; Rizk, Sarah

    2013-02-01

    Fossil fuel energy has several externalities not accounted for in the retail price, including associated adverse human health impacts, future costs from climate change, and other environmental damages. Here, we quantify the economic value of health impacts associated with PM(2.5) and PM(2.5) precursors (NO(x) and SO(2)) on a per kilowatt hour basis. We provide figures based on state electricity profiles, national averages and fossil fuel type. We find that the economic value of improved human health associated with avoiding emissions from fossil fuel electricity in the United States ranges from a low of $0.005-$0.013/kWh in California to a high of $0.41-$1.01/kWh in Maryland. When accounting for the adverse health impacts of imported electricity, the California figure increases to $0.03-$0.07/kWh. Nationally, the average economic value of health impacts associated with fossil fuel usage is $0.14-$0.35/kWh. For coal, oil, and natural gas, respectively, associated economic values of health impacts are $0.19-$0.45/kWh, $0.08-$0.19/kWh, and $0.01-$0.02/kWh. For coal and oil, these costs are larger than the typical retail price of electricity, demonstrating the magnitude of the externality. When the economic value of health impacts resulting from air emissions is considered, our analysis suggests that on average, U.S. consumers of electricity should be willing to pay $0.24-$0.45/kWh for alternatives such as energy efficiency investments or emission-free renewable sources that avoid fossil fuel combustion. The economic value of health impacts is approximately an order of magnitude larger than estimates of the social cost of carbon for fossil fuel electricity. In total, we estimate that the economic value of health impacts from fossil fuel electricity in the United States is $361.7-886.5 billion annually, representing 2.5-6.0% of the national GDP. PMID:23246069

  15. An overview of alternative fossil fuel price and carbon regulation scenarios

    SciTech Connect

    Wiser, Ryan; Bolinger, Mark

    2004-10-01

    The benefits of the Department of Energy's research and development (R&D) efforts have historically been estimated under business-as-usual market and policy conditions. In recognition of the insurance value of R&D, however, the Office of Energy Efficiency and Renewable Energy (EERE) and the Office of Fossil Energy (FE) have been exploring options for evaluating the benefits of their R&D programs under an array of alternative futures. More specifically, an FE-EERE Scenarios Working Group (the Working Group) has proposed to EERE and FE staff the application of an initial set of three scenarios for use in the Working Group's upcoming analyses: (1) a Reference Case Scenario, (2) a High Fuel Price Scenario, which includes heightened natural gas and oil prices, and (3) a Carbon Cap-and-Trade Scenario. The immediate goal is to use these scenarios to conduct a pilot analysis of the benefits of EERE and FE R&D efforts. In this report, the two alternative scenarios being considered by EERE and FE staff--carbon cap-and-trade and high fuel prices--are compared to other scenarios used by energy analysts and utility planners. The report also briefly evaluates the past accuracy of fossil fuel price forecasts. We find that the natural gas prices through 2025 proposed in the FE-EERE Scenarios Working Group's High Fuel Price Scenario appear to be reasonable based on current natural gas prices and other externally generated gas price forecasts and scenarios. If anything, an even more extreme gas price scenario might be considered. The price escalation from 2025 to 2050 within the proposed High Fuel Price Scenario is harder to evaluate, primarily because few existing forecasts or scenarios extend beyond 2025, but, at first blush, it also appears reasonable. Similarly, we find that the oil prices originally proposed by the Working Group in the High Fuel Price Scenario appear to be reasonable, if not conservative, based on: (1) the current forward market for oil, (2) current oil prices

  16. Estimates of health risks associated with radionuclide emissions from fossil-fueled steam-electric generating plants. Final report

    SciTech Connect

    Nelson, C.

    1995-08-01

    Under the Title III, Section 112 of the 1990 Clean Air Act Amendment, Congress directed the U.S. Environmental Protection Agency (EPA) to perform a study of the hazards to public resulting from pollutants emitted by electric utility system generating units. Radionuclides are among the groups of pollutants listed in the amendment. This report updates previously published data and estimates with more recently available information regarding the radionuclide contents of fossil fuels, associated emissions by steam-electric power plants, and potential health effects to exposed population groups.

  17. Dynamics of fossil fuel CO2 neutralization by marine CaCO3

    NASA Astrophysics Data System (ADS)

    Archer, David; Kheshgi, Haroon; Maier-Reimer, Ernst

    1998-06-01

    A detailed model of the ocean circulation and carbon cycle was coupled to a mechanistic model of CaCO3 diagenesis in deep sea sediments to simulate the millennium-scale response of the oceans to future fossil fuel CO2 emissions to the atmosphere and deep sea. Simulations of deep sea injection of CO2 show that CaCO3 dissolution is sensitive to passage of high-CO2 waters through the Atlantic Ocean, but CaCO3 dissolution has a negligible impact on atmospheric pCO2 or the atmospheric stabilization CO2 emission in the coming centuries. The ultimate fate of the fossil fuel CO2 will be to react with CaCO3 on the seafloor and on land. An initial CaCO3 dissolution spike reverses the net sedimentation rate in the ocean until it is attenuated by an enhanced vertical gradient of alkalinity after about 1000 years. The magnitude of the initial spike is sensitive to assumptions about the kinetics for CaCO3 dissolution, but subsequent behavior appears to be less model dependent. Neutralization by seafloor CaCO3 occurs on a timescale of 5-6 kyr, and is limited to at most 60-70% of the fossil fuel release, even if the fossil fuel release is smaller than the seafloor erodible inventory of CaCO3. Additional neutralization by terrestrial CaCO3 restores a balance between CaCO3 weathering and seafloor accumulation on a timescale of 8.5 kyr, while the deficit of seafloor CaCO3 (the lysocline) is replenished with an e-folding timescale of approximately 18 kyr. The final equilibrium with CaCO3 leaves 7-8% of the fossil fuel CO2 remaining in the atmosphere, to be neutralized by the silicate rock cycle on a time frame of hundreds of thousands of years.

  18. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    SciTech Connect

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel

  19. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C

    NASA Astrophysics Data System (ADS)

    McGlade, Christophe; Ekins, Paul

    2015-01-01

    Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production.

  20. Fossil Fuel and Biomass Burning Effect on Climate--Heating or Cooling?.

    NASA Astrophysics Data System (ADS)

    Kaufman, Yoram J.; Fraser, Robert S.; Mahoney, Robert L.

    1991-06-01

    Emission from burning of fossil fuels and biomass (associated with deforestation) generates a radiative forcing on the atmosphere and a possible climate chaw. Emitted trace gases heat the atmosphere through their greenhouse effect, while particulates formed from emitted SO2 cause cooling by increasing cloud albedos through alteration of droplet size distributions. This paper reviews the characteristics of the cooling effect and applies Twomey's theory to cheek whether the radiative balance favors heating or cooling for the cases of fossil fuel and biomass burning. It is also shown that although coal and oil emit 120 times as many CO2 molecules as SO2 molecules, each SO2 molecule is 50-1100 times more effective in cooling the atmosphere (through the effect of aerosol particles on cloud albedo) than a CO2 molecule is in heating it. Note that this ratio accounts for the large difference in the aerosol (3-10 days) and CO2 (7-100 years) lifetimes. It is concluded, that the cooling effect from coal and oil burning may presently range from 0.4 to 8 times the heating effect. Within this large uncertainty, it is presently more likely that fossil fuel burning causes cooling of the atmosphere rather than heating. Biomass burning associated with deforestation, on the other hand, is more likely to cause heating of the atmosphere than cooling since its aerosol cooling effect is only half that from fossil fuel burning and its heating effect is twice as large. Future increases in coal and oil burning, and the resultant increase in concentration of cloud condensation nuclei, may saturate the cooling effect, allowing the heating effect to dominate. For a doubling in the C02 concentration due to fossil fuel burning, the cooling effect is expected to be 0.1 to 0.3 of the heating effect.

  1. Regional projections of nuclear and fossil electric power generation costs

    SciTech Connect

    Smolen, G.R.; Delene, J.G.; Fuller, L.C.; Bowers, H.I.

    1983-12-01

    The total busbar electric generating costs were estimated for locations in ten regions of the United States for base load nuclear and coal-fired power plants with a startup date of January 1995. A complete data set is supplied which specifies each parameter used to obtain the comparative results. When the comparison is based on reference cost parameters, nuclear- and coal-fired generation costs are found to be very close in most regions of the country. Nuclear power is favored in the South Atlantic region where coal must be transported over long distances, while coal-fired generation is favored in the Central and North Central regions where large reserves of cheaply mineable coal exist. The reference data set reflects recent electric utility construction experience. Significantly lower nuclear capital investment costs would result if regulatory reform and improved construction practices were instituted. The electric power generation costs for base load oil- and natural gas-fired plants were also estimated. These plants were found to be noncompetitive in all regions for those scenarios most likely to develop. Generation cost sensitivity to changes in various parameters was examined at a reference location. The sensitivity parameters included capital investment costs, lead times, capacity factors, costs of money, and coal and uranium prices. In addition to the levelized lifetime costs, year-by-year cash flows and revenue requirements are presented. The report concludes with an analysis of the economic merits of recycling spent fuel in light-water reactors.

  2. Applications of the thermogravimetric analysis in the study of fossil fuels

    SciTech Connect

    Huang, He; Wang, Keyu; Wang, Shaojie; Klein, M.T.; Calkins, W.H.

    1996-12-31

    Thermogravimetric analysis (TGA) of coal and resid liquids and coal and resid solid residues, produced in coal liquefaction and coal- derived resid hydroprocessing in SCTBR (short contact time batch reactor), provides a sensitive, rapid, reproducible means of studying kinetics and mechanisms of fossil fuel conversion processes. SimDis TGA and custom built TGA system for distillation provide unique means to characterize liquid fuels for boiling point distribution. TGA provides information about various weight loss processes that can be a reflection of physical and chemical structure of fossil fuel samples. This technique can also yield TG scanning parameters, such as volatile matter, fixed carbon, ash, etc., for monitoring the conversion processes. One example is onset and rate of retrograde reactions during coal liquefaction.

  3. Determination of fossil carbon content in Swedish waste fuel by four different methods.

    PubMed

    Jones, Frida C; Blomqvist, Evalena W; Bisaillon, Mattias; Lindberg, Daniel K; Hupa, Mikko

    2013-10-01

    This study aimed to determine the content of fossil carbon in waste combusted in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign included 42 solid samples, 21 flue gas samples, 3 sorting analyses and 2 investigations using the balance method. The fossil carbon content in the solid samples and in the flue gas samples was determined using (14)C-analysis. From the analyses it was concluded that about a third of the carbon in mixed Swedish waste (municipal solid waste and industrial waste collected at Swedish industry sites) is fossil. The two other methods (the balance method and calculations from sorting analyses), based on assumptions and calculations, gave similar results in the plants in which they were used. Furthermore, the results indicate that the difference between samples containing as much as 80% industrial waste and samples consisting of solely municipal solid waste was not as large as expected. Besides investigating the fossil content of the waste, the project was also established to investigate the usability of various methods. However, it is difficult to directly compare the different methods used in this project because besides the estimation of emitted fossil carbon the methods provide other information, which is valuable to the plant owner. Therefore, the choice of method can also be controlled by factors other than direct determination of the fossil fuel emissions when considering implementation in the combustion plants.

  4. Exploration for fossil and nuclear fuels from orbital altitudes

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1975-01-01

    A review of satellite-based photographic (optical and infrared) and microwave exploration and large-area mapping of the earth's surface in the ERTS program. Synoptic cloud-free coverage of large areas has been achieved with planimetric vertical views of the earth's surface useful in compiling close-to-orthographic mosaics. Radar penetration of cloud cover and infrared penetration of forest cover have been successful to some extent. Geological applications include map editing (with corrections in scale and computer processing of images), landforms analysis, structural geology studies, lithological identification, and exploration for minerals and fuels. Limitations of the method are noted.

  5. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema

    McGraw, Jennifer

    2016-07-12

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  6. Hydrogen milestone could help lower fossil fuel refining costs

    SciTech Connect

    McGraw, Jennifer

    2009-01-01

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  7. Direct fuel cell - A high proficiency power generator for biofuels

    SciTech Connect

    Patel, P.S.; Steinfeld, G.; Baker, B.S.

    1994-12-31

    Conversion of renewable bio-based resources into energy offers significant benefits for our environment and domestic economic activity. It also improves national security by displacing fossil fuels. However, in the current economic environment, it is difficult for biofuel systems to compete with other fossil fuels. The biomass-fired power plants are typically smaller than 50 MW, lower in electrical efficiencies (<25%) and experience greater costs for handling and transporting the biomass. When combined with fuel cells such as the Direct Fuel Cell (DFC), biofuels can produce power more efficiently with negligible environmental impact. Agricultural and other waste biomass can be converted to ethanol or methane-rich biofuels for power generation use in the DFC. These DFC power plants are modular and factory assembled. Due to their electrochemical (non-combustion) conversion process, these plants are environmentally friendly, highly efficient and potentially cost effective, even in sizes as small as a few meagawatts. They can be sited closer to the source of the biomass to minimize handling and transportation costs. The high-grade waste heat available from DFC power plants makes them attractive in cogeneration applications for farming and rural communities. The DFC potentially opens up new markets for biofuels derived from wood, grains and other biomass waste products.

  8. On-line elemental analysis of fossil fuel process streams by inductively coupled plasma spectrometry

    SciTech Connect

    Chisholm, W.P.

    1995-06-01

    METC is continuing development of a real-time, multi-element plasma based spectrometer system for application to high temperature and high pressure fossil fuel process streams. Two versions are under consideration for development. One is an Inductively Coupled Plasma system that has been described previously, and the other is a high power microwave system. The ICP torch operates on a mixture of argon and helium with a conventional annular swirl flow plasma gas, no auxiliary gas, and a conventional sample stream injection through the base of the plasma plume. A new, demountable torch design comprising three ceramic sections allows bolts passing the length of the torch to compress a double O-ring seal. This improves the reliability of the torch. The microwave system will use the same data acquisition and reduction components as the ICP system; only the plasma source itself is different. It will operate with a 750-Watt, 2.45 gigahertz microwave generator. The plasma discharge will be contained within a narrow quartz tube one quarter wavelength from a shorted waveguide termination. The plasma source will be observed via fiber optics and a battery of computer controlled monochromators. To extract more information from the raw spectral data, a neural net computer program is being developed. This program will calculate analyte concentrations from data that includes analyte and interferant spectral emission intensity. Matrix effects and spectral overlaps can be treated more effectively by this method than by conventional spectral analysis.

  9. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  10. Assessment of a multi-stage underwater vehicle concept using a fossil-fuel Stirling engine

    SciTech Connect

    Reader, G.T.; Potter, I.J.

    1995-12-31

    The Stirling Engine because of its inherent closed-cycle operation can be readily modified to work in an airless environment even if the primary source of energy is a fossil fuel. Thus, Stirling engines are well suited for use in the underwater environment and have been operated successfully in manned military submarines since the early 1980s. In recent years fossil fueled Stirling systems have been also proposed for use in small unmanned underwater vehicles (UUVs). However, in this case the need to carry an onboard oxygen supply in a very confined space has presented a number of design difficulties. These are identified in the paper. However, if the oxidant supply to the engine is provided by the membrane extraction of dissolved oxygen from seawater and/or disposable fuel/oxidant pods are used then the UUV Stirling system becomes more attractive. If this latter concept is extended to include multi-stage vehicles then it can be shown that fossil fueled Stirlings could also be put to effective use in long range-long endurance underwater vehicular operations.

  11. CO₂ emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    DOE PAGESBeta

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; et al

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increasesmore » strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.« less

  12. Modelling African aerosol using updated fossil fuel and biofuel emission inventories for 2005 and 2030

    NASA Astrophysics Data System (ADS)

    Liousse, C.; Penner, J. E.; Assamoi, E.; Xu, L.; Criqui, P.; Mima, S.; Guillaume, B.; Rosset, R.

    2010-12-01

    A regional fossil fuel and biofuel emission inventory for particulates has been developed for Africa at a resolution of 0.25° x 0.25° for the year 2005. The original database of Junker and Liousse (2008) was used after modification for updated regional fuel consumption and emission factors. Consumption data were corrected after direct inquiries conducted in Africa, including a new emitter category (i.e. two-wheel vehicles including “zemidjans”) and a new activity sector (i.e. power plants) since both were not considered in the previous emission inventory. Emission factors were measured during the 2005 AMMA campaign (Assamoi and Liousse, 2010) and combustion chamber experiments. Two prospective inventories for 2030 are derived based on this new regional inventory and two energy consumption forecasts by the Prospective Outlook on Long-term Energy Systems (POLES) model (Criqui, 2001). The first is a reference scenario, where no emission controls beyond those achieved in 2003 are taken into account, and the second is for a "clean" scenario where possible and planned policies for emission control are assumed to be effective. BC and OCp emission budgets for these new inventories will be discussed and compared to the previous global dataset. These new inventories along with the most recent open biomass burning inventory (Liousse et al., 2010) have been tested in the ORISAM-TM5 global chemistry-climate model with a focus over Africa at a 1° x 1° resolution. Global simulations for BC and primary OC for the years 2005 and 2030 are carried out and the modelled particulate concentrations for 2005 are compared to available measurements in Africa. Finally, BC and OC radiative properties (aerosol optical depths and single scattering albedo) are calculated and the direct radiative forcing is estimated using an off line model (Wang and Penner, 2009). Results of sensitivity tests driven with different emission scenarios will be presented.

  13. Fuel-Flexible Microturbine and Gasifier System for Combined Heat and Power

    SciTech Connect

    2009-12-01

    Capstone Turbine Corporation, in collaboration with the University of California – Irvine, Packer Engineering, and Argonne National Laboratory, will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions.

  14. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  15. The climate penalty for clean fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Junkermann, W.; Vogel, B.; Sutton, M. A.

    2011-09-01

    To cope with the world's growing demand for energy, a large number of coal-fired power plants are currently in operation or under construction. To prevent environmental damage from acidic sulphur and particulate emissions, many such installations are equipped with flue gas cleaning technology that reduces the emitted amounts of sulphur dioxide (SO2) and nitrogen dioxide (NO2). However, the consequences of this technology for aerosol emissions, and in particular the regional scale impact on cloud microphysics, have not been studied until now. We performed airborne investigations to measure aerosol size distributions in the air masses downwind of coal-fired power installations. We show how the current generation of clean technology reduces the emission of sulphur and fine particulate matter, but leads to an unanticipated increase in the direct emission of ultrafine particles (1-10 nm median diameter) which are highly effective precursors of cloud condensation nuclei (CCN). Our analysis shows how these additional ultrafine particles modify cloud microphysics, as well as precipitation intensity and distribution on a regional scale downwind of emission sources. Effectively, the number of small water droplets is increased, thus reducing the water available for large droplets and rain formation. The corresponding changes in the precipitation budget with a shift from more frequent steady rain to occasionally more vigorous rain events, or even a significant regional reduction of annual precipitation, introduce an unanticipated risk for regional climate and agricultural production, especially in semi-arid climate zones.

  16. The climate penalty for clean fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Junkermann, W.; Vogel, B.; Sutton, M. A.

    2011-12-01

    To cope with the world's growing demand for energy, a large number of coal-fired power plants are currently in operation or under construction. To prevent environmental damage from acidic sulphur and particulate emissions, many such installations are equipped with flue gas cleaning technology that reduces the emitted amounts of sulphur dioxide (SO2) and nitrogen dioxide (NO2). However, the consequences of this technology for aerosol emissions, and in particular the regional scale impact on cloud microphysics, have not been studied until now. We performed airborne investigations to measure aerosol size distributions in the air masses downwind of coal-fired power installations. We show how the current generation of clean technology reduces the emission of sulphur and fine particulate matter, but leads to an unanticipated increase in the direct emission of ultrafine particles (1-10 nm median diameter) which are highly effective precursors of cloud condensation nuclei (CCN). Our analysis shows how these additional ultrafine particles probably modify cloud microphysics, as well as precipitation intensity and distribution on a regional scale downwind of emission sources. Effectively, the number of small water droplets might be increased, thus reducing the water available for large droplets and rain formation. The possible corresponding changes in the precipitation budget with a shift from more frequent steady rain to occasionally more vigorous rain events, or even a significant regional reduction of annual precipitation, introduce an unanticipated risk for regional climate and agricultural production, especially in semi-arid climate zones.

  17. Analysis of the uncertainty associated with national fossil fuel CO2 emissions datasets for use in the global Fossil Fuel Data Assimilation System (FFDAS) and carbon budgets

    NASA Astrophysics Data System (ADS)

    Song, Y.; Gurney, K. R.; Rayner, P. J.; Asefi-Najafabady, S.

    2012-12-01

    High resolution quantification of global fossil fuel CO2 emissions has become essential in research aimed at understanding the global carbon cycle and supporting the verification of international agreements on greenhouse gas emission reductions. The Fossil Fuel Data Assimilation System (FFDAS) was used to estimate global fossil fuel carbon emissions at 0.25 degree from 1992 to 2010. FFDAS quantifies CO2 emissions based on areal population density, per capita economic activity, energy intensity and carbon intensity. A critical constraint to this system is the estimation of national-scale fossil fuel CO2 emissions disaggregated into economic sectors. Furthermore, prior uncertainty estimation is an important aspect of the FFDAS. Objective techniques to quantify uncertainty for the national emissions are essential. There are several institutional datasets that quantify national carbon emissions, including British Petroleum (BP), the International Energy Agency (IEA), the Energy Information Administration (EIA), and the Carbon Dioxide Information and Analysis Center (CDIAC). These four datasets have been "harmonized" by Jordan Macknick for inter-comparison purposes (Macknick, Carbon Management, 2011). The harmonization attempted to generate consistency among the different institutional datasets via a variety of techniques such as reclassifying into consistent emitting categories, recalculating based on consistent emission factors, and converting into consistent units. These harmonized data form the basis of our uncertainty estimation. We summarized the maximum, minimum and mean national carbon emissions for all the datasets from 1992 to 2010. We calculated key statistics highlighting the remaining differences among the harmonized datasets. We combine the span (max - min) of datasets for each country and year with the standard deviation of the national spans over time. We utilize the economic sectoral definitions from IEA to disaggregate the national total emission into

  18. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect

    Russell G. May; Tony Peng; Tom Flynn

    2004-04-01

    Accomplishments during the first six months of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers.

  19. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet

    PubMed Central

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-01-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources. PMID:26601273

  20. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation.

    PubMed

    Alves, L; Paixão, S M

    2011-10-01

    The acute toxicity of some compounds used in fossil fuels biodesulphurisation studies, on the respiration activity, was evaluated by Gordonia alkanivorans and Rhodococcus erythropolis. Moreover, the effect of 2-hydroxybiphenyl on cell growth of both strains was also determined, using batch (chronic bioassays) and continuous cultures. The IC₅₀ values obtained showed the toxicity of all the compounds tested to both strains, specially the high toxicity of 2-HBP. These results were confirmed by the chronic toxicity data. The toxicity data sets highlight for a higher sensitivity to the toxicant by the strain presenting a lower growth rate, due to a lower cells number in contact with the toxicant. Thus, microorganisms exhibiting faster generation times could be more resistant to 2-HBP accumulation during a BDS process. The physiological response of both strains to 2-HBP pulse in a steady-state continuous culture shows their potential to be used in a future fossil fuel BDS process.

  1. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    DOE R&D Accomplishments Database

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  2. Combustion of available fossil-fuel resources sufficient to eliminate the Antarctic Ice Sheet

    NASA Astrophysics Data System (ADS)

    Winkelmann, R.; Levermann, A.; Ridgwell, A.; Caldeira, K.

    2015-12-01

    The Antarctic Ice Sheet stores water equivalent to 58 meters in global sea-level rise. Here we show in simulations with the Parallel Ice Sheet Model that burning the currently attainable fossil-fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil-fuel emissions of 10 000 GtC, Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 meters per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West- and East Antarctica results in a threshold-increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  3. Formulating energy policies related to fossil fuel use: Critical uncertainties in the global carbon cycle

    SciTech Connect

    Post, W.M.; Dale, V.H.; DeAngelis, D.L.; Mann, L.K.; Mulholland, P.J.; O'Neill, R.V.; Peng, T.-H.; Farrell, M.P.

    1990-01-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs. 87 refs.

  4. Opportunities and insights for reducing fossil fuel consumption by households and organizations

    NASA Astrophysics Data System (ADS)

    Stern, Paul C.; Janda, Kathryn B.; Brown, Marilyn A.; Steg, Linda; Vine, Edward L.; Lutzenhiser, Loren

    2016-05-01

    Realizing the ambitious commitments of the 2015 Paris Climate Conference (COP21) will require new ways of meeting human needs previously met by burning fossil fuels. Technological developments will be critical, but so will accelerated adoption of promising low-emission technologies and practices. National commitments will be more achievable if interventions take into account key psychological, social, cultural and organizational factors that influence energy choices, along with factors of an infrastructural, technical and economic nature. Broader engagement of social and behavioural science is needed to identify promising opportunities for reducing fossil fuel consumption. Here we discuss opportunities for change in households and organizations, primarily at short and intermediate timescales, and identify opportunities that have been underused in much of energy policy. Based on this survey, we suggest design principles for interventions by governments and other organizations, and identify areas of emphasis for future social science and interdisciplinary research.

  5. Toward Verifying Fossil Fuel CO2 Emissions with the CMAQ Model: Motivation, Model Description and Initial Simulation

    SciTech Connect

    Liu, Zhen; Bambha, Ray P.; Pinto, Joseph P.; Zeng, Tao; Boylan, Jim; Huang, Maoyi; Lei, Huimin; Zhao, Chun; Liu, Shishi; Mao, Jiafu; Schwalm, Christopher R.; Shi, Xiaoying; Wei, Yaxing; Michelsen, Hope A.

    2014-03-14

    Motivated by the urgent need for emission verification of CO2 and other greenhouse gases, we have developed regional CO2 simulation with CMAQ over the contiguous U.S. Model sensitivity experiments have been performed using three different sets of inputs for net ecosystem exchange (NEE) and two fossil fuel emission inventories, to understand the roles of fossil fuel emissions, atmosphere-biosphere exchange and transport in regulating the spatial and diurnal variability of CO2 near the surface, and to characterize the well-known ‘signal-to-noise’ problem, i.e. the interference from the biosphere on the interpretation of atmospheric CO2 observations. It is found that differences in the meteorological conditions for different urban areas strongly contribute to the contrast in concentrations. The uncertainty of NEE, as measured by the difference among the three different NEE inputs, has notable impact on regional distribution of CO2 simulated by CMAQ. Larger NEE uncertainty and impact are found over eastern U.S. urban areas than along the western coast. A comparison with tower CO2 measurements at Boulder Atmospheric Observatory (BAO) shows that the CMAQ model using hourly varied and high-resolution CO2 emission from the Vulcan inventory and CarbonTracker optimized NEE reasonably reproduce the observed diurnal profile, whereas switching to different NEE inputs significantly degrades the model performance. Spatial distribution of CO2 is found to correlate with NOx, SO2 and CO, due to their similarity in emission sources and transport processes. These initial results from CMAQ demonstrate the power of a state-of-the art CTM in helping interpret CO2 observations and verify fossil fuel emissions. The ability to simulate CO2 in CMAQ will also facilitate investigations of the utility of traditionally regulated pollutants and other species as tracers to CO2 source attribution.

  6. Innovative Fresh Water Production Process for Fossil Fuel Plants

    SciTech Connect

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air

  7. The long-term carbon cycle, fossil fuels and atmospheric composition.

    PubMed

    Berner, Robert A

    2003-11-20

    The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.

  8. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    1995-01-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains a minimum of 92 citations and includes a subject term index and title list.)

  9. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    1997-05-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  10. Reduction of nitrogen oxide emissions from fossil fuels. (Latest citations from Pollution abstracts). Published Search

    SciTech Connect

    1996-01-01

    The bibliography contains citations concerning the removal of nitrogen compounds from fossil fuels and their post-combustion emissions. Removal methods include biological denitrification, fluidized bed combustion, and flue gas denitrification. Applications to utilities, petroleum refineries, and other industries are presented. The design of nitrogen control systems and process optimization are described. (Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  11. Bivariate, nonstationary time-series model for global fossil-fuel production

    SciTech Connect

    Rust, B.W.; Crosby, F.J.

    1992-01-01

    Mankind is returning fossil fuel generated C02 to Earth's atmosphere at an exponential rate, causing concern about a greenhouse warming. Jones, et.al. (1986) derived the record of yearly average temperature changes. The least squares straight line has slope 0.38 +/- 0.04 ( deg C) (century)-1, but the average slope since 1970 has been much greater and is thought by some to indicate the onset of the greenhouse.

  12. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect

    Carl R. Evenson; Shane E. Roark

    2006-03-31

    The objective of this project was to develop an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. A family of hydrogen separation membranes was developed including single phase mixed conducting ceramics, ceramic/ceramic composites, cermet membranes, cermet membranes containing a hydrogen permeable metal, and intermediate temperature composite layered membranes. Each membrane type had different operating parameters, advantages, and disadvantages that were documented over the course of the project. Research on these membranes progressed from ceramics to cermets to intermediate temperature composite layered membranes. During this progression performance was increased from 0.01 mL x min{sup -1} x cm{sup -2} up to 423 mL x min{sup -1} x cm{sup -2}. Eltron and team membranes not only developed each membrane type, but also membrane surface catalysis and impurity tolerance, creation of thin film membranes, alternative applications such as membrane promoted alkane dehydrogenation, demonstration of scale-up testing, and complete engineering documentation including process and mechanical considerations necessary for inclusion of Eltron membranes in a full scale integrated gasification combined cycle power plant. The results of this project directly led to a new $15 million program funded by the Department of Energy. This new project will focus exclusively on scale-up of this technology as part of the FutureGen initiative.

  13. Computational Research Challenges and Opportunities for the Optimization of Fossil Energy Power Generation System

    SciTech Connect

    Zitney, S.E.

    2007-06-01

    Emerging fossil energy power generation systems must operate with unprecedented efficiency and near-zero emissions, while optimizing profitably amid cost fluctuations for raw materials, finished products, and energy. To help address these challenges, the fossil energy industry will have to rely increasingly on the use advanced computational tools for modeling and simulating complex process systems. In this paper, we present the computational research challenges and opportunities for the optimization of fossil energy power generation systems across the plant lifecycle from process synthesis and design to plant operations. We also look beyond the plant gates to discuss research challenges and opportunities for enterprise-wide optimization, including planning, scheduling, and supply chain technologies.

  14. Partial replacement of non renewable fossil fuels energy by the use of waste materials as alternative fuels

    NASA Astrophysics Data System (ADS)

    Indrawati, V.; Manaf, A.; Purwadi, G.

    2009-09-01

    This paper reports recent investigations on the use of biomass like rice husk, palm kernel shell, saw dust and municipal waste to reduce the use of fossil fuels energy in the cement production. Such waste materials have heat values in the range approximately from 2,000 to 4,000 kcal/kg. These are comparable to the average value of 5800 kcal/kg from fossil materials like coals which are widely applied in many industrial processing. Hence, such waste materials could be used as alternative fuels replacing the fossil one. It is shown that replacement of coals with such waste materials has a significant impact on cost effectiveness as well as sustainable development. Variation in moisture content of the waste materials, however should be taken into account because this is one of the parameter that could not be controlled. During fuel combustion, some amount of the total energy is used to evaporate the water content and thus the net effective heat value is less.

  15. Technical and economic feasibility study of solar/fossil hybrid power systems

    NASA Technical Reports Server (NTRS)

    Bloomfield, H. S.; Calogeras, J. E.

    1977-01-01

    Results show that new hybrid systems utilizing fossil fuel augmentation of solar energy can provide significant capital and energy cost benefits when compared with solar thermal systems requiring thermal storage. These benefits accrue from a reduction of solar collection area that results from both the use of highly efficient gas and combined cycle energy conversion subsystems and elimination of the requirement for long-term energy storage subsystems. Technical feasibility and fuel savings benefits of solar hybrid retrofit to existing fossil-fired, gas and vapor cycle powerplants was confirmed; however, economic viability of steam cycle retrofit was found to be dependent on the thermodynamic and operational characteristics of the existing powerplant.

  16. Evaluation of sustainability by a population living near fossil fuel resources in Northwestern Greece.

    PubMed

    Vatalis, Konstantinos I

    2010-12-01

    The emergence of sustainability as a goal in the management of fossil fuel resources is a result of the growing global environmental concern, and highlights some of the issues expected to be significant in coming years. In order to secure social acceptance, the mining industry has to face these challenges by engaging its many different stakeholders and examining their sustainability concerns. For this reason a questionnaire was conducted involving a simple random sampling of inhabitants near an area rich in fossil fuel resources, in order to gather respondents' views on social, economic and environmental benefits. The study discusses new subnational findings on public attitudes to regional sustainability, based on a quantitative research design. The site of the study was the energy-rich Greek region of Kozani, Western Macedonia, one of the country's energy hubs. The paper examines the future perspectives of the area. The conclusions can form a useful framework for energy policy in the wider Balkan area, which contains important fossil fuel resources.

