Science.gov

Sample records for fossil fuels combustion

  1. Legislative and Regulatory Timeline for Fossil Fuel Combustion Wastes

    EPA Pesticide Factsheets

    This timeline walks through the history of fossil fuel combustion waste regulation since 1976 and includes information such as regulations, proposals, notices, amendments, reports and meetings and site visits conducted.

  2. Brown clouds over South Asia: biomass or fossil fuel combustion?

    PubMed

    Gustafsson, Orjan; Kruså, Martin; Zencak, Zdenek; Sheesley, Rebecca J; Granat, Lennart; Engström, Erik; Praveen, P S; Rao, P S P; Leck, Caroline; Rodhe, Henning

    2009-01-23

    Carbonaceous aerosols cause strong atmospheric heating and large surface cooling that is as important to South Asian climate forcing as greenhouse gases, yet the aerosol sources are poorly understood. Emission inventory models suggest that biofuel burning accounts for 50 to 90% of emissions, whereas the elemental composition of ambient aerosols points to fossil fuel combustion. We used radiocarbon measurements of winter monsoon aerosols from western India and the Indian Ocean to determine that biomass combustion produced two-thirds of the bulk carbonaceous aerosols, as well as one-half and two-thirds of two black carbon subfractions, respectively. These constraints show that both biomass combustion (such as residential cooking and agricultural burning) and fossil fuel combustion should be targeted to mitigate climate effects and improve air quality.

  3. NITROUS OXIDE EMISSIONS FROM FOSSIL FUEL COMBUSTION

    EPA Science Inventory

    The role of coal combustion as a significant global source of nitrous oxide (N2O) emissions was reexamined through on-line emission measurements from six pulverized-coal-fired utility boilers and from laboratory and pilot-scale combustors. The full-scale utility boilers yielded d...

  4. Water interaction with laboratory-simulated fossil fuel combustion particles.

    PubMed

    Popovicheva, O B; Kireeva, E D; Shonija, N K; Khokhlova, T D

    2009-10-01

    To clarify the impact of fossil fuel combustion particles' composition on their capacity to take up water, we apply a laboratory approach in which the method of deposition of compounds, identified in the particulate coverage of diesel and aircraft engine soot particles, is developed. It is found that near-monolayer organic/inorganic coverage of the soot particles may be represented by three groups of fossil fuel combustion-derived particulate matter with respect to their Hansh's coefficients related to hydrophilic properties. Water adsorption measurements show that nonpolar organics (aliphatic and aromatic hydrocarbons) lead to hydrophobization of the soot surface. Acidic properties of organic compounds such as those of oxidized PAHs, ethers, ketones, aromatic, and aliphatic acids are related to higher water uptake, whereas inorganic acids and ionic compounds such as salts of organic acids are shown to be responsible for soot hydrophilization. This finding allows us to quantify the role of the chemical identity of soot surface compounds in water uptake and the water interaction with fossil fuel combustion particles in the humid atmosphere.

  5. Health effects of fossil-fuel combustion products: needed research

    SciTech Connect

    Not Available

    1980-01-01

    An examination is made of the research needed to expand and clarify the understanding of the products of fossil-fuel combustion, chiefly that taking place in stationary sources of power. One of the specific objectives that guided the study on which this report is based was to identify the pollutants potentially hazardous to man that are released into the environment in the course of the combustion of fossil fuels. The hazards of principal concern are those which could cause deleterious, long-term somatic and genetic effects. Another objective was to specify the nature of the research needed to determine the health effects of these pollutants on the general population. Special attention was paid to the interaction of pollutants; the meteorologic and climatic factors that affect the transport, diffusion, and transformation of pollutants; the effects of concentrations of aerosol, particulate, and thermal loads on biologic systems; and the susceptibility of some portions of the population to the effects of pollutants on the skin and cardiovascular, pulmonary, and urinary systems. Other objectives were to evaluate the methods of the proposed research, including analytic and interpretation techniques, to identify fields in which the available scientific information is inadequate for regulatory decision-making and to recommend a research program to meet those deficiencies, and to provide a logical framework within which the necessary information can be developed (the proposed program is presented in terms of subject, methods, and priorities).

  6. MUNICIPAL WASTE COMBUSTION ASSESSMENT: FOSSIL FUEL CO-FIRING

    EPA Science Inventory

    The report identifies refuse derived fuel (RDF) processing operations and various RDF types; describes such fossil fuel co-firing techniques as coal fired spreader stokers, pulverized coal wall fired boilers, pulverized coal tangentially fired boilers, and cyclone fired boilers; ...

  7. Applying Thermodynamics to Fossil Fuels: Heats of Combustion from Elemental Compositions.

    ERIC Educational Resources Information Center

    Lloyd, William G.; Davenport, Derek A.

    1980-01-01

    Discussed are the calculations of heats of combustions of some selected fossil fuel compounds such as some foreign shale oils and United States coals. Heating values for coal- and petroleum-derived fuel oils are also presented. (HM)

  8. Combustion system for hybrid solar fossil fuel receiver

    DOEpatents

    Mehos, Mark S.; Anselmo, Kenneth M.; Moreno, James B.; Andraka, Charles E.; Rawlinson, K. Scott; Corey, John; Bohn, Mark S.

    2004-05-25

    A combustion system for a hybrid solar receiver comprises a pre-mixer which combines air and fuel to form an air-fuel mixture. The mixture is introduced tangentially into a cooling jacket. A burner plenum is fluidically connected to the cooling jacket such that the burner plenum and the cooling jacket are arranged in thermal contact with one another. The air-fuel mixture flows through the cooling jacket cooling the burner plenum to reduce pre-ignition of the air-fuel mixture in the burner plenum. A combustion chamber is operatively associated with and open to the burner plenum to receive the air-fuel mixture from the burner plenum. An igniter is operatively positioned in the combustion chamber to combust the air-fuel mixture, releasing heat. A recuperator is operatively associated with the burner plenum and the combustion chamber and pre-heats the air-fuel mixture in the burner plenum with heat from the combustion chamber. A heat-exchanger is operatively associated and in thermal contact with the combustion chamber. The heat-exchanger provides heat for the hybrid solar receiver.

  9. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change

    PubMed Central

    Perera, Frederica P.

    2016-01-01

    Background: Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. Objective: This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. Discussion: The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Conclusion: Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141–148; http://dx.doi.org/10.1289/EHP299 PMID:27323709

  10. Fuel cycle analysis for fossil energy systems: Coal combustion

    NASA Astrophysics Data System (ADS)

    Greenstreet, W. L.; Carmichael, R. L.

    1981-02-01

    Elements of the fuel cycle for coal combustion in power generation are examined; and information on economics, technological status, energy efficiencies, and environmental issues is reviewed. Overall background information is provided for guidance in identifying issues and establishing needs and priorities for engineering research, development, and demonstration. The elements treated include mining, transportation, coal preparation, direct combustion, and environmental control technology. The treatment used differs from that of usual compendiums in its emphasis on integrated examination and presentation directed primarily toward providing bases for general assessment and for guidance in program development. Emphasis is on program identification as opposed to advocacy.

  11. Global combustion: the connection between fossil fuel and biomass burning emissions (1997-2010).

    PubMed

    Balch, Jennifer K; Nagy, R Chelsea; Archibald, Sally; Bowman, David M J S; Moritz, Max A; Roos, Christopher I; Scott, Andrew C; Williamson, Grant J

    2016-06-05

    Humans use combustion for heating and cooking, managing lands, and, more recently, for fuelling the industrial economy. As a shift to fossil-fuel-based energy occurs, we expect that anthropogenic biomass burning in open landscapes will decline as it becomes less fundamental to energy acquisition and livelihoods. Using global data on both fossil fuel and biomass burning emissions, we tested this relationship over a 14 year period (1997-2010). The global average annual carbon emissions from biomass burning during this time were 2.2 Pg C per year (±0.3 s.d.), approximately one-third of fossil fuel emissions over the same period (7.3 Pg C, ±0.8 s.d.). There was a significant inverse relationship between average annual fossil fuel and biomass burning emissions. Fossil fuel emissions explained 8% of the variation in biomass burning emissions at a global scale, but this varied substantially by land cover. For example, fossil fuel burning explained 31% of the variation in biomass burning in woody savannas, but was a non-significant predictor for evergreen needleleaf forests. In the land covers most dominated by human use, croplands and urban areas, fossil fuel emissions were more than 30- and 500-fold greater than biomass burning emissions. This relationship suggests that combustion practices may be shifting from open landscape burning to contained combustion for industrial purposes, and highlights the need to take into account how humans appropriate combustion in global modelling of contemporary fire. Industrialized combustion is not only an important driver of atmospheric change, but also an important driver of landscape change through companion declines in human-started fires.This article is part of the themed issue 'The interaction of fire and mankind'.

  12. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    SciTech Connect

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.; Erickson, D; Gregg, J. S.; Jacobson, Andrew; Marland, Gregg; Miller, J.; Oda, T; Raupach, Michael; Rayner, P; Treanton, K.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of the emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.

  13. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  14. EPA/IFP EUROPEAN WORKSHOP ON THE EMISSION ON NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION

    EPA Science Inventory

    The report summarizes the proceedings of an EPA/Institut Francais du Petrole (IFP) cosponsored workshop addressing direct nitrous oxide (N2O) emission from fossil fuel combustion. The third in a series, it was held at the IFP in Rueil-Malmaison, France, on June 1-2, 1988. Increas...

  15. Health effects of fossil fuel combustion products: report of a workshop.

    PubMed Central

    Comar, C L; Nelson, N

    1975-01-01

    Judgemental positions are presented on research priorities in regard to the health effects from stationary sources of fossil fuel combustion products. Hopefully, they can provide guidance for efforts to ensure that national energy needs are met with minimum environmental and economic burdens on the public. The major areas include epidemiological studies, controlled biological studies, mutagenesis and carcinogenesis, trace elements, monitoring and analysis. PMID:1227856

  16. QUANTIFYING HAZARDOUS SPECIES IN PARTICULATE MATTER DERIVED FROM FOSSIL-FUEL COMBUSTION

    EPA Science Inventory

    An analysis protocol that combines X-ray absorption near-edge structure spectroscopy with selective leaching has been developed to examine hazardous species in size- segregated particulate matter (PM) samples derived from the combustion of fossil fuels. The protocol has been used...

  17. Relative importance of thermal versus carbon dioxide induced warming from fossil-fuel combustion

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Caldeira, K.

    2015-12-01

    The Earth is heated both when reduced carbon is oxidized to carbon dioxide and when outgoing longwave radiation is trapped by carbon dioxide in the atmosphere (CO2 greenhouse effect). The purpose of this study is to improve our understanding of time scales and relative magnitudes of climate forcing increase over time from pulse, continuous, and historical CO2 and thermal emissions. To estimate the amount of global warming that would be produced by thermal and CO2 emissions from fossil fuel combustion, we calculate thermal emissions with thermal contents of fossil fuels and estimate CO2 emissions with emission factors from Intergovernmental Panel on Climate Change (IPCC) AR5. We then use a schematic climate model mimicking Coupled Model Intercomparison Project Phase 5 to investigate the climate forcing and the time-integrated climate forcing. We show that, considered globally, direct thermal forcing from fossil fuel combustion is about 1.71% the radiative forcing from CO2 that has accumulated in the atmosphere from past fossil fuel combustion. When a new power plant comes on line, the radiative forcing from the accumulation of released CO2 exceeds the thermal emissions from the power plant in less than half a year (and about 3 months for coal plants). Due to the long lifetime of CO2 in the atmosphere, CO2 radiative forcing greatly overwhelms direct thermal forcing on longer time scales. Ultimately, the cumulative radiative forcing from the CO2 exceeds the direct thermal forcing by a factor of ~100,000.

  18. Development of high temperature air combustion technology in pulverized fossil fuel fired boilers

    SciTech Connect

    Hai Zhang; Guangxi Yue; Junfu Lu; Zhen Jia; Jiangxiong Mao; Toshiro Fujimori; Toshiyuki Suko; Takashi Kiga

    2007-07-01

    High temperature air combustion (HTAC) is a promising technology for energy saving, flame stability enhancement and NOx emission reduction. In a conventional HTAC system, the combustion air is highly preheated by using the recuperative or regenerative heat exchangers. However, such a preheating process is difficult to implement for pulverized fossil fuel fired boilers. In this paper, an alternative approach is proposed. In the proposed HTAC system, a special burner, named PRP burner is introduced to fulfill the preheating process. The PRP burner has a preheating chamber with one end connected with the primary air and the other end opened to the furnace. Inside the chamber, gas recirculation is effectively established such that hot flue gases in the furnace can be introduced. Combustible mixture instead of combustion air is highly preheated by the PRP burner. A series of experiments have been conducted in an industrial scale test facility, burning low volatile petroleum coke and an anthracite coal. Stable combustion was established for burning pure petroleum coke and anthracite coal, respectively. Inside the preheating chamber, the combustible mixture was rapidly heated up to a high temperature level close to that of the hot secondary air used in the conventional HTAC system. The rapid heating of the combustible mixture in the chamber facilitates pyrolysis, volatile matter release processes for the fuel particles, suppressing ignition delay and enhancing combustion stability. Moreover, compared with the results measured in the same facility but with a conventional low NOx burner, NOx concentration at the furnace exit was at the same level when petroleum coke was burnt and 50% less when anthracite was burnt. Practicability of the HTAC technology using the proposed approach was confirmed for efficiently and cleanly burning fossil fuels. 16 refs., 10 figs., 1 tab.

  19. Nitrogen Isotope Composition of Thermally Produced NOx from Various Fossil-Fuel Combustion Sources.

    PubMed

    Walters, Wendell W; Tharp, Bruce D; Fang, Huan; Kozak, Brian J; Michalski, Greg

    2015-10-06

    The nitrogen stable isotope composition of NOx (δ(15)N-NOx) may be a useful indicator for NOx source partitioning, which would help constrain NOx source contributions in nitrogen deposition studies. However, there is large uncertainty in the δ(15)N-NOx values for anthropogenic sources other than on-road vehicles and coal-fired energy generating units. To this end, this study presents a broad analysis of δ(15)N-NOx from several fossil-fuel combustion sources that includes: airplanes, gasoline-powered vehicles not equipped with a three-way catalytic converter, lawn equipment, utility vehicles, urban buses, semitrucks, residential gas furnaces, and natural-gas-fired power plants. A relatively large range of δ(15)N-NOx values was measured from -28.1‰ to 8.5‰ for individual exhaust/flue samples that generally tended to be negative due to the kinetic isotope effect associated with thermal NOx production. A negative correlation between NOx concentrations and δ(15)N-NOx for fossil-fuel combustion sources equipped with selective catalytic reducers was observed, suggesting that the catalytic reduction of NOx increases δ(15)N-NOx values relative to the NOx produced through fossil-fuel combustion processes. Combining the δ(15)N-NOx measured in this study with previous published values, a δ(15)N-NOx regional and seasonal isoscape was constructed for the contiguous U.S., which demonstrates seasonal and regional importance of various NOx sources.

  20. Comparative analysis of monetary estimates of external environmental costs associated with combustion of fossil fuels

    SciTech Connect

    Koomey, J.

    1990-07-01

    Public utility commissions in a number of states have begun to explicitly treat costs of environmental externalities in the resource planning and acquisition process (Cohen et al. 1990). This paper compares ten different estimates and regulatory determinations of external environmental costs associated with fossil fuel combustion, using consistent assumptions about combustion efficiency, emissions factors, and resource costs. This consistent comparison is useful because it makes explicit the effects of various assumptions. This paper uses the results of the comparison to illustrate pitfalls in calculation of external environmental costs, and to derive lessons for design of policies to incorporate these externalities into resource planning. 38 refs., 2 figs., 10 tabs.

  1. Quantifying hazardous species in particulate matter derived from fossil-fuel combustion.

    PubMed

    Huggins, Frank E; Huffman, Gerald P; Linak, William P; Miller, C Andrew

    2004-03-15

    An analysis protocol that combines X-ray absorption near-edge structure spectroscopy with selective leaching has been developed to examine hazardous species in size-segregated particulate matter (PM) samples derived from the combustion of fossil fuels. The protocol has been used to identify and determine quantitatively the amounts of three important toxic species in combustion-derived PM: viz., nickel sulfides in residual oil fly ash (ROFA) PM, and Cr(VI) and As(III) species in coal fly ash PM. Although it has been assumed that these toxic species might exist in PM derived from fossil-fuel combustion, the results presented here constitute the first direct determination of them in combustion-derived PM and their potential bioavailability. Detailed information on the presence of these toxic species in PM samples is of significant interest to epidemiological and toxicological studies of the health effects of both source and ambient PM. Additionally, information is obtained on insoluble forms that may be useful for source attribution and on the distribution of phases between size fractions that may be related to formation mechanisms of specific toxic species during combustion.

  2. Characterization of Pollution Outflow From India and Arabia: Biomass Burning and Fossil Fuel Combustion

    NASA Astrophysics Data System (ADS)

    Wisthaler, A.; Hansel, A.; Stehr, J. W.; Dickerson, R. R.; Guazzotti, S. A.; Coffee, K.; Prather, K. A.

    One objective of the Indian Ocean Experiment (INDOEX 1999) was to character- ize the chemical composition of pollution outflow from South Asia. Real-time single particle analysis (ATOFMS, Univ. of California-Riverside), CO analysis (Nondisper- sive Infrared Gas Filter Correlation Photometer, Univ. of Maryland) and fast-response VOC measurements (PTR-MS, Univ. of Innsbruck) measurements were performed onboard the NOAA R/V Ronald H. Brown. Gas phase and aerosol chemical compo- sition of encountered air parcels changed according to their geographic origin traced by backtrajectory analysis (continental air from Arabia and India; maritime air). The relative strength of combustion related pollution sources (biomass burning (BB) vs. fossil fuel (FF) combustion) was determined from the relative abundance of differ- ent tracers: acetonitrile (BB), CO (BB and FF), submicron particles containing car- bon but no potassium (FF), submicron particles containing carbon and potassium (BB and coal combustion), submicron particles containing carbon, potassium and lithium (coal combustion). Arabian air clearly reflected the signature of fossil fuel combustion, while air from the Indian subcontinent was strongly influenced by biomass burning.

  3. High resolution fossil fuel combustion CO2 emission fluxes for the United States

    SciTech Connect

    Gurney, Kevin R.; Mendoza, Daniel L.; Zhou, Yuyu; Fischer, Marc L.; Miller, Chris C.; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-03-19

    Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of {approx}100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  4. High resolution fossil fuel combustion CO{sub 2} emission fluxes for the United States

    SciTech Connect

    Kevin R. Gurney; Daniel L. Mendoza; Yuyu Zhou; Marc L. Fischer; Chris C. Miller; Sarath Geethakumar; Stephane de la Rue du Can

    2009-07-15

    Quantification of fossil fuel CO{sub 2} emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO{sub 2} measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of about 100 km{sup 2} and daily time scales requires fossil fuel CO{sub 2} inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the 'Vulcan' inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO{sub 2} emissions for the contiguous U.S. at spatial scales less than 100 km{sup 2} and temporal scales as small as hours. This data product, completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO{sub 2} emissions. Comparison to the global 1{sup o} x 1{sup o} fossil fuel CO{sub 2} inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach. 39 refs., 5 figs., 1 tab.

  5. High resolution fossil fuel combustion CO2 emission fluxes for the United States.

    PubMed

    Gurney, Kevin R; Mendoza, Daniel L; Zhou, Yuyu; Fischer, Marc L; Miller, Chris C; Geethakumar, Sarath; de la Rue du Can, Stephane

    2009-07-15

    Quantification of fossil fuel CO2 emissions at fine space and time resolution is emerging as a critical need in carbon cycle and climate change research. As atmospheric CO2 measurements expand with the advent of a dedicated remote sensing platform and denser in situ measurements, the ability to close the carbon budget at spatial scales of approximately 100 km2 and daily time scales requires fossil fuel CO2 inventories at commensurate resolution. Additionally, the growing interest in U.S. climate change policy measures are best served by emissions that are tied to the driving processes in space and time. Here we introduce a high resolution data product (the "Vulcan" inventory: www.purdue.edu/eas/carbon/vulcan/) that has quantified fossil fuel CO2 emissions for the contiguous U.S. at spatial scales less than 100 km2 and temporal scales as small as hours. This data product completed for the year 2002, includes detail on combustion technology and 48 fuel types through all sectors of the U.S. economy. The Vulcan inventory is built from the decades of local/regional air pollution monitoring and complements these data with census, traffic, and digital road data sets. The Vulcan inventory shows excellent agreement with national-level Department of Energy inventories, despite the different approach taken by the DOE to quantify U.S. fossil fuel CO2 emissions. Comparison to the global 1degree x 1 degree fossil fuel CO2 inventory, used widely by the carbon cycle and climate change community prior to the construction of the Vulcan inventory, highlights the space/time biases inherent in the population-based approach.

  6. Presence of estrogenic activity from emission of fossil fuel combustion as detected by a recombinant yeast bioassay

    NASA Astrophysics Data System (ADS)

    Wang, Jingxian; Wu, Wenzhong; Henkelmann, Bernhard; You, Li; Kettrup, Antonius; Schramm, Karl-Werner

    Estrogenic activities of emission samples generated by fossil fuel combustion were investigated with human estrogen receptor (ER) recombinant yeast bioassay. The results showed that there were weak but clear estrogenic activities in combustion emissions of fossil fuels including coal, petroleum, and diesel. The estrogenic relative potency (RP) of fossil fuel combustion was the highest in petroleum-fired car, followed by coal-fired stove, diesel-fired agrimotor, coal-fired electric power station. On the other hand, the estrogenic relative inductive efficiency (RIE) was the highest in coal-fired stove and coal-fired electric power station, followed by petroleum-fired car and diesel-fired agrimotor. The estrogenic activities in the sub-fractions from chromatographic separation of emitted materials were also determined. The results indicated that different chemical fractions in these complex systems have different estrogenic potencies. The GC/MS analysis of the emission showed that there were many aromatic carbonyls, big molecular alcohol, PAHs and derivatives, and substituted phenolic compounds and derivatives which have been reported as environmental estrogens. The existence of estrogenic substances in fossil fuel combustion demands further investigation of their potential adverse effects on human and on the ecosystem. The magnitude of pollution due to global usage of fossil fuels makes it imperative to understand the issue of fossil fuel-derived endocrine activities and the associated health risks, particularly the aggregated risks stemmed from exposure to toxicants of multiple sources.

  7. Fossil Fuel Combustion Fingerprint in High-Resolution Urban Water Vapor Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Gorski, G.; Good, S. P.; Bowen, G. J.

    2014-12-01

    Increasing energy consumption and rapid urbanization have many important and poorly understood consequences for the hydrologic cycle in urban and suburban areas. Wide use of fossil fuels for transportation and heating releases isotopically distinctive water vapor that contributes to the overall water vapor budget in varying, usually unknown, concentrations. The use of long term, high resolution isotopic measurements can help determine different sources and proportions of water vapor at various time scales. We present two months of high-resolution water vapor isotope measurements coupled with CO2 concentrations and co-located meteorological observations from December 2013 - January 2014 in Salt Lake City, UT. Periods of atmospheric stagnation (cold-air inversions) show a buildup of CO2 from baseline values of 420 ppm to as high as 600 ppm and an associated decrease in water vapor deuterium-excess values from a baseline of approx. 10‰ to values as low as -10‰ (where d = δ2H - 8*δ18O, in per mil units). We suggest that the strong relationship between CO2and d during inversion periods is driven by the build-up of fossil fuel combustion-derived water vapor with very low d values (≤ -150‰). Based on our measurements of its isotopic composition, combustion-derived water vapor could contribute as much as 15% to the total water vapor budget during inversion periods. We present evidence of this effect at both the multi-day scale and the diurnal scale, where periods of increased automobile use and home heating can be identified. This study provides the first isotopic evidence that accumulation of water of combustion can be identified in boundary layer water vapor, suggests that an appreciable fraction of boundary layer vapor can be derived from combustion under certain atmospheric conditions, and indicates that the distinctive d values of combustion-derived vapor may be a useful tracer for this component of the atmospheric water budget in other urban regions.

  8. Fossil fuels -- future fuels

    SciTech Connect

    1998-03-01

    Fossil fuels -- coal, oil, and natural gas -- built America`s historic economic strength. Today, coal supplies more than 55% of the electricity, oil more than 97% of the transportation needs, and natural gas 24% of the primary energy used in the US. Even taking into account increased use of renewable fuels and vastly improved powerplant efficiencies, 90% of national energy needs will still be met by fossil fuels in 2020. If advanced technologies that boost efficiency and environmental performance can be successfully developed and deployed, the US can continue to depend upon its rich resources of fossil fuels.

  9. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    PubMed

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  10. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    SciTech Connect

    Liu, Z.; Guan, D.; Wei, W.; Davis, S.; Ciais, P.; Bai, J; Peng, S.; Zhang, Q.; Hubacek, K.; Marland, Gregg; Andres, Robert Joseph; Crawford-Brown, D.; Lin, J.; Zhao, H.; Hong, C.; Boden, Thomas A.; Feng, K.; Peters, Glen P.; Xi, F.; Liu, J.; Li, Y.; Zhao, Y.; Zeng, Ning; He, K.

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).

  11. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    DOE PAGES

    Liu, Z.; Guan, D.; Wei, W.; ...

    2015-08-19

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China’s total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China’s carbon emissions using updated and harmonized energy consumption andmore » clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000–2012 than the value reported by China’s national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China’s cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China’s CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China’s cumulative carbon emissions. Our findings suggest that overestimation of China’s emissions in 2000–2013 may be larger than China’s estimated total forest sink in 1990–2007 (2.66 gigatonnes of carbon) or China’s land carbon sink in 2000–2009 (2.6 gigatonnes of carbon).« less

  12. Nitrogen Stable Isotope Composition of Various Fossil-fuel Combustion Nitrogen Oxide Sources

    NASA Astrophysics Data System (ADS)

    Walters, W.; Michalski, G. M.; Fang, H.

    2015-12-01

    Nitrogen oxides (NOx = NO + NO2) are important trace gases that impact atmospheric chemistry, air quality, and climate. In order to help constrain NOx source contributions, the nitrogen (N) stable isotope composition of NOx (δ15N-NOx) may be a useful indicator for NOx source partitioning. However, despite anthropogenic emissions being the most prevalent source of NOx, there is still large uncertainty in the δ15N-NOx values for anthropogenic sources. To this end, this study provides a detailed analysis of several fossil-fuel combustion NOx sources and their δ15N-NOx values. To accomplish this, exhaust or flue samples from several fossil-fuel combustion sources were sampled and analyzed for their δ15N-NOx that included airplanes, gasoline-powered vehicles not equipped with a catalytic converter, gasoline-powered lawn tools and utility vehicles, diesel-electric buses, diesel semi-trucks, and natural gas-burning home furnace and power plant. A relatively large range of δ15N-NOx values were measured from -28.1 to 0.3‰ for individual exhaust/flue samples with cold started diesel-electric buses contributing on average the lowest δ15N-NOx values at -20.9‰, and warm-started diesel-electric buses contributing on average the highest values of -1.7‰. The NOx sources analyzed in this study primarily originated from the "thermal production" of NOx and generally emitted negative δ15N-NOx values, likely due to the kinetic isotope effect associated with its production. It was found that there is a negative correlation between NOx concentrations and δ15N-NOx for fossil-fuel combustion sources equipped with catalytic NOx reduction technology, suggesting that the catalytic reduction of NOx may have an influence on δ15N-NOx values. Based on the δ15N-NOx values reported in this study and in previous studies, a δ15N-NOx regional and seasonal isoscape was constructed for the contiguous United States. The constructed isoscape demonstrates the seasonal importance of various

  13. Organic Mass Fragments and Organic Functional Groups in Aged Biomass Burning and Fossil Fuel Combustion Aerosol

    NASA Astrophysics Data System (ADS)

    Day, D. A.; Hawkins, L. N.; Russell, L. M.

    2009-12-01

    Organic functional group concentrations in submicron aerosol particles collected from 27 June to 17 September at the Scripps Pier in La Jolla, California as part of AeroSCOPE 2008 were quantified using Fourier Transform Infrared (FTIR) spectroscopy. Organic and inorganic non-refractory components in the same air masses were quantified using a Quadrupole Aerosol Mass Spectrometer (Q-AMS). Previous measurements at the Scripps pier indicate that a large fraction of submicron particle mass originates in Los Angeles and the port of Long Beach. Additional particle sources to the region include local urban emissions and periodic biomass burning during large wildfires. Three distinct types of organic aerosol components were identified from organic composition and elemental tracers, including biomass burning, fossil fuel combustion, and polluted marine components. Fossil fuel combustion organic aerosol was dominated by unsaturated alkane and was correlated with sulfur, vanadium, and nickel supporting ship and large trucks in and around the Los Angeles/Long Beach region as the dominant source. Biomass burning organic aerosol comprised a smaller unsaturated alkane fraction and larger fractions of non-acid carbonyl, amine, and carboxylic acid and was correlated with potassium and bromine. Polluted marine organic aerosol was dominated by organic hydroxyl and unsaturated alkane and was not correlated with any elemental tracers. Mass spectra of the organic aerosol support the aerosol sources determined by organic functional groups and elemental tracers and contain fragments commonly attributed to oxygenated organic aerosol (OOA), hydrocarbon-like organic aerosol (HOA), and biomass burning organic aerosol (BBOA). Comparisons of the PMF-derived Q-AMS source spectra with FTIR source spectra and functional group composition provide additional information on the relationship between commonly reported organic aerosol factors and organic functional groups in specific organic aerosol

  14. DEVELOPMENT OF SAMPLING AND ANALYTICAL METHODS FOR THE MEASUREMENT OF NITROUS OXIDE FROM FOSSIL FUEL COMBUSTION SOURCES

    EPA Science Inventory

    The report documents the technical approach and results achieved while developing a grab sampling method and an automated, on-line gas chromatography method suitable to characterize nitrous oxide (N2O) emissions from fossil fuel combustion sources. The two methods developed have...

  15. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOEpatents

    Yang, Wen-Ching; Newby, Richard A.; Lippert, Thomas E.

    1997-01-01

    The gas from combustion or gasification of fossil fuel contains flyash and other particulate. The flyash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The flyash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured flyash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled.

  16. Separation of particulate from flue gas of fossil fuel combustion and gasification

    DOEpatents

    Yang, W.C.; Newby, R.A.; Lippert, T.E.

    1997-08-05

    The gas from combustion or gasification of fossil fuel contains fly ash and other particulates. The fly ash is separated from the gas in a plurality of standleg moving granular-bed filter modules. Each module includes a dipleg through which the bed media flows into the standleg. The bed media forms a first filter bed having an upper mass having a first frusto-conical surface in a frusto-conical member at the entrance to the standleg and a lower mass having a second frusto-conical surface of substantially greater area than the first surface after it passes through the standleg. A second filter media bed may be formed above the first filter media bed. The gas is fed tangentially into the module above the first surface. The fly ash is captured on the first frusto-conical surface and within the bed mass. The processed gas flows out through the second frusto-conical surface and then through the second filter bed, if present. The bed media is cleaned of the captured fly ash and recirculated to the moving granular bed filter. Alternatively, the bed media may be composed of the ash from the combustion which is pelletized to form agglomerates. The ash flows through the bed only once; it is not recycled. 11 figs.

  17. Improving the Carbon Dioxide Emission Estimates from the Combustion of Fossil Fuels in California

    SciTech Connect

    de la Rue du Can, Stephane; Wenzel, Tom; Price, Lynn

    2008-08-13

    Central to any study of climate change is the development of an emission inventory that identifies and quantifies the State's primary anthropogenic sources and sinks of greenhouse gas (GHG) emissions. CO2 emissions from fossil fuel combustion accounted for 80 percent of California GHG emissions (CARB, 2007a). Even though these CO2 emissions are well characterized in the existing state inventory, there still exist significant sources of uncertainties regarding their accuracy. This report evaluates the CO2 emissions accounting based on the California Energy Balance database (CALEB) developed by Lawrence Berkeley National Laboratory (LBNL), in terms of what improvements are needed and where uncertainties lie. The estimated uncertainty for total CO2 emissions ranges between -21 and +37 million metric tons (Mt), or -6percent and +11percent of total CO2 emissions. The report also identifies where improvements are needed for the upcoming updates of CALEB. However, it is worth noting that the California Air Resources Board (CARB) GHG inventory did not use CALEB data for all combustion estimates. Therefore the range in uncertainty estimated in this report does not apply to the CARB's GHG inventory. As much as possible, additional data sources used by CARB in the development of its GHG inventory are summarized in this report for consideration in future updates to CALEB.

  18. Aeolian contamination of Se and Ag in the North Pacific from Asian fossil fuel combustion.

    PubMed

    Ranville, Mara A; Cutter, Gregory A; Buck, Clifton S; Landing, William M; Cutter, Lynda S; Resing, Joseph A; Flegal, A Russell

    2010-03-01

    Energy production from fossil fuels, and in particular the burning of coal in China, creates atmospheric contamination that is transported across the remote North Pacific with prevailing westerly winds. In recent years this pollution from within Asia has increased dramatically, as a consequence of vigorous economic growth and corresponding energy consumption. During the fourth Intergovernmental Oceanographic Commission baseline contaminant survey in the western Pacific Ocean from May to June, 2002, surface waters and aerosol samples were measured to investigate whether atmospheric deposition of trace elements to the surface North Pacific was altering trace element biogeochemical cycling. Results show a presumably anthropogenic enrichment of Ag and of Se, which is a known tracer of coal combustion, in the North Pacific atmosphere and surface waters. Additionally, a strong correlation was seen between dissolved Ag and Se concentrations in surface waters. This suggests that Ag should now also be considered a geochemical tracer for coal combustion, and provides further evidence that Ag exhibits a disturbed biogeochemical cycle as the result of atmospheric deposition to the North Pacific.

  19. Uncertainty in projected climate change caused by methodological discrepancy in estimating CO2 emissions from fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Quilcaille, Yann; Gasser, Thomas; Ciais, Philippe; Lecocq, Franck; Janssens-Maenhout, Greet; Mohr, Steve; Andres, Robert J.; Bopp, Laurent

    2016-04-01

    There are different methodologies to estimate CO2 emissions from fossil fuel combustion. The term "methodology" refers to the way subtypes of fossil fuels are aggregated and their implied emissions factors. This study investigates how the choice of a methodology impacts historical and future CO2 emissions, and ensuing climate change projections. First, we use fossil fuel extraction data from the Geologic Resources Supply-Demand model of Mohr et al. (2015). We compare four different methodologies to transform amounts of fossil fuel extracted into CO2 emissions based on the methodologies used by Mohr et al. (2015), CDIAC, EDGARv4.3, and IPCC 1996. We thus obtain 4 emissions pathways, for the historical period 1750-2012, that we compare to the emissions timeseries from EDGARv4.3 (1970-2012) and CDIACv2015 (1751-2011). Using the 3 scenarios by Mohr et al. (2015) for projections till 2300 under the assumption of an Early (Low emission), Best Guess or Late (High emission) extraction peaking, we obtain 12 different pathways of CO2 emissions over 1750-2300. Second, we extend these CO2-only pathways to all co-emitted and climatically active species. Co-emission ratios for CH4, CO, BC, OC, SO2, VOC, N2O, NH3, NOx are calculated on the basis of the EDGAR v4.3 dataset, and are then used to produce complementary pathways of non-CO2 emissions from fossil fuel combustion only. Finally, the 12 emissions scenarios are integrated using the compact Earth system model OSCAR v2.2, in order to quantify the impact of the selected driver onto climate change projections. We find historical cumulative fossil fuel CO2 emissions from 1750 to 2012 ranging from 365 GtC to 392 GtC depending upon the methodology used to convert fossil fuel into CO2 emissions. We notice a drastic increase of the impact of the methodology in the projections. For the High emission scenario with Late fuel extraction peaking, cumulated CO2 emissions from 1700 to 2100 range from 1505 GtC to 1685 GtC; this corresponds

  20. Combustion-derived substances in deep basins of Puget Sound: historical inputs from fossil fuel and biomass combustion.

    PubMed

    Kuo, Li-Jung; Louchouarn, Patrick; Herbert, Bruce E; Brandenberger, Jill M; Wade, Terry L; Crecelius, Eric

    2011-04-01

    Reconstructions of 250 years historical inputs of two distinct types of black carbon (soot/graphitic black carbon (GBC) and char-BC) were conducted on sediment cores from two basins of the Puget Sound, WA. Signatures of polycyclic aromatic hydrocarbons (PAHs) were also used to support the historical reconstructions of BC to this system. Down-core maxima in GBC and combustion-derived PAHs occurred in the 1940s in the cores from the Puget Sound Main Basin, whereas in Hood Canal such peak was observed in the 1970s, showing basin-specific differences in inputs of combustion byproducts. This system showed relatively higher inputs from softwood combustion than the northeastern U.S. The historical variations in char-BC concentrations were consistent with shifts in climate indices, suggesting an influence of climate oscillations on wildfire events. Environmental loading of combustion byproducts thus appears as a complex function of urbanization, fuel usage, combustion technology, environmental policies, and climate conditions.

  1. Non-deforestation fire vs. fossil fuel combustion: the source of CO2 emissions affects the global carbon cycle and climate responses

    NASA Astrophysics Data System (ADS)

    Landry, Jean-Sébastien; Damon Matthews, H.

    2016-04-01

    Non-deforestation fire - i.e., fire that is typically followed by the recovery of natural vegetation - is arguably the most influential disturbance in terrestrial ecosystems, thereby playing a major role in carbon exchanges and affecting many climatic processes. The radiative effect from a given atmospheric CO2 perturbation is the same for fire and fossil fuel combustion. However, major differences exist per unit of CO2 emitted between the effects of non-deforestation fire vs. fossil fuel combustion on the global carbon cycle and climate, because (1) fossil fuel combustion implies a net transfer of carbon from geological reservoirs to the atmospheric, oceanic, and terrestrial pools, whereas fire occurring in terrestrial ecosystems does not; (2) the average lifetime of the atmospheric CO2 increase is longer when originating from fossil fuel combustion compared to fire, due to the strong vegetation regrowth following fire disturbances in terrestrial ecosystems; and (3) other impacts, for example on land surface albedo, also differ between fire and fossil fuel combustion. The main purpose of this study is to illustrate the consequences from these fundamental differences between fossil fuel combustion and non-deforestation fires using 1000-year simulations of a coupled climate-carbon model with interactive vegetation. We assessed emissions from both pulse and stable fire regime changes, considering both the gross (carbon released from combustion) and net (fire-caused change in land carbon, also accounting for vegetation decomposition and regrowth, as well as climate-carbon feedbacks) fire CO2 emissions. In all cases, we found substantial differences from equivalent amounts of emissions produced by fossil fuel combustion. These findings suggest that side-by-side comparisons of non-deforestation fire and fossil fuel CO2 emissions - implicitly implying that they have similar effects per unit of CO2 emitted - should therefore be avoided, particularly when these comparisons

  2. Theoretical studies of oxides relevant to the combustion of fossil fuels

    NASA Astrophysics Data System (ADS)

    Hicks, Jason Michael

    Anthropogenic pollution has greatly increased since the industrial revolution and continues to increase as more of the world becomes dependent upon fossil fuels for important applications like transportation and power production. In a general case, whenever a fossil fuel is consumed, a primary product of a complete combustion reaction is carbon dioxide. In a more specific case, the collection, processing and combustion of coal for power production are one of the primary ways by which trace elements, such as arsenic and selenium, are released into the environment. All of these pollutants are known to have harmful effects, whether on the environment, human health or power production itself. Because of this there has been an increasing interest in studies related to combating these pollutants. Concerning CO2 emissions, recently there has been a significant amount of work related to CO2 capture. A promising method involves the encapsulation of CO2 into isoreticular metal-organic frameworks (IRMOFs). The effectiveness of IMROFs greatly depends on the choice of both metal and organic parts. Molecular simulations have been used in the past to aid in the design and characterization of new MOFs, in particular by generating an adsorption isotherm. However, these traditional simulation methods have several drawbacks. The method used in this thesis, namely expanded Wang-Landau, not only overcomes these drawbacks but provides access to all the thermodynamic properties relevant to the adsorption process through a solution thermodynamics approach. This is greatly beneficial, since an excellent way to characterize the performance of various MOFs is by comparing their desorption free energy, i.e., the energy it takes to regenerate a saturated MOF to prepare it for the next adsorption cycle. Expanded WL was used in the study of CO 2 adsorption into IRMOF-1, 8 and 10 at eight temperatures, spanning both the subcritical and supercritical regimes and the following were obtained

  3. Combustion of available fossil fuel resources sufficient to eliminate the Antarctic Ice Sheet.

    PubMed

    Winkelmann, Ricarda; Levermann, Anders; Ridgwell, Andy; Caldeira, Ken

    2015-09-01

    The Antarctic Ice Sheet stores water equivalent to 58 m in global sea-level rise. We show in simulations using the Parallel Ice Sheet Model that burning the currently attainable fossil fuel resources is sufficient to eliminate the ice sheet. With cumulative fossil fuel emissions of 10,000 gigatonnes of carbon (GtC), Antarctica is projected to become almost ice-free with an average contribution to sea-level rise exceeding 3 m per century during the first millennium. Consistent with recent observations and simulations, the West Antarctic Ice Sheet becomes unstable with 600 to 800 GtC of additional carbon emissions. Beyond this additional carbon release, the destabilization of ice basins in both West and East Antarctica results in a threshold increase in global sea level. Unabated carbon emissions thus threaten the Antarctic Ice Sheet in its entirety with associated sea-level rise that far exceeds that of all other possible sources.

  4. Inhibition of progesterone receptor activity in recombinant yeast by soot from fossil fuel combustion emissions and air particulate materials.

    PubMed

    Wang, Jingxian; Xie, Ping; Kettrup, Antonius; Schramm, Karl-Werner

    2005-10-15

    Numerous environmental pollutants have been detected for estrogenic activity by interacting with the estrogen receptor, but little information is available about their interactions with the progesterone receptor. In this study, emission samples generated by fossil fuel combustion (FFC) and air particulate material (APM) collected from an urban location near a traffic line in a big city of China were evaluated to interact with the human progesterone receptor (hPR) signaling pathway by examining their ability to interact with the activity of hPR expressed in yeast. The results showed that the soot of a petroleum-fired vehicle possessed the most potent anti-progesteronic activity, that of coal-fired stove and diesel fired agrimotor emissions took the second place, and soot samples of coal-fired heating work and electric power station had lesser progesterone inhibition activity. The anti-progesteronic activity of APM was between that of soot from petroleum-fired vehicle and soot from coal-fired establishments and diesel fired agrimotor. Since there was no other large pollution source near the APM sampling sites, the endocrine disrupters were most likely from vehicle emissions, tire attrition and house heating sources. The correlation analysis showed that a strong relationship existed between estrogenic activity and anti-progesteronic activity in emissions of fossil fuel combustion. The discoveries that some environmental pollutants with estrogenic activity can also inhibit hPR activity indicate that further studies are required to investigate potential mechanisms for the reported estrogenic activities of these pollutants.

  5. Global Partitioning of NOx Sources Using Satellite Observations: Relative Roles of Fossil Fuel Combustion, Biomass Burning and Soil Emissions

    NASA Technical Reports Server (NTRS)

    Jaegle, Lyatt; Steinberger, Linda; Martin, Randall V.; Chance, Kelly

    2005-01-01

    This document contains the following abstract for the paper "Global partitioning of NOx sources using satellite observations: Relative roles of fossil fuel combustion, biomass burning and soil emissions." Satellite observations have been used to provide important new information about emissions of nitrogen oxides. Nitrogen oxides (NOx) are significant in atmospheric chemistry, having a role in ozone air pollution, acid deposition and climate change. We know that human activities have led to a three- to six-fold increase in NOx emissions since pre-industrial times, and that there are three main surface sources of NOx: fuel combustion, large-scale fires, and microbial soil processes. How each of these sources contributes to the total NOx emissions is subject to some doubt, however. The problem is that current NOx emission inventories rely on bottom-up approaches, compiling large quantities of statistical information from diverse sources such as fuel and land use, agricultural data, and estimates of burned areas. This results in inherently large uncertainties. To overcome this, Lyatt Jaegle and colleagues from the University of Washington, USA, used new satellite observations from the Global Ozone Monitoring Experiment (GOME) instrument. As the spatial and seasonal distribution of each of the sources of NOx can be clearly mapped from space, the team could provide independent topdown constraints on the individual strengths of NOx sources, and thus help resolve discrepancies in existing inventories. Jaegle's analysis of the satellite observations, presented at the recent Faraday Discussion on "Atmospheric Chemistry", shows that fuel combustion dominates emissions at northern mid-latitudes, while fires are a significant source in the Tropics. Additionally, she discovered a larger than expected role for soil emissions, especially over agricultural regions with heavy fertilizer use. Additional information is included in the original extended abstract.

  6. Characterization of carbonaceous aerosols outflow from India and Arabia: Biomass/biofuel burning and fossil fuel combustion

    NASA Astrophysics Data System (ADS)

    Guazzotti, S. A.; Suess, D. T.; Coffee, K. R.; Quinn, P. K.; Bates, T. S.; Wisthaler, A.; Hansel, A.; Ball, W. P.; Dickerson, R. R.; Neusüß, C.; Crutzen, P. J.; Prather, K. A.