  17. NEW OPTICAL SENSOR SUITE FOR ULTRAHIGH TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect

    Russell G. May; Tony Peng; Tom Flynn

    2004-12-01

    Accomplishments during the Phase I of a program to develop and demonstrate technology for the instrumentation of advanced powerplants are described. Engineers from Prime Research, LC and Babcock and Wilcox Research Center collaborated to generate a list of potential applications for robust photonic sensors in existing and future boiler plants. From that list, three applications were identified as primary candidates for initial development and demonstration of high-temperature sensors in an ultrasupercritical power plant. A matrix of potential fiber optic sensor approaches was derived, and a data set of specifications for high-temperature optical fiber was produced. Several fiber optic sensor configurations, including interferometric (extrinsic and intrinsic Fabry-Perot interferometer), gratings (fiber Bragg gratings and long period gratings), and microbend sensors, were evaluated in the laboratory. In addition, progress was made in the development of materials and methods to apply high-temperature optical claddings to sapphire fibers, in order to improve their optical waveguiding properties so that they can be used in the design and fabrication of high-temperature sensors. Through refinements in the processing steps, the quality of the interface between core and cladding of the fibers was improved, which is expected to reduce scattering and attenuation in the fibers. Numerical aperture measurements of both clad and unclad sapphire fibers were obtained and used to estimate the reduction in mode volume afforded by the cladding. High-temperature sensors based on sapphire fibers were also investigated. The fabrication of an intrinsic Fabry-Perot cavity within sapphire fibers was attempted by the bulk diffusion of magnesium oxide into short localized segments of longer sapphire fibers. Fourier analysis of the fringes that resulted when the treated fiber was interrogated by a swept laser spectrometer suggested that an intrinsic cavity had been formed in the fiber. Also

  18. Contributions of Fossil Fuel Combustion to Winter-time Arctic Aerosols

    NASA Astrophysics Data System (ADS)

    Barrett, T. E.; Usenko, S.; Robinson, E.; Sheesley, R. J.

    2014-12-01

    Over the last century, the Arctic has been warming at a rate almost twice the global average. Aerosols both directly and indirectly affect the radiative balance of the Arctic through the absorption and scattering of sunlight and by providing a source of cloud and ice condensation nuclei. Global climate models currently have difficulty reproducing the observed warming in the Arctic but could be improved through high temporal resolution measurements of aerosols and their sources. This study focuses on the quantification of fossil fuel and biomass combustion contributions to particulate organic carbon (OC) collected during a winter sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from December 2012 to March 2013 were analyzed for organic tracer analysis combined with radiocarbon of elemental and organic carbon (EC and OC). Organic tracers, including polycyclic aromatic hydrocarbons (PAHs), alkanes, hopanes and levoglucosan, were quantified using gas chromatography-mass spectrometry (GCMS). These tracers, commonly used as molecular markers for anthropogenic combustion sources, were then used in a molecular-marker chemical mass balance (CMB) model. Results from the CMB were then combined with radiocarbon (14C) abundance measurements. Radiocarbon analysis differentiates between fossil fuel combustion and biomass burning based on the large difference in end members between fossil and contemporary carbon. Radiocarbon results show an average fossil contribution of 44% to Arctic OC from with spark ignition (gasoline) and compression ignition (diesel) engines being implicated as major sources of fossil OC to Arctic aerosols. The 14C analysis and CMB source apportionment will be combined with back trajectory (BT) to assess the impact of geographic source regions on carbonaceous aerosol burden in the

  19. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    PubMed

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective.

  20. Can hybrid solar-fossil power plants mitigate CO2 at lower cost than PV or CSP?

    PubMed

    Moore, Jared; Apt, Jay

    2013-03-19

    Fifteen of the United States and several nations require a portion of their electricity come from solar energy. We perform an engineering-economic analysis of hybridizing concentrating solar thermal power with fossil fuel in an Integrated Solar Combined Cycle (ISCC) generator. We construct a thermodynamic model of an ISCC plant in order to examine how much solar and fossil electricity is produced and how such a power plant would operate, given hourly solar resource data and hourly electricity prices. We find that the solar portion of an ISCC power plant has a lower levelized cost of electricity than stand-alone solar power plants given strong solar resource in the US southwest and market conditions that allow the capacity factor of the solar portion of the power plant to be above 21%. From a local government perspective, current federal subsidies distort the levelized cost of electricity such that photovoltaic electricity is slightly less expensive than the solar electricity produced by the ISCC. However, if the cost of variability and additional transmission lines needed for stand-alone solar power plants are taken into account, the solar portion of an ISCC power plant may be more cost-effective. PMID:23379665

  1. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  2. Fossil fuels

    SciTech Connect

    Mikulski, B.A.

    1991-05-01

    The Support for East European Democracy (SEED) Act of 1989 required the Secretary of Energy to cooperate with Polish officials to retrofit a coal-fired powerplant in Poland with advanced clean coal technology that has been successfully demonstrated in the United States. The project's goal is to demonstrate a cost-effective technique to control sulfur dioxide (SO{sub 2}) emissions that can be used at other powerplants in Poland. The act required that the retrofit be carried out by United States companies using United States technology and equipment manufactured in the United States. Questions were raised about changes the Department of Energy (DOE) made to its original definition of a United States firm, and about reductions DOE made to its original SO{sub 2} emission requirements for the project. Such changes might result in foreign-owned rather than American-owned firms providing the technology and that the technology might not be the best this country could offer to the Polish people. This paper reviews the reasons for these changes.

  3. Independent evaluation of point source fossil fuel CO2 emissions to better than 10.

    PubMed

    Turnbull, Jocelyn Christine; Keller, Elizabeth D; Norris, Margaret W; Wiltshire, Rachael M

    2016-09-13

    Independent estimates of fossil fuel CO2 (CO2ff) emissions are key to ensuring that emission reductions and regulations are effective and provide needed transparency and trust. Point source emissions are a key target because a small number of power plants represent a large portion of total global emissions. Currently, emission rates are known only from self-reported data. Atmospheric observations have the potential to meet the need for independent evaluation, but useful results from this method have been elusive, due to challenges in distinguishing CO2ff emissions from the large and varying CO2 background and in relating atmospheric observations to emission flux rates with high accuracy. Here we use time-integrated observations of the radiocarbon content of CO2 ((14)CO2) to quantify the recently added CO2ff mole fraction at surface sites surrounding a point source. We demonstrate that both fast-growing plant material (grass) and CO2 collected by absorption into sodium hydroxide solution provide excellent time-integrated records of atmospheric (14)CO2 These time-integrated samples allow us to evaluate emissions over a period of days to weeks with only a modest number of measurements. Applying the same time integration in an atmospheric transport model eliminates the need to resolve highly variable short-term turbulence. Together these techniques allow us to independently evaluate point source CO2ff emission rates from atmospheric observations with uncertainties of better than 10%. This uncertainty represents an improvement by a factor of 2 over current bottom-up inventory estimates and previous atmospheric observation estimates and allows reliable independent evaluation of emissions. PMID:27573818

  4. Preliminary carbon isotope measurements of fossil fuel and biogenic emissions from the Brazilian Southeastern region

    NASA Astrophysics Data System (ADS)

    Oliveira, F. M.; Santos, G.; Macario, K.; Muniz, M.; Queiroz, E.; Park, J.

    2014-12-01

    Researchers have confirmed that the continuing global rising of atmospheric CO2 content is caused by anthropogenic CO2 contributions. Most of those contributions are essentially associated with burning of fossil fuels (coal, petroleum and natural gas). However, deforestation, biomass burning, and land use changes, can also play important roles. Researchers have showed that 14C measurements of annual plants, such as corn leaf (Hsueh et al. 2007), annual grasses (Wang and Pataki 2012), and leaves of deciduous trees (Park et al. 2013) can be used to obtain time-integrated information of the fossil fuel ration in the atmosphere. Those regional-scale fossil fuel maps are essential for monitoring CO2 emissions mitigation efforts and/or growth spikes around the globe. However, no current data from anthropogenic contributions from both biogenic and fossil carbon has been reported from the major urban areas of Brazil. Here we make use of carbon isotopes (13C and 14C) to infer sources of CO2 in the highly populated Brazilian Southeastern region (over 80 million in 2010). This region leads the country in population, urban population, population density, vehicles, industries, and many other utilities and major infrastructures. For a starting point, we focus on collecting Ipê leaves (Tabebuia, a popular deciduous tree) from across Rio de Janeiro city and state as well as Sao Paulo city during May/June of 2014 to obtain the regional distribution of 13C and 14C of those urban domes. So far, Δ14C range from -10 to 32‰, when δ13C values are running from -26 to -35‰. The result of these preliminary investigations will be presented and discussed.Hsueh et al. 2007 Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophysical Research Letters. 34: L02816. doi:10.1029/2006GL027032 Wang and Pataki 2012 Drivers of spatial variability in urban plant and soil isotopic composition in the Los Angeles Basin. Plant and Soil 350: 323

  5. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    DOE PAGESBeta

    Liu, Z.; Guan, D.; Wei, W.; Davis, S.; Ciais, P.; Bai, J; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, Gregg; et al

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption andmore » clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).« less

  6. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    SciTech Connect

    Liu, Z.; Guan, D.; Wei, W.; Davis, S.; Ciais, P.; Bai, J; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, Gregg; Andres, Robert Joseph; Crawford-Brown, D.; Lin, J.; Zhao, H.; Hong, C.; Boden, Thomas A.; Feng, K.; Peters, Glen P.; Xi, F.; Liu, J.; Li, Y.; Zhao, Y.; Zeng, Ning; He, K.

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).

  7. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    PubMed

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon). PMID:26289204

  8. Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan

    DOE Data Explorer

    Gurney, Kevin

    The Vulcan Project is a NASA/DOE funded effort under the North American Carbon Program (NACP) to quantify North American fossil fuel carbon dioxide (CO2) emissions at space and time scales much finer than has been achieved in the past. The purpose is to aid in quantification of the North American carbon budget, to support inverse estimation of carbon sources and sinks, and to support the demands posed by higher resolution CO2 observations (in situ and remotely sensed). The detail and scope of the Vulcan CO2 inventory has also made it a valuable tool for policymakers, demographers, social scientists and the public at large. The Vulcan project has achieved the quantification of the 2002 U.S. fossil fuel CO2 emissions at the scale of individual factories, powerplants, roadways and neighborhoods on an hourly basis. The entire inventory was built on a common 10 km x 10 km grid to facilitate atmospheric modeling. In addition to improvement in space and time resolution, Vulcan is quantified at the level of fuel type, economic sub-sector, and county/state identification. Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

  9. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    PubMed

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  10. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    NASA Astrophysics Data System (ADS)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A.; Feng, Kuishuang; Peters, Glen P.; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-01

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  11. Fuel cell programs in the United States for stationary power applications

    SciTech Connect

    Singer, M.

    1996-04-01

    The Department of Energy (DOE), Office of Fossil Energy, is participating with the private sector in sponsoring the development of molten carbonate fuel cell (MCFC) and solid oxide fuel cell (SOFC) technologies for application in the utility, commercial and industrial sectors. Phosphoric acid fuel cell (PAFC) development was sponsored by the Office of Fossil Energy in previous years and is now being commercialized by the private sector. Private sector participants with the Department of Energy include the Electric Power Research Institute (EPRI), the Gas Research institute (GRI), electric and gas utilities, universities, manufacturing companies and their suppliers. through continued government and private sector support, fuel cell systems are emerging power generation technologies which are expected to have significant worldwide impacts. An industry with annual sales of over a billion dollars is envisioned early in the 21st century. PAFC power plants have begun to enter the marketplace and MCFC and SOFC power plants are expected to be ready to enter the marketplace in the late 1990s. In support of the efficient and effective use of our natural resources, the fuel cell program seeks to increase energy efficiency and economic effectiveness of power generation. This is to be accomplished through effectiveness of power generation. This is accomplished through the development and commercialization of cost-effective, efficient and environmentally desirable fuel cell systems which will operate on fossil fuels in multiple and end use sectors.

  12. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, James F.; Chludzinski, Paul J.; Dantowitz, Philip

    1987-01-01

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation.

  13. Fuel cell power supply with oxidant and fuel gas switching

    DOEpatents

    McElroy, J.F.; Chludzinski, P.J.; Dantowitz, P.

    1987-04-14

    This invention relates to a fuel cell vehicular power plant. Fuel for the fuel stack is supplied by a hydrocarbon (methanol) catalytic cracking reactor and CO shift reactor. A water electrolysis subsystem is associated with the stack. During low power operation part of the fuel cell power is used to electrolyze water with hydrogen and oxygen electrolysis products being stored in pressure vessels. During peak power intervals, viz, during acceleration or start-up, pure oxygen and pure hydrogen from the pressure vessel are supplied as the reaction gases to the cathodes and anodes in place of air and methanol reformate. This allows the fuel cell stack to be sized for normal low power/air operation but with a peak power capacity several times greater than that for normal operation. 2 figs.

  14. Productivity improvement handbook for fossil steam power plants. Final report

    SciTech Connect

    Armor, A.F.; Wolk, R.H. |

    1998-09-01

    This book is written to help electric generation staff operate their plants more profitably in a competitive environment. Since responsibility for keeping the plant running falls directly on the shoulders of plant personnel, they want to understand what can go wrong, receive information on the current condition of equipment, and fix things when equipment fails or performs poorly. The information in this book is organized so a reader can quickly and easily grasp the current state-of-the-art in maintaining fossil steam units, obtain guidance on specific plant problems, and move ahead with solutions. Many reports and guidelines have been issued on boilers, turbines, generators, heat exchangers, and other plant equipment covering failure modes, causes, fixes, and maintenance practices. Liberal use has been made of these reports to extract the salient recommendations, and the citations and bibliographies acknowledge these sources. The reader is directed to the comprehensive list of reports and papers for further details on specific issues. The scope of this book does not permit a detailed and extensive treatment of each of the hundreds of potential in-plant problems, but does permit the reader to get a first assessment of likely symptoms and modes of failure, and enough information to do something about it. It`s a working handbook for fossil plant staff who are daily faced with protecting the integrity and reliability of the electric generation business.

  15. 40 CFR Table Aa-2 to Subpart Aa of... - Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based...

  16. 40 CFR Table Aa-2 to Subpart Aa of... - Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based...

  17. 40 CFR Table Aa-2 to Subpart Aa of... - Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Kraft Lime Kiln and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O AA Table AA-2 to Subpart AA of Part 98 Protection of Environment... and Calciner Emissions Factors for Fossil Fuel-Based CH4 and N2O Fuel Fossil fuel-based...

  18. Quantification of fossil fuel CO2 at the building/street level for large US cities

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Razlivanov, I. N.; Song, Y.

    2012-12-01

    Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in emerging plans on a global, integrated, carbon monitoring system (CMS). A space/time explicit emissions data product can act as both a verification and planning system. It can verify atmospheric CO2 measurements (in situ and remote) and offer detailed mitigation information to management authorities in order to optimize the mix of mitigation efforts. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain as a pilot effort to a CMS. A complete data product has been built for the city of Indianapolis and preliminary quantification has been completed for Los Angeles and Phoenix (see figure). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. In collaboration with our INFLUX colleagues, we are transporting these high resolution emissions through an atmospheric transport model for a forward comparison of the Hestia data product with atmospheric measurements, collected on aircraft and cell towers. In preparation for a formal urban-scale inversion, these forward comparisons offer insights into both improving our emissions data product and measurement strategies. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban

  19. Cost-Benefit Analysis of Flexibility Retrofits for Coal and Gas-Fueled Power Plants: August 2012 - December 2013

    SciTech Connect

    Venkataraman, S.; Jordan, G.; O'Connor, M.; Kumar, N.; Lefton, S.; Lew, D.; Brinkman, G.; Palchak, D.; Cochran, J.

    2013-12-01

    High penetrations of wind and solar power plants can induce on/off cycling and ramping of fossil-fueled generators. This can lead to wear-and-tear costs and changes in emissions for fossil-fueled generators. Phase 2 of the Western Wind and Solar Integration Study (WWSIS-2) determined these costs and emissions and simulated grid operations to investigate the full impact of wind and solar on the fossil-fueled fleet. This report studies the costs and benefits of retrofitting existing units for improved operational flexibility (i.e., capability to turndown lower, start and stop faster, and ramp faster between load set-points).

  20. Environmental benchmarking of the largest fossil-fueled electricity generating plants in the U.S

    NASA Astrophysics Data System (ADS)

    Sarkis, Joseph

    2004-02-01

    Environmental management, to be effective, requires performance evaluation and process improvement. This is especially the case in fossil-fueled electricity generating plants. Although eco-efficient management of these types of organizations are critical to local, national and global environmental issues, few studies have focused on performance measurement and eco-efficiency improvements in this industry. This study evaluates the eco-efficiencies of the top 100 major U.S. fossil-fueled electricity generating plants from 1998 data. Using a multi-criteria non-parametric productivity model (data envelopment analysis) efficiency scores are determined. These efficiency scores are treated by a clustering method in identifying benchmarks for improving poorly performing plants. Efficiency measures are based on three resource input measures including boiler generating capacity, total fuel heat used, and total generator capacity, and four output measures including actual energy generated, SO2, NOx, and CO2 emissions. The purpose of this paper is two-fold, to introduce the methodology"s application to eco-efficiency performance measurement and show some characteristics of the benchmarked plants and groups.

  1. Historic patterns of CO{sub 2} emissions from fossil fuels: Implications for stabilization of emissions

    SciTech Connect

    Andres, R.J.; Marland, G.

    1994-10-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  2. Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions

    DOE R&D Accomplishments Database

    Andres, R. J.; Marland, G.

    1994-06-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  3. Monolithic fuel cell based power source for burst power generation

    SciTech Connect

    Fee, D.C.; Blackburn, P.E.; Busch, D.E.; Dees, D.W.; Dusek, J.; Easler, T.E.; Ellingson, W.A.; Flandermeyer, B.K.; Fousek, R.J.; Heiberger, J.J.; Majumdar, S.; McPheeters, C.C.; Mrazek, F.C.; Picciolo, J.J.; Singh, J.P.; Poeppel, R.B.

    1988-01-01

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The requisite high power, long-duration bursts appear achievable with appropriate development of the concept. A monolithic fuel cell/nuclear reactor system clearly possesses several advantages. Fabrication methods, performance advantages, and applications are discussed in this report.

  4. A Vulnerability-Benefit Analysis of Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Delman, E. M.; Stephenson, S. R.; Davis, S. J.; Diffenbaugh, N. S.

    2015-12-01

    Although we can anticipate continued improvements in our understanding of future climate impacts, the central challenge of climate change is not scientific, but rather political and economic. In particular, international climate negotiations center on how to share the burden of uncertain mitigation and adaptation costs. We expose the relative economic interests of different countries by assessing and comparing their vulnerability to climate impacts and the economic benefits they derive from the fossil fuel-based energy system. Vulnerability refers to the propensity of humans and their assets to suffer when impacted by hazards, and we draw upon the results from a number of prior studies that have quantified vulnerability using multivariate indices. As a proxy for benefit, we average CO2 related to each country's extraction of fossil fuels, production of CO2 emissions, and consumption of goods and services (Davis et al., 2011), which should reflect benefits accrued in proportion to national economic dependence on fossil fuels. We define a nondimensional vulnerability-benefit ratio for each nation and find a large range across countries. In general, we confirm that developed and emerging economies such as the U.S., Western Europe, and China rely heavily on fossil fuels and have substantial resources to respond to the impacts of climate change, while smaller, less-developed economies such as Sierra Leone and Vanuatu benefit little from current CO2 emissions and are much more vulnerable to adverse climate impacts. In addition, we identify some countries with a high vulnerability and benefit, such as Iraq and Nigeria; conversely, some nations exhibit both a low vulnerability and benefit, such as New Zealand. In most cases, the ratios reflect the nature of energy-climate policies in each country, although certain nations - such as the United Kingdom and France - assume a level of responsibility incongruous with their ratio and commit to mitigation policy despite

  5. Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1983

    SciTech Connect

    Linville, B.

    1983-07-01

    Accomplishments for the quarter ending March 1983 are presented under the following headings: liquid fossil fuel cycle, processing, utilization, and project integration and technology transfer. Feature articles for this quarter are: (1) abandoned oil field reports issued; (2) oilfield water data bank report published; (3) microbial enhanced recovery report issued; (4) polymer-augmented project could be economic today; (5) carbon dioxide EOR estimates given; (6) BETC passes 65th milestone; and (7) fifty achievements for fifty years (1918-1968). BETC publications are also listed. (ATT)

  6. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    EIA Publications

    2015-01-01

    The U.S. Energy Information Administration estimates that total sales of fossil fuels produced from Federal and Indian Lands increased in fiscal year 2014 compared to fiscal year 2013. Production of crude oil increased 7%, natural gas production declined 7%, natural gas plant liquids production increased by 8%, and coal production increased slightly. Detailed tables and maps of production, by State, are contained in the report. EIA’s estimates are based on data provided by the U.S. Department of the Interior’s Office of Natural Resources Revenue.

  7. Isotopic measurements of atmospheric methane in Los Angeles, California, USA: Influence of “fugitive” fossil fuel emissions

    NASA Astrophysics Data System (ADS)

    Townsend-Small, Amy; Tyler, Stanley C.; Pataki, Diane E.; Xu, Xiaomei; Christensen, Lance E.

    2012-04-01

    Recent studies have suggested that CH4 emissions in Los Angeles and other large cities may be underestimated. We utilized stable isotopes (13C and D) and radiocarbon (14C) to investigate sources of CH4 in Los Angeles, California. First, we made measurements of δ13C and δD of various CH4 sources in urban areas. Fossil fuel CH4 sources (oil refineries, power plants, traffic, and oil drilling fields) had δ13C values between -45 and -30‰ and dD values between -275 and -100‰, whereas biological CH4 (cows, biofuels, landfills, sewage treatment plants, and cattle feedlots) had δ13C values between -65 and -45‰ and δD values between -350 and -275‰. We made high-altitude observations of CH4 concentration using continuous tunable laser spectroscopy measurements combined with isotope analyses (13C, 14C, and D) of discrete samples to constrain urban CH4 sources. Our data indicate that the dominant source of CH4 in Los Angeles has a δ13C value of approximately -41.5‰ and a δD value between -229 and -208‰. Δ14C of CH4 in urban air samples ranged from +262 to +344‰ (127.1 to 134.9 pMC), depleted with respect to average global background CH4. We conclude that the major source of CH4 in Los Angeles is leakage of fossil fuels, such as from geologic formations, natural gas pipelines, oil refining, and/or power plants. More research is needed to constrain fluxes of CH4 from natural gas distribution and refining, as this flux may increase with greater reliance on natural gas and biogas for energy needs.

  8. Compound hybrid geothermal-fossil power plants - Thermodynamic analyses and site-specific applications

    NASA Astrophysics Data System (ADS)

    Dipippo, R.; Kestin, J.; Avelar, E. M.; Khalifa, H. E.

    1980-02-01

    In this paper, we extend the analysis of hybrid fossil-geothermal power plants to compound systems which combine the features of the two previously analyzed hybrid plants, the geothermal preheat and the fossil superheat systems. Compound systems of the one- and two-stage type are considered. A complete summary of formulae to assess the performance of the plants is included for completeness. From the viewpoint of thermodynamics, compound hybrid plants are superior to individual all-geothermal and all-fossil plants, and have certain advantages over basic geothermal-preheat and fossil-superheat hybrid plants. The flexibility of compound hybrid systems is illustrated by showing how such plants might be used at several geothermal sites in the western United States.

  9. The Environmental Impact of Electrical Power Generation: Nuclear and Fossil.

    ERIC Educational Resources Information Center

    Pennsylvania State Dept. of Education, Harrisburg.

    This text was written to accompany a course concerning the need, environmental costs, and benefits of electrical power generation. It was compiled and written by a committee drawn from educators, health physicists, members of industry and conservation groups, and environmental scientists. Topics include: the increasing need for electrical power,…

  10. Potential for worldwide displacement of fossil-fuel electricity by nuclear energy in three decades based on extrapolation of regional deployment data.

    PubMed

    Qvist, Staffan A; Brook, Barry W

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets.

  11. Potential for worldwide displacement of fossil-fuel electricity by nuclear energy in three decades based on extrapolation of regional deployment data.

    PubMed

    Qvist, Staffan A; Brook, Barry W

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25-34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets. PMID:25970621

  12. Potential for Worldwide Displacement of Fossil-Fuel Electricity by Nuclear Energy in Three Decades Based on Extrapolation of Regional Deployment Data

    PubMed Central

    Qvist, Staffan A.; Brook, Barry W.

    2015-01-01

    There is an ongoing debate about the deployment rates and composition of alternative energy plans that could feasibly displace fossil fuels globally by mid-century, as required to avoid the more extreme impacts of climate change. Here we demonstrate the potential for a large-scale expansion of global nuclear power to replace fossil-fuel electricity production, based on empirical data from the Swedish and French light water reactor programs of the 1960s to 1990s. Analysis of these historical deployments show that if the world built nuclear power at no more than the per capita rate of these exemplar nations during their national expansion, then coal- and gas-fired electricity could be replaced worldwide in less than a decade. Under more conservative projections that take into account probable constraints and uncertainties such as differing relative economic output across regions, current and past unit construction time and costs, future electricity demand growth forecasts and the retiring of existing aging nuclear plants, our modelling estimates that the global share of fossil-fuel-derived electricity could be replaced within 25–34 years. This would allow the world to meet the most stringent greenhouse-gas mitigation targets. PMID:25970621

  13. Fuel Cycle Comparison for Distributed Power Technologies

    SciTech Connect

    Elgowainy, A.; Wang, M. Q.

    2008-11-15

    This report examines backup power and prime power systems and addresses the potential energy and environmental effects of substituting fuel cells for existing combustion technologies based on microturbines and internal combustion engines.

  14. Tower Power: Producing Fuels from Solar Energy

    ERIC Educational Resources Information Center

    Antal, M. J., Jr.

    1976-01-01

    This article examines the use of power tower technologies for the production of synthetic fuels. This process overcomes the limitations of other processes by using a solar furnace to drive endothermic fuel producing reactions and the resulting fuels serve as a medium for storing solar energy. (BT)

  15. Experimental Study of the Combustion Dynamics of Renewable & Fossil Fuel Co-Fire in Swirling Flame

    NASA Astrophysics Data System (ADS)

    Zaķe, M.; Barmina, I.; Kriško, V.; Gedrovičs, M.; Descņickis, A.

    2009-01-01

    The complex experimental research into the combustion dynamics of rene-wable (wood biomass) and fossil (propane) fuel co-fire in a swirling flame flow has been carried out with the aim to achieve clean and effective heat production with reduced carbon emissions. The effect of propane co-fire on the formation of the swirling flame velocity, temperature and composition fields as well as on the combustion efficiency and heat output has been analysed. The results of experimental study show that the propane supply into the wood biomass gasifier provides faster wood fuel gasification with active release of volatiles at the primary stage of swirling flame flow formation, while the swirl-induced recirculation with enhanced mixing of the flame components results in a more complete burnout of wood volatiles downstream of the combustor with reduced mass fraction of polluting impurities in the emissions.

  16. Fuel cells for low power applications

    NASA Astrophysics Data System (ADS)

    Heinzel, A.; Hebling, C.; Müller, M.; Zedda, M.; Müller, C.

    Electronic devices show an ever-increasing power demand and thus, require innovative concepts for power supply. For a wide range of power and energy capacity, membrane fuel cells are an attractive alternative to conventional batteries. The main advantages are the flexibility with respect to power and capacity achievable with different devices for energy conversion and energy storage, the long lifetime and long service life, the good ecological balance, very low self-discharge. Therefore, the development of fuel cell systems for portable electronic devices is an attractive, although also a challenging, goal. The fuel for a membrane fuel cell might be hydrogen from a hydride storage system or methanol/water as a liquid alternative. The main differences between the two systems are the much higher power density for hydrogen fuel cells, the higher energy density per weight for the liquid fuel, safety aspects and infrastructure for fuel supply for hydride materials. For different applications, different system designs are required. High power cells are required for portable computers, low power methanol fuel cells required for mobile phones in hybrid systems with batteries and micro-fuel cells are required, e.g. for hand held PCs in the sub-Watt range. All these technologies are currently under development. Performance data and results of simulations and experimental investigations will be presented.

  17. Effect of fossil fuels on the parameters of CO2 capture.

    PubMed

    Nagy, Tibor; Mizsey, Peter

    2013-08-01

    The carbon dioxide capture is a more and more important issue in the design and operation of boilers and/or power stations because of increasing environmental considerations. Such processes, absorber desorber should be able to cope with flue gases from the use of different fossil primary energy sources, in order to guarantee a flexible, stable, and secure energy supply operation. The changing flue gases have significant influence on the optimal operation of the capture process, that is, where the required heating of the desorber is the minimal. Therefore special considerations are devoted to the proper design and control of such boiler and/or power stations equipped with CO2 capture process.

  18. Fuel cells for distributed power generation

    NASA Astrophysics Data System (ADS)

    Tarman, Paul B.

    Deregulation has caused a major change in power distribution in the USA. Large central power stations are being and will continue to be replaced by smaller, distributed power generation sources of less than 20 kW. Fuel cells, specifically molten carbonate fuel cells (MCFCs), are best suited to serve this need. Small turbines cannot achieve the efficiency or environmental friendliness of MCFCs in this power range. This paper discusses the goals of M-C Power Corporation and the advantages of its IMHEX® MCFC technology. M-C Power's factory, demonstration testing program, and its market-entry power plant are also described, as are its commercialization strategy and schedule.

  19. Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels?

    SciTech Connect

    Novakov, T.; Andreae, M.O.; Gabriel, R.; Kirchstetter, T.; Mayol-Bracero, O.L.; Ramanathan, V.

    2000-08-26

    We present an analysis of the carbon, potassium and sulfate content of the extensive aerosol haze layer observed over the tropical Indian Ocean during the Indian Ocean Experiment (INDOEX). The black carbon (BC) content of the haze is as high as 17% of the total fine particle mass (the sum of carbonaceous and soluble ionic aerosol components) which results in significant solar absorption. The ratio of black carbon to organic carbon (OC) (over the Arabian Sea and equatorial Indian Ocean) was a factor of 5 to 10 times larger than expected for biomass burning. This ratio was closer to values measured downwind of industrialized regions in Japan and Western Europe. These results indicate that fossil fuel combustion is the major source of carbonaceous aerosols, including black carbon during the events considered. If the data set analyzed here is representative of the entire INDOEX study then fossil fuel emissions from South Asia must have similarly contributed to aerosols over the whole study region. The INDOEX ratios are substantially different from those reported f or some source regions of South Asia, thus raising the possibility that changes in composition of carbonaceous aerosol may occur during transport.

  20. Three Essays on Renewable Energy Policy and its Effects on Fossil Fuel Generation in Electricity Markets

    NASA Astrophysics Data System (ADS)

    Bowen, Eric

    In this dissertation, I investigate the effectiveness of renewable policies and consider their impact on electricity markets. The common thread of this research is to understand how renewable policy incentivizes renewable generation and how the increasing share of generation from renewables affects generation from fossil fuels. This type of research is crucial for understanding whether policies to promote renewables are meeting their stated goals and what the unintended effects might be. To this end, I use econometric methods to examine how electricity markets are responding to an influx of renewable energy. My dissertation is composed of three interrelated essays. In Chapter 1, I employ recent scholarship in spatial econometrics to assess the spatial dependence of Renewable Portfolio Standards (RPS), a prominent state-based renewable incentive. In Chapter 2, I explore the impact of the rapid rise in renewable generation on short-run generation from fossil fuels. And in Chapter 3, I assess the impact of renewable penetration on coal plant retirement decisions.

  1. HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER

    SciTech Connect

    BROWN,LC; BESENBRUCH,GE; LENTSCH,RD; SCHULTZ,KR; FUNK,JF; PICKARD,PS; MARSHALL,AC; SHOWALTER,SK

    2003-06-01

    OAK B202 HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. Combustion of fossil fuels, used to power transportation, generate electricity, heat homes and fuel industry provides 86% of the world's energy. Drawbacks to fossil fuel utilization include limited supply, pollution, and carbon dioxide emissions. Carbon dioxide emissions, thought to be responsible for global warming, are now the subject of international treaties. Together, these drawbacks argue for the replacement of fossil fuels with a less-polluting potentially renewable primary energy such as nuclear energy. Conventional nuclear plants readily generate electric power but fossil fuels are firmly entrenched in the transportation sector. Hydrogen is an environmentally attractive transportation fuel that has the potential to displace fossil fuels. Hydrogen will be particularly advantageous when coupled with fuel cells. Fuel cells have higher efficiency than conventional battery/internal combustion engine combinations and do not produce nitrogen oxides during low-temperature operation. Contemporary hydrogen production is primarily based on fossil fuels and most specifically on natural gas. When hydrogen is produced using energy derived from fossil fuels, there is little or no environmental advantage. There is currently no large scale, cost-effective, environmentally attractive hydrogen production process available for commercialization, nor has such a process been identified. The objective of this work is to find an economically feasible process for the production of hydrogen, by nuclear means, using an advanced high-temperature nuclear reactor as the primary energy source. Hydrogen production by thermochemical water-splitting (Appendix A), a chemical process that accomplishes the decomposition of water into hydrogen and oxygen using only heat or, in the case of a hybrid thermochemical process, by a combination of heat and electrolysis, could meet these goals. Hydrogen produced from fossil

  2. Can industry`s `fourth` fossil fuel establish presence in US?

    SciTech Connect

    Armor, A.F.; Dene, C.E.

    1996-09-01

    After five years of commercial experience burning Orimulsion overseas, US utilities are now evaluating the new fuel as a serious alternative to oil. In their relentless drive to remain competitive, electric utilities with oil-fired generating units are searching for lower cost fuel alternatives. Because of high fuel prices, oil-fired units have low capacity factors. Only 23 out of 142 oil-capable units in the US had capacity factors greater than 50% in 1993; the average was a mere 24%. Utility consumption of fuel oil slid from over 600,000 barrels (bbl)/day in 1989 to less than 200,000 bbl/day last year. Orimulsion now fuels nearly 3,000 MW/yr worldwide. The UK`s PowerGen Ltd, currently the world`s largest consumer of Orimulsion, fires some 10-million bbl/yr at two 500-MW units at its Ince plant and three 120-MW units at its Richborough plant. Both plants formerly burned fuel oil, and have been using Orimulsion since 1991. Canada`s New Brunswick Power Corp has fired Orimulsion in two units at its Dalhousie plant since 1994 (Power, April 1995, p 27); one 105-MW unit was originally designed for fuel oil, the other 212-MW unit was designed for coal. Last year, Denmark`s SK Power converted its coal-fired, 700-MW Asnaes Unit 5 to Orimulsion firing. And in the US, Florida Power and Light Co. (FP and L) has signed a 20-yr fuel supply contract with Bitor America Corp (Boca Raton, Fla.), for two 800-MW units at the oil-fired Manatee plant, contingent on securing necessary permits. The Manatee installation (Power, September 1994, p 57) would be the first in the US to burn the fuel. Today, five years after Orimulsion begun to be used commercially, many of the lingering questions involving the new fuel`s handling, transportation, combustion, emissions control, spill control, and waste utilization have been settled. Several US utilities have expressed serious interest in the fuel as an alternative to oil.

  3. Fossil energy R and D for a competitive power industry

    SciTech Connect

    Bajura, R.A.

    1996-12-31

    This paper discusses the vision for Morgantown Energy Technology Center`s (METC`s) advanced power generation program. It covers the following four topics: the status of the electric industry as it deregulates, particularly those aspects of deregulation that impact advanced power generation technologies; a snapshot of the environmental trends that influence the program; how research, and development, and demonstration (RD&D) program is being restructured in response to these trends; and the status of METC`s merger with its sister center, the Pittsburgh Energy Technology Center.

  4. Further studies on the modulation of fossil fuel production by global temperature variations

    SciTech Connect

    Rust, B.W.; Crosby, F.J. )

    1994-01-01

    This study extends the earlier work of Rust and Kirk (1982) on the inverse modulation of global fossil fuel production by variations in Northern Hemispheric temperatures. Recent revisions and extensions of the fuel production record are incorporated and a much improved temperature record in used. The new data are consistent with the predictions of the original Rust-Kirk model which is extended to allow for time lags between variations in the temperature and the corresponding responses in fuel production. The modulation enters the new model through the convolution of a lagged averaging function with the temperature time-series. Explicit terms account for the perturbations caused by the Great Depression and World War II. The final model accounts for 99.84% of the total variance in the production record. The temperature modulation produces variations of as much as 30% in the total production. This modulation represents a feedback which is consistent with the predictions of the Gaia hypothesis for a planetary greenhouse temperature control. The new model calculates 20-y fuel production predictions for three temperature scenarios which hopefully bracket the possibilities for temperature behavior during that time.

  5. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    SciTech Connect

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most of which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.

  6. Risks to global biodiversity from fossil-fuel production exceed those from biofuel production

    DOE PAGESBeta

    Dale, Virginia H.; Parish, Esther S.; Kline, Keith L.

    2014-12-02

    Potential global biodiversity impacts from near-term gasoline production are compared to biofuel, a renewable liquid transportation fuel expected to substitute for gasoline in the near term (i.e., from now until c. 2030). Petroleum exploration activities are projected to extend across more than 5.8 billion ha of land and ocean worldwide (of which 3.1 billion is on land), much of which is in remote, fragile terrestrial ecosystems or off-shore oil fields that would remain relatively undisturbed if not for interest in fossil fuel production. Future biomass production for biofuels is projected to fall within 2.0 billion ha of land, most ofmore » which is located in areas already impacted by human activities. A comparison of likely fuel-source areas to the geospatial distribution of species reveals that both energy sources overlap with areas with high species richness and large numbers of threatened species. At the global scale, future petroleum production areas intersect more than double the area and higher total number of threatened species than future biofuel production. Energy options should be developed to optimize provisioning of ecosystem services while minimizing negative effects, which requires information about potential impacts on critical resources. Furthermore, energy conservation and identifying and effectively protecting habitats with high-conservation value are critical first steps toward protecting biodiversity under any fuel production scenario.« less

  7. Theoretical studies of oxides relevant to the combustion of fossil fuels

    NASA Astrophysics Data System (ADS)

    Hicks, Jason Michael

    Anthropogenic pollution has greatly increased since the industrial revolution and continues to increase as more of the world becomes dependent upon fossil fuels for important applications like transportation and power production. In a general case, whenever a fossil fuel is consumed, a primary product of a complete combustion reaction is carbon dioxide. In a more specific case, the collection, processing and combustion of coal for power production are one of the primary ways by which trace elements, such as arsenic and selenium, are released into the environment. All of these pollutants are known to have harmful effects, whether on the environment, human health or power production itself. Because of this there has been an increasing interest in studies related to combating these pollutants. Concerning CO2 emissions, recently there has been a significant amount of work related to CO2 capture. A promising method involves the encapsulation of CO2 into isoreticular metal-organic frameworks (IRMOFs). The effectiveness of IMROFs greatly depends on the choice of both metal and organic parts. Molecular simulations have been used in the past to aid in the design and characterization of new MOFs, in particular by generating an adsorption isotherm. However, these traditional simulation methods have several drawbacks. The method used in this thesis, namely expanded Wang-Landau, not only overcomes these drawbacks but provides access to all the thermodynamic properties relevant to the adsorption process through a solution thermodynamics approach. This is greatly beneficial, since an excellent way to characterize the performance of various MOFs is by comparing their desorption free energy, i.e., the energy it takes to regenerate a saturated MOF to prepare it for the next adsorption cycle. Expanded WL was used in the study of CO 2 adsorption into IRMOF-1, 8 and 10 at eight temperatures, spanning both the subcritical and supercritical regimes and the following were obtained

  8. Theoretical studies of oxides relevant to the combustion of fossil fuels

    NASA Astrophysics Data System (ADS)

    Hicks, Jason Michael

    Anthropogenic pollution has greatly increased since the industrial revolution and continues to increase as more of the world becomes dependent upon fossil fuels for important applications like transportation and power production. In a general case, whenever a fossil fuel is consumed, a primary product of a complete combustion reaction is carbon dioxide. In a more specific case, the collection, processing and combustion of coal for power production are one of the primary ways by which trace elements, such as arsenic and selenium, are released into the environment. All of these pollutants are known to have harmful effects, whether on the environment, human health or power production itself. Because of this there has been an increasing interest in studies related to combating these pollutants. Concerning CO2 emissions, recently there has been a significant amount of work related to CO2 capture. A promising method involves the encapsulation of CO2 into isoreticular metal-organic frameworks (IRMOFs). The effectiveness of IMROFs greatly depends on the choice of both metal and organic parts. Molecular simulations have been used in the past to aid in the design and characterization of new MOFs, in particular by generating an adsorption isotherm. However, these traditional simulation methods have several drawbacks. The method used in this thesis, namely expanded Wang-Landau, not only overcomes these drawbacks but provides access to all the thermodynamic properties relevant to the adsorption process through a solution thermodynamics approach. This is greatly beneficial, since an excellent way to characterize the performance of various MOFs is by comparing their desorption free energy, i.e., the energy it takes to regenerate a saturated MOF to prepare it for the next adsorption cycle. Expanded WL was used in the study of CO 2 adsorption into IRMOF-1, 8 and 10 at eight temperatures, spanning both the subcritical and supercritical regimes and the following were obtained

  9. Monolithic fuel cell based power source for burst power generation

    NASA Astrophysics Data System (ADS)

    Fee, D. C.; Blackburn, P. E.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.

    A unique fuel cell coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The monolithic fuel cell looks attractive for space applications and represents a quantum jump in fuel cell technology. Such a breakthrough in design is the enabling technology for lightweight, low volume power sources for space based pulse power systems. The monolith is unique among fuel cells in being an all solid state device. The capability for miniaturization, inherent in solid state devices, gives the low volume required for space missions. In addition, the solid oxide fuel cell technology employed in the monolith has high temperature reject heat and can be operated in either closed or open cycles. Both these features are attractive for integration into a burst power system.

  10. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2004-11-01

    This report includes the progress in development of Direct FuelCell/Turbine{reg_sign} (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T power system is based on an indirectly heated gas turbine to supplement fuel cell generated power. The DFC/T power generation concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, 60% on coal gas, minimal emissions, simplicity in design, direct reforming internal to the fuel cell, reduced carbon dioxide release to the environment, and potential cost competitiveness with existing combined cycle power plants. The operation of sub-MW hybrid Direct FuelCell/Turbine power plant test facility with a Capstone C60 microturbine was initiated in March 2003. The inclusion of the C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in previous tests using a 30kW microturbine. The design of multi-MW DFC/T hybrid systems, approaching 75% efficiency on natural gas, was initiated. A new concept was developed based on clusters of One-MW fuel cell modules as the building blocks. System analyses were performed, including systems for near-term deployment and power plants with long-term ultra high efficiency objectives. Preliminary assessment of the fuel cell cluster concept, including power plant layout for a 14MW power plant, was performed.

  11. Sensitivity of Flux Accuracy to Setup of Fossil Fuel and Biogenic CO2 Inverse System in an Urban Environment

    NASA Astrophysics Data System (ADS)

    Wu, K.; Lauvaux, T.; Deng, A.; Lopez-Coto, I.; Gurney, K. R.; Patarasuk, R.; Turnbull, J. C.; Davis, K. J.

    2015-12-01

    The Indianapolis Flux Experiment (INFLUX) aims to utilize a variety of measurements and a high resolution inversion system to estimate the spatial distribution and the temporal variation of anthropogenic greenhouse gas (GHG) emissions from the city of Indianapolis. We separated biogenic and fossil fuel CO2 fluxes and tested the sensitivity of inverse flux estimates to inverse system configurations by performing Observing System Simulation Experiments (OSSEs). The a priori CO2 emissions from Hestia were aggregated to 1 km resolution to represent emissions from the Indianapolis metropolitan area and its surroundings. With the Weather Research and Forecasting (WRF) model coupled to a Lagrangian Particle Dispersion Model (LPDM), the physical relations between concentrations at the tower locations and emissions at the surface were simulated at 1 km spatial resolution, hourly. Within a Bayesian synthesis inversion framework, we tested the effect of multiple parameters on our ability to infer fossil fuel CO2 fluxes: the presence of biogenic CO2 fluxes in the optimization procedure, the use of fossil fuel CO2 concentration measurements, the impact of reduced transport errors, the sensitivity to observation density, and the spatio-temporal properties of prior errors. The results indicate that the presence of biogenic CO2 fluxes obviously weakens the ability to invert for the fossil fuel CO2 emissions in an urban environment, but having relatively accurate fossil fuel CO2 concentration measurements can effectively compensate the interference from the biogenic flux component. Reduced transport error and more intensive measurement networks are two possible approaches to retrieve the spatial pattern of the fluxes and decrease the bias in inferred whole-city fossil fuel CO2 emissions. The accuracy of posterior fluxes is very sensitive to the spatial correlation length in the prior flux errors which, if they exist, can enhance significantly our ability to recover the known fluxes

  12. Comparing observations of fossil fuel-derived CO2 in California with predictions from bottom-up inventories

    NASA Astrophysics Data System (ADS)

    Graven, H. D.; Lueker, T.; Fischer, M. L.; Guilderson, T. P.; Keeling, R. F.; Brophy, K.; Arnold, T.; Bambha, R.; Callahan, W.; Campbell, J. E.; Frankenberg, C.; Hsu, Y.; Iraci, L. T.; Jeong, S.; Kim, J.; LaFranchi, B. W.; Lehman, S.; Manning, A.; Michelsen, H. A.; Miller, J. B.; Newman, S.; Parazoo, N.; Sloop, C.; Walker, S.; Whelan, M.; Wunch, D.

    2015-12-01

    The US state of California has a progressive climate change mitigation policy, AB-32, enacted in 2006 to reduce greenhouse gas emissions 15% by 2020 and then a further 80% by 2050. Bottom-up inventories indicate California's fossil fuel CO2 emissions are currently about 100 Mt C per year, but different inventories show discrepancies of ±15% in the state-wide total, and some larger discrepancies in various sub-regions of the state. We are developing a top-down framework for investigating fossil fuel and biospheric CO2 fluxes in California using atmospheric observations and models. California has a relatively dense collaborative network of greenhouse gas observations run by several universities, government laboratories and Earth Networks. Using this collaborative network, we conducted three field campaigns in 2014-15 to sample flasks at 10 tower sites across the state. Flasks were analysed for atmospheric CO2 and CO concentrations and for stable isotopes and radiocarbon in CO2. The flask observations of radiocarbon in CO2 allow patterns of fossil fuel-derived and biospheric CO2 to be distinguished at relatively high resolution across the state. We will report initial results from the observations showing regional gradients in fossil fuel-derived CO2 and fluctuations from changing weather patterns. We will compare the observations of fossil fuel-derived CO2 to predictions from several bottom-up inventories and two atmospheric models. Linking the flask data with observations from OCO-2, TCCON, aircraft flights and ground-based in situ analyzers, we will examine the variation in total CO2 and its drivers over California. Further analysis is planned to integrate the data into an inversion framework for fossil fuel and biospheric CO2 fluxes over California.

  13. Linear regression analysis of emissions factors when firing fossil fuels and biofuels in a commercial water-tube boiler

    SciTech Connect

    Sharon Falcone Miller; Bruce G. Miller

    2007-12-15

    This paper compares the emissions factors for a suite of liquid biofuels (three animal fats, waste restaurant grease, pressed soybean oil, and a biodiesel produced from soybean oil) and four fossil fuels (i.e., natural gas, No. 2 fuel oil, No. 6 fuel oil, and pulverized coal) in Penn State's commercial water-tube boiler to assess their viability as fuels for green heat applications. The data were broken into two subsets, i.e., fossil fuels and biofuels. The regression model for the liquid biofuels (as a subset) did not perform well for all of the gases. In addition, the coefficient in the models showed the EPA method underestimating CO and NOx emissions. No relation could be studied for SO{sub 2} for the liquid biofuels as they contain no sulfur; however, the model showed a good relationship between the two methods for SO{sub 2} in the fossil fuels. AP-42 emissions factors for the fossil fuels were also compared to the mass balance emissions factors and EPA CFR Title 40 emissions factors. Overall, the AP-42 emissions factors for the fossil fuels did not compare well with the mass balance emissions factors or the EPA CFR Title 40 emissions factors. Regression analysis of the AP-42, EPA, and mass balance emissions factors for the fossil fuels showed a significant relationship only for CO{sub 2} and SO{sub 2}. However, the regression models underestimate the SO{sub 2} emissions by 33%. These tests illustrate the importance in performing material balances around boilers to obtain the most accurate emissions levels, especially when dealing with biofuels. The EPA emissions factors were very good at predicting the mass balance emissions factors for the fossil fuels and to a lesser degree the biofuels. While the AP-42 emissions factors and EPA CFR Title 40 emissions factors are easier to perform, especially in large, full-scale systems, this study illustrated the shortcomings of estimation techniques. 23 refs., 3 figs., 8 tabs.

  14. Fuel cell electric power production

    DOEpatents

    Hwang, Herng-Shinn; Heck, Ronald M.; Yarrington, Robert M.

    1985-01-01

    A process for generating electricity from a fuel cell includes generating a hydrogen-rich gas as the fuel for the fuel cell by treating a hydrocarbon feed, which may be a normally liquid feed, in an autothermal reformer utilizing a first monolithic catalyst zone having palladium and platinum catalytic components therein and a second, platinum group metal steam reforming catalyst. Air is used as the oxidant in the hydrocarbon reforming zone and a low oxygen to carbon ratio is maintained to control the amount of dilution of the hydrogen-rich gas with nitrogen of the air without sustaining an insupportable amount of carbon deposition on the catalyst. Anode vent gas may be utilized as the fuel to preheat the inlet stream to the reformer. The fuel cell and the reformer are preferably operated at elevated pressures, up to about a pressure of 150 psia for the fuel cell.

  15. Towards space/time resolved uncertainty quantification of urban fossil fuel CO2 emissions (Invited)

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Razlivanov, I. N.; Patarasuk, R.; Song, Y.; O'Keeffe, D.; Huang, J.

    2013-12-01

    Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in emerging plans on a global, integrated, carbon monitoring system (CMS). A space/time explicit emissions data product can act as both a verification and planning system. It can verify atmospheric CO2 measurements (in situ and remote) and offer detailed mitigation information to management authorities in order to optimize the mix of mitigation efforts. Quantification of the uncertainty associated with bottom-up emission data products remains a challenging endeavor. There are a number of reasons for this. First, bottom-up source data is often produced by a regulatory agency, which has strict legal limits to the amount and type of information available. Even in cases where legal limitations are not at work, there is no standard for uncertainty reporting and hence, little reliable uncertainty estimation is made. The Hestia Project is an effort aimed at building high-resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data products at the scale of buildings/street segments for entire urban domains. A complete data product has been built for the city of Indianapolis and preliminary quantification has been completed for Los Angeles and Salt Lake City. The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. In the course of this work, we have attempted to quantify uncertainty. In some cases, this is driven by parameter sensitivity, in other cases through the comparison of independent datasets reporting on the same entity. Expert judgment is also deployed where no alternative exists. Here, I will provide a review of some of these techniques with examples from our urban case studies. Total fossil fuel CO2 emissions for Marion County, IN, for the year 2002: (a) top view with numbered zones and (b) blowups of the numbered zones. Color units: log10 kg C

  16. 76 FR 13173 - Jersey Central Power & Light Company and PSEG Fossil, LLC; Notice of Application Tendered for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Jersey Central Power & Light Company and PSEG Fossil, LLC; Notice of... Power & Light Company and PSEG Fossil, LLC. e. Name of Project: Yards Creek Pumped Storage Project....

  17. Power Limits and Thermodynamics in Fuel Cells

    NASA Astrophysics Data System (ADS)

    Sieniutycz, Stanisław

    2012-10-01

    This paper deals with various energy converters, in particular thermal or chemical engines and fuel cells. Applying a general thermodynamic framework we derive formulae for converters' efficiencies and apply them to estimate power limits in these power systems. We consider power limits for thermal systems propelled by differences of temperatures and chemical or electrochemical systems driven by differences of chemical potentials. We focus on fuel cells which are the electrochemical energy generators. We show that fuel cells satisfy the same modeling principles as thermal machines and apply similar computational schemes.

  18. Small Scale SOFC Demonstration Using Bio-Based and Fossil Fuels

    SciTech Connect

    Petrik, Michael; Ruhl, Robert

    2012-05-01

    Technology Management, Inc. (TMI) of Cleveland, Ohio, has completed the project entitled Small Scale SOFC Demonstration using Bio-based and Fossil Fuels. Under this program, two 1-kW systems were engineered as technology demonstrators of an advanced technology that can operate on either traditional hydrocarbon fuels or renewable biofuels. The systems were demonstrated at Patterson's Fruit Farm of Chesterland, OH and were open to the public during the first quarter of 2012. As a result of the demonstration, TMI received quantitative feedback on operation of the systems as well as qualitative assessments from customers. Based on the test results, TMI believes that > 30% net electrical efficiency at 1 kW on both traditional and renewable fuels with a reasonable entry price is obtainable. The demonstration and analysis provide the confidence that a 1 kW entry-level system offers a viable value proposition, but additional modifications are warranted to reduce sound and increase reliability before full commercial acceptance.

  19. Gaseous fuel reactors for power systems

    NASA Technical Reports Server (NTRS)

    Kendall, J. S.; Rodgers, R. J.

    1977-01-01

    Gaseous-fuel nuclear reactors have significant advantages as energy sources for closed-cycle power systems. The advantages arise from the removal of temperature limits associated with conventional reactor fuel elements, the wide variety of methods of extracting energy from fissioning gases, and inherent low fissile and fission product in-core inventory due to continuous fuel reprocessing. Example power cycles and their general performance characteristics are discussed. Efficiencies of gaseous fuel reactor systems are shown to be high with resulting minimal environmental effects. A technical overview of the NASA-funded research program in gaseous fuel reactors is described and results of recent tests of uranium hexafluoride (UF6)-fueled critical assemblies are presented.

  20. Fuel cell power system for utility vehicle

    SciTech Connect

    Graham, M.; Barbir, F.; Marken, F.; Nadal, M.

    1996-12-31

    Based on the experience of designing and building the Green Car, a fuel cell/battery hybrid vehicle, and Genesis, a hydrogen/oxygen fuel cell powered transporter, Energy Partners has developed a fuel cell power system for propulsion of an off-road utility vehicle. A 10 kW hydrogen/air fuel cell stack has been developed as a prototype for future mass production. The main features of this stack are discussed in this paper. Design considerations and selection criteria for the main components of the vehicular fuel cell system, such as traction motor, air compressor and compressor motor, hydrogen storage and delivery, water and heat management, power conditioning, and control and monitoring subsystem are discussed in detail.

  1. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOEpatents

    Ochs, Thomas L.; Summers, Cathy A.; Gerdemann, Steve; Oryshchyn, Danylo B.; Turner, Paul; Patrick, Brian R.

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  2. Fossil fuel characterization using laser desorption mass spectrometry: Applications and limitations

    SciTech Connect

    Hunt, J.E.; Winans, R.E.

    1995-08-01

    Laser desorption mass spectroscopy (LDMS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI) are applicable to the high molecular weight compounds in fossil fuels which resist intact ionization. LD or MALDI of coals and extracts do not show reproducible ion intensity over mass 2000. This paper describes the scope and limitations of LD and MALD in time-of-flight mass spectrometers applied to high molecular weight molecules such as proteins and polymers. Coal was also analyzed. It is concluded that the sample preparation step is perhaps the most important part in MALDI. Observed high mass ions in coal may be from contaminant proteins. Optimal matrices must be found. Finally, the mass spectrum is senstive to number average molecular weight; a low value, however, does not preclude presence of high molecular weight species.

  3. Solid fossil-fuel recovery by electrical induction heating in situ - A proposal

    NASA Astrophysics Data System (ADS)

    Fisher, S.

    1980-04-01

    A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.

  4. New martensitic steels for fossil power plant: Creep resistance

    NASA Astrophysics Data System (ADS)

    Kaybyshev, R. O.; Skorobogatykh, V. N.; Shchenkova, I. A.

    2010-02-01

    In this paper, we consider the origin of high-temperature strength of heat-resistant steels belonging to martensitic class developed on the basis of the Fe—9%Cr alloy for the boiler pipes and steam pipelines of power plants at steam temperatures of up to 620°C and pressures to 300 atm. In addition, we give a brief information on the physical processes that determine the creep strength and consider the alloying philosophy of traditional heat-resistant steels. The effect of the chemical and phase composition of heat-resistant steels and their structure on creep strength is analyzed in detail. It is shown that the combination of the solid-solution alloying by elements such as W and Mo, as well as the introduction of carbides of the MX type into the matrix with the formation of a dislocation structure of tempered martensite, ensures a significant increase in creep resistance. The steels of the martensitic class withstand creep until an extensive polygonization starts in the dislocation structure of the tempered martensite(“troostomartensite”), which is suppressed by V(C,N) and Nb(C,N) dispersoids. Correspondingly, the service life of these steels is determined by the time during which the dispersed nanocarbonitrides withstand coalescence, while tungsten and molybdenum remain in the solid solution. The precipitation of the Laves phases Fe2(W,Mo) and the coalescence of carbides lead to the development of migration of low-angle boundaries, and the steel loses its ability to resist creep.

  5. Fuel-cell-powered golf cart

    SciTech Connect

    Bobbett, R.E.; McCormick, J.B.; Lynn, D.K.; Kerwin, W.J.; Derouin, C.R.; Salazar, P.H.

    1980-01-01

    The implementation of a battery/fuel-cell-powered golf cart test bed designed to verify computer simulations and to gain operational experience with a fuel cell in a vehicular environment is described. A technically untrained driver can easily operate the golf cart because the motor and fuel cell controllers automatically sense and execute the appropriate on/off sequencing. A voltage imbalance circuit and a throttle compress circuit were developed that are directly applicable to electric vehicles in general.

  6. What Geological, Economic, or Policy Forces Might Limit Fossil Fuel Production?

    NASA Astrophysics Data System (ADS)

    Heinberg, R.

    2015-12-01

    In order to ensure a 50% chance of keeping global temperatures from exceeding 2°C above pre-industrial levels, it has been estimated that total carbon dioxide emissions between 2011-2050 must be capped at roughly 1,100 gigatons.[1] However, some estimates calculate that global fossil fuel reserves—including unconventional oil and gas—hold at least three times this amount of potential greenhouse gas emissions.[2]What socio-political, technological, or economic forces are most likely to keep these energy resources from being burned? While it is difficult to predict with specificity what combination of technological, geological, or human factors will significantly minimize global fossil fuel production, there are at least four key potential drivers: 1. Under-investment and the economics of unconventional oil and natural gas; 2. International policy, driven by citizen demand and leadership from key nations; 3. Massive deployment of renewable energy sources and other technological solutions; and 4. Large-scale energy curtailment resulting from global economic contraction. We will explore the implications, viability, and consequences of each of these potential factors. [1] [1]United Nations Framework Convention on Climate Change (UNFCC) Report of the Conference of the Parties on its Fifteenth Session, held in Copenhagen from 7 to 19 December 2009. Part Two: Action taken by the Conference of the Parties at its Fifteenth Session. United Nations Climate Change Conf. Report 43 http://unfccc.int/resource/docs/2009/cop15/eng/11a01.pdf (UNFCC, 2009) [2] Raupach, M. R. et al. Sharing a quota on cumulative carbon emissions. Nature Clim. Chang. 4, 873-879 (2014)

  7. Expanded use of fossil fuels by the U. S. and the global carbon dioxide problem

    SciTech Connect

    Emanuel, W.R.; Olson, J.S.; Killough, G.G.

    1980-01-01

    Continued combustion of fossil fuels contributes to a steady increase of carbon dioxide concentration in the atmosphere. Projecting present increases in rates of fossil-fuel utilization, a doubling of CO/sub 2/ concentration in the atmosphere may be expected within the next 75 years. Based on preliminary calculations, coal utilization by the U.S. to the year 2020 accounts for between 9 and 14% of the increase in CO/sub 2/ concentration. Carbon dioxide in the atmosphere absorbs infrared radiation, causing an increase in the surface temperature of the earth. The most recent climatic models indicate that each doubling in atmospheric CO/sub 2/ concentration will result in a temperature increase of approximately 3 +- 1/sup 0/C, depending on the model used. Changes in average rates of precipitation and evaporation may follow, leading to higher probabilities of drought in the mid-latitudes (including the (U.S.). Manabe and Wetherald (J. Atmos. Sci., 32: 3-15 (1975)) have estimated the temperature increase at high latitudes to be three times the increase in the global average surface temperature. Large-scale melting of the polar ice caps and a subsequent increase in the surface area of the oceans may follow on a timetable that is not yet clear. The distribution of vegetation and agricultural activities can be expected to change in response to the temperature increase and associated with the analysis of the CO/sub 2//climate problem mandate the initiation of an immediate global-scale interdisciplinary research effort to determine more clearly the components and connections of the problem and to develop strategies for reducing the impacts, i.e., contingency plans that could be helpful regardless of impact details which remain to be determined. 26 references.

  8. Nitrogen-Based Fuels: A Power-to-Fuel-to-Power Analysis.

    PubMed

    Grinberg Dana, Alon; Elishav, Oren; Bardow, André; Shter, Gennady E; Grader, Gideon S

    2016-07-25

    What are the fuels of the future? Seven representative carbon- and nitrogen-based fuels are evaluated on an energy basis in a power-to-fuel-to-power analysis as possible future chemical hydrogen-storage media. It is intriguing to consider that a nitrogen economy, where hydrogen obtained from water splitting is chemically stored on abundant nitrogen in the form of a nontoxic and safe nitrogen-based alternative fuel, is energetically feasible.

  9. Nitrogen-Based Fuels: A Power-to-Fuel-to-Power Analysis.

    PubMed

    Grinberg Dana, Alon; Elishav, Oren; Bardow, André; Shter, Gennady E; Grader, Gideon S

    2016-07-25

    What are the fuels of the future? Seven representative carbon- and nitrogen-based fuels are evaluated on an energy basis in a power-to-fuel-to-power analysis as possible future chemical hydrogen-storage media. It is intriguing to consider that a nitrogen economy, where hydrogen obtained from water splitting is chemically stored on abundant nitrogen in the form of a nontoxic and safe nitrogen-based alternative fuel, is energetically feasible. PMID:27286557

  10. High power density carbonate fuel cell

    SciTech Connect

    Yuh, C.; Johnsen, R.; Doyon, J.; Allen, J.

    1996-12-31

    Carbonate fuel cell is a highly efficient and environmentally clean source of power generation. Many organizations worldwide are actively pursuing the development of the technology. Field demonstration of multi-MW size power plant has been initiated in 1996, a step toward commercialization before the turn of the century, Energy Research Corporation (ERC) is planning to introduce a 2.85MW commercial fuel cell power plant with an efficiency of 58%, which is quite attractive for distributed power generation. However, to further expand competitive edge over alternative systems and to achieve wider market penetration, ERC is exploring advanced carbonate fuel cells having significantly higher power densities. A more compact power plant would also stimulate interest in new markets such as ships and submarines where space limitations exist. The activities focused on reducing cell polarization and internal resistance as well as on advanced thin cell components.

  11. Fuel economy and range estimates for fuel cell powered automobiles

    SciTech Connect

    Steinbugler, M.; Ogden, J.

    1996-12-31

    While a number of automotive fuel cell applications have been demonstrated, including a golf cart, buses, and a van, these systems and others that have been proposed have utilized differing configurations ranging from direct hydrogen fuel cell-only power plants to fuel cell/battery hybrids operating on reformed methanol. To date there is no clear consensus on which configuration, from among the possible combinations of fuel cell, peaking device, and fuel type, is the most likely to be successfully commercialized. System simplicity favors direct hydrogen fuel cell vehicles, but infrastructure is lacking. Infrastructure favors a system using a liquid fuel with a fuel processor, but system integration and performance issues remain. A number of studies have analyzed particular configurations on either a system or vehicle scale. The objective of this work is to estimate, within a consistent framework, fuel economies and ranges for a variety of configurations using flexible models with the goal of identifying the most promising configurations and the most important areas for further research and development.

  12. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/01

    SciTech Connect

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985 and 2025. Residential, commercial, and industrial energy demands are forecast as well as the impacts of energy technology implementation and market penetration using a set of energy technology assumptions. (DMC)

  13. DEVELOPMENT OF SAMPLING AND ANALYTICAL METHODS FOR THE MEASUREMENT OF NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION SOURCES

    EPA Science Inventory

    The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...

  14. sparse-msrf:A package for sparse modeling and estimation of fossil-fuel CO2 emission fields

    SciTech Connect

    2014-10-06

    The software is used to fit models of emission fields (e.g., fossil-fuel CO2 emissions) to sparse measurements of gaseous concentrations. Its primary aim is to provide an implementation and a demonstration for the algorithms and models developed in J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions", accepted, Geoscientific Model Development, 2014. The software can be used to estimate emissions of non-reactive gases such as fossil-fuel CO2, methane etc. The software uses a proxy of the emission field being estimated (e.g., for fossil-fuel CO2, a population density map is a good proxy) to construct a wavelet model for the emission field. It then uses a shrinkage regression algorithm called Stagewise Orthogonal Matching Pursuit (StOMP) to fit the wavelet model to concentration measurements, using an atmospheric transport model to relate emission and concentration fields. Algorithmic novelties described in the paper above (1) ensure that the estimated emission fields are non-negative, (2) allow the use of guesses for emission fields to accelerate the estimation processes and (3) ensure that under/overestimates in the guesses do not skew the estimation.

  15. sparse-msrf:A package for sparse modeling and estimation of fossil-fuel CO2 emission fields

    2014-10-06

    The software is used to fit models of emission fields (e.g., fossil-fuel CO2 emissions) to sparse measurements of gaseous concentrations. Its primary aim is to provide an implementation and a demonstration for the algorithms and models developed in J. Ray, V. Yadav, A. M. Michalak, B. van Bloemen Waanders and S. A. McKenna, "A multiresolution spatial parameterization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions", accepted, Geoscientific Model Development, 2014. The softwaremore » can be used to estimate emissions of non-reactive gases such as fossil-fuel CO2, methane etc. The software uses a proxy of the emission field being estimated (e.g., for fossil-fuel CO2, a population density map is a good proxy) to construct a wavelet model for the emission field. It then uses a shrinkage regression algorithm called Stagewise Orthogonal Matching Pursuit (StOMP) to fit the wavelet model to concentration measurements, using an atmospheric transport model to relate emission and concentration fields. Algorithmic novelties described in the paper above (1) ensure that the estimated emission fields are non-negative, (2) allow the use of guesses for emission fields to accelerate the estimation processes and (3) ensure that under/overestimates in the guesses do not skew the estimation.« less

  16. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/02

    SciTech Connect

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions. (DMC)

  17. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America

    NASA Astrophysics Data System (ADS)

    Hsueh, Diana Y.; Krakauer, Nir Y.; Randerson, James T.; Xu, Xiaomei; Trumbore, Susan E.; Southon, John R.

    2007-01-01

    Radiocarbon levels in annual plants provide a means to map out regional and continental-scale fossil fuel plumes in surface air. We collected corn (Zea mays) across North America during the summer of 2004. Plants from mountain regions of western North America showed the smallest influence of fossil fuel-derived CO2 with a mean Δ14C of 66.3‰ +/-1.7‰. Plants from eastern North America and from the Ohio-Maryland region showed a larger fossil fuel influence with a mean Δ14C of 58.8‰ +/- 3.9‰ and 55.2‰ +/- 2.3‰, respectively, corresponding to 2.7 ppm +/- 1.5 ppm and 4.3 ppm +/- 1.0 ppm of added fossil fuel CO2 relative to the mountain west. A model-data comparison suggests that surveys of annual plant Δ14C can provide a useful test of atmospheric mixing in transport models that are used to estimate the spatial distribution of carbon sources and sinks.