    2003-08-01

    A major objective of the Indian Ocean Experiment (INDOEX) involves the characterization of the extent and chemical composition of pollution outflow from the Indian Subcontinent during the winter monsoon. During this season, low-level flow from the continent transports pollutants over the Indian Ocean toward the Intertropical Convergence Zone (ITCZ). Traditional standardized aerosol particle chemical analysis, together with real-time single particle and fast-response gas-phase measurements provided characterization of the sampled aerosol chemical properties. The gas- and particle-phase chemical compositions of encountered air parcels changed according to their geographic origin, which was traced by back trajectory analysis. The temporal evolutions of acetonitrile, a long-lived specific tracer for biomass/biofuel burning, number concentration of submicrometer carbon-containing particles with potassium (indicative of combustion sources), and mass concentration of submicrometer non-sea-salt (nss) potassium are compared. High correlation coefficients (0.84 < r2 < 0.92) are determined for these comparisons indicating that most likely the majority of the species evolve from the same, related, or proximate sources. Aerosol and trace gas measurements provide evidence that emissions from fossil fuel and biomass/biofuel burning are subject to long-range transport, thereby contributing to anthropogenic pollution even in areas downwind of South Asia. Specifically, high concentrations of submicrometer nss potassium, carbon-containing particles with potassium, and acetonitrile are observed in air masses advected from the Indian subcontinent, indicating a strong impact of biomass/biofuel burning in India during the sampling periods (74 (±9)% biomass/biofuel contribution to submicrometer carbonaceous aerosol). In contrast, lower values for these same species were measured in air masses from the Arabian Peninsula, where dominance of fossil fuel combustion is suggested by results

  7. Particulate emission factors for mobile fossil fuel and biomass combustion sources.

    PubMed

    Watson, John G; Chow, Judith C; Chen, L-W Antony; Lowenthal, Douglas H; Fujita, Eric M; Kuhns, Hampden D; Sodeman, David A; Campbell, David E; Moosmüller, Hans; Zhu, Dongzi; Motallebi, Nehzat

    2011-05-15

    PM emission factors (EFs) for gasoline- and diesel-fueled vehicles and biomass combustion were measured in several recent studies. In the Gas/Diesel Split Study (GD-Split), PM(2.5) EFs for heavy-duty diesel vehicles (HDDV) ranged from 0.2 to ~2 g/mile and increased with vehicle age. EFs for HDDV estimated with the U.S. EPA MOBILE 6.2 and California Air Resources Board (ARB) EMFAC2007 models correlated well with measured values. PM(2.5) EFs measured for gasoline vehicles were ~two orders of magnitude lower than those for HDDV and did not correlate with model estimates. In the Kansas City Study, PM(2.5) EFs for gasoline-powered vehicles (e.g., passenger cars and light trucks) were generally <0.03 g/mile and were higher in winter than summer. EMFAC2007 reported higher PM(2.5) EFs than MOBILE 6.2 during winter, but not during summer, and neither model captured the variability of the measured EFs. Total PM EFs for heavy-duty diesel military vehicles ranged from 0.18±0.03 and 1.20±0.12 g/kg fuel, corresponding to 0.3 and 2 g/mile, respectively. These values are comparable to those of on-road HDDV. EFs for biomass burning measured during the Fire Laboratory at Missoula Experiment (FLAME) were compared with EFs from the ARB Emission Estimation System (EES) model. The highest PM(2.5) EFs (76.8±37.5 g/kg) were measured for wet (>50% moisture content) Ponderosa Pine needles. EFs were generally <20 g/kg when moisture content was <20%. The EES model agreed with measured EFs for fuels with low moisture content but underestimated measured EFs for fuel with moisture content >40%. Average EFs for dry chamise, rice straw, and dry grass were within a factor of three of values adopted by ARB in California's San Joaquin Valley (SJV). Discrepancies between measured and modeled emission factors suggest that there may be important uncertainties in current PM(2.5) emission inventories.

  8. Global partitioning of NOx sources using satellite observations: relative roles of fossil fuel combustion, biomass burning and soil emissions.

    PubMed

    Jaeglé, Lyatt; Steinberger, Linda; Martin, Randall V; Chance, Kelly

    2005-01-01

    We use space-based observations of NO2 columns from the Global Ozone Monitoring Experiment (GOME) to derive monthly top-down NOx emissions for 2000 via inverse modeling with the GEOS-CHEM chemical transport model. Top-down NOx sources are partitioned among fuel combustion (fossil fuel and biofuel), biomass burning and soils by exploiting the spatio-temporal distribution of remotely sensed fires and a priori information on the location of regions dominated by fuel combustion. The top-down inventory is combined with an a priori inventory to obtain an optimized a posteriori estimate of the relative roles of NOx sources. The resulting a posteriori fuel combustion inventory (25.6 TgN year(-1)) agrees closely with the a priori (25.4 TgN year(-1)), and errors are reduced by a factor of 2, from +/- 80% to +/- 40%. Regionally, the largest differences are found over Japan and South Africa, where a posteriori estimates are 25% larger than a priori. A posteriori fuel combustion emissions are aseasonal, with the exception of East Asia and Europe where winter emissions are 30-40% larger relative to summer emissions, consistent with increased energy use during winter for heating. Global a posteriori biomass burning emissions in 2000 resulted in 5.8 TgN (compared to 5.9 TgN year(-1) in the a priori), with Africa accounting for half of this total. A posteriori biomass burning emissions over Southeast Asia/India are decreased by 46% relative to a priori; but over North equatorial Africa they are increased by 50%. A posteriori estimates of soil emissions (8.9 TgN year(-1)) are 68% larger than a priori (5.3 TgN year(-1)). The a posteriori inventory displays the largest soil emissions over tropical savanna/woodland ecosystems (Africa), as well as over agricultural regions in the western U.S. (Great Plains), southern Europe (Spain, Greece, Turkey), and Asia (North China Plain and North India), consistent with field measurements. Emissions over these regions are highest during summer at

  9. Distinguishing the relative contribution of fossil fuel and biomass combustion aerosols deposited at Summit, Greenland through isotopic and molecular characterization of insoluble carbon

    NASA Astrophysics Data System (ADS)

    Slater, J. F.; Currie, L. A.; Dibb, J. E.; Benner, B. A.

    Quantifying combustion aerosols transported to Summit, Greenland has typically involved the measurement of water-soluble inorganic and organic ions in air, snow, and ice. However, the ubiquitous nature of atmospheric soluble ions makes it difficult to separate the combustion component from the natural component. More specific combustion indicators are therefore needed to accurately quantify inputs from biomass and fossil-fuel burning. This work reports on radiocarbon ( 14C) analysis of elemental carbon (EC) and quantification of polycyclic aromatic hydrocarbons (PAHs) of water-insoluble particles from a snowpit excavated at Summit, Greenland in 1996. The 14C measurements allowed us to quantify the relative contribution of EC from biomass burning and fossil-fuel combustion transported to and deposited at Summit during periods of 1994 and 1995. Specific PAHs associated with conifer combustion helped to identify snowpit layers impacted by forest fires. Our results show that fossil EC was the major component during spring and fall 1994, while biomass EC and fossil EC were present in roughly equal amounts during summer 1994. PAH ratios in spring layers of the snowpit indicate substantial inputs from anthropogenic sources and the ΣPAH depth profile displays springtime maxima that coincided with non-sea-salt sulfate ion maximum concentrations. In other layers, ammonium ion concentrations were independent of the isotopic and molecular carbon measurements. This work demonstrates the utility of radiocarbon techniques to quantify the two different sources of combustion-generated particles at Summit; however, portions of the 14C results were indeterminate due to large uncertainties that were the result of chemical impurities introduced in the EC isolation technique. Additionally, PAH measurements were successfully performed on as little as 100 ml of snowmelt water, demonstrating the potential for future finer sample resolution.

  10. Unique case of fatal carbon monoxide poisoning in the absence of a combustible fossil fuel.

    PubMed

    Morgan, D R; Poon, P; Titley, J; Jagger, S F; Rutty, G N

    2001-09-01

    A 37-year-old man died as a result of exposure to carbon monoxide within an apartment. An investigation of the apartment showed no gas appliances or gas supply to the apartment and no evidence of any combustion event to any part of the apartment or roof space. Inhalation of dichloromethane was excluded. Heating to the apartment was found to be via an electrical storage heater, the examination of which revealed that the cast-iron core and insulating material showed evidence of heat damage with significant areas devoid of carbon. This electric storage heater is hypothesized to be the source of carbon for the fatal production of carbon monoxide within the apartment.

  11. Emissions of Water and Carbon Dioxide from Fossil-Fuel Combustion Contribute Directly to Ocean Mass and Volume Increases

    NASA Astrophysics Data System (ADS)

    Skuce, A. G.

    2014-12-01

    The direct, non-climate, contribution of carbon dioxide and water emissions from fossil-fuel (FF) combustion to the volume and mass of the oceans has been omitted from estimates of sea-level rise (SLR) in IPCC reports. Following the method of Gornitz et al. (1997), H2O emissions are estimated using carbon emissions from the Carbon Dioxide Information Analysis Center, along with typical carbon and hydrogen contents of FF. Historic H2O emissions from 1750 to 2010 amount to 430 ±50 PgH2O, equivalent to 1.2 ±0.2 mmSLR. Sometime in this decade the volume of H2O from historic FF combustion will exceed the volume of Lake Erie (480 km3). CO2 dissolved in the ocean increases the seawater volume by 31-33 mL mol-1 CO2. From 1750 to 2010, 370 ±70 PgCO2 from FF combustion has dissolved in the oceans, causing 0.7 ±0.2 mmSLR. Combined H2O+CO2emissions from FF have therefore added 1.9 ±0.4 mm to sea levels in the Industrial Era. Combustion of FF in 2010 resulted in emissions of 32 PgCO2 and 12 ±1 PgH2O. SLR contributions for that year from FF emissions were 0.033 ±0.005 mm from H2O and 0.011±0.003 mm from dissolved CO2, a total rate of 0.044 ±0.008 mm yr-1. Emissions incorporated in socio-economic models underlying the RCP 8.5 and 2.6 scenarios are used along with concentration-driven CMIP5 Earth System Models results to estimate future sea-level rise from FF combustion. From 2010 to 2100, RCP8.5 and 2.6 models respectively produce 9 ±2 mmSLR and 5 ±1 mmSLR from FF H2O+CO2. For perspective, these amounts are larger than the modelled contributions from loss of glaciers in the Andes. The direct contribution of FF emissions to SLR is small (1-2%) relative to current rates and projected estimates under RCP scenarios up to 2100. The magnitude is similar to SLR estimates from other minor sources such as the melting of floating ice, land-use emissions and produced water from oil operations, none of which are currently included in SLR assessments. As uncertainties in

  12. Sustainability of Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  13. The role of fossil fuel combustion on the stability of dissolved iron in rainwater

    NASA Astrophysics Data System (ADS)

    Willey, Joan D.; Kieber, Robert J.; Humphreys, Joshua J.; Rice, Briana C.; Hopwood, Mark J.; Avery, G. Brooks; Mead, Ralph N.

    2015-04-01

    The concentration of dissolved Fe(II) has decreased in coastal NC rainwater because of less complexation and stabilization of Fe(II) (aq) by automobile and coal combustion emissions. Better emission control has removed stabilizing organic ligands hence dissolved Fe(II) currently occurs more as inorganic iron, which is not protected against oxidation. Increasing rainwater pH allows oxidation by molecular O2 in addition to H2O2 and also increases the ratio of the ion pair Fe(OH)+ to Fe(II) free ion, which increases the oxidation rates by both H2O2 and molecular oxygen. The concentration of H2O2 in rain has increased; hydrogen peroxide is the primary oxidant of inorganic Fe(II) in precipitation. The East Coast of the USA is also receiving less rain of terrestrial origin, which tends to be higher in dissolved iron and organic compounds. All these factors operate in the same direction and contribute to the lower concentrations and lack of stability of Fe(II) in rainwater currently observed. Results of this study suggest that wet deposition of soluble Fe(II) is an episodic, temporally variable factor in the iron cycle in oceanic regions adjacent to developed or developing coastal regions.

  14. Year-round Source Contributions of Fossil Fuel and Biomass Combustion to Elemental Carbon on the North Slope Alaska Utilizing Radiocarbon Analysis

    NASA Astrophysics Data System (ADS)

    Barrett, T. E.; Gustafsson, O.; Winiger, P.; Moffett, C.; Back, J.; Sheesley, R. J.

    2015-12-01

    It is well documented that the Arctic has undergone rapid warming at an alarming rate over the past century. Black carbon (BC) affects the radiative balance of the Arctic directly and indirectly through the absorption of incoming solar radiation and by providing a source of cloud and ice condensation nuclei. Among atmospheric aerosols, BC is the most efficient absorber of light in the visible spectrum. The solar absorbing efficiency of BC is amplified when it is internally mixed with sulfates. Furthermore, BC plumes that are fossil fuel dominated have been shown to be approximately 100% more efficient warming agents than biomass burning dominated plumes. The renewal of offshore oil and gas exploration in the Arctic, specifically in the Chukchi Sea, will introduce new BC sources to the region. This study focuses on the quantification of fossil fuel and biomass combustion sources to atmospheric elemental carbon (EC) during a year-long sampling campaign in the North Slope Alaska. Samples were collected at the Department of Energy Atmospheric Radiation Measurement (ARM) climate research facility in Barrow, AK, USA. Particulate matter (PM10) samples collected from July 2012 to June 2013 were analyzed for EC and sulfate concentrations combined with radiocarbon (14C) analysis of the EC fraction. Radiocarbon analysis distinguishes fossil fuel and biomass burning contributions based on large differences in end members between fossil and contemporary carbon. To perform isotope analysis on EC, it must be separated from the organic carbon fraction of the sample. Separation was achieved by trapping evolved CO2 produced during EC combustion in a cryo-trap utilizing liquid nitrogen. Radiocarbon results show an average fossil contribution of 85% to atmospheric EC, with individual samples ranging from 47% to 95%. Source apportionment results will be combined with back trajectory (BT) analysis to assess geographic source region impacts on the EC burden in the western Arctic.

  15. Biodesulfurization of fossil fuels.

    PubMed

    Gray, Kevin A; Mrachko, Gregory T; Squires, Charles H

    2003-06-01

    Biotechnological techniques enabling the specific removal of sulfur from fossil fuels have been developed. In the past three years there have been important advances in the elucidation of the mechanisms of biodesulfurization; some of the most significant relate to the role of a flavin reductase, DszD, in the enzymology of desulfurization, and to the use of new tools that enable enzyme enhancement via DNA manipulation to influence both the rate and the substrate range of Dsz. Also, a clearer understanding of the unique desulfinase step in the pathway has begun to emerge.

  16. The combined effect of reduced fossil fuel consumption and increasing biomass combustion on Athens' air quality, as inferred from long term CO measurements.

    PubMed

    Gratsea, Myrto; Liakakou, Eleni; Mihalopoulos, Nikos; Adamopoulos, Anastasios; Tsilibari, Eirini; Gerasopoulos, Evangelos

    2017-03-14

    To evaluate the role of biomass burning emissions, and in particular of residential wood heating, as a result of the economic recession in Greece, carbon monoxide (CO) atmospheric concentrations from five (5) stations of the National Air Pollution Monitoring Network in Athens, spanning the period 2000-2015, in conjunction with black carbon (BC) concentrations from the NOA (National Observatory of Athens) station at Thissio were analysed. The contribution of the different sources to the diurnal cycle of these two pollutants is clear, resulting to a morning peak, mainly due to traffic, and a late evening peak attributed both to fossil fuel (traffic plus central heating) and biomass combustion. Calculated morning and evening integrals of CO peaks, for the investigated period, show consistent seasonal modulations, characterised by low summer and high winter values. The summer and winter morning CO peak integrals demonstrate an almost constant decreasing trend of CO concentrations over time (by almost 50% since 2000), attributed to the renewal of passenger car fleet and to reduced anthropogenic activities during the last years. On the other hand, an increase of 23%-78% (depending on the monitoring site) in the winter evening integrals since 2012, provides evidence of the significant contribution of biomass combustion, which has prevailed over fossil fuel for domestic heating. CO emitted by wood burning was found to contribute almost 50% to the total CO emissions during night time (16:00-5:00), suggesting that emissions from biomass combustion have gained an increasing role in atmospheric pollution levels in Athens.

  17. Estimated contributions of primary and secondary organic aerosol from fossil fuel combustion during the CalNex and Cal-Mex campaigns

    NASA Astrophysics Data System (ADS)

    Guzman-Morales, J.; Frossard, A. A.; Corrigan, A. L.; Russell, L. M.; Liu, S.; Takahama, S.; Taylor, J. W.; Allan, J.; Coe, H.; Zhao, Y.; Goldstein, A. H.

    2014-05-01

    Observations during CalNex and Cal-Mex field campaigns at Bakersfield, Pasadena, Tijuana, and on board the R/V Atlantis show a substantial contribution of fossil fuel emissions to the ambient particle organic mass (OM). At least two fossil fuel combustion (FFC) factors with a range of contributions of oxidized organic functional groups were identified at each site and accounted for 60-88% of the total OM. Additional marine, vegetative detritus, and biomass burning or biogenic sources contribute up to 40% of the OM. Comparison of the FTIR spectra of four different unburned fossil fuels (gasoline, diesel, motor oil, and ship diesel) with PMF factors from ambient samples shows absorbance peaks from the fuels are retained in organic aerosols, with the spectra of all of the FFC factors containing at least three of the four characteristic alkane peaks observed in fuel standards at 2954, 2923, 2869 and 2855 cm-1. Based on this spectral similarity, we estimate the primary OM from FFC sources for each site to be 16-20%, with secondary FFC OM accounting for an additional 42-62%. Two other methods for estimating primary OM that use carbon monoxide (CO) and elemental carbon (EC) as tracers of primary organic mass were investigated, but both approaches were problematic for the CalNex and Cal-Mex urban sites because they were influenced by multiple emission sources that had site-specific and variable initial ratios to OM. For example, using the ΔPOM/ΔCO ratio of 0.0094 μg ppb V-1 proposed by other studies produces unrealistically high estimates of primary FFC OM of 55-100%.

  18. The health effects of fossil fuel derived particles.

    PubMed

    Grigg, J

    2002-02-01

    Over the past 10 years there has been increasing evidence that particles generated by the combustion of fossil fuels adversely affect health. To what extent should paediatricians be concerned about particle pollution? This review assesses what we know, and what we still need to know about the health effects of fossil fuel particles.

  19. Fossil fuel furnace reactor

    DOEpatents

    Parkinson, William J.

    1987-01-01

    A fossil fuel furnace reactor is provided for simulating a continuous processing plant with a batch reactor. An internal reaction vessel contains a batch of shale oil, with the vessel having a relatively thin wall thickness for a heat transfer rate effective to simulate a process temperature history in the selected continuous processing plant. A heater jacket is disposed about the reactor vessel and defines a number of independent controllable temperature zones axially spaced along the reaction vessel. Each temperature zone can be energized to simulate a time-temperature history of process material through the continuous plant. A pressure vessel contains both the heater jacket and the reaction vessel at an operating pressure functionally selected to simulate the continuous processing plant. The process yield from the oil shale may be used as feedback information to software simulating operation of the continuous plant to provide operating parameters, i.e., temperature profiles, ambient atmosphere, operating pressure, material feed rates, etc., for simulation in the batch reactor.

  20. The legacy of fossil fuels.

    PubMed

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production.

  1. Fuels Combustion Research.

    DTIC Science & Technology

    1984-07-18

    uncertainties in the future sources and characteristics of fuels has emphasized the need to better understand fuel effects on combustion , e.g. energy release...experimentally to be made. Unsuccessful comparisons can lead to impro- vements in modelling concepts . Two simplified models for the combustion of slurry...AD-A149 186 FUELS COMBUSTION RESEACCH(U) PRINCETON UNIV NJ DEPT OF i/i MECHANICAL AND AEROSPACE ENGINEERING F L DRYER ET AL. 18 JUL 84 NAE-i668 AFOSR

  2. Investigation of black and brown carbon multiple-wavelength-dependent light absorption from biomass and fossil fuel combustion source emissions

    NASA Astrophysics Data System (ADS)

    Olson, Michael R.; Victoria Garcia, Mercedes; Robinson, Michael A.; Van Rooy, Paul; Dietenberger, Mark A.; Bergin, Michael; Schauer, James Jay

    2015-07-01

    Quantification of the black carbon (BC) and brown carbon (BrC) components of source emissions is critical to understanding the impact combustion aerosols have on atmospheric light absorption. Multiple-wavelength absorption was measured from fuels including wood, agricultural biomass, coals, plant matter, and petroleum distillates in controlled combustion settings. Filter-based absorption measurements were corrected and compared to photoacoustic absorption results. BC absorption was segregated from the total light extinction to estimate the BrC absorption from individual sources. Results were compared to elemental carbon (EC)/organic carbon (OC) concentrations to determine composition's impact on light absorption. Multiple-wavelength absorption coefficients, Angstrom exponent (6.9 to <1.0), mass absorption cross section (MAC), and Delta C (97 µg m-3 to ~0 µg m-3) were highly variable. Sources such as incense and peat emissions showed ultraviolet wavelength (370 nm) BrC absorption over 175 and 80 times (respectively) the BC absorption but only 21 and 11 times (respectively) at 520 nm wavelength. The bulk EC MACEC, λ (average at 520 nm = 9.0 ± 3.7 m2 g-1; with OC fraction <0.85 = ~7.5 m2 g-1) and the BrC OC mass absorption cross sections (MACBrC,OC,λ) were calculated; at 370 nm ultraviolet wavelengths; the MACBrC,OC,λ ranged from 0.8 m2 g-1 to 2.29 m2 g-1 (lowest peat, highest kerosene), while at 520 nm wavelength MACBrC,OC,λ ranged from 0.07 m2 g-1 to 0.37 m2 g-1 (lowest peat, highest kerosene/incense mixture). These MAC results show that OC content can be an important contributor to light absorption when present in significant quantities (>0.9 OC/TC), source emissions have variable absorption spectra, and nonbiomass combustion sources can be significant contributors to BrC.

  3. Metallic elements in fossil fuel combustion products: amounts and form of emissions and evaluation of carcinogenicity and mutagenicity.

    PubMed Central

    Vouk, V B; Piver, W T

    1983-01-01

    Metallic elements contained in coal, oil and gasoline are mobilized by combustion processes and may be emitted into the atmosphere, mainly as components of submicron particles. The information about the amounts, composition and form of metal compounds is reviewed for some fuels and combustion processes. Since metal compounds are always contained in urban air pollutants, they have to be considered whenever an evaluation of biological impact of air pollutants is made. The value of currently used bioassays for the evaluation of the role of trace metal compounds, either as major biologically active components or as modifiers of biological effects of organic compounds is assessed. The whole animal bioassays for carcinogenicity do not seem to be an appropriate approach. They are costly, time-consuming and not easily amenable to the testing of complex mixtures. Some problems related to the application and interpretation of short-term bioassays are considered, and the usefulness of such bioassays for the evaluation of trace metal components contained in complex air pollution mixtures is examined. PMID:6337825

  4. A new global gridded data set of CO2 emissions from fossil fuel combustion: Methodology and evaluation

    NASA Astrophysics Data System (ADS)

    Rayner, P. J.; Raupach, M. R.; Paget, M.; Peylin, P.; Koffi, E.

    2010-10-01

    We describe a system for constraining the spatial distribution of fossil fuel emissions of CO2. The system is based on a modified Kaya identity which expresses emissions as a product of areal population density, per capita economic activity, energy intensity of the economy, and carbon intensity of energy. We apply the methodology of data assimilation to constrain such a model with various observations, notably, the statistics of national emissions and data on the distribution of nightlights and population. We hence produce a global, annual emission field at 0.25° resolution. Our distribution of emissions is smoother than that of the population downscaling traditionally used to describe emissions. Comparison with the Vulcan inventory suggests that the assimilated product performs better than downscaling for distributions of either population or nightlights alone for describing the spatial structure of emissions over the United States. We describe the complex structure of uncertainty that arises from combining pointwise and area-integrated constraints. Uncertainties can be as high as 50% at the pixel level and are not spatially independent. We describe the use of 14CO2 measurements to further constrain national emissions. Their value is greatest over large countries with heterogeneous emissions. Generated fields may be found online (http://ffdas.org/).

  5. Alternate Fuels Combustion Research

    DTIC Science & Technology

    1984-07-01

    AFWAL-TR-84-2042 ESL-TR-84-29 ALTERNATE FUELS COMBUSTION RESEARCH 0) PRATT & WHITNEY CANADA MISSISSAUGA, ONTARIO CANADA In JULY 1984 Final Report for...in small engincs. -291 REFERENCES 1. Gratton, M., Sampath, P., " Alternate Fuels Combustion Research Phase If", Pratt & Whitney Canada , AFWAL-TR-83-2057...for Period May 80 Sep e ALTERNATE FUELS COMBUSTION RESEARCHMa80-Sp3 4. PERFORMING ORIJ. REPORT NUMBER 7. AUTNOR(s) 4. 60ONTRA-CT-WI GANUMNER(s) *M

  6. Comprehensive characterization of humic-like substances in smoke PM2.5 emitted from the combustion of biomass materials and fossil fuels

    NASA Astrophysics Data System (ADS)

    Fan, Xingjun; Wei, Siye; Zhu, Mengbo; Song, Jianzhong; Peng, Ping'an

    2016-10-01

    Humic-like substances (HULIS) in smoke fine particulate matter (PM2.5) emitted from the combustion of biomass materials (rice straw, corn straw, and pine branch) and fossil fuels (lignite coal and diesel fuel) were comprehensively studied in this work. The HULIS fractions were first isolated with a one-step solid-phase extraction method, and were then investigated with a series of analytical techniques: elemental analysis, total organic carbon analysis, UV-vis (ultraviolet-visible) spectroscopy, excitation-emission matrix (EEM) fluorescence spectroscopy, Fourier transform infrared spectroscopy, and 1H-nuclear magnetic resonance spectroscopy. The results show that HULIS account for 11.2-23.4 and 5.3 % of PM2.5 emitted from biomass burning (BB) and coal combustion, respectively. In addition, contributions of HULIS-C to total carbon and water-soluble carbon in smoke PM2.5 emitted from BB are 8.0-21.7 and 56.9-66.1 %, respectively. The corresponding contributions in smoke PM2.5 from coal combustion are 5.2 and 45.5 %, respectively. These results suggest that BB and coal combustion are both important sources of HULIS in atmospheric aerosols. However, HULIS in diesel soot only accounted for ˜ 0.8 % of the soot particles, suggesting that vehicular exhaust may not be a significant primary source of HULIS. Primary HULIS and atmospheric HULIS display many similar chemical characteristics, as indicated by the instrumental analytical characterization, while some distinct features were also apparent. A high spectral absorbance in the UV-vis spectra, a distinct band at λex/λem ≈ 280/350 nm in EEM spectra, lower H / C and O / C molar ratios, and a high content of [Ar-H] were observed for primary HULIS. These results suggest that primary HULIS contain more aromatic structures, and have a lower content of aliphatic and oxygen-containing groups than atmospheric HULIS. Among the four primary sources of HULIS, HULIS from BB had the highest O / C molar ratios (0.43-0.54) and [H

  7. Alternate Fuels Combustion Research

    DTIC Science & Technology

    1983-10-01

    AFWAL-TR-83-2057 AD A13 8 5 7 5 ALTERNATE FUELS COMBUSTION RESEARCH PHASE RI ’~*~~4 & IWITEY CMAAA * ’s~t:Uwz, ONTARIO October 1983 I•oerls Report...83-2057 P_______________ C TITLE (mod ,,--tt-) 5. TYPE OF REPORT A PERIOD COVERED Alternate Fuels ioahusticn Research Interim Report for Period Phase...I$. KEY WORDS (Continue on reverse sirte it necessear and identify by block number) FUELS ALTERNATE FUELS GAS TURBINE COMBUSTION EXHAUST EMISSIONS 0

  8. EPA/IFP (Environmental Protection Agency/Institute Francais Du Petrole) European workshop on the emission of nitrous oxide from fossil-fuel combustion: Rueil-Malmaison, France, June 1-2, 1988

    SciTech Connect

    Ryan, J.V.; Srivastava, R.K.

    1989-10-01

    This report summarizes the proceedings of an EPA/Institut Francais du Petrole (IFP) cosponsored workshop addressing direct nitrous oxide (N2O) emission from fossil-fuel combustion. The third in a series, it was held at the IFP in Rueil-Malmaison, France, on June 1-2, 1988. Increasing atmospheric N2O concentrations have been linked to depletion of stratospheric ozone (O3) and to global-climate warming. The combustion of fossil fuels has been identified as a potential major anthropogenic source of N2O. The workshop had two goals: (1) to exchange information among various international research and industrial groups that are involved in N2O chemistry, modeling, and measurement; and (2) to develop a network for coordinating future related efforts.

  9. A Statistical Method for Estimating Missing GHG Emissions in Bottom-Up Inventories: The Case of Fossil Fuel Combustion in Industry in the Bogota Region, Colombia

    NASA Astrophysics Data System (ADS)

    Jimenez-Pizarro, R.; Rojas, A. M.; Pulido-Guio, A. D.

    2012-12-01

    The development of environmentally, socially and financially suitable greenhouse gas (GHG) mitigation portfolios requires detailed disaggregation of emissions by activity sector, preferably at the regional level. Bottom-up (BU) emission inventories are intrinsically disaggregated, but although detailed, they are frequently incomplete. Missing and erroneous activity data are rather common in emission inventories of GHG, criteria and toxic pollutants, even in developed countries. The fraction of missing and erroneous data can be rather large in developing country inventories. In addition, the cost and time for obtaining or correcting this information can be prohibitive or can delay the inventory development. This is particularly true for regional BU inventories in the developing world. Moreover, a rather common practice is to disregard or to arbitrarily impute low default activity or emission values to missing data, which typically leads to significant underestimation of the total emissions. Our investigation focuses on GHG emissions by fossil fuel combustion in industry in the Bogota Region, composed by Bogota and its adjacent, semi-rural area of influence, the Province of Cundinamarca. We found that the BU inventories for this sub-category substantially underestimate emissions when compared to top-down (TD) estimations based on sub-sector specific national fuel consumption data and regional energy intensities. Although both BU inventories have a substantial number of missing and evidently erroneous entries, i.e. information on fuel consumption per combustion unit per company, the validated energy use and emission data display clear and smooth frequency distributions, which can be adequately fitted to bimodal log-normal distributions. This is not unexpected as industrial plant sizes are typically log-normally distributed. Moreover, our statistical tests suggest that industrial sub-sectors, as classified by the International Standard Industrial Classification (ISIC

  10. Contribution of Fossil Fuels and Wood Combustion to Carcinogenic PAHs in the Ambient Atmosphere of a Tropical Megacity

    NASA Astrophysics Data System (ADS)

    Jyethi, D. S.; Khillare, P. S.; Sarkar, S.

    2015-12-01

    Weekly particulate matter sampling was carried out at a peri-urban site located in megacity Delhi, India for 1 year (2009-2010) and the annual mean PM10 level was found to be ˜9 times the World Health Organization limit. Seasonal variation of PAHs (range 37.2-74.0 ng m-3) was significant with winter values being 72% and 68% higher than summer and monsoon respectively. Principal component analysis coupled with multiple linear regression identified diesel, natural gas and lubricating oil combustion (49.5%), wood combustion (25.4%), gasoline (15.5%) and coal combustion (9.6%) sources for the observed PAHs. Heavy traffic on the national highway and arterial roads and domestic emissions from suburban households in the vicinity of the site appeared to have significantly affected its air quality. A substantial portion (˜55%) of the aerosol PAH load was comprised of carcinogenic species, which yielded a considerably high lifetime inhalation cancer risk estimate (8.7E-04). If considered as a conservative lower-bound estimate, this risk translates into ˜211 excess cancer cases for lifetime inhalation exposure to the observed PAH concentrations in Delhi.

  11. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China.

    PubMed

    Tao, Shu; Li, Xinrong; Yang, Yu; Coveney, Raymond M; Lu, Xiaoxia; Chen, Haitao; Shen, Weiran

    2006-08-01

    A USEPA, procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo[a]pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from approximately 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from approximately 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 +/- 2.87 ng/m3 on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m3, 41% of the entire population lives within this area.

  12. Dispersion modeling of polycyclic aromatic hydrocarbons from combustion of biomass and fossil fuels and production of coke in Tianjin, China

    SciTech Connect

    Shu Tao; Xinrong Li; Yu Yang; Raymond M. Coveney, Jr.; Xiaoxia Lu; Haitao Chen; Weiran Shen

    2006-08-01

    A USEPA procedure, ISCLT3 (Industrial Source Complex Long-Term), was applied to model the spatial distribution of polycyclic aromatic hydrocarbons (PAHs) emitted from various sources including coal, petroleum, natural gas, and biomass into the atmosphere of Tianjin, China. Benzo(a)pyrene equivalent concentrations (BaPeq) were calculated for risk assessment. Model results were provisionally validated for concentrations and profiles based on the observed data at two monitoring stations. The dominant emission sources in the area were domestic coal combustion, coke production, and biomass burning. Mainly because of the difference in the emission heights, the contributions of various sources to the average concentrations at receptors differ from proportions emitted. The shares of domestic coal increased from {approximately} 43% at the sources to 56% at the receptors, while the contributions of coking industry decreased from {approximately} 23% at the sources to 7% at the receptors. The spatial distributions of gaseous and particulate PAHs were similar, with higher concentrations occurring within urban districts because of domestic coal combustion. With relatively smaller contributions, the other minor sources had limited influences on the overall spatial distribution. The calculated average BaPeq value in air was 2.54 {+-} 2.87 ng/m{sup 3} on an annual basis. Although only 2.3% of the area in Tianjin exceeded the national standard of 10 ng/m{sup 3}, 41% of the entire population lives within this area. 37 refs., 9 figs.

  13. Homogeneous chemistry of NO/sub x/ production and removal from fossil fuel combustion gases. Final technical report

    SciTech Connect

    Silver, J.A.; Gozewski, C.M.; Kolb, C.E.

    1980-11-01

    The reduction of NO/sub x/ emissions from stationary combustion sources by non-catalytic homogeneous chemical addition is a promising technique. Demonstrations in laboratory experiments and on a number of field scale combustors have shown that the addition of ammonia to the exhaust flow significantly reduces the NO concentrations in a narrow temperature range. This report summarizes the work performed to understand the detailed chemical mechanism which makes this reduction occur. A model describing the NH/sub i//NO/sub x/ chemical system is developed, and rates of the key reactions identified are measured in a high temperature fast flow reactor. Product channels for certain important reactions are also identified. The experimental results are incorporated into the computer code, and the model predictions are compared with laboratory and field test results. Possible additives other than ammonia are evaluated and discussed.

  14. Fossil fuel and wood combustion as recorded by carbon particles in Lake Erie sediments 1850-1998.

    PubMed

    Kralovec, Andrew C; Christensen, Erik R; Van Camp, Ryan P

    2002-04-01

    Carbon particle analysis was performed on a dated sediment core from Lake Erie in order to explore the inputs of pollution from incomplete combustion of coal, oil, and wood. Carbon particles were isolated from the sediment by chemical digestion, and elemental carbon content was determined by CHN analysis. The type of carbon particle (from burning coal, oil, and wood) and particle size and relative abundance were determined using scanning electron microscopy on 100 particles from each core section. The elemental carbon content in the Lake Erie core ranges from 2.5 to 7.4 mg of carbon/g of sediment (1850-1998), and the maximum carbon content in the sediment occurs in the late 1960s to early 1970s. It is shown that particle mass is a better predictor than particle number of historical energy consumption records. This is especially clear for wood where variable particle volumes play a significant role in determining the record of elemental carbon mass from wood burning. Lake Erie core's content of total carbon and carbon particle type is in agreement with U.S. energy consumption records, except that a wood maximum occurs during 1905-1917, about 36 yr after the U.S. consumption maximum from 1870 to 1880.

  15. Do alternative energy sources displace fossil fuels?

    NASA Astrophysics Data System (ADS)

    York, Richard

    2012-06-01

    A fundamental, generally implicit, assumption of the Intergovernmental Panel on Climate Change reports and many energy analysts is that each unit of energy supplied by non-fossil-fuel sources takes the place of a unit of energy supplied by fossil-fuel sources. However, owing to the complexity of economic systems and human behaviour, it is often the case that changes aimed at reducing one type of resource consumption, either through improvements in efficiency of use or by developing substitutes, do not lead to the intended outcome when net effects are considered. Here, I show that the average pattern across most nations of the world over the past fifty years is one where each unit of total national energy use from non-fossil-fuel sources displaced less than one-quarter of a unit of fossil-fuel energy use and, focusing specifically on electricity, each unit of electricity generated by non-fossil-fuel sources displaced less than one-tenth of a unit of fossil-fuel-generated electricity. These results challenge conventional thinking in that they indicate that suppressing the use of fossil fuel will require changes other than simply technical ones such as expanding non-fossil-fuel energy production.

  16. Estimating contributions from biomass burning, fossil fuel combustion, and biogenic carbon to carbonaceous aerosols in the Valley of Chamonix: a dual approach based on radiocarbon and levoglucosan

    NASA Astrophysics Data System (ADS)

    Bonvalot, Lise; Tuna, Thibaut; Fagault, Yoann; Jaffrezo, Jean-Luc; Jacob, Véronique; Chevrier, Florie; Bard, Edouard

    2016-11-01

    concentrations are strongly correlated with the levoglucosan concentrations in winter samples, suggesting that almost all of the non-fossil carbon originates from wood combustion used for heating during winter. For summer samples, the joint use of 14C and levoglucosan measurements leads to a new model to separately quantify the contributions of biomass burning and biogenic emissions in the non-fossil fraction. The comparison of the biogenic fraction with polyols (a proxy for primary soil biogenic emissions) and with the temperature suggests a major influence of the secondary biogenic aerosols. Significant correlations are found between the NOx concentration and the fossil carbon concentration for all seasons and sites, confirming the relation between road traffic emissions and fossil carbon. Overall, this dual approach combining radiocarbon and levoglucosan analyses strengthens the conclusion concerning the impact of biomass burning. Combining these geochemical data serves both to detect and quantify additional carbon sources. The Arve River valley provides the first illustration of aerosols of this model.

  17. Development incentives for fossil fuel subsidy reform

    NASA Astrophysics Data System (ADS)

    Jakob, Michael; Chen, Claudine; Fuss, Sabine; Marxen, Annika; Edenhofer, Ottmar

    2015-08-01

    Reforming fossil fuel subsidies could free up enough funds to finance universal access to water, sanitation, and electricity in many countries, as well as helping to cut global greenhouse-gas emissions.

  18. New insights to the use of ethanol in automotive fuels: a stable isotopic tracer for fossil- and bio-fuel combustion inputs to the atmosphere.

    PubMed

    Giebel, Brian M; Swart, Peter K; Riemer, Daniel D

    2011-08-01

    Ethanol is currently receiving increased attention because of its use as a biofuel or fuel additive and because of its influence on air quality. We used stable isotopic ratio measurements of (13)C/(12)C in ethanol emitted from vehicles and a small group of tropical plants to establish ethanol's δ(13)C end-member signatures. Ethanol emitted in exhaust is distinctly different from that emitted by tropical plants and can serve as a unique stable isotopic tracer for transportation-related inputs to the atmosphere. Ethanol's unique isotopic signature in fuel is related to corn, a C4 plant and the primary source of ethanol in the U.S. We estimated a kinetic isotope effect (KIE) for ethanol's oxidative loss in the atmosphere and used previous assumptions with respect to the fractionation that may occur during wet and dry deposition. A small number of interpretive model calculations were used for source apportionment of ethanol and to understand the associated effects resulting from atmospheric removal. The models incorporated our end-member signatures and ambient measurements of ethanol, known or estimated source strengths and removal magnitudes, and estimated KIEs associated with atmospheric removal processes for ethanol. We compared transportation-related ethanol signatures to those from biogenic sources and used a set of ambient measurements to apportion each source contribution in Miami, Florida-a moderately polluted, but well ventilated urban location.

  19. Fossil fuels in the 21st century.

    PubMed

    Lincoln, Stephen F

    2005-12-01

    An overview of the importance of fossil fuels in supplying the energy requirements of the 21st century, their future supply, and the impact of their use on global climate is presented. Current and potential alternative energy sources are considered. It is concluded that even with substantial increases in energy derived from other sources, fossil fuels will remain a major energy source for much of the 21st century and the sequestration of CO2 will be an increasingly important requirement.

  20. Combustible particluate fuel heater

    SciTech Connect

    Collins, B.H.; Jurgens, H.J.W.

    1986-01-21

    This patent describes a combustible particulate fired heater. It consists of: a combustion chamber defined by upright side walls extending between open top and bottom ends; an enclosure surrounding the combustion chamber; a retort within the combustion chamber adjacent the bottom end and having a lower particulate receiving end and an upper open end; feed conveyor means leading through the enclosure to the retort for delivering metered quantities of combustible particulates to the lower particulate receiving end of the retort; primary combustion air supply means having a primary combustion air supply manifold extending at least partially about the upper open end of the retort; primary air control means on the primary air supply means for selectively allowing entry of combustion air from outside the enclosure in to the retort; secondary combustion air supply means including a secondary air supply manifold within the combustion chamber above the primary combustion air supply manifold; secondary air control means independent of the primary air control means for selectively allowing entry of secondary air from outside the enclosure to an area within the combustion chamber above the retort; an exhaust duct opening into the enclosure; and vacuum means connected to the exhaust duct for producing a pressure differential between the area confined by the enclosure and the ambient atmosphere such that ambient air is drawn through at least one of the combustion air supply means to induce a high level of gasification and to support combustion at the retort and for drawing combustion exhaust gases out through the exhaust duct.

  1. The dilemma of fossil fuel use and global climate change

    SciTech Connect

    Judkins, R.R.; Fulkerson, W. ); Sanghvi, M.K. )

    1991-01-01

    The use of fossil fuels and relationship to climate change is discussed. As the use of fossil fuels has grown, the problems of protecting the environment and human health and safety have also grown, providing a continuing challenge to technological and managerial innovation. Today that challenge is to control atmospheric emissions from combustion, particularly those emissions that cause acidic deposition, urban pollution, and increasing concentrations of greenhouse gases. Technology for reducing acidic deposition is available and needs only to be adopted, and the remedies for urban pollution are being developed and tested. How effective or expensive these will be remains to be determined. The control of emissions of the greenhouse gas, CO{sub 2}, seems possible only be reducing the total amounts of fossil fuels used worldwide, and by substituting efficient natural gas technologies for coal. Long before physical depletion forces the transition away from fossil fuels, it is at least plausible and even likely that the greenhouse effect will impose a show-stopping constraint. If such a transition were soon to be necessary, the costs would be very high because substitute energy sources are either limited or expensive or undesirable for other reasons. Furthermore, the costs would be unevenly felt and would be more oppressive for developing nations because they would be least able to pay and, on average, their use rates of fossil fuels are growing much faster than those of many industrialized countries. It is prudent, therefore, to try to manage the use of fossil fuels as if a greenhouse constraint is an important possibility.

  2. Fuel and Combustion Characteristics of Organic Wastes

    NASA Astrophysics Data System (ADS)

    Namba, Kunihiko; Ida, Tamio

    From a viewpoint of environmental preservation and resource protection, the recycling of wastes has been promoting. Expectations to new energy resource are growing by decrease of fossil fuel. Biomass is one of new energies for prevent global warning. This study is an attempt to burn biomass lamps made from residues in order to thermally recycle waste products of drink industries. The pyrolytic properties of shochu dregs and used tea leaves were observed by thermo-gravimertic analysis (TG) to obtained fundamental data of drink waste pyrolysis. It observed that shochu dregs pyrolyze under lower temperature than used tea leaves. These wastes were compressed by hot press apparatus in the temperature range from 140 to 180 °C for use as Bio-fuel (BF). The combustion behavior of BF was observed in fall-type electric furnace, where video-recording was carried out at sequential steps, such as ignition, visible envelope flame combustion and char combustion to obtain combustion characteristics such as ignition delay, visible flame combustion time and char combustion time.

  3. Aircraft borne combined measurements of the Fukushima radionuclide Xe-133 and fossil fuel combustion generated pollutants in the TIL - Implications for Cyclone induced lift and TIL physical-chemical processes

    NASA Astrophysics Data System (ADS)

    Arnold, Frank; Schlager, Hans; Simgen, Hardy; Aufmhoff, Heinfried; Baumann, Robert; Lindemann, Sigfried; Rauch, Ludwig; Kaether, Frank; Pirjolla, Liisa; Schumann, Ulrich

    2013-04-01

    The radionuclide Xe-133, released by the March 2011 nuclear disaster at Fukushima/Daiichi (hereafter FD), represents an ideal tracer for atmospheric transport. We report the, to our best knowledge, only aircraft borne measurements of FD Xe-133 in the Tropopause Inversion Layer (TIL), indicating rapid lift of Xe-133 rich planetary boundary layer air to the TIL. On the same research aircraft (FALCON), we have also conducted on-line measurements of fossil fuel combustion generated pollutant gases (SO2, NOx, HNO3,NOy), which were found to have increased concentrations in the TIL. In addition, we have conducted supporting model simulations of transport, chemical processes, and aerosol processes. Our investigations reveal a potentially important influence of East-Asian cyclone induced pollutants transport to the TIL, particularly influencing aerosol formation in the TIL.

  4. A shift in emission time profiles of fossil fuel combustion due to energy transitions impacts source receptor matrices for air quality.