  18. Strategic backdrop analysis for fossil fuel planning. Task 1. Default Case. Report 468-117-07/03

    SciTech Connect

    Not Available

    1980-06-01

    This report presents data describing a default case analysis performed using the strategic backdrop analytical framework developed to facilitate fossil fuel planning within the DOE. Target years are 1985, 2000, and 2025. Residential, commercial, and industrial energy demands and impacts of energy technology implementation and market penetration are forecast using a set of energy technology assumptions.

  19. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia since the turn of the century

    PubMed Central

    Rap, A.; Reddington, C. L.; Spracklen, D. V.; Gloor, M.; Buermann, W.

    2016-01-01

    Abstract The global terrestrial carbon sink has increased since the start of this century at a time of growing carbon emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning enhanced the diffuse light fraction and the efficiency of plant carbon uptake. Using a combination of models, we estimate that at global scale changes in light regimes from fossil fuel aerosol emissions had only a small negative effect on the increase in terrestrial net primary production over the period 1998–2010. Hereby, the substantial increases in fossil fuel aerosol emissions and plant carbon uptake over East Asia were effectively canceled by opposing trends across Europe and North America. This suggests that if the recent increase in the land carbon sink would be causally linked to fossil fuel emissions, it is unlikely via the effect of aerosols but due to other factors such as nitrogen deposition or nitrogen‐carbon interactions. PMID:27773953

  20. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C.

    PubMed

    McGlade, Christophe; Ekins, Paul

    2015-01-01

    Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production. PMID:25567285

  1. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C.

    PubMed

    McGlade, Christophe; Ekins, Paul

    2015-01-01

    Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production.

  2. Solar-Augment Potential of U.S. Fossil-Fired Power Plants

    SciTech Connect

    Turchi, C.; Langle, N.; Bedilion, R.; Libby, C.

    2011-02-01

    Concentrating Solar Power (CSP) systems utilize solar thermal energy for the generation of electric power. This attribute makes it relatively easy to integrate CSP systems with fossil-fired power plants. The 'solar-augment' of fossil power plants offers a lower cost and lower risk alternative to stand-alone solar plant construction. This study ranked the potential to add solar thermal energy to coal-fired and natural gas combined cycle (NGCC) plants found throughout 16 states in the southeast and southwest United States. Each generating unit was ranked in six categories to create an overall score ranging from Excellent to Not Considered. Separate analysis was performed for parabolic trough and power tower technologies due to the difference in the steam temperatures that each can generate. The study found a potential for over 11 GWe of parabolic trough and over 21 GWe of power tower capacity. Power towers offer more capacity and higher quality integration due to the greater steam temperatures that can be achieved. The best sites were in the sunny southwest, but all states had at least one site that ranked Good for augmentation.

  3. Atmospheric observations of carbon monoxide and fossil fuel CO2 emissions from East Asia

    NASA Astrophysics Data System (ADS)

    Turnbull, Jocelyn C.; Tans, Pieter P.; Lehman, Scott J.; Baker, David; Conway, Thomas J.; Chung, Y. S.; Gregg, Jay; Miller, John B.; Southon, John R.; Zhou, Ling-Xi

    2011-12-01

    Flask samples from two sites in East Asia, Tae-Ahn Peninsula, Korea (TAP), and Shangdianzi, China (SDZ), were measured for trace gases including CO2, CO and fossil fuel CO2 (CO2ff, derived from Δ14CO2observations). The five-year TAP record shows high CO2ff when local air comes from the Korean Peninsula. Most samples, however, reflect air masses from Northeastern China with lower CO2ff. Our small set of SDZ samples from winter 2009/2010 have strongly elevated CO2ff. Biospheric CO2 contributes substantially to total CO2variability at both sites, even in winter when non-fossil CO2 sources (including photosynthesis, respiration, biomass burning and biofuel use) contribute 20-30% of the total CO2 enhancement. Carbon monoxide (CO) correlates strongly with CO2ff. The SDZ and TAP far-field (China influenced) samples have CO: CO2ff ratios (RCO:CO2ff) of 47 ± 2 and 44 ± 3 ppb/ppm respectively, consistent with recent bottom-up inventory estimates and other observational studies. Locally influenced TAP samples fall into two distinct data sets, ascribed to air sourced from South Korea and North Korea. The South Korea samples have low RCO:CO2ffof 13 ± 3 ppb/ppm, slightly higher than bottom-up inventories, but consistent with emission ratios for other developed nations. We compare our CO2ff observations with modeled CO2ff using the FLEXPART Lagrangian particle dispersion model convolved with a bottom-up CO2ff emission inventories. The modeled annual mean CO2ff mole fractions are consistent with our observations when the model inventory includes the reported 63% increase in Chinese emissions from 2004 to 2010, whereas a model version which holds Chinese emissions flat is unable to replicate the observations.

  4. Uncertainty in projected climate change caused by methodological discrepancy in estimating CO2 emissions from fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Quilcaille, Yann; Gasser, Thomas; Ciais, Philippe; Lecocq, Franck; Janssens-Maenhout, Greet; Mohr, Steve; Andres, Robert J.; Bopp, Laurent

    2016-04-01

    There are different methodologies to estimate CO2 emissions from fossil fuel combustion. The term "methodology" refers to the way subtypes of fossil fuels are aggregated and their implied emissions factors. This study investigates how the choice of a methodology impacts historical and future CO2 emissions, and ensuing climate change projections. First, we use fossil fuel extraction data from the Geologic Resources Supply-Demand model of Mohr et al. (2015). We compare four different methodologies to transform amounts of fossil fuel extracted into CO2 emissions based on the methodologies used by Mohr et al. (2015), CDIAC, EDGARv4.3, and IPCC 1996. We thus obtain 4 emissions pathways, for the historical period 1750-2012, that we compare to the emissions timeseries from EDGARv4.3 (1970-2012) and CDIACv2015 (1751-2011). Using the 3 scenarios by Mohr et al. (2015) for projections till 2300 under the assumption of an Early (Low emission), Best Guess or Late (High emission) extraction peaking, we obtain 12 different pathways of CO2 emissions over 1750-2300. Second, we extend these CO2-only pathways to all co-emitted and climatically active species. Co-emission ratios for CH4, CO, BC, OC, SO2, VOC, N2O, NH3, NOx are calculated on the basis of the EDGAR v4.3 dataset, and are then used to produce complementary pathways of non-CO2 emissions from fossil fuel combustion only. Finally, the 12 emissions scenarios are integrated using the compact Earth system model OSCAR v2.2, in order to quantify the impact of the selected driver onto climate change projections. We find historical cumulative fossil fuel CO2 emissions from 1750 to 2012 ranging from 365 GtC to 392 GtC depending upon the methodology used to convert fossil fuel into CO2 emissions. We notice a drastic increase of the impact of the methodology in the projections. For the High emission scenario with Late fuel extraction peaking, cumulated CO2 emissions from 1700 to 2100 range from 1505 GtC to 1685 GtC; this corresponds

  5. 76 FR 35201 - Jersey Central Power and Light; PSEG Fossil LLC; Notice of Application Accepted for Filing...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-16

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Jersey Central Power and Light; PSEG Fossil LLC; Notice of... Fossil LLC. e. Name of Project: Yards Creek Pumped Storage Project. f. Location: The existing project...

  6. Stationary power fuel cell commercialization status worldwide

    SciTech Connect

    Williams, M.C.

    1996-12-31

    Fuel cell technologies for stationary power are set to play a role in power generation applications worldwide. The worldwide fuel cell vision is to provide powerplants for the emerging distributed generation and on-site markets. Progress towards commercialization has occurred in all fuel cell development areas. Around 100 ONSI phosphoric acid fuel cell (PAFC) units have been sold, with significant foreign sales in Europe and Japan. Fuji has apparently overcome its PAFC decay problems. Industry-driven molten carbonate fuel cell (MCFC) programs in Japan and the U.S. are conducting megawatt (MW)-class demonstrations, which are bringing the MCFC to the verge of commercialization. Westinghouse Electric, the acknowledged world leader in tubular solid oxide fuel cell (SOFC) technology, continues to set performance records and has completed construction of a 4-MW/year manufacturing facility in the U.S. Fuel cells have also taken a major step forward with the conceptual development of ultra-high efficiency fuel cell/gas turbine plants. Many SOFC developers in Japan, Europe, and North America continue to make significant advances.

  7. Influence of Fossil Fuel Emissions on CO2 Flux Estimation by Atmospheric Inversions

    NASA Astrophysics Data System (ADS)

    Saeki, T.; Patra, P. K.; van der Laan-Luijkx, I. T.; Peters, W.

    2015-12-01

    Top-down approaches (or atmospheric inversions) using atmospheric transport models with CO2 observations are an effective way to estimate carbon fluxes at global and regional scales. CO2 flux estimation by Bayesian inversions require a priori knowledge of terrestrial biosphere and oceanic fluxes and fossil fuel (FF) CO2 emissions. In most inversion frameworks, FF CO2 is assumed to be a known quantity because FF CO2 based on world statistics are thought to be more reliable than natural CO2 fluxes. However different databases of FF CO2 emissions may have different temporal and spatial variations especially at locations where statistics are not so accurate. In this study, we use 3 datasets of fossil fuel emissions in inversion estimations and evaluate the sensitivity of the optimized CO2 fluxes to FF emissions with two different inverse models, JAMSTEC's ACTM and CarbonTracker Europe (CTE). Interannually varying a priori FF CO2 emissions were based on 1) CDIAC database, 2) EDGARv4.2 database, and 3) IEA database, with some modifications. Biosphere and oceanic fluxes were optimized. Except for FF emissions, other conditions were kept the same in our inverse experiments. The three a priori FF emissions showed ~5% (~0.3GtC/yr) differences in their global total emissions in the early 2000's and the differences reached ~9% (~0.9 GtC/yr) in 2010. This resulted in 0.5-1 GtC/yr (2001-2011) and 0.3-0.6 GtC/yr (2007-2011) differences in the estimated global total emissions for the ACTM and CTE inversions, respectively. Regional differences in the FF emissions were relatively large in East Asia (~0.5 GtC/yr for ACTM and ~0.3 GtC/yr for CTE) and Europe (~0.3 GtC/yr for ACTM). These a priori flux differences caused differences in the estimated biosphere fluxes for ACTM in East Asia and Europe and also their neighboring regions such as West Asia, Boreal Eurasia, and North Africa. The main differences in the biosphere fluxes for CTE were found in Asia and the Americas.

  8. Quantification of space/time explicit fossil fuel CO2 emissions in urban domains

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Razlivanov, I. N.; Song, Y.

    2013-05-01

    Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in development of a carbon monitoring system. A space/time explicit emissions data product can verify atmospheric CO2 measurements and offer practical information to authorities in order to optimize mitigation efforts. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain. A complete data product has been built for the city of Indianapolis and work is ongoing in Los Angeles. The work in Indianapolis is now part of a larger effort, INFLUX, aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions. The work in Los Angeles with JPL colleagues is aimed at building an operational carbon monitoring system with focus on global megacities. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate using Hestia to distribute emissions in space and time. Two components take the majority of effort: buildings and onroad emissions. For the buildings, we utilize an energy building model constrained with multiple local data streams. For onroad emissions, we use a combination of traffic data and GIS road layers maintaining vehicle class information. In collaboration with our INFLUX colleagues, we are transporting these high resolution emissions through an atmospheric transport model for a forward comparison of the Hestia data product with atmospheric measurements, collected on aircraft and cell towers. In collaboration with our JPL colleagues, we are testing the feasibility of quantifying a megacity domain and how it might integrate with remote sensing and in situ measurement systems. The Hestia effort also holds promise for a useable policy tool at the city scale. With detailed information on energy consumption and emissions with process

  9. Gridded Uncertainty Maps of Fossil Fuel Carbon Dioxide Emissions: A New Data Product

    NASA Astrophysics Data System (ADS)

    Andres, R. J.; Boden, T.

    2014-12-01

    With the publication of a new assessment of the uncertainty associated with the mass of fossil fuel carbon dioxide (FFCO2) emissions (2014, Tellus B, 66, 23616, doi:10.3402/tellusb.v66.23616), it is now possible to extend that work with a gridded map of fossil fuel emission uncertainties. The new data product was created to be paired with the long-used, Carbon Dioxide Information Analysis Center (CDIAC), emission year 1751-present, one degree latitude by one degree longitude (1x1) mass of emissions data product (http://cdiac.ornl.gov/epubs/ndp/ndp058/ndp058_v2013.html). Now, for the first time, data users will have FFCO2 emission information that represents both mass and uncertainty, each of which varies in both time and space. The new data product was constructed by examining the individual uncertainties in each of the input data sets to the gridded mass maps and then combining these individual uncertainties into an overall uncertainty for the mass maps. The input data sets include a table of the mass of FFCO2 emissions by country and year, the one degree geographic map of emissions which includes changing borders on an annual time scale and ties the mass of emissions to location, and the one degree population proxy used to distribute the mass of emissions within each country. As the three input data sets are independent of each other, their combination for the overall uncertainty is accomplished by a simple square root of the sum of the squares procedure. The resulting uncertainty data product is gridded at 1x1 and exactly overlays the 1x1 mass emission maps. The default temporal resolution is annual, but a companion product is also available at monthly time scales. The monthly uncertainty product uses the same input data sets, but the mass uncertainty is scaled as described in the monthly mass product description paper (2011, Tellus B, 63:309-327, doi: 10.1111/j.1600-0889.2011.00530.x). The gridded uncertainty maps cover emission year 1950 to 2010. The start

  10. Building-specific quantification of fossil fuel CO2 emissions in an urban domain: the case of Indianapolis, US

    NASA Astrophysics Data System (ADS)

    Razlivanov, I.; Gurney, K. R.; Zhou, Y.; Turnbull, J. C.; Sweeney, C.; Guenther, D.; Karion, A.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P. B.; Cambaliza, M. L.; Lehman, S. J.; Tans, P. P.

    2011-12-01

    Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in interpreting atmospheric CO2 measurements in addition to providing critical emissions mitigation information. Recent research and decision-support has placed emphasis on quantification of emissions for urban domes with sector specificity. Here we present results of the Hestia Project, an effort aimed at quantifying fossil fuel CO2 emissions at the building and road segment scale for the city of Indianapolis as part of the INFLUX experiment. To calculate CO2 emissions for buildings, we use a combination of county-level estimation from the Vulcan Project and distribute those emissions via an allocation method that utilizes a building energy simulation tool - eQuest (DOE). eQUEST is based on a series of building typologies and has a large number of input variables in order to quantify energy consumption. The simulation process uses default values when the actual data are inaccessible or non-existent. Our method is based on the construction of 22 commercial, 18 industrial, and 8 residential building types. This classification requires specification of building vintages and sizes. To calculate the total floor area of buildings from building heights, remote sensing data are used. The DOEs regional energy surveys, CBECS, RECS and MECS data for the East North Central Census Division, are used to calibrate hourly profiles for different building types. Previous published results for Indianapolis have been substantially updated by using additional data on natural gas pipelines. A more accurate, statistically-based building height assessment has been made using improved lidar data. The reclassification procedure converting Assessor's parcel types into Hestia prototypes, has been revised and improved. More accurate statistics have been calculated and corresponding diagrams and thematic maps have been prepared. Development of a powerful user-friendly information system for

  11. Monolithic fuel cell based power source for sprint power generation

    NASA Astrophysics Data System (ADS)

    Fee, D. C.; Busch, D. E.; Dees, D. W.; Dusek, J.; Easler, T. E.; Ellingson, W. A.; Flandermeyer, B. K.; Fousek, R. J.; Heiberger, J. J.; Majumdar, S.

    A unique fuel cell (monolith) coupled with a low power nuclear reactor presents an attractive approach for SDI burst power requirements. The high power, long duration bursts, appear achievable within a single shuttle launch limitation with appropriate development of the concept. The feasibility of the monolithic fuel cell concept has been demonstrated. Small arrays (stacks) of the monolithic design have been operated for hundreds of hours. The challenge is to improve the fabrication technology so that larger array of the monolithic design can be operated.

  12. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    SciTech Connect

    Claudio Filippone, Ph.D.

    1999-06-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency.

  13. Nuclear Energy R&D Imperative 3: Enable a Transition Away from Fossil Fuel in the Transportation and Industrial Sectors

    SciTech Connect

    David Petti; J. Stephen Herring

    2010-03-01

    As described in the Department of Energy Office of Nuclear Energy’s Nuclear Energy R&D Roadmap, nuclear energy can play a significant role in supplying energy for a growing economy while reducing both our dependence on foreign energy supplies and emissions from the burning of fossil fuels. The industrial and transportation sectors are responsible for more than half of the greenhouse gas emissions in the U.S., and imported oil supplies 70% of the energy used in the transportation sector. It is therefore important to examine the various ways nuclear energy can facilitate a transition away from fossil fuels to secure environmentally sustainable production and use of energy in the transportation and manufacturing industry sectors. Imperative 3 of the Nuclear Energy R&D Roadmap, entitled “Enable a Transition Away from Fossil Fuels by Producing Process Heat for use in the Transportation and Industrial Sectors”, addresses this need. This document presents an Implementation Plan for R&D efforts related to this imperative. The expanded use of nuclear energy beyond the electrical grid will contribute significantly to overcoming the three inter-linked energy challenges facing U.S. industry: the rising and volatile prices for premium fossil fuels such as oil and natural gas, dependence on foreign sources for these fuels, and the risks of climate change resulting from carbon emissions. Nuclear energy could be used in the industrial and transportation sectors to: • Generate high temperature process heat and electricity to serve industrial needs including the production of chemical feedstocks for use in manufacturing premium fuels and fertilizer products, • Produce hydrogen for industrial processes and transportation fuels, and • Provide clean water for human consumption by desalination and promote wastewater treatment using low-grade nuclear heat as a useful additional benefit. Opening new avenues for nuclear energy will significantly enhance our nation’s energy

  14. Fuel cell power trains for road traffic

    NASA Astrophysics Data System (ADS)

    Höhlein, Bernd; Biedermann, Peter; Grube, Thomas; Menzer, Reinhard

    Legal regulations, especially the low emission vehicle (LEV) laws in California, are the driving forces for more intensive technological developments with respect to a global automobile market. In the future, high efficient vehicles at very low emission levels will include low temperature fuel cell systems (e.g., polymer electrolyte fuel cell (PEFC)) as units of hydrogen-, methanol- or gasoline-based electric power trains. In the case of methanol or gasoline/diesel, hydrogen has to be produced on-board using heated steam or partial oxidation reformers as well as catalytic burners and gas cleaning units. Methanol could also be used for direct electricity generation inside the fuel cell (direct methanol fuel cell (DMFC)). The development potentials and the results achieved so far for these concepts differ extremely. Based on the experience gained so far, the goals for the next few years include cost and weight reductions as well as optimizations in terms of the energy management of power trains with PEFC systems. At the same time, questions of fuel specification, fuel cycle management, materials balances and environmental assessment will have to be discussed more intensively. On the basis of process engineering analyses for net electricity generation in PEFC-powered power trains as well as on assumptions for both electric power trains and vehicle configurations, overall balances have been carried out. They will lead not only to specific energy demand data and specific emission levels (CO 2, CO, VOC, NO x) for the vehicle but will also present data of its full fuel cycle (FFC) in comparison to those of FFCs including internal combustion engines (ICE) after the year 2005. Depending on the development status (today or in 2010) and the FFC benchmark results, the advantages of balances results of FFC with PEFC vehicles are small in terms of specific energy demand and CO 2 emissions, but very high with respect to local emission levels.

  15. Diagnosis of automotive fuel cell power generators

    NASA Astrophysics Data System (ADS)

    Hissel, D.; Péra, M. C.; Kauffmann, J. M.

    Most of car manufacturers around the world have launched important research programs on the integration of fuel cell (FC) power generators into cars. Despite the first achievements, fuel cell systems are still badly known, particularly when talking about fault diagnosis and predictive maintenance. This paper proposes a first step in this way by introducing a simple but also efficient diagnosis-oriented model of a proton exchange membrane fuel cell (PEMFC). The considered diagnosis model is here a fuzzy one and is tuned thanks to genetic algorithms.

  16. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    SciTech Connect

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-22

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  17. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    NASA Astrophysics Data System (ADS)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  18. Small global effect on terrestrial net primary production due to increased fossil fuel aerosol emissions from East Asia during the last decade.

    NASA Astrophysics Data System (ADS)

    O'Sullivan, Michael; Rap, Alex; Reddington, Carly; Spracklen, Dominick; Buermann, Wolfgang

    2016-04-01

    The global terrestrial carbon sink has increased since the start of this century at a time of rapidly growing carbon dioxide emissions from fossil fuel burning. Here we test the hypothesis that increases in atmospheric aerosols from fossil fuel burning have increased the diffuse fraction of incoming solar radiation and the efficiency of photosynthesis leading to increased plant carbon uptake. Using a combination of atmospheric and biospheric models, we find that changes in diffuse light associated with fossil fuel aerosol emission accounts for only 2.8% of the increase in global net primary production (1.221 PgC/yr) over the study period 1998 to 2007. This relatively small global signal is however a result of large regional compensations. Over East Asia, the strong increase in fossil fuel emissions contributed nearly 70% of the increased plant carbon uptake (21 TgC/yr), whereas the declining fossil fuel aerosol emissions in Europe and North America contributed negatively (-16% and -54%, respectively) to increased plant carbon uptake. At global scale, we also find the CO2 fertilization effect on photosynthesis to be the dominant driver of increased plant carbon uptake, in line with previous studies. These results suggest that further research into alternative mechanisms by which fossil fuel emissions could increase carbon uptake, such as nitrogen deposition and carbon-nitrogen interactions, is required to better understand a potential link between the recent changes in fossil fuel emissions and terrestrial carbon uptake.

  19. Delta13C values of grasses as a novel indicator of pollution by fossil-fuel-derived greenhouse gas CO2 in urban areas.

    PubMed

    Lichtfouse, Eric; Lichtfouse, Michel; Jaffrézic, Anne

    2003-01-01

    A novel fossil fuel pollution indicator based on the 13C/12C isotopic composition of plants has been designed. This bioindicator is a promising tool for future mapping of the sequestration of fossil fuel CO2 into urban vegetation. Theoretically, plants growing in fossil-fuel-CO2-contaminated areas, such as major cities, industrial centers, and highway borders, should assimilate a mixture of global atmospheric CO2 of delta13C value of -8.02 per thousand and of fossil fuel CO2 of average delta13C value of -27.28 per thousand. This isotopic difference should, thus, be recorded in plant carbon. Indeed, this study reveals that grasses growing near a major highway in Paris, France, have strikingly depleted delta13C values, averaging at -35.08 per thousand, versus rural grasses that show an average delta13C value of -30.59 per thousand. A simple mixing model was used to calculate the contributions of fossil-fuel-derived CO2 to the plant tissue. Calculation based on contaminated and noncontaminated isotopic end members shows that urban grasses assimilate up to 29.1% of fossil-fuel-CO2-derived carbon in their tissues. The 13C isotopic composition of grasses thus represents a promising new tool for the study of the impact of fossil fuel CO2 in major cities.

  20. Poly(3-Hydroxypropionate): a Promising Alternative to Fossil Fuel-Based Materials

    PubMed Central

    Andreeßen, Björn; Taylor, Nicolas

    2014-01-01

    Polyhydroxyalkanoates (PHAs) are storage compounds synthesized by numerous microorganisms and have attracted the interest of industry since they are biobased and biodegradable alternatives to fossil fuel-derived plastics. Among PHAs, poly(3-hydroxypropionate) [poly(3HP)] has outstanding material characteristics and exhibits a large variety of applications. As it is not brittle like, e.g., the best-studied PHA, poly(3-hydroxybutyrate) [poly(3HB)], it can be used as a plasticizer in blends to improve their properties. Furthermore, 3-hydroxypropionic acid (3HP) is considered likely to become one of the new industrial building blocks, and it can be obtained from poly(3HP) by simple hydrolysis. Unfortunately, no natural organism is known to accumulate poly(3HP) so far. Thus, several efforts have been made to engineer genetically modified organisms capable of synthesizing the homopolymer or copolymers containing 3HP. In this review, the achievements made so far in efforts to obtain biomass which has accumulated poly(3HP) or 3HP-containing copolymers, as well as the properties of these polyesters and their applications, are compiled and evaluated. PMID:25149521

  1. Sun, Ocean, Nuclear Bombs, and Fossil Fuels: Radiocarbon Variations and Implications for High-Resolution Dating

    NASA Astrophysics Data System (ADS)

    Dutta, Koushik

    2016-06-01

    Radiocarbon, or 14C, is a radiometric dating method ideally suited for providing a chronological framework in archaeology and geosciences for timescales spanning the last 50,000 years. 14C is easily detectable in most common natural organic materials and has a half-life (5,730±40 years) relevant to these timescales. 14C produced from large-scale detonations of nuclear bombs between the 1950s and the early 1960s can be used for dating modern organic materials formed after the 1950s. Often these studies demand high-resolution chronology to resolve ages within a few decades to less than a few years. Despite developments in modern, high-precision 14C analytical methods, the applicability of 14C in high-resolution chronology is limited by short-term variations in atmospheric 14C in the past. This article reviews the roles of the principal natural drivers (e.g., solar magnetic activity and ocean circulation) and the anthropogenic perturbations (e.g., fossil fuel CO2 and 14C from nuclear and thermonuclear bombs) that are responsible for short-term 14C variations in the environment. Methods and challenges of high-resolution 14C dating are discussed.

  2. Accumulation of fossil fuels and metallic minerals in active and ancient rift lakes

    USGS Publications Warehouse

    Robbins, E.I.

    1983-01-01

    A study of active and ancient rift systems around the world suggests that accumulations of fossil fuels and metallic minerals are related to the interactions of processes that form rift valleys with those that take place in and around rift lakes. The deposition of the precursors of petroleum, gas, oil shale, coal, phosphate, barite, Cu-Pb-Zn sulfides, and uranium begins with erosion of uplifted areas, and the consequent input of abundant nutrients and solute loads into swamps and tectonic lakes. Hot springs and volcanism add other nutrients and solutes. The resulting high biological productivity creates oxidized/reduced interfaces, and anoxic and H2S-rich bottom waters which preserves metal-bearing organic tissues and horizons. In the depositional phases, the fine-grained lake deposits are in contact with coarse-grained beach, delta, river, talus, and alluvial fan deposits. Earthquake-induced turbidites also are common coarse-grained deposits of rift lakes. Postdepositional processes in rifts include high heat flow and a resulting concentration of the organic and metallic components that were dispersed throughout the lakebeds. Postdepositional faulting brings organic- and metal-rich sourcebeds in contact with coarse-grained host and reservoir rocks. A suite of potentially economic deposits is therefore a characteristic of rift valleys. ?? 1983.

  3. Innovative fossil fuel fired vitrification technology for soil remediation. Phase 1

    SciTech Connect

    Not Available

    1994-01-01

    Vortec has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conservation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment-as confirmed by both ANS 16.1 and Toxicity Characteristic Leaching Procedure (TCLP) testing. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and did not leach to the environment as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC subsystem design.

  4. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Technical Reports Server (NTRS)

    Cess, R. D.; Hameed, S.; Hogan, J. S.

    1980-01-01

    Tropospheric ozone and methane might increase in the future as the result of increasing anthropogenic emissions of CO, NOx and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test this possible climatic impact, a zonal energy-balance climate model has been combined with a vertically-averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4 and NOx. The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NOx and CH4, and that future increases in these emissions could enhance global warming due to increasing atmospheric CO2.

  5. Response of the global climate to changes in atmospheric chemical composition due to fossil fuel burning

    NASA Technical Reports Server (NTRS)

    Hameed, S.; Cess, R. D.; Hogan, J. S.

    1980-01-01

    Recent modeling of atmospheric chemical processes (Logan et al, 1978; Hameed et al, 1979) suggests that tropospheric ozone and methane might significantly increase in the future as the result of increasing anthropogenic emissions of CO, NO(x), and CH4 due to fossil fuel burning. Since O3 and CH4 are both greenhouse gases, increases in their concentrations could augment global warming due to larger future amounts of atmospheric CO2. To test the possible climatic impact of changes in tropospheric chemical composition, a zonal energy-balance climate model has been combined with a vertically averaged tropospheric chemical model. The latter model includes all relevant chemical reactions which affect species derived from H2O, O2, CH4, and NO(x). The climate model correspondingly incorporates changes in the infrared heating of the surface-troposphere system resulting from chemically induced changes in tropospheric ozone and methane. This coupled climate-chemical model indicates that global climate is sensitive to changes in emissions of CO, NO(x) and CH4, and that future increases in these emissions could augment global warming due to increasing atmospheric CO2.

  6. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    SciTech Connect

    de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

    2008-08-13

    Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

  7. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOEpatents

    Yang, W.C.; Newby, R.A.; Lippert, T.E.

    1997-08-05

    The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

  8. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOEpatents

    Yang, Wen-Ching; Newby, Richard A.; Lippert, Thomas E.

    1997-01-01

    The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

  9. Aeolian contamination of Se and Ag in the North Pacific from Asian fossil fuel combustion.

    PubMed

    Ranville, Mara A; Cutter, Gregory A; Buck, Clifton S; Landing, William M; Cutter, Lynda S; Resing, Joseph A; Flegal, A Russell

    2010-03-01

    Energy production from fossil fuels, and in particular the burning of coal in China, creates atmospheric contamination that is transported across the remote North Pacific with prevailing westerly winds. In recent years this pollution from within Asia has increased dramatically, as a consequence of vigorous economic growth and corresponding energy consumption. During the fourth Intergovernmental Oceanographic Commission baseline contaminant survey in the western Pacific Ocean from May to June, 2002, surface waters and aerosol samples were measured to investigate whether atmospheric deposition of trace elements to the surface North Pacific was altering trace element biogeochemical cycling. Results show a presumably anthropogenic enrichment of Ag and of Se, which is a known tracer of coal combustion, in the North Pacific atmosphere and surface waters. Additionally, a strong correlation was seen between dissolved Ag and Se concentrations in surface waters. This suggests that Ag should now also be considered a geochemical tracer for coal combustion, and provides further evidence that Ag exhibits a disturbed biogeochemical cycle as the result of atmospheric deposition to the North Pacific.

  10. Various Perspectives of Mitigating Fossil Fuel Use and Air Pollutant Emissions in China's Megacity

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2014-12-01

    It is critical to reduce energy use and air pollutions in metropolitan areas because these areas usually serve as economic engines and have large, dense populations. Fossil fuel use and air-polluting emissions were analyzed in Beijing between 1997 and 2010 from both a bottom-up and a top-down perspective. From a bottom-up perspective, the key energy-intensive industrial sectors directly caused changes in Beijing's air pollution by means of a series of energy and economic policies. From a top-down perspective, variation in industrial production caused increases in most emissions between 2000 and 2010, however, there were decreases in PM10 and PM2.5 emissions during 2005-2010. Population growth was found to be the largest driver of energy consumption and emissions between1997 and 2010. Energy use and air pollutant emissions were also found to outsource from Beijing to other regions in China. Policies for reducing urban energy consumption and emissions should consider not only the key industrial sectors but also socioeconomic drivers.

  11. Direct FuelCell/Turbine Power Plant

    SciTech Connect

    Hossein Ghezel-Ayagh

    2008-09-30

    This report summarizes the progress made in development of Direct FuelCell/Turbine (DFC/T{reg_sign}) power plants for generation of clean power at very high efficiencies. The DFC/T system employs an indirectly heated Turbine Generator to supplement fuel cell generated power. The concept extends the high efficiency of the fuel cell by utilizing the fuel cell's byproduct heat in a Brayton cycle. Features of the DFC/T system include: electrical efficiencies of up to 75% on natural gas, minimal emissions, reduced carbon dioxide release to the environment, simplicity in design, direct reforming internal to the fuel cell, and potential cost competitiveness with existing combined cycle power plants. Proof-of-concept tests using a sub-MW-class DFC/T power plant at FuelCell Energy's (FCE) Danbury facility were conducted to validate the feasibility of the concept and to measure its potential for electric power production. A 400 kW-class power plant test facility was designed and retrofitted to conduct the tests. The initial series of tests involved integration of a full-size (250 kW) Direct FuelCell stack with a 30 kW Capstone microturbine. The operational aspects of the hybrid system in relation to the integration of the microturbine with the fuel cell, process flow and thermal balances, and control strategies for power cycling of the system, were investigated. A subsequent series of tests included operation of the sub-MW Direct FuelCell/Turbine power plant with a Capstone C60 microturbine. The C60 microturbine extended the range of operation of the hybrid power plant to higher current densities (higher power) than achieved in initial tests using the 30kW microturbine. The proof-of-concept test results confirmed the stability and controllability of operating a fullsize (250 kW) fuel cell stack in combination with a microturbine. Thermal management of the system was confirmed and power plant operation, using the microturbine as the only source of fresh air supply to the

  12. Power Satellites, Carbon Dioxide, Synthetic Fuel, Sequestering Carbon as Synthetic Oil and Fresh Water from Seawater

    NASA Astrophysics Data System (ADS)

    Keith Henson, H.

    2010-05-01

    A small number of people have been working for the past year on ways to reduce the cost of power from space to the point that it could entirely displace fossil fuels and even put carbon dioxide back in empty oil fields as synthetic oil. The challenging part is reducing the cost of transport to GEO by a factor of ˜200 discussed in another paper in this volume. Given low cost power, synthetic fuels, carbon sequestration, and fresh water from seawater become economical.

  13. Wireless sensors powered by microbial fuel cells.

    PubMed

    Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew

    2005-07-01

    Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver.

  14. Wireless sensors powered by microbial fuel cells.

    PubMed

    Shantaram, Avinash; Beyenal, Haluk; Raajan, Raaja; Veluchamy, Angathevar; Lewandowski, Zbigniew

    2005-07-01

    Monitoring parameters characterizing water quality, such as temperature, pH, and concentrations of heavy metals in natural waters, is often followed by transmitting the data to remote receivers using telemetry systems. Such systems are commonly powered by batteries, which can be inconvenient at times because batteries have a limited lifetime and must be recharged or replaced periodically to ensure that sufficient energy is available to power the electronics. To avoid these inconveniences, a microbial fuel cell was designed to power electrochemical sensors and small telemetry systems to transmit the data acquired by the sensors to remote receivers. The microbial fuel cell was combined with low-power, high-efficiency electronic circuitry providing a stable power source for wireless data transmission. To generate enough power for the telemetry system, energy produced by the microbial fuel cell was stored in a capacitor and used in short bursts when needed. Since commercial electronic circuits require a minimum 3.3 V input and our cell was able to deliver a maximum of 2.1 V, a DC-DC converter was used to boost the potential. The DC-DC converter powered a transmitter, which gathered the data from the sensor and transmitted it wirelessly to a remote receiver. To demonstrate the utility of the system, temporal variations in temperature were measured, and the data were wirelessly transmitted to a remote receiver. PMID:16053108

  15. Electric power monthly, March 1998 with data for December 1997

    SciTech Connect

    1998-03-01

    The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. 63 tabs.

  16. An experimental aluminum-fueled power plant

    NASA Astrophysics Data System (ADS)

    Vlaskin, M. S.; Shkolnikov, E. I.; Bersh, A. V.; Zhuk, A. Z.; Lisicyn, A. V.; Sorokovikov, A. I.; Pankina, Yu. V.

    2011-10-01

    An experimental co-generation power plant (CGPP-10) using aluminum micron powder (with average particle size up to 70 μm) as primary fuel and water as primary oxidant was developed and tested. Power plant can work in autonomous (unconnected from industrial network) nonstop regime producing hydrogen, electrical energy and heat. One of the key components of experimental plant is aluminum-water high-pressure reactor projected for hydrogen production rate of ∼10 nm3 h-1. Hydrogen from the reactor goes through condenser and dehumidifier and with -25 °C dew-point temperature enters into the air-hydrogen fuel cell 16 kW-battery. From 1 kg of aluminum the experimental plant produces 1 kWh of electrical energy and 5-7 kWh of heat. Power consumer gets about 10 kW of electrical power. Plant electrical and total efficiencies are 12% and 72%, respectively.

  17. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    PubMed

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  18. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    PubMed Central

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L.; Wingen, Lisa M.; Dabdub, Donald; Blake, Donald R.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2015-01-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  19. Shuttle orbter fuel cell power plant

    NASA Technical Reports Server (NTRS)

    1983-01-01

    This is one of the three fuel cells that make up the generating system which provides electrical power to the space shuttle orbiter. Each unit measures 14 inches (35 centimeters) high, 15 inches (38 centimeters) wide, 40 inches (101 centimeters) long and weighs 200 pounds.

  20. Evolving an acceptable nuclear power fuel cycle

    SciTech Connect

    Steinberg, M.

    1986-10-01

    The following issues are examined: long-term safe nuclear power plant operation; acceptable nuclear waste management and, mainly, high-level waste management; and provision for long-term fissile fuel supply in a long-term nuclear fission economy. (LM)

  1. The temporal and spatial distribution of carbon dioxide emissions from fossil-fuel use in North America

    SciTech Connect

    Gregg, J; Losey, London M; Andres, Robert Joseph; Blasing, T J; Marland, Gregg

    2009-01-01

    Refinements in the spatial and temporal resolution of North American fossil-fuel carbon dioxide (CO{sub 2}) emissions provide additional information about anthropogenic aspects of the carbon cycle. In North America, the seasonal and spatial patterns are a distinctive component to characterizing anthropogenic carbon emissions. The pattern of fossil-fuel-based CO{sub 2} emissions on a monthly scale has greater temporal and spatial variability than the flux aggregated to the national annual level. For some areas, monthly emissions can vary by as much as 85% for some fuels when compared with monthly estimates based on a uniform temporal and spatial distribution. The United States accounts for the majority of North American fossil carbon emissions, and the amplitude of the seasonal flux in emissions in the United States is greater than the total mean monthly emissions in both Canada and Mexico. Nevertheless, Canada and Mexico have distinctive seasonal patterns as well. For the continent, emissions were aggregated on a 5{sup o} x 10{sup o} latitude-longitude grid. The monthly pattern of emissions varies on both a north-south and east-west gradient and evolves through the time period analyzed (1990-2007). For many areas in North America, the magnitude of the month-to-month variation is larger than the total annual emissions from land use change, making the characterization of emissions patterns essential to understanding humanity's influence on the carbon cycle.

  2. Fuel cells - a new contributor to stationary power

    NASA Astrophysics Data System (ADS)

    Dufour, Angelo U.

    , very low noise and emissions release, high efficiency both directly as fuel cell (38-55%) and in integrated cycles (50-65% with fossil fuels), delivered `power quality' and reliability. Focus is principally kept on the impact fuel cells could have on electrical grid management and control, for their voltage support and active filtering capabilities, for their response speed and for quick load connection capabilities. The cost for the moment is high, but some technology, like phosphoric acid, is in the market entry phase. Cost analysis for the main subsystems, that is fuel cell stacks, fuel processors, and power electronics and controls, indicates that the prices will be driven down to the required levels both through technology refinements and increase of production volumes. Anyhow, a new phase is beginning, where centralised power plants are facing the competition of distributed generators, like fuel cells, small gas turbines and internal combustion engines, and of other renewable energy generators, like photovoltaics and wind generators. They all are modular, dispersed throughout the utility distribution system to provide power closer to end user, and are not in competition with existing transmission and distribution systems, but they improve the systems' utilisation. The plants will initially be directly owned and operated by gas or energy distributors, and the customers could easily supersede their mistrusts by only paying for the energy they are really utilising, leaving away the worries about the investment costs and the risks of a bad operation. An `intelligent grid', delivering high quality electrical energy to millions of electrical household consumers, which, a second later, become non-polluting energy producers, appears to be giving a very relevant contribution to `the town of the future', envisaged also by the European Commission, where the quality of our lives is mainly depending on the quality of the energy.

  3. Development of improved and corrosion-resistant surfaces for fossil power system components

    SciTech Connect

    Sikka, V.K.; Santella, M.L.; Goodwin, G.M.

    1996-06-01

    The purpose of this task is to develop the corrosion-resistant surfaces on a variety of fossil power system components. The Fe-Al alloys ranging in aluminum from 16 to 36 @ % are of interest. The surfaces of Fe-Al alloys can be produced by weld overlay. However, because of their limited room-temperature ductility, the production of weld wire for these compositions is not commercially feasible. The alloying element dilution during weld overlay also makes depositing exact surface composition rather difficult.

  4. Cost Study for Manufacturing of Solid Oxide Fuel Cell Power Systems

    SciTech Connect

    Weimar, Mark R.; Chick, Lawrence A.; Gotthold, David W.; Whyatt, Greg A.

    2013-09-30

    Solid oxide fuel cell (SOFC) power systems can be designed to produce electricity from fossil fuels at extremely high net efficiencies, approaching 70%. However, in order to penetrate commercial markets to an extent that significantly impacts world fuel consumption, their cost will need to be competitive with alternative generating systems, such as gas turbines. This report discusses a cost model developed at PNNL to estimate the manufacturing cost of SOFC power systems sized for ground-based distributed generation. The power system design was developed at PNNL in a study on the feasibility of using SOFC power systems on more electric aircraft to replace the main engine-mounted electrical generators [Whyatt and Chick, 2012]. We chose to study that design because the projected efficiency was high (70%) and the generating capacity was suitable for ground-based distributed generation (270 kW).

  5. DIRECT FUEL CELL/TURBINE POWER PLANT

    SciTech Connect

    Hossein Ghezel-Ayagh

    2003-05-27

    The subMW hybrid DFC/T power plant facility was upgraded with a Capstone C60 microturbine and a state-of-the-art full size fuel cell stack. The integration of the larger microturbine extended the capability of the hybrid power plant to operate at high power ratings with a single gas turbine without the need for supplementary air. The objectives of this phase of subMW hybrid power plant tests are to support the development of process and control and to provide the insight for the design of the packaged subMW hybrid demonstration units. The development of the ultra high efficiency multi-MW power plants was focused on the design of 40 MW power plants with efficiencies approaching 75% (LHV of natural gas). The design efforts included thermodynamic cycle analysis of key gas turbine parameters such as compression ratio.

  6. Toward Regional Fossil Fuel CO2 Emissions Verification Using WRF-CHEM

    NASA Astrophysics Data System (ADS)

    Delle Monache, L.; Kosoviæ, B.; Cameron-Smith, P.; Bergmann, D.; Grant, K.; Guilderson, T.

    2008-12-01

    As efforts to reduce emissions of green house gases take shape it is becoming obvious that an essential component of a viable solution will involve emission verification. While detailed inventories of green house gas sources will represent important component of the solution additional verification methodologies will be necessary to reduce uncertainties in emission estimates especially for distributed sources and CO2 offsets. We developed tools for solving inverse dispersion problem for distributed emissions of green house gases. For that purpose we combine probabilistic inverse methodology based on Bayesian inversion with stochastic sampling and weather forecasting and air quality model WRF-CHEM. We demonstrate estimation of CO2 emissions associated with fossil fuel burning in California over two one-week periods in 2006. We use WRF- CHEM in tracer simulation mode to solve forward dispersion problem for emissions over eleven air basins. We first use direct inversion approach to determine optimal location for a limited number of CO2 - C14 isotope sensors. We then use Bayesian inference with stochastic sampling to determine probability distributions for emissions from California air basins. Moreover, we vary the number of sensors and frequency of measurements to study their effect on the accuracy and uncertainty level of the emission estimation. Finally, to take into account uncertainties associated with forward modeling, we combine Bayesian inference and stochastic sampling with ensemble modeling. The ensemble is created by running WRF-CHEM with different initial and boundary conditions as well as different boundary layer and surface model options. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory (LLNL) under Contract DE-AC52-07NA27344 (LLNL-ABS-406901-DRAFT). The project 07-ERD- 064 was funded by the Laboratory Directed Research and Development Program at LLNL.

  7. Transcontinental methane measurements: Part 2. Mobile surface investigation of fossil fuel industrial fugitive emissions

    NASA Astrophysics Data System (ADS)

    Leifer, Ira; Culling, Daniel; Schneising, Oliver; Farrell, Paige; Buchwitz, Michael; Burrows, John P.

    2013-08-01

    The potent greenhouse gas, methane, CH4, has a wide variety of anthropogenic and natural sources. Fall, continental-scale (Florida to California) surface CH4 data were collected to investigate the importance of fossil fuel industrial (FFI) emissions in the South US. A total of 6600 measurements along 7020-km of roadways were made by flame ion detection gas chromatography onboard a nearly continuously moving recreational vehicle in 2010. A second, winter survey in Southern California measured CH4 at 2 Hz with a cavity ring-down spectrometer in 2012. Data revealed strong and persistent FFI CH4 sources associated with refining, oil/gas production, a presumed major pipeline leak, and a coal loading plant. Nocturnal CH4 mixing ratios tended to be higher than daytime values for similar sources, sometimes significantly, which was attributed to day/night meteorological differences, primarily changes in the boundary layer height. The highest CH4 mixing ratio (39 ppm) was observed near the Kern River Oil Field, California, which uses steam reinjection. FFI CH4 plume signatures were distinguished as stronger than other sources on local scales. On large (4°) scales, the CH4 trend was better matched spatially with FFI activity than wetland spatial patterns. Qualitative comparison of surface data with SCIAMACHY and GOSAT satellite retrievals showed agreement of the large-scale CH4 spatial patterns. Comparison with inventory models and seasonal winds suggests for some seasons and some portions of the Gulf of Mexico a non-negligible underestimation of FFI emissions. For other seasons and locations, qualitative interpretation is not feasible. Unambiguous quantitative source attribution is more complex, requiring transport modeling.

  8. Clean uses of fossil fuels. Progress performance report, September 29, 1991--January 25, 1994

    SciTech Connect

    Stencel, J.M.

    1994-01-25

    Science and engineering doctoral students performing energy related research were supported by a USDOE/ESPCoR Traineeship grant awarded to the Kentucky EPSCoR Committee. The grant, administered by the KY DOE/EPSCoR Subcommittee, focused on research having the general description of {open_quotes}Clean Uses of Fossil Fuels{close_quotes}. The value of the grant was $500,000 for three years duration, beginning September 30, 1991 and ending September 29, 1994. Ten PhD students were selected for support during the first year of the Traineeship. Upon reviewing coursework and research progress of the students at the end of the first year, the KY DOE/EPSCoR Subcommittee awarded a second year of support at the same $25,000/year funding level. A total of 12 students will have been supported during the duration of the grant as a consequence of one student completing his degree during the support period and of one student deciding that she wanted to complete only a Masters rather than a PhD degree. The students supported were at either the University of Kentucky or the University of Louisville - the two PhD, science and engineering granting universities within the Commonwealth of Kentucky. The disciplines of these students included Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for the initial statewide solicitation for student support, the annual review of the students progress for support renewal, and a summary of progress and impact of the awards after two years are presented. It is shown that the Traineeships presented opportunities to: perform high quality research; initiate interactions between different scientific disciplines and departments; develop collaborations at national DOE laboratories, universities outside of Kentucky and industries; and establish research ideas for submittal to funding agencies.

  9. Expanded use of fossil fuels by the US and the global carbon dioxide problem

    SciTech Connect

    Emanuel, W.R.; Olson, J.S.; Gillough, G.G.

    1980-01-01

    Projecting present increases in rates of fossil fuel utilization, a doubling of CO/sub 2/ concentration in the atmosphere may be expected within the next 75 years. Based on preliminary calculations, coal utilization by the United States to the year 2020 accounts for between 9 and 15% of the increase in CO/sub 2/ concentration. Carbon dioxide in the atmosphere absorbs infra-red radiation, causing an increase in the surface temperature of the earth. The most recent climatic models indicate that each doubling in atmospheric CO/sub 2/ concentration will result in a temperature increase of approximately 3 +- 1/sup 0/C, depending on the model used. Changes in average rates of precipitation and evaporation may follow, leading to higher probabilities of drought in the mid-latitudes (including the United States). Manabe and Wetherald (1975) have estimated the temperature increase at high latitudes to be three times the increase in the global average surface temperature. Large-scale melting of the polar ice caps and a subsequent increase in the surface area of the oceans may follow on a timetable that is not yet clear. The distribution of vegetation and agricultural activities can be expected to change in response to the temperature increase and associated changes in precipitation and evaporation. The many uncertainties associated with the analysis of the carbon dioxide/climate problem mandate the initiation of an immediate global-scale interdisciplinary research effort to determine more clearly the components and connections of the problem and to develop strategies for reducing the impacts, i.e., contingency plans that could be helpful regardless of impact details which remain to be determined.

  10. The Future of Fossil Fuels: A Century of Abundance or a Century of Decline?

    NASA Astrophysics Data System (ADS)

    Nelder, C.

    2012-12-01

    Horizontal drilling, hydraulic fracturing, and other advanced technologies have spawned a host of new euphoric forecasts of hydrocarbon abundance. Yet although the world's remaining oil and gas resources are enormous, most of them are destined to stay in the ground due to real-world constraints on price, flow rates, investor appetite, supply chain security, resource quality, and global economic conditions. While laboring under the mistaken belief that it sits atop a 100-year supply of natural gas, the U.S. is contemplating exporting nearly all of its shale gas production even as that production is already flattening due to poor economics. Instead of bringing "energy independence" to the U.S. and making it the top oil exporter, unrestricted drilling for tight oil and in the federal outer continental shelf would cut the lifespan of U.S. oil production in half and make it the world's most desperate oil importer by mid-century. And current forecasts for Canadian tar sands production are as unrealistic as their failed predecessors. Over the past century, world energy production has moved progressively from high quality resources with high production rates and low costs to lower quality resources with lower production rates and higher costs, and that progression is accelerating. Soon we will discover the limits of practical extraction, as production costs exceed consumer price tolerance. Oil and gas from tight formations, shale, bitumen, kerogen, coalbeds, deepwater, and the Arctic are not the stuff of new abundance, but the oil junkie's last dirty fix. This session will highlight the gap between the story the industry tells about our energy future, and the story the data tells about resource size, production rates, costs, and consumer price tolerance. It will show why it's time to put aside unrealistic visions of continued dependence on fossil fuels, face up to a century of decline, and commit ourselves to energy and transportation transition.

  11. Double cross polarization /sup 13/C-NMR experiment in solid fossil fuel structure analysis

    SciTech Connect

    Hagaman, E.W.; Woody, M.C.

    1988-01-01

    The Double Cross Polarization /sup 13/C-MAS/NMR experiment has been used to derive a new operational classification of solid fossil fuels based on chemical reactivity. The method requires labeling reactive sites in the organic matrix with a magnetically active isotope not present in the precursor material, and using the local, isolated dipole-dipole interaction between this nucleus and nearby /sup 13/C nuclei to detect via cross polarization the carbon centers in the vicinity of the label. The technique is a marriage of chemistry and spectroscopy and the information content of the DCP spectra is defined by both partners. /sup 1/H-/sup 13/C-/sup 31/P DCP/MAS /sup 13/C-NMR spectroscopy has been used to statistically describe phenolic ortho-substitution patterns of coals via their aryl phosphinate or phosphate derivatives. In these applications of DCP NMR the new, detailed structure and/or reactivity information is realized by detection of carbon resonances one or more bonds removed from the reaction center, but in a volume element of intramolecular dimensions. To the extent that intermolecular contributions to the spectrum are detected, and not recognized as such, the structure/reactivity correlation is weakened. Direct substitution of phosphorus on the aromatic rings in the organic matrix of the coal is not readily accomplished. This environment potentially can be labeled with fluorine in a selective fashion using newly developed reagents. The possibility of determining the changes in average ring substitution patterns as a function of chemical treatment or coal diagenesis emerges. Recent developments in the field of DCP /sup 13/C NMR are presented.

  12. Diversity of fuel sources for electricity generation in an evolving U.S. power sector

    NASA Astrophysics Data System (ADS)

    DiLuccia, Janelle G.

    Policymakers increasingly have shown interest in options to boost the relative share of renewable or clean electricity generating sources in order to reduce negative environmental externalities from fossil fuels, guard against possible resource constraints, and capture economic advantages from developing new technologies and industries. Electric utilities and non-utility generators make decisions regarding their generation mix based on a number of different factors that may or may not align with societal goals. This paper examines the makeup of the electric power sector to determine how the type of generator and the presence (or lack) of competition in electricity markets at the state level may relate to the types of fuel sources used for generation. Using state-level electricity generation data from the U.S. Energy Information Administration from 1990 through 2010, this paper employs state and time fixed-effects regression modeling to attempt to isolate the impacts of state-level restructuring policies and the emergence of non-utility generators on states' generation from coal, from fossil fuel and from renewable sources. While the analysis has significant limitations, I do find that state-level electricity restructuring has a small but significant association with lowering electricity generation from coal specifically and fossil fuels more generally. Further research into the relationship between competition and fuel sources would aid policymakers considering legislative options to influence the generation mix.

  13. Conceptual study and analysis of hydrogen fueled power plants

    SciTech Connect

    Wang, X; Zhang, S.; Zhao, L.; Cai, R.

    1998-07-01

    To decrease pollution of the environment caused by coal fired plants in China, it is important to develop clean fuel and advanced energy systems. As a kind of efficient, clean, renewable fuel, hydrogen is a prospective alternative to traditional fossil fuel if the problem about hydrogen production and safety can be solved thoroughly. In this paper, several kinds of power generating systems using hydrogen energy have been put forward, analyzed, and discussed. One way of hydrogen utilization is turbine power plant based on stoichiometric reaction of hydrogen and pure oxygen or air, such as the mixing H{sub 2}/O{sub 2} combined cycle. Because the reaction which takes place in the combustor is stoichiometric, the only product is water. So the expansion process of working fluid may include part of the bottoming cycle, which results in a higher efficiency than conventional combined cycle. A new cycle--advanced H{sub 2}/O{sub 2} mixing combined cycle (AMC) is put forward in this paper. The main difference between it and the old one are the adoption of double reheat and semi-closed steam bottoming cycle. Theoretical analysis notes that the efficiency due to the addition of bottoming cycle and reheat is about 6 percentage points higher than the original mixing combined cycle. An alternative closed combined cycle (ACC) developed from the basic closed combined cycle is based on stoichiometric reaction of hydrogen and air. The main characteristic of it is the application of gas recirculation and water reinjection. Compared with the original closed cycle, the emission of this new one is low. Fuel cells which are expected to be used as on site power generating devices in the future provide a new way to hydrogen utilization. A hybrid cycle composed of solid oxide fuel cell, gas turbine, steam turbine and chemical looping combustor (FCC) is put forward in this paper. The key difference between other SOFC systems and this one lies in that in this system, fuel and oxidizer of fuel

  14. Evaluation of SF6, C2Cl4, and CO to approximate fossil fuel CO2 in the Northern Hemisphere using a chemistry transport model

    NASA Astrophysics Data System (ADS)

    Rivier, L.; Ciais, P.; Hauglustaine, D. A.; Bakwin, P.; Bousquet, P.; Peylin, P.; Klonecki, A.

    2006-08-01

    The distribution of the fossil fuel component in atmospheric CO2 cannot be measured directly at a cheap cost. Could anthropogenic tracers with source patterns similar to fossil fuel CO2 then be used for that purpose? Here we present and evaluate a methodology using surrogate tracers, CO, SF6, and C2Cl4, to deduce fossil fuel CO2. A three-dimensional atmospheric chemistry transport model is used to simulate the relationship between each tracer and fossil fuel CO2. In summertime the regression slopes between fossil fuel CO2 and surrogate tracers show large spatial variations for chemically active tracers (CO and C2Cl4), although C2Cl4 presents less scatter than CO. At two tall tower sites in the United States (WLEF, Wisconsin, and WITN, North Carolina), we found that in summertime the C2Cl4 (CO) versus fossil CO2 slope is on average up to 15% (25%) higher than in winter. We show that for C2Cl4 this seasonal variation is due to OH oxidation. For CO the seasonal variation is due to both chemistry and mixing with nonanthropogenic CO sources. In wintertime the three surrogate tracers SF6, C2Cl4, and CO are about equally as good indicators of the presence of fossil CO2. However, our model strongly underestimates the variability of SF6 at both towers, probably because of unaccounted for emissions. Hence poor knowledge of emission distribution hampers the use of SF6 as a surrogate tracer. From a practical point of view we recommend the use of C2Cl4 as a proxy of fossil CO2. We also recommend the use of tracers to separate fossil CO2. Despite the fact that the uncertainty on the regression slope is on the order of 30%, the tracer approach is likely to have less bias than when letting one model with one inventory emission map calculate the fossil CO2 distribution.

  15. Distributions of fossil fuel originated CO2 in five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) according to the Δ14C in ginkgo leaves

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Hong, W.; Park, G.; Sung, K. S.; Lee, K. H.; Kim, Y. E.; Kim, J. K.; Choi, H. W.; Kim, G. D.; Woo, H. J.

    2013-01-01

    We collected a batch of ginkgo (Ginkgo biloba Linnaeus) leaf samples at five metropolitan areas of Korea (Seoul, Busan, Daegu, Daejeon, and Gwangju) in 2009 to obtain the regional distribution of fossil fuel originated CO2 (fossil fuel CO2) in the atmosphere. Regions assumed to be free of fossil fuel CO2 were also selected, namely Mt. Chiak, Mt. Kyeryong, Mt. Jiri, Anmyeon Island, and Jeju Island and ginkgo leaf samples were collected in those areas during the same period. The Δ14C values of the samples were measured using Accelerator Mass Spectrometry (AMS) and the fossil fuel CO2 ratios in the atmosphere were obtained in the five metropolitan areas. The average ratio of fossil fuel CO2 in Seoul was higher than that in the other four cities. The leaves from the Sajik Tunnel in Seoul recorded the highest FFCTC (fossil fuel CO2 over total CO2 in atmosphere), 13.9 ± 0.5%, as the air flow of the surrounding neighborhood of the Sajik Tunnel was blocked.

  16. Characteristics of particulate emissions from a diesel generator fueled with varying blends of biodiesel and fossil diesel.

    PubMed

    Tsai, Jen-Hsiung; Chen, Shui-Jen; Huang, Kuo-Lin; Lee, Wen-Jhy; Kuo, Wen-Chien; Lin, Wen-Yinn

    2011-01-01

    This study investigated the particulate matter (PM), particle-bound carbons, and polycyclic aromatic hydrocarbons (PAHs) emitted from a diesel-engine generator fuelled with blends of pure fossil diesel oil (D100) and varying percentages of waste-edible-oil biodiesel (W10, 10 vol %; W20, 20 vol %; W30, 30 vol %; and W50, 50 vol %) under generator loads of 0, 1.5, and 3 kW. On average, the PM emission factors of all blends was 30.5 % (range, 13.7-52.3 %) lower than that of D100 under the tested loads. Substituting pure fossil diesel oil with varying percentages of waste-edible-oil biodiesel reduced emissions of particle-bound total carbon (TC) and elemental carbon (EC). The W20 blend had the lowest particle-bound organic carbon (OC) emissions. Notably, W10, W20, and W30 also had lower Total-PAH emissions and lower total equivalent toxicity (Total-BaP(eq)) compared to D100. Additionally, the brake-specific fuel consumption of the generator correlated positively with the ratio of waste-edible-oil biodiesel to pure fossil diesel. However, generator energy efficiency correlated negatively with the ratio of waste-edible-oil biodiesel to pure fossil diesel.

  17. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.

    PubMed

    Sarc, R; Lorber, K E; Pomberger, R; Rogetzer, M; Sipple, E M

    2014-07-01

    This paper describes the requirements for the production, quality, and quality assurance of solid recovered fuels (SRF) that are increasingly used in the cement industry. Different aspects have to be considered before using SRF as an alternative fuel. Here, a study on the quality of SRF used in the cement industry is presented. This overview is completed by an investigation of type and properties of input materials used at waste splitting and SRF production plants in Austria. As a simplified classification, SRF can be divided into two classes: a fine, high-calorific SRF for the main burner, or coarser SRF material with low calorific value for secondary firing systems, such as precombustion chambers or similar systems. In the present study, SRFs coming from various sources that fall under these two different waste fuel classes are discussed. Both SRFs are actually fired in the grey clinker kiln of the Holcim (Slovensko) plant in Rohožnik (Slovakia). The fine premium-quality material is used in the main burner and the coarse regular-quality material is fed to a FLS Hotdisc combustion device. In general, the alternative fuels are used instead of their substituted fossil fuels. For this, chemical compositions and other properties of SRF were compared to hard coal as one of the most common conventional fuels in Europe. This approach allows to compare the heavy metal input from traditional and alternative fuels and to comment on the legal requirements on SRF that, at the moment, are under development in Europe.

  18. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.

    PubMed

    Sarc, R; Lorber, K E; Pomberger, R; Rogetzer, M; Sipple, E M

    2014-07-01

    This paper describes the requirements for the production, quality, and quality assurance of solid recovered fuels (SRF) that are increasingly used in the cement industry. Different aspects have to be considered before using SRF as an alternative fuel. Here, a study on the quality of SRF used in the cement industry is presented. This overview is completed by an investigation of type and properties of input materials used at waste splitting and SRF production plants in Austria. As a simplified classification, SRF can be divided into two classes: a fine, high-calorific SRF for the main burner, or coarser SRF material with low calorific value for secondary firing systems, such as precombustion chambers or similar systems. In the present study, SRFs coming from various sources that fall under these two different waste fuel classes are discussed. Both SRFs are actually fired in the grey clinker kiln of the Holcim (Slovensko) plant in Rohožnik (Slovakia). The fine premium-quality material is used in the main burner and the coarse regular-quality material is fed to a FLS Hotdisc combustion device. In general, the alternative fuels are used instead of their substituted fossil fuels. For this, chemical compositions and other properties of SRF were compared to hard coal as one of the most common conventional fuels in Europe. This approach allows to compare the heavy metal input from traditional and alternative fuels and to comment on the legal requirements on SRF that, at the moment, are under development in Europe. PMID:24942836

  19. Partial replacement of fossil fuel in a cement plant: risk assessment for the population living in the neighborhood.

    PubMed

    Rovira, Joaquim; Mari, Montse; Nadal, Martí; Schuhmacher, Marta; Domingo, José L

    2010-10-15

    In cement plants, the substitution of traditional fossil fuels not only allows a reduction of CO(2), but it also means to check-out residual materials, such as sewage sludge or municipal solid wastes (MSW), which should otherwise be disposed somehow/somewhere. In recent months, a cement plant placed in Alcanar (Catalonia, Spain) has been conducting tests to replace fossil fuel by refuse-derived fuel (RDF) from MSW. In July 2009, an operational test was progressively initiated by reaching a maximum of partial substitution of 20% of the required energy. In order to study the influence of the new process, environmental monitoring surveys were performed before and after the RDF implementation. Metals and polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) were analyzed in soil, herbage, and air samples collected around the facility. In soils, significant decreases of PCDD/F levels, as well as in some metal concentrations were found, while no significant increases in the concentrations of these pollutants were observed. In turn, PM(10) levels remained constant, with a value of 16μgm(-3). In both surveys, the carcinogenic and non-carcinogenic risks derived from exposure to metals and PCDD/Fs for the population living in the vicinity of the facility were within the ranges considered as acceptable according to national and international standards. This means that RDF may be a successful choice in front of classical fossil fuels, being in accordance with the new EU environmental policies, which entail the reduction of CO(2) emissions and the energetic valorization of MSW. However, further long-term environmental studies are necessary to corroborate the harmlessness of RDF, in terms of human health risks.

  20. Airport electric vehicle powered by fuel cell

    NASA Astrophysics Data System (ADS)

    Fontela, Pablo; Soria, Antonio; Mielgo, Javier; Sierra, José Francisco; de Blas, Juan; Gauchia, Lucia; Martínez, Juan M.

    Nowadays, new technologies and breakthroughs in the field of energy efficiency, alternative fuels and added-value electronics are leading to bigger, more sustainable and green thinking applications. Within the Automotive Industry, there is a clear declaration of commitment with the environment and natural resources. The presence of passenger vehicles of hybrid architecture, public transport powered by cleaner fuels, non-aggressive utility vehicles and an encouraging social awareness, are bringing to light a new scenario where conventional and advanced solutions will be in force. This paper presents the evolution of an airport cargo vehicle from battery-based propulsion to a hybrid power unit based on fuel cell, cutting edge batteries and hydrogen as a fuel. Some years back, IBERIA (Major Airline operating in Spain) decided to initiate the replacement of its diesel fleet for battery ones, aiming at a reduction in terms of contamination and noise in the surrounding environment. Unfortunately, due to extreme operating conditions in airports (ambient temperature, intensive use, dirtiness, …), batteries suffered a very severe degradation, which took its toll in terms of autonomy. This reduction in terms of autonomy together with the long battery recharge time made the intensive use of this fleet impractical in everyday demanding conditions.

  1. Fuel Cells for Backup Power in Telecommunications Facilities (Fact Sheet)

    SciTech Connect

    Not Available

    2009-04-01

    Telecommunications providers rely on backup power to maintain a constant power supply, to prevent power outages, and to ensure the operability of cell towers, equipment, and networks. The backup power supply that best meets these objectives is fuel cell technology.

  2. 78 FR 16490 - Jersey Central Power and Light Company, PSEG Fossil, LLC; Notice of Authorization for Continued...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-15

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Jersey Central Power and Light Company, PSEG Fossil, LLC; Notice of Authorization for Continued Project Operation On February 18, 2011, the Jersey Central Power and Light...

  3. The influence of weather and environment on pulmonary embolism: pollutants and fossil fuels.

    PubMed

    Clauss, Ralf; Mayes, Julian; Hilton, Paul; Lawrenson, Ross

    2005-01-01

    Previous publications have highlighted seasonal variations in the incidence of thrombosis and pulmonary embolism, and that weather patterns can influence these. While medical risk factors for pulmonary thrombo-embolism such as age, obesity, hypercoagulable states, cancer, previous thrombo-embolism, immobility, limb paralysis, surgery, major illness, trauma, hypotension, tachypnoea and right ventricular hypokinesis are not directly implicated regarding environmental factors such as weather, they could be influenced indirectly by these. This would be especially relevant in polluted areas that are associated with a higher pulmonary embolism risk. Routine nuclear medicine lung ventilation/perfusion studies (V/Q scans) of 2071 adult patients referred to the nuclear medicine department of the Royal Surrey County Hospital in Guildford, UK, between January 1998 and October 2002 were reviewed and 316 of these patients were classified as positive for pulmonary embolism with high probability scan on PIOPED criteria. The occurrence of positive scans was compared to environmental factors such as temperature, humidity, vapour pressure, air pressure and rainfall. Multiple linear regression was used to establish the significance of these relations. The incidence of pulmonary embolism was positively related to vapour pressure and rainfall. The most significant relation was to vapour pressure (p=0.010) while rainfall was less significant (p=0.017). There was no significant relation between pulmonary embolism and air pressure, humidity or temperature. It is postulated that rainfall and water vapour may be contributary factors in thrombosis and pulmonary embolism by way of pollutants that are carried as condensation nuclei in micro-droplets of water. In particular, fossil fuel pollutants are implicated as these condensation nuclei. Pollutants may be inhaled by populations exposed to windborne vapour droplets in cities or airports. Polluted vapour droplets may be absorbed by the lung

  4. A multiresolution random field model for estimating fossil-fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Ray, J.; Yadav, V.; Michalak, A. M.; Lee, J.; Lefantzi, S.; VanBloemenWaanders, B.