    PubMed

    Hendriks, Carlijn; Kuenen, Jeroen; Kranenburg, Richard; Scholz, Yvonne; Schaap, Martijn

    2015-03-01

    Effective air pollution and short-lived climate forcer mitigation strategies can only be designed when the effect of emission reductions on pollutant concentrations and health and ecosystem impacts are quantified. Within integrated assessment modeling source-receptor relationships (SRRs) based on chemistry transport modeling are used to this end. Currently, these SRRs are made using invariant emission time profiles. The LOTOS-EUROS model equipped with a source attribution module was used to test this assumption for renewable energy scenarios. Renewable energy availability and thereby fossil fuel back up are strongly dependent on meteorological conditions. We have used the spatially and temporally explicit energy model REMix to derive time profiles for backup power generation. These time profiles were used in LOTOS-EUROS to investigate the effect of emission timing on air pollutant concentrations and SRRs. It is found that the effectiveness of emission reduction in the power sector is significantly lower when accounting for the shift in the way emissions are divided over the year and the correlation of emissions with synoptic situations. The source receptor relationships also changed significantly. This effect was found for both primary and secondary pollutants. Our results indicate that emission timing deserves explicit attention when assessing the impacts of system changes on air quality and climate forcing from short lived substances.

  5. Fossil Fuel Combustion-Related Emissions Dominate Atmospheric Ammonia Sources during Severe Haze Episodes: Evidence from (15)N-Stable Isotope in Size-Resolved Aerosol Ammonium.

    PubMed

    Pan, Yuepeng; Tian, Shili; Liu, Dongwei; Fang, Yunting; Zhu, Xiaying; Zhang, Qiang; Zheng, Bo; Michalski, Greg; Wang, Yuesi

    2016-08-02

    The reduction of ammonia (NH3) emissions is urgently needed due to its role in aerosol nucleation and growth causing haze formation during its conversion into ammonium (NH4(+)). However, the relative contributions of individual NH3 sources are unclear, and debate remains over whether agricultural emissions dominate atmospheric NH3 in urban areas. Based on the chemical and isotopic measurements of size-resolved aerosols in urban Beijing, China, we find that the natural abundance of (15)N (expressed using δ(15)N values) of NH4(+) in fine particles varies with the development of haze episodes, ranging from -37.1‰ to -21.7‰ during clean/dusty days (relative humidity: ∼ 40%), to -13.1‰ to +5.8‰ during hazy days (relative humidity: 70-90%). After accounting for the isotope exchange between NH3 gas and aerosol NH4(+), the δ(15)N value of the initial NH3 during hazy days is found to be -14.5‰ to -1.6‰, which indicates fossil fuel-based emissions. These emissions contribute 90% of the total NH3 during hazy days in urban Beijing. This work demonstrates the analysis of δ(15)N values of aerosol NH4(+) to be a promising new tool for partitioning atmospheric NH3 sources, providing policy makers with insights into NH3 emissions and secondary aerosols for regulation in urban environments.

  6. Fuel Effects on Gas Turbine Combustion

    DTIC Science & Technology

    1983-01-01

    W. S., Combustion Considerations for Future Jet Fuels, Sixteenth Symposium (International) on Combustion , The Combustion Institute, pp. 1631-1638...AFWAL-TR-83-2004 -. i FUEL EFFECTS ON SGAS TURBINE COMBUSTION A. H. Lefebvre <.A t • Combustion Laboratory Thermal Science and Propulsion Center...PERIOD COVEREDFinal Report for Period FUEL EFFECTS ON GAS TURBINE COMBUSTION 21 Sep 81 - 23 Dec 82 6. PERFORMING OIG. REPORT NUMBER ś. AUT"HOR(.) S

  7. Chemical composition of air masses transported from Asia to the U.S. West Coast during ITCT 2K2: Fossil fuel combustion versus biomass-burning signatures

    NASA Astrophysics Data System (ADS)

    de Gouw, J. A.; Cooper, O. R.; Warneke, C.; Hudson, P. K.; Fehsenfeld, F. C.; Holloway, J. S.; Hübler, G.; Nicks, D. K., Jr.; Nowak, J. B.; Parrish, D. D.; Ryerson, T. B.; Atlas, E. L.; Donnelly, S. G.; Schauffler, S. M.; Stroud, V.; Johnson, K.; Carmichael, G. R.; Streets, D. G.

    2004-12-01

    As part of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT 2K2), a National Oceanic and Atmospheric Administration (NOAA) WP-3D research aircraft was used to study the long-range transport of Asian air masses toward the west coast of North America. During research flights on 5 and 17 May, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on 5 and 17 May and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) to propane (C3H8), and, on May 5, the percentage of particles measured by the particle analysis by laser mass spectrometry (PALMS) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast over a range of latitudes and altitudes for the entire ITCT 2K2 period, showed that air masses from Southeast Asia and China were generally observed at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for Southeast Asia. Combined with the origin of the air masses versus altitude, this qualitatively explains the increase with altitude, averaged over the whole ITCT 2K2 period, of the different biomass-burning indicators.

  8. Biomass Burning versus Fossil Fuel Combustion Signatures of Air Masses Transported from Asia to the U.S. West Coast during ITCT2k2

    NASA Astrophysics Data System (ADS)

    de Gouw, J.; Cooper, O.; Warneke, C.; Hudson, P.; Brock, C.; Fehsenfeld, F.; Holloway, J.; Huebler, G.; Murphy, D.; Nowak, J.; Parrish, D.; Ryerson, T.; Trainer, M.; Atlas, E.

    2003-12-01

    The goal of the Intercontinental Transport and Chemical Transformation experiment in 2002 (ITCT2k2) was to study the transport of air pollution from Asia across the Pacific Ocean, and the implications for the background atmospheric composition at the surface in North America. During research flights of the NOAA WP-3 research aircraft on May 5 and 17, strong enhancements of carbon monoxide (CO) and other species were observed in air masses that had been transported from Asia in the free troposphere to North America. The hydrocarbon composition of the air masses indicated that the highest CO levels were related to fossil fuel use. During the flights on May 5, 17 and other days, the levels of several biomass-burning indicators increased with altitude. This was true for acetonitrile (CH3CN), methyl chloride (CH3Cl), the ratio of acetylene (C2H2) versus propane (C3H8), and the percentage of particles measured by the PALMS (particle analysis by laser mass spectrometry) instrument that were attributed to biomass burning based on their carbon and potassium content. An ensemble of back-trajectories, calculated from the U.S. west coast at various latitudes and pressures during the entire ITCT2k2 period, showed that air masses from South-East Asia and China were generally transported at higher altitudes than air from Japan and Korea. Emission inventories estimate the contribution of biomass burning to the total emissions to be low for Japan and Korea, higher for China, and the highest for South-East Asia. Combined with the origin of the air masses versus altitude determined by the back-trajectories, this explains the measured altitude profiles of the biomass burning indicators.

  9. Evaluation of NPP-VIIRS Nighttime Light Data for Mapping Global Fossil Fuel Combustion CO2 Emissions: A Comparison with DMSP-OLS Nighttime Light Data.

    PubMed

    Ou, Jinpei; Liu, Xiaoping; Li, Xia; Li, Meifang; Li, Wenkai

    2015-01-01

    Recently, the stable light products and radiance calibrated products from Defense Meteorological Satellite Program's (DMSP) Operational Linescan System (OLS) have been useful for mapping global fossil fuel carbon dioxide (CO2) emissions at fine spatial resolution. However, few studies on this subject were conducted with the new-generation nighttime light data from the Visible Infrared Imaging Radiometer Suite (VIIRS) sensor on the Suomi National Polar-orbiting Partnership (NPP) Satellite, which has a higher spatial resolution and a wider radiometric detection range than the traditional DMSP-OLS nighttime light data. Therefore, this study performed the first evaluation of the potential of NPP-VIIRS data in estimating the spatial distributions of global CO2 emissions (excluding power plant emissions). Through a disaggregating model, three global emission maps were then derived from population counts and three different types of nighttime lights data (NPP-VIIRS, the stable light data and radiance calibrated data of DMSP-OLS) for a comparative analysis. The results compared with the reference data of land cover in Beijing, Shanghai and Guangzhou show that the emission areas of map from NPP-VIIRS data have higher spatial consistency of the artificial surfaces and exhibit a more reasonable distribution of CO2 emission than those of other two maps from DMSP-OLS data. Besides, in contrast to two maps from DMSP-OLS data, the emission map from NPP-VIIRS data is closer to the Vulcan inventory and exhibits a better agreement with the actual statistical data of CO2 emissions at the level of sub-administrative units of the United States. This study demonstrates that the NPP-VIIRS data can be a powerful tool for studying the spatial distributions of CO2 emissions, as well as the socioeconomic indicators at multiple scales.

  10. The Fascinating Story of Fossil Fuels

    ERIC Educational Resources Information Center

    Asimov, Isaac

    1973-01-01

    How this energy source was created, its meaning to mankind, our drastically reduced supply, and why we cannot wait for nature to make more are considered. Today fossil fuels supply 96 percent of the energy used but we must find alternate energy options if we are to combat the energy crisis. (BL)

  11. Thermal dissolution of solid fossil fuels

    SciTech Connect

    E.G. Gorlov

    2007-10-15

    The use of oil shales and coals in the processes of thermal dissolution is considered. It is shown that thermal dissolution is a mode of liquefaction of solid fossil fuels and can be used both independently and in combination with liquefaction of coals and processing of heavy petroleum residues.

  12. Fossil fuels supplies modeling and research

    SciTech Connect

    Leiby, P.N.

    1996-06-01

    The fossil fuel supplies modeling and research effort focuses on models for US Strategic Petroleum Reserve (SPR) planning and management. Topics covered included new SPR oil valuation models, updating models for SPR risk analysis, and fill-draw planning. Another task in this program area is the development of advanced computational tools for three-dimensional seismic analysis.

  13. Fuel quality combustion analysis

    NASA Technical Reports Server (NTRS)

    Naegeli, D. W.; Moses, C. A.

    1979-01-01

    A high pressure research combustor operating over a wide range of burner inlet conditions was used to determine the effects of fuel molecular structure on soot formation. Six test fuels with equal hydrogen content (12.8%) were blended to stress different molecular components and final boiling points. The fuels containing high concentrations (20%) of polycyclic aromatics and partially saturated polycyclic structures such as tetralin, produced more soot than would be expected from a hydrogen content correlation for typical petroleum based fuels. Fuels containing naphthenes such as decalin agreed with the hydrogen content correlation. The contribution of polycyclic aromatics to soot formation was equivalent to a reduction in fuel hydrogen content of about one percent. The fuel sensitivity to soot formation due to the polycyclic aromatic contribution decreased as burner inlet pressure and fuel/air ratio increased.

  14. Combustion engineering issues for solid fuel systems

    SciTech Connect

    Bruce Miller; David Tillman

    2008-05-15

    The book combines modeling, policy/regulation and fuel properties with cutting edge breakthroughs in solid fuel combustion for electricity generation and industrial applications. This book provides real-life experiences and tips for addressing the various technical, operational and regulatory issues that are associated with the use of fuels. Contents are: Introduction; Coal Characteristics; Characteristics of Alternative Fuels; Characteristics and Behavior of Inorganic Constituents; Fuel Blending for Combustion Management; Fuel Preparation; Conventional Firing Systems; Fluidized-Bed Firing Systems; Post-Combustion Emissions Control; Some Computer Applications for Combustion Engineering with Solid Fuels; Gasification; Policy Considerations for Combustion Engineering.

  15. Modeling of advanced fossil fuel power plants

    NASA Astrophysics Data System (ADS)

    Zabihian, Farshid

    The first part of this thesis deals with greenhouse gas (GHG) emissions from fossil fuel-fired power stations. The GHG emission estimation from fossil fuel power generation industry signifies that emissions from this industry can be significantly reduced by fuel switching and adaption of advanced power generation technologies. In the second part of the thesis, steady-state models of some of the advanced fossil fuel power generation technologies are presented. The impacts of various parameters on the solid oxide fuel cell (SOFC) overpotentials and outputs are investigated. The detail analyses of operation of the hybrid SOFC-gas turbine (GT) cycle when fuelled with methane and syngas demonstrate that the efficiencies of the cycles with and without anode exhaust recirculation are close, but the specific power of the former is much higher. The parametric analysis of the performance of the hybrid SOFC-GT cycle indicates that increasing the system operating pressure and SOFC operating temperature and fuel utilization factor improves cycle efficiency, but the effects of the increasing SOFC current density and turbine inlet temperature are not favourable. The analysis of the operation of the system when fuelled with a wide range of fuel types demonstrates that the hybrid SOFC-GT cycle efficiency can be between 59% and 75%, depending on the inlet fuel type. Then, the system performance is investigated when methane as a reference fuel is replaced with various species that can be found in the fuel, i.e., H2, CO2, CO, and N 2. The results point out that influence of various species can be significant and different for each case. The experimental and numerical analyses of a biodiesel fuelled micro gas turbine indicate that fuel switching from petrodiesel to biodiesel can influence operational parameters of the system. The modeling results of gas turbine-based power plants signify that relatively simple models can predict plant performance with acceptable accuracy. The unique

  16. Diatoms: a fossil fuel of the future.

    PubMed

    Levitan, Orly; Dinamarca, Jorge; Hochman, Gal; Falkowski, Paul G

    2014-03-01

    Long-term global climate change, caused by burning petroleum and other fossil fuels, has motivated an urgent need to develop renewable, carbon-neutral, economically viable alternatives to displace petroleum using existing infrastructure. Algal feedstocks are promising candidate replacements as a 'drop-in' fuel. Here, we focus on a specific algal taxon, diatoms, to become the fossil fuel of the future. We summarize past attempts to obtain suitable diatom strains, propose future directions for their genetic manipulation, and offer biotechnological pathways to improve yield. We calculate that the yields obtained by using diatoms as a production platform are theoretically sufficient to satisfy the total oil consumption of the US, using between 3 and 5% of its land area.

  17. Fuels Combustion Research.

    DTIC Science & Technology

    1982-07-30

    the more complex fuels I1. Extensive flow reactor data over the temperature range 1110-1235 and at 1 atm suggested that the overall pyrolyses rate...differently than the aliphatic fuels and more Importantly during Its pyrolyses step forms butadiene and vinyl acetylene, other important precursors to

  18. Time scales and ratios of climate forcing due to thermal versus carbon dioxide emissions from fossil fuels

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaochun; Caldeira, Ken

    2015-06-01

    The Earth warms both when fossil fuel carbon is oxidized to carbon dioxide and when greenhouse effect of carbon dioxide inhibits longwave radiation from escaping to space. Various important time scales and ratios comparing these two climate forcings have not previously been quantified. For example, the global and time-integrated radiative forcing from burning a fossil fuel exceeds the heat released upon combustion within 2 months. Over the long lifetime of CO2 in the atmosphere, the cumulative CO2-radiative forcing exceeds the amount of energy released upon combustion by a factor >100,000. For a new power plant, the radiative forcing from the accumulation of released CO2 exceeds the direct thermal emissions in less than half a year. Furthermore, we show that the energy released from the combustion of fossil fuels is now about 1.71% of the radiative forcing from CO2 that has accumulated in the atmosphere as a consequence of historical fossil fuel combustion.

  19. Solid Fuel Combustion

    DTIC Science & Technology

    1990-08-01

    Continu.T on reverse if necessary and identify by block number) FIELD GROUP SUB-GROUP diffusion flame, solid fuel, flame radiation thermophoresis 19... thermophoresis and particle Brownian diffusion on particle profiles. In the first effort, a theoretical analysis is performed to study the distribution of small...particles (e.g., soot) of an assumed average dimension form at a global rate depending on the local fuel I concentration and temperature. Thermophoresis

  20. Replacement of fossil fuels by hydrogen

    NASA Astrophysics Data System (ADS)

    Dahlberg, R.

    The replacement of fossil fuels by solar hydrogen plantations is considered. A model is proposed in which ten plantation families, situated in suitable deserted zones of the world after the year 2000, would generate enough electrical energy to produce solar cells and materials for the construction of ten new plantations within a decade. The technological growth process for identical solar plantation units could be completed about 50 years after construction of the first plantation. All ten plantation families would, by using their electrical energy for the electrolysis of water, generate an amount of hydrogen per year which is four to five times the energy of the world's present annual consumption of oil. This concept envisions the global replacement of fossil fuels by hydrogen within a period consistent with the remaining time span of fossil fuel availability. Storage and transportation of hydrogen would be economical, and the energy produced would not present any environmental problems. Advantages with respect to gains in international cooperation, world peace, and world economy are also discussed.

  1. Traversing the mountaintop: world fossil fuel production to 2050.

    PubMed

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  2. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, Bertrand D.; Confer, Gregory L.; Shen, Zujing; Hapeman, Martin J.; Flynn, Paul L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slutty, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure.

  3. Method of combustion for dual fuel engine

    DOEpatents

    Hsu, B.D.; Confer, G.L.; Zujing Shen; Hapeman, M.J.; Flynn, P.L.

    1993-12-21

    Apparatus and a method of introducing a primary fuel, which may be a coal water slurry, and a high combustion auxiliary fuel, which may be a conventional diesel oil, into an internal combustion diesel engine comprises detecting the load conditions of the engine, determining the amount of time prior to the top dead center position of the piston to inject the main fuel into the combustion chamber, and determining the relationship of the timing of the injection of the auxiliary fuel into the combustion chamber to achieve a predetermined specific fuel consumption, a predetermined combustion efficiency, and a predetermined peak cylinder firing pressure. 19 figures.

  4. Traversing the mountaintop: world fossil fuel production to 2050

    PubMed Central

    Nehring, Richard

    2009-01-01

    During the past century, fossil fuels—petroleum liquids, natural gas and coal—were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85–93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios—low, medium and high—are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15–30 years. The subsequent peak plateau will last for 10–15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030. PMID:19770156

  5. Combustor nozzle for a fuel-flexible combustion system

    DOEpatents

    Haynes, Joel Meier; Mosbacher, David Matthew; Janssen, Jonathan Sebastian; Iyer, Venkatraman Ananthakrishnan

    2011-03-22

    A combustor nozzle is provided. The combustor nozzle includes a first fuel system configured to introduce a syngas fuel into a combustion chamber to enable lean premixed combustion within the combustion chamber and a second fuel system configured to introduce the syngas fuel, or a hydrocarbon fuel, or diluents, or combinations thereof into the combustion chamber to enable diffusion combustion within the combustion chamber.

  6. Fuels Combustion Research

    DTIC Science & Technology

    1987-10-31

    fuel appears to decay linearly suggesting a zero order decomposition. This result is believed to be caused by the p- methylbenzyl radical (C~HCeB4Cl2...formation of ethyltoluene. The most likely means to form ethyltoluene is by the reaction betwean methylbenzyl and a methyl radical (the m...known. It is postulated that methylbenzyl is resonantly stabilized, similar’ to the benzyl radical (Co~sCHa), hence allowing it to form in relatively

  7. Microbial biocatalyst developments to upgrade fossil fuels.

    PubMed

    Kilbane, John J

    2006-06-01

    Steady increases in the average sulfur content of petroleum and stricter environmental regulations concerning the sulfur content have promoted studies of bioprocessing to upgrade fossil fuels. Bioprocesses can potentially provide a solution to the need for improved and expanded fuel upgrading worldwide, because bioprocesses for fuel upgrading do not require hydrogen and produce far less carbon dioxide than thermochemical processes. Recent advances have demonstrated that biodesulfurization is capable of removing sulfur from hydrotreated diesel to yield a product with an ultra-low sulfur concentration that meets current environmental regulations. However, the technology has not yet progressed beyond laboratory-scale testing, as more efficient biocatalysts are needed. Genetic studies to obtain improved biocatalysts for the selective removal of sulfur and nitrogen from petroleum provide the focus of current research efforts.

  8. Recent developments in biodesulfurization of fossil fuels.

    PubMed

    Xu, Ping; Feng, Jinhui; Yu, Bo; Li, Fuli; Ma, Cuiqing

    2009-01-01

    The emission of sulfur oxides can have adverse effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some techniques of desulfurization have been used or studied to meet the stricter limitation on sulfur content in China. Recent advances have demonstrated the mechanism and developments for biodesulfurization of gasoline, diesel and crude oils by free cells or immobilized cells. Genetic technology was also used to improve sulfur removal efficiencies. In this review, we summarize recent progress mainly in China on petroleum biodesulfurization.

  9. The environmental dilemma of fossil fuels

    SciTech Connect

    MacCracken, M.C.

    1992-04-01

    The increasing atmospheric concentration of carbon dioxide poses an environmental dilemma for fossil fuel energy generation that, unlike other related emissions, cannot be resolved by control technologies alone. Although fossil fuels presently provide the most cost-effective global energy source, and model projections suggest that their use is initiating climatic changes which, while quite uncertain, may induce significant, counter-balancing impacts to water resources, coastal resources, ecological systems, and possibly agricultural production. The climate model indicate that the warming should have begun, and there is some evidence for this occurring, but at a less rapid and more uneven rate than projected. In addition, different climate models are not yet in agreement in their latitudinal or regional predictions, and it will likely require a decade or more for such agreement to develop as high performance computers become available for addressing this grand challenge'' problem. Thus, in addition to the prospect for climatic change, the uncertainties of the changes and associated impacts contribute to the dilemma of dealing with the issue. Further, the problem is pervasive and international scope, with different countries and peoples having differing perspectives of technology, development, and environmental responsibility. Dealing with this issue will thus require creativity, commitment, and flexibility.

  10. The environmental dilemma of fossil fuels

    SciTech Connect

    MacCracken, M.C.

    1992-04-01

    The increasing atmospheric concentration of carbon dioxide poses an environmental dilemma for fossil fuel energy generation that, unlike other related emissions, cannot be resolved by control technologies alone. Although fossil fuels presently provide the most cost-effective global energy source, and model projections suggest that their use is initiating climatic changes which, while quite uncertain, may induce significant, counter-balancing impacts to water resources, coastal resources, ecological systems, and possibly agricultural production. The climate model indicate that the warming should have begun, and there is some evidence for this occurring, but at a less rapid and more uneven rate than projected. In addition, different climate models are not yet in agreement in their latitudinal or regional predictions, and it will likely require a decade or more for such agreement to develop as high performance computers become available for addressing this ``grand challenge`` problem. Thus, in addition to the prospect for climatic change, the uncertainties of the changes and associated impacts contribute to the dilemma of dealing with the issue. Further, the problem is pervasive and international scope, with different countries and peoples having differing perspectives of technology, development, and environmental responsibility. Dealing with this issue will thus require creativity, commitment, and flexibility.

  11. Energy properties of solid fossil fuels and solid biofuels

    NASA Astrophysics Data System (ADS)

    Holubcik, Michal; Kolkova, Zuzana; Jandacka, Jozef

    2016-06-01

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison with solid fossil fuels.

  12. Fossil Fuel Biomarkers in Sewage Sludges: Environmental Significance

    NASA Astrophysics Data System (ADS)

    Payet, C.; Bryselbout, C.; Morel, J.-L.; Lichtfouse, E.

    Fossil fuel biomarkers, or "molecular fossils," are specific organic substances found in coals, petroleums, and sedimentary rocks. They are formed during millions of years of sedimentary burial by geochemical alteration of biological molecules, such as cholesterol, under the effect of biodegradation, temperature, pressure, and mineral catalysis, to produce geochemically mature molecules, for example, aromatic steroids (Fig. 1). Since fossil fuel biomarkers have a very specific molecular structure betraying fossil fuel sources, such markers should be useful in assessing the fossil fuel contamination of various modern media such as soils, plants, waters, and modern sediments. Here the identification of fossil fuel biomarkers of high geothermal maturity in sewage sludges provides evidence of the contamination of sludges by petroleum products. The most likely sources of contamination are contaminated vegetal food, road dust, and soil particles carried by rain water.

  13. Krakow clean fossil fuels and energy efficiency project

    SciTech Connect

    Butcher, T.A.; Pierce, B.L.

    1995-12-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the {open_quotes}Krakow Clean Fossil Fuels and Energy Efficiency Project.{close_quotes} Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100, 000 home stoves. These are collectively referred to as the {open_quotes}low emission sources{close_quotes} and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  14. Krakow clean fossil fuels and energy efficiency project

    SciTech Connect

    Pierce, B.L.; Butcher, T.A.

    1994-06-01

    Almost half of the energy used for beating in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 boilerhouses with a total capacity of 1,071 MW, and about 100,000 home furnaces with a total capacity of about 300 MW. More than 600 boilerhouses and 60 percent of the home furnaces are situated near the city center. These facilities are referred to as ``low emission sources`` because they have low stacks. They are the primary sources of particulates and hydrocarbons in the city, and major contributors of sulfur dioxide and carbon monoxide. The Support for Eastern European Democracy (SEED) Act of 1989 directed the US Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in Krakow as the ``Krakow Clean Fossil Fuels and Energy Efficiency Project.`` Funding is provided through the US Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe.

  15. Krakow clean fossil fuels and energy efficiency project

    SciTech Connect

    Butcher, T.A.; Pierce, B.L.

    1995-11-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the U.S. Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. This project is being implemented in the city of Krakow as the `Krakow Clean Fossil Fuels and Energy Efficiency Project.` Funding is provided through the U.S. Agency for International Development (AID). The project is being conducted in a manner that can be generalized to all of Poland and to the rest of Eastern Europe. The historic city of Krakow has a population of 750,000. Almost half of the heating energy used in Krakow is supplied by low-efficiency boilerhouses and home coal stoves. Within the town, there are more than 1,300 local boilerhouses and 100,000 home stoves. These are collectively referred to as the `low emission sources` and they are the primary sources of particulates and hydrocarbon emissions in the city and major contributors of sulfur dioxide and carbon monoxide.

  16. Krakow Clean Fossil Fuels and Energy Efficiency Program

    SciTech Connect

    Butcher, T.; Pierce, B.; Krishna, C.R.

    1992-09-01

    The Support for Eastern European Democracy (SEED) Act of 1989 directed the US Department of Energy (DOE) to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The project is being conducted in three phases. In Phase I, testing and analytical activities will establish the current level of emissions from existing equipment and operating practices, and will provide estimates of the costs and emission reductions of various options. Phase II consists of a series of public meetings in both Poland and the United States to present the results of Phase I activities. In Phase III, DOE will issue a solicitation for Polish/US joint ventures to perform commercial feasibility studies for the use of US technology in one or more of the areas under consideration. This report provides interim results from Phase 1.

  17. Children Are Likely to Suffer Most from Our Fossil Fuel Addiction

    PubMed Central

    Perera, Frederica P.

    2008-01-01

    Background The periods of fetal and child development arguably represent the stages of greatest vulnerability to the dual impacts of fossil fuel combustion: the multiple toxic effects of emitted pollutants (polycyclic aromatic hydrocarbons, particles, sulfur oxides, nitrogen oxides, metals) and the broad health impacts of global climate change attributable in large part to carbon dioxide released by fossil fuel burning. Objectives In this commentary I highlight current scientific evidence indicating that the fetus and young child are at heightened risk of developmental impairment, asthma, and cancer from fossil fuel pollutants and from the predicted effects of climate disruption such as heat waves, flooding, infectious disease, malnutrition, and trauma. Increased risk during early development derives from the inherently greater biologic vulnerability of the developing fetus and child and from their long future lifetime, during which early insults can potentially manifest as adult as well as childhood disease. I cite recent reports concluding that reducing dependence on fossil fuel and promoting clean and sustainable energy is economically feasible. Discussion Although much has been written separately about the toxicity of fossil fuel burning emissions and the effects of climate change on health, these two faces of the problem have not been viewed together with a focus on the developing fetus and child. Adolescence and old age are also periods of vulnerability, but the potential for both immediate and long-term adverse effects is greatest when exposure occurs prenatally or in the early years. Conclusions Consideration of the full spectrum of health risks to children from fossil fuel combustion underscores the urgent need for environmental and energy policies to reduce fossil fuel dependence and maximize the health benefits to this susceptible population. We do not have to leave our children a double legacy of ill health and ecologic disaster. PMID:18709169

  18. Internal combustion engine fuel supply system

    SciTech Connect

    Olson, J.A.; Custer, D. Jr.

    1992-09-15

    This patent describes an internal combustion engine. It comprises: means defining a combustion chamber, means defining a fuel/air chamber adapted to communicate with a source of air under pressure, means including a moveable wall defining a fuel chamber, selectively operable means for supplying fuel to the fuel chamber at a pressure sufficient to move the wall in the direction increasing the volume of the fuel chamber, means defining a fuel orifice which is spaced from the wall and which communicates between the fuel chamber and the fuel/air chamber, and means for opening the fuel/air chamber to the combustion chamber in response to movement of the wall in the direction increasing the volume of the fuel chamber.

  19. Divesting from Fossil Fuels Makes Sense Morally… and Financially

    ERIC Educational Resources Information Center

    Cleveland, Cutler J.; Reibstein, Richard

    2015-01-01

    Should university endowments divest from fossil fuels? A public discussion of this question has seen some university presidents issuing statements that they would not divest--that investments should not be used for "political action." Many universities hold large endowments that have significant positions in fossil fuel companies or…

  20. Advanced Integrated Fuel/Combustion Systems

    DTIC Science & Technology

    2004-01-01

    This decrease will allow for increased combustion operating efficiencies and fuel economy with reduced emissions on both current and future aircraft...capability is planned to be implemented on the CFM-56 for future combustion studies. We made facility improvements to allow fuel composition studies...an Aero Gas Turbine Combustion Chamber," ASME 97-GT-148. 8. Tolpadi, A. K., Danis, A. M., Mongia , H. C., and Lindstedt R. P., "Soot Modeling in

  1. Development of Kinetic Mechanisms for Next-Generation Fuels and CFD Simulation of Advanced Combustion Engines

    SciTech Connect

    Pitz, William J.; McNenly, Matt J.; Whitesides, Russell; Mehl, Marco; Killingsworth, Nick J.; Westbrook, Charles K.

    2015-12-17

    Predictive chemical kinetic models are needed to represent next-generation fuel components and their mixtures with conventional gasoline and diesel fuels. These kinetic models will allow the prediction of the effect of alternative fuel blends in CFD simulations of advanced spark-ignition and compression-ignition engines. Enabled by kinetic models, CFD simulations can be used to optimize fuel formulations for advanced combustion engines so that maximum engine efficiency, fossil fuel displacement goals, and low pollutant emission goals can be achieved.

  2. Biochar, a substitute for fossil fuels

    NASA Astrophysics Data System (ADS)

    Supriya, Akankshya; Samantray, R.; Mishra, S. C.

    2017-02-01

    The present piece of research is envisaged for the possibilities and usefulness of coco peat (coir dust) which is generally not considered for usefulness. Pyrolysis of coco peat was done at two different temperatures to obtain biochars and their properties were investigated. Proximate analysis gave the fixed carbon content which gave a good value for the required purpose. Characterization techniques like Scanning Electron Microscopy, X-Ray Diffraction and Fourier Transform Infra-Red Spectroscopy were employed. It was observed that depending on the pyrolysis temperature and conditions, new substances formed, the diffraction peaks changed and also there were major changes in functional groups. The cross-links were found to disintegrate with increasing temperature. The peaks unveiled the presence of silicon carbide in the biochar pyrolysed at 1000ºC. The change in the functional groups with increase in temperature manifested higher aromaticity which is an important attribute of fuels viz. petroleum, etc. Thus the present investigation can open up a new era for processing biochar from unutilized biowaste for its use as an alternative to fossil fuels.

  3. Fireside corrosion probes for fossil fuel combustion

    SciTech Connect

    Covino, B.S., Jr.; Bullard, S.J.; Ziomek-Moroz, M.; Holcomb, G.R.; Eden, D.A.

    2006-03-01

    Electrochemical corrosion rate probes have been constructed and tested along with mass loss coupons in environments consisting of N2/O2/CO2/SO2 plus water vapor. Temperatures ranged from 450° to 700°C. Results show that electrochemical corrosion rates for ash-covered mild steel are a function of time, temperature, and gaseous environment. Correlation between the electrochemical and mass loss corrosion rates was poor.

  4. Modules for estimating solid waste from fossil-fuel technologies

    SciTech Connect

    Crowther, M.A.; Thode, H.C. Jr.; Morris, S.C.

    1980-10-01

    Solid waste has become a subject of increasing concern to energy industries for several reasons. Increasingly stringent air and water pollution regulations result in a larger fraction of residuals in the form of solid wastes. Control technologies, particularly flue gas desulfurization, can multiply the amount of waste. With the renewed emphasis on coal utilization and the likelihood of oil shale development, increased amounts of solid waste will be produced. In the past, solid waste residuals used for environmental assessment have tended only to include total quantities generated. To look at environmental impacts, however, data on the composition of the solid wastes are required. Computer modules for calculating the quantities and composition of solid waste from major fossil fuel technologies were therefore developed and are described in this report. Six modules have been produced covering physical coal cleaning, conventional coal combustion with flue gas desulfurization, atmospheric fluidized-bed combustion, coal gasification using the Lurgi process, coal liquefaction using the SRC-II process, and oil shale retorting. Total quantities of each solid waste stream are computed together with the major components and a number of trace elements and radionuclides.

  5. Determination of fossil carbon content in Swedish waste fuel by four different methods.

    PubMed

    Jones, Frida C; Blomqvist, Evalena W; Bisaillon, Mattias; Lindberg, Daniel K; Hupa, Mikko

    2013-10-01

    This study aimed to determine the content of fossil carbon in waste combusted in Sweden by using four different methods at seven geographically spread combustion plants. In total, the measurement campaign included 42 solid samples, 21 flue gas samples, 3 sorting analyses and 2 investigations using the balance method. The fossil carbon content in the solid samples and in the flue gas samples was determined using (14)C-analysis. From the analyses it was concluded that about a third of the carbon in mixed Swedish waste (municipal solid waste and industrial waste collected at Swedish industry sites) is fossil. The two other methods (the balance method and calculations from sorting analyses), based on assumptions and calculations, gave similar results in the plants in which they were used. Furthermore, the results indicate that the difference between samples containing as much as 80% industrial waste and samples consisting of solely municipal solid waste was not as large as expected. Besides investigating the fossil content of the waste, the project was also established to investigate the usability of various methods. However, it is difficult to directly compare the different methods used in this project because besides the estimation of emitted fossil carbon the methods provide other information, which is valuable to the plant owner. Therefore, the choice of method can also be controlled by factors other than direct determination of the fossil fuel emissions when considering implementation in the combustion plants.

  6. Dataset for analysing the relationships among economic growth, fossil fuel and non-fossil fuel consumption.

    PubMed

    Asafu-Adjaye, John; Byrne, Dominic; Alvarez, Maximiliano

    2017-02-01

    The data presented in this article are related to the research article entitled 'Economic Growth, Fossil Fuel and Non-Fossil Consumption: A Pooled Mean Group Analysis using Proxies for Capital' (J. Asafu-Adjaye, D. Byrne, M. Alvarez, 2016) [1]. This article describes data modified from three publicly available data sources: the World Bank׳s World Development Indicators (http://databank.worldbank.org/data/reports.aspx?source=world-development-indicators), the U.S. Energy Information Administration׳s International Energy Statistics (http://www.eia.gov/cfapps/ipdbproject/IEDIndex3.cfm?tid=44&pid=44&aid=2) and the Barro-Lee Educational Attainment Dataset (http://www.barrolee.com). These data can be used to examine the relationships between economic growth and different forms of energy consumption. The dataset is made publicly available to promote further analyses.

  7. Renewable hydrogen production for fossil fuel processing

    SciTech Connect

    Greenbaum, E.

    1994-09-01

    The objective of this mission-oriented research program is the production of renewable hydrogen for fossil fuel processing. This program will build upon promising results that have been obtained in the Chemical Technology Division of Oak Ridge National Laboratory on the utilization of intact microalgae for photosynthetic water splitting. In this process, specially adapted algae are used to perform the light-activated cleavage of water into its elemental constituents, molecular hydrogen and oxygen. The great potential of hydrogen production by microalgal water splitting is predicated on quantitative measurement of their hydrogen-producing capability. These are: (1) the photosynthetic unit size of hydrogen production; (2) the turnover time of photosynthetic hydrogen production; (3) thermodynamic efficiencies of conversion of light energy into the Gibbs free energy of molecular hydrogen; (4) photosynthetic hydrogen production from sea water using marine algae; (5) the original development of an evacuated photobiological reactor for real-world engineering applications; (6) the potential for using modern methods of molecular biology and genetic engineering to maximize hydrogen production. The significance of each of these points in the context of a practical system for hydrogen production is discussed. This program will be enhanced by collaborative research between Oak Ridge National Laboratory and senior faculty members at Duke University, the University of Chicago, and Iowa State University. The special contribution that these organizations and faculty members will make is access to strains and mutants of unicellular algae that will potentially have useful properties for hydrogen production by microalgal water splitting.

  8. Transport realization of high resolution fossil fuel CO2 emissions in an urban domain

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Gurney, K. R.

    2010-12-01

    CO2 emissions from fossil fuel combustion are the largest net annual flux of carbon in the earth atmosphere system and energy consumption in urban environments is a major contributor to total fossil fuel CO2 emissions. Understanding how the emissions are transported in space and time, especially in urban environments and resolving contributions from individual sources of fossil-fuel CO2 emissions are an essential component of a complete reliable monitoring, reporting, and verification (MRV) system that are emerging at local, national, and international levels. As grid models are not designed to resolve concentrations on local scales, we tested the transport realization of fossil fuel CO2 emissions using the Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT) model, a commonly used transport algorithm for small domain air quality studies, in the greater Indianapolis region, USA. A typical 24-hour point, mobile, and area sources fossil fuel CO2 emissions in four seasons (spring, summer, autumn and winter) were processed from hourly emissions data and prepared at 500-meter spatial resolution for the model inputs together with other parameters. The simulation result provides a complete 4-dimensional concentration matrix transported from all sources for the urban domain which can be analyzed in order to isolate individual sources or test sampling strategies for verification at selected time periods. In addition, the urban 4-dimensional concentration matrix can be visualized in a virtual environment, which provides a powerful education and outreach platform for researchers, students, and public.

  9. Fireside corrosion in oxy-fuel combustion of coal

    SciTech Connect

    Holcomb, Gordon R.; Tylczak, Joseph; Meier, Gerald H.; Jung, Kee Young; Mu, Nan; Yanar, Nazik M.; Pettit, Frederick S.

    2011-08-01

    Oxy-fuel combustion is based on burning fossil fuels in a mixture of recirculated flue gas and oxygen, rather than in air. An optimized oxy-combustion power plant will have ultra-low emissions since the flue gas that results from oxy-fuel combustion consists almost entirely of CO2 and water vapor. Once the water vapor is condensed, it is relatively easy to sequester the CO2 so that it does not escape into the atmosphere. A variety of laboratory tests comparing air-firing to oxy-firing conditions, and tests examining specific simpler combinations of oxidants, were conducted at 650-700 C. Alloys studied included model Fe-Cr and Ni-Cr alloys, commercial ferritic steels, austenitic steels, and nickel base superalloys. Furthermore, the observed corrosion behavior shows accelerated corrosion even with sulfate additions that remain solid at the tested temperatures, encapsulation of ash components in outer iron oxide scales, and a differentiation between oxy-fuel combustion flue gas recirculation choices.

  10. Fireside corrosion in oxy-fuel combustion of coal

    DOE PAGES

    Holcomb, Gordon R.; Tylczak, Joseph; Meier, Gerald H.; ...

    2011-08-01

    Oxy-fuel combustion is based on burning fossil fuels in a mixture of recirculated flue gas and oxygen, rather than in air. An optimized oxy-combustion power plant will have ultra-low emissions since the flue gas that results from oxy-fuel combustion consists almost entirely of CO2 and water vapor. Once the water vapor is condensed, it is relatively easy to sequester the CO2 so that it does not escape into the atmosphere. A variety of laboratory tests comparing air-firing to oxy-firing conditions, and tests examining specific simpler combinations of oxidants, were conducted at 650-700 C. Alloys studied included model Fe-Cr and Ni-Crmore » alloys, commercial ferritic steels, austenitic steels, and nickel base superalloys. Furthermore, the observed corrosion behavior shows accelerated corrosion even with sulfate additions that remain solid at the tested temperatures, encapsulation of ash components in outer iron oxide scales, and a differentiation between oxy-fuel combustion flue gas recirculation choices.« less

  11. Diesel engine combustion of sunflower oil fuels

    SciTech Connect

    Zubik, J.; Sorenson, S.C.; Goering, C.E.

    1984-09-01

    The performance, combustion, and exhaust emissions of diesel fuel, a blend of 25% sunflower oil in diesel fuel, and sunflower oil methyl ester have been compared. All fuels performed satisfactorily in a direct injection diesel engine, with the fuels derived from sunflower oil giving somewhat higher cylinder pressures and rates of pressure rise due to a higher percentage of 'premixed' burning than the diesel fuel. General performance and emissions characteristics of the two fuels were comparable, with the oil based fuels giving lower smoke readings. 15 references.

  12. Molecular and isotopic evidence for fossil fuel aromatic hydrocarbons in soils

    SciTech Connect

    Lichtfouse, E.; Budzinski, F.H.; Garrigues, P.

    1996-10-01

    The origin of organic molecules occurring in complex media such as soils and sediments is still an enigma. In soils, for example, the occurrence of polycyclic aromatic hydrocarbons (PAH) is a major concern because these potentially toxic compounds may ultimately be transferred into food and drinking water. At present, two main hypotheses can be made for the origin of PAH in soils. PAH, or their precursors, can be synthesized by modem plants, within soil biomass and humic substance degradation. Alternatively, PAH may derive from fossil fuels and associated combustion products. In the present study, soils have been cultivated for 23 years with maize in order to label the organic matter with naturally {sup 13}C-enriched maize-derived carbon. {sup 13}C, {sup 14}C and molecular analysis of aromatic fractions from those soils show that the main part of PAH are ancient, most probably derived from fossil fuel and their combustion products.

  13. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2016-06-28

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  14. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2013-12-31

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choose the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  15. Engine combustion control via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M.; Splitter, Derek A.; Kokjohn, Sage L.

    2015-07-14

    A compression ignition engine uses two or more fuel charges having two or more reactivities to control the timing and duration of combustion. In a preferred implementation, a lower-reactivity fuel charge is injected or otherwise introduced into the combustion chamber, preferably sufficiently early that it becomes at least substantially homogeneously dispersed within the chamber before a subsequent injection is made. One or more subsequent injections of higher-reactivity fuel charges are then made, and these preferably distribute the higher-reactivity matter within the lower-reactivity chamber space such that combustion begins in the higher-reactivity regions, and with the lower-reactivity regions following thereafter. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot).

  16. Fuel gas combustion research at METC

    SciTech Connect

    Norton, T.S.

    1995-06-01

    The in-house combustion research program at METC is an integral part of many METC activities, providing support to METC product teams, project managers, and external industrial and university partners. While the majority of in-house combustion research in recent years has been focussed on the lean premixed combustion of natural gas fuel for Advanced Turbine Systems (ATS) applications, increasing emphasis is being placed on issues of syngas combustion, as the time approaches when the ATS and coal-fired power systems programs will reach convergence. When the METC syngas generator is built in 1996, METC will have the unique combination of mid-scale pressurized experimental facilities, a continuous syngas supply with variable ammonia loading, and a team of people with expertise in low-emissions combustion, chemical kinetics, combustion modeling, combustion diagnostics, and the control of combustion instabilities. These will enable us to investigate such issues as the effects of pressure, temperature, and fuel gas composition on the rate of conversion of fuel nitrogen to NOx, and on combustion instabilities in a variety of combustor designs.

  17. Fossil Fuel Emission Verification Modeling at LLNL

    SciTech Connect

    Cameron-Smith, P; Kosovic, B; Guilderson, T; Monache, L D; Bergmann, D

    2009-08-06

    We have an established project at LLNL to develop the tools needed to constrain fossil fuel carbon dioxide emissions using measurements of the carbon-14 isotope in atmospheric samples. In Figure 1 we show the fossil fuel plumes from Los Angeles and San Francisco for two different weather patterns. Obviously, a measurement made at any given location is going to depend on the weather leading up to the measurement. Thus, in order to determine the GHG emissions from some region using in situ measurements of those GHGs, we use state-of-the-art global and regional atmospheric chemistry-transport codes to simulate the plumes: the LLNL-IMPACT model (Rotman et al., 2004) and the WRFCHEM community code (http://www.wrf-model.org/index.php). Both codes can use observed (aka assimilated) meteorology in order to recreate the actual transport that occurred. The measured concentration of each tracer at a particular spatio-temporal location is a linear combination of the plumes from each region at that location (for non-reactive species). The challenge is to calculate the emission strengths for each region that fit the observed concentrations. In general this is difficult because there are errors in the measurements and modeling of the plumes. We solve this inversion problem using the strategy illustrated in Figure 2. The Bayesian Inference step combines the a priori estimates of the emissions, and their uncertainty, for each region with the results of the observations, and their uncertainty, and an ensemble of model predicted plumes for each region, and their uncertainty. The result is the mathematical best estimate of the emissions and their errors. In the case of non-linearities, or if we are using a statistical sampling technique such as a Markov Chain Monte Carlo technique, then the process is iterated until it converges (ie reaches stationarity). For the Bayesian inference we can use both a direct inversion capability, which is fast but requires assumptions of linearity and

  18. Hydrogen production econometric studies. [hydrogen and fossil fuels

    NASA Technical Reports Server (NTRS)

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  19. Geological setting of U.S. fossil fuels.

    USGS Publications Warehouse

    Masters, C.D.; Mast, R.F.