    2013-12-01

    We present a multiscale random field model (MsRF) that can be used for representing fossil-fuel CO2 (ffCO2) emissions. It is low-dimensional and is meant to be used in atmospheric inversions. The MsRF is constructed using wavelets. In this work, we will demonstrate a synthetic-data inversion aimed at estimating ffCO2 emissions, with 1o x 1o resolution, in the lower 48 states of the US. Measurements from 35 towers will be used. The measurements are constructed using the Vulcan inventory. The MsRF consists of a subset of Haar wavelets that can be defined in a rectangle bounding the US. By subjecting the Vulcan database to wavelet-transforms with a wide choice, the Haar wavelet was found to offer the most compressible representation. The MsRF was constructed by subjecting an image of lights at night to Haar transforms and retaining those with large weights. The lights-at-night image is correlated with ffCO2 inversions and have been used to downscale national ffCO2 aggregates when constructing spatially resolved ffCO2 emission inventories. The MsRF is then used to solve the linear inverse problem that underlies ffCO2 emission estimation. The number of parameters in the MsRF is far too large to be constrained by the measurements and thus we enforce sparsity to regularize the inverse problem. Further, we show that the transport model is only somewhat incoherent with respect to the chosen Haar bases, indicating that sparsification will be insufficient and further regularization using a prior emission model is required. This model is obtained by scaling up the nightlights to match EDGAR emissions. Finally, we present the results of the inversion and show that the resulting inversion mechanism can extract information from the observation to update and improve upon the predictive accuracy of prior model. The density of measurements dominates the accuracy of the inversion. We find that sparsification plays an important role since it removes about 50% of the wavelets in the Ms

  5. Summary of research on hydrogen production from fossil fuels conducted at NETL

    SciTech Connect

    Shamsi, Abolghasem

    2008-03-30

    In this presentation we will summarize the work performed at NETL on the production of hydrogen via partial oxidation/dry reforming of methane and catalytic decomposition of hydrogen sulfide. We have determined that high pressure resulted in greater carbon formation on the reforming catalysts, lower methane and CO2 conversions, as well as a H2/CO ratio. The results also showed that Rh/alumina catalyst is the most resistant toward carbon deposition both at lower and at higher pressures. We studied the catalytic partial oxidation of methane over Ni-MgO solid solutions supported on metal foams and the results showed that the foam-supported catalysts reach near-equilibrium conversions of methane and H2/CO selectivities. The rates of carbon deposition differ greatly among the catalysts, varying from 0.24 mg C/g cat h for the dipped foams to 7.0 mg C/g cat h for the powder-coated foams, suggesting that the exposed Cr on all of the foam samples may interact with the Ni-MgO catalyst to kinetically limit carbon formation. Effects of sulfur poisoning on reforming catalysts were studies and pulse sulfidation of catalyst appeared to be reversible for some of the catalysts but not for all. Under pulse sulfidation conditions, the 0.5%Rh/alumina and NiMg2Ox-1100ºC (solid solution) catalysts were fully regenerated after reduction with hydrogen. Rh catalyst showed the best overall activity, less carbon deposition, both fresh and when it was exposed to pulses of H2S. Sulfidation under steady state conditions significantly reduced catalyst activity. Decomposition of hydrogen sulfide into hydrogen and sulfur was studied over several supported metal oxides and metal oxide catalysts at a temperature range of 650-850°C. H2S conversions and effective activation energies were estimated using Arrhenius plots. The results of these studies will further our understanding of catalytic reactions and may help in developing better and robust catalysts for the production of hydrogen from fossil

  6. A New Data Product: Gridded Uncertainty Maps of Fossil Fuel Carbon Dioxide Emissions

    NASA Astrophysics Data System (ADS)

    Andres, R. J.; Boden, T.

    2015-12-01

    Gridded uncertainty maps of fossil fuel carbon dioxide (FFCO2) emissions are a new data product that is currently in the process of being completed and published. This work is based on the relatively new assessment of the uncertainty associated with the mass of FFCO2 emissions (2014, Tellus B, 66, 23616, doi:10.3402/tellusb.v66.23616). The new data product was created to be paired with the long-used, Carbon Dioxide Information Analysis Center (CDIAC), emission year 1751-present, one degree latitude by one degree longitude (1x1) mass of emissions data product (http://cdiac.ornl.gov/epubs/ndp/ndp058/ndp058_v2013.html). Now, data users will have FFCO2 emission information that represents both mass and uncertainty, each of which varies in both time and space. The new data product was constructed by examining the individual uncertainties in each of the input data sets to the gridded mass maps and then combining these individual uncertainties into an overall uncertainty for the mass maps. The input data sets include a table of the mass of FFCO2 emissions by country and year, the one degree geographic map of emissions which includes changing borders on an annual time scale and ties the mass of emissions to location, and the one degree population proxy used to distribute the mass of emissions within each country. As the three input data sets are independent of each other, their combination for the overall uncertainty is accomplished by a simple square root of the sum of the squares procedure. The resulting uncertainty data product is gridded at 1x1 and exactly overlays the 1x1 mass emission maps. The default temporal resolution is annual, but a companion product is also available at monthly time scales. The monthly uncertainty product uses the same input data sets, but the mass uncertainty is scaled as described in the monthly mass product description paper (2011, Tellus B, 63:309-327, doi: 10.1111/j.1600-0889.2011.00530.x). The gridded uncertainty maps cover emission year

  7. Quantification of fossil fuel CO2 at the building/street level for the LA Megacity

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Razlivanov, I. N.; Patarasuk, R.; Song, Y.; O'Keeffe, D.; Duren, R. M.; Eldering, A.

    2013-12-01

    Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in emerging plans on a global, integrated, carbon monitoring system (CMS). A space/time explicit emissions data product can act as both verification and guidance to emissions mitigation. We have progress on applying our Hestia approach to the entire LA Basin. Here, we present these initial results focusing on a few points of progress worthy of dissemination. Geocoding of the original point sources are inaccurate, placing point sources in the wrong physical position. Sometimes these errors are many kilometers. We have corrected the majority of these point through a variety of techniques. The LAX airport and the LA Port pose large unique sources in the Basin and we have taken novel approaches to characterizing the space/time distribution of these emission sources. We have used AADT and hourly traffic data to best distribute emissions in the onroad sector. This has required both extrapolation and interpolation techniques to fully cover all road types other than local roads. Finally, we have updated the emission product to the year 2012 using a variety of scaling arguments. Work on greenhouse gas emissions has been accomplished by others, though these efforts typically go down to only the county spatial scale. However, these offer numerous opportunities to potentially calibrate or explore alternative methods and results. We will review these efforts and what benefit they are provided thus far. Finally, we will review our attempts to quantify uncertainty at the space/time scales attempted here. Uncertainty quantification remains challenging due to a variety of reasons. First, bottom-up source data is often produced by a regulatory agency, which has strict legal limits to the amount and type of information available. Even in cases where legal limitations are not at work, there is no standard for uncertainty reporting and hence, little reliable uncertainty estimation is made

  8. Field Observations of Methane Emissions from Unconventional and Conventional Fossil Fuel Exploration

    NASA Astrophysics Data System (ADS)

    Dubey, M.; Lindenmaier, R.; Arata, C.; Costigan, K. R.; Frankenberg, C.; Kort, E. A.; Rahn, T. A.; Henderson, B. G.; Love, S. P.; Aubrey, A. D.

    2013-12-01

    Energy from methane (CH4) has lower carbon dioxide and air pollutant emissions per unit energy produced than coal or oil making it a desirable fossil fuel. Hydraulic fracturing is allowing United States to harvest the nation's abundant domestic shale gas reservoirs to achieve energy independence. However, CH4 is a gas that is hard to contain during mining, processing, transport and end-use. Therefore fugitive CH4 leaks occur that are reported in bottom up inventories by the EPA. Recent targeted field observations at selected plays have provided top down CH4 leak estimates that are larger than the reported EPA inventories. Furthermore, no long-term regional baselines are available to delineate leaks from unconventional mining operations from historical conventional mining. We will report and compare observations of fugitive CH4 leaks from conventional and unconventional mining to understand changes from technology shifts. We will report in situ and regional column measurements of CH4, its isotopologue 13CH4 and ethane (C2H6) at our Four Corners site near Farmington, NM. The region has substantial coal bed methane, conventional oil and gas production, processing and distribution with minimal hydraulic fracturing activity. We observe large enhancements in in situ and regional column CH4 with distinct time dependence. Our in situ 13CH4 observations and remote C2H6/CH4 provide strong evidence of thermogenic sources. Comparisons of WRF-simulations with emissions inventory (Edgar) with our observations show that the fugitive CH4 leaks from conventional mining are 3 times greater than reported. We also compare in situ mobile surveys of fugitive CH4 and 13CH4 leak signals in basins with conventional (San Juan) mining and unconventional (Permian and Powder River) mining. A large number of active and closed wells were sampled in these regions. Furthermore, play scale surveys on public roads allowed us to gain a regional perspective. The composition of atmospheric 13CH4

  9. Wavelet-based reconstruction of fossil-fuel CO2 emissions from sparse measurements

    NASA Astrophysics Data System (ADS)

    McKenna, S. A.; Ray, J.; Yadav, V.; Van Bloemen Waanders, B.; Michalak, A. M.

    2012-12-01

    We present a method to estimate spatially resolved fossil-fuel CO2 (ffCO2) emissions from sparse measurements of time-varying CO2 concentrations. It is based on the wavelet-modeling of the strongly non-stationary spatial distribution of ffCO2 emissions. The dimensionality of the wavelet model is first reduced using images of nightlights, which identify regions of human habitation. Since wavelets are a multiresolution basis set, most of the reduction is accomplished by removing fine-scale wavelets, in the regions with low nightlight radiances. The (reduced) wavelet model of emissions is propagated through an atmospheric transport model (WRF) to predict CO2 concentrations at a handful of measurement sites. The estimation of the wavelet model of emissions i.e., inferring the wavelet weights, is performed by fitting to observations at the measurement sites. This is done using Staggered Orthogonal Matching Pursuit (StOMP), which first identifies (and sets to zero) the wavelet coefficients that cannot be estimated from the observations, before estimating the remaining coefficients. This model sparsification and fitting is performed simultaneously, allowing us to explore multiple wavelet-models of differing complexity. This technique is borrowed from the field of compressive sensing, and is generally used in image and video processing. We test this approach using synthetic observations generated from emissions from the Vulcan database. 35 sensor sites are chosen over the USA. FfCO2 emissions, averaged over 8-day periods, are estimated, at a 1 degree spatial resolutions. We find that only about 40% of the wavelets in emission model can be estimated from the data; however the mix of coefficients that are estimated changes with time. Total US emission can be reconstructed with about ~5% errors. The inferred emissions, if aggregated monthly, have a correlation of 0.9 with Vulcan fluxes. We find that the estimated emissions in the Northeast US are the most accurate. Sandia

  10. Development of Metal Oxide Nanostructure-based Optical Sensors for Fossil Fuel Derived Gases Measurement at High Temperature

    SciTech Connect

    Chen, Kevin

    2014-08-31

    operation temperature up to 750oC, first distributed chemical measurements at the record high temperature up to 700oC, first distributed pressure measurement at the record high temperature up to 800oC, and the fiber laser sensors with the record high operation temperature up to 700oC. The research performed by this program dramatically expand the functionality, adaptability, and applicability of distributed fiber optical sensors with potential applications in a number of high-temperature energy systems such as fossil-fuel power generation, high-temperature fuel cell applications, and potential for nuclear energy systems.

  11. Direct Carbon Fuel Cells: Assessment of their Potential as Solid Carbon Fuel Based Power Generation Systems

    SciTech Connect

    Wolk, R

    2004-04-23

    generation in the range of 0.5 to 50 MW is small engines fueled with natural gas or liquid fuels or in the bulk power markets supplied usually by remote central station power plants with capacities of 250-1250 MW that deliver electricity to customers via the transmission and distribution grid. New power generation technology must be able to offer a significant cost advantage over existing technologies serving the same market to attract the interest of investors that are needed to provide funding for the development, demonstration, and commercialization of the technology. That path is both lengthy and expensive. One of the key drivers for any new power generation technology is the relative amount of pollutant emissions of all types, particularly those that are currently regulated or may soon be regulated. The new focus on greenhouse gas emissions offers a window of opportunity to DCFC technology because of its much higher conversion efficiency and the production of a very concentrated stream of CO{sub 2} in the product gas. This should offer a major competitive advantage if CO{sub 2} emissions are constrained by regulation in the future. The cost of CO{sub 2} capture, liquefaction, and pressurization has the potential to be much less costly with DCFC technology compared to other currently available forms of fossil fuel power generation.

  12. Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses

    NASA Astrophysics Data System (ADS)

    Landry, Jean-Sébastien; Damon Matthews, H.

    2016-04-01

    Non-deforestation fire - i.e., fire that is typically followed by the recovery of natural vegetation - is arguably the most influential disturbance in terrestrial ecosystems, thereby playing a major role in carbon exchanges and affecting many climatic processes. The radiative effect from a given atmospheric CO2 perturbation is the same for fire and fossil fuel combustion. However, major differences exist per unit of CO2 emitted between the effects of non-deforestation fire vs. fossil fuel combustion on the global carbon cycle and climate, because (1) fossil fuel combustion implies a net transfer of carbon from geological reservoirs to the atmospheric, oceanic, and terrestrial pools, whereas fire occurring in terrestrial ecosystems does not; (2) the average lifetime of the atmospheric CO2 increase is longer when originating from fossil fuel combustion compared to fire, due to the strong vegetation regrowth following fire disturbances in terrestrial ecosystems; and (3) other impacts, for example on land surface albedo, also differ between fire and fossil fuel combustion. The main purpose of this study is to illustrate the consequences from these fundamental differences between fossil fuel combustion and non-deforestation fires using 1000-year simulations of a coupled climate-carbon model with interactive vegetation. We assessed emissions from both pulse and stable fire regime changes, considering both the gross (carbon released from combustion) and net (fire-caused change in land carbon, also accounting for vegetation decomposition and regrowth, as well as climate-carbon feedbacks) fire CO2 emissions. In all cases, we found substantial differences from equivalent amounts of emissions produced by fossil fuel combustion. These findings suggest that side-by-side comparisons of non-deforestation fire and fossil fuel CO2 emissions - implicitly implying that they have similar effects per unit of CO2 emitted - should therefore be avoided, particularly when these comparisons

  13. Improving fossil fuel emissions scenarios with urban ecosystem studies: A case study in the Salt Lake-Ogden metropolitan region

    NASA Astrophysics Data System (ADS)

    Pataki, D. E.; Dudley-Murphy, E. A.; Emmi, P. C.; Forster, C. B.; Mills, J. I.; Pardyjak, E. R.; Peterson, T. R.

    2005-05-01

    Scenarios of the future trajectory of fossil fuel emissions have been generated at the global scale using assumptions about regional to global economic growth and demography. A limitation to this approach is the mismatch in scale between local geographical, cultural, and economic factors that influence patterns of energy and fuel use and their impact on global emissions. However, resolving mismatches between local and global processes has been successfully addressed in other aspects of carbon cycle science, such as natural sources and sinks of carbon in terrestrial ecosystems. We propose a similar approach for reducing uncertainty in fossil fuel emissions scenarios with process-level studies of the factors underlying emissions at the local scale. We initiated a project to apply a whole ecosystem framework to the study of CO2 emissions in a rapidly urbanizing region in the United States. Our goal was to quantify both biophysical and socioeconomic aspects of urban ecosystem function that determined net CO2 emissions from the major sectors in the Salt Lake-Ogden metropolitan region, an area characterized by good historical records, a highly seasonal climate, and a rapid rate of both population growth and urban expansion. We analyzed the strong linkages between energy use and climate in the region with data from the local utilities. We also applied a linked land use- transportation framework that quantified interactions between urban development and emissions from the transportation sector. These processes were captured in a systems dynamics model of urban ecosystem function that incorporated stakeholder involvement in model development using a mediated modeling approach. The model was validated with direct measurements of CO2 fluxes by eddy covariance and attribution of local CO2 concentrations to fuel types using stable isotopes. The model may be used to evaluate possible consequences of policy levers such as changes in urban developmental densities, acceleration of

  14. Improving fossil fuel emissions scenarios with urban ecosystem studies: A case study in the Salt Lake-Ogden metropolitan region

    NASA Astrophysics Data System (ADS)

    Pataki, D. E.; Dudley-Murphy, E. A.; Emmi, P. C.; Forster, C. B.; Mills, J. I.; Pardyjak, E. R.; Peterson, T. R.

    2006-12-01

    Scenarios of the future trajectory of fossil fuel emissions have been generated at the global scale using assumptions about regional to global economic growth and demography. A limitation to this approach is the mismatch in scale between local geographical, cultural, and economic factors that influence patterns of energy and fuel use and their impact on global emissions. However, resolving mismatches between local and global processes has been successfully addressed in other aspects of carbon cycle science, such as natural sources and sinks of carbon in terrestrial ecosystems. We propose a similar approach for reducing uncertainty in fossil fuel emissions scenarios with process-level studies of the factors underlying emissions at the local scale. We initiated a project to apply a whole ecosystem framework to the study of CO2 emissions in a rapidly urbanizing region in the United States. Our goal was to quantify both biophysical and socioeconomic aspects of urban ecosystem function that determined net CO2 emissions from the major sectors in the Salt Lake-Ogden metropolitan region, an area characterized by good historical records, a highly seasonal climate, and a rapid rate of both population growth and urban expansion. We analyzed the strong linkages between energy use and climate in the region with data from the local utilities. We also applied a linked land use- transportation framework that quantified interactions between urban development and emissions from the transportation sector. These processes were captured in a systems dynamics model of urban ecosystem function that incorporated stakeholder involvement in model development using a mediated modeling approach. The model was validated with direct measurements of CO2 fluxes by eddy covariance and attribution of local CO2 concentrations to fuel types using stable isotopes. The model may be used to evaluate possible consequences of policy levers such as changes in urban developmental densities, acceleration of

  15. Fuel cell systems for personal and portable power applications

    SciTech Connect

    Fateen, S. A.

    2001-01-01

    Fuel cells are devices that electrochemically convert fuel, usually hydrogen gas, to directly produce electricity. Fuel cells were initially developed for use in the space program to provide electricity and drinking water for astronauts. Fuel cells are under development for use in the automobile industry to power cars and buses with the advantage of lower emissions and higher efficiency than internal combustion engines. Fuel cells also have great potential to be used in portable consumer products like cellular phones and laptop computers, as well as military applications. In fact, any products that use batteries can be powered by fuel cells. In this project, we examine fuel cell system trade-offs between fuel cell type and energy storage/hydrogen production for portable power generation. The types of fuel cells being examined include stored hydrogen PEM (polymer electrolyte), direct methanol fuel cells (DMFC) and indirect methanol fuel cells, where methanol is reformed producing hydrogen. These fuel cells systems can operate at or near ambient conditions, which make them potentially optimal for use in manned personal power applications. The expected power production for these systems is in the range of milliwatts to 500 watts of electrical power for either personal or soldier field use. The fuel cell system trade-offs examine hydrogen storage by metal hydrides, carbon nanotubes, and compressed hydrogen tanks. We examine the weights each system, volume, fuel storage, system costs, system peripherals, power output, and fuel cell feasibility in portable devices.

  16. Fuel cell power plant economic and operational considerations

    NASA Technical Reports Server (NTRS)

    Lance, J. R.

    1984-01-01

    Fuel cell power plants intended for electric utility and cogeneration applications are now in the design and construction stage. This paper describes economic and operational considerations being used in the development and design of plants utilizing air cooled phosphoric acid fuel cells. Fuel cell power plants have some unique characteristics relative to other types of power plants. As a result it was necessary to develop specific definitions of the fuel cell power plant characteristics in order to perform cost of electricity calculations. This paper describes these characteristics and describes the economic analyses used in the Westinghouse fuel cell power plant program.

  17. Assessing the Influence of Fossil Fuel Emissions on CO2 Flux Measurements Above a Suburban Ecosystem Using Continuous Traffic Data

    NASA Astrophysics Data System (ADS)

    Hiller, R. V.; Wu, J.; McFadden, J. P.

    2007-12-01

    Cities are a major source of CO2, the most important anthropogenic greenhouse gas. Land use within cities is highly heterogeneous and a significant area can be occupied by vegetated surfaces where CO2 is taken up by photosynthesis and released by ecosystem respiration. Recent remote sensing and modeling studies have estimated that turfgrass lawns cover a surface area of perhaps 163,800~km2 in the continental United States with significant CO2 exchange (Milesi et al. 2005). However, direct measurements of land-atmosphere fluxes above lawn ecosystems have been difficult due to the typically small dimensions of lawns and the heterogeneity of land uses that surround them in an urbanized landscape. We made 2~years of continuous CO2 exchange measurements using a mobile eddy covariance tower over a <1~ha lawn, which was within the footprint of the KUOM 170-m tall flux tower in a suburban residential neighborhood of Minneapolis-St. Paul, Minnesota. A satellite-derived land-cover map was analyzed to assess the characteristic patch dimensions of lawns in the region in comparison to the selected mobile tower site. An important consequence of urban landscape heterogeneity is that CO2 fluxes measured above vegetated patches may be influenced by fossil fuel CO2 sources nearby. In this poster, we use high time resolution, continuously monitored traffic data from the roads surrounding the flux site to quantify the influence of fossil fuel emissions on the net ecosystem CO2 exchange measurements. Using a flux source area model, we assess the relative influence of fossil fuel emissions in relation to variations of wind field, atmospheric stability, and temporal patterns of traffic volume. The results will be useful for validating emissions models and for scaling up the CO2 flux from vegetation in developed land. This study is a contribution to the Mid-Continent Intensive Field Campaign of the North American Carbon Program (NACP).

  18. Evaluation of long range transport of fossil fuel originated organic aerosol at a background site in Northeast Asia

    NASA Astrophysics Data System (ADS)

    Hwang, Eun Jin; Lee, Ji Yi; Park, Jin Soo; Lee, Seok Jo; Kim, Hyun Jae; Jeon, Ha Eun; Sung, Min Young

    2013-04-01

    Northeast Asia is heavy air pollution region due to usage of large amounts of fossil fuel. In addition, meteorological conditions represented as prevailing westerlies in Northeast Asia region causes long range transport of anthropogenic pollutants emitted from China to Korea and Japan and even the United States across the Pacific Ocean (Bey et al., 2001). The Baengnyeong Island of Korea is located at the northwestern part of the Korean peninsula and close by North Korea and China, thus this site is regarded as an ideal place for background air measurements in Northeast Asia. Also, it has low local anthropogenic emissions and is frequently influenced by various air masses from China and North Korea in the Island. In this study, we performed intensive sampling during summer and winter in the Baengnyeong Island and analyzed various organic compounds including fossil fuel originated organic markers such as hopanes and PAHs using thermal desorption two dimensional gas chromatography with time of flight mass spectrometry (TD-GC×GC-TOFMS). We also analyzed ~20 urban aerosol samples collected at Seoul, a representative urban site in Northeast Asia region to compare organic compounds distributions of aerosol samples at the Baengnyeong Island. By applying air mass back trajectory analysis and comparing organic compounds distributions in aerosol samples of the Baengnyeong Island and Seoul, the impact of long-range transport of fossil fuel originated organic pollutants at a background site in Northeast Asia were evaluated. (References) Bey, I., Jacob, D.J., Logan, J.A., Yantosca, R.M., 2001. Asian chemical outflow to the Pacific in spring: origins, pathways, and budgets. Journal of Geophysical Research-Atmosphere 106, 23097-23113.

  19. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    NASA Astrophysics Data System (ADS)

    Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W.

    2007-08-01

    The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. The relationship, in both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production and deforestation, is consistent, showing an overall conversion factor of 3-5%. This factor is covered only in part by the ~1% of "direct" emissions from agricultural crop lands estimated by IPCC (2006), or the "indirect" emissions cited therein. This means that the extra N2O entering the atmosphere as a result of using N to produce crops for biofuels will also be correspondingly greater than that estimated just on the basis of IPCC (2006). When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate each other. This needs to be analyzed in a full life cycle assessment.

  20. Wine ethanol 14C as a tracer for fossil fuel CO2 emissions in Europe: Measurements and model comparison

    NASA Astrophysics Data System (ADS)

    Palstra, Sanne W. L.; Karstens, Ute; Streurman, Harm-Jan; Meijer, Harro A. J.

    2008-11-01

    14C (radiocarbon) in atmospheric CO2 is the most direct tracer for the presence of fossil-fuel-derived CO2 (CO2-ff). We demonstrate the 14C measurement of wine ethanol as a way to determine the relative regional atmospheric CO2-ff concentration compared to a background site ("regional CO2-ff excess") for specific harvest years. The carbon in wine ethanol is directly back traceable to the atmospheric CO2 that the plants assimilate. An important advantage of using wine is that the atmosphere can be monitored annually back in time. We have analyzed a total of 165 wines, mainly from harvest years 1990-1993 and 2003-2004, among which is a semicontinuous series (1973-2004) of wines from one vineyard in southwest Germany. The results show clear spatial and temporal variations in the regional CO2-ff excess values. We have compared our measured regional CO2-ff excess values of 2003 and 2004 with those simulated by the REgional MOdel (REMO). The model results show a bias of almost +3 parts per million (ppm) CO2-ff compared with those of the observations. The modeled differences between 2003 and 2004, however, which can be used as a measure for the variability in atmospheric mixing and transport processes, show good agreement with those of the observations all over Europe. Correcting for interannual variations using modeled data produces a regional CO2-ff excess signal that is potentially useful for the verification of trends in regional fossil fuel consumption. In this fashion, analyzing 14C from wine ethanol offers the possibility to observe fossil fuel emissions back in time on many places in Europe and elsewhere.

  1. Electric power monthly, May 1993

    SciTech Connect

    Not Available

    1993-05-25

    The Electric Power Monthly (EPM) is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  2. Electric power monthly, April 1993

    SciTech Connect

    Not Available

    1993-05-07

    The Electric Power Monthly is prepared by the Survey Management Division; Office of Coal, Nuclear, Electric and Alternate Fuels, Energy Information Administration (EIA), Department of Energy. This publication provides monthly statistics at the US, Census division, and State levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions.

  3. The Fossil Fueled Metropolis: Los Angeles and the Emergence of Oil-Based Energy in North America, 1865--1930

    NASA Astrophysics Data System (ADS)

    Cooke, Jason Arthur

    Beginning with coal in the nineteenth century, the mass production and intensive consumption of fossil fuel energy fundamentally changed patterns of urban and industrial development in North America. Focusing on the metropolitan development of Los Angeles, this dissertation examines how the emergence of oil-based capitalism in the first three decades of the twentieth century was sustained and made increasingly resilient through the production of urban and industrial space. In a region where coal was scarce, the development of oil-based energy was predicated on long-term investments into conversion technologies, storage systems and distribution networks that facilitated the efficient and economical flow of liquefied fossil fuel. In this dissertation, I argue that the historical and geographical significance of the Southern California petroleum industry is derived from how its distinctive market expansion in the first three decades of the twentieth century helped establish the dominance of oil-based energy as the primary fuel for transportation in capitalist society. In North America, the origins of oil-based capitalism can be traced to the turn of the twentieth century when California was the largest oil-producing economy in the United States and Los Angeles was the fastest growing metropolitan region. This dissertation traces how Los Angeles became the first city in North America where oil became a formative element of urban and industrial development: not only as fuel for transportation, but also in the infrastructures, landscapes and networks that sustain a critical dependence on oil-based energy. With a distinctive metropolitan geography, decentralized and automobile-dependent, Los Angeles became the first oil-based city in North America and thus provides an ideal case study for examining the regional dynamics of energy transition, establishment and dependence. Interwoven with the production of urban and industrial space, oil remains the primary fuel that

  4. Use of Chia Plant to Monitor Urban Fossil Fuel CO2 Emission: An Example From Irvine, CA in 2010

    NASA Astrophysics Data System (ADS)

    Xu, X.; Stills, A.; Trumbore, S.; Randerson, J. T.; Yi, J.

    2011-12-01

    Δ14CO2 is a unique tracer for quantifying anthropogenic CO2 emissions. However, monitoring 14CO2 change and distribution in an urban environment is challenging because of its large spatial and temporal variations. We have tested the potential use of a chia plant (Salvia hispanica) as an alternative way to collect a time-integrated CO2 sample for radiocarbon analysis. The results show that Δ14C of the new growth of chia sprouts and chia leaves are consistent with the Δ14C of air samples collected during the growing period, indicating the new growth has no inherited C from seeds and thus records atmospheric 14CO2. Time-integrated air samples and chia leaf samples significantly reduced the noises of Δ14CO2 in an urban environment. We report here an example of monitoring 14CO2 change in Irvine, CA from Mar 2010 to Mar 2011 utilizing such a method. The results showed a clear seasonal cycle with high (close to remote air background level) Δ14C in summer and low Δ14C in winter months in this urban area. Excess (above remote air background) fossil fuel CO2 was calculated to be closed to 0 ppm in June to about 16 ppm from November 2010 to February 2011. Monthly mean Δ14CO2 was anti-correlated with monthly mean CO mixing ratio, indicating Δ14CO2 is mainly controlled by fossil fuel CO2 mixing with clean on-shore marine air. In summary, this study has shown encouraging result that chia plant can be potentially used as a convenient and inexpensive sampling method for time-integrated atmospheric 14CO2. Combined with other annual plants this provides the opportunity to map out time-integrated fossil fuel-derived CO2 in major cities at low cost. This in turn can be used to: 1) establish a baseline for fossil fuel emissions reductions in cities in the future; 2) provide invaluable information for validating emission models.

  5. Bioaccumulation of fossil fuel components during single-compound and complex-mixture exposures of Daphnia magna

    SciTech Connect

    Dauble, D.D.; Carlile, D.W.; Hanf, R.W. Jr.

    1986-07-01

    The authors conducted tests with the water flea (Daphnia magna) to compare the bioaccumulation of compounds presented alone with the bioaccumulation of these same compounds when they were presented within a complex coal liquid, water-soluble fraction. Phenol and aniline were used as representative compounds because they are highly soluble, moderately toxic, and common to many fossil fuel liquid products and corresponding wastes. The tests were primarily designed to aid in development of predictive models relating to the transport and fate of components from complex mixtures in aquatic biota.

  6. Fuel cell power plant integrated systems evaluation

    NASA Astrophysics Data System (ADS)

    Bonds, T. L.; Dawes, M. H.; Schnacke, A. W.; Spradlin, L. W.

    1981-01-01

    Power plant configurations for a central station (675 MW) fueled by coal and small dispersed plan generation plants fueled by oil were defined. Capital costs and costs for electricity were evaluated for both plants. Parametric variations and the impact on plants and components are discussed. Alternate oil fueled oil fired cycles as well as several alternate coal gasifiers were examined to show effects on plant performance. The economic attractiveness of the coal fired plant was confirmed and a scenario is established for an oil fired plant with reject heat recovery. Performance for the coal fired plant exceeds the study goal of 6800 Btu/kWh. The oil fired plant performance of 7627 Btu/kWh is very close to the study goal of 7500 Btu/kWh. The development of a finite slice computer model of the carbonate fuel cell is reported and an initial parametric cell and plant performance study was performed using the model. Preliminary subsystem description sheets and plant layout arrangements are presented.

  7. High power density solid oxide fuel cells

    DOEpatents

    Pham, Ai Quoc; Glass, Robert S.

    2004-10-12

    A method for producing ultra-high power density solid oxide fuel cells (SOFCs). The method involves the formation of a multilayer structure cells wherein a buffer layer of doped-ceria is deposited intermediate a zirconia electrolyte and a cobalt iron based electrode using a colloidal spray deposition (CSD) technique. For example, a cobalt iron based cathode composed of (La,Sr)(Co,Fe)O (LSCF) may be deposited on a zirconia electrolyte via a buffer layer of doped-ceria deposited by the CSD technique. The thus formed SOFC have a power density of 1400 mW/cm.sup.2 at 600.degree. C. and 900 mW/cm.sup.2 at 700.degree. C. which constitutes a 2-3 times increased in power density over conventionally produced SOFCs.

  8. Direct Experiments on the Ocean Disposal of Fossil Fuel CO2

    SciTech Connect

    Barry, James, P.

    2010-05-26

    Funding from DoE grant # FG0204-ER63721, Direct Experiments on the Ocean Disposal of Fossil Fuel CO2, supposed several postdoctoral fellows and research activities at MBARI related to ocean CO2 disposal and the biological consequences of high ocean CO2 levels on marine organisms. Postdocs supported on the project included Brad Seibel, now an associate professor at the University of Rhode Island, Jeff Drazen, now an associate professor at the University of Hawaii, and Eric Pane, who continues as a research associate at MBARI. Thus, the project contributed significantly to the professional development of young scientists. In addition, we made significant progress in several research areas. We continued several deep-sea CO2 release experiments using support from DoE and MBARI, along with several collaborators. These CO2 release studies had the goal of broadening our understanding of the effects of high ocean CO2 levels on deep sea animals in the vicinity of potential release sites for direct deep-ocean carbon dioxide sequestration. Using MBARI ships and ROVs, we performed these experiments at depths of 3000 to 3600 m, where liquid CO2 is heavier than seawater. CO2 was released into small pools (sections of PVC pipe) on the seabed, where it dissolved and drifted downstream, bathing any caged animals and sediments in a CO2-rich, low-pH plume. We assessed the survival of organisms nearby. Several publications arose from these studies (Barry et al. 2004, 2005; Carman et al. 2004; Thistle et al. 2005, 2006, 2007; Fleeger et al. 2006, 2010; Barry and Drazen 2007; Bernhard et al. 2009; Sedlacek et al. 2009; Ricketts et al. in press; Barry et al, in revision) concerning the sensitivity of animals to low pH waters. Using funds from DoE and MBARI, we designed and fabricated a hyperbaric trap-respirometer to study metabolic rates of deep-sea fishes under high CO2 conditions (Drazen et al, 2005), as well as a gas-control aquarium system to support laboratory studies of the

  9. Method development for mass spectrometry based molecular characterization of fossil fuels and biological samples

    NASA Astrophysics Data System (ADS)

    Mahat, Rajendra K.

    In an analytical (chemical) method development process, the sample preparation step usually determines the throughput and overall success of the analysis. Both targeted and non-targeted methods were developed for the mass spectrometry (MS) based analyses of fossil fuels (coal) and lipidomic analyses of a unique micro-organism, Gemmata obscuriglobus. In the non-targeted coal analysis using GC-MS, a microwave-assisted pressurized sample extraction method was compared with the traditional extraction method, such as Soxhlet. On the other hand, methods were developed to establish a comprehensive lipidomic profile and to confirm the presence of endotoxins (a.k.a. lipopolysaccharides, LPS) in Gemmata.. The performance of pressurized heating techniques employing hot-air oven and microwave irradiation were compared with that of Soxhlet method in terms of percentage extraction efficiency and extracted analyte profiles (via GC-MS). Sub-bituminous (Powder River Range, Wyoming, USA) and bituminous (Fruitland formation, Colorado, USA) coal samples were tested. Overall 30-40% higher extraction efficiencies (by weight) were obtained with a 4 hour hot-air oven and a 20 min microwave-heating extraction in a pressurized container when compared to a 72 hour Soxhlet extraction. The pressurized methods are 25 times more economic in terms of solvent/sample amount used and are 216 times faster in term of time invested for the extraction process. Additionally, same sets of compounds were identified by GC-MS for all the extraction methods used: n-alkanes and diterpanes in the sub-bituminous sample, and n-alkanes and alkyl aromatic compounds in the bituminous coal sample. G. obscuriglobus, a nucleated bacterium, is a micro-organism of high significances from evolutionary, cell and environmental biology standpoints. Although lipidomics is an essential tool in microbiological systematics and chemotaxonomy, complete lipid profile of this bacterium is still lacking. In addition, the presence of

  10. Quantification of uncertainty associated with United States high resolution fossil fuel CO2 emissions: updates, challenges and future plans

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Chandrasekaran, V.; Mendoza, D. L.; Geethakumar, S.

    2010-12-01

    The Vulcan Project has estimated United States fossil fuel CO2 emissions at the hourly time scale and at spatial scales below the county level for the year 2002. Vulcan is built from a wide variety of observational data streams including regulated air pollutant emissions reporting, traffic monitoring, energy statistics, and US census data. In addition to these data sets, Vulcan relies on a series of modeling assumptions and constructs to interpolate in space, time and transform non-CO2 reporting into an estimate of CO2 combustion emissions. The recent version 2.0 of the Vulcan inventory has produced advances in a number of categories with particular emphasis on improved temporal structure. Onroad transportation emissions now avail of roughly 5000 automated traffic count monitors allowing for much improved diurnal and weekly time structure in our onroad transportation emissions. Though the inventory shows excellent agreement with independent national-level CO2 emissions estimates, uncertainty quantification has been a challenging task given the large number of data sources and numerous modeling assumptions. However, we have now accomplished a complete uncertainty estimate across all the Vulcan economic sectors and will present uncertainty estimates as a function of space, time, sector and fuel. We find that, like the underlying distribution of CO2 emissions themselves, the uncertainty is also strongly lognormal with high uncertainty associated with a relatively small number of locations. These locations typically are locations reliant upon coal combustion as the dominant CO2 source. We will also compare and contrast Vulcan fossil fuel CO2 emissions estimates against estimates built from DOE fuel-based surveys at the state level. We conclude that much of the difference between the Vulcan inventory and DOE statistics are not due to biased estimation but mechanistic differences in supply versus demand and combustion in space/time.

  11. Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power

    SciTech Connect

    Brown, L.C.; Funk, J.F.; Showalter, S.K.

    1999-12-15

    OAK B188 Initial Screening of Thermochemical Water-Splitting Cycles for High Efficiency Generation of Hydrogen Fuels Using Nuclear Power There is currently no large scale, cost-effective, environmentally attractive hydrogen production process, nor is such a process available for commercialization. Hydrogen is a promising energy carrier, which potentially could replace the fossil fuels used in the transportation sector of our economy. Fossil fuels are polluting and carbon dioxide emissions from their combustion are thought to be responsible for global warming. The purpose of this work is to determine the potential for efficient, cost-effective, large-scale production of hydrogen utilizing high temperature heat from an advanced nuclear power station. Almost 800 literature references were located which pertain to thermochemical production of hydrogen from water and over 100 thermochemical watersplitting cycles were examined. Using defined criteria and quantifiable metrics, 25 cycles have been selected for more detailed study.

  12. Diesel fuel to dc power: Navy & Marine Corps Applications

    SciTech Connect

    Bloomfield, D.P.

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

  13. Solid oxide fuel cell power system development

    SciTech Connect

    Kerr, Rick; Wall, Mark; Sullivan, Neal

    2015-06-26

    This report summarizes the progress made during this contractual period in achieving the goal of developing the solid oxide fuel cell (SOFC) cell and stack technology to be suitable for use in highly-efficient, economically-competitive, commercially deployed electrical power systems. Progress was made in further understanding cell and stack degradation mechanisms in order to increase stack reliability toward achieving a 4+ year lifetime, in cost reduction developments to meet the SECA stack cost target of $175/kW (in 2007 dollars), and in operating the SOFC technology in a multi-stack system in a real-world environment to understand the requirements for reliably designing and operating a large, stationary power system.

  14. Carbon Capture and Water Emissions Treatment System (CCWESTRS) at Fossil-Fueled Electric Generating Plants

    SciTech Connect

    P. Alan Mays; Bert R. Bock; Gregory A. Brodie; L. Suzanne Fisher; J. Devereux Joslin; Donald L. Kachelman; Jimmy J. Maddox; N. S. Nicholas; Larry E. Shelton; Nick Taylor; Mark H. Wolfe; Dennis H. Yankee; John Goodrich-Mahoney

    2005-08-30

    The Tennessee Valley Authority (TVA), the Electric Power Research Institute (EPRI), and the Department of Energy-National Energy Technologies Laboratory (DOE-NETL) are evaluating and demonstrating integration of terrestrial carbon sequestration techniques at a coal-fired electric power plant through the use of Flue Gas Desulfurization (FGD) system gypsum as a soil amendment and mulch, and coal fly ash pond process water for periodic irrigation. From January to March 2002, the Project Team initiated the construction of a 40 ha Carbon Capture and Water Emissions Treatment System (CCWESTRS) near TVA's Paradise Fossil Plant on marginally reclaimed surface coal mine lands in Kentucky. The CCWESTRS is growing commercial grade trees and cover crops and is expected to sequester 1.5-2.0 MT/ha carbon per year over a 20-year period. The concept could be used to meet a portion of the timber industry's needs while simultaneously sequestering carbon in lands which would otherwise remain non-productive. The CCWESTRS includes a constructed wetland to enhance the ability to sequester carbon and to remove any nutrients and metals present in the coal fly ash process water runoff. The CCWESTRS project is a cooperative effort between TVA, EPRI, and DOE-NETL, with a total budget of $1,574,000. The proposed demonstration project began in October 2000 and has continued through December 2005. Additional funding is being sought in order to extend the project. The primary goal of the project is to determine if integrating power plant processes with carbon sequestration techniques will enhance carbon sequestration cost-effectively. This goal is consistent with DOE objectives to provide economically competitive and environmentally safe options to offset projected growth in U.S. baseline emissions of greenhouse gases after 2010, achieve the long-term goal of $10/ton of avoided net costs for carbon sequestration, and provide half of the required reductions in global greenhouse gases by 2025

  15. Sectoral CO 2, CH 4, N 2O and SO 2 emissions from fossil fuel consumption in Nagpur City of Central India

    NASA Astrophysics Data System (ADS)

    Majumdar, Deepanjan; Gajghate, D. G.

    2011-08-01

    Emission inventory of CO 2, CH 4, N 2O and SO 2 has been prepared for Nagpur city in Central India for the year 2004. Data on fossil fuel (coal, light diesel oil, high speed diesel, petrol/gasoline, low sulphur heavy stock, furnace oil and kerosene) consumption in thermal power, industrial, transport and domestic sectors were collected. Thermal power sector had the maximum coal consumption followed by the industrial and domestic sectors, whereas kerosene, liquefied petroleum gas (LPG), diesel and gasoline were used only in any single sector. Total annual CO 2, CH 4, N 2O and SO 2 emissions from these fuels in Nagpur city for the year 2004 was found to be 14792418 MT (14.8 Tg), 4649 (4.6 Tg), 1529 (1.5 Tg) and 69093 (6.9 Tg), respectively, in which thermal power and domestic sector had the maximum share. Coal was found to be the major contributor to Green House Gas (GHG) and SO 2 emissions in all the sectors barring transport and domestic sectors. Carbon dioxide was the predominant GHG emitted by the selected sectors in terms of absolute emissions and also global warming contribution (GWC), though the share in the latter was lesser in magnitude due to higher global warming potential (GWP) of CH 4 and N 2O than CO 2. Thermal power sector had a share of 51% in total CO 2 emissions from all the sectors, followed by domestic, industrial and transport sectors having 27, 12 and 10% contributions, respectively. Share of thermal power sector in total SO 2 emissions was 61%, followed by 24% from industrial, 10% from domestic and 5% from transport sector.

  16. TASK 3.4--IMPACTS OF COFIRING BIOMASS WITH FOSSIL FUELS

    SciTech Connect

    Christopher J. Zygarlicke; Donald P. McCollor; Kurt E. Eylands; Melanie D. Hetland; Mark A. Musich; Charlene R. Crocker; Jonas Dahl; Stacie Laducer

    2001-08-01

    With a major worldwide effort now ongoing to reduce greenhouse gas emissions, cofiring of renewable biomass fuels at conventional coal-fired utilities is seen as one of the lower-cost options to achieve such reductions. The Energy & Environmental Research Center has undertaken a fundamental study to address the viability of cofiring biomass with coal in a pulverized coal (pc)-fired boiler for power production. Wheat straw, alfalfa stems, and hybrid poplar were selected as candidate biomass materials for blending at a 20 wt% level with an Illinois bituminous coal and an Absaloka subbituminous coal. The biomass materials were found to be easily processed by shredding and pulverizing to a size suitable for cofiring with pc in a bench-scale downfired furnace. A literature investigation was undertaken on mineral uptake and storage by plants considered for biomass cofiring in order to understand the modes of occurrence of inorganic elements in plant matter. Sixteen essential elements, C, H, O, N, P, K, Ca, Mg, S, Zn, Cu, Fe, Mn, B, Mo, and Cl, are found throughout plants. The predominant inorganic elements are K and Ca, which are essential to the function of all plant cells and will, therefore, be evenly distributed throughout the nonreproductive, aerial portions of herbaceous biomass. Some inorganic constituents, e.g., N, P, Ca, and Cl, are organically associated and incorporated into the structure of the plant. Cell vacuoles are the repository for excess ions in the plant. Minerals deposited in these ubiquitous organelles are expected to be most easily leached from dry material. Other elements may not have specific functions within the plant, but are nevertheless absorbed and fill a need, such as silica. Other elements, such as Na, are nonessential, but are deposited throughout the plant. Their concentration will depend entirely on extrinsic factors regulating their availability in the soil solution, i.e., moisture and soil content. Similarly, Cl content is determined

  17. 77 FR 7142 - Jersey Central Power and Light Company, PSEG Fossil, LLC; Notice of Availability of Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-10

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Jersey Central Power and Light Company, PSEG Fossil, LLC; Notice of Availability of Environmental Assessment In accordance with the National Environmental Policy Act of 1969...

  18. Two-loop controller for maximizing performance of a grid-connected photovoltaic - fuel cell hybrid power plant

    NASA Astrophysics Data System (ADS)

    Ro, Kyoungsoo

    The study started with the requirement that a photovoltaic (PV) power source should be integrated with other supplementary power sources whether it operates in a stand-alone or grid-connected mode. First, fuel cells for a backup of varying PV power were compared in detail with batteries and were found to have more operational benefits. Next, maximizing performance of a grid-connected PV-fuel cell hybrid system by use of a two-loop controller was discussed. One loop is a neural network controller for maximum power point tracking, which extracts maximum available solar power from PV arrays under varying conditions of insolation, temperature, and system load. A real/reactive power controller (RRPC) is the other loop. The RRPC meets the system's requirement for real and reactive powers by controlling incoming fuel to fuel cell stacks as well as switching control signals to a power conditioning subsystem. The RRPC is able to achieve more versatile control of real/reactive powers than the conventional power sources since the hybrid power plant does not contain any rotating mass. Results of time-domain simulations prove not only effectiveness of the proposed computer models of the two-loop controller, but also their applicability for use in transient stability analysis of the hybrid power plant. Finally, environmental evaluation of the proposed hybrid plant was made in terms of plant's land requirement and lifetime COsb2 emissions, and then compared with that of the conventional fossil-fuel power generating forms.

  19. Sea water magnesium fuel cell power supply

    NASA Astrophysics Data System (ADS)

    Hahn, Robert; Mainert, Jan; Glaw, Fabian; Lang, K.-D.

    2015-08-01

    An environmentally friendly magnesium fuel cell system using seawater electrolyte and atmospheric oxygen was tested under practical considerations for use as maritime power supply. The hydrogen rate and therefore the power density of the system were increased by a factor of two by using hydrogen evolution cathodes with a gas separation membrane instead of submerged cathodes without gas separation. Commercial magnesium AZ31 rolled sheet anodes can be dissolved in seawater for hydrogen production, down to a thickness below 100 μm thickness, resulting in hydrogen generation efficiency of the anode of over 80%. A practical specific energy/energy density of the alloy of more than 1200 Wh/kg/3000 Wh/l was achieved when coupled to a fuel cell with atmospheric air breathing cathode. The performance of several AZ31 alloy anodes was tested as well as the influence of temperature, electrolyte concentration and anode - cathode separation. The excess hydrogen produced by the magnesium hydrogen evolving cell, due to the negative difference effect, is proportional to the cell current in case of the AZ31 alloys, which simplifies system control considerably. Stable long-term operation of the system was demonstrated at low pressures which can be maintained in an open-seawater-submerged hydrogen generator.

  20. Electric power monthly, February 1998 with data for November 1997

    SciTech Connect

    1998-02-01

    The Electric Power Monthly (EPM) provides monthly statistics at the State, Census division, and US levels for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity retail sales, associated revenue, and average revenue per kilowatthour of electricity sold. In addition, data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source; consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. 63 tabs.

  1. Impacts of a 32-billion-gallon bioenergy landscape on land and fossil fuel use in the US

    NASA Astrophysics Data System (ADS)

    Hudiburg, Tara W.; Wang, Weiwei; Khanna, Madhu; Long, Stephen P.; Dwivedi, Puneet; Parton, William J.; Hartman, Melannie; Delucia, Evan H.

    2016-01-01

    Sustainable transportation biofuels may require considerable changes in land use to meet mandated targets. Understanding the possible impact of different policies on land use and greenhouse gas emissions has typically proceeded by exploring either ecosystem or economic modelling. Here we integrate such models to assess the potential for the US Renewable Fuel Standard to reduce greenhouse gas emissions from the transportation sector through the use of cellulosic biofuels. We find that 2022 US emissions are decreased by 7.0 ± 2.5% largely through gasoline displacement and soil carbon storage by perennial grasses. If the Renewable Fuel Standard is accompanied by a cellulosic biofuel tax credit, these emissions could be reduced by 12.3 ± 3.4%. Our integrated approach indicates that transitioning to cellulosic biofuels can meet a 32-billion-gallon Renewable Fuel Standard target with negligible effects on food crop production, while reducing fossil fuel use and greenhouse gas emissions. However, emissions savings are lower than previous estimates that did not account for economic constraints.

  2. 77 FR 39745 - Fuel Oil Systems for Emergency Power Supplies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-05

    ... COMMISSION Fuel Oil Systems for Emergency Power Supplies AGENCY: Nuclear Regulatory Commission. ACTION: Draft... Power Supplies.'' This guide describes a method that the NRC staff considers acceptable for use in..., entitled, ``Fuel Oil Systems for Emergency Power Supplies,'' is temporarily identified by its task...

  3. Structural Path Analysis of Fossil Fuel Based CO2 Emissions: A Case Study for China.

    PubMed

    Yang, Zhiyong; Dong, Wenjie; Xiu, Jinfeng; Dai, Rufeng; Chou, Jieming

    2015-01-01

    Environmentally extended input-output analysis (EEIOA) has long been used to quantify global and regional environmental impacts and to clarify emission transfers. Structural path analysis (SPA), a technique based on EEIOA, is especially useful for measuring significant flows in this environmental-economic system. This paper constructs an imports-adjusted single-region input-output (SRIO) model considering only domestic final use elements, and it uses the SPA technique to highlight crucial routes along the production chain in both final use and sectoral perspectives. The results indicate that future mitigation policies on household consumption should change direct energy use structures in rural areas, cut unreasonable demand for power and chemical products, and focus on urban areas due to their consistently higher magnitudes than rural areas in the structural routes. Impacts originating from government spending should be tackled by managing onsite energy use in 3 major service sectors and promoting cleaner fuels and energy-saving techniques in the transport sector. Policies on investment should concentrate on sectoral interrelationships along the production chain by setting up standards to regulate upstream industries, especially for the services, construction and equipment manufacturing sectors, which have high demand pulling effects. Apart from the similar methods above, mitigating policies in exports should also consider improving embodied technology and quality in manufactured products to achieve sustainable development. Additionally, detailed sectoral results in the coal extraction industry highlight the onsite energy use management in large domestic companies, emphasize energy structure rearrangement, and indicate resources and energy safety issues. Conclusions based on the construction and public administration sectors reveal that future mitigation in secondary and tertiary industries should be combined with upstream emission intensive industries in a

  4. Structural Path Analysis of Fossil Fuel Based CO2 Emissions: A Case Study for China.

    PubMed

    Yang, Zhiyong; Dong, Wenjie; Xiu, Jinfeng; Dai, Rufeng; Chou, Jieming

    2015-01-01

    Environmentally extended input-output analysis (EEIOA) has long been used to quantify global and regional environmental impacts and to clarify emission transfers. Structural path analysis (SPA), a technique based on EEIOA, is especially useful for measuring significant flows in this environmental-economic system. This paper constructs an imports-adjusted single-region input-output (SRIO) model considering only domestic final use elements, and it uses the SPA technique to highlight crucial routes along the production chain in both final use and sectoral perspectives. The results indicate that future mitigation policies on household consumption should change direct energy use structures in rural areas, cut unreasonable demand for power and chemical products, and focus on urban areas due to their consistently higher magnitudes than rural areas in the structural routes. Impacts originating from government spending should be tackled by managing onsite energy use in 3 major service sectors and promoting cleaner fuels and energy-saving techniques in the transport sector. Policies on investment should concentrate on sectoral interrelationships along the production chain by setting up standards to regulate upstream industries, especially for the services, construction and equipment manufacturing sectors, which have high demand pulling effects. Apart from the similar methods above, mitigating policies in exports should also consider improving embodied technology and quality in manufactured products to achieve sustainable development. Additionally, detailed sectoral results in the coal extraction industry highlight the onsite energy use management in large domestic companies, emphasize energy structure rearrangement, and indicate resources and energy safety issues. Conclusions based on the construction and public administration sectors reveal that future mitigation in secondary and tertiary industries should be combined with upstream emission intensive industries in a

  5. Krakow clean fossil fuels and energy efficiency program. Phase 1 report

    SciTech Connect

    Butcher, T.; Pierce, B.

    1995-06-01

    Krakow is one of the largest and oldest cities in Poland. It is situated in the south of the country on the banks of the Vistula River. From the 11th until the 17th centuries, it was the capital of Poland. Today, Krakow is a city of 750,000 residents, one of the largest centers of higher education, an important industrial center, and is of particular importance because of the number and kinds of historic buildings and sites. For this reason, Krakow was included by the UNESCO in the list of the world`s cultural heritages. For about three decades, significant air pollution has been one of Krakow`s most serious problems. Because the city is situated in the Vistula River valley, it is poorly ventilated and experiences a high concentration of air pollutants. The quality of air in Krakow is affected mainly by industry (Sendzimir Steelworks, energy industry, chemical plants), influx from the Silesian industrial region (power plants, metallurgy), transboundary pollution (Ostrava - Czech Republic), and local sources of low pollution, i.e. more than 1,000 boiler houses using solid fuels and more than 100,000 coal-fired home stoves. These local sources, with low stacks and almost no pollution-control equipment, are responsible for about 35-40% of the air pollution. This report presents phase I results of a program to reduce pollution in krakow. Phase I was to gather information on emissions and costs, and to verify assumptions on existing heating methods and alternatives.

  6. Structural Path Analysis of Fossil Fuel Based CO2 Emissions: A Case Study for China

    PubMed Central

    Yang, Zhiyong; Dong, Wenjie; Xiu, Jinfeng; Dai, Rufeng; Chou, Jieming

    2015-01-01

    Environmentally extended input-output analysis (EEIOA) has long been used to quantify global and regional environmental impacts and to clarify emission transfers. Structural path analysis (SPA), a technique based on EEIOA, is especially useful for measuring significant flows in this environmental-economic system. This paper constructs an imports-adjusted single-region input-output (SRIO) model considering only domestic final use elements, and it uses the SPA technique to highlight crucial routes along the production chain in both final use and sectoral perspectives. The results indicate that future mitigation policies on household consumption should change direct energy use structures in rural areas, cut unreasonable demand for power and chemical products, and focus on urban areas due to their consistently higher magnitudes than rural areas in the structural routes. Impacts originating from government spending should be tackled by managing onsite energy use in 3 major service sectors and promoting cleaner fuels and energy-saving techniques in the transport sector. Policies on investment should concentrate on sectoral interrelationships along the production chain by setting up standards to regulate upstream industries, especially for the services, construction and equipment manufacturing sectors, which have high demand pulling effects. Apart from the similar methods above, mitigating policies in exports should also consider improving embodied technology and quality in manufactured products to achieve sustainable development. Additionally, detailed sectoral results in the coal extraction industry highlight the onsite energy use management in large domestic companies, emphasize energy structure rearrangement, and indicate resources and energy safety issues. Conclusions based on the construction and public administration sectors reveal that future mitigation in secondary and tertiary industries should be combined with upstream emission intensive industries in a

  7. Opportunity fuels

    SciTech Connect

    Lutwen, R.C.

    1996-12-31

    The paper consists of viewgraphs from a conference presentation. A comparison is made of opportunity fuels, defined as fuels that can be converted to other forms of energy at lower cost than standard fossil fuels. Types of fuels for which some limited technical data is provided include petroleum coke, garbage, wood waste, and tires. Power plant economics and pollution concerns are listed for each fuel, and compared to coal and natural gas power plant costs. A detailed cost breakdown for different plant types is provided for use in base fuel pricing.

  8. 1989 annual book of ASTM standards. Section 5: Petroleum products, lubricants and fossil fuels

    SciTech Connect

    Not Available

    1989-01-01

    This volume of standards pertains to petroleum products and lubricants and to catalysts. The standards presented include: Standard test method for estimation of net and gross heat of combustion of petroleum fuels; Standard guide for generation and dissipation of static electricity in petroleum fuel systems; and Standard test method for solidification point of petroleum wax.

  9. The role of fuel cells in NASA's space power systems

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1979-01-01

    The advances in fuel cell technology which have expanded the capabilities of the fuel cell from that of power generation to include energy storage also expanded its potential role in space power systems. This paper presents a brief evolutionary history of the fuel cell technology and compares this with NASA's increasing space power requirements. The role of fuel cells is put in perspective with other energy storage systems applicable for space using such criteria as type of mission, weight, reliability, costs, etc. Potential applications of space fuel cells with projected technology advances are examined.

  10. 75 FR 45623 - Morris Energy Group, LLC v.PSEG Energy Resources & Trade LLC; PSEG Fossil LLC; and PSEG Power LLC...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-03

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Federal Energy Regulatory Commission Morris Energy Group, LLC v.PSEG Energy Resources & Trade LLC; PSEG Fossil..., LLC, PSEG Fossil LLC and PSEG Power LLC (PSEG Power Companies) (Respondents), requesting that...

  11. Survey of US and total world production, proved resources, and remaining recoverable resources of fossil fuels and uranium as of December 31, 1982

    SciTech Connect

    Parent, J.D.

    1984-01-01

    The report updates previous IGT reports on US and world conventional fossil fuel and uranium proved reserves and remaining recoverable resources. It also provides data on current and cumulative production of these nonrenewable energy sources and their life expectancies at selected annual consumption growth rates. The US is endowed with roughly 22% of the world's proved reserves of conventional fossil fuels and about 9% of the uranium in the free world. It is particularly fortunate in having vast amounts of coal, oil shale, and peat. Although they present difficult economic and environmental problems in mining and utilization, a serious effort should be made to use these resources to a much greater extent.

  12. Surrogate gas prediction model as a proxy for Δ14C-based measurements of fossil fuel CO2

    NASA Astrophysics Data System (ADS)

    Coakley, Kevin J.; Miller, John B.; Montzka, Stephen A.; Sweeney, Colm; Miller, Ben R.

    2016-06-01

    The measured 14C:12C isotopic ratio of atmospheric CO2 (and its associated derived Δ14C value) is an ideal tracer for determination of the fossil fuel derived CO2 enhancement contributing to any atmospheric CO2 measurement (Cff). Given enough such measurements, independent top-down estimation of U.S. fossil fuel CO2 emissions should be possible. However, the number of Δ14C measurements is presently constrained by cost, available sample volume, and availability of mass spectrometer measurement facilities. Δ14C is therefore measured in just a small fraction of samples obtained by flask air sampling networks around the world. Here we develop a projection pursuit regression (PPR) model to predict Cff as a function of multiple surrogate gases acquired within the NOAA/Earth System Research Laboratory (ESRL) Global Greenhouse Gas Reference Network (GGGRN). The surrogates consist of measured enhancements of various anthropogenic trace gases, including CO, SF6, and halocarbon and hydrocarbon acquired in vertical airborne sampling profiles near Cape May, NJ and Portsmouth, NH from 2005 to 2010. Model performance for these sites is quantified based on predicted values corresponding to test data excluded from the model building process. Chi-square hypothesis test analysis indicates that these predictions and corresponding observations are consistent given our uncertainty budget which accounts for random effects and one particular systematic effect. However, quantification of the combined uncertainty of the prediction due to all relevant systematic effects is difficult because of the limited range of the observations and their relatively high fractional uncertainties at the sampling sites considered here. To account for the possibility of additional systematic effects, we incorporate another component of uncertainty into our budget. Expanding the number of Δ14C measurements in the NOAA GGGRN and building new PPR models at additional sites would improve our understanding of

  13. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels

    NASA Astrophysics Data System (ADS)

    Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W.

    2008-01-01

    The relationship, on a global basis, between the amount of N fixed by chemical, biological or atmospheric processes entering the terrestrial biosphere, and the total emission of nitrous oxide (N2O), has been re-examined, using known global atmospheric removal rates and concentration growth of N2O as a proxy for overall emissions. For both the pre-industrial period and in recent times, after taking into account the large-scale changes in synthetic N fertiliser production, we find an overall conversion factor of 3-5% from newly fixed N to N2O-N. We assume the same factor to be valid for biofuel production systems. It is covered only in part by the default conversion factor for "direct" emissions from agricultural crop lands (1%) estimated by IPCC (2006), and the default factors for the "indirect" emissions (following volatilization/deposition and leaching/runoff of N: 0.35-0.45%) cited therein. However, as we show in the paper, when additional emissions included in the IPCC methodology, e.g. those from livestock production, are included, the total may not be inconsistent with that given by our "top-down" method. When the extra N2O emission from biofuel production is calculated in "CO2-equivalent" global warming terms, and compared with the quasi-cooling effect of "saving" emissions of fossil fuel derived CO2, the outcome is that the production of commonly used biofuels, such as biodiesel from rapeseed and bioethanol from corn (maize), depending on N fertilizer uptake efficiency by the plants, can contribute as much or more to global warming by N2O emissions than cooling by fossil fuel savings. Crops with less N demand, such as grasses and woody coppice species, have more favourable climate impacts. This analysis only considers the conversion of biomass to biofuel. It does not take into account the use of fossil fuel on the farms and for fertilizer and pesticide production, but it also neglects the production of useful co-products. Both factors partially compensate

  14. Fuel-Cell-Powered Vehicle with Hybrid Power Management

    NASA Technical Reports Server (NTRS)

    Eichenberg, Dennis J.

    2010-01-01

    Figure 1 depicts a hybrid electric utility vehicle that is powered by hydrogenburning proton-exchange-membrane (PEM) fuel cells operating in conjunction with a metal hydride hydrogen-storage unit. Unlike conventional hybrid electric vehicles, this vehicle utilizes ultracapacitors, rather than batteries, for storing electric energy. This vehicle is a product of continuing efforts to develop the technological discipline known as hybrid power management (HPM), which is oriented toward integration of diverse electric energy-generating, energy-storing, and energy- consuming devices in optimal configurations. Instances of HPM were reported in five prior NASA Tech Briefs articles, though not explicitly labeled as HPM in the first three articles: "Ultracapacitors Store Energy in a Hybrid Electric Vehicle" (LEW-16876), Vol. 24, No. 4 (April 2000), page 63; "Photovoltaic Power Station With Ultracapacitors for Storage" (LEW- 17177), Vol. 27, No. 8 (August 2003), page 38; "Flasher Powered by Photovoltaic Cells and Ultracapacitors" (LEW-17246), Vol. 27, No. 10 (October 2003), page 37; "Hybrid Power Management" (LEW-17520), Vol. 29, No. 12 (December 2005), page 35; and "Ultracapacitor-Powered Cordless Drill" (LEW-18116-1), Vol. 31, No. 8 (August 2007), page 34. To recapitulate from the cited prior articles: The use of ultracapacitors as energy- storage devices lies at the heart of HPM. An ultracapacitor is an electrochemical energy-storage device, but unlike in a conventional rechargeable electrochemical cell or battery, chemical reactions do not take place during operation. Instead, energy is stored electrostatically at an electrode/electrolyte interface. The capacitance per unit volume of an ultracapacitor is much greater than that of a conventional capacitor because its electrodes have much greater surface area per unit volume and the separation between the electrodes is much smaller.

  15. Exploration for fossil and nuclear fuels from orbital altitudes. [results of ERTS program for oil exploration

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1974-01-01

    Results from the ERTS program pertinent to exploration for oil, gas, and uranium are discussed. A review of achievements in relevant geological studies from ERTS, and a survey of accomplishments oriented towards exploration for energy sources are presented along with an evaluation of the prospects and limitations of the space platform approach to fuel exploration, and an examination of continuing programs designed to prove out the use of ERTS and other space system in exploring for fuel resources.

  16. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    PubMed

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  17. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    PubMed

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  18. Quantification of fossil fuel CO2 emissions at the urban scale: Results from the Indianapolis Flux Project (INFLUX)

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.

    2012-12-01

    Emissions of fossil fuel CO2 (CO2ff) from anthropogenic sources are the primary driver of observed increases in the atmospheric CO2 burden, and hence global warming. Quantification of the magnitude of fossil fuel CO2 emissions is vital to improving our understanding of the global and regional carbon cycle, and independent evaluation of reported emissions is essential to the success of any emission reduction efforts. The urban scale is of particular interest, because ~75% CO2ff is emitted from urban regions, and cities are leading the way in attempts to reduce emissions. Measurements of 14CO2 can be used to determine CO2ff, yet existing 14C measurement techniques require laborious laboratory analysis and measurements are often insufficient for inferring an urban emission flux. This presentation will focus on how 14CO2 measurements can be combined with those of more easily measured ancillary tracers to obtain high resolution CO2ff mixing ratio estimates and then infer the emission flux. A pilot study over Sacramento, California showed strong correlations between CO2ff and carbon monoxide (CO) and demonstrated an ability to quantify the urban flux, albeit with large uncertainties. The Indianapolis Flux Project (INFLUX) aims to develop and assess methods to quantify urban greenhouse gas emissions. Indianapolis was chosen as an ideal test case because it has relatively straightforward meteorology; a contained, isolated, urban region; and substantial and well-known fossil fuel CO2 emissions. INFLUX incorporates atmospheric measurements of a suite of gases and isotopes including 14C from light aircraft and from a network of existing tall towers surrounding the Indianapolis urban area. The recently added CO2ff content is calculated from measurements of 14C in CO2, and then convolved with atmospheric transport models and ancillary data to estimate the urban CO2ff emission flux. Significant innovations in sample collection include: collection of hourly averaged samples to

  19. Development of an analytical method for the determination of organic compounds in fossil-fuel aqueous leachates

    SciTech Connect

    White, C.M.; Avery, M.; Blanton, W.; Hilpert, L.; Jackson, L.; Junk, G.; Maskarinec, M.; Paule, R.C.; Raphaelian, L.; Richard, J.

    1983-10-01

    An analytical method has been developed for analysis of organic compounds in aqueous leachates of fossil fuel solid wastes. The method has been evaluated using two synthetic leachates as well as bulk and small-scale leachates of SRC-II vacuum still bottoms at the participating laboratories. Under the conditions of these tests, the method worked well for most analytes; however, n-hexanoic acid, 4-aminobiphenyl, 1,4-naphtoquinone, and 1-nephthylamine were not determined accurately or precisely by the method. Other analytes of interest are benzanthracene, o-cresol, phenanthrene, carbazole, naphthalene, phenol, n-tetradecane, 2-naphthol, dibenzothiophene, quinoline, acenaphthylene, 2-picoline, fluoranthrene, 2,3,4,5-tetrachlorobiphenyl (standard), 2-fluorophenol (standard), n-octacosane (standard), and azulene (standard). 7 references, 22 figures, 26 tables.