    1987-01-01

    The USA has a special position in terms of fossil fuel development. Not only is it one of the most important nations in terms of resources of oil, gas and coal, but it has also been by far the dominant producer and consumer. In this thorough review of the regional geological environments in which fossil fuels formed in the USA, the authors point to a variety of models of resource occurrence of global interest.-Authors

  20. 76 FR 3587 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... AGENCY 40 CFR Part 60 RIN 2060-AQ46 Standards of Performance for Fossil-Fuel-Fired, Electric Utility... 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel... government 22112 Fossil fuel-fired electric utility steam generating units owned by municipalities....

  1. Fuel-rich catalytic combustion of a high density fuel

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Merritt, Sylvia A.

    1993-01-01

    Fuel-rich catalytic combustion (ER is greater than 4) of the high density fuel exo-tetrahydrocyclopentadiene (JP-10) was studied over the equivalence ratio range 5.0 to 7.6, which yielded combustion temperatures of 1220 to 1120 K. The process produced soot-free gaseous products similar to those obtained with iso-octane and jet-A in previous studies. The measured combustion temperature agreed well with that calculated assuming soot was not a combustion product. The process raised the effective hydrogen/carbon (H/C) ratio from 1.6 to over 2.0, thus significantly improving the combustion properties of the fuel. At an equivalence ratio near 5.0, about 80 percent of the initial fuel carbon was in light gaseous products and about 20 percent in larger condensable molecules. Fuel-rich catalytic combustion has now been studied for three fuels with H/C ratios of 2.25 (iso-octane), 1.92 (jet-A), and 1.6 (JP-10). A comparison of the product distribution of these fuels shows that, in general, the measured concentrations of the combustion products were monotonic functions of the H/C ratio with the exception of hydrogen and ethylene. In these cases, data for JP-10 fell between iso-octane and jet-A rather than beyond jet-A. It is suggested that the ring cross-linking structure of JP-10 may be responsible for this behavior. All the fuels studied showed that the largest amounts of small hydrocarbon molecules and the smallest amounts of large condensable molecules occurred at the lower equivalence ratios. This corresponds to the highest combustion temperatures used in these studies. Although higher temperatures may improve this mix, the temperature is limited. First, the life of the present catalyst would be greatly shortened when operated at temperatures of 1300 K or greater. Second, fuel-rich catalytic combustion does not produce soot because the combustion temperatures used in the experiments were well below the threshold temperature (1350 K) for the formation of soot. Increasing

  2. Combustion characteristics of gas turbine alternative fuels

    NASA Technical Reports Server (NTRS)

    Rollbuhler, R. James

    1987-01-01

    An experimental investigation was conducted to obtain combustion performance values for specific heavyend, synthetic hydrocarbon fuels. A flame tube combustor modified to duplicate an advanced gas turbine engine combustor was used for the tests. Each fuel was tested at steady-state operating conditions over a range of mass flow rates, fuel-to-air mass ratio, and inlet air temperatures. The combustion pressure, as well as the hardware, were kept nearly constant over the program test phase. Test results were obtained in regards to geometric temperature pattern factors as a function of combustor wall temperatures, the combustion gas temperature, and the combustion emissions, both as affected by the mass flow rate and fuel-to-air ratio. The synthetic fuels were reacted in the combustor such that for most tests their performance was as good, if not better, than the baseline gasoline or diesel fuel tests. The only detrimental effects were that at high inlet air temperature conditions, fuel decomposition occurred in the fuel atomizing nozzle passages resulting in blockage. And the nitrogen oxide emissions were above EPA limits at low flow rate and high operating temperature conditions.

  3. Exploration for fossil and nuclear fuels from orbital altitudes

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1977-01-01

    The paper discusses the application of remotely sensed data from orbital satellites to the exploration for fossil and nuclear fuels. Geological applications of Landsat data are described including map editing, lithologic identification, structural geology, and mineral exploration. Specific results in fuel exploration are reviewed and a series of related Landsat images is included.

  4. Can UK fossil fuel emissions be determined by radiocarbon measurements?

    NASA Astrophysics Data System (ADS)

    Wenger, Angelina; O'Doherty, Simon; Rigby, Matthew; Manning, Alistair; Palmer, Paul

    2016-04-01

    The GAUGE project evaluates different methods to estimate UK emissions. However, estimating carbon dioxide emissions as a result of fossil fuel burning is challenging as natural fluxes in and out of the atmosphere are very large. Radiocarbon (14C) measurements offer a way to specifically measure the amount of recently added carbon dioxide from fossil fuel burning. This is possible as, due to their age, all the radiocarbon in fossil fuels has decayed. Hence the amount of recently added CO2 from fossil fuel burning can be measured as a depletion of the 14C content in air. While this method has been successfully applied by several groups on a city or a regional scale, this is the first attempt at using the technique for a national emission estimate. Geographically the UK, being an island, is a good location for such an experiment. But are 14CO2 measurements the ideal solution for estimating fossil fuel emissions as they are heralded to be? Previous studies have shown that 14CO2emissions from the nuclear industry mask the 14C depletion caused by fossil fuel burning and result in an underestimation of the fossil fuel CO2. While this might not be a problem in certain regions around the world, many countries like the UK have a substantial nuclear industry. A correction for this enhancement from the nuclear industry can be applied but are invariably difficult as 14CO2emissions from nuclear power plants have a high temporal variability. We will explain how our sampling strategy was chosen to minimize the influence form the nuclear industry and why this proved to be challenging. In addition we present the results from our ground based measurements to show why trying to estimate national emissions using radiocarbon measurements was overambitious, and how practical the technique is for the UK in general.

  5. Combustion chemistry and an evolving transportation fuel environment.

    SciTech Connect

    Taatjes, Craig A.

    2010-05-01

    The world currently faces tremendous energy challenges stemming from the need to curb potentially catastrophic anthropogenic climate change. In addition, many nations, including the United States, recognize increasing political and economic risks associated with dependence on uncertain and limited energy sources. For these and other reasons the chemical composition of transportation fuels is changing, both through introduction of nontraditional fossil sources, such as oil sands-derived fuels in the US stream, and through broader exploration of biofuels. At the same time the need for clean and efficient combustion is leading engine research towards advanced low-temperature combustion strategies that are increasingly sensitive to this changing fuel chemistry, particularly in the areas of pollutant formation and autoignition. I will highlight the new demands that advanced engine technologies and evolving fuel composition place on investigations of fundamental reaction chemistry. I will focus on recent progress in measuring product formation in elementary reactions by tunable synchrotron photoionization, on the elucidation of pressure-dependent effects in the reactions of alkyl and substituted alkyl radicals with O{sub 2}, and on new combined efforts in fundamental combustion chemistry and engine performance studies of novel potential biofuels.

  6. Fuel supplying device for internal combustion engine

    SciTech Connect

    Ishida, T.; Miki, T.; Nakamura, H.; Takamiya, B.

    1982-07-13

    A fuel supplying device for an internal combustion engine is disclosed which has a fuel supply passage for introducing fuel fed from a fuel pump at a substantially constant pressure to a fuel injector operative at a predetermined constant pressure. The fuel injector is installed at a congregated portion of engine intake manifolds. A metering valve includes a motor so that the pressure drop is maintained substantially constant by a differential regulator. The metering valve is disposed in an intermediate portion of the fuel supply passage. Calculating means including a servo signal generator calculates an injection flow amount causing a predetermined air/fuel ratio on the basis of signals of various engine running factors. An operational signal output from the servo signal generating circuit of the calculating means is applied to the drive motor means for driving said metering valve to thereby inject fuel into the intake manifolds.

  7. Fossil-Fuel C02 Emissions Database and Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.

    2012-04-01

    Fossil-Fuel C02 Emissions Database and Exploration System Misha Krassovski and Tom Boden Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production each year at global, regional, and national spatial scales. These estimates are vital to climate change research given the strong evidence suggesting fossil-fuel emissions are responsible for unprecedented levels of carbon dioxide (CO2) in the atmosphere. The CDIAC fossil-fuel emissions time series are based largely on annual energy statistics published for all nations by the United Nations (UN). Publications containing historical energy statistics make it possible to estimate fossil-fuel CO2 emissions back to 1751 before the Industrial Revolution. From these core fossil-fuel CO2 emission time series, CDIAC has developed a number of additional data products to satisfy modeling needs and to address other questions aimed at improving our understanding of the global carbon cycle budget. For example, CDIAC also produces a time series of gridded fossil-fuel CO2 emission estimates and isotopic (e.g., C13) emissions estimates. The gridded data are generated using the methodology described in Andres et al. (2011) and provide monthly and annual estimates for 1751-2008 at 1° latitude by 1° longitude resolution. These gridded emission estimates are being used in the latest IPCC Scientific Assessment (AR4). Isotopic estimates are possible thanks to detailed information for individual nations regarding the carbon content of select fuels (e.g., the carbon signature of natural gas from Russia). CDIAC has recently developed a relational database to house these baseline emissions estimates and associated derived products and a web-based interface to help users worldwide query these data holdings. Users can identify, explore and download desired CDIAC

  8. Fuel agitating device for internal combustion engine

    SciTech Connect

    Scouten, D.G.

    1992-09-22

    This patent describes an agitator for fuel being conducted to an internal combustion engine. It comprises: a casing, a chamber within the casing between the fuel inlet conduit and the fuel outlet conduit, flow divider means in the chamber for dividing the chamber into a plurality of fuel flow paths on opposite sides thereof, an inner wall in the casing defining the exit portion, flange means in the casing within the chamber and spaced radially inwardly from the inner wall, and conduit means within the flange means for conducting fuel to the outlet conduit.

  9. Krakow Clean Fossil Fuels and Energy Efficiency Project

    SciTech Connect

    Butcher, T.A.; Pierce, B.; Krajewski, R.; LaMontagne, J.; Kirchstetter, T.

    1992-05-01

    In Karkow, Poland almost half of the energy used for heating is supplied by local, solid-fuel-fired boilerhouses and home stoves. These facilities are referred to as the low emission sources'' and are primary contributors of particulates and hydrocarbon air pollution in the city and secondary contributors of sulfur dioxide and carbon monoxide. The Support of Eastern European Democracy Act of 1989 directed the US Department of Energy to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The Project is being conducted in a manner that can be generalized to all of Poland and uito the rest of Eastern Europe. The project plan includes three phases which have been developed around five specific subprojects. In Phase 1, technical and economic assessments will be made of pollution reduction options for the five subprojects. Phase 2 plans call for public meetings in the US and Poland for companies interested in forming joint ventures. Information will be available in these meetings to enable companies to identify markets and select potential partners that meet with their capabilities and interests. In Phase 3, DOE will issue a solicitation for Polish/American joint ventures to perform commercial feasibility studies for the supply of US technology applicable to one or more of the five subprojects. The selected joint venture companies would receive assistance in the form of cooperative agreements requiring at least 50% cost-sharing to perform those activities necessary to permit them to conduct business in Poland.

  10. Krakow Clean Fossil Fuels and Energy Efficiency Project

    SciTech Connect

    Butcher, T.A.; Pierce, B.; Krajewski, R.; LaMontagne, J.; Kirchstetter, T.

    1992-05-01

    In Karkow, Poland almost half of the energy used for heating is supplied by local, solid-fuel-fired boilerhouses and home stoves. These facilities are referred to as the ``low emission sources`` and are primary contributors of particulates and hydrocarbon air pollution in the city and secondary contributors of sulfur dioxide and carbon monoxide. The Support of Eastern European Democracy Act of 1989 directed the US Department of Energy to undertake an equipment assessment project aimed at developing the capability within Poland to manufacture or modify industrial-scale combustion equipment to utilize fossil fuels cleanly. The Project is being conducted in a manner that can be generalized to all of Poland and uito the rest of Eastern Europe. The project plan includes three phases which have been developed around five specific subprojects. In Phase 1, technical and economic assessments will be made of pollution reduction options for the five subprojects. Phase 2 plans call for public meetings in the US and Poland for companies interested in forming joint ventures. Information will be available in these meetings to enable companies to identify markets and select potential partners that meet with their capabilities and interests. In Phase 3, DOE will issue a solicitation for Polish/American joint ventures to perform commercial feasibility studies for the supply of US technology applicable to one or more of the five subprojects. The selected joint venture companies would receive assistance in the form of cooperative agreements requiring at least 50% cost-sharing to perform those activities necessary to permit them to conduct business in Poland.

  11. Assessing global fossil fuel availability in a scenario framework

    SciTech Connect

    Bauer, Nico; Hilaire, Jérôme; Brecha, Robert J.; Edmonds, Jae; Jiang, Kejun; Kriegler, Elmar; Rogner, Hans-Holger; Sferra, Fabio

    2016-06-01

    This study assesses global, long-term economic availability of coal, oil and gas within the Shared Socio-economic Pathway (SSP) scenario framework considering alternative assumptions as to highly uncertain future developments of technology, policy and the economy. Diverse sets of trajectories are formulated varying the challenges to mitigation and adaptation of climate change. The potential CO2 emissions from fossil fuels make it a crucial element subject to deep uncertainties. The analysis is based on a well-established data set of cost-quantity combinations that assumes favorable techno-economic developments, but ignores additional constraints on the extraction sector. This study significantly extends that analysis to include alternative assumptions for the fossil fuel sector consistent with the SSP scenario families and applies these filters to the original data set, thus resulting in alternative cumulative fossil fuel availability curves. In a Middle-of-the-Road scenario, low cost fossil fuels embody carbon consistent with a RCP6.0 emission profile, if all the CO2 were emitted freely during the 21st century. In scenarios with high challenges to mitigation, the assumed embodied carbon in low-cost fossil fuels can trigger a RCP8.5 scenario; low mitigation challenges scenarios are still consistent with a RCP4.5 scenario.

  12. Fuel injection apparatus for internal combustion engines

    SciTech Connect

    Nozaki, S.; Yamada, K.; Kushida, T.

    1986-11-18

    This patent describes a fuel injection apparatus including a fuel injection pump which is adapted to carry out fuel intake, fuel pressurization, fuel injection and draining of cut-off fuel in accordance with the reciprocal movement of a plunger. The plunger is driven in synchronization with the rotational operation of an internal combustion engine. The apparatus comprises: a first storing means for temporarily storing cut-off fuel drained at the same time of the termination of the fuel injection; a second storing means of changeable volume for temporarily storing fuel for intake, the second storing means having a movable member which is movable in response to the quantity of fuel introduced therein; a detecting means for producing a detection signal relating to the amount of fuel stored in the second storing means; a clamping means responsible to an electric signal for clamping the movable member; and a signal producing means for producing at least one condition signal relating to the operating condition of the internal combustion engine.

  13. Can Geothermal Power Replace Fossil Fuels?

    NASA Astrophysics Data System (ADS)

    Klenner, R.; Gosnold, W. D.

    2009-12-01

    is scaled up to produce power in the MW range. Values needed for these systems are temperatures of 92+ °C and flow rates of 140-1000 gpm. In a detailed analysis of the North Dakota part of the Williston Basin, we used heat flow, bottom-hole temperatures, and measured temperature gradients to calculate the energy contained within specific formations having temperatures in the range of 100 °C to 150 °C. We find that at a 2% recovery factor, approximately 4500 MW/hr can be recovered at depths of 3-4 km. North Dakota currently produces approximately 3100 MW/hr from non-renewable sources such as coal and petroleum. We conclude that the geothermal resource in the Williston Basin could completely replace fossil fuels as an electrical power supply for North Dakota.

  14. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century.

    PubMed

    Graven, Heather D

    2015-08-04

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon ((14)C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio (14)C/C in atmospheric CO2 (Δ(14)CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ(14)CO2 because fossil fuels have lost all (14)C from radioactive decay. Simulations of Δ(14)CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ(14)CO2 near the preindustrial level of 0‰ through 2100, whereas "business-as-usual" emissions will reduce Δ(14)CO2 to -250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial "aging" of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old.

  15. Impact of fossil fuel emissions on atmospheric radiocarbon and various applications of radiocarbon over this century

    PubMed Central

    Graven, Heather D.

    2015-01-01

    Radiocarbon analyses are commonly used in a broad range of fields, including earth science, archaeology, forgery detection, isotope forensics, and physiology. Many applications are sensitive to the radiocarbon (14C) content of atmospheric CO2, which has varied since 1890 as a result of nuclear weapons testing, fossil fuel emissions, and CO2 cycling between atmospheric, oceanic, and terrestrial carbon reservoirs. Over this century, the ratio 14C/C in atmospheric CO2 (Δ14CO2) will be determined by the amount of fossil fuel combustion, which decreases Δ14CO2 because fossil fuels have lost all 14C from radioactive decay. Simulations of Δ14CO2 using the emission scenarios from the Intergovernmental Panel on Climate Change Fifth Assessment Report, the Representative Concentration Pathways, indicate that ambitious emission reductions could sustain Δ14CO2 near the preindustrial level of 0‰ through 2100, whereas “business-as-usual” emissions will reduce Δ14CO2 to −250‰, equivalent to the depletion expected from over 2,000 y of radioactive decay. Given current emissions trends, fossil fuel emission-driven artificial “aging” of the atmosphere is likely to occur much faster and with a larger magnitude than previously expected. This finding has strong and as yet unrecognized implications for many applications of radiocarbon in various fields, and it implies that radiocarbon dating may no longer provide definitive ages for samples up to 2,000 y old. PMID:26195757

  16. Combustion Science for Cleaner Fuels

    SciTech Connect

    Ahmed, Musahid

    2014-10-17

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  17. Combustion Science for Cleaner Fuels

    ScienceCinema

    Ahmed, Musahid

    2016-07-12

    Musahid Ahmed discusses how he and his team use the Advanced Light Source (ALS) to study combustion chemistry at our '8 Big Ideas' Science at the Theater event on October 8th, 2014, in Oakland, California.

  18. Hybrid combustion with metallized fuels

    NASA Technical Reports Server (NTRS)

    Yi, Jianwen; Wygle, Brian S.; Bates, Ronald W.; Jones, Michael D.; Ramohalli, Kumar

    1993-01-01

    A chemical method of adding certain catalysts to improve the degradation process of a solid fuel is discussed. Thermogravimetric (TGA) analysis used to study the fundamental degradation behavior of a typical hybrid fuel (HTPB) shows that high surface temperatures increase the degradation rate. Fuels were tested in a laboratory-scale experimental hybrid rocket and their behavior was compared to a baseline behavior of HTPB fuel regression rates. It was found that a small amount of metal powder added to the fuel can significantly increase the regression rates.

  19. Fuel-rich catalytic combustion of a high density fuel

    SciTech Connect

    Brabbs, T.A.; Merritt, S.A.

    1993-07-01

    Fuel-rich catalytic combustion (ER is greater than 4) of the high density fuel exo-tetrahydrocyclopentadiene (JP-10) was studied over the equivalence ratio range 5.0 to 7.6, which yielded combustion temperatures of 1220 to 1120 K. The process produced soot-free gaseous products similar to those obtained with iso-octane and jet-A in previous studies. The measured combustion temperature agreed well with that calculated assuming soot was not a combustion product. The process raised the effective hydrogen/carbon (H/C) ratio from 1.6 to over 2.0, thus significantly improving the combustion properties of the fuel. At an equivalence ratio near 5.0, about 80 percent of the initial fuel carbon was in light gaseous products and about 20 percent in larger condensable molecules. Fuel-rich catalytic combustion has now been studied for three fuels with H/C ratios of 2.25 (iso-octane), 1.92 (jet-A), and 1.6 (JP-10). A comparison of the product distribution of these fuels shows that, in general, the measured concentrations of the combustion products were monotonic functions of the H/C ratio with the exception of hydrogen and ethylene. In these cases, data for JP-10 fell between iso-octane and jet-A rather than beyond jet-A. It is suggested that the ring cross-linking structure of JP-10 may be responsible for this behavior. All the fuels studied showed that the largest amounts of small hydrocarbon molecules and the smallest amounts of large condensable molecules occurred at the lower equivalence ratios. This corresponds to the highest combustion temperatures used in these studies. Although higher temperatures may improve this mix, the temperature is limited. First, the life of the present catalyst would be greatly shortened when operated at temperatures of 1300 K or greater. Second, fuel-rich catalytic combustion does not produce soot because the combustion temperatures used in the experiments were well below the threshold temperature (1350 K) for the formation of soot.

  20. Carbon dioxide emissions from fossil-fuel use, 1751 1950

    NASA Astrophysics Data System (ADS)

    Andres, R. J.; Fielding, D. J.; Marland, G.; Boden, T. A.; Kumar, N.; Kearney, A. T.

    1999-09-01

    Newly compiled energy statistics allow for an estimation of the complete time series of carbon dioxide (CO2) emissions from fossil-fuel use for the years 1751 to the present. The time series begins with 3×106 metric tonnes carbon (C). This initial flux represents the early stages of the fossil-fuel era. The CO2 flux increased exponentially until World War I. The time series derived here seamlessly joins the modern 1950 to present time series. Total cumulative CO2 emissions through 1949 were 61.0×109 tonnes C from fossil-fuel use, virtually all since the beginning of the Industrial Revolution around 1860. The rate of growth continues to grow during present times, generating debate on the probability of enhanced greenhouse warming. In addition to global totals, national totals and 1° global distributions of the data have been calculated.

  1. Combustion engine for solid and liquid fuels

    NASA Technical Reports Server (NTRS)

    Pabst, W.

    1986-01-01

    A combustion engine having no piston, a single cylinder, and a dual-action, that is applicable for solid and liquid fuels and propellants, and that functions according to the principle of annealing point ignition is presented. The invention uses environmentally benign amounts of fuel and propellants to produce gas and steam pressure, and to use a simple assembly with the lowest possible consumption and constant readiness for mixing and burning. The advantage over conventional combustion engines lies in lower consumption of high quality igniting fluid in the most cost effective manner.

  2. Catalytic combustion with incompletely vaporized residual fuel

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1981-01-01

    Catalytic combustion of fuel lean mixtures of incompletely vaporized residual fuel and air was investigated. The 7.6 cm diameter, graded cell reactor was constructed from zirconia spinel substrate and catalyzed with a noble metal catalyst. Streams of luminous particles exited the rector as a result of fuel deposition and carbonization on the substrate. Similar results were obtained with blends of No. 6 and No. 2 oil. Blends of shale residual oil and No. 2 oil resulted in stable operation. In shale oil blends the combustor performance degraded with a reduced degree of fuel vaporization. In tests performed with No. 2 oil a similar effect was observed.

  3. Fuel injection apparatus for internal combustion engines

    SciTech Connect

    Yamaguchi, S.; Ishiwata, H.

    1988-03-15

    A fuel injection apparatus for internal combustion engines is described comprising: a fuel injection pump which has a plunger caused to carry out a least reciprocal movement in a predetermined pattern in a bore formed in a plunger barrel to pressurize fuel in the plunge barrel and at least one control sleeve fitted on the plunger, a first actuator for regulating the position of the control sleeve to regulate the fuel injection rate; a second actuator for regulating the position of the plunger to regulate the fuel injection quantity; a first means responsive to at least one condition signal indicating the operating condition of the internal combustion engine for drivingly controlling the first and second actuators in such a way that the optimum fuel injection rate and fuel injection quantity can be obtained at each instant; a detecting means for detecting any trouble occurring in the control system for regulating the position of the control sleeve; and a second means for limiting the control operation by the first means so that an excessive rise in the inner pressure of the cylinders in the internal combustion engine is prevented when the occurrence of trouble is detected by the detecting means.

  4. Fuels Performance: Navigating the Intersection of Fuels and Combustion (Brochure)

    SciTech Connect

    Not Available

    2014-12-01

    Researchers at the National Renewable Energy Laboratory (NREL), the only national laboratory dedicated 100% to renewable energy and energy efficiency, recognize that engine and infrastructure compatibility can make or break the impact of even the most promising fuel. NREL and its industry partners navigate the intersection of fuel chemistry, ignition kinetics, combustion, and emissions, with innovative approaches to engines and fuels that meet drivers' expectations, while minimizing petroleum use and GHGs.

  5. Nuclear Magnetic Resonance Applications to Unconventional Fossil Fuel Resources

    NASA Astrophysics Data System (ADS)

    Kleinberg, R. L.; Leu, G.

    2008-12-01

    Technical and economic projections strongly suggest that fossil fuels will continue to play a dominant role in the global energy market through at least the mid twenty-first century. However, low-cost conventional oil and gas will be depleted in that time frame. Therefore new sources of energy will be needed. We discuss two relatively untapped unconventional fossil fuels: heavy oil and gas hydrate. In both cases, nuclear magnetic resonance plays a key role in appraising the resource and providing information needed for designing production processes.

  6. Mechanical fuel injector for internal combustion engines

    SciTech Connect

    Beaty, K.D.

    1993-08-31

    An apparatus is described for injecting fuel into an internal combustion engine having an air inlet containing an adjustable air throttle valve, comprising: a hollow injector body having a cylindrical bore therein; a compression head closing one end of the bore; a pump head closing an opposite end of the bore; a plunger piston reciprocally moveable within the cylinder bore defining a variable volume fuel pumping chamber formed by the injector body, the compression head, and a first end of the piston, and a variable volume compression chamber formed by the injector body, the pump head and a second end of the piston; fuel supply means connected to the pumping chamber; fuel passage means interconnecting the pumping chamber, the compression chamber and the fuel supply means; air supply means connected to the fuel passage means; fuel/air discharge means connected to the compression chamber; an injection nozzle located in the engine and connected to the fuel/air discharge means for injecting a mixture of fuel and air into the engine for combustion therein; and actuator means operably interconnecting the piston and the engine for reciprocating the piston within the cylinder bore of the injector body.

  7. Integrated capture of fossil fuel gas pollutants including CO.sub.2 with energy recovery

    DOEpatents

    Ochs, Thomas L [Albany, OR; Summers, Cathy A [Albany, OR; Gerdemann, Steve [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul [Independence, OR; Patrick, Brian R [Chicago, IL

    2011-10-18

    A method of reducing pollutants exhausted into the atmosphere from the combustion of fossil fuels. The disclosed process removes nitrogen from air for combustion, separates the solid combustion products from the gases and vapors and can capture the entire vapor/gas stream for sequestration leaving near-zero emissions. The invention produces up to three captured material streams. The first stream is contaminant-laden water containing SO.sub.x, residual NO.sub.x particulates and particulate-bound Hg and other trace contaminants. The second stream can be a low-volume flue gas stream containing N.sub.2 and O.sub.2 if CO2 purification is needed. The final product stream is a mixture comprising predominantly CO.sub.2 with smaller amounts of H.sub.2O, Ar, N.sub.2, O.sub.2, SO.sub.X, NO.sub.X, Hg, and other trace gases.

  8. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  9. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  10. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  11. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  12. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  13. 30 CFR 56.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Fueling internal combustion engines. 56.4103... Prevention and Control Prohibitions/precautions/housekeeping § 56.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  14. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  15. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  16. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  17. 30 CFR 57.4103 - Fueling internal combustion engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Fueling internal combustion engines. 57.4103... Prevention and Control Prohibitions/precautions/housekeeping § 57.4103 Fueling internal combustion engines. Internal combustion engines shall be switched off before refueling if the fuel tanks are integral parts...

  18. CONTROLLING EMISSIONS FROM FUEL AND WASTE COMBUSTION

    EPA Science Inventory

    Control of emissions from combustion of fuels and wastes has been a traditional focus of air pollution regulations. Significant technology developments of the '50s and '60s have been refined into reliable chemical and physical process unit operations. In the U.S., acid rain legis...

  19. New Optical Sensor Suite for Ultrahigh Temperature Fossil Fuel Application

    SciTech Connect

    John Coggin; Tom Flynn; Jonas Ivasauskas; Daniel Kominsky; Carrie Kozikowski; Russell May; Michael Miller; Tony Peng; Gary Pickrell; Raymond Rumpf; Kelly Stinson-Bagby; Dan Thorsen; Rena Wilson

    2007-12-31

    Accomplishments of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants and solid oxide fuel cells are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring.

  20. Fire vs. fossil fuel: all CO2 emissions are not created equal

    NASA Astrophysics Data System (ADS)

    Landry, J.-S.; Matthews, H. D.

    2015-09-01

    Fire is arguably the most influential natural disturbance in terrestrial ecosystems, thereby playing a major role in carbon exchanges and affecting many climatic processes. Nevertheless, fire has not been the subject of dedicated studies in coupled climate-carbon models with interactive vegetation until very recently. Hence, previous studies resorted to results from simulations of fossil fuel emissions to estimate the effects of fire-induced CO2 emissions. While atmospheric CO2 molecules are all alike, fundamental differences in their origin suggest that the effects from fire emissions on the global carbon cycle and temperature are irreconcilable with the effects from fossil fuel emissions. The main purpose of this study is to illustrate the consequences from these fundamental differences between CO2 emissions from fossil fuels and non-deforestation fires (i.e., following which the natural vegetation can recover) using 1000-year simulations of a coupled climate-carbon model with interactive vegetation. We assessed emissions from both pulse and stable fire regime changes, considering both the gross (carbon released from combustion) and net (fire-caused change in land carbon, also accounting for vegetation decomposition and regrowth, as well as climate-carbon feedbacks) fire CO2 emissions. In all cases, we found substantial differences from equivalent amounts of emissions produced by fossil fuel combustion. These findings suggest that side-by-side comparisons of non-deforestation fire and fossil fuel CO2 emissions - implicitly implying that they have similar effects - should therefore be avoided, particularly when these comparisons involve gross fire emissions. Our results also support the notion that most net emissions occur relatively soon after fire regime shifts and then progressively approach zero, whereas gross emissions stabilize around a new value that is a poor indicator of the cumulative net emissions caused by the fire regime shift. Overall, our study

  1. Fossil fuel combined cycle power system

    DOEpatents

    Labinov, Solomon Davidovich; Armstrong, Timothy Robert; Judkins, Roddie Reagan

    2006-10-10

    A system for converting fuel energy to electricity includes a reformer for converting a higher molecular weight gas into at least one lower molecular weight gas, at least one turbine to produce electricity from expansion of at least one of the lower molecular weight gases, and at least one fuel cell. The system can further include at least one separation device for substantially dividing the lower molecular weight gases into at least two gas streams prior to the electrochemical oxidization step. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  2. Rationale of Early Adopters of Fossil Fuel Divestment

    ERIC Educational Resources Information Center

    Beer, Christopher Todd

    2016-01-01

    Purpose: This research uses the social science perspectives of institutions, ecological modernization and social movements to analyze the rationale used by the early-adopting universities of fossil fuel divestment in the USA. Design/methodology/approach: Through analysis of qualitative data from interviews with key actors at the universities that…

  3. Quantifying fossil fuel CO2 from continuous measurements of APO: a novel approach

    NASA Astrophysics Data System (ADS)

    Pickers, Penelope; Manning, Andrew C.; Forster, Grant L.; van der Laan, Sander; Wilson, Phil A.; Wenger, Angelina; Meijer, Harro A. J.; Oram, David E.; Sturges, William T.

    2016-04-01

    Using atmospheric measurements to accurately quantify CO2 emissions from fossil fuel sources requires the separation of biospheric and anthropogenic CO2 fluxes. The ability to quantify the fossil fuel component of CO2 (ffCO2) from atmospheric measurements enables more accurate 'top-down' verification of CO2 emissions inventories, which frequently have large uncertainty. Typically, ffCO2 is quantified (in ppm units) from discrete atmospheric measurements of Δ14CO2, combined with higher resolution atmospheric CO measurements, and with knowledge of CO:ffCO2 ratios. In the United Kingdom (UK), however, measurements of Δ14CO2 are often significantly biased by nuclear power plant influences, which limit the use of this approach. We present a novel approach for quantifying ffCO2 using measurements of APO (Atmospheric Potential Oxygen; a tracer derived from concurrent measurements of CO2 and O2) from two measurement sites in Norfolk, UK. Our approach is similar to that used for quantifying ffCO2 from CO measurements (ffCO2(CO)), whereby ffCO2(APO) = (APOmeas - APObg)/RAPO, where (APOmeas - APObg) is the APO deviation from the background, and RAPO is the APO:CO2 combustion ratio for fossil fuel. Time varying values of RAPO are calculated from the global gridded COFFEE (CO2 release and Oxygen uptake from Fossil Fuel Emission Estimate) dataset, combined with NAME (Numerical Atmospheric-dispersion Modelling Environment) transport model footprints. We compare our ffCO2(APO) results to results obtained using the ffCO2(CO) method, using CO:CO2 fossil fuel emission ratios (RCO) from the EDGAR (Emission Database for Global Atmospheric Research) database. We find that the APO ffCO2 quantification method is more precise than the CO method, owing primarily to a smaller range of possible APO:CO2 fossil fuel emission ratios, compared to the CO:CO2 emission ratio range. Using a long-term dataset of atmospheric O2, CO2, CO and Δ14CO2 from Lutjewad, The Netherlands, we examine the

  4. Economic value of U.S. fossil fuel electricity health impacts.

    PubMed

    Machol, Ben; Rizk, Sarah

    2013-02-01

    Fossil fuel energy has several externalities not accounted for in the retail price, including associated adverse human health impacts, future costs from climate change, and other environmental damages. Here, we quantify the economic value of health impacts associated with PM(2.5) and PM(2.5) precursors (NO(x) and SO(2)) on a per kilowatt hour basis. We provide figures based on state electricity profiles, national averages and fossil fuel type. We find that the economic value of improved human health associated with avoiding emissions from fossil fuel electricity in the United States ranges from a low of $0.005-$0.013/kWh in California to a high of $0.41-$1.01/kWh in Maryland. When accounting for the adverse health impacts of imported electricity, the California figure increases to $0.03-$0.07/kWh. Nationally, the average economic value of health impacts associated with fossil fuel usage is $0.14-$0.35/kWh. For coal, oil, and natural gas, respectively, associated economic values of health impacts are $0.19-$0.45/kWh, $0.08-$0.19/kWh, and $0.01-$0.02/kWh. For coal and oil, these costs are larger than the typical retail price of electricity, demonstrating the magnitude of the externality. When the economic value of health impacts resulting from air emissions is considered, our analysis suggests that on average, U.S. consumers of electricity should be willing to pay $0.24-$0.45/kWh for alternatives such as energy efficiency investments or emission-free renewable sources that avoid fossil fuel combustion. The economic value of health impacts is approximately an order of magnitude larger than estimates of the social cost of carbon for fossil fuel electricity. In total, we estimate that the economic value of health impacts from fossil fuel electricity in the United States is $361.7-886.5 billion annually, representing 2.5-6.0% of the national GDP.

  5. The future of oil: unconventional fossil fuels.

    PubMed

    Chew, Kenneth J

    2014-01-13

    Unconventional fossil hydrocarbons fall into two categories: resource plays and conversion-sourced hydrocarbons. Resource plays involve the production of accumulations of solid, liquid or gaseous hydro-carbons that have been generated over geological time from organic matter in source rocks. The character of these hydrocarbons may have been modified subsequently, especially in the case of solids and extra-heavy liquids. These unconventional hydrocarbons therefore comprise accumulations of hydrocarbons that are trapped in an unconventional manner and/or whose economic exploitation requires complex and technically advanced production methods. This review focuses primarily on unconventional liquid hydro-carbons. The future potential of unconventional gas, especially shale gas, is also discussed, as it is revolutionizing the energy outlook in North America and elsewhere.

  6. Risk factors of jet fuel combustion products.

    PubMed

    Tesseraux, Irene

    2004-04-01

    Air travel is increasing and airports are being newly built or enlarged. Concern is rising about the exposure to toxic combustion products in the population living in the vicinity of large airports. Jet fuels are well characterized regarding their physical and chemical properties. Health effects of fuel vapors and liquid fuel are described after occupational exposure and in animal studies. Rather less is known about combustion products of jet fuels and exposure to those. Aircraft emissions vary with the engine type, the engine load and the fuel. Among jet aircrafts there are differences between civil and military jet engines and their fuels. Combustion of jet fuel results in CO2, H2O, CO, C, NOx, particles and a great number of organic compounds. Among the emitted hydrocarbons (HCs), no compound (indicator) characteristic for jet engines could be detected so far. Jet engines do not seem to be a source of halogenated compounds or heavy metals. They contain, however, various toxicologically relevant compounds including carcinogenic substances. A comparison between organic compounds in the emissions of jet engines and diesel vehicle engines revealed no major differences in the composition. Risk factors of jet engine fuel exhaust can only be named in context of exposure data. Using available monitoring data, the possibilities and limitations for a risk assessment approach for the population living around large airports are presented. The analysis of such data shows that there is an impact on the air quality of the adjacent communities, but this impact does not result in levels higher than those in a typical urban environment.

  7. Fossil fuel combined cycle power generation method

    DOEpatents

    Labinov, Solomon D [Knoxville, TN; Armstrong, Timothy R [Clinton, TN; Judkins, Roddie R [Knoxville, TN

    2008-10-21

    A method for converting fuel energy to electricity includes the steps of converting a higher molecular weight gas into at least one mixed gas stream of lower average molecular weight including at least a first lower molecular weight gas and a second gas, the first and second gases being different gases, wherein the first lower molecular weight gas comprises H.sub.2 and the second gas comprises CO. The mixed gas is supplied to at least one turbine to produce electricity. The mixed gas stream is divided after the turbine into a first gas stream mainly comprising H.sub.2 and a second gas stream mainly comprising CO. The first and second gas streams are then electrochemically oxidized in separate fuel cells to produce electricity. A nuclear reactor can be used to supply at least a portion of the heat the required for the chemical conversion process.

  8. Modulation of fossil fuel production by global temperature variations, 2

    SciTech Connect

    Rust, B.W.; Crosby, F.J.

    1994-01-01

    The report includes the inverse modulation of global fossil production by variations in Northern Hemispheric temperatures. The present study incorporates recent revisions and extensions of the fuel production record and uses a much improved temperature record. The authors show that the new data are consistent with the predictions of the original Rust-Kirk model which they then extend to allow for time lag between variations in the temperature and the corresponding responses in fuel production. The modulation enters the new model through the convolution of a lagged averaging function with the temperature time-series. The authors also include explicit terms to account for the perturbations caused by the Great Depression and World War II. The final model accounts for 99.84% of the total variance in the production record. This modulation represents a feedback which is consistent with the carbon dioxide problem; climate change; fossil fuel production; global warming Gaia hypothesis; temperature variations.

  9. Combustion characteristics of thermally stressed hydrocarbon fuels

    NASA Astrophysics Data System (ADS)

    Curtis, Colin William

    Liquid propelled propulsion systems, which range from rocket systems to hypersonic scramjet and ramjet engines, require active cooling in order to prevent additional payload requirements. In these systems, the liquid fuel is used as a coolant and is delivered through micro-channels that surround the combustion chambers, nozzles, as well as the exterior surfaces in order to extract heat from these affected areas. During this process, heat exchange occurs through phase change, sensible heat extraction, and endothermic reactions experienced by the liquid fuel. Previous research has demonstrated the significant modifications in fuel composition and changes to the fuel's physical properties that can result from these endothermic reactions. As a next step, we are experimentally investigating the effect that endothermic reactions have on fundamental flame behavior for real hydrocarbon fuels that are used as rocket and jet propellants. To achieve this goal, we have developed a counter-flow flame burner to measure extinction limits of the thermally stressed fuels. The counter-flow flame system is to be coupled with a high pressure reactor, capable of subjecting the fuel to 170 atm and 873 K, effectively simulating the extreme environment that cause the liquid fuel to experience endothermic reactions. The fundamental flame properties of the reacted fuels will be compared to those of unreacted fuels, allowing us to determine the role of endothermic reactions on the combustion behavior of current hydrocarbon jet and rocket propellants. To quantify the change in transport properties and chemical kinetics of the reacting mixture, simultaneous numerical simulations of the reactor portion of the experiment coupled with a counterflow flame simulation are performed using n-heptane and n-dodecane.

  10. Fossil-Fuel C02 Emissions Database and Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.; Andres, R. J.; Blasing, T. J.

    2012-12-01

    The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production at global, regional, and national spatial scales. The CDIAC emission time series estimates are based largely on annual energy statistics published at the national level by the United Nations (UN). CDIAC has developed a relational database to house collected data and information and a web-based interface to help users worldwide identify, explore and download desired emission data. The available information is divided in two major group: time series and gridded data. The time series data is offered for global, regional and national scales. Publications containing historical energy statistics make it possible to estimate fossil fuel CO2 emissions back to 1751. Etemad et al. (1991) published a summary compilation that tabulates coal, brown coal, peat, and crude oil production by nation and year. Footnotes in the Etemad et al.(1991) publication extend the energy statistics time series back to 1751. Summary compilations of fossil fuel trade were published by Mitchell (1983, 1992, 1993, 1995). Mitchell's work tabulates solid and liquid fuel imports and exports by nation and year. These pre-1950 production and trade data were digitized and CO2 emission calculations were made following the procedures discussed in Marland and Rotty (1984) and Boden et al. (1995). The gridded data presents annual and monthly estimates. Annual data presents a time series recording 1° latitude by 1° longitude CO2 emissions in units of million metric tons of carbon per year from anthropogenic sources for 1751-2008. The monthly, fossil-fuel CO2 emissions estimates from 1950-2008 provided in this database are derived from time series of global, regional, and national fossil-fuel CO2 emissions (Boden et al. 2011), the references therein, and the methodology described in Andres et al. (2011). The data accessible here take these

  11. Fuel injection pump for internal combustion engines

    SciTech Connect

    Kato, Y.; Suzuki, S.; Inoue, A.

    1987-03-24

    A fuel injection pump is described for an internal combustion engine having fuel injection nozzles, comprising: a plunger disposed to be rotated and reciprocated; cam means having a camming surface operatively coupled with the plunger and disposed to be rotatively driven for causing rotation and reciprocation of the plunger to cause same to pressurize drawn fuel and distribute the pressurized fuel, to thereby deliver the pressurized fuel to the engine; the camming surface of the cam means having such a configuration as to include a first angular region for causing the plunger to be lifted for pressurizing drawn fuel during idling of the engine at a first, substantially constant velocity. It has a second angular region subsequent to the first angular region for causing the plunger to be lifted for pressurizing drawn fuel at a second velocity higher than the first velocity; a plurality of delivery valves each disposed such that fuel pressurized by the plunger is supplied to the engine through the delivery valve; and injection pipes connected, respectively, to the delivery valves to feed pressurized fuel discharged from the respective delivery valves; the delivery valves each being adapted to maintain a residual pressure within a corresponding one of the injection pipes at a value that enables to attain injection initiation pressure within an extent of rotation of the cam means corresponding to the first angular region.

  12. 76 FR 3517 - Standards of Performance for Fossil-Fuel-Fired, Electric Utility, Industrial-Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-20

    ... AGENCY 40 CFR Part 60 RIN 2060-AQ46 Standards of Performance for Fossil-Fuel-Fired, Electric Utility... limited to, the following: Category NAICS \\1\\ Examples of regulated entities Industry 221112 Fossil fuel-fired electric utility steam generating units. Federal Government 22112 Fossil fuel-fired...

  13. 75 FR 66008 - Fossil Fuel-Generated Energy Consumption Reduction for New Federal Buildings and Major...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-27

    ... Parts 433 and 435 RIN 1904-AB96 Fossil Fuel-Generated Energy Consumption Reduction for New Federal... proposed rulemaking (NOPR) regarding the fossil fuel- generated energy consumption ] requirements for new... regarding the fossil fuel-generated energy consumption requirements for new Federal buildings and...

  14. Partial replacement of non renewable fossil fuels energy by the use of waste materials as alternative fuels

    NASA Astrophysics Data System (ADS)

    Indrawati, V.; Manaf, A.; Purwadi, G.

    2009-09-01

    This paper reports recent investigations on the use of biomass like rice husk, palm kernel shell, saw dust and municipal waste to reduce the use of fossil fuels energy in the cement production. Such waste materials have heat values in the range approximately from 2,000 to 4,000 kcal/kg. These are comparable to the average value of 5800 kcal/kg from fossil materials like coals which are widely applied in many industrial processing. Hence, such waste materials could be used as alternative fuels replacing the fossil one. It is shown that replacement of coals with such waste materials has a significant impact on cost effectiveness as well as sustainable development. Variation in moisture content of the waste materials, however should be taken into account because this is one of the parameter that could not be controlled. During fuel combustion, some amount of the total energy is used to evaporate the water content and thus the net effective heat value is less.

  15. Solar thermal technologies as a bridge from fossil fuels to renewables

    NASA Astrophysics Data System (ADS)

    Dalvi, Vishwanath Haily; Panse, Sudhir V.; Joshi, Jyeshtharaj B.

    2015-11-01

    Integrating solar thermal systems into Rankine-cycle power plants can be done with minimal modification to the existing infrastructure. This presents an opportunity to introduce these technologies into the commercial space incrementally, to allow engineers to build familiarity with the systems before phasing out fossil-fuel energy with solar electricity. This paper shows that there is no thermodynamic barrier to injecting solar thermal heat into Rankine-cycle plants to offset even up to 50% fossil-fuel combustion with existing technology: with better solar-to-electricity efficiencies than conventionally deployed solar-thermal power plants. This strategy is economically preferable to installing carbon-capture and compression equipment for mitigating an equivalent amount of greenhouse-gas emissions. We suggest that such projects be encouraged by extending the same subsidy/incentives to the solar-thermal fraction of a `solar-aided’ plant that would be offered to a conventionally deployed solar-thermal power plant of similar capacity. Such a policy would prepare the ground for an incremental solar-thermal takeover of fossil-fuel power plants.

  16. Fuel Droplet Burning During Droplet Combustion Experiment

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Fuel ignites and burns in the Droplet Combustion Experiment (DCE) on STS-94 on July 4 1997, MET:2/05:40 (approximate). The DCE was designed to investigate the fundamental combustion aspects of single, isolated droplets under different pressures and ambient oxygen concentrations for a range of droplet sizes varying between 2 and 5 mm. DCE used various fuels -- in drops ranging from 1 mm (0.04 inches) to 5 mm (0.2 inches) -- and mixtures of oxidizers and inert gases to learn more about the physics of combustion in the simplest burning configuration, a sphere. The experiment elapsed time is shown at the bottom of the composite image. The DCE principal investigator was Forman Williams, University of California, San Diego. The experiment was part of the space research investigations conducted during the Microgravity Science Laboratory-1R mission (STS-94, July 1-17 1997). Advanced combustion experiments will be a part of investigations plarned for the International Space Station. (1.4MB, 13-second MPEG, screen 320 x 240 pixels; downlinked video, higher quality not available)A still JPG composite of this movie is available at http://mix.msfc.nasa.gov/ABSTRACTS/MSFC-0300168.html.

  17. Plasma-aided solid fuel combustion

    SciTech Connect

    E.I. Karpenko; V.E. Messerle; A.B. Ustimenko

    2007-07-01

    Plasma supported solid fuel combustion is promising technology for use in thermal power plants (TPP). The realisation of this technology comprises two main steps. The first is the execution of a numerical simulation and the second involves full-scale trials of plasma supported coal combustion through plasma-fuel systems (PFS) mounted on a TPP boiler. For both the numerical simulation and the full-scale trials, the boiler of 200 MW power of Gusinoozersk TPP (Russia) was selected. The optimization of the combustion of low-rank coals using plasma technology is described, together with the potential of this technology for the general optimization of the coal burning process. Numerical simulation and full-scale trials have enabled technological recommendations for improvement of existing conventional TPP to be made. PFS have been tested for boilers plasma start-up and flame stabilization in different countries at 27 power boilers steam productivity of 75-670 tons per hour (TPH) equipped with different type of pulverised coal burners. At PFS testing power coals of all ranks (brown, bituminous, anthracite and their mixtures) were used. Volatile content of them varied from 4 to 50%, ash from 15 to 48% and calorific values from 6700 to 25,100 KJ/kg. In summary, it is concluded that the developed and industrially tested PFS improve coal combustion efficiency and decrease harmful emission from pulverised coal-fired TPP. 9 refs., 14 figs., 2 tabs.

  18. Fuel injection valve for internal combustion engines

    SciTech Connect

    Ishibashi, T.

    1987-01-13

    A fuel injection valve is described for an internal combustion engine, comprising: a nozzle holder having a fuel inlet port formed therein and connected to an injection pipe extending from a fuel injection pump; a nozzle body supported by the nozzle holder and having at least one nozzle hole and a pressure chamber formed therein at an end thereof remote from the nozzle holder. The pressure chamber is more remote from the injection pipe than the fuel inlet port. A fuel passage means is formed in the nozzle holder and the nozzle body and extends between the fuel inlet port and the pressure chamber. A nozzle needle is mounted within the nozzle body and liftable and returnable to open and close the nozzle hole, respectively, in response to an increase and a decrease in the pressure of fuel supplied into the pressure chamber. A nozzle spring means urges the nozzle needle in a direction of closing the nozzle hole. A central plunger is disposed in the nozzle holder for displacement in unison with the nozzle needle through a whole lifting stroke thereof. The central plunger has one end remote from the nozzle needle, the one end having an end face thereof disposed to receive pressure within the injection pipe through the fuel inlet port to thereby impart an urging force to the nozzle needle in the direction of closing the nozzle hole.

  19. Studies of oscillatory combustion and fuel vaporization

    NASA Technical Reports Server (NTRS)

    Borman, G. L.; Myers, P. S.; Uyehara, O. A.

    1972-01-01

    Research projects involving oscillatory combustion and fuel vaporization are reported. Comparisons of experimental and theoretical droplet vaporization histories under ambient conditions such that the droplet may approach its thermodynamic critical point are presented. Experimental data on instantaneous heat transfer from a gas to a solid surface under conditions of oscillatory pressure with comparisons to an unsteady one-dimensional model are analyzed. Droplet size and velocity distribution in a spray as obtained by use of a double flash fluorescent method were investigated.

  20. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  1. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  2. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  3. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  4. 30 CFR 77.1105 - Internal combustion engines; fueling.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Internal combustion engines; fueling. 77.1105 Section 77.1105 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE... COAL MINES Fire Protection § 77.1105 Internal combustion engines; fueling. Internal combustion...

  5. Comparison of the toxicity of diesel exhaust produced by bio- and fossil diesel combustion in human lung cells in vitro

    NASA Astrophysics Data System (ADS)

    Steiner, Sandro; Czerwinski, Jan; Comte, Pierre; Popovicheva, Olga; Kireeva, Elena; Müller, Loretta; Heeb, Norbert; Mayer, Andreas; Fink, Alke; Rothen-Rutishauser, Barbara

    2013-12-01

    Alternative fuels are increasingly combusted in diesel- and gasoline engines and the contribution of such exhausts to the overall air pollution is on the rise. Recent findings on the possible adverse effects of biodiesel exhaust are contradictive, at least partly resulting from the various fuel qualities, engine types and different operation conditions that were tested. However, most of the studies are biased by undesired interactions between the exhaust samples and biological culture media. We here report how complete, freshly produced exhausts from fossil diesel (B0), from a blend of 20% rapeseed-methyl ester (RME) and 80% fossil diesel (B20) and from pure rapeseed methyl ester (B100) affect a complex 3D cellular model of the human airway epithelium in vitro by exposing the cells at the air-liquid interface. The induction of pro-apoptotic and necrotic cell death, cellular morphology, oxidative stress, and pro-inflammatory responses were assessed. Compared to B0 exhaust, B20 exhaust decreased oxidative stress and pro-inflammatory responses, whereas B100 exhaust, depending on exposure duration, decreased oxidative stress but increased pro-inflammatory responses. The effects are only very weak and given the compared to fossil diesel higher ecological sustainability of biodiesel, it appears that - at least RME - can be considered a valuable alternative to pure fossil diesel.

  6. Fossil fuels in a sustainable energy future

    SciTech Connect

    Bechtel, T.F.

    1995-12-01

    The coal industry in the United States has become a world leader in safety, productivity, and environmental protection in the mining of coal. The {open_quotes}pick-and-shovel{close_quotes} miner with mangled limbs and black lung disease has been replaced by the highly skilled technicians that lead the world in tons per man-hour. The gob piles, polluted streams, and scared land are a thing of the past. The complementary efforts of the DOE and EPRI-funded programs in coal utilization R&D and the Clean Coal Technology Program commercial demonstrations, have positioned the power generation industry to utilize coal in a way that doesn`t pollute the air or water, keeps electrical power costs low, and avoids the mountains of waste material. This paper reviews the potential for advanced coal utilization technologies in new power generation applications as well as the repowering of existing plants to increase their output, raise their efficiency, and reduce pollution. It demonstrates the potential for these advanced coal-fueled plants to play a complementary role in future planning with the natural gas and oil fired units currently favored in the market place. The status of the US program to demonstrate these technologies at commercial scale is reviewed in some detail.

  7. US fossil fuel technologies for Thailand

    SciTech Connect

    Buehring, W.A.; Dials, G.E.; Gillette, J.L.; Szpunar, C.B.; Traczyk, P.A.

    1990-10-01

    The US Department of Energy has been encouraging other countries to consider US coal and coal technologies in meeting their future energy needs. Thailand is one of three developing countries determined to be a potentially favorable market for such exports. This report briefly profiles Thailand with respect to population, employment, energy infrastructure and policies, as well as financial, economic, and trade issues. Thailand is shifting from a traditionally agrarian economy to one based more strongly on light manufacturing and will therefore require increased energy resources that are reliable and flexible in responding to anticipated growth. Thailand has extensive lignite deposits that could fuel a variety of coal-based technologies. Atmospheric fluidized-bed combustors could utilize this resource and still permit Thailand to meet emission standards for sulfur dioxide. This option also lends itself to small-scale applications suitable for private-sector power generation. Slagging combustors and coal-water mixtures also appear to have potential. Both new construction and refurbishment of existing plants are planned. 18 refs., 3 figs., 7 tabs.

  8. Radiocarbon apportionment of fossil versus biofuel combustion sources of polycyclic aromatic hydrocarbons in the Stockholm metropolitan area.

    PubMed

    Mandalakis, Manolis; Gustafsson, Orjan; Reddy, Christopher M; Xu, Li

    2004-10-15

    Source-diagnostic markers and the isotopic composition of polycyclic aromatic hydrocarbons (PAHs) were examined in surface sediments from the greater Stockholm waterways to deduce the contribution from biomass sources to the environmental PAH load. The summed concentration of 20 PAHs ranged from 0.8 to 45.1 microg/g (dry weight) and exhibited a steep decline with increasing distance from the city center evidencing that sources within the metropolitan area of Stockholm dominate its PAH burden. Several diagnostic PAH ratios indicated an overwhelming predominance of pyrogenic sources over the petrogenic ones, while retene and 1,7-dimethylphenanthrene were unable to correctly evaluate the contribution from biomass combustion. The stable carbon isotope composition (delta13C) of individual PAHs ranged from -24.8 to -27.0% but also was proved inefficient to discriminate between different types of fuels due to the overlapping signals in various sources. The delta14C values of PAHs ranged between -550.4 and -934.1%, indicating a clear predominance of fossil fuel sources. By using an isotopic mass balance approach, we estimated that on average 17+/-9% of PAHs derived from biomass combustion. This radiocarbon apportionment, in conjunction with detailed energy statistics for the Stockholm region, revealed that the ambient PAH burden is roughly similar, per unit energy produced, from fossil fuels and biofuels. Societies' shifting energy policies toward a larger reliance on biofuels may thus not lead to further deterioration of air quality and respiratory ailments for the urban population.

  9. Renewable hydrogen production for fossil fuel processing

    SciTech Connect

    Greenbaum, E.; Lee, J.W.; Tevault, C.V.

    1995-06-01

    In the fundamental biological process of photosynthesis, atmospheric carbon dioxide is reduced to carbohydrate using water as the source of electrons with simultaneous evolution of molecular oxygen: H{sub 2}O + CO{sub 2} + light {yields} O{sub 2} + (CH{sub 2}O). It is well established that two light reactions, Photosystems I and II (PSI and PSII) working in series, are required to perform oxygenic photosynthesis. Experimental data supporting the two-light reaction model are based on the quantum requirement for complete photosynthesis, spectroscopy, and direct biochemical analysis. Some algae also have the capability to evolve molecular hydrogen in a reaction energized by the light reactions of photosynthesis. This process, now known as biophotolysis, can use water as the electron donor and lead to simultaneous evolution of molecular hydrogen and oxygen. In green algae, hydrogen evolution requires prior incubation under anaerobic conditions. Atmospheric oxygen inhibits hydrogen evolution and also represses the synthesis of hydrogenase enzyme. CO{sub 2} fixation competes with proton reduction for electrons relased from the photosystems. Interest in biophotolysis arises from both the questions that it raises concerning photosynthesis and its potential practical application as a process for converting solar energy to a non-carbon-based fuel. Prior data supported the requirement for both Photosystem I and Photosystem II in spanning the energy gap necessary for biophotolysis of water to oxygen and hydrogen. In this paper we report the at PSII alone is capable of driving sustained simultaneous photoevolution of molecular hydrogen and oxygen in an anaerobically adapted PSI-deficient strain of Chlamydomonas reinhardtii, mutant B4, and that CO{sub 2} competes as an electron acceptor.

  10. Dependence of the radiative forcing of the climate system on fossil fuel type

    NASA Astrophysics Data System (ADS)

    Nunez, L. I.

    2015-12-01

    Climate change mitigation strategies are greatly directed towards the reduction of CO2 emissions and other greenhouse gases from fossil fuel combustion to limit warming to 2º C in this century. For example, the Clean Power Plan aims to reduce CO2 emissions from the power sector by 32% of 2005 levels by 2030 by increasing power plant efficiency but also by switching from coal-fired power plants to natural gas-fired power plants. It is important to understand the impact of such fuel switching on climate change. While all fossil fuels emit CO2, they also emit other pollutants with varying effects on climate, health and agriculture. First, The emission of CO2 per joule of energy produced varies significantly between coal, oil and natural gas. Second, the complexity that the co-emitted pollutants add to the perturbations in the climate system necessitates the detangling of radiative forcing for each type of fossil fuel. The historical (1850-2011) net radiative forcing of climate as a function of fuel type (coal, oil, natural gas and biofuel) is reconstructed. The results reveal the significant dependence of the CO2 and the non-CO2 forcing on fuel type. The CO2 forcing per joule of energy is largest for coal. Radiative forcing from the co-emitted pollutants (black carbon, methane, nitrogen oxides, organic carbon, sulfate aerosols) changes the global mean CO2 forcing attributed to coal and oil significantly. For natural gas, the CO2-only radiative forcing from gas is increased by about 60% when the co-emitted pollutants are included.

  11. Pollutant Emissions and Lean Blowoff Limits of Fuel Flexible Burners Operating on Gaseous Renewable and Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Colorado, Andres

    This study provides an experimental and numerical examination of pollutant emissions and stability of gaseous fueled reactions stabilized with two premixed-fuel-flexible and ultra-low NOx burner technologies. Both burners feature lean combustion technology to control the formation of nitrogen oxides (NOx). The first fuel--flexible burner is the low-swirl burner (LSB), which features aerodynamic stabilization of the reactions with a divergent flow-field; the second burner is the surface stabilized combustion burner (SSCB), which features the stabilization of the reactions on surface patterns. For combustion applications the most commonly studied species are: NOx, carbon monoxide (CO), and unburned hydrocarbons (UHC). However these are not the only pollutants emitted when burning fossil fuels; other species such as nitrous oxide (N2O), ammonia (NH3) and formaldehyde (CH2O) can be directly emitted from the oxidation reactions. Yet the conditions that favor the emission of these pollutants are not completely understood and require further insight. The results of this dissertation close the gap existing regarding the relations between emission of pollutants species and stability when burning variable gaseous fuels. The results of this study are applicable to current issues such as: 1. Current combustion systems operating at low temperatures to control formation of NOx. 2. Increased use of alternative fuels such as hydrogen, synthetic gas and biogas. 3. Increasing recognition of the need/desire to operate combustion systems in a transient manner to follow load and to offset the intermittency of renewable power. 4. The recent advances in measurement methods allow us to quantify other pollutants, such as N 2O, NH3 and CH2O. Hence in this study, these pollutant species are assessed when burning natural gas (NG) and its binary mixtures with other gaseous fuels such as hydrogen (H2), carbon dioxide (CO2), ethane (C 2H6) and propane (C3H8) at variable operation modes including

  12. Fuel injection pump for internal combustion engines

    SciTech Connect

    Kato, Y.

    1987-08-11

    A fuel injection pump for an internal combustion engine is described which consists of: a plunger disposed to be rotated and reciprocated; and cam means having a camming surface operatively coupled with the plunger and disposed to be rotatively driven for causing rotation and reciprocation of the plunger to cause same to pressurize drawn fuel and distribute the pressurized fuel, to thereby deliver the pressurized fuel to the engine; the camming surface of the cam means having such a configuration as to include a first angular region for causing the plunger to be lifted for pressurizing drawn fuel during idling of the engine at a first, substantially constant velocity, and a second angular region subsequent to the first angular region for causing the plunger to be lifted for pressurizing drawn fuel at a second velocity higher than the first velocity, and a third angular region preceding the first angular region, for causing the plunger to be lifted for pressurizing drawn fuel at a velocity higher than the first velocity, but lower than the second velocity.

  13. Solid fossil-fuel recovery by electrical induction heating in situ - A proposal

    NASA Astrophysics Data System (ADS)

    Fisher, S.

    1980-04-01

    A technique, termed electrical induction heating, is proposed for in situ processes of energy production from solid fossil fuels, such as bitumen production from underground distillation of oil sand; oil by underground distillation of oil shale; petroleum from heavy oil by underground mobilization of heavy oil, from either residues of conventional liquid petroleum deposits or new deposits of viscous oil; methane and coal tar from lignite and coal deposits by underground distillation of coal; and generation of electricity by surface combustion of low calorific-value gas from underground coke gasification by combustion of the organic residue left from the underground distillation of coal by induction heating. A method of surface distillation of mined coking coal by induction heating to produce coke, methane, and coal tar is also proposed.

  14. Microbial Biotechnology 2020; microbiology of fossil fuel resources.

    PubMed

    Head, Ian M; Gray, Neil D

    2016-09-01

    This roadmap examines the future of microbiology research and technology in fossil fuel energy recovery. Globally, the human population will be reliant on fossil fuels for energy and chemical feedstocks for at least the medium term. Microbiology is already important in many areas relevant to both upstream and downstream activities in the oil industry. However, the discipline has struggled for recognition in a world dominated by geophysicists and engineers despite widely known but still poorly understood microbially mediated processes e.g. reservoir biodegradation, reservoir souring and control, microbial enhanced oil recovery. The role of microbiology is even less understood in developing industries such as shale gas recovery by fracking or carbon capture by geological storage. In the future, innovative biotechnologies may offer new routes to reduced emissions pathways especially when applied to the vast unconventional heavy oil resources formed, paradoxically, from microbial activities in the geological past. However, despite this potential, recent low oil prices may make industry funding hard to come by and recruitment of microbiologists by the oil and gas industry may not be a high priority. With regards to public funded research and the imperative for cheap secure energy for economic growth in a growing world population, there are signs of inherent conflicts between policies aimed at a low carbon future using renewable technologies and policies which encourage technologies which maximize recovery from our conventional and unconventional fossil fuel assets.

  15. Demonstration of catalytic combustion with residual fuel

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.

    1981-01-01

    An experimental program was conducted to demonstrate catalytic combustion of a residual fuel oil. Three catalytic reactors, including a baseline configuration and two backup configurations based on baseline test results, were operated on No. 6 fuel oil. All reactors were multielement configurations consisting of ceramic honeycomb catalyzed with palladium on stabilized alumina. Stable operation on residual oil was demonstrated with the baseline configuration at a reactor inlet temperature of about 825 K (1025 F). At low inlet temperature, operation was precluded by apparent plugging of the catalytic reactor with residual oil. Reduced plugging tendency was demonstrated in the backup reactors by increasing the size of the catalyst channels at the reactor inlet, but plugging still occurred at inlet temperature below 725 K (845 F). Operation at the original design inlet temperature of 589 K (600 F) could not be demonstrated. Combustion efficiency above 99.5% was obtained with less than 5% reactor pressure drop. Thermally formed NO sub x levels were very low (less than 0.5 g NO2/kg fuel) but nearly 100% conversion of fuel-bound nitrogen to NO sub x was observed.

  16. Oxygen enhanced switching to combustion of lower rank fuels

    DOEpatents

    Kobayashi, Hisashi; Bool, III, Lawrence E.; Wu, Kuang Tsai

    2004-03-02

    A furnace that combusts fuel, such as coal, of a given minimum energy content to obtain a stated minimum amount of energy per unit of time is enabled to combust fuel having a lower energy content, while still obtaining at least the stated minimum energy generation rate, by replacing a small amount of the combustion air fed to the furnace by oxygen. The replacement of oxygen for combustion air also provides reduction in the generation of NOx.

  17. PERSPECTIVE: Keeping a closer eye on fossil fuel CO2

    NASA Astrophysics Data System (ADS)

    Nelson, Peter F.

    2009-12-01

    all have a major influence on progress to an international agreement. It is important that the political challenges are not underestimated. Long-term observers of the negotiations necessary for global agreements (Inman 2009) are pessimistic about the chances for success at COP15, and argue that agreements between smaller groups of countries may be more effective. China and other developing countries clearly expect greater emission cuts by developed nations as a condition for a successful deal (Pan 2009). Conversely, the constraints on US climate policies are considerable, notably those imposed by fears that an international agreement that does not include equitable emission control measures for developing countries like China and India, will compromise the agreement and reduce its effectiveness (Skodvin and Andresen 2009). In this context the need for earlier, and more reliable, information on emissions is a high priority. Myhre and coworkers (Myhre et al 2009) provide an efficient method for calculating global carbon dioxide emissions from fossil fuel combustion by combining industry statistics with data from the Carbon Dioxide Information Analysis Center (CDIAC; http://cdiac.ornl.gov/). Recent analyses of carbon dioxide emission data show a worrying acceleration in emissions, beyond even the most extreme IPCC projections, but are based largely on the CDIAC which gives information about emissions released two to three years before real time (Canadell et al 2007, Raupach et al 2007). The approach used by Myhre et al (2009) uses BP annual statistics of fossil fuel consumption and has a much shorter lag, of the order of six months. Of significant concern is that their analysis of the data also reveals that the recent strong increase in fossil fuel CO2 is largely driven by an increase in emissions from coal, most significantly in China. By contrast, emissions from oil and gas continue to follow longer-term historical trends. Earlier and accurate data on CO2 emissions is

  18. Comparison of fuel value and combustion characteristics of two different RDF samples.

    PubMed

    Sever Akdağ, A; Atımtay, A; Sanin, F D

    2016-01-01

    Generation of Municipal Solid Waste (MSW) tends to increase with the growing population and economic development of the society; therefore, establishing environmentally sustainable waste management strategies is crucial. In this sense, waste to energy strategies have come into prominence since they increase the resource efficiency and replace the fossil fuels with renewable energy sources by enabling material and energy recovery instead of landfill disposal of the wastes. Refuse Derived Fuel (RDF), which is an alternative fuel produced from energy-rich Municipal Solid Waste (MSW) materials diverted from landfills, is one of the waste to energy strategies gaining more and more attention. This study aims to investigate the thermal characteristics and co-combustion efficiency of two RDF samples in Turkey. Proximate, ultimate and thermogravimetric analyses (TGA) were conducted on these samples. Furthermore, elemental compositions of ash from RDF samples were determined by X-Ray Fluorescence (XRF) analysis. The RDF samples were combusted alone and co-combusted in mixtures with coal and petroleum coke in a lab scale reactor at certain percentages on energy basis (3%, 5%, 10%, 20% and 30%) where co-combustion processes and efficiencies were investigated. It was found that the calorific values of RDF samples on dry basis were close to that of coal and a little lower compared to petroleum coke used in this study. Furthermore, the analysis indicated that when RDF in the mixture was higher than 10%, the CO concentration in the flue gas increased and so the combustion efficiency decreased; furthermore, the combustion characteristics changed from char combustion to volatile combustion. However, RDF addition to the fuel mixtures decreased the SO2 emission and did not change the NOx profiles. Also, XRF analysis showed that the slagging and fouling potential of RDF combustion was a function of RDF portion in fuel blend. When the RDF was combusted alone, the slagging and fouling

  19. Fine and ultrafine particles generated during fluidized bed combustion of different solid fuels

    SciTech Connect

    Urciuolo, M.; Barone, A.; D'Alessio, A.; Chirone, R.

    2008-12-15

    The paper reports an experimental study carried out with a 110-mm ID fluidized bed combustor focused on the characterization of particulates formation/emission during combustion of coal and non-fossil solid fuels. Fuels included: a bituminous coal, a commercial predried and granulated sludge (GS), a refuse-derived fuel (RDF), and a biomass waste (pine seed shells). Stationary combustion experiments were carried out analyzing the fate of fuel ashes. Fly ashes collected at the combustor exhaust were characterized both in terms of particle size distribution and chemical composition, with respect to both trace and major elements. Tapping-Mode Atomic Force Microscopy (TM-AFM) technique and high-efficiency cyclone-type collector devices were used to characterize the size and morphology of the nanometric-and micronic-size fractions of fly ash emitted at the exhaust respectively. Results showed that during the combustion process: I) the size of the nanometric fraction ranges between 2 and 65 nm; ii) depending on the fuel tested, combustion-assisted attrition or the production of the primary ash particles originally present in the fuel particles, are responsible of fine particle generation. The amount in the fly ash of inorganic compounds is larger for the waste-derived fuels, reflecting the large inherent content of these compounds in the parent fuels.

  20. Dry low NOx combustion system with pre-mixed direct-injection secondary fuel nozzle

    SciTech Connect

    Zuo, Baifang; Johnson, Thomas; Ziminsky, Willy; Khan, Abdul

    2013-12-17

    A combustion system includes a first combustion chamber and a second combustion chamber. The second combustion chamber is positioned downstream of the first combustion chamber. The combustion system also includes a pre-mixed, direct-injection secondary fuel nozzle. The pre-mixed, direct-injection secondary fuel nozzle extends through the first combustion chamber into the second combustion chamber.

  1. High-resolution global fossil fuel CO2 emissions for 1992 to 2010 using integrated in-situ and remotely sensed data in a fossil fuel data assimilation system

    NASA Astrophysics Data System (ADS)

    Asefi-Najafabady, S.; Gurney, K. R.; Rayner, P.; Huang, J.; Song, Y.

    2012-12-01

    The largest single net source of CO2 into the Earth's atmosphere is due to the combustion of fossil fuel and an accurate quantification of the fossil fuel flux is needed to better address the concern of rising atmospheric greenhouse gas concentrations. In the last decade, there has been a growing need, from both the science and policymaking communities for quantification of global fossil fuel CO2 emissions at finer space and time scales. Motivated by this concern, we have built a global fossil fuel CO2 emission inventory at 0.25° and 0.1° resolutions for the years of 1992 - 2010 using a combination of in situ and remotely sensed data in a fossil fuel data assimilation system (FFDAS). A suite of observations which include nightlights, population, sectoral national emissions and power plant stations are used to constrain the FFDAS model. FFDAS is based on a modified Kaya identity which expresses emissions as the product of areal population density, per capita economic activity, energy intensity of economic activity, and carbon intensity of energy consumption. Nightlights has been shown to correlate well with national and regional GDP and its relationship with population has been used as an initial means of downscaling fossil fuel emissions. However nightlights data are subject to instrumental saturation, causing areas of bright nightlights, such as urban cores, to be truncated. To address the saturation problem during several time periods, the National Geophysical Data Center (NGDC) has requested and received data collected at multiple fixed gain settings to observe the bright areas with no saturation. However, this dataset is limited to only four years (1999, 2002, 2006 and 2010). We have applied a numerical technique to these four years of data to estimate the unsaturated values for all years from 1992 to 2010. The corrected nightlights time series is then used in FFDAS to generate a multiyear fossil fuel CO2 emissions data product. Nightlights and population

  2. Combustion and fuel characterization of coal-water fuels

    SciTech Connect

    Beal, H.R.; Gralton, G.W.; Gronauer, T.W.; Liljedahl, G.N.; Love, B.F.

    1987-06-01

    Activities conducted under this contract include studies on the combustion and fireside behavior of numerous coal-water fuels (CWFs). The work has been broken down into the following areas: Task 1 -- Selection of Candidate Fuels; Task 2 -- Bench Scale Tests; Task 3 -- CWF Preparation and Supply; Task 4 -- Combustion Characterization; Task 5 -- Ash Deposition and Performance Testing; Task 6 -- Commercial Applications. This report covers Task 6, the study of commercial applications of CWFs as related to the technical and economic aspects of the conversion of existing boilers and heaters to CWF firing. This work involves the analysis of seven units of various sizes and configurations firing several selected CWFs. Three utility boilers, two industrial boilers, and two process heater designs are included. Each of the units was considered with four primary selected CWFs. A fifth fuel was considered for one of the utility units. A sixth fuel, a microfine grind CWF, was evaluated on two utility units and one industrial unit. The particular fuels were chosen with the objective of examining the effects of coal source, ash level, ash properties, and beneficiation on the CWF performance and economics of the seven units. 10 refs., 81 figs., 80 tabs.

  3. Combustion and fuel characterization of coal-water fuels

    SciTech Connect

    Chow, O.K.; Durant, J.F.; Griffith, B.F.; Miemiec, L.S.; Levasseur, A.A.; Teigen, B.C.

    1987-07-01

    The ash deposition and performance behavior of a cross-section of coal-water fuels (CWFs) were investigated during comprehensive pilot-scale testing under Task 5 of the Department of Energy's Combustion and Fuel Characterization of Coal-Water Fuels project. The key results from this effort including combustion, furnace slagging, convective pass fouling, fly ash erosion and electrostatic precipitator collection characteristics of the test fuels, are summarized in this report. Data were obtained on twelve different CWFs as well as three baseline pulverized coals. Three coal types were fired at different levels of coal beneficiation to assess the effects of coal cleaning on performance. Five CWFs prepared from the same feed coal by different manufactures were tested to assess the effects of slurry processing. CWFs prepared from both standard grind and microfine grind coals were evaluated. In addition a microfine CWF was fired at fuel temperatures up to 220{degree}F to evaluate the effect of thermal atomization on performance. 8 refs., 16 figs., 12 tabs.

  4. Hydrogen-fueled internal combustion engines.

    SciTech Connect

    Verhelst, S.; Wallner, T.; Energy Systems; Ghent Univ.

    2009-12-01

    The threat posed by climate change and the striving for security of energy supply are issues high on the political agenda these days. Governments are putting strategic plans in motion to decrease primary energy use, take carbon out of fuels and facilitate modal shifts. Taking a prominent place in these strategic plans is hydrogen as a future energy carrier. A number of manufacturers are now leasing demonstration vehicles to consumers using hydrogen-fueled internal combustion engines (H{sub 2}ICEs) as well as fuel cell vehicles. Developing countries in particular are pushing for H{sub 2}ICEs (powering two- and three-wheelers as well as passenger cars and buses) to decrease local pollution at an affordable cost. This article offers a comprehensive overview of H{sub 2}ICEs. Topics that are discussed include fundamentals of the combustion of hydrogen, details on the different mixture formation strategies and their emissions characteristics, measures to convert existing vehicles, dedicated hydrogen engine features, a state of the art on increasing power output and efficiency while controlling emissions and modeling.

  5. Evaluation of conventional power systems. [emphasizing fossil fuels and nuclear energy

    NASA Technical Reports Server (NTRS)

    Smith, K. R.; Weyant, J.; Holdren, J. P.

    1975-01-01

    The technical, economic, and environmental characteristics of (thermal, nonsolar) electric power plants are reviewed. The fuel cycle, from extraction of new fuel to final waste management, is included. Emphasis is placed on the fossil fuel and nuclear technologies.

  6. Synthetic fuel aromaticity and staged combustion

    SciTech Connect

    Longanbach, J. R.; Chan, L. K.; Levy, A.

    1982-11-15

    Samples of middle and heavy SRC-II distillates were distilled into 50 C boiling point range fractions. These were characterized by measurements of their molecular weight, elemental analysis and basic nitrogen content and calculation of average molecular structures. The structures typically consisted of 1 to 3 aromatic rings fused to alicyclic rings with short, 1 to 3 carbon aliphatic side chains. The lower boiling fractions contained significant amounts (1 atom/molecule) of oxygen while the heavier fractions contained so few heteroatoms that they were essentially hydrocarbons. Laboratory scale oxidative-pyrolysis experiments were carried out at pyrolysis temperatures of 500 to 1100 C and oxygen concentrations from 0 to 100 percent of stoichiometry. Analysis of liquid products, collected in condensers cooled with liquid nitrogen showed that aromatization is a major reaction in the absence of oxygen. The oxygen-containing materials (phenolics) seem to be more resistant to thermal pyrolysis than unsubstituted aromatics. Nitrogen converts from basic to nonbasic forms at about 500 C. The nonbasic nitrogen is more stable and survives up to 700 C after which it is slowly removed. A recently constructed 50,000 Btu/hr staged combustor was used to study the chemistry of the nitrogen and aromatics. SRC II combustion was studied under fuel-rich, first-stage conditions at air/fuel ratios from 0.6 to 1.0 times stoichiometric. The chemistry of the fuel during combustion calls for further investigation in order to examine the mechanism by which HCN is evolved as a common intermediate for the formation of the nitrogen-containing gaseous combustion products. 25 references, 45 figures, 25 tables.

  7. Combustion and Fuels in Gas Turbine Engines

    DTIC Science & Technology

    1988-06-01

    asymptotic analyses , which merely en expansion of (4)-(7) for 8 * ý, L -I ’ a p gtuoate tfcTR >5 1, and the form of (3) is - 0O(/8). Tuerifore...Fuel Injection SCombustor Development’ "Soot and Radiation, ek ptL Combustion Modeling, K...to S, , , / O ’ . , "-" Tj " I. V i L U) : E~ach subject...indieations that soot forms at att equivalence ratio of 1.5 and above, with this onset value increasing as temperature increases above I 500K. l )ata

  8. Carbonaceous fuel combustion with improved desulfurization

    DOEpatents

    Yang, Ralph T.; Shen, Ming-shing

    1980-01-01

    Lime utilization for sulfurous oxides adsorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. The iron oxide present in the spent limestone is found to catalyze the regeneration rate of the spent limestone in a reducing environment. Thus both the calcium and iron components may be recycled.

  9. API focuses on cleanliness, economics of fossil fuels

    SciTech Connect

    Not Available

    1993-11-15

    Fossil fuels, consumed in free markets, are playing positive economic and environmental roles as the world economy becomes integrated, industry leader said last week. Environmental zealots threaten to force conversion from gasoline as a motor fuel in the U.S. and oppose the growing integration of the world economy. Fossil fuels, free markets, human creativity, and entrepreneurial spirit--not government intervention--are the keys to a clean environment, said API pres. Charles J. DiBona and outgoing Chairman C.J. (Pete) Silas, chairman and chief executive officer of Phillips Petroleum Co. DiBona said proponents of the BTU tax defeated earlier this year used erroneous assumptions to make a case against oil use in an effort to replace the efficiency of the marketplace with the inefficiency of bureaucracy. The government's role is to set tough standards and avoid dictating the way environmental standards are met, they said. Other speakers warned that voluntary measures put forward by the Clinton administration of address global climate change issues likely will fall short.

  10. Large historical changes of fossil-fuel black carbon aerosols

    SciTech Connect

    Novakov, T.; Ramanathan, V.; Hansen, J.E.; Kirchstetter, T.W.; Sato, M.; Sinton, J.E.; Sathaye, J.A.

    2002-09-26

    Anthropogenic emissions of fine black carbon (BC) particles, the principal light-absorbing atmospheric aerosol, have varied during the past century in response to changes of fossil-fuel utilization, technology developments, and emission controls. We estimate historical trends of fossil-fuel BC emissions in six regions that represent about two-thirds of present day emissions and extrapolate these to global emissions from 1875 onward. Qualitative features in these trends show rapid increase in the latter part of the 1800s, the leveling off in the first half of the 1900s, and the re-acceleration in the past 50 years as China and India developed. We find that historical changes of fuel utilization have caused large temporal change in aerosol absorption, and thus substantial change of aerosol single scatter albedo in some regions, which suggests that BC may have contributed to global temperature changes in the past century. This implies that the BC history needs to be represented realistically in climate change assessments.

  11. Fossil Fuel Carbon Dioxide Emissions Data and Data Plots from Project Vulcan

    DOE Data Explorer

    Gurney, Kevin

    The Vulcan Project is a NASA/DOE funded effort under the North American Carbon Program (NACP) to quantify North American fossil fuel carbon dioxide (CO2) emissions at space and time scales much finer than has been achieved in the past. The purpose is to aid in quantification of the North American carbon budget, to support inverse estimation of carbon sources and sinks, and to support the demands posed by higher resolution CO2 observations (in situ and remotely sensed). The detail and scope of the Vulcan CO2 inventory has also made it a valuable tool for policymakers, demographers, social scientists and the public at large. The Vulcan project has achieved the quantification of the 2002 U.S. fossil fuel CO2 emissions at the scale of individual factories, powerplants, roadways and neighborhoods on an hourly basis. The entire inventory was built on a common 10 km x 10 km grid to facilitate atmospheric modeling. In addition to improvement in space and time resolution, Vulcan is quantified at the level of fuel type, economic sub-sector, and county/state identification. Explore the Vulcan website for the Vulcan gridded data, methodological details, publications, plots and analysis.[Taken from "About Project Vulcan" at http://www.purdue.edu/eas/carbon/vulcan/index.php]Also, see the peer-reviewed paper that provides a "core" description for this project: Gurney, K.R., D. Mendoza, Y. Zhou, M Fischer, S. de la Rue du Can, S. Geethakumar, C. Miller (2009) The Vulcan Project: High resolution fossil fuel combustion CO2 emissions fluxes for the United States, Environ. Sci. Technol., 43, doi:10.1021/es900,806c.

  12. Revisiting global fossil fuel and biofuel emissions of ethane

    NASA Astrophysics Data System (ADS)

    Tzompa-Sosa, Z. A.; Mahieu, E.; Franco, B.; Keller, C. A.; Turner, A. J.; Helmig, D.; Fried, A.; Richter, D.; Weibring, P.; Walega, J.; Yacovitch, T. I.; Herndon, S. C.; Blake, D. R.; Hase, F.; Hannigan, J. W.; Conway, S.; Strong, K.; Schneider, M.; Fischer, E. V.

    2017-02-01

    Recent measurements over the Northern Hemisphere indicate that the long-term decline in the atmospheric burden of ethane (C2H6) has ended and the abundance increased dramatically between 2010 and 2014. The rise in C2H6 atmospheric abundances has been attributed to oil and natural gas extraction in North America. Existing global C2H6 emission inventories are based on outdated activity maps that do not account for current oil and natural gas exploitation regions. We present an updated global C2H6 emission inventory based on 2010 satellite-derived CH4 fluxes with adjusted C2H6 emissions over the U.S. from the National Emission Inventory (NEI 2011). We contrast our global 2010 C2H6 emission inventory with one developed for 2001. The C2H6 difference between global anthropogenic emissions is subtle (7.9 versus 7.2 Tg yr-1), but the spatial distribution of the emissions is distinct. In the 2010 C2H6 inventory, fossil fuel sources in the Northern Hemisphere represent half of global C2H6 emissions and 95% of global fossil fuel emissions. Over the U.S., unadjusted NEI 2011 C2H6 emissions produce mixing ratios that are 14-50% of those observed by aircraft observations (2008-2014). When the NEI 2011 C2H6 emission totals are scaled by a factor of 1.4, the Goddard Earth Observing System Chem model largely reproduces a regional suite of observations, with the exception of the central U.S., where it continues to underpredict observed mixing ratios in the lower troposphere. We estimate monthly mean contributions of fossil fuel C2H6 emissions to ozone and peroxyacetyl nitrate surface mixing ratios over North America of 1% and 8%, respectively.

  13. Burning Fossil Fuels: Impact of Climate Change on Health.

    PubMed

    Sommer, Alfred

    2016-01-01

    A recent, sophisticated granular analysis of climate change in the United States related to burning fossil fuels indicates a high likelihood of dramatic increases in temperature, wet-bulb temperature, and precipitation, which will dramatically impact the health and well-being of many Americans, particularly the young, the elderly, and the poor and marginalized. Other areas of the world, where they lack the resources to remediate these weather impacts, will be even more greatly affected. Too little attention is being paid to the impending health impact of accumulating greenhouse gases.

  14. Modeling JP-8 Fuel Effects on Diesel Combustion Systems

    DTIC Science & Technology

    2006-09-24

    curve, and cetane number) that may result in fuel-affected varying combustion behavior in diesel engines under various operating conditions. Since... engine manufacturers rely solely on DF- 2 for commercial vehicle applications most domestic industry, university, and national laboratory lead diesel... engine combustion system research activities have not encompassed JP fuels. Instead, much effort has been spent exploring DF-2 evaporation behavior

  15. Modeling JP-8 Fuel Effects on Diesel Combustion Systems

    DTIC Science & Technology

    2006-11-01

    curve, and cetane number) that may result in fuel-affected varying combustion behavior in diesel engines under various operating conditions. Since... engine manufacturers rely solely on DF- 2 for commercial vehicle applications most domestic industry, university, and national laboratory led diesel... engine combustion system research activities have not encompassed JP fuels. Instead, much effort has been spent exploring DF-2 evaporation behavior

  16. Self-oscillations of an unstable fuel combustion in the combustion chamber of a liquid-propellant rocket engine

    NASA Astrophysics Data System (ADS)

    Gotsulenko, V. V.; Gotsulenko, V. N.

    2013-01-01

    The form of the self-oscillations of a vibrating combustion of a fuel in the combustion chamber of a liquidpropellant rocket engine, caused by the fuel-combustion lag and the heat release, was determined. The character of change in these self-oscillations with increase in the time of the fuel-combustion lag was investigated.

  17. Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, Robert R

    1957-01-01

    Basic combustion research is collected, collated, and interpreted as it applies to flight propulsion. The following fundamental processes are treated in separate chapters: atomization and evaporation of liquid fuels, flow and mixing processes in combustion chambers, ignition and flammability of hydrocarbon fuels, laminar flame propagation, turbulent flames, flame stabilization, diffusion flames, oscillations in combustors, and smoke and coke formation in the combustion of hydrocarbon-air mixtures. Theoretical background, basic experimental data, and practical significance to flight propulsion are presented.

  18. Characteristics and combustion of future hydrocarbon fuels. [aircraft fuels

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.; Grobman, J. S.

    1978-01-01

    As the world supply of petroleum crude oil is being depleted, the supply of high-quality crude oil is also dwindling. This dwindling supply is beginning to manifest itself in the form of crude oils containing higher percentages of aromatic compounds, sulphur, nitrogen, and trace constituents. The result of this trend is described and the change in important crude oil characteristics, as related to aircraft fuels, is discussed. As available petroleum is further depleted, the use of synthetic crude oils (those derived from coal and oil shale) may be required. The principal properties of these syncrudes and the fuels that can be derived from them are described. In addition to the changes in the supply of crude oil, increasing competition for middle-distillate fuels may require that specifications be broadened in future fuels. The impact that the resultant potential changes in fuel properties may have on combustion and thermal stability characteristics is illustrated and discussed in terms of ignition, soot formation, carbon deposition flame radiation, and emissions.

  19. Geochemical controls on vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  20. Geochemical controls of vanadium accumulation in fossil fuels

    USGS Publications Warehouse

    Breit, G.N.; Wanty, R.B.

    1989-01-01

    High vanadium contents in petroleum and other fossil fuels have been attributed to organic-matter type, organisms, volcanic emanations, diffusion of sea water, and epigenetic enrichment. However, these factors are inadequate to account for the high abundance of vanadium in some fossil fuels and the paucity in others. By examining vanadium deposits in sedimentary rocks with sparse organic matter, constraints are placed on processes controlling vanadium accumulation in organic-rich sediments. Vanadium, as vanadate (V(V)), entered some depositional basins in oxidizing waters from dry, subaerial environments. Upon contact with organic matter in anoxic waters, V(V) is reduced to vanadyl (V(IV)), which can be removed from the water column by adsorption. H2S reduces V(IV) to V(III), which hydrolyzes and precipitates. The lack of V(III) in petroleum suggests that reduction of V(IV) to V(III) is inhibited by organic complexes. In the absence of strong complexing agents, V(III) forms and is incorporated in clay minerals.

  1. Oxy-combustion of high water content fuels

    NASA Astrophysics Data System (ADS)

    Yi, Fei

    As the issues of global warming and the energy crisis arouse extensive concern, more and more research is focused on maximizing energy efficiency and capturing CO2 in power generation. To achieve this, in this research, we propose an unconventional concept of combustion - direct combustion of high water content fuels. Due to the high water content in the fuels, they may not burn under air-fired conditions. Therefore, oxy-combustion is applied. Three applications of this concept in power generation are proposed - direct steam generation for the turbine cycle, staged oxy-combustion with zero flue gas recycle, and oxy-combustion in a low speed diesel-type engine. The proposed processes could provide alternative approaches to directly utilize fuels which intrinsically have high water content. A large amount of energy to remove the water, when the fuels are utilized in a conventional approach, is saved. The properties and difficulty in dewatering high water content fuels (e.g. bioethanol, microalgae and fine coal) are summarized. These fuels include both renewable and fossil fuels. In addition, the technique can also allow for low-cost carbon capture due to oxy-combustion. When renewable fuel is utilized, the whole process can be carbon negative. To validate and evaluate this concept, the research focused on the investigation of the flame stability and characteristics for high water content fuels. My study has demonstrated the feasibility of burning fuels that have been heavily diluted with water in a swirl-stabilized burner. Ethanol and 1-propanol were first tested as the fuels and the flame stability maps were obtained. Flame stability, as characterized by the blow-off limit -- the lowest O2 concentration when a flame could exist under a given oxidizer flow rate, was determined as a function of total oxidizer flow rate, fuel concentration and nozzle type. Furthermore, both the gas temperature contour and the overall ethanol concentration in the droplets along the

  2. Fuel injection system for internal combustion engines

    SciTech Connect

    Yamaguchi, S.

    1986-10-28

    A fuel injection system is described for an internal combustion engine, comprising: (a) a fuel injection pump driven by the engine for fuel injection thereto and including a plunger reciprocably movable at a non-uniform speed and a control sleeve slidably fitted on the plunger; (b) first drive means operatively connected with the plunger for rotating the latter to thereby adjust the effective stroke of the plunger; (c) second drive means operatively connected with the control sleeve for displacing the latter in an axial direction to thereby adjust the pre-stroke of the control sleeve; (d) an operation sensor for detecting operating conditions of the engine; (e) a position sensor for detecting a position of the control sleeve; (f) first arithmetic means responsive to the engine operating conditions detected by the operation sensor, for computing an object injection quantity; (g) second arithmetic means responsive to the position of the control sleeve detected by the position sensor, for computing an object pre-stroke of the plunger; (h) third arithmetic means responsive to the engine operating conditions detected and the position of the control sleeve detected, for computing a correction amount; (i) first control means responsive to the correction amount computed by the third arithmetic means, for correcting the object injection quantity and for delivering a control signal to the first drive means; and (j) second control means responsive to the object injection quantity computed by the second arithmetic means, for delivering a control signal to the second drive means.

  3. Combustion and fuel characterization of coal-water fuels

    SciTech Connect

    Not Available

    1989-07-01

    Pittsburgh Energy Technology Center (PETC) of the Department of Energy initiated a comprehensive effort in 1982 to develop the necessary performance and cost data and to assess the commercial viability of coal water fuels (CWFs) as applied to representative utility and industrial units. The effort comprised six tasks beginning with coal resource evaluation and culminating in the assessment of the technical and economic consequences of switching representative commercial units from oil to state-of-the-art CWF firing. Extensive bench, pilot and commercial-scale tests were performed to develop necessary CWF combustion and fireside performance data for the subsequent boiler performance analyses and retrofit cost estimates. This report (Volume 2) provides a review of the fuel selection and procurement activities. Included is a discussion on coal washability, transport of the slurry, and characterization. 20 figs., 26 tabs.

  4. Quantification of fossil fuel CO2 at the building/street level for large US cities

    NASA Astrophysics Data System (ADS)

    Gurney, K. R.; Razlivanov, I. N.; Song, Y.

    2012-12-01

    Quantification of fossil fuel CO2 emissions from the bottom-up perspective is a critical element in emerging plans on a global, integrated, carbon monitoring system (CMS). A space/time explicit emissions data product can act as both a verification and planning system. It can verify atmospheric CO2 measurements (in situ and remote) and offer detailed mitigation information to management authorities in order to optimize the mix of mitigation efforts. Here, we present the Hestia Project, an effort aimed at building a high resolution (eg. building and road link-specific, hourly) fossil fuel CO2 emissions data product for the urban domain as a pilot effort to a CMS. A complete data product has been built for the city of Indianapolis and preliminary quantification has been completed for Los Angeles and Phoenix (see figure). The effort in Indianapolis is now part of a larger effort aimed at a convergent top-down/bottom-up assessment of greenhouse gas emissions, called INFLUX. Our urban-level quantification relies on a mixture of data and modeling structures. We start with the sector-specific Vulcan Project estimate at the mix of geocoded and county-wide levels. The Hestia aim is to distribute the Vulcan result in space and time. Two components take the majority of effort: buildings and onroad emissions. In collaboration with our INFLUX colleagues, we are transporting these high resolution emissions through an atmospheric transport model for a forward comparison of the Hestia data product with atmospheric measurements, collected on aircraft and cell towers. In preparation for a formal urban-scale inversion, these forward comparisons offer insights into both improving our emissions data product and measurement strategies. A key benefit of the approach taken in this study is the tracking and archiving of fuel and process-level detail (eg. combustion process, other pollutants), allowing for a more thorough understanding and analysis of energy throughputs in the urban

  5. Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells.

    PubMed

    Milcarek, Ryan J; Garrett, Michael J; Baskaran, Amrish; Ahn, Jeongmin

    2016-10-02

    Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.

  6. 40 CFR 60.45 - Emissions and fuel monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... fossil-fuel-fired steam generator that combusts only gaseous or liquid fossil fuel (excluding residual... sampling and analysis or fuel receipts. (2) For a fossil-fuel-fired steam generator that does not use...

  7. 40 CFR 60.45 - Emissions and fuel monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... fossil-fuel-fired steam generator that combusts only gaseous or liquid fossil fuel (excluding residual... sampling and analysis or fuel receipts. (2) For a fossil-fuel-fired steam generator that does not use...

  8. 40 CFR 60.45 - Emissions and fuel monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Fossil-Fuel... fossil-fuel-fired steam generator that combusts only gaseous or liquid fossil fuel (excluding residual... sampling and analysis or fuel receipts. (2) For a fossil-fuel-fired steam generator that does not use...

  9. Fuel properties to enable lifted-flame combustion

    SciTech Connect

    Kurtz, Eric

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  10. Hydrogen Separation Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect

    Roark, Shane E.; Mackay, Richard; Sammells, Anthony F.

    2001-11-06

    Eltron Research and team members CoorsTek, McDermott Technology, Sued Chemie, Argonne National Laboratory, and Oak Ridge National Laboratory are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This objective is being pursued using dense membranes based in part on Eltron-patented ceramic materials with a demonstrated ability for proton and electron conduction. The technical goals are being addressed by modifying single-phase and composite membrane composition and microstructure to maximize proton and electron conductivity without loss of material stability. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. This project was motivated by the Department of Energy (DOE) National Energy Technology Laboratory (NETL) Vision 21 initiative which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. The proposed technology addresses the DOE Vision 21 initiative in two ways. First, this process offers a relatively inexpensive solution for pure hydrogen separation that can be easily incorporated into Vision 21 fossil fuel plants. Second, this process could reduce the cost of hydrogen, which is a clean burning fuel under increasing demand as supporting technologies are developed for hydrogen utilization and storage. Additional motivation for this project arises from the potential of this technology for other applications. By appropriately changing the catalysts coupled with the membrane, essentially the same system can be used to facilitate alkane dehydrogenation and coupling, aromatics processing, and hydrogen sulfide decomposition.

  11. Fossil fuel derivatives with reduced carbon. Phase I final report

    SciTech Connect

    Kennel, E.B.; Zondlo, J.W.; Cessna, T.J.

    1999-06-30

    This project involves the simultaneous production of clean fossil fuel derivatives with reduced carbon and sulfur, along with value-added carbon nanofibers. This can be accomplished because the nanofiber production process removes carbon via a catalyzed pyrolysis reaction, which also has the effect of removing 99.9% of the sulfur, which is trapped in the nanofibers. The reaction is mildly endothermic, meaning that net energy production with real reductions in greenhouse emissions are possible. In Phase I research, the feasibility of generating clean fossil fuel derivatives with reduced carbon was demonstrated by the successful design, construction and operation of a facility capable of utilizing coal as well as natural gas as an inlet feedstock. In the case of coal, for example, reductions in CO{sub 2} emissions can be as much as 70% (normalized according to kilowatts produced), with the majority of carbon safely sequestered in the form of carbon nanofibers or coke. Both of these products are value-added commodities, indicating that low-emission coal fuel can be done at a profit rather than a loss as is the case with most clean-up schemes. The main results of this project were as follows: (1) It was shown that the nanofiber production process produces hydrogen as a byproduct. (2) The hydrogen, or hydrogen-rich hydrocarbon mixture can be consumed with net release of enthalpy. (3) The greenhouse gas emissions from both coal and natural gas are significantly reduced. Because coal consumption also creates coke, the carbon emission can be reduced by 75% per kilowatt-hour of power produced.

  12. Origin of carbonaceous aerosols over the tropical Indian Ocean: Biomass burning or fossil fuels?

    SciTech Connect

    Novakov, T.; Andreae, M.O.; Gabriel, R.; Kirchstetter, T.; Mayol-Bracero, O.L.; Ramanathan, V.

    2000-08-26

    We present an analysis of the carbon, potassium and sulfate content of the extensive aerosol haze layer observed over the tropical Indian Ocean during the Indian Ocean Experiment (INDOEX). The black carbon (BC) content of the haze is as high as 17% of the total fine particle mass (the sum of carbonaceous and soluble ionic aerosol components) which results in significant solar absorption. The ratio of black carbon to organic carbon (OC) (over the Arabian Sea and equatorial Indian Ocean) was a factor of 5 to 10 times larger than expected for biomass burning. This ratio was closer to values measured downwind of industrialized regions in Japan and Western Europe. These results indicate that fossil fuel combustion is the major source of carbonaceous aerosols, including black carbon during the events considered. If the data set analyzed here is representative of the entire INDOEX study then fossil fuel emissions from South Asia must have similarly contributed to aerosols over the whole study region. The INDOEX ratios are substantially different from those reported f or some source regions of South Asia, thus raising the possibility that changes in composition of carbonaceous aerosol may occur during transport.

  13. Advanced Combustion and Fuels; NREL (National Renewable Energy Laboratory)

    SciTech Connect

    Zigler, Brad

    2015-06-08

    Presented at the U.S. Department of Energy Vehicle Technologies Office 2015 Annual Merit Review and Peer Evaluation Meeting, held June 8-12, 2015, in Arlington, Virginia. It addresses technical barriers of inadequate data and predictive tools for fuel and lubricant effects on advanced combustion engines, with the strategy being through collaboration, develop techniques, tools, and data to quantify critical fuel physico-chemical effects to enable development of advanced combustion engines that use alternative fuels.

  14. Combustion of emulsified fuel droplets under microgravity

    NASA Astrophysics Data System (ADS)

    Okajima, S.; Kanno, H.; Kumagai, S.

    Single-droplet experiments have been conducted under a zero-gravity condition in a freely falling chamber as a fundamental step of study on the spray combustion of hydrocarbon-water emulsified fuels. Such a behavior as the secondary micro-atomization was observed by taking schlieren photographs with a 35-mm movie camera installed on the falling assembly. Under zero gravity the emulsion droplet initiates steam discharge and puffing—that is, a mild atomization—at a time from ignition, but it does not lead to such a micro-explosion or disruption as is experienced under normal gravity. The apparent burning rate constant under zero gravity is about 30% smaller than that under normal gravity. These facts suggest that the internal convection in emulsion droplets plays an important role in causing the micro-explosion.

  15. LIEKKI and JALO: Combustion and fuel conversion

    NASA Astrophysics Data System (ADS)

    Grace, Thomas M.; Renz, Ulrich; Sarofim, Adel F.

    LIEKKI and JALO are well conceived and structured programs designed to strengthen Finland's special needs in combustion and gasification to utilize a diversity of fuels, increase the ratio of electrical to heat output, and to support the export market. Started in 1988, these two programs provide models of how universities, Technical research center's laboratories (VTT's), and industry can collaborate successfully in order to achieve national goals. The research is focused on long term goals in certain targeted niche areas. This is an effective way to use limited resources. The niche areas were chosen in a rational manner and appear to be appropriate for Finland. The LIEKKl and JALO programs have helped pull together research efforts that were previously more fragmented. For example, the combustion modeling area still appears fragmented. Individual project objectives should be tied to program goals at a very early stage to provide sharper focusing to the research. Both the LIEKKl and JALO programs appear to be strongly endorsed by industry. Industrial members of the Executive Committees were very supportive of these programs. There are good mechanisms for technology transfer in place, and the programs provide opportunities to establish good interfaces between industrial people and the individual researchers. The interest of industry is shown by the large number of applied projects that are supported by industry. This demonstrates the relevancy of the programs. There is a strong interaction between the JALO program and industry in black liquor gasification.

  16. RADIOACTIVITY IN THE ATMOSPHERIC EFFLUENTS OF POWER PLANTS THAT USE FOSSIL FUELS.

    PubMed

    EISENBUD, M; PETROW, H G

    1964-04-17

    Analysis of the fly ash produced by combustion of pulverized Appalachian coal has shown that a 1000-megawatt coal-burning power plant will discharge into the atmosphere from about 28 millicuries to nearly 1 curie per year of radium-226 and radium-228. An oil-burning plant of similar size will discharge about 0.5 millicurie of radium per year. Comparison of these data with data on the release of fission products from nuclear-powered generating stations shows that when the physical and biological properties of the various radionuclides are taken into consideration, the conventional fossil-fueled plants discharge relatively greater quantities of radioactive materials into the atmosphere than nuclearpowered plants of comparable size.

  17. Global mercury emissions from combustion in light of international fuel trading.

    PubMed

    Chen, Yilin; Wang, Rong; Shen, Huizhong; Li, Wei; Chen, Han; Huang, Ye; Zhang, Yanyan; Chen, Yuanchen; Su, Shu; Lin, Nan; Liu, Junfeng; Li, Bengang; Wang, Xilong; Liu, Wenxin; Coveney, Raymond M; Tao, Shu

    2014-01-01

    The spatially resolved emission inventory is essential for understanding the fate of mercury. Previous global mercury emission inventories for fuel combustion sources overlooked the influence of fuel trading on local emission estimates of many countries, mostly developing countries, for which national emission data are not available. This study demonstrates that in many countries, the mercury content of coal and petroleum locally consumed differ significantly from those locally produced. If the mercury content in locally produced fuels were used to estimate emission, then the resulting global mercury emissions from coal and petroleum would be overestimated by 4.7 and 72%, respectively. Even higher misestimations would exist in individual countries, leading to strong spatial bias. On the basis of the available data on fuel trading and an updated global fuel consumption database, a new mercury emission inventory for 64 combustion sources has been developed. The emissions were mapped at 0.1° × 0.1° resolution for 2007 and at country resolution for a period from 1960 to 2006. The estimated global total mercury emission from all combustion sources (fossil fuel, biomass fuel, solid waste, and wildfires) in 2007 was 1454 Mg (1232-1691 Mg as interquartile range from Monte Carlo simulation), among which elementary mercury (Hg(0)), divalent gaseous mercury (Hg(2+)), and particulate mercury (Hg(p)) were 725, 548, and 181 Mg, respectively. The total emission from anthropogenic sources, excluding wildfires, was 1040 Mg (886-1248 Mg), with coal combustion contributing more than half. Globally, total annual anthropogenic mercury emission from combustion sources increased from 285 Mg (263-358 Mg) in 1960 to 1040 Mg (886-1248 Mg) in 2007, owing to an increased fuel consumption in developing countries. However, mercury emissions from developed countries have decreased since 2000.

  18. Monthly, global emissions of carbon dioxide from fossil fuel consumption

    SciTech Connect

    Andres, Robert Joseph; Gregg, JS; Losey, London M; Marland, Gregg; Boden, Thomas A

    2011-01-01

    This paper examines available data, develops a strategy and presents a monthly, global time series of fossil-fuel carbon dioxide emissions for the years 1950 2006. This monthly time series was constructed from detailed study of monthly data from the 21 countries that account for approximately 80% of global total emissions. These data were then used in a Monte Carlo approach to proxy for all remaining countries. The proportional-proxy methodology estimates by fuel group the fraction of annual emissions emitted in each country and month. Emissions from solid, liquid and gas fuels are explicitly modelled by the proportional-proxy method. The primary conclusion from this study is the global monthly time series is statistically significantly different from a uniform distribution throughout the year. Uncertainty analysis of the data presented show that the proportional-proxy method used faithfully reproduces monthly patterns in the data and the global monthly pattern of emissions is relatively insensitive to the exact proxy assignments used. The data and results presented here should lead to a better understanding of global and regional carbon cycles, especially when the mass data are combined with the stable carbon isotope data in atmospheric transport models.

  19. Fuel Vapor Pressures and the Relation of Vapor Pressure to the Preparation of Fuel for Combustion in Fuel Injection Engines

    NASA Technical Reports Server (NTRS)

    Joachim, William F; Rothrock, A M

    1930-01-01

    This investigation on the vapor pressure of fuels was conducted in connection with the general research on combustion in fuel injection engines. The purpose of the investigation was to study the effects of high temperatures such as exist during the first stages of injection on the vapor pressures of several fuels and certain fuel mixtures, and the relation of these vapor pressures to the preparation of the fuel for combustion in high-speed fuel injection engines.

  20. On Corporate Accountability: Lead, Asbestos, and Fossil Fuel Lawsuits.

    PubMed

    Shearer, Christine

    2015-08-01

    This paper examines the use of lawsuits against three industries that were eventually found to be selling products damaging to human heath and the environment: lead paint, asbestos, and fossil fuels. These industries are similar in that some companies tried to hide or distort information showing their products were harmful. Common law claims were eventually filed to hold the corporations accountable and compensate the injured. This paper considers the important role the lawsuits played in helping establish some accountability for the industries while also noting the limitations of the lawsuits. It will be argued that the lawsuits helped create pressure for government regulation of the industries' products but were less successful at securing compensation for the injured. Thus, the common law claims strengthened and supported administrative regulation and the adoption of industry alternatives more than they provided a means of legal redress.

  1. Biodesulfurization of refractory organic sulfur compounds in fossil fuels.

    PubMed

    Soleimani, Mehran; Bassi, Amarjeet; Margaritis, Argyrios

    2007-01-01

    The stringent new regulations to lower sulfur content in fossil fuels require new economic and efficient methods for desulfurization of recalcitrant organic sulfur. Hydrodesulfurization of such compounds is very costly and requires high operating temperature and pressure. Biodesulfurization is a non-invasive approach that can specifically remove sulfur from refractory hydrocarbons under mild conditions and it can be potentially used in industrial desulfurization. Intensive research has been conducted in microbiology and molecular biology of the competent strains to increase their desulfurization activity; however, even the highest activity obtained is still insufficient to fulfill the industrial requirements. To improve the biodesulfurization efficiency, more work is needed in areas such as increasing specific desulfurization activity, hydrocarbon phase tolerance, sulfur removal at higher temperature, and isolating new strains for desulfurizing a broader range of sulfur compounds. This article comprehensively reviews and discusses key issues, advances and challenges for a competitive biodesulfurization process.

  2. New Optimal Sensor Suite for Ultrahigh Temperature Fossil Fuel Applications

    SciTech Connect

    John Coggin; Jonas Ivasauskas; Russell G. May; Michael B. Miller; Rena Wilson

    2006-09-30

    Accomplishments during Phase II of a program to develop and demonstrate photonic sensor technology for the instrumentation of advanced powerplants are described. The goal of this project is the research and development of advanced, robust photonic sensors based on improved sapphire optical waveguides, and the identification and demonstration of applications of the new sensors in advanced fossil fuel power plants, where the new technology will contribute to improvements in process control and monitoring. During this program work period, major progress has been experienced in the development of the sensor hardware, and the planning of the system installation and operation. The major focus of the next work period will be the installation of sensors in the Hamilton, Ohio power plant, and demonstration of high-temperature strain gages during mechanical testing of SOFC components.

  3. Progress performance report of clean uses of fossil fuels

    SciTech Connect

    Not Available

    1992-09-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled ``Clean Uses of Fossil Fuels.`` was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  4. Progress performance report of clean uses of fossil fuels

    SciTech Connect

    Todd, Jr., Lee T.; Boggess, Ronald J.; Carson, Ronald J.; Falkenberg, Virginia P.; Flanagan, Patrick; Hettinger, Jr., William P.; Kimel, Kris; Kupchella, Charles E.; Magid, Lee J.; McLaughlin, Barbara; Royster, Wimberly C.; Streepey, Judi L.; Wells, James H.; Stencel, John; Derbyshire, Frank J.; Hanley, Thomas R.; Magid, Lee J.; McEllistrem, Marc T.; Riley, John T.; Steffen, Joseph M.

    1992-01-01

    A one-year USDOE/EPSCOR Traineeship Grant, entitled Clean Uses of Fossil Fuels.'' was awarded to the Kentucky EPSCoR Committee in September 1991 and administered through the the DOE/EPSCoR Subcommittee. Ten Traineeships were awarded to doctoral students who are enrolled or accepted into Graduate Programs at either the University of Kentucky or the University of Louisville. The disciplines of these students include Biology, Chemical Engineering, Chemistry, Geological Sciences, and Physics. The methods used for a statewide proposal solicitation and to award the Traineeships are presented. The review panel and Kentucky DOE/EPSCoR Subcommittee involved in awarding the Traineeships are described. A summary of the proposed research to be performed within these awards is presented, along with a description of the qualifications of the faculty and students who proposed projects. Future efforts to increase participation in Traineeship proposals for the succeeding funding period are outlined.

  5. Atmospheric Verification of Point Source Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Norris, M. W.; Wiltshire, R.; Baisden, W. T.; Brailsford, G. W.; Bromley, T.

    2015-12-01

    Large point sources (electricity generation and large-scale industry) make up roughly one third of all fossil fuel CO2 (CO2ff) emissions. Currently, these emissions are determined from self-reported inventory data, and sometimes from smokestack emissions monitoring, and the uncertainty in emissions from individual power plants is about 20%. We examine the utility of atmospheric 14C measurements combined with atmospheric transport modelling as a tool for independently quantifying point source CO2ff emissions, to both improve the accuracy of the reported emissions and for verification as we move towards a regulatory environment. We use the Kapuni Gas Treatment Facility as a test case. It is located in rural New Zealand with no other significant fossil fuel CO2 sources nearby, and emits CO2ff at ~0.1 Tg carbon per year. We use several different sampling methods to determine the 14C and hence the CO2ff content downwind of the emission source: grab flask samples of whole air; absorption of CO2 into sodium hydroxide integrated over many hours; and plant material which faithfully records the 14C content of assimilated CO2. We use a plume dispersion model to compare the reported emissions with our observed CO2ff mole fractions. We show that the short-term variability in plume dispersion makes it difficult to interpret the grab flask sample results, whereas the variability is averaged out in the integrated samples and we obtain excellent agreement between the reported and observed emissions, indicating that the 14C method can reliably be used to evaluated point source emissions.

  6. Ecological consequences of elevated total dissolved solids associated with fossil fuel extraction in the United States

    EPA Science Inventory

    Fossil fuel burning is considered a major contributor to global climate change. The outlook for production and consumption of fossil fuels int he US indicates continued growth to support growing energy demands. For example, coal-generated electricity is projected ot increase from...

  7. Fossil Fuels. A Supplement to the "Science 100, 101" Curriculum Guide. Curriculum Support Series.

    ERIC Educational Resources Information Center

    Soprovich, William, Comp.

    When the fossil fuels unit was first designed for Science 101 (the currently approved provincial guide for grade 10 science in Manitoba), Canadian support materials were very limited. Since students are asked to interpret data concerning energy consumption and sources for certain fossil fuels, the need for appropriate Canadian data became obvious.…

  8. Engine combustion control at low loads via fuel reactivity stratification

    DOEpatents

    Reitz, Rolf Deneys; Hanson, Reed M; Splitter, Derek A; Kokjohn, Sage L

    2014-10-07

    A compression ignition (diesel) engine uses two or more fuel charges during a combustion cycle, with the fuel charges having two or more reactivities (e.g., different cetane numbers), in order to control the timing and duration of combustion. By appropriately choosing the reactivities of the charges, their relative amounts, and their timing, combustion can be tailored to achieve optimal power output (and thus fuel efficiency), at controlled temperatures (and thus controlled NOx), and with controlled equivalence ratios (and thus controlled soot). At low load and no load (idling) conditions, the aforementioned results are attained by restricting airflow to the combustion chamber during the intake stroke (as by throttling the incoming air at or prior to the combustion chamber's intake port) so that the cylinder air pressure is below ambient pressure at the start of the compression stroke.

  9. Isotope- and tracer-based measurements of fossil fuel and biospheric carbon dioxide in Paris during winter 2010

    NASA Astrophysics Data System (ADS)

    Lopez, M.; Schmidt, M.; Delmotte, M.; Colomb, A.; Gros, V.; Janssen, C.; Lehman, S. J.; Mondelain, D.; Perrussel, O.; Ramonet, M.; Xueref-Remy, I.; Bousquet, P.

    2013-01-01

    Measurements of the mole fraction of the CO2 and its isotopes were performed in Paris during the MEGAPOLI winter campaign (January-February 2010). Radiocarbon (14CO2) measurements were used to identify the relative contributions of 77% CO2 from fossil fuel consumption (CO2ff from liquid and gas combustion) and 23% from biospheric CO2 (CO2 from the use of biofuels and from human and plant respiration: CO2bio). These percentages correspond to average mole fractions of 26.4 ppm and 8.2 ppm for CO2ff and CO2bio, respectively. The 13CO2 analysis indicated that gas and liquid fuel contributed 70% and 30%, respectively, of the CO2 emission from fossil fuel use. Continuous measurements of CO and NOx and the ratios CO/CO2ff and NOx/CO2ff derived from radiocarbon measurements during four days make it possible to estimate the fossil fuel CO2 contribution over the entire campaign. The ratios CO/CO2ff and NOx/CO2ff are functions of air mass origin and exhibited daily ranges of 7.9 to 14.5 ppb ppm-1 and 1.1 to 4.3 ppb ppm-1, respectively. These ratios are sufficiently consistent with different emission inventories given the uncertainties of the different approaches.

  10. Criteria for solid recovered fuels as a substitute for fossil fuels--a review.

    PubMed

    Beckmann, Michael; Pohl, Martin; Bernhardt, Daniel; Gebauer, Kathrin

    2012-04-01

    The waste treatment, particularly the thermal treatment of waste has changed fundamentally in the last 20 years, i.e. from facilities solely dedicated to the thermal treatment of waste to facilities, which in addition to that ensure the safe plant operation and fulfill very ambitious criteria regarding emission reduction, resource recovery and energy efficiency as well. Therefore this contributes to the economic use of raw materials and due to the energy recovered from waste also to the energy provision. The development described had the consequence that waste and solid recovered fuels (SRF) has to be evaluated based on fuel criteria as well. Fossil fuels - coal, crude oil, natural gas etc. have been extensively investigated due to their application in plants for energy conversion and also due to their use in the primary industry. Thereby depending on the respective processes, criteria on fuel technical properties can be derived. The methods for engineering analysis of regular fuels (fossil fuels) can be transferred only partially to SRF. For this reason methods are being developed or adapted to current analytical methods for the characterization of SRF. In this paper the possibilities of the energetic utilization of SRF and the characterization of SRF before and during the energetic utilization will be discussed.

  11. Identifying the European fossil fuel plumes in the atmosphere over the Northeast Atlantic Region through isotopic observations and numerical modelling.

    PubMed

    Geels, C; Christensen, J H; Hansen, A W; Heinemeier, J; Kiilsholm, S; Larsen, N W; Larsen, S E; Pedersen, T; Sørensen, L L; Brandt, J; Frohn, L M; Djurhuus, S

    2006-06-01

    As part of the Danish NEAREX project the origin and variability of anthropogenic atmospheric CO(2) over the Northeast Atlantic Region (NEAR) has been studied. The project consisted of a combination of experimental and modelling activities. Local volunteers operated CO(2) sampling stations, built at University of Copenhagen, for (14)C analysis at four locations (East Denmark, Shetland Isles, Faroe Isles and Iceland). The samples were only collected during winter periods of south-easterly winds in an attempt to trace air enriched in fossil-fuel derived CO(2) due to combustion of fossil fuels within European countries. In order to study the transport and concentration fields over the region in detail, a three-dimensional Eulerian hemispheric air pollution model has been extended to include the main anthropogenic sources for atmospheric CO(2). During the project period (1998-2001) only a few episodes of transport from Central Europe towards NEAR arose, which makes the data set for the evaluation of the method sparse. The analysed samples indicate that the signal for fossil CO(2), as expected, is largest (up to 3.7+/-0.4% fossil CO(2)) at the Danish location closest to the European emissions areas and much weaker (up to approximately 1.5+/-0.6% fossil CO(2)) at the most remote location. As the anthropogenic signal is weak in the clean atmosphere over NEAR these numbers will, however, be very sensitive to the assumed background (14)CO(2) activity and the precision of the measurements. The model simulations include the interplay between the driving processes from the emission into the boundary layer and the following horizontal/vertical mixing and atmospheric transport and are used to analyse the meteorological conditions leading to the observed events of high fossil CO(2) over NEAR. This information about the history of the air masses is essential if an observed signal is to be utilised for identifying and quantifying sources for fossil CO(2).

  12. Disaggregating Fossil Fuel Emissions from Biospheric Fluxes: Methodological Improvements for Inverse Methods

    NASA Astrophysics Data System (ADS)

    Yadav, V.; Shiga, Y. P.; Michalak, A. M.

    2012-12-01

    The accurate spatio-temporal quantification of fossil fuel emissions is a scientific challenge. Atmospheric inverse models have the capability to overcome this challenge and provide estimates of fossil fuel emissions. Observational and computational limitations limit current analyses to the estimations of a combined "biospheric flux and fossil-fuel emissions" carbon dioxide (CO2) signal, at coarse spatial and temporal resolution. Even in these coarse resolution inverse models, the disaggregation of a strong biospheric signal form a weaker fossil-fuel signal has proven difficult. The use of multiple tracers (delta 14C, CO, CH4, etc.) has provided a potential path forward, but challenges remain. In this study, we attempt to disaggregate biospheric fluxes and fossil-fuel emissions on the basis of error covariance models rather through tracer based CO2 inversions. The goal is to more accurately define the underlying structure of the two processes by using a stationary exponential covariance model for the biospheric fluxes, in conjunction with a semi-stationary covariance model derived from nightlights for fossil fuel emissions. A non-negativity constraint on fossil fuel emissions is imposed using a data transformation approach embedded in an iterative quasi-linear inverse modeling algorithm. The study is performed for January and June 2008, using the ground-based CO2 measurement network over North America. The quality of disaggregation is examined by comparing the inferred spatial distribution of biospheric fluxes and fossil-fuel emissions in a synthetic-data inversion. In addition to disaggregation of fluxes, the ability of the covariance models derived from nightlights to explain the fossil-fuel emissions over North America is also examined. The simple covariance model proposed in this study is found to improve estimation and disaggregation of fossil-fuel emissions from biospheric fluxes in the tracer-based inverse models.

  13. Combustion technology overview. [the use of broadened property aircraft fuels

    NASA Technical Reports Server (NTRS)

    Niedzwiecki, R. W.

    1980-01-01

    An overview of combustor technology developments required for use of broadened property fuels in jet aircraft is presented. The intent of current investigations is to determine the extent to which fuel properties can be varied, to obtain a data base of combustion - fuel quality effects, and to determine the trade-offs associated with broadened property fuels. Subcomponents of in-service combustors such as fuel injectors and liners, as well as air distributions and stoichiometry, are being altered to determine the extent to which fuel flexibility can be extended. Finally, very advanced technology consisting of new combustor concepts is being evolved to optimize the fuel flexibility of gas turbine combustors.

  14. Replacing fossil diesel by biodiesel fuel: expected impact on health.

    PubMed

    Hutter, Hans-Peter; Kundi, Michael; Moshammer, Hanns; Shelton, Janie; Krüger, Bernd; Schicker, Irene; Wallner, Peter

    2015-01-01

    Biofuels have become an alternative to fossil fuel, but consequences on human health from changes to emissions compositions are not well understood. By combining information on composition of vehicle exhaust, dispersion models, and relationship between exposure to air contaminants and health, the authors determined expected mortality outcomes in 2 scenarios: a blend of 10% biodiesel and 90% standard diesel (B10) and biodiesel only (B100), for a rural and an urban environment. Vehicle exhaust for both fuel compositions contained lower fine particle mass but higher NO2 levels. Ambient air concentrations in scenario B10 were almost unchanged. In scenario B100, PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) levels decreased by 4-8% and NO2 levels increased 7-11%. Reduction of PM2.5 is expected to reduce mortality rate by 5 × 10(-6) and 31 × 10(-6) per year, whereas NO2 increase adds 17 × 10(-6) and 30 × 10(-6) to mortality rate for B10 and B100, respectively. Since effects of PM2.5 and NO2 are not independent, a positive net effect is possible.

  15. Hydrocarbon-fuel/combustion-chamber-liner materials compatibility

    NASA Technical Reports Server (NTRS)

    Gage, Mark L.

    1990-01-01

    Results of material compatibility experiments using hydrocarbon fuels in contact with copper-based combustion chamber liner materials are presented. Mil-Spec RP-1, n- dodecane, propane, and methane fuels were tested in contact with OFHC, NASA-Z, and ZrCu coppers. Two distinct test methods were employed. Static tests, in which copper coupons were exposed to fuel for long durations at constant temperature and pressure, provided compatibility data in a precisely controlled environment. Dynamic tests, using the Aerojet Carbothermal Test Facility, provided fuel and copper compatibility data under realistic booster engine service conditions. Tests were conducted using very pure grades of each fuel and fuels to which a contaminant, e.g., ethylene or methyl mercaptan, was added to define the role played by fuel impurities. Conclusions are reached as to degradation mechanisms and effects, methods for the elimination of these mechanisms, selection of copper alloy combustion chamber liners, and hydrocarbon fuel purchase specifications.

  16. Properties of air and combustion products of fuel with air

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1975-01-01

    Thermodynamic and transport properties have been calculated for air, the combustion products of natural gas and air, and combustion products of ASTM-A-1 jet fuel and air. Properties calculated include: ratio of specific heats, molecular weight, viscosity, specific heat, thermal conductivity, Prandtl number, and enthalpy.

  17. Solid fuel combustion system for gas turbine engine

    DOEpatents

    Wilkes, Colin; Mongia, Hukam C.

    1993-01-01

    A solid fuel, pressurized fluidized bed combustion system for a gas turbine engine includes a carbonizer outside of the engine for gasifying coal to a low Btu fuel gas in a first fraction of compressor discharge, a pressurized fluidized bed outside of the engine for combusting the char residue from the carbonizer in a second fraction of compressor discharge to produce low temperature vitiated air, and a fuel-rich, fuel-lean staged topping combustor inside the engine in a compressed air plenum thereof. Diversion of less than 100% of compressor discharge outside the engine minimizes the expense of fabricating and maintaining conduits for transferring high pressure and high temperature gas and incorporation of the topping combustor in the compressed air plenum of the engine minimizes the expense of modifying otherwise conventional gas turbine engines for solid fuel, pressurized fluidized bed combustion.

  18. A Nonlinear Model for Fuel Atomization in Spray Combustion

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey (Technical Monitor); Ibrahim, Essam A.; Sree, Dave

    2003-01-01

    Most gas turbine combustion codes rely on ad-hoc statistical assumptions regarding the outcome of fuel atomization processes. The modeling effort proposed in this project is aimed at developing a realistic model to produce accurate predictions of fuel atomization parameters. The model involves application of the nonlinear stability theory to analyze the instability and subsequent disintegration of the liquid fuel sheet that is produced by fuel injection nozzles in gas turbine combustors. The fuel sheet is atomized into a multiplicity of small drops of large surface area to volume ratio to enhance the evaporation rate and combustion performance. The proposed model will effect predictions of fuel sheet atomization parameters such as drop size, velocity, and orientation as well as sheet penetration depth, breakup time and thickness. These parameters are essential for combustion simulation codes to perform a controlled and optimized design of gas turbine fuel injectors. Optimizing fuel injection processes is crucial to improving combustion efficiency and hence reducing fuel consumption and pollutants emissions.

  19. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-06-01

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and missions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects test; and full-scale combustion tests.

  20. The Fossil Fuel Divestment Movement: An Ethical Dilemma for the Geosciences?

    NASA Astrophysics Data System (ADS)

    Greene, C. H.; Kammen, D. M.

    2014-12-01

    For over 200 years, fossil fuels have been the basis for an industrial revolution that has delivered a level of prosperity to modern society unimaginable during the previous 5000 years of human civilization. However, society's dependence on fossil fuels is coming to an end for two reasons. The first reason is because our fossil fuel reserves are running out, oil in this century, natural gas during the next century, and coal a few centuries later. The second reason is because fossil fuels are having a devastating impact on the habitability of our planet, disrupting our climate system and acidifying our oceans. So the question is not whether we will discontinue using fossil fuels, but rather whether we will stop using them before they do irreparable damage to the Earth's life-support systems. Within our geoscience community, climate scientists have determined that a majority of existing fossil fuel reserves must remain unburned if dangerous climate change and ocean acidification are to be avoided. In contrast, Exxon-Mobil, Shell, and other members of the fossil fuel industry are pursuing a business model that assumes all of their reserves will be burned and will not become stranded assets. Since the geosciences have had a long and mutually beneficial relationship with the fossil fuel industry, this inherent conflict between climate science and industrial interests presents an ethical dilemma for many geoscientists. This conflict is further heightened by the fossil fuel divestment movement, which is underway at over 400 college and university campuses around the world. This presentation will explore some of the ethical and financial issues being raised by the divestment movement from a geoscientist's perspective.

  1. Investigation of combustion characteristics of methane-hydrogen fuels

    NASA Astrophysics Data System (ADS)

    Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.

    2015-01-01

    Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.

  2. Carbon Dioxide Emissions From Fossil-Fuel Consumption in Indonesia

    NASA Astrophysics Data System (ADS)

    Gregg, J. S.; Robert, A. J.

    2005-05-01

    Applying monthly sales and consumption data of coal, petroleum and natural gas, a monthly time series of carbon dioxide emissions from fossil-fuel consumption is created for Indonesia. These are then modeled with an autoregressive function to produce a quantitative description of the seasonal distribution and long-term pattern of CO2 emissions. Currently, Indonesia holds the 21st ranked position in total anthropogenic CO2 emissions among countries of the world. The demand for energy in Indonesia has been growing rapidly in recent years as Indonesia attempts to modernize and upgrade the standard of living for its citizens. With such a large population (a quarter of a billion people), the recent increase observed in the per capita energy use equates to a large escalation in total CO2 emissions. However, the economy and political climate is rather turbulent and thus emissions tend to fluctuate wildly. For example, Indonesia's energy consumption dropped substantially during the Asian economic crisis in the late 1990s. It is likely that the recent tsunami will also significantly impact energy consumption as the hard-hit Aceh region is the largest fuel-producing region of Indonesia. Therefore, Indonesia is a country whose emissions are more unpredictable than most countries that emit comparable levels of CO2. Complicating matters further, data collection practices in Indonesia are less diligent than in other countries with more stable economies. Thus, though CO2 emissions from Indonesia are a particular challenge to model, they are an important component to understanding the total global carbon cycle.

  3. Carbon emissions from fossil fuel consumption of Beijing in 2012

    NASA Astrophysics Data System (ADS)

    Shao, Ling; Guan, Dabo; Zhang, Ning; Shan, Yuli; Chen, G. Q.

    2016-11-01

    The present study analyzed the consumption-based carbon emissions from fossil fuel consumption of Beijing in 2012. The multi-scale input-output analysis method was applied. It is capable of tracing the carbon emissions embodied in imports based on a global multi-regional input-output analysis using Eora data. The results show that the consumption-based carbon emission of Beijing has increased by 18% since 2007, which is 2.57 times higher than the production-based carbon emission in 2012. Only approximately 1/10 of the total carbon emissions embodied in Beijing’s local final demand originated from local direct carbon emissions. Meanwhile, more than 4/5 were from domestically imported products. The carbon emission nexus between Beijing and other Chinese regions has become closer since 2007, while the imbalance as the carbon emission transfer from Beijing to other regions has been mitigated. Instead, Beijing has imported more carbon emissions from foreign countries. Some carbon emission reduction strategies for Beijing concerning different goals are presented on the basis of detailed discussion.

  4. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect

    J. Hnat; L.M. Bartone; M. Pineda

    2001-07-13

    This Summary Report summarizes the progress of Phases 3, 3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the Material Handling and Conditioning System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem.

  5. Mapping Biomass Availability to Decrease the Dependency on Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Steensen, T.; Müller, S.; Jandewerth, M.; Büscher, O.

    2014-09-01

    To decrease the dependency on fossil fuels, more renewable energy sources need to be explored. Over the last years, the consumption of biomass has risen steadily and it has become a major source for re-growing energy. Besides the most common sources of biomass (forests, agriculture etc.) there are smaller supplies available in mostly unused areas like hedges, vegetation along streets, railways, rivers and field margins. However, these sources are not mapped and in order to obtain their potential for usage as a renewable energy, a method to quickly assess their spatial distribution and their volume is needed. We use a range of data sets including satellite imagery, GIS and elevation data to evaluate these parameters. With the upcoming Sentinel missions, our satellite data is chosen to match the spatial resolution of Sentinel-2 (10-20 m) as well as its spectral characteristics. To obtain sub-pixel information from the satellite data, we use a spectral unmixing approach. Additional GIS data is provided by the German Digital Landscape Model (ATKIS Base-DLM). To estimate the height (and derive the volume) of the vegetation, we use LIDAR data to produce a digital surface model. These data sets allow us to map the extent of previously unused biomass sources. This map can then be used as a starting point for further analyses about the feasibility of the biomass extraction and their usage as a renewable energy source.

  6. Transalkylation reactions in fossil fuels and related model compounds

    SciTech Connect

    Farcasiu, M.; Forbus, T.R.; LaPierre, R.B.

    1983-02-01

    The alkyl substituents of high molecular weight polycyclic aromatic constituents of petroleum residues are transferable to exogenous monocyclic aromatics (benzene, toluene, o-xylene, etc.) by acid catalyzed (CF/sub 3/SO/sub 3/H) Friedel Crafts transalkylation. Analysis (GC-MS) of the volatile alkylated monocyclic aromatic products provides a method for the determination of the alkyl group content/structure of the starting fossil fuel mixture. Both model systems, using alkylated naphthalenes, phenanthrenes, pyrenes and dibenzothiophenes and demineralized shale oil or petroleum resid were studied. The model studies (alkyl chain length 2-10 carbons) revealed the following reaction pathways to predominate: (1) transalkylation rates/equilibria are independent of chain length; (2) n-alkyl groups are transfered without rearrangement or fragmentation; (3) reaction rate depends upon the aromatic moiety; (4) formation of dixylylmethanes via benzyl carbenium ions is significant (12 to 25% of product; and (5) significant minor products at longer reaction times are alkyl tetralins, tetralins, napthalenes and alkylated acceptors having a chain length reduced by (-CH/sub 2/-)/sub 4/.

  7. Advanced Hydrogen Transport Membranes for Vision 21 Fossil Fuel Plants

    SciTech Connect

    Carl R. Evenson; Richard N. Kleiner; James E. Stephan; Frank E. Anderson

    2006-04-30

    Eltron Research Inc. and team members CoorsTek, Sued Chemie, Argonne National Laboratory, and NORAM are developing an environmentally benign, inexpensive, and efficient method for separating hydrogen from gas mixtures produced during industrial processes, such as coal gasification. This project was motivated by the National Energy Technology Laboratory (NETL) Vision 21 initiative, which seeks to economically eliminate environmental concerns associated with the use of fossil fuels. Currently, this project is focusing on four basic categories of dense membranes: (1) mixed conducting ceramic/ceramic composites, (2) mixed conducting ceramic/metal (cermet) composites, (3) cermets with hydrogen permeable metals, and (4) layered composites containing hydrogen permeable alloys. Ultimately, these materials must enable hydrogen separation at practical rates under ambient and high-pressure conditions, without deactivation in the presence of feedstream components such as carbon dioxide, water, and sulfur. During this final quarter of the no cost extension several planar membranes of a cermet composition referred to as EC101 containing a high permeability metal and a ceramic phase were prepared and permeability testing was performed.

  8. FUEL RICH SULFUR CAPTURE IN A COMBUSTION ENVIRONMENT

    EPA Science Inventory

    A refractory-lined, natural gas furnace was used to study fuel rich sulfur capture reactions of calcium sorbents under typical combustion conditions. The fuel rich sulfur species H2S and COS were monitored in a near-continuous fashion using a gas chromatograph equipped with a fl...

  9. What are the likely roles of fossil fuels in the next 15, 50, and 100 years, with or without active controls on greenhouse gas emissions

    SciTech Connect

    Kane, R.L. ); South, D.W. )

    1990-01-01

    Since the industrial revolution, the production and utilization of fossil fuels have been an engine driving economic and industrial development in many countries worldwide. However, future reliance on fossil fuels has been questioned due to emerging concerns about greenhouse gas (GHG) emissions, particularly carbon dioxide (CO{sub 2}), and its potential contribution to global climate change (GCC). While substantial uncertainties exist regarding the ability to accurately predict climate change and the role of various greenhouse gases, some scientists and policymakers have called for immediate action. As a result, there have been many proposals and worldwide initiatives to address the perceived problem. In many of these proposals, the premise is that CO{sub 2} emissions constitute the principal problem, and, correspondingly, that fossil-fuel combustion must be curtailed to resolve this problem. This paper demonstrates that the worldwide fossil fuel resource base and infrastructure are extensive and thus, will continue to be relied on in developed and developing countries. Furthermore, in the electric generating sector (the focus of this paper), numerous clean coal technologies (CCTs) are currently being demonstrated (or are under development) that have higher conversion efficiencies, and thus lower CO{sub 2} emission rates than conventional coal-based technologies. As these technologies are deployed in new power plant or repowering applications to meet electrical load growth, CO{sub 2} (and other GHG) emission levels per unit of electricity generated will be lower than that produced by conventional fossil-fuel technologies. 37 refs., 14 figs., 11 tabs.

  10. Emissions from ethanol-blended fossil fuel flames

    SciTech Connect

    Akcayoglu, Azize

    2011-01-15

    A fundamental study to investigate the emission characteristics of ethanol-blended fossil fuels is presented. Employing a heterogeneous experimental setup, emissions are measured from diffusion flames around spherical porous particles. Using an infusion pump, ethanol-fossil fuel blend is transpired into a porous sphere kept in an upward flowing air stream. A typical probe of portable digital exhaust gas analyzer is placed in and around the flame with the help of a multi-direction traversing mechanism to measure emissions such as un-burnt hydrocarbons, carbon monoxide and carbon dioxide. Since ethanol readily mixes with water, emission characteristics of ethanol-water blends are also studied. For comparison purpose, emissions from pure ethanol diffusion flames are also presented. A simplified theoretical analysis has been carried out to determine equilibrium surface temperature, composition of the fuel components in vapor-phase and heat of reaction of each blend. These theoretical predictions are used in explaining the emission characteristics of flames from ethanol blends. (author) This paper presents the results of an experimental study of flow structure in horizontal equilateral triangular ducts having double rows of half delta-wing type vortex generators mounted on the duct's slant surfaces. The test ducts have the same axial length and hydraulic diameter of 4 m and 58.3 mm, respectively. Each duct consists of double rows of half delta wing pairs arranged either in common flow-up or common flow-down configurations. Flow field measurements were performed using a Particle Image Velocimetry Technique for hydraulic diameter based Reynolds numbers in the range of 1000-8000. The secondary flow field differences generated by two different vortex generator configurations were examined in detail. The secondary flow is found stronger behind the second vortex generator pair than behind the first pair but becomes weaker far from the second pair in the case of Duct1. However

  11. Apparatus and method for combusting low quality fuel

    DOEpatents

    Brushwood, John Samuel; Pillsbury, Paul; Foote, John; Heilos, Andreas

    2003-11-04

    A gas turbine (12) capable of combusting a low quality gaseous fuel having a ratio of flammability limits less than 2, or a heat value below 100 BTU/SCF. A high quality fuel is burned simultaneously with the low quality fuel to eliminate instability in the combustion flame. A sensor (46) is used to monitor at least one parameter of the flame indicative of instability. A controller (50) having the sensor signal (48) as input is programmed to control the relative flow rates of the low quality and high quality fuels. When instability is detected, the flow rate of high quality fuel is automatically increased in relation to the flow rate of low quality fuel to restore stability.

  12. Combustion of coal gas fuels in a staged combustor

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.; Mcvey, J. B.; Sederquist, R. A.; Schultz, D. F.

    1982-01-01

    Gaseous fuels produced from coal resources generally have heating values much lower than natural gas; the low heating value could result in unstable or inefficient combustion. Coal gas fuels may contain ammonia which if oxidized in an uncontrolled manner could result in unacceptable nitrogen oxide exhaust emission levels. Previous investigations indicate that staged, rich-lean combustion represents a desirable approach to achieve stable, efficient, low nitrogen oxide emission operation for coal-derived liquid fuels contaning up to 0.8-wt pct nitrogen. An experimental program was conducted to determine whether this fuel tolerance can be extended to include coal-derived gaseous fuels. The results of tests with three nitrogen-free fuels having heating values of 100, 250, and 350 Btu/scf and a 250 Btu/scf heating value doped to contain 0.7 pct ammonia are presented.

  13. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions

    PubMed Central

    Perraud, Véronique; Horne, Jeremy R.; Martinez, Andrew S.; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L.; Wingen, Lisa M.; Dabdub, Donald; Blake, Donald R.; Gerber, R. Benny; Finlayson-Pitts, Barbara J.

    2015-01-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine–California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  14. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    PubMed

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-03

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs.

  15. Characterizing fuels for atmospheric fluidized bed combustion

    SciTech Connect

    Marban, G.; Pis, J.J.; Fuertes, A.B.

    1995-10-01

    A complete methodology for characterizing coal combustion in atmospheric fluidized bed reactors is presented. The methodology comprises studies of fragmentation and particle size variations during combustion, necessary to allow an accurate determination of kinetic parameters and attrition rates. Samples of three different carbonaceous materials (a medium-ash lignite, a medium-ash anthracite and a graphite) were pyrolyzed in N{sub 2} and partially burned in air in a bench-scale fluidized bed reactor at different operating conditions. The particle size distribution, apparent density and number of particles were evaluated by Image Analysis. Additionally, the sphericity factors were calculated. Combustion studies were carried out in batch experiments in the laboratory-scale, fluidized bed reactor at the same operating conditions. The reactor outlet concentrations of O{sub 2}, CO{sub 2}, and CO were monitored continuously. The results indicate that only anthracite particles experienced both primary (due to devolatilization) and secondary (during char combustion) fragmentation. Graphite particles underwent secondary fragmentation, whereas lignite particles did not significantly vary in number during combustion. Size and density variations during combustion suggest that graphite particles burn under regime II, interparticle diffusion being the rate controlling step. On the other hand, anthracite and lignite particles developed an ash layer, which may control combustion. The attrition constants of the medium-ash materials (lignite and anthracite) were found to be very low whereas that of graphite was much higher due mainly to peripheral percolation during combustion.

  16. Stratified charge combustion system and method for gaseous fuel internal combustion engines

    SciTech Connect

    Rhoades, W.A. Jr.

    1986-03-11

    This patent describes a stratified charge combustion system for use in a gaseous fuel internal combustion engine. This system consists of: (a) a combustion chamber; (b) an ignition; (c) a gaseous fuel injection valve assembly in communication with the combustion chamber and in spaced relationship from the ignition source with a portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The fuel valve assembly defines an entry port for the entrance of gaseous fuel, the entry port is recessed outside of a fixed inside surface. (d) means for pressuring the gaseous fuel prior to injection; and (e) a curved transitional surface extending from the entry port toward the portion of the inside surfaces extending between the fuel injection valve assembly and the ignition source. The curved transitional surface curves away from the direction of the entry port. The curved transitional surface has a curvature for the particular direction and configuration of the entry port. The particular configuration of the portion of the inside surfaces extends between the injection valve assembly and the ignition source. The particular arrangment of the fuel injection valve assembly in the combustion chamber, and for the particular pressure of the gaseous fuel is to produce the Coanda Effect in the injected gaseous fuel flow after it passes through the entry port and follows the curved transitional surface under the Coanda Effect. As the curved transitional surface curves away from the direction of the entry port, a flow is produced of the gaseous fuel that clings to and follows the particular configuration of the inside surfaces to the ignition source.

  17. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, Franklin A.

    1985-01-01

    A method and device for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal.

  18. Superheated fuel injection for combustion of liquid-solid slurries

    DOEpatents

    Robben, F.A.

    1984-10-19

    A method and device are claimed for obtaining, upon injection, flash evaporation of a liquid in a slurry fuel to aid in ignition and combustion. The device is particularly beneficial for use of coal-water slurry fuels in internal combustion engines such as diesel engines and gas turbines, and in external combustion devices such as boilers and furnaces. The slurry fuel is heated under pressure to near critical temperature in an injector accumulator, where the pressure is sufficiently high to prevent boiling. After injection into a combustion chamber, the water temperature will be well above boiling point at a reduced pressure in the combustion chamber, and flash boiling will preferentially take place at solid-liquid surfaces, resulting in the shattering of water droplets and the subsequent separation of the water from coal particles. This prevents the agglomeration of the coal particles during the subsequent ignition and combustion process, and reduces the energy required to evaporate the water and to heat the coal particles to ignition temperature. The overall effect will be to accelerate the ignition and combustion rates, and to reduce the size of the ash particles formed from the coal. 2 figs., 2 tabs.

  19. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-11-01

    The Pittsburgh Energy Technology Center of the US Department of Energy has contracted with Combustion Engineering, Inc. (CE) to perform a three-year project on Combustion Characterization of Beneficiated Coal-Based Fuels.'' The beneficiated coals are produced by other contractors under the DOE Coal Preparation Program. Several contractor-developed advanced coal cleaning processes are being run at the cleaning facility in Homer City, Pennsylvania, to produce 20-ton batches of fuels for shipment to CE's laboratory in Windsor, Connecticut. CE then processes the products into either a coal-water fuel (CVVT) or a dry microfine pulverized coal (DMPC) form for combustion testing. The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, combustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Science, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFS, and two conventionally cleaned coals for full-scale tests. Approximately, nine BCFs will be in dry microfine coal (DMPC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  20. Natural Gas for Advanced Dual-Fuel Combustion Strategies

    NASA Astrophysics Data System (ADS)

    Walker, Nicholas Ryan

    Natural gas fuels represent the next evolution of low-carbon energy feedstocks powering human activity worldwide. The internal combustion engine, the energy conversion device widely used by society for more than one century, is capable of utilizing advanced combustion strategies in pursuit of ultra-high efficiency and ultra-low emissions. Yet many emerging advanced combustion strategies depend upon traditional petroleum-based fuels for their operation. In this research the use of natural gas, namely methane, is applied to both conventional and advanced dual-fuel combustion strategies. In the first part of this work both computational and experimental studies are undertaken to examine the viability of utilizing methane as the premixed low reactivity fuel in reactivity controlled compression ignition, a leading advanced dual-fuel combustion strategy. As a result, methane is shown to be capable of significantly extending the load limits for dual-fuel reactivity controlled compression ignition in both light- and heavy-duty engines. In the second part of this work heavy-duty single-cylinder engine experiments are performed to research the performance of both conventional dual-fuel (diesel pilot ignition) and advanced dual-fuel (reactivity controlled compression ignition) combustion strategies using methane as the premixed low reactivity fuel. Both strategies are strongly influenced by equivalence ratio; diesel pilot ignition offers best performance at higher equivalence ratios and higher premixed methane ratios, whereas reactivity controlled compression ignition offers superior performance at lower equivalence ratios and lower premixed methane ratios. In the third part of this work experiments are performed in order to determine the dominant mode of heat release for both dual-fuel combustion strategies. By studying the dual-fuel homogeneous charge compression ignition and single-fuel spark ignition, strategies representative of autoignition and flame propagation

  1. Oxy-fuel combustion with integrated pollution control

    DOEpatents

    Patrick, Brian R [Chicago, IL; Ochs, Thomas Lilburn [Albany, OR; Summers, Cathy Ann [Albany, OR; Oryshchyn, Danylo B [Philomath, OR; Turner, Paul Chandler [Independence, OR

    2012-01-03

    An oxygen fueled integrated pollutant removal and combustion system includes a combustion system and an integrated pollutant removal system. The combustion system includes a furnace having at least one burner that is configured to substantially prevent the introduction of air. An oxygen supply supplies oxygen at a predetermine purity greater than 21 percent and a carbon based fuel supply supplies a carbon based fuel. Oxygen and fuel are fed into the furnace in controlled proportion to each other and combustion is controlled to produce a flame temperature in excess of 3000 degrees F. and a flue gas stream containing CO2 and other gases. The flue gas stream is substantially void of non-fuel borne nitrogen containing combustion produced gaseous compounds. The integrated pollutant removal system includes at least one direct contact heat exchanger for bringing the flue gas into intimated contact with a cooling liquid to produce a pollutant-laden liquid stream and a stripped flue gas stream and at least one compressor for receiving and compressing the stripped flue gas stream.

  2. Alternate-Fueled Combustion-Sector Emissions

    NASA Technical Reports Server (NTRS)

    Saxena, Nikita T.; Thomas, Anna E.; Shouse, Dale T.; Neuroth, Craig; Hendricks, Robert C.; Lynch, Amy; Frayne, Charles W.; Stutrud, Jeffrey S.; Corporan, Edwin; Hankins, Terry

    2012-01-01

    In order to meet rapidly growing demand for fuel, as well as address environmental concerns, the aviation industry has been testing alternate fuels for performance and technical usability in commercial and military aircraft. Currently, alternate aviation fuels must satisfy MIL-DTL- 83133F(2008) (military) or ASTM D 7566- Annex(2011) (commercial) standards and are termed drop-in fuel replacements. Fuel blends of up to 50% alternative fuel blended with petroleum (JP-8), which have become a practical alternative, are individually certified on the market. In order to make alternate fuels (and blends) a viable option for aviation, the fuel must be able to perform at a similar or higher level than traditional petroleum fuel. They also attempt to curb harmful emissions, and therefore a truly effective alternate fuel would emit at or under the level of currently used fuel. This paper analyzes data from gaseous and particulate emissions of an aircraft combustor sector. The data were evaluated at various inlet conditions, including variation in pressure and temperature, fuel-to-air ratios, and percent composition of alternate fuel. Traditional JP-8+100 data were taken as a baseline, and blends of JP- 8+100 with synthetic-paraffinic-kerosene (SPK) fuel (Fischer-Tropsch (FT)) were used for comparison. Gaseous and particulate emissions, as well as flame luminosity, were assessed for differences between FT composition of 0%, 50%, and 100%. The data showed that SPK fuel (a FT-derived fuel) had slightly lower harmful gaseous emissions, and smoke number information corroborated the hypothesis that SPK-FT fuels are cleaner burning fuels.

  3. Design, quality, and quality assurance of solid recovered fuels for the substitution of fossil feedstock in the cement industry.

    PubMed

    Sarc, R; Lorber, K E; Pomberger, R; Rogetzer, M; Sipple, E M

    2014-07-01

    This paper describes the requirements for the production, quality, and quality assurance of solid recovered fuels (SRF) that are increasingly used in the cement industry. Different aspects have to be considered before using SRF as an alternative fuel. Here, a study on the quality of SRF used in the cement industry is presented. This overview is completed by an investigation of type and properties of input materials used at waste splitting and SRF production plants in Austria. As a simplified classification, SRF can be divided into two classes: a fine, high-calorific SRF for the main burner, or coarser SRF material with low calorific value for secondary firing systems, such as precombustion chambers or similar systems. In the present study, SRFs coming from various sources that fall under these two different waste fuel classes are discussed. Both SRFs are actually fired in the grey clinker kiln of the Holcim (Slovensko) plant in Rohožnik (Slovakia). The fine premium-quality material is used in the main burner and the coarse regular-quality material is fed to a FLS Hotdisc combustion device. In general, the alternative fuels are used instead of their substituted fossil fuels. For this, chemical compositions and other properties of SRF were compared to hard coal as one of the most common conventional fuels in Europe. This approach allows to compare the heavy metal input from traditional and alternative fuels and to comment on the legal requirements on SRF that, at the moment, are under development in Europe.

  4. INNOVATIVE FOSSIL FUEL FIRED VITRIFICATION TECHNOLOGY FOR SOIL REMEDIATION

    SciTech Connect

    J. Hnat; L.M. Bartone; M. Pineda

    2001-10-31

    This Final Report summarizes the progress of Phases 3,3A and 4 of a waste technology Demonstration Project sponsored under a DOE Environmental Management Research and Development Program and administered by the U.S. Department of Energy National Energy Technology Laboratory-Morgantown (DOE-NETL) for an ''Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation''. The Summary Reports for Phases 1 and 2 of the Program were previously submitted to DOE. The total scope of Phase 3 was to have included the design, construction and demonstration of Vortec's integrated waste pretreatment and vitrification process for the treatment of low level waste (LLW), TSCA/LLW and mixed low-level waste (MLLW). Due to funding limitations and delays in the project resulting from a law suit filed by an environmental activist and the extended time for DOE to complete an Environmental Assessment for the project, the scope of the project was reduced to completing the design, construction and testing of the front end of the process which consists of the Material Handling and Waste Conditioning (MH/C) Subsystem of the vitrification plant. Activities completed under Phases 3A and 4 addressed completion of the engineering, design and documentation of the MH/C System such that final procurement of the remaining process assemblies can be completed and construction of a Limited Demonstration Project be initiated in the event DOE elects to proceed with the construction and demonstration testing of the MH/C Subsystem. Because of USEPA policies and regulations that do not require treatment of low level or low-level/PCB contaminated wastes, DOE terminated the project because there is no purported need for this technology.

  5. Atmospheric measurement of point source fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Keller, E. D.; Baisden, W. T.; Brailsford, G.; Bromley, T.; Norris, M.; Zondervan, A.

    2013-11-01

    We use the Kapuni Gas Treatment Plant to examine methodologies for atmospheric monitoring of point source fossil fuel CO2 (CO2ff) emissions. The Kapuni plant, located in rural New Zealand, removes CO2 from locally extracted natural gas and vents that CO2 to the atmosphere, at a rate of ~0.1 Tg carbon per year. The plant is located in a rural dairy farming area, with no other significant CO2ff sources nearby, but large, diurnally varying, biospheric CO2 fluxes from the surrounding highly productive agricultural grassland. We made flask measurements of CO2 and 14CO2 (from which we derive the CO2ff component) and in situ measurements of CO2 downwind of the Kapuni plant, using a Helikite to sample transects across the emission plume from the surface up to 100 m a.g.l. We also determined the surface CO2ff content averaged over several weeks from the 14CO2 content of grass samples collected from the surrounding area. We use the WindTrax plume dispersion model to compare the atmospheric observations with the emissions reported by the Kapuni plant, and to determine how well atmospheric measurements can constrain the emissions. The model has difficulty accurately capturing the fluctuations and short-term variability in the Helikite samples, but does quite well in representing the observed CO2ff in 15 min averaged surface flask samples and in ~1 week integrated CO2ff averages from grass samples. In this pilot study, we found that using grass samples, the modeled and observed CO2ff emissions averaged over one week agreed to within 30%. The results imply that greater verification accuracy may be achieved by including more detailed meteorological observations and refining 14CO2 sampling strategies.

  6. Upward revision of global fossil fuel methane emissions based on isotope database.

    PubMed

    Schwietzke, Stefan; Sherwood, Owen A; Bruhwiler, Lori M P; Miller, John B; Etiope, Giuseppe; Dlugokencky, Edward J; Michel, Sylvia Englund; Arling, Victoria A; Vaughn, Bruce H; White, James W C; Tans, Pieter P

    2016-10-06

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  7. Upward revision of global fossil fuel methane emissions based on isotope database

    NASA Astrophysics Data System (ADS)

    Schwietzke, Stefan; Sherwood, Owen A.; Bruhwiler, Lori M. P.; Miller, John B.; Etiope, Giuseppe; Dlugokencky, Edward J.; Michel, Sylvia Englund; Arling, Victoria A.; Vaughn, Bruce H.; White, James W. C.; Tans, Pieter P.

    2016-10-01

    Methane has the second-largest global radiative forcing impact of anthropogenic greenhouse gases after carbon dioxide, but our understanding of the global atmospheric methane budget is incomplete. The global fossil fuel industry (production and usage of natural gas, oil and coal) is thought to contribute 15 to 22 per cent of methane emissions to the total atmospheric methane budget. However, questions remain regarding methane emission trends as a result of fossil fuel industrial activity and the contribution to total methane emissions of sources from the fossil fuel industry and from natural geological seepage, which are often co-located. Here we re-evaluate the global methane budget and the contribution of the fossil fuel industry to methane emissions based on long-term global methane and methane carbon isotope records. We compile the largest isotopic methane source signature database so far, including fossil fuel, microbial and biomass-burning methane emission sources. We find that total fossil fuel methane emissions (fossil fuel industry plus natural geological seepage) are not increasing over time, but are 60 to 110 per cent greater than current estimates owing to large revisions in isotope source signatures. We show that this is consistent with the observed global latitudinal methane gradient. After accounting for natural geological methane seepage, we find that methane emissions from natural gas, oil and coal production and their usage are 20 to 60 per cent greater than inventories. Our findings imply a greater potential for the fossil fuel industry to mitigate anthropogenic climate forcing, but we also find that methane emissions from natural gas as a fraction of production have declined from approximately 8 per cent to approximately 2 per cent over the past three decades.

  8. The cosmic web and microwave background fossilize the first turbulent combustion

    NASA Astrophysics Data System (ADS)

    Gibson, Carl H.

    2015-09-01

    The weblike structure of the cosmic microwave background CMB temperature fluctuations are interpreted as fossils of the first turbulent combustion that drives the big bang1,2,3. Modern turbulence theory3 requires that inertial vortex forces cause turbulence to always cascade from small scales to large, contrary to the standard turbulence model where the cascade is reversed. Assuming that the universe begins at Planck length 10-35 m and temperature 1032 K, the mechanism of the big bang is a powerful turbulent combustion instability, where turbulence forms at the Kolmogorov scale and mass-energy is extracted by < -10113 Pa negative stresses from big bang turbulence working against gravity. Prograde accretion of a Planck antiparticle on a spinning particle-antiparticle pair releases 42% of a particle rest mass from the Kerr metric, producing a spinning gas of turbulent Planck particles that cascades to larger scales at smaller temperatures (10-27 m, 1027 K) retaining the Planck density 1097 kg m-3, where quarks form and gluon viscosity fossilizes the turbulence. Viscous stress powers inflation to ~ 10 m and ~ 10100 kg. The CMB shows signatures of both plasma and big bang turbulence. Direct numerical simulations support the new turbulence theory6.

  9. High-pressure combustion of binary fuel sprays

    NASA Technical Reports Server (NTRS)

    Mikami, Masato; Kono, Michikata; Sato, Jun'ichi; Dietrich, Daniel L.; Williams, Forman A.

    1995-01-01

    The ultimate objective of this study is to obtain fundamental information relevant to combustion processes that occur in fuel sprays of practical interest at high pressures in internal combustion engines. Since practical fuels are multicomponent and derived from petroleum, the present work involves the model alkane mixture of n-heptane and n-hexadecane. Since burning droplets in sprays can interact with each other, the present work involves investigation of the effects of this interaction on flame shapes and droplet burning times. The small droplets in practical combustion chambers are not significantly influenced by buoyancy. Since such small droplets are difficult to study experimentally, the present work takes advantage of microgravity to lessen buoyancy and enable information about droplet interactions to be obtained by studying larger droplets. The results are intended to provide fundamental understanding that can be used in improving descriptions of practical spray combustion.

  10. Fuel-Air Mixing and Combustion in Scramjets

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Diskin, Glenn S.; Cutler, A. D.

    2002-01-01

    Activities in the area of scramjet fuel-air mixing and combustion associated with the Research and Technology Organization Working Group on Technologies for Propelled Hypersonic Flight are described. Work discussed in this paper has centered on the design of two basic experiments for studying the mixing and combustion of fuel and air in a scramjet. Simulations were conducted to aid in the design of these experiments. The experimental models were then constructed, and data were collected in the laboratory. Comparison of the data from a coaxial jet mixing experiment and a supersonic combustor experiment with a combustor code were then made and described. This work was conducted by NATO to validate combustion codes currently employed in scramjet design and to aid in the development of improved turbulence and combustion models employed by the codes.

  11. A combustion model for IC engine combustion simulations with multi-component fuels

    SciTech Connect

    Ra, Youngchul; Reitz, Rolf D.

    2011-01-15

    Reduced chemical kinetic mechanisms for the oxidation of representative surrogate components of a typical multi-component automotive fuel have been developed and applied to model internal combustion engines. Starting from an existing reduced mechanism for primary reference fuel (PRF) oxidation, further improvement was made by including additional reactions and by optimizing reaction rate constants of selected reactions. Using a similar approach to that used to develop the reduced PRF mechanism, reduced mechanisms for the oxidation of n-tetradecane, toluene, cyclohexane, dimethyl ether (DME), ethanol, and methyl butanoate (MB) were built and combined with the PRF mechanism to form a multi-surrogate fuel chemistry (MultiChem) mechanism. The final version of the MultiChem mechanism consists of 113 species and 487 reactions. Validation of the present MultiChem mechanism was performed with ignition delay time measurements from shock tube tests and predictions by comprehensive mechanisms available in the literature. A combustion model was developed to simulate engine combustion with multi-component fuels using the present MultiChem mechanism, and the model was applied to simulate HCCI and DI engine combustion. The results show that the present multi-component combustion model gives reliable performance for combustion predictions, as well as computational efficiency improvements through the use of reduced mechanism for multi-dimensional CFD simulations. (author)

  12. Catalytic combustion of heavy partially-vaporized fuels

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1980-01-01

    An experimental program to demonstrate efficient catalytic combustion of fuel-lean and fuel-rich mixtures of residual fuel and air, and to assess the influence of incomplete fuel vaporization on the performance of a catalytic reactor is being conducted. A 7.5-cm diameter catalytic reactor was designed and will be tested over a matrix of conditions representative of a gas turbine combustor inlet. For each of three test phases, two series of tests with a uniform but poorly vaporized (less than 50 percent) mixture of No. 6 fuel oil and air will be performed. In the first series, the non-vaporized fuel will be contained in a spray of droplets with a Sauter Mean Diameter (SMD) less than 30 microns. In the second series, the non-vaporized fuel will be characterized by a spray SMD approximately equal to 100 microns. The designs of the fuel injection system and the catalytic reactor are described in this paper.

  13. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    PubMed

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  14. Material flow analysis of fossil fuels in China during 2000-2010.

    PubMed

    Wang, Sheng; Dai, Jing; Su, Meirong

    2012-01-01

    Since the relationship between the supply and demand of fossil fuels is on edge in the long run, the contradiction between the economic growth and limited resources will hinder the sustainable development of the Chinese society. This paper aims to analyze the input of fossil fuels in China during 2000-2010 via the material flow analysis (MFA) that takes hidden flows into account. With coal, oil, and natural gas quantified by MFA, three indexes, consumption and supply ratio (C/S ratio), resource consumption intensity (RCI), and fossil fuels productivity (FFP), are proposed to reflect the interactions between population, GDP, and fossil fuels. The results indicated that in the past 11 years, China's requirement for fossil fuels has been increasing continuously because of the growing mine productivity in domestic areas, which also leads to a single energy consumption structure as well as excessive dependence on the domestic exploitation. It is advisable to control the fossil fuels consumption by energy recycling and new energy facilities' popularization in order to lead a sustainable access to nonrenewable resources and decrease the soaring carbon emissions.

  15. Combustion of solid fuel in very low speed oxygen streams

    NASA Technical Reports Server (NTRS)

    Tien, James S.; Sacksteder, Kurt R.; Ferkul, Paul V.; Grayson, Gary D.

    1993-01-01

    In reduced gravity, the combustion of solid fuel in low-speed flow can be studied. The flame behavior in this low-speed regime will fill a void in our understanding of the flow effect on combustion. In addition, it is important for spacecraft fire safety considerations. In this work, modeling and experimental work on low-speed forced-concurrent-flow flame spread are carried out. In addition, experiments on reduced-gravity buoyant-flow flame spread are performed.

  16. Flame blowout and pollutant emissions in vitiated combustion of conventional and bio-derived fuels

    NASA Astrophysics Data System (ADS)

    Singh, Bhupinder

    The widening gap between the demand and supply of fossil fuels has catalyzed the exploration of alternative sources of energy. Interest in the power, water extraction and refrigeration (PoWER) cycle, proposed by the University of Florida, as well as the desirability of using biofuels in distributed generation systems, has motivated the exploration of biofuel vitiated combustion. The PoWER cycle is a novel engine cycle concept that utilizes vitiation of the air stream with externally-cooled recirculated exhaust gases at an intermediate pressure in a semi-closed cycle (SCC) loop, lowering the overall temperature of combustion. It has several advantages including fuel flexibility, reduced air flow, lower flame temperature, compactness, high efficiency at full and part load, and low emissions. Since the core engine air stream is vitiated with the externally cooled exhaust gas recirculation (EGR) stream, there is an inherent reduction in the combustion stability for a PoWER engine. The effect of EGR flow and temperature on combustion blowout stability and emissions during vitiated biofuel combustion has been characterized. The vitiated combustion performance of biofuels methyl butanoate, dimethyl ether, and ethanol have been compared with n-heptane, and varying compositions of syngas with methane fuel. In addition, at high levels of EGR a sharp reduction in the flame luminosity has been observed in our experimental tests, indicating the onset of flameless combustion. This drop in luminosity may be a result of inhibition of processes leading to the formation of radiative soot particles. One of the objectives of this study is finding the effect of EGR on soot formation, with the ultimate objective of being able to predict the boundaries of flameless combustion. Detailed chemical kinetic simulations were performed using a constant-pressure continuously stirred tank reactor (CSTR) network model developed using the Cantera combustion code, implemented in C++. Results have

  17. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Levasseur, A.A.

    1995-11-01

    The Pittsburgh Energy Technology Center (PETC) of the U.S. Department of Energy is sponsoring the development of advanced coal-cleaning technologies aimed at expanding the use of the nation`s vast coal reserves in an environmentally and economically acceptable manner. Because of the lack of practical experience with deeply beneficiated coal-based fuels, PETC has contracted Combustion Engineering, Inc. to perform a multi-year project on `Combustion Characterization of Beneficiated Coal-Based Fuels.` The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of Beneficiated Coal-Based Fuels (BCs) influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs.

  18. Straw pellets as fuel in biomass combustion units

    SciTech Connect

    Andreasen, P.; Larsen, M.G.

    1996-12-31

    In order to estimate the suitability of straw pellets as fuel in small combustion units, the Danish Technological Institute accomplished a project including a number of combustion tests in the energy laboratory. The project was part of the effort to reduce the use of fuel oil. The aim of the project was primarily to test straw pellets in small combustion units, including the following: ash/slag conditions when burning straw pellets; emission conditions; other operational consequences; and necessary work performance when using straw pellets. Five types of straw and wood pellets made with different binders and antislag agents were tested as fuel in five different types of boilers in test firings at 50% and 100% nominal boiler output.

  19. NO emission during oxy-fuel combustion of lignite

    SciTech Connect

    Andersson, K.; Normann, F.; Johnsson, F.; Leckner, B.

    2008-03-15

    This work presents experimental results and modeling of the combustion chemistry of the oxy-fuel (O{sub 2}/CO{sub 2} recycle) combustion process with a focus on the difference in NO formation between oxy-fired and air-fired conditions. Measurements were carried out in a 100 kW test unit, designed for oxy-fuel combustion with flue gas recycling. Gas concentration and temperature profiles in the furnace were measured during combustion of lignite. The tests comprise a reference test in air and three oxy-fuel cases with different oxygen fractions in the recycled feed gas. With the burner settings used, lignite oxy-combustion with a global oxygen fraction of 25 vol % in the feed gas results in flame temperatures close to those of air-firing. Similar to previous work, the NO emission (mg/MJ) during oxy-fuel operation is reduced to less than 30% of that of air-firing. Modeling shows that this reduction is caused by increased destruction of formed and recycled NO. The reverse Zeldovich mechanism was investigated by detailed modeling and was shown to significantly reduce NO at high temperature, given that the nitrogen content is low (low air leakage) and that the residence time is sufficient.

  20. Atomization and combustion performance of antimisting kerosene and jet fuel

    NASA Technical Reports Server (NTRS)

    Fleeter, R.; Parikh, P.; Sarohia, V.

    1983-01-01

    Combustion performance of antimisting kerosene (AMK) containing FM-9 polymer was investigated at various levels of degradation (restoration of AMK for normal use in a gas turbine engine). To establish the relationship of degradation and atomization to performance in an aircraft gas turbine combustor, sprays formed by the nozzle of a JT8-D combustor with Jet A and AMK at 1 atmosphere (atm) (14.1 lb/square in absolute) pressure and 22 C at several degradation levels were analyzed. A new spray characterization technique based on digital image analysis of high resolution, wide field spray images formed under pulsed ruby laser sheet illumination was developed. Combustion tests were performed for these fuels in a JT8-D single can combustor facility to measure combustion efficiency and the lean extinction limit. Correlation of combustion performance under simulated engine operating conditions with nozzle spray Sauter mean diameter (SMD) measured at 1 atm and 22 C were observed. Fuel spray SMD and hence the combustion efficiency are strongly influenced by fuel degradation level. Use of even the most highly degraded AMK tested (filter ratio = 1.2) resulted in an increase in fuel consumption of 0.08% to 0.20% at engine cruise conditions.

  1. Effects of ambient conditions and fuel composition on combustion stability

    SciTech Connect

    Janus, M.C.; Richards, G.A.; Yip, M.J.; Robey, E.H.

    1997-04-01

    Recent regulations on NO, emissions are promoting the use of lean premix (LPM) combustion for industrial gas turbines. LPM combustors avoid locally stoichiometric combustion by premixing fuel and the air upstream of the reaction region, thereby eliminating the high temperatures that produce thermal NO.. Unfortunately, this style of combustor is prone to combustion oscillation. Significant pressure fluctuations can occur when variations in heat release periodically couple pressure to acoustic modes in the combustion chamber. These oscillations must be controlled because resulting vibration can shorten the life of engine hardware. Laboratory and engine field testing have shown that instability regimes can vary with environmental conditions. These observations prompted this study of the effects of ambient conditions and fuel composition on combustion stability. Tests are conducted on a sub-scale combustor burning natural gas, propane, and some hydrogen/hydrocarbon mixtures. A premix, swirl-stabilized fuel nozzle typical of industrial gas turbines is used. Experimental and numerical results describe how stability regions may shift as inlet air temperature, humidity, and fuel composition are altered. Results appear to indicate that shifting instability instability regimes are primarily caused by changes in reaction rate.

  2. Aviation-fuel property effects on combustion

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    The fuel chemical property influence on a gas turbine combustor was studied using 25 test fuels. Fuel physical properties were de-emphasized by using fuel injectors which produce highly-atomized, and hence rapidly vaporizing sprays. A substantial fuel spray characterization effort was conducted to allow selection of nozzles which assured that such sprays were achieved for all fuels. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15 (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. standard fuels (e.g., Jet A, JP4), speciality products (e.g., decalin, xylene tower bottoms) and special fuel blends were included. The latter group included six, 4-component blends prepared to achieve parametric variations in fuel hydrogen, total aromatics and naphthalene contents. The principle influences of fuel chemical properties on the combustor behavior were reflected by the radiation, liner temperature, and exhaust smoke number (or equivalently, soot number density) data. Test results indicated that naphthalene content strongly influenced the radiative heat load while parametric variations in total aromatics did not.

  3. NOx formation in combustion of gaseous fuel in ejection burner

    NASA Astrophysics Data System (ADS)

    Rimár, Miroslav; Kulikov, Andrii

    2016-06-01

    The aim of this work is to prepare model for researching of the formation in combustion of gaseous fuels. NOx formation is one of the main ecological problems nowadays as nitrogen oxides is one of main reasons of acid rains. The ANSYS model was designed according to the calculation to provide full combustion and good mixing of the fuel and air. The current model is appropriate to research NOx formation and the influence of the different principles of NOx reduction method. Applying of designed model should spare both time of calculations and research and also money as you do not need to measure the burner characteristics.

  4. Combustion in a Bomb with a Fuel-Injection System

    NASA Technical Reports Server (NTRS)

    Cohn, Mildred; Spencer, Robert C

    1935-01-01

    Fuel injected into a spherical bomb filled with air at a desired density and temperature could be ignited with a spark a few thousandths of a second after injection, an interval comparable with the ignition lag in fuel-injection engines. The effect of several variables on the extent and rate of combustion was investigated: time intervals between injection and ignition of fuel of 0.003 to 0.06 second and one of 5 minutes; initial air temperatures of 100 degrees C. to 250 degrees C.; initial air densities equivalent to 5, 10, and 15 absolute atmospheres pressure at 100 degrees C.; and air-fuel ratios of 5 to 25.

  5. A comprehensive combustion model for biodiesel-fueled engine simulations

    NASA Astrophysics Data System (ADS)

    Brakora, Jessica L.

    Engine models for alternative fuels are available, but few are comprehensive, well-validated models that include accurate physical property data as well as a detailed description of the fuel chemistry. In this work, a comprehensive biodiesel combustion model was created for use in multi-dimensional engine simulations, specifically the KIVA3v R2 code. The model incorporates realistic physical properties in a vaporization model developed for multi-component fuel sprays and applies an improved mechanism for biodiesel combustion chemistry. A reduced mechanism was generated from the methyl decanoate (MD) and methyl-9-decenoate (MD9D) mechanism developed at Lawrence Livermore National Laboratory. It was combined with a multi-component mechanism to include n-heptane in the fuel chemistry. The biodiesel chemistry was represented using a combination of MD, MD9D and n-heptane, which varied for a given fuel source. The reduced mechanism, which contained 63 species, accurately predicted ignition delay times of the detailed mechanism over a range of engine-specific operating conditions. Physical property data for the five methyl ester components of biodiesel were added to the KIVA library. Spray simulations were performed to ensure that the models adequately reproduce liquid penetration observed in biodiesel spray experiments. Fuel composition impacted liquid length as expected, with saturated species vaporizing more and penetrating less. Distillation curves were created to ensure the fuel vaporization process was comparable to available data. Engine validation was performed against a low-speed, high-load, conventional combustion experiments and the model was able to predict the performance and NOx formation seen in the experiment. High-speed, low-load, low-temperature combustion conditions were also modeled, and the emissions (HC, CO, NOx) and fuel consumption were well-predicted for a sweep of injection timings. Finally, comparisons were made between the results of biodiesel

  6. Multiple fuel supply system for an internal combustion engine

    DOEpatents

    Crothers, William T.

    1977-01-01

    A multiple fuel supply or an internal combustion engine wherein phase separation of components is deliberately induced. The resulting separation permits the use of a single fuel tank to supply components of either or both phases to the engine. Specifically, phase separation of a gasoline/methanol blend is induced by the addition of a minor amount of water sufficient to guarantee separation into an upper gasoline phase and a lower methanol/water phase. A single fuel tank holds the two-phase liquid with separate fuel pickups and separate level indicators for each phase. Either gasoline or methanol, or both, can be supplied to the engine as required by predetermined parameters. A fuel supply system for a phase-separated multiple fuel supply contained in a single fuel tank is described.

  7. Comparison of ash behavior of different fuels in fluidised bed combustion using advanced fuel analysis and global equilibrium calculations

    SciTech Connect

    Zevenhoven-Onderwater, M.; Blomquist, J.P.; Skrifvars, B.J.; Backman, R.; Hupa, M.

    1999-07-01

    The behavior of different ashes is predicted by means of a combination of an advanced fuel analysis and global equilibrium calculations. In order to cover a broad spectrum of fuels a coal, a peat, a forest residue and Salix (i.e. willow) are studied. The latter was taken with and without soil contamination, i.e. with a high and low content of silica , respectively. It is shown that mineral matter in fossil and biomass fuels can be present in the matrix of the fuel itself or as included minerals. Using an advanced fuel analysis, i.e. a fractionation method, this mineral content can be divided into four fractions. The first fraction mainly contains those metal ions, that can be leached out of the fuel by water and mainly contains alkali sulfates, carbonates and chlorides. The second fraction mainly consists of those ions leached out by ammonium acetate and covers those ions, that are connected to the organic matrix. The third fraction contains the metals leached out by hydrochloric acid and contains earth alkali carbonates and sulfates as well as pyrites. The rest fraction contains those minerals, that are not leached out by any of the above mentioned solvents, such as silicates. A global equilibrium analysis is used to predict the thermal and chemical behavior of the combined first and second fractions and of the combined third and rest fractions under pressurized and/or atmospheric combustion conditions. Results of both the fuel analysis and the global equilibrium analysis are discussed and practical implications for combustion processes are pointed out.

  8. CO, NOx and 13CO2 as tracers for fossil fuel CO2: results from a pilot study in Paris during winter 2010

    NASA Astrophysics Data System (ADS)

    Lopez, M.; Schmidt, M.; Delmotte, M.; Colomb, A.; Gros, V.; Janssen, C.; Lehman, S. J.; Mondelain, D.; Perrussel, O.; Ramonet, M.; Xueref-Remy, I.; Bousquet, P.

    2013-08-01

    Measurements of the mole fraction of the CO2 and its isotopes were performed in Paris during the MEGAPOLI winter campaign (January-February 2010). Radiocarbon (14CO2) measurements were used to identify the relative contributions of 77% CO2 from fossil fuel consumption (CO2ff from liquid and gas combustion) and 23% from biospheric CO2 (CO2 from the use of biofuels and from human and plant respiration: CO2bio). These percentages correspond to average mole fractions of 26.4 ppm and 8.2 ppm for CO2ff and CO2bio, respectively. The 13CO2 analysis indicated that gas and liquid fuel contributed 70% and 30%, respectively, of the CO2 emission from fossil fuel use. Continuous measurements of CO and NOx and the ratios CO/CO2ff and NOx/CO2ff derived from radiocarbon measurements during four days make it possible to estimate the fossil fuel CO2 contribution over the entire campaign. The ratios CO/CO2ff and NOx/CO2ff are functions of air mass origin and exhibited daily ranges of 7.9 to 14.5 ppb ppm-1 and 1.1 to 4.3 ppb ppm-1, respectively. These ratios are consistent with different emission inventories given the uncertainties of the different approaches. By using both tracers to derive the fossil fuel CO2, we observed similar diurnal cycles with two maxima during rush hour traffic.

  9. Hydrogen-or-Fossil-Combustion Nuclear Combined-Cycle Systems for Base- and Peak-Load Electricity Production

    SciTech Connect

    Forsberg, Charles W; Conklin, Jim

    2007-09-01

    A combined-cycle power plant is described that uses (1) heat from a high-temperature nuclear reactor to meet base-load electrical demands and (2) heat from the same high-temperature reactor and burning natural gas, jet fuel, or hydrogen to meet peak-load electrical demands. For base-load electricity production, fresh air is compressed; then flows through a heat exchanger, where it is heated to between 700 and 900 C by heat provided by a high-temperature nuclear reactor via an intermediate heat-transport loop; and finally exits through a high-temperature gas turbine to produce electricity. The hot exhaust from the Brayton-cycle gas turbine is then fed to a heat recovery steam generator that provides steam to a steam turbine for added electrical power production. To meet peak electricity demand, the air is first compressed and then heated with the heat from a high-temperature reactor. Natural gas, jet fuel, or hydrogen is then injected into the hot air in a combustion chamber, combusts, and heats the air to 1300 C-the operating conditions for a standard natural-gas-fired combined-cycle plant. The hot gas then flows through a gas turbine and a heat recovery steam generator before being sent to the exhaust stack. The higher temperatures increase the plant efficiency and power output. If hydrogen is used, it can be produced at night using energy from the nuclear reactor and stored until needed. With hydrogen serving as the auxiliary fuel for peak power production, the electricity output to the electric grid can vary from zero (i.e., when hydrogen is being produced) to the maximum peak power while the nuclear reactor operates at constant load. Because nuclear heat raises air temperatures above the auto-ignition temperatures of the various fuels and powers the air compressor, the power output can be varied rapidly (compared with the capabilities of fossil-fired turbines) to meet spinning reserve requirements and stabilize the electric grid. This combined cycle uses the

  10. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 4: Energy from fossil fuels

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.

  11. Hybrid rocket fuel combustion and regression rate study

    NASA Technical Reports Server (NTRS)

    Strand, L. D.; Ray, R. L.; Anderson, F. A.; Cohen, N. S.

    1992-01-01

    The objectives of this study are to develop hybrid fuels (1) with higher regression rates and reduced dependence on fuel grain geometry and (2) that maximize potential specific impulse using low-cost materials. A hybrid slab window motor system was developed to screen candidate fuels - their combustion behavior and regression rate. Combustion behavior diagnostics consisted of video and high speed motion pictures coverage. The mean fuel regression rates were determined by before and after measurements of the fuel slabs. The fuel for this initial investigation consisted of hydroxyl-terminated polybutadiene binder with coal and aluminum fillers. At low oxidizer flux levels (and corresponding fuel regression rates) the filled-binder fuels burn in a layered fashion, forming an aluminum containing binder/coal surface melt that, in turn, forms into filigrees or flakes that are stripped off by the crossflow. This melt process appears to diminish with increasing oxidizer flux level. Heat transfer by radiation is a significant contributor, producing the desired increase in magnitude and reduction in flow dependency (power law exponent) of the fuel regression rate.

  12. Kinetic Modeling of Combustion Characteristics of Real Biodiesel Fuels

    SciTech Connect

    Naik, C V; Westbrook, C K

    2009-04-08

    Biodiesel fuels are of much interest today either for replacing or blending with conventional fuels for automotive applications. Predicting engine effects of using biodiesel fuel requires accurate understanding of the combustion characteristics of the fuel, which can be acquired through analysis using reliable detailed reaction mechanisms. Unlike gasoline or diesel that consists of hundreds of chemical compounds, biodiesel fuels contain only a limited number of compounds. Over 90% of the biodiesel fraction is composed of 5 unique long-chain C{sub 18} and C{sub 16} saturated and unsaturated methyl esters. This makes modeling of real biodiesel fuel possible without the need for a fuel surrogate. To this end, a detailed chemical kinetic mechanism has been developed for determining the combustion characteristics of a pure biodiesel (B100) fuel, applicable from low- to high-temperature oxidation regimes. This model has been built based on reaction rate rules established in previous studies at Lawrence Livermore National Laboratory. Computed results are compared with the few fundamental experimental data that exist for biodiesel fuel and its components. In addition, computed results have been compared with experimental data for other long-chain hydrocarbons that are similar in structure to the biodiesel components.

  13. Highly time-resolved imaging of combustion and pyrolysis product concentrations in solid fuel combustion: NO formation in a burning cigarette.

    PubMed

    Zimmermann, Ralf; Hertz-Schünemann, Romy; Ehlert, Sven; Liu, Chuan; McAdam, Kevin; Baker, Richard; Streibel, Thorsten

    2015-02-03

    The highly dynamic, heterogeneous combustion process within a burning cigarette was investigated by a miniaturized extractive sampling probe (microprobe) coupled to photoionization mass spectrometry using soft laser single photon ionization (SPI) for online real-time detection of molecular ions of combustion and pyrolysis products. Research cigarettes smoked by a smoking machine are used as a reproducible model system for solid-state biomass combustion, which up to now is not addressable by current combustion-diagnostic tools. By combining repetitively recorded online measurement sequences from different sampling locations in an imaging approach, highly time- and space-resolved quantitative distribution maps of, e.g., nitrogen monoxide, benzene, and oxygen concentrations were obtained at a near microscopic level. The obtained quantitative distribution maps represent a time-resolved, movie-like imaging of the respective compound's formation and destruction zones in the various combustion and pyrolysis regions of a cigarette during puffing. Furthermore, spatially resolved kinetic data were ascertainable. The here demonstrated methodology can also be applied to various heterogenic combustion/pyrolysis or reaction model systems, such as fossil- or biomass-fuel pellet combustion or to a positional resolved analysis of heterogenic catalytic reactions.

  14. Innovative fossil fuel fired vitrification technology for soil remediation. Phase 1

    SciTech Connect

    Not Available

    1994-01-01

    Vortec has successfully completed Phase 1 of the ``Innovative Fossil Fuel Fired Vitrification Technology for Soil Remediation`` program. The Combustion and Melting System (CMS) has processed 7000 pounds of material representative of contaminated soil that is found at DOE sites. The soil was spiked with Resource Conservation and Recovery Act (RCRA) metals surrogates, an organic contaminant, and a surrogate radionuclide. The samples taken during the tests confirmed that virtually all of the radionuclide was retained in the glass and that it did not leach to the environment-as confirmed by both ANS 16.1 and Toxicity Characteristic Leaching Procedure (TCLP) testing. The organic contaminant, anthracene, was destroyed during the test with a Destruction and Removal Efficiency (DRE) of at least 99.99%. RCRA metal surrogates, that were in the vitrified product, were retained and did not leach to the environment as confirmed by the TCLP testing. Semi-volatile RCRA metal surrogates were captured by the Air Pollution Control (APC) system, and data on the amount of metal oxide particulate and the chemical composition of the particulate were established for use in the Phase 2 APC subsystem design.

  15. Analysis of fuel vaporization, fuel/air mixing, and combustion in lean premixed/prevaporized combustors

    SciTech Connect

    Deur, J.M.; Penko, P.F.; Cline, M.C.

    1995-07-01

    Requirements to reduce pollutant emissions from gas turbines used in aircraft propulsion and ground-based power generation have led to consideration of lean premixed/prevaporized (LPP) combustion concepts. This paper describes a series of the LPP combustor analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. Modifications to KIVA-II`s boundary condition and chemistry treatments have been made to meet the needs of the present study. The study examines the relationships between fuel vaporization, fuel/air mixing, and combustion in a generic LPP combustor. Parameters considered include: mixer tube diameter, mixer tube length, mixer tube configuration (straight versus converging/diverging tubes), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases have been run with and without combustion to examine the variations in fuel/air mixing and potential for flashback due to the above parameters. The degree of fuel/air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state.

  16. Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines

    SciTech Connect

    Venkatesan, Krishna

    2011-11-30

    The purpose of this program was to develop low-emissions, efficient fuel-flexible combustion technology which enables operation of a given gas turbine on a wider range of opportunity fuels that lie outside of current natural gas-centered fuel specifications. The program encompasses a selection of important, representative fuels of opportunity for gas turbines with widely varying fundamental properties of combustion. The research program covers conceptual and detailed combustor design, fabrication, and testing of retrofitable and/or novel fuel-flexible gas turbine combustor hardware, specifically advanced fuel nozzle technology, at full-scale gas turbine combustor conditions. This project was performed over the period of October 2008 through September 2011 under Cooperative Agreement DE-FC26-08NT05868 for the U.S. Department of Energy/National Energy Technology Laboratory (USDOE/NETL) entitled "Fuel Flexible Combustion Systems for High-Efficiency Utilization of Opportunity Fuels in Gas Turbines". The overall objective of this program was met with great success. GE was able to successfully demonstrate the operability of two fuel-flexible combustion nozzles over a wide range of opportunity fuels at heavy-duty gas turbine conditions while meeting emissions goals. The GE MS6000B ("6B") gas turbine engine was chosen as the target platform for new fuel-flexible premixer development. Comprehensive conceptual design and analysis of new fuel-flexible premixing nozzles were undertaken. Gas turbine cycle models and detailed flow network models of the combustor provide the premixer conditions (temperature, pressure, pressure drops, velocities, and air flow splits) and illustrate the impact of widely varying fuel flow rates on the combustor. Detailed chemical kinetic mechanisms were employed to compare some fundamental combustion characteristics of the target fuels, including flame speeds and lean blow-out behavior. Perfectly premixed combustion experiments were conducted to

  17. Energy analysis and break-even distance for transportation for biofuels in comparison to fossil fuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the present analysis various forms fuel from biomass and fossil sources, their mass and energy densities, and their break-even transportation distances to transport them effectively were analyzed. This study gives an insight on how many times more energy spent on transporting the fuels to differe...

  18. Advanced Fuels and Combustion Processes for Propulsion

    DTIC Science & Technology

    2010-09-01

    production from biomass steam reforming – Conduct a feasibility analysis of the proposed integrated process Energia Technologies - D. Nguyen & K. Parimi...strength foam material development by Ultramet – Combustion experiments performed U. Of Alabama – End-user input provided by Solar Turbines Major

  19. Turbine Burners: Turbulent Combustion of Liquid Fuels

    DTIC Science & Technology

    2006-06-01

    nozzle guide vane geometries can be quite complex, the experiments will concentrate initially on an auxiliary combustion chamber and its interaction...pressure measurements along the curved duct walls and pitot pressure surveys. To these measurements we will add particle image velocimetry (PIV) of the flow

  20. Solid Surface Combustion Experiment: Thick Fuel Results

    NASA Technical Reports Server (NTRS)

    Altenkirch, Robert A.; Bhattacharjee, Subrata; West, Jeff; Tang, Lin; Sacksteder, Kurt; Delichatsios, Michael A.

    1997-01-01

    The results of experiments for spread over polymethylmethacrylate, PMMA, samples in the microgravity environment of the Space Shuttle are described. The results are coupled with modelling in an effort to describe the physics of the spread process for thick fuels in a quiescent, microgravity environment and uncover differences between thin and thick fuels. A quenching phenomenon not present for thin fuels is delineated, namely the fact that for thick fuels the possibility exists that, absent an opposing flow of sufficient strength to press the flame close enough to the fuel surface to allow the heated layer in the solid to develop, the heated layer fails to become 'fully developed.' The result is that the flame slows, which in turn causes an increase in the relative radiative loss from the flame, leading eventually to extinction. This potential inability of a thick fuel to develop a steady spread rate is not present for a thin fuel because the heated layer is the fuel thickness, which reaches a uniform temperature across the thickness relatively rapidly.

  1. Combustion of liquid fuels in diesel engine

    NASA Technical Reports Server (NTRS)

    Alt, Otto

    1924-01-01

    Hitherto, definite specifications have always been made for fuel oils and they have been classified as more or less good or non-utilizable. The present aim, however, is to build Diesel engines capable of using even the poorest liquid fuels and especially the waste products of the oil industry, without special chemical or physical preparation.

  2. Automotive fuels and internal combustion engines: a chemical perspective.

    PubMed

    Wallington, T J; Kaiser, E W; Farrell, J T

    2006-04-01

    Commercial transportation fuels are complex mixtures containing hundreds or thousands of chemical components, whose composition has evolved considerably during the past 100 years. In conjunction with concurrent engine advancements, automotive fuel composition has been fine-tuned to balance efficiency and power demands while minimizing emissions. Pollutant emissions from internal combustion engines (ICE), which arise from non-ideal combustion, have been dramatically reduced in the past four decades. Emissions depend both on the engine operating parameters (e.g. engine temperature, speed, load, A/F ratio, and spark timing) and the fuel. These emissions result from complex processes involving interactions between the fuel and engine parameters. Vehicle emissions are comprised of volatile organic compounds (VOCs), CO, nitrogen oxides (NO(x)), and particulate matter (PM). VOCs and NO(x) form photochemical smog in urban atmospheres, and CO and PM may have adverse health impacts. Engine hardware and operating conditions, after-treatment catalysts, and fuel composition all affect the amount and composition of emissions leaving the vehicle tailpipe. While engine and after-treatment effects are generally larger than fuel effects, engine and after-treatment hardware can require specific fuel properties. Consequently, the best prospects for achieving the highest efficiency and lowest emissions lie with optimizing the entire fuel-engine-after-treatment system. This review provides a chemical perspective on the production, combustion, and environmental aspects of automotive fuels. We hope this review will be of interest to workers in the fields of chemical kinetics, fluid dynamics of reacting flows, atmospheric chemistry, automotive catalysts, fuel science, and governmental regulations.

  3. Characterization of fuels for atmospheric fluidized bed combustion

    SciTech Connect

    Daw, C.S. ); Rowley, D.R.; Perna, M.A. . Research Center); Stallings, J.W. ); Divilio, R.J. )

    1990-01-01

    The Electric Power Research Institute (EPRI) has sponsored a fuels characterization program for the past several years with the intention of assisting utilities and boiler manufacturers in evaluating fuel quality impact on atmospheric fluidized bed combustion (AFBC) performance. The goal has been to provide an improved framework for making fuel switching decisions and consolidating operating experience. Results from this program include a set of bench-scale testing procedures, a fuel characterization data base, and a performance simulation model that links fuel characteristics to combustion performance. This paper reviews the major results of the fuels characterization program. The testing procedures, data base, and performance simulation models are briefly described and their application illustrated with examples. Performance predictions for the B W 1-ft{sup 2} bench-scale AFBC and the Tennessee Valley Authority (TVA) 20 MW(e) AFBC Pilot Plant are compared with actual test data. The relationship of coal rank to combustion is discussed. 11 refs., 12 figs., 5 tabs.

  4. A numerical study on combustion process in a small compression ignition engine run dual-fuel mode (diesel-biogas)

    NASA Astrophysics Data System (ADS)

    Ambarita, H.; Widodo, T. I.; Nasution, D. M.

    2017-01-01

    In order to reduce the consumption of fossil fuel of a compression ignition (CI) engines which is usually used in transportation and heavy machineries, it can be operated in dual-fuel mode (diesel-biogas). However, the literature reviews show that the thermal efficiency is lower due to incomplete combustion process. In order to increase the efficiency, the combustion process in the combustion chamber need to be explored. Here, a commercial CFD code is used to explore the combustion process of a small CI engine run on dual fuel mode (diesel-biogas). The turbulent governing equations are solved based on finite volume method. A simulation of compression and expansions strokes at an engine speed and load of 1000 rpm and 2500W, respectively has been carried out. The pressure and temperature distributions and streamlines are plotted. The simulation results show that at engine power of 732.27 Watt the thermal efficiency is 9.05%. The experiment and simulation results show a good agreement. The method developed in this study can be used to investigate the combustion process of CI engine run on dual-fuel mode.

  5. Combustion characteristics of hydrogen-carbon monoxide based gaseous fuels

    NASA Technical Reports Server (NTRS)

    White, D. J.; Kubasco, A. J.; Lecren, R. T.; Notardonato, J. J.

    1982-01-01

    The results of trials with a staged combustor designed to use coal-derived gaseous fuels and reduce the NO(x) emissions from nitrogen-bound fuels to 75 ppm and 37 ppm without bound nitrogen in 15% O2 are reported. The combustor was outfitted with primary zone regenerative cooling, wherein the air cooling the primary zone was passed into the combustor at 900 F and mixed with the fuel. The increase in the primary air inlet temperature eliminated flashback and autoignition, lowered the levels of CO, unburned hydrocarbons, and smoke, and kept combustion efficiencies to the 99% level. The combustor was also equipped with dual fuel injection to test various combinations of liquid/gas fuel mixtures. Low NO(x) emissions were produced burning both Lurgi and Winkler gases, regardless of the inlet pressure and temperature conditions. Evaluation of methanation of medium energy gases is recommended for providing a fuel with low NO(x) characteristics.

  6. Apparatus and method for solid fuel chemical looping combustion

    SciTech Connect

    Siriwardane, Ranjani V; Weber, Justin M

    2015-04-14

    The disclosure provides an apparatus and method utilizing fuel reactor comprised of a fuel section, an oxygen carrier section, and a porous divider separating the fuel section and the oxygen carrier section. The porous divider allows fluid communication between the fuel section and the oxygen carrier section while preventing the migration of solids of a particular size. Maintaining particle segregation between the oxygen carrier section and the fuel section during solid fuel gasification and combustion processes allows gases generated in either section to participate in necessary reactions while greatly mitigating issues associated with mixture of the oxygen carrier with char or ash products. The apparatus and method may be utilized with an oxygen uncoupling oxygen carrier such as CuO, Mn.sub.3O.sub.4, or Co.sub.3O.sub.4, or utilized with a CO/H.sub.2 reducing oxygen carrier such as Fe.sub.2O.sub.3.

  7. Pressure Effects in Droplet Combustion of Miscible Binary Fuels

    NASA Technical Reports Server (NTRS)

    Mikami, Masato; Habara, Osamu; Kono, Michikata; Sato, Jun-Ichi; Dietrich, Daniel L.; Williams, Forman A.

    1997-01-01

    The objective of this research is to improve understanding of the combustion of binary fuel mixtures in the vicinity of the critical point. Fiber-supported droplets of mixtures of n-heptane and n-hexadecane, initially 1 mm in diameter, were burned in room-temperature air at pressures from 1 MPa to 6 MPa under free-fall microgravity conditions. For most mixtures the total burning time was observed to achieve a minimum value at pressures well above the critical pressure of either of the pure fuels. This behavior is explained in terms of critical mixing conditions of a ternary system consisting of the two fuels and nitrogen. The importance of inert-gas dissolution in the liquid fuel near the critical point is thereby re-emphasized, and nonmonotonic dependence of dissolution on initial fuel composition is demonstrated. The results provide information that can be used to estimate high-pressure burning rates of fuel mixtures.

  8. Investigation of trapped vortex combustion using hydrogen-rich fuels

    NASA Astrophysics Data System (ADS)

    Zbeeb, Khaled

    The combustion process of a fuel is a challenging subject when it comes to analyze its performance and resultant emissions. The main task of this study is to optimize the selection of a hydrogen-rich fuel based on its performance and emissions. Computational Fluid Dynamics analysis is performed to test the combustion performance and emissions from the vortex trapped combustor when natural gas fuel (methane) is replaced with renewable and alternative fuels such as hydrogen and synthesis gas. Correlation graphs for the trapped vortex combustor performance and NOx, CO, and CO2 emissions for various types of fuels with different compositions and heat of combustion values were established. Methane, Hydrogen and 10 different syngas fuels were analyzed in this study using computational fluid dynamics numerical method. The trapped vortex combustor that represents an efficient and compact combustor for flame stability was investigated. The TVC consists of a fore body and two after body disks. These components are all encircled with a Pyrex tube. The purpose of the after body disks is to create the vortex wakes that will enhance the combustion process and minimize the NOx emissions. The TVC CFD model was validated by comparing the CFD model results using propane fuel with existing experimental results that were established in Rome, Italy. The static temperature distribution and NOx, CO emissions, combustor efficiency and total pressure drop results of the three dimensional CFD model were similar to the experimental data. Effects of H2/CO and H2/CH4 ratios and the mass fraction of each constituent of syngas fuels and Hydrogen-Methane fuel mixture on the TVC performance and emissions were investigated. Moreover, the fuel injector Reynolds number and Lower heating values for Methane, Hydrogen and 10 syngas fuels on the TVC performance and emissions were also investigated. Correlation plots for the NOx, CO and CO2 emissions versus the fuel injector Reynolds number and lower

  9. Societal Consequences of Carbon Dioxide Emissions: Impacts to Well Being of Reduced Fossil Fuel Dependence.

    NASA Astrophysics Data System (ADS)

    Krebill-Prather, Rose Louise

    The threat of global warming raises important questions about ways human activities are altering the biophysical environment. The burning of fossil fuels by modern societies is a principal contributor to greenhouse gases implicated in climate change. Furthermore, there is growing concern about how global environmental changes anticipated due to global warming may impact the long-term sustainability of all societies. The threat of global warming challenges scientists and policy makers to further our understanding of relationships among fossil fuel consumption and CO_2, emissions on the one hand, and economic and social well-being on the other. This challenge is especially germane to the industrialized countries, for they are the largest consumers of fossil fuels. This study comprises a multiwave panel design focused on the period 1950-1985 for twenty-three highly industrialized nations. A trend analysis showed that CO _2 emissions diverged along three separate patterns after 1970, grouping countries into one of the three patterns, while measures of societal well -being continued on their historical trajectories. Numerous comparisons made via a path analysis showed that the amount of fossil fuel consumed had a continued positive impact on economic well-being. At the same time overall fossil fuel consumption had a declining and sometimes negligible direct effect on various dimensions of social well-being over the time period. On the general welfare and modern life-style dimensions, the positive impact of economic well-being overshadowed the impact of fossil fuel consumption. Both fossil fuel consumption and economic well-being had a declining negative influence on health and safety and an insignificant effect on life stress. The structure of energy use, reflected in gross land mass, appeared to have an important influence on fossil fuel consumption, with greater geographical dispersion leading to greater fossil fuel consumption. However while the structure of energy

  10. Reaction Intermediates in Aromatic Fuel Combustion.

    DTIC Science & Technology

    2014-09-26

    distribution is unlimited. 5 ,:-,-,: ;;: , , , ’ : - ..-.. ,., ., ; -.. < ?-’.;.o .’.’.:<. .7/ ABSTRACT 4he oxidation of benzene under fuel-lean conditions has...sensitively on the rate- limiting unimolecular decomposition of benzene & C6H6 4 C6H5 + H The rate constant obtained for the initiation reaction using a...considerable current interest ia the kiuetios and mechanism of benzene oxidatiom because of the iacreasing us* of aromatics as fuel components. Partly’due to

  11. Fossil fuel gasification technical evaluation services. Topical report 1978-80

    SciTech Connect

    Detman, R.F.

    1982-12-30

    The Exxon, Mountain Fuel, Cities Service/Rockwell, Westinghouse, BGC slagging Lurgi and Peatgas processes for fossil fuel gasification were evaluated. The Lurgi and HYGAS processes had been evaluated in earlier studies. For producing SNG from coal, only the Westinghouse conceptual design appeared competitive with HYGAS on eastern coal. All coal gasification processes were competitive with or better than Lurgi on eastern coal. The Mountain Fuel process was more costly than Lurgi or HYGAS on a western coal.

  12. Biofuel: an alternative to fossil fuel for alleviating world energy and economic crises.

    PubMed

    Bhattarai, Keshav; Stalick, Wayne M; McKay, Scott; Geme, Gija; Bhattarai, Nimisha

    2011-01-01

    The time has come when it is desirable to look for alternative energy resources to confront the global energy crisis. Consideration of the increasing environmental problems and the possible crisis of fossil fuel availability at record high prices dictate that some changes will need to occur sooner rather than later. The recent oil spill in the Gulf of Mexico is just another example of the environmental threats that fossil fuels pose. This paper is an attempt to explore various bio-resources such as corn, barley, oat, rice, wheat, sorghum, sugar, safflower, and coniferous and non-coniferous species for the production of biofuels (ethanol and biodiesel). In order to assess the potential production of biofuel, in this paper, countries are organized into three groups based on: (a) geographic areas; (b) economic development; and(c) lending types, as classified by the World Bank. First, the total fossil fuel energy consumption and supply and possible carbon emission from burning fossil fuel is projected for these three groups of countries. Second, the possibility of production of biofuel from grains and vegetative product is projected. Third, a comparison of fossil fuel and biofuel is done to examine energy sustainability issues.

  13. Can the envisaged reductions of fossil fuel CO2 emissions be detected by atmospheric observations?

    PubMed

    Levin, Ingeborg; Rödenbeck, Christian

    2008-03-01

    The lower troposphere is an excellent receptacle, which integrates anthropogenic greenhouse gases emissions over large areas. Therefore, atmospheric concentration observations over populated regions would provide the ultimate proof if sustained emissions changes have occurred. The most important anthropogenic greenhouse gas, carbon dioxide (CO(2)), also shows large natural concentration variations, which need to be disentangled from anthropogenic signals to assess changes in associated emissions. This is in principle possible for the fossil fuel CO(2) component (FFCO(2)) by high-precision radiocarbon ((14)C) analyses because FFCO(2) is free of radiocarbon. Long-term observations of (14)CO(2) conducted at two sites in south-western Germany do not yet reveal any significant trends in the regional fossil fuel CO(2) component. We rather observe strong inter-annual variations, which are largely imprinted by changes of atmospheric transport as supported by dedicated transport model simulations of fossil fuel CO(2). In this paper, we show that, depending on the remoteness of the site, changes of about 7-26% in fossil fuel emissions in respective catchment areas could be detected with confidence by high-precision atmospheric (14)CO(2) measurements when comparing 5-year averages if these inter-annual variations were taken into account. This perspective constitutes the urgently needed tool for validation of fossil fuel CO(2) emissions changes in the framework of the Kyoto protocol and successive climate initiatives.

  14. Elimination of abnormal combustion in a hydrogen-fueled engine

    SciTech Connect

    Swain, M.R.; Swain, M.N.

    1995-11-01

    This report covers the design, construction, and testing of a dedicated hydrogen-fueled engine. Both part-load and full-load data were taken under laboratory conditions. The engine design included a billet aluminum single combustion chamber cylinder-head with one intake valve, two sodium coiled exhaust valves, and two spark plugs. The cylinder-head design also included drilled cooling passages. The fuel-delivery system employed two modified Siemens electrically actuated fuel injectors, The exhaust system included two separate headers, one for each exhaust port. The piston/ring combination was designed specifically for hydrogen operation.

  15. Gasoline Ultra Efficient Fuel Vehicle with Advanced Low Temperature Combustion

    SciTech Connect

    Confer, Keith

    2014-12-18

    The objective of this program was to develop, implement and demonstrate fuel consumption reduction technologies which are focused on reduction of friction and parasitic losses and on the improvement of thermal efficiency from in-cylinder combustion. The program was executed in two phases. The conclusion of each phase was marked by an on-vehicle technology demonstration. Phase I concentrated on short term goals to achieve technologies to reduce friction and parasitic losses. The duration of Phase I was approximately two years and the target fuel economy improvement over the baseline was 20% for the Phase I demonstration. Phase II was focused on the development and demonstration of a breakthrough low temperature combustion process called Gasoline Direct- Injection Compression Ignition (GDCI). The duration of Phase II was approximately four years and the targeted fuel economy improvement was 35% over the baseline for the Phase II demonstration vehicle. The targeted tailpipe emissions for this demonstration were Tier 2 Bin 2 emissions standards.

  16. Municipal solid waste combustion: Fuel testing and characterization

    SciTech Connect

    Bushnell, D.J.; Canova, J.H.; Dadkhah-Nikoo, A.

    1990-10-01

    The objective of this study is to screen and characterize potential biomass fuels from waste streams. This will be accomplished by determining the types of pollutants produced while burning selected municipal waste, i.e., commercial mixed waste paper residential (curbside) mixed waste paper, and refuse derived fuel. These materials will be fired alone and in combination with wood, equal parts by weight. The data from these experiments could be utilized to size pollution control equipment required to meet emission standards. This document provides detailed descriptions of the testing methods and evaluation procedures used in the combustion testing and characterization project. The fuel samples will be examined thoroughly from the raw form to the exhaust emissions produced during the combustion test of a densified sample.

  17. Zooplankton fecal pellets link fossil fuel and phosphate deposits

    SciTech Connect

    Porter, K.G.; Robbins, E.I.

    1981-05-22

    Fossil zooplankton fecal pellets found in thinly bedded marine and lacustrine black shales associated with phosphate, oil, and coal deposits, link the deposition of organic matter and biologically associated minerals with planktonic ecosystems. The black shales were probably formed in the anoxic basins of coastal marine waters, inland seas, and rift valley lakes where high productivity was supported by runoff, upwelling, and outwelling.

  18. Combustion characteristics of alternative gaseous fuels

    SciTech Connect

    Park, O.; Veloo, Peter S.; Liu, N.; Egolfopoulos, Fokion N.

    2011-01-01

    Fundamental flame properties of mixtures of air with hydrogen, carbon monoxide, and C{sub 1}–C{sub 4} saturated hydrocarbons were studied both experimentally and numerically. The fuel mixtures were chosen in order to simulate alternative gaseous fuels and to gain insight into potential kinetic couplings during the oxidation of fuel mixtures. The studies included the use of the counterflow configuration for the determination of laminar flame speeds, as well as extinction and ignition limits of premixed flames. The experiments were modeled using the USC Mech II kinetic model. It was determined that when hydrocarbons are added to hydrogen flames as additives, flame ignition, propagation, and extinction are affected in a counterintuitive manner. More specifically, it was found that by substituting methane by propane or n-butane in hydrogen flames, the reactivity of the mixture is reduced both under pre-ignition and vigorous burning conditions. This behavior stems from the fact that propane and n-butane produce higher amounts of methyl radicals that can readily recombine with atomic hydrogen and reduce thus the rate of the H + O{sub 2} → O + OH branching reaction. The kinetic model predicts closely the experimental data for flame propagation and extinction for various fuel mixtures and pressures, and for various amounts of carbon dioxide in the fuel blend. On the other hand, it underpredicts, in general, the ignition temperatures.

  19. Plasma-Enhanced Combustion of Hydrocarbon Fuels and Fuel Blends Using Nanosecond Pulsed Discharges

    SciTech Connect

    Cappelli, Mark; Mungal, M Godfrey

    2014-10-28

    This project had as its goals the study of fundamental physical and chemical processes relevant to the sustained premixed and non-premixed jet ignition/combustion of low grade fuels or fuels under adverse flow conditions using non-equilibrium pulsed nanosecond discharges.

  20. Chemical Looping Combustion System-Fuel Reactor Modeling

    SciTech Connect

    Gamwo, I.K.; Jung, J.; Anderson, R.R.; Soong, Y.

    2007-04-01

    Chemical looping combustion (CLC) is a process in which an oxygen carrier is used for fuel combustion instead of air or pure oxygen as shown in the figure below. The combustion is split into air and fuel reactors where the oxidation of the oxygen carrier and the reduction of the oxidized metal occur respectively. The CLC system provides a sequestration-ready CO2 stream with no additional energy required for separation. This major advantage places combustion looping at the leading edge of a possible shift in strict control of CO2 emissions from power plants. Research in this novel technology has been focused in three distinct areas: techno-economic evaluations, integration of the system into power plant concepts, and experimental development of oxygen carrier metals such as Fe, Ni, Mn, Cu, and Ca. Our recent thorough literature review shows that multiphase fluid dynamics modeling for CLC is not available in the open literature. Here, we have modified the MFIX code to model fluid dynamic in the fuel reactor. A computer generated movie of our simulation shows bubble behavior consistent with experimental observations.

  1. Estimating methane emissions from biological and fossil-fuel sources in the San Francisco Bay Area

    NASA Astrophysics Data System (ADS)

    Jeong, Seongeun; Cui, Xinguang; Blake, Donald R.; Miller, Ben; Montzka, Stephen A.; Andrews, Arlyn; Guha, Abhinav; Martien, Philip; Bambha, Ray P.; LaFranchi, Brian; Michelsen, Hope A.; Clements, Craig B.; Glaize, Pierre; Fischer, Marc L.

    2017-01-01

    We present the first sector-specific analysis of methane (CH4) emissions from the San Francisco Bay Area (SFBA) using CH4 and volatile organic compound (VOC) measurements from six sites during September - December 2015. We apply a hierarchical Bayesian inversion to separate the biological from fossil-fuel (natural gas and petroleum) sources using the measurements of CH4 and selected VOCs, a source-specific 1 km CH4 emission model, and an atmospheric transport model. We estimate that SFBA CH4 emissions are 166-289 Gg CH4/yr (at 95% confidence), 1.3-2.3 times higher than a recent inventory with much of the underestimation from landfill. Including the VOCs, 82 ± 27% of total posterior median CH4 emissions are biological and 17 ± 3% fossil fuel, where landfill and natural gas dominate the biological and fossil-fuel CH4 of prior emissions, respectively.

  2. Pyrolysis, ignition and combustion of solid fuels for ramjet applications

    SciTech Connect

    Chen, D.M.

    1988-01-01

    The utilization of the most attractive metal additive, boron powder, in ramjet application still remains in the development stages. On the other hand, the very popular metal additive, magnesium, has very good ignitability and high combustion efficiency, but has a low heating value. The scope of this study was concentrated on these two kinds of metal additive and three different types of polymeric binders - HTPB, PTFE, and high energy poly (BAMO/NMMO). Using various combinations of these ingredients, a total of 17 different solid fuels were investigated. The purpose of the present research was to study the pyrolysis, ignition, and combustion characteristics of the above mentioned fuel samples, using high-powered CO{sub 2} laser testing system, a windowed strand burning setup, and two cross-flow combustion facilities - a kerosene burner and a blowdown supersonic wind tunnel. A hypothesis based on absorptivity, thermal diffusivity, and reactivity was proposed to interpret the observed phenomena. The effects of four additives on ignition delay time of boron/HTPB fuels were measured, and CeF{sub 3} was found to be the most effective one. A sample composed of 20% Mg/30% B.50% PTFE exhibited a highly vigorous reaction, and it appears to be very promising for improving boron combustion efficiency. Mg/PTFE/Viton A fuel considered as a possible candidate for ramjet (solid ducted rocket) applications, exhibited a very unique burning phenomenon - ambient oxygen has an adverse effect on the ignition delay time and also on the burning rate. Based on the experimental results, it can be concluded that with the help of a highly energetic binder, an efficient combustion of boron can be expected.

  3. Broad specification fuels combustion technology program

    NASA Technical Reports Server (NTRS)

    Dodds, W. J.; Ekstedt, E. E.

    1984-01-01

    Design and development efforts to evolve promising aircraft gas turbine combustor configurations for burning broadened-properties fuels were discussed. Design and experimental evaluations of three different combustor concepts in sector combustor rig tests was conducted. The combustor concepts were a state of the art single-annular combustor, a staged double-annular combustor, and a short single-annular combustor with variable geometry to control primary zone stoichiometry. A total of 25 different configurations of the three combustor concepts were evaluated. Testing was conducted over the full range of CF6-80A engine combustor inlet conditions, using four fuels containing between 12% and 14% hydrogen by weight. Good progress was made toward meeting specific program emissions and performance goals with each of the three combustor concepts. The effects of reduced fuel hydrogen content, including increased flame radiation, liner metal temperature, smoke, and NOx emissions were documented. The most significant effect on the baseline combustor was a projected 33% life reduction, for a reduction from 14% to 13% fuel hydrogen content, due to increased liner temperatures.

  4. Electrostatic fuel conditioning of internal combustion engines

    NASA Technical Reports Server (NTRS)

    Gold, P. I.

    1982-01-01

    Diesel engines were tested to determine if they are influenced by the presence of electrostatic and magnetic fields. Field forces were applied in a variety of configurations including pretreatment of the fuel and air, however, no affect on engine performance was observed.

  5. Versatile Affordable Advanced Fuels and Combustion Technologies

    DTIC Science & Technology

    2010-11-01

    Fuels, Vol. 22, No. 4, 2008 2415 165 elastomer is highly fluorinated and relatively inert, as evident by the very low percentage of volume swell. Previous...hydrogen bonding involves hydrogen bound to nearly any electrophilic structure not just a highly electrophilic atom such as oxygen and nitrogen

  6. Fuel injector nozzle for an internal combustion engine

    DOEpatents

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2011-03-22

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  7. Fuel Injector Nozzle For An Internal Combustion Engine

    DOEpatents

    Cavanagh, Mark S.; Urven, Jr.; Roger L.; Lawrence, Keith E.

    2006-04-25

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  8. Fuel injector nozzle for an internal combustion engine

    DOEpatents

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2008-11-04

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  9. Fuel injector nozzle for an internal combustion engine

    DOEpatents

    Cavanagh, Mark S.; Urven, Jr., Roger L.; Lawrence, Keith E.

    2007-11-06

    A direct injection fuel injector includes a nozzle tip having a plurality of passages allowing fluid communication between an inner nozzle tip surface portion and an outer nozzle tip surface portion and directly into a combustion chamber of an internal combustion engine. A first group of the passages have inner surface apertures located substantially in a first common plane. A second group of the passages have inner surface apertures located substantially in at least a second common plane substantially parallel to the first common plane. The second group has more passages than the first group.

  10. Zooplankton fecal pellets link fossil fuel and phosphate deposits

    USGS Publications Warehouse

    Porter, K.G.; Robbins, E.I.

    1981-01-01

    Fossil zooplankton fecal pellets found in thinly bedded marine and lacustrine black shales associated with phosphate, oil, and coal deposits, link the deposition of organic matter and biologically associated minerals with planktonic ecosystems. The black shales were probably formed in the anoxic basins of coastal marine waters, inland seas, and rift valley lakes where high productivity was supported by runoff, upwelling, and outwelling. Copyright ?? 1981 AAAS.

  11. Combustion Of Poultry-Derived Fuel in a CFBC

    NASA Astrophysics Data System (ADS)

    Jia, Lufei; Anthony, Edward J.

    Poultry farming generates large quantities of waste. Current disposal practice is to spread the poultry wastes onto farmland as fertilizer. However, as the factory farms for poultry grow both in numbers and size, the amount of poultry wastes generated has increased significandy in recent years. In consequence, excessive application of poultry wastes on farmland is resulting in more and more contaminants entering the surface water. One of the options being considered is the use of poultry waste as power plant fuel. Since poultry-derived fuel (PDF) is biomass, its co-firing will have the added advantage of reducing greenhouse gas emissions from power generation. To evaluate the combustion characteristics of co-firing PDF with coal, combustion tests of mixtures of coal and PDF were conducted in CanmetENERGY's pilot-scale CFBC. The goal of the tests was to verify that PDF can be co-fired with coal and, more importantly, that emissions from the combustion process are not adversely affected by the presence of PDF in the fuel feed. The test results were very promising and support the view that co-firing in an existing coal-fired CFBC is an effective method of utilizing this potential fuel, both resolving a potential waste disposal problem and reducing the amount of CO2 released by the boiler.

  12. Effects of Particle Additives on Acoustically Coupled Fuel Droplet Combustion

    NASA Astrophysics Data System (ADS)

    Sim, Hyung Sub; Plascencia Quiroz, Miguel; Vargas, Andres; Bennewitz, John; Smith, Owen; Karagozian, Ann

    2016-11-01

    Addition of nanoscale particulates to liquid hydrocarbon fuels is suggested to have numerous benefits for combustion systems, although aggregation of metal nanoparticles can produce deleterious effects. The present experiments explore the effect of nano Aluminum (nAl) additives on the combustion of single liquid fuel droplets, with and without exposure of the droplets to standing acoustic waves. Building on prior studies, the present experiments quantify variations in the burning rate constant K for ethanol droplets with increasing concentrations of nAl in a quiescent environment. Burning fuel droplets that are continuously fed via a capillary as well as suspended (non-fed) droplets are examined. Nano Al is observed to create ejections of both particles and vapor toward the end of the burning period for non-fed droplets; this phenomenon is delayed when the droplet is replenished via continuous fuel delivery. Yet for the majority of conditions explored, increasing concentrations of nAl tend to reduce K. When ethanol droplets with nAl are exposed to standing waves, acoustic perturbations appear to delay particulate agglomeration, sustaining combustion for a longer period of time and increasing K. Supported by AFOSR Grant FA9550-15-1-0339.

  13. Numerical Simulation of the Combustion of Fuel Droplets: Finite Rate Kinetics and Flame Zone Grid Adaptation (CEFD)

    NASA Technical Reports Server (NTRS)

    Gogos, George; Bowen, Brent D.; Nickerson, Jocelyn S.

    2002-01-01

    The NASA Nebraska Space Grant (NSGC) & EPSCoR programs have continued their effort to support outstanding research endeavors by funding the Numerical Simulation of the Combustion of Fuel Droplets study at the University of Nebraska at Lincoln (UNL). This team of researchers has developed a transient numerical model to study the combustion of suspended and moving droplets. The engines that propel missiles, jets, and many other devices are dependent upon combustion. Therefore, data concerning the combustion of fuel droplets is of immediate relevance to aviation and aeronautical personnel, especially those involved in flight operations. The experiments being conducted by Dr. Gogos and Dr. Nayagam s research teams, allow investigators to gather data for comparison with theoretical predictions of burning rates, flame structures, and extinction conditions. The consequent improved hndamental understanding droplet combustion may contribute to the clean and safe utilization of fossil hels (Williams, Dryer, Haggard & Nayagam, 1997, 72). The present state of knowledge on convective extinction of he1 droplets derives fiom experiments conducted under normal gravity conditions. However, any data obtained with suspended droplets under normal gravity are grossly affected by gravity. The need to obtain experimental data under microgravity conditions is therefore well justified and addresses one of the goals of NASA s Human Exploration and Development of Space (HEDS) microgravity combustion experiment.

  14. High-Temperature Corrosion in Fossil Fuel Power Generation: Present and Future

    NASA Astrophysics Data System (ADS)

    Pint, B. A.

    2013-08-01

    Fossil fuels have historically represented two-thirds of all electricity generation in the United States and are projected to continue to play a similar role despite historically low projected growth rates in electricity demand and the recent dramatic shift from coal to more natural gas usage. Economic and environmental drivers will require more reliable and efficient fossil fuel generation systems in the future, likely with new system designs, higher operating temperatures, and more aggressive environments. Some of the current corrosion issues in power plants are reviewed along with research on materials solutions for systems envisioned for the near future, such as coal gasification and oxy-fired coal boilers.

  15. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel

    PubMed Central

    Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A.

    2012-01-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel “hydrotreated vegetable oil” (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a

  16. Potential hazards associated with combustion of bio-derived versus petroleum-derived diesel fuel.

    PubMed

    Bünger, Jürgen; Krahl, Jürgen; Schröder, Olaf; Schmidt, Lasse; Westphal, Götz A

    2012-10-01

    Fuels from renewable resources have gained worldwide interest due to limited fossil oil sources and the possible reduction of atmospheric greenhouse gas. One of these fuels is so called biodiesel produced from vegetable oil by transesterification into fatty acid methyl esters (FAME). To get a first insight into changes of health hazards from diesel engine emissions (DEE) by use of biodiesel scientific studies were reviewed which compared the combustion of FAME with common diesel fuel (DF) for legally regulated and non-regulated emissions as well as for toxic effects. A total number of 62 publications on chemical analyses of DEE and 18 toxicological in vitro studies were identified meeting the criteria. In addition, a very small number of human studies and animal experiments were available. In most studies, combustion of biodiesel reduces legally regulated emissions of carbon monoxide, hydrocarbons, and particulate matter. Nitrogen oxides are regularly increased. Among the non-regulated emissions aldehydes are increased, while polycyclic aromatic hydrocarbons are lowered. Most biological in vitro assays show a stronger cytotoxicity of biodiesel exhaust and the animal experiments reveal stronger irritant effects. Both findings are possibly caused by the higher content of nitrogen oxides and aldehydes in biodiesel exhaust. The lower content of PAH is reflected by a weaker mutagenicity compared to DF exhaust. However, recent studies show a very low mutagenicity of DF exhaust as well, probably caused by elimination of sulfur in present DF qualities and the use of new technology diesel engines. Combustion of vegetable oil (VO) in common diesel engines causes a strongly enhanced mutagenicity of the exhaust despite nearly unchanged regulated emissions. The newly developed fuel "hydrotreated vegetable oil" (HVO) seems to be promising. HVO has physical and chemical advantages compared to FAME. Preliminary results show lower regulated and non-regulated emissions and a

  17. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    PubMed

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-02

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  18. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    PubMed

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species.

  19. Crude Glycerol as Cost-Effective Fuel for Combined Heat and Power to Replace Fossil Fuels, Final Technical Report

    SciTech Connect

    Roberts, William L

    2012-10-31

    The primary objectives of this work can be summed into two major categories. Firstly, the fundamentals of the combustion of glycerol (in both a refined and unrefined form) were to be investigated, with emphasis of the development of a system capable of reliably and repeatedly combusting glycerol as well as an analysis of the emissions produced during glycerol combustion. Focus was placed on quantifying common emissions in comparison to more traditional fuels and this work showed that the burner developed was able to completely combust glycerol within a relatively wide range of operating conditions. Additionally, focus was placed on examining specific emissions in more detail, namely interesting NOx emissions observed in initial trials, acrolein and other volatile organic emissions, and particulate and ash emissions. This work showed that the combustion of crude glycerol could result in significantly reduced NOx emissions as a function of the high fuel bound oxygen content within the glycerol fuel. It also showed that when burned properly, the combustion of crude glycerol did not result in excessive emissions of acrolein or any other VOC compared to the combustion from more traditional fuels. Lastly however, this work has shown that in any practical application in which glycerol is being burned, it will be necessary to explore ash mitigation techniques due to the very high particulate matter concentrations produced during glycerol combustion. These emissions are comparable to unfiltered coal combustion and are directly tied to the biodiesel production method. The second focus of this work was directed to developing a commercialization strategy for the use of glycerol as a fuel replacement. This strategy has identified a 30 month plan for the scaling up of the laboratory scale burner into a pre-pilot scale system. Additionally, financing options were explored and an assessment was made of the economics of replacing a traditional fuel (namely natural gas) with crude

  20. CO₂ emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine; Wada, Kenichi; van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  1. CO2 emissions mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    SciTech Connect

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; Kitous, Alban; McCollum, David; Mejean, Aurelie; Rao, Shilpa; Turton, Hal; Paroussos, Leonidas; Ashina, Shuichi; Calvin, Katherine V.; Wada, Kenichi; Van Vuuren, Detlef

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher and decrease with mitigation. A first deviation from the optimal transition pathway relaxes global emission targets until 2030, in accordance with the Copenhagen pledges and regionally-specific low-carbon technology targets. Fossil fuel markets revert back to the no-policy case: though coal use increases strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger - twice and more - than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear cut across models, as we find carbon leakage effects ranging from positive to negative because leakage and substitution patterns of coal, oil, and gas differ. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.

  2. Disturbing effect of free hydrogen on fuel combustion in internal combustion engines

    NASA Technical Reports Server (NTRS)

    Riedler, A

    1923-01-01

    Experiments with fuel mixtures of varying composition, have recently been conducted by the Motor Vehicle and Airplane Engine Testing Laboratories of the Royal Technical High School in Berlin and at Fort Hahneberg, as well as at numerous private engine works. The behavior of hydrogen during combustion in engines and its harmful effect under certain conditions, on the combustion in the engine cylinder are of general interest. Some of the results of these experiments are given here, in order to elucidate the main facts and explain much that is already a matter of experience with chauffeurs and pilots.

  3. If Fossil and Fissile Fuels Falter, We've Got. . .

    ERIC Educational Resources Information Center

    Klaus, Robert L.

    1977-01-01

    Alternative energy sources and the new systems and techniques required for their development are described: fuel cells, magnetohydrodynamics, thermionics, geothermal, wind, tides, waste consersion, biomass, and ocean thermal energy conversion. (MF)

  4. Direct Carbon Conversion: Application to the Efficient Conversion of Fossil Fuels to Electricity

    SciTech Connect

    Cooper, J F; Cherepy, N; Berry, G; Pasternak, A; Surles, T; Steinberg, M

    2001-03-07

    We introduce a concept for efficient conversion of fossil fuels to electricity that entails the decomposition of fossil-derived hydrocarbons into carbon and hydrogen, and electrochemical conversion of these fuels in separate fuel cells. Carbon/air fuel cells have the advantages of near zero entropy change and associated heat production (allowing 100% theoretical conversion efficiency). The activities of the C fuel and CO{sub 2} product are invariant, allowing constant EMF and full utilization of fuel in single pass mode of operation. System efficiency estimates were conducted for several routes involving sequential extraction of a hydrocarbon from the fossil resource by (hydro) pyrolysis followed by thermal decomposition. The total energy conversion efficiencies of the processes were estimated to be (1) 80% for direct conversion of petroleum coke; (2) 67% HHV for CH{sub 4}; (3) 72% HHV for heavy oil (modeled using properties of decane); (4) 75.5% HHV (83% LHV) for natural gas conversion with a Rankine bottoming cycle for the H{sub 2} portion; and (5) 69% HHV for conversion of low rank coals and lignite through hydrogenation and pyrolysis of the CH{sub 4} intermediate. The cost of carbon fuel is roughly $7/GJ, based on the cost of the pyrolysis step in the industrial furnace black process. Cell hardware costs are estimated to be less than $500/kW.

  5. Estimates of global, regional, and national annual CO{sub 2} emissions from fossil-fuel burning, hydraulic cement production, and gas flaring: 1950--1992

    SciTech Connect

    Boden, T.A.; Marland, G.; Andres, R.J.

    1995-12-01

    This document describes the compilation, content, and format of the most comprehensive C0{sub 2}-emissions database currently available. The database includes global, regional, and national annual estimates of C0{sub 2} emissions resulting from fossil-fuel burning, cement manufacturing, and gas flaring in oil fields for 1950--92 as well as the energy production, consumption, and trade data used for these estimates. The methods of Marland and Rotty (1983) are used to calculate these emission estimates. For the first time, the methods and data used to calculate CO, emissions from gas flaring are presented. This C0{sub 2}-emissions database is useful for carbon-cycle research, provides estimates of the rate at which fossil-fuel combustion has released C0{sub 2} to the atmosphere, and offers baseline estimates for those countries compiling 1990 C0{sub 2}-emissions inventories.

  6. Reducing DoD Fossil-Fuel Dependence

    DTIC Science & Technology

    2006-09-01

    Wheels Analysis of Vehicle/Fuel Systems 20Jul06: (VTC) Robert Roche and Peter Melik [Army, AMSAA]: Fuel Consumption Modeling and Support Insights In...grains DDGS Distiller’s dried grains with solubles 91 DICI Direct Injection Compression Ignition (engine) DME Dimethyl ether. Surrogate for diesel...and do not own the transmission lines. Joule The ( kinetic ) energy acquired by a mass of one kilogram moving at a speed of one meter per second kJ

  7. Reducing DoD Fossil-Fuel Dependence

    DTIC Science & Technology

    2006-09-01

    Analysis of Vehicle/Fuel Systems 20Ju106: (VTC) Robert Roche and Peter Melik [Army, AMSAA]: Fuel Consumption Modeling and Support Insights In addition...with solubles 90 DICI Direct Injection Compression Ignition (engine) DME Dimethyl ether. Surrogate for diesel. DOE Department of Energy. The federal...wholesale to the power market. IPPs own and operate their stations as non-utilities and do not own the transmission lines. Joule The ( kinetic ) energy acquired

  8. Santilli's new fuels as sources of clean combustion

    NASA Astrophysics Data System (ADS)

    Sarma, Indrani B. Das

    2013-10-01

    Molecular