  20. A 21st-century shift from fossil-fuel to biogenic methane emissions indicated by 13CH4

    NASA Astrophysics Data System (ADS)

    Schaefer, Hinrich; Fletcher, Sara E. Mikaloff; Veidt, Cordelia; Lassey, Keith R.; Brailsford, Gordon W.; Bromley, Tony M.; Dlugokencky, Edward J.; Michel, Sylvia E.; Miller, John B.; Levin, Ingeborg; Lowe, Dave C.; Martin, Ross J.; Vaughn, Bruce H.; White, James W. C.

    2016-04-01

    Between 1999 and 2006, a plateau interrupted the otherwise continuous increase of atmospheric methane concentration [CH4] since preindustrial times. Causes could be sink variability or a temporary reduction in industrial or climate-sensitive sources. We reconstructed the global history of [CH4] and its stable carbon isotopes from ice cores, archived air, and a global network of monitoring stations. A box-model analysis suggests that diminishing thermogenic emissions, probably from the fossil-fuel industry, and/or variations in the hydroxyl CH4 sink caused the [CH4] plateau. Thermogenic emissions did not resume to cause the renewed [CH4] rise after 2006, which contradicts emission inventories. Post-2006 source increases are predominantly biogenic, outside the Arctic, and arguably more consistent with agriculture than wetlands. If so, mitigating CH4 emissions must be balanced with the need for food production.

  1. 21. Power plant engine fuel oil piping diagrams, sheet 83 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    21. Power plant engine fuel oil piping diagrams, sheet 83 of 130 - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  2. Liquid-fueled SOFC power sources for transportation

    NASA Astrophysics Data System (ADS)

    Myles, K. M.; Doshi, R.; Kumar, R.; Krumpelt, M.

    Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.

  3. Liquid-fueled SOFC power sources for transportation

    SciTech Connect

    Myles, K.M.; Doshi, R.; Kumar, R.; Krumpelt, M.

    1994-11-01

    Traditionally, fuel cells have been developed for space or stationary terrestrial applications. As the first commercial 200-kW systems were being introduced by ONSI and Fuji Electric, the potentially much larger, but also more challenging, application in transportation was beginning to be addressed. As a result, fuel cell-powered buses have been designed and built, and R&D programs for fuel cell-powered passenger cars have been initiated. The engineering challenge of eventually replacing the internal combustion engine in buses, trucks, and passenger cars with fuel cell systems is to achieve much higher power densities and much lower costs than obtainable in systems designed for stationary applications. At present, the leading fuel cell candidate for transportation applications is, without question, the polymer electrolyte fuel cell (PEFC). Offering ambient temperature start-up and the potential for a relatively high power density, the polymer technology has attracted the interest of automotive manufacturers worldwide. But the difficulties of fuel handling for the PEFC have led to a growing interest in exploring the prospects for solid oxide fuel cells (SOFCs) operating on liquid fuels for transportation applications. Solid oxide fuel cells are much more compatible with liquid fuels (methanol or other hydrocarbons) and are potentially capable of power densities high enough for vehicular use. Two SOFC options for such use are discussed in this report.

  4. Fuel Cell Backup Power Geographical Visualization Map (Fact Sheet)

    SciTech Connect

    Not Available

    2012-12-01

    This NREL Hydrogen and Fuel Cell Technical Highlight describes a time-lapse geographical visualization map of early market use of fuel cells for telecommunications backup power. The map synthesizes data being analyzed by NREL's Technology Validation team for the U.S. Department of Energy (DOE) Fuel Cell Technologies Program with DOE's publicly available annual summaries of electric disturbance events.

  5. The role of fuel cells in NASA's space power systems

    NASA Technical Reports Server (NTRS)

    Been, J. F.

    1979-01-01

    A history of the fuel cell technology is presented and compared with NASA's increasing space power requirements. The role of fuel cells is discussed in perspective with other energy storage systems applicable for space using such criteria as type of mission, weight, reliability, costs, etc. Potential applications of space fuel cells with projected technology advances were examined.

  6. A multiresolution spatial parametrization for the estimation of fossil-fuel carbon dioxide emissions via atmospheric inversions.

    SciTech Connect

    Ray, Jaideep; Lee, Jina; Lefantzi, Sophia; Yadav, Vineet; Michalak, Anna M.; van Bloemen Waanders, Bart Gustaaf; McKenna, Sean Andrew

    2013-04-01

    The estimation of fossil-fuel CO2 emissions (ffCO2) from limited ground-based and satellite measurements of CO2 concentrations will form a key component of the monitoring of treaties aimed at the abatement of greenhouse gas emissions. To that end, we construct a multiresolution spatial parametrization for fossil-fuel CO2 emissions (ffCO2), to be used in atmospheric inversions. Such a parametrization does not currently exist. The parametrization uses wavelets to accurately capture the multiscale, nonstationary nature of ffCO2 emissions and employs proxies of human habitation, e.g., images of lights at night and maps of built-up areas to reduce the dimensionality of the multiresolution parametrization. The parametrization is used in a synthetic data inversion to test its suitability for use in atmospheric inverse problem. This linear inverse problem is predicated on observations of ffCO2 concentrations collected at measurement towers. We adapt a convex optimization technique, commonly used in the reconstruction of compressively sensed images, to perform sparse reconstruction of the time-variant ffCO2 emission field. We also borrow concepts from compressive sensing to impose boundary conditions i.e., to limit ffCO2 emissions within an irregularly shaped region (the United States, in our case). We find that the optimization algorithm performs a data-driven sparsification of the spatial parametrization and retains only of those wavelets whose weights could be estimated from the observations. Further, our method for the imposition of boundary conditions leads to a 10computational saving over conventional means of doing so. We conclude with a discussion of the accuracy of the estimated emissions and the suitability of the spatial parametrization for use in inverse problems with a significant degree of regularization.

  7. Prospects for Enhancing Carbon Sequestration and Reclamation of Degraded Lands with Fossil-fuel Combustion By-products.

    SciTech Connect

    Palumbo, A V.; Mccarthy, John F.; Amonette, James E.; Fisher, L S.; Wullschleger, Stan D.; Daniels, William L.

    2004-03-01

    Concern for the potential global change consequences of increasing atmospheric CO2 has prompted interest in the development of mechanisms to reduce or stabilize atmospheric CO2 .During the next several decades, a program focused on terrestrial sequestration processes could make a significant contribution to abating CO2 increases.The reclamation of degraded lands, such as mine-spoil sites, highway rights-of-way, and poorly managed lands, represents an opportunity to couple C sequestration with the use of fossil-fuel and energy by-products and other waste material, such as biosolids and organic wastes from human and animal sewage treatment facilities, to improve soil quality. Degraded lands are often characterized by acidic pH, low levels of key nutrients, poor soil structure, and limited moisture-retention capacity.Much is known about the methods to improve these soils, but the cost of implementation is often a limiting factor.However, the additional financial and environmental benefit s of C sequestration may change the economics of land reclamation activities.The addition of energy-related by-products can address the adverse conditions of these degraded lands through a variety of mechanisms, such as enhancing plant growth and capturing of organic C in long-lived soil C pools.This review examines the use of fossil-fuel combustion by-products and organic amendments to enhance C sequestration and identifies the key gaps in information that still must be addressed before these methods can be implemented on an environmentally meaningful scale.

  8. AC power generation from microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Lobo, Fernanda Leite; Wang, Heming; Forrestal, Casey; Ren, Zhiyong Jason

    2015-11-01

    Microbial fuel cells (MFCs) directly convert biodegradable substrates to electricity and carry good potential for energy-positive wastewater treatment. However, the low and direct current (DC) output from MFC is not usable for general electronics except small sensors, yet commercial DC-AC converters or inverters used in solar systems cannot be directly applied to MFCs. This study presents a new DC-AC converter system for MFCs that can generate alternating voltage in any desired frequency. Results show that AC power can be easily achieved in three different frequencies tested (1, 10, 60 Hz), and no energy storage layer such as capacitors was needed. The DC-AC converter efficiency was higher than 95% when powered by either individual MFCs or simple MFC stacks. Total harmonic distortion (THD) was used to investigate the quality of the energy, and it showed that the energy could be directly usable for linear electronic loads. This study shows that through electrical conversion MFCs can be potentially used in household electronics for decentralized off-grid communities.

  9. Applying fuel cell experience to sustainable power products

    NASA Astrophysics Data System (ADS)

    King, Joseph M.; O'Day, Michael J.

    Fuel cell power plants have demonstrated high efficiency, environmental friendliness, excellent transient response, and superior reliability and durability in spacecraft and stationary applications. Broader application of fuel cell technology promises significant contribution to sustainable global economic growth, but requires improvement to size, cost, fuel flexibility and operating flexibility. International Fuel Cells (IFC) is applying lessons learned from delivery of more than 425 fuel cell power plants and 3 million h of operation to the development of product technology which captures that promise. Key findings at the fuel cell power plant level include: (1) ancillary components account for more than 40% of the weight and nearly all unscheduled outages of hydrocarbon-fuelled power plants; a higher level of integration and simplification is required to achieve reasonable characteristics, (2) hydrocarbon fuel cell power plant components are highly interactive; the fuel processing approach and power plant operating pressure are major determinants of overall efficiency, and (3) achieving the durability required for heavy duty vehicles and stationary applications requires simultaneous satisfaction of electrochemical, materials and mechanical considerations in the design of the cell stack and other power plant components. Practical designs must minimize application specific equipment. Related lessons for stationary fuel cell power plants include: (1) within fuel specification limits, natural gas varies widely in heating value, minor constituents such as oxygen and nitrogen content and trace compounds such as the odorant; (2) city water quality varies widely; recovery of product water for process use avoids costly, complicated and site-specific water treatment systems, but water treatment is required to eliminate impurities and (3) the embedded protection functions for reliable operation of fuel cell power conditioners meet or exceed those required for connection to

  10. Characterization and quantification of uncertainty in solid oxide fuel cell hybrid power plants

    NASA Astrophysics Data System (ADS)

    Subramanyan, Karthik; Diwekar, Urmila M.

    Distributed power generation is one of the most powerful applications of fuel cell technology. Several types of configurations have been hypothesized and tested for these kinds of applications at the conceptual level, but hybrid power plants are one of the most efficient. These are designs that combine the fuel cell cycle with other thermodynamic cycles to provide higher efficiency. The power plant in focus is the high pressure (HP)-low pressure (LP) solid oxide fuel cells (SOFC)/steam turbine (ST)/gas turbine (GT) configuration which is a part of the vision-21 program, which is a new approach, the U.S. Department of Energy's (DOE's) Office of Fossil Energy has begun, for developing 21st century energy plants that would have virtually no environmental impact. The overall goal is to effectively eliminate—at competitive costs—environmental concerns associated with the use of fossil fuels, for producing electricity and transportation fuels. In this design, coal is gasified in an entrained bed gasifier and the syn-gas produced is cleaned in a transport bed desulfurizer and passed over to cascaded SOFC modules (at two pressure levels). This module is integrated with a reheat GT cycle. The heat of the exhaust from the GT cycle is used to convert water to steam, which is eventually used in a steam bottoming cycle. Since this hybrid technology is new and futuristic, the system level models used for predicting the fuel cells' performance and for other modules like the desulfurizer have significant uncertainties in them. Also, the performance curves of the SOFC would differ depending on the materials used for the anode, cathode and electrolyte. The accurate characterization and quantification of these uncertainties is crucial for the validity of the model predictions and hence is the main focus of this paper. This work performs a two-level uncertainty analysis of the fuel cell module: uncertainty associated with (1) model and (2) material used for anode, cathode and

  11. Development of molten carbonate fuel cell power plant, volume 1

    NASA Astrophysics Data System (ADS)

    1985-03-01

    The technical results of a molten carbonate fuel cell power plant evelopment program are presented which establish the necessary technology base and demonstrate readiness to proceed with the fabrication and test of full size prototype stacks for coal fueled molten carbonate fuel cell power plants. The effort covered power plant systems studies, fuel cell component technology development, fuel cell stack design and analysis, manufacturing process definition, and an extensive experimental program. The reported results include: the definition and projected costs for a reference coal fueled power plant system based on user requirements, state-of-the-art advances in anode and electrolyte matrix technology, the detailed description of an internally manifolded stack design concept offering a number of attractive advantages, and the specification of the fabrication processes and methods necessary to produce and assemble this design. Results from the experimental program are documented.

  12. Fuel-Flexible Microturbine and Gasifier System

    SciTech Connect

    2009-12-01

    This factsheet describes a project that will develop and demonstrate a prototype microturbine combined heat and power system fueled by synthesis gas and integrated with a biomass gasifier, enabling reduced fossil fuel consumption and carbon dioxide emissions.

  13. Microscale In Vitro Assays for the Investigation of Neutral Red Retention and Ethoxyresorufin-O-Deethylase of Biofuels and Fossil Fuels

    PubMed Central

    Bluhm, Kerstin; Brendt, Julia; Mayer, Philipp; Anders, Nico; Schäffer, Andreas; Seiler, Thomas-Benjamin; Hollert, Henner

    2016-01-01

    Only few information on the potential toxic effectiveness of biofuels are available. Due to increasing worldwide demand for energy and fuels during the past decades, biofuels are considered as a promising alternative for fossil fuels in the transport sector. Hence, more information on their hazard potentials are required to understand the toxicological impact of biofuels on the environment. In the German Cluster of Excellence “Tailor-made Fuels from Biomass” design processes for economical, sustainable and environmentally friendly biofuels are investigated. In an unique and interdisciplinary approach, ecotoxicological methods are applied to gain information on potential adverse environmental effects of biofuels at an early phase of their development. In the present study, three potential biofuels, ethyl levulinate, 2-methyltetrahydrofuran and 2-methylfuran were tested. Furthermore, we investigated a fossil gasoline fuel, a fossil diesel fuel and an established biodiesel. Two in vitro bioassays, one for assessing cytotoxicity and one for aryl hydrocarbon receptor agonism, so called dioxin-like activity, as measured by Ethoxyresorufin-O-Deethylase, were applied using the permanent fish liver cell line RTL-W1 (Oncorhynchus mykiss). The special properties of these fuel samples required modifications of the test design. Points that had to be addressed were high substance volatility, material compatibility and low solubility. For testing of gasoline, diesel and biodiesel, water accommodated fractions and a passive dosing approach were tested to address the high hydrophobicity and low solubility of these complex mixtures. Further work has to focus on an improvement of the chemical analyses of the fuel samples to allow a better comparison of any effects of fossil fuels and biofuels. PMID:27684069

  14. Heat exchanger for fuel cell power plant reformer

    DOEpatents

    Misage, Robert; Scheffler, Glenn W.; Setzer, Herbert J.; Margiott, Paul R.; Parenti, Jr., Edmund K.

    1988-01-01

    A heat exchanger uses the heat from processed fuel gas from a reformer for a fuel cell to superheat steam, to preheat raw fuel prior to entering the reformer and to heat a water-steam coolant mixture from the fuel cells. The processed fuel gas temperature is thus lowered to a level useful in the fuel cell reaction. The four temperature adjustments are accomplished in a single heat exchanger with only three heat transfer cores. The heat exchanger is preheated by circulating coolant and purge steam from the power section during startup of the latter.

  15. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    NASA Technical Reports Server (NTRS)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  16. 12. Interior view, fuel tanks on east side of power ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. Interior view, fuel tanks on east side of power plant, electrical panels on the left and fuel tanks in the center looking north - Naval Air Station Fallon, Power Plant, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  17. Nuclear power generation and fuel cycle report 1996

    SciTech Connect

    1996-10-01

    This report presents the current status and projections through 2015 of nuclear capacity, generation, and fuel cycle requirements for all countries using nuclear power to generate electricity for commercial use. It also contains information and forecasts of developments in the worldwide nuclear fuel market. Long term projections of U.S. nuclear capacity, generation, and spent fuel discharges for two different scenarios through 2040 are developed. A discussion on decommissioning of nuclear power plants is included.

  18. GREENHOUSE GASES FROM BIOMASS AND FOSSIL FUEL STOVES IN DEVELOPING COUNTRIES: A MANILA PILOT STUDY

    EPA Science Inventory

    Samples were taken of the combustion gases released by household cookstoves in Manila, Philippines. In a total of 24 samples, 14 cookstoves were tested. These were fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Ambient samples were ...

  19. COPROCESSING OF FOSSIL FUELS AND BIOMASS FOR CO2 EMISSION REDUCTION IN THE TRANSPORTATION SECTOR

    EPA Science Inventory

    The paper discusses an evaluation of the Hydrocarb process for conversion of carbonaceous raw material to clean carbon and methanol products. As fuel, methanol and carbon can be used economically, either independently or in slurry form, in efficient heat engines (turbines and int...

  20. Model-based monitoring and fault diagnosis of fossil power plant process units using Group Method of Data Handling.

    PubMed

    Li, Fan; Upadhyaya, Belle R; Coffey, Lonnie A

    2009-04-01

    This paper presents an incipient fault diagnosis approach based on the Group Method of Data Handling (GMDH) technique. The GMDH algorithm provides a generic framework for characterizing the interrelationships among a set of process variables of fossil power plant sub-systems and is employed to generate estimates of important variables in a data-driven fashion. In this paper, ridge regression techniques are incorporated into the ordinary least squares (OLS) estimator to solve regression coefficients at each layer of the GMDH network. The fault diagnosis method is applied to feedwater heater leak detection with data from an operating coal-fired plant. The results demonstrate the proposed method is capable of providing an early warning to operators when a process fault or an equipment fault occurs in a fossil power plant. PMID:19084227

  1. Historical reconstruction of major pollutant levels in the Hudson-Raritan Basin: 1880-1980. Volume 2. Heavy metals and fossil fuels. Technical memo

    SciTech Connect

    Ayers, R.U.; Ayers, L.W.

    1988-10-01

    Volume 2: Metals covers the sources, production processes, consumptive uses of and environmental emissions of eight heavy metals (silver, arsenic, cadmium, chromium, copper, mercury, lead, zinc). Included are sections that discuss the part fossil fuel combustion plays in the overall pollution loading of Hudson-Raritan Basin.

  2. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality.

    PubMed

    Hendriks, Carlijn; Kuenen, Jeroen; Kranenburg, Richard; Scholz, Yvonne; Schaap, Martijn

    2015-03-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on chemistry transport modeling are used to this end. Currently, these SRRs are made using invariant emission time profiles. The LOTOS-EUROS model equipped with a source attribution module was used to test this assumption for renewable energy scenarios. Renewable energy availability and thereby fossil fuel back up are strongly dependent on meteorological conditions. We have used the spatially and temporally explicit energy model REMix to derive time profiles for backup power generation. These time profiles were used in LOTOS-EUROS to investigate the effect of emission timing on air pollutant concentrations and SRRs. It is found that the effectiveness of emission reduction in the power sector is significantly lower when accounting for the shift in the way emissions are divided over the year and the correlation of emissions with synoptic situations. The source receptor relationships also changed significantly. This effect was found for both primary and secondary pollutants. Our results indicate that emission timing deserves explicit attention when assessing the impacts of system changes on air quality and climate forcing from short lived substances.

  3. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality.

    PubMed

    Hendriks, Carlijn; Kuenen, Jeroen; Kranenburg, Richard; Scholz, Yvonne; Schaap, Martijn

    2015-03-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on chemistry transport modeling are used to this end. Currently, these SRRs are made using invariant emission time profiles. The LOTOS-EUROS model equipped with a source attribution module was used to test this assumption for renewable energy scenarios. Renewable energy availability and thereby fossil fuel back up are strongly dependent on meteorological conditions. We have used the spatially and temporally explicit energy model REMix to derive time profiles for backup power generation. These time profiles were used in LOTOS-EUROS to investigate the effect of emission timing on air pollutant concentrations and SRRs. It is found that the effectiveness of emission reduction in the power sector is significantly lower when accounting for the shift in the way emissions are divided over the year and the correlation of emissions with synoptic situations. The source receptor relationships also changed significantly. This effect was found for both primary and secondary pollutants. Our results indicate that emission timing deserves explicit attention when assessing the impacts of system changes on air quality and climate forcing from short lived substances. PMID:25594282

  4. Critical assessment of power trains with fuel-cell systems and different fuels

    NASA Astrophysics Data System (ADS)

    Höhlein, B.; von Andrian, S.; Grube, Th; Menzer, R.

    Legal regulations (USA, EU) are a major driving force for intensifying technological developments with respect to the global automobile market. In the future, highly efficient vehicles with very low emission levels will include low-temperature fuel-cell systems (PEFC) as units of electric power trains. With alcohols, ether or hydrocarbons used as fuels for these new electric power trains, hydrogen as PEFC fuel has to be produced on board. These concepts including the direct use of methanol in fuel-cell systems, differ considerably in terms of both their development prospects and the results achieved so far. Based on process engineering analyses for net electricity generation in PEFC-powered power trains, as well as on assumptions for electric power trains and vehicle configurations, different fuel-cell performances and fuel processing units for octane, diesel, methanol, ethanol, propane and dimethylether have been evaluated as fuels. The possible benefits and key challenges for different solutions of power trains with fuel-cell systems/on-board hydrogen production and with direct methanol fuel-cell (DMFC) systems have been assessed. Locally, fuel-cell power trains are almost emission-free and, unlike battery-powered vehicles, their range is comparable to conventional vehicles. Therefore, they have application advantages cases of particularly stringent emission standards requiring zero emission. In comparison to internal combustion engines, using fuel-cell power trains can lead to clear reductions in primary energy demand and global, climate-relevant emissions providing the advantage of the efficiency of the hydrogen/air reaction in the fuel cell is not too drastically reduced by additional conversion steps of on-board hydrogen production, or by losses due to fuel supply provision.

  5. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations

    NASA Astrophysics Data System (ADS)

    Basu, Sourish; Bharat Miller, John; Lehman, Scott

    2016-05-01

    National annual total CO2 emissions from combustion of fossil fuels are likely known to within 5-10 % for most developed countries. However, uncertainties are inevitably larger (by unknown amounts) for emission estimates at regional and monthly scales, or for developing countries. Given recent international efforts to establish emission reduction targets, independent determination and verification of regional and national scale fossil fuel CO2 emissions are likely to become increasingly important. Here, we take advantage of the fact that precise measurements of 14C in CO2 provide a largely unbiased tracer for recently added fossil-fuel-derived CO2 in the atmosphere and present an atmospheric inversion technique to jointly assimilate observations of CO2 and 14CO2 in order to simultaneously estimate fossil fuel emissions and biospheric exchange fluxes of CO2. Using this method in a set of Observation System Simulation Experiments (OSSEs), we show that given the coverage of 14CO2 measurements available in 2010 (969 over North America, 1063 globally), we can recover the US national total fossil fuel emission to better than 1 % for the year and to within 5 % for most months. Increasing the number of 14CO2 observations to ˜ 5000 per year over North America, as recently recommended by the National Academy of Science (NAS) (Pacala et al., 2010), we recover monthly emissions to within 5 % for all months for the US as a whole and also for smaller, highly emissive regions over which the specified data coverage is relatively dense, such as for the New England states or the NY-NJ-PA tri-state area. This result suggests that, given continued improvement in state-of-the art transport models, a measurement program similar in scale to that recommended by the NAS can provide for independent verification of bottom-up inventories of fossil fuel CO2 at the regional and national scale. In addition, we show that the dual tracer inversion framework can detect and minimize biases in

  6. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    PubMed

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-01

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  7. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    PubMed

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-01

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change. PMID:22924498

  8. Control of Fossil-Fuel Particulate Black Carbon and Organic Matter, the Most Effective Method of Slowing Global Warming

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2001-12-01

    Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered. Here, it is found, through simulations in which seven new particles feedbacks to climate are identified, that any emission reduction of fossil-fuel (f.f.) particulate BC plus associated organic matter (OM) will slow global warming more than will any emission reduction of CO2 or CH4 for a definite time period. When all f.f. BC+OM and anthropogenic CO2 and CH4 emissions are eliminated together, that period is 20-90 years. It is also found that historical net global warming can be attributed roughly to greenhouse-gas plus f.f. BC+OM warming minus anthropogenic sulfate cooling. Eliminating all f.f. BC+OM could eliminate more than 40 percent of such net warming within three years if no other changes occurred. Reducing CO2 emissions by a third would have the same effect, but after 50-200 years. Finally, diesel cars warm climate more than do equivalent gasoline cars; thus, fuel- and carbon-tax laws that favor diesel promote global warming.

  9. Mapping Regional Patterns of Fossils Fuel CO2 in the Planetary Boundary Layer Across North America Using Radiocarbon in Annual Plants

    NASA Astrophysics Data System (ADS)

    Hsueh, D. Y.; Randerson, J. T.; Southon, J. R.; Trumbore, S. E.

    2004-12-01

    Radiocarbon levels in annual plants provide a means to map out regional and continental-scale patterns of fossil fuel emissions and biosphere-atmosphere exchange. The imprint of the local atmosphere is recorded within the leaves of these annual plants and represents a time-integral of atmospheric levels over a period of several months, complementing both flask and aircraft sampling techniques. Working with colleagues, we collected corn (Zea mays) from approximately 70 sites across North America. We designed a sampling protocol that captured regional and continental scale patterns of fossil fuel CO2 levels; we specifically avoided areas directly influenced by point sources such as major roads or cities. We then analyzed the leaves in the W.M. Keck Carbon Cycle Accelerator Mass Spectrometer at the University of California, Irvine. In areas where the corn plants were exposed to sustained and elevated levels of CO2 from fossil fuel emissions, such as the Ohio Valley, the 14C/12C ratio of the corn leaves was reduced. We found that there was a drop of approximately 15 per mil between the western U.S. (Alberta, Idaho, Colorado and New Mexico) and the Northeastern U.S. (Ohio, Maryland and Pennsylvania). This corresponds to approximately 5 ppm increase in fossil fuel CO2 levels, as air moves from west to east across the continent. These data provide a means to test our understanding of the coupling of biosphere atmosphere exchange, planetary boundary layer mixing, atmospheric transport, and fossil fuel emissions in mesoscale and global models that are used to estimate the spatial distribution of carbon sources and sinks.

  10. Dynamic simulation of a direct carbonate fuel cell power plant

    SciTech Connect

    Ernest, J.B.; Ghezel-Ayagh, H.; Kush, A.K.

    1996-12-31

    Fuel Cell Engineering Corporation (FCE) is commercializing a 2.85 MW Direct carbonate Fuel Cell (DFC) power plant. The commercialization sequence has already progressed through construction and operation of the first commercial-scale DFC power plant on a U.S. electric utility, the 2 MW Santa Clara Demonstration Project (SCDP), and the completion of the early phases of a Commercial Plant design. A 400 kW fuel cell stack Test Facility is being built at Energy Research Corporation (ERC), FCE`s parent company, which will be capable of testing commercial-sized fuel cell stacks in an integrated plant configuration. Fluor Daniel, Inc. provided engineering, procurement, and construction services for SCDP and has jointly developed the Commercial Plant design with FCE, focusing on the balance-of-plant (BOP) equipment outside of the fuel cell modules. This paper provides a brief orientation to the dynamic simulation of a fuel cell power plant and the benefits offered.

  11. Progress and prospects for phosphoric acid fuel cell power plants

    SciTech Connect

    Bonville, L.J.; Scheffler, G.W.; Smith, M.J.

    1996-12-31

    International Fuel Cells (IFC) has developed the fuel cell power plant as a new, on-site power generation source. IFC`s commercial fuel cell product is the 200-kW PC25{trademark} power plant. To date over 100 PC25 units have been manufactured. Fleet operating time is in excess of one million hours. Individual units of the initial power plant model, the PC25 A, have operated for more than 30,000 hours. The first model {open_quotes}C{close_quotes} power plant has over 10,000 hours of operation. The manufacturing, application and operation of this power plant fleet has established a firm base for design and technology development in terms of a clear understanding of the requirements for power plant reliability and durability. This fleet provides the benchmark against which power plant improvements must be measured.

  12. Fuel processor for fuel cell power system. [Conversion of methanol into hydrogen

    DOEpatents

    Vanderborgh, N.E.; Springer, T.E.; Huff, J.R.

    1986-01-28

    A catalytic organic fuel processing apparatus, which can be used in a fuel cell power system, contains within a housing a catalyst chamber, a variable speed fan, and a combustion chamber. Vaporized organic fuel is circulated by the fan past the combustion chamber with which it is in indirect heat exchange relationship. The heated vaporized organic fuel enters a catalyst bed where it is converted into a desired product such as hydrogen needed to power the fuel cell. During periods of high demand, air is injected upstream of the combustion chamber and organic fuel injection means to burn with some of the organic fuel on the outside of the combustion chamber, and thus be in direct heat exchange relation with the organic fuel going into the catalyst bed.

  13. Evaluation of a 2-MW carbonate fuel cell power plant fueled by landfill gas. Final report

    SciTech Connect

    Meade, D.B.; Selander, S.; Rastler, D.M.

    1991-11-01

    This project assessed the technical and economic feasibility of operating an atmospheric pressure 2 MW carbonate fuel cell power plant on landfill gas. A commercially available low pressure gas pre-treatment system was identified for this application. System simulation studies were performed to identify component bottle-necks which would limit power production, or preclude system operation. An economic assessment was conducted to assess the competitiveness of the fuel cell system. The analysis confirmed the technical feasibility of operating Energy Research Corporation`s 2MW fuel cell system on landfill gas. Resulting net electrical efficiency was 50% based on the fuel`s lower heating value. Plant capital cost increased by {approximately}$180/kw; this was primarily for gas cleanup. Bus bar power costs for market entry and commercial fuel cell plants were found to be competitive with power produced from baseload coal plants in Minnesota.

  14. Modeling, analysis and control of fuel cell hybrid power systems

    NASA Astrophysics Data System (ADS)

    Suh, Kyung Won

    Transient performance is a key characteristic of fuel cells, that is sometimes more critical than efficiency, due to the importance of accepting unpredictable electric loads. To fulfill the transient requirement in vehicle propulsion and portable fuel cell applications, a fuel cell stack is typically coupled with a battery through a DC/DC converter to form a hybrid power system. Although many power management strategies already exist, they all rely on low level controllers that realize the power split. In this dissertation we design controllers that realize various power split strategies by directly manipulating physical actuators (low level commands). We maintain the causality of the electric dynamics (voltage and current) and investigate how the electric architecture affects the hybridization level and the power management. We first establish the performance limitations associated with a stand-alone and power-autonomous fuel cell system that is not supplemented by an additional energy storage and powers all its auxiliary components by itself. Specifically, we examine the transient performance in fuel cell power delivery as it is limited by the air supplied by a compressor driven by the fuel cell itself. The performance limitations arise from the intrinsic coupling in the fluid and electrical domain between the compressor and the fuel cell stack. Feedforward and feedback control strategies are used to demonstrate these limitations analytically and with simulations. Experimental tests on a small commercial fuel cell auxiliary power unit (APU) confirm the dynamics and the identified limitations. The dynamics associated with the integration of a fuel cell system and a DC/DC converter is then investigated. Decentralized and fully centralized (using linear quadratic techniques) controllers are designed to regulate the power system voltage and to prevent fuel cell oxygen starvation. Regulating these two performance variables is a difficult task and requires a compromise

  15. Fuel-cell based power generating system having power conditioning apparatus

    DOEpatents

    Mazumder, Sudip K.; Pradhan, Sanjaya K.

    2010-10-05

    A power conditioner includes power converters for supplying power to a load, a set of selection switches corresponding to the power converters for selectively connecting the fuel-cell stack to the power converters, and another set of selection switches corresponding to the power converters for selectively connecting the battery to the power converters. The power conveners output combined power that substantially optimally meets a present demand of the load.

  16. Electric power monthly

    SciTech Connect

    1995-08-01

    The Energy Information Administration (EIA) prepares the Electric Power Monthly (EPM) for a wide audience including Congress, Federal and State agencies, the electric utility industry, and the general public. This publication provides monthly statistics for net generation, fossil fuel consumption and stocks, quantity and quality of fossil fuels, cost of fossil fuels, electricity sales, revenue, and average revenue per kilowatthour of electricity sold. Data on net generation, fuel consumption, fuel stocks, quantity and cost of fossil fuels are also displayed for the North American Electric Reliability Council (NERC) regions. The EIA publishes statistics in the EPM on net generation by energy source, consumption, stocks, quantity, quality, and cost of fossil fuels; and capability of new generating units by company and plant. The purpose of this publication is to provide energy decisionmakers with accurate and timely information that may be used in forming various perspectives on electric issues that lie ahead.

  17. Power management systems for sediment microbial fuel cells in high power and continuous power applications

    NASA Astrophysics Data System (ADS)

    Donovan, Conrad Koble

    The objective of this dissertation was to develop power management systems (PMS) for sediment microbial fuel cells (SFMCs) for high power and continuous applications. The first part of this dissertation covers a new method for testing the performance of SMFCs. This device called the microbial fuel cell tester was developed to automatically test power generation of PMS. The second part focuses on a PMS capable of delivering high power in burst mode. This means that for a small amount of time a large amount of power up to 2.5 Watts can be delivered from a SMFC only generating mW level power. The third part is aimed at developing a multi-potentiostat laboratory tool that measures the performance at fixed cell potentials of microbial fuel cells so that I can optimize them for use with the PMS. This tool is capable of controlling the anode potential or cathode potential and measuring current of six separate SMFCs simultaneously. By operating multiple potentiostats, I was able to run experiments that find ideal operating conditions for the sediment microbial fuel cells, and also I can optimize the power management system for these conditions. The fourth part of the dissertation is targeting a PMS that was able to operate a sensor continuously which was powered by an SMFC. In pervious applications involving SMFCs, the PMS operated in batch mode. In this PMS, the firmware on the submersible ultrasonic receiver (SUR) was modified for use with my PMS. This integration of PMS and SUR allowed for the continuous operation of the SUR without using a battery. Finally, the last part of the dissertation recommends a scale-up power management system to overcome the linearity scale up issue of SMFCs as future work. Concluding remarks are also added to summarize the goal and focus of this dissertation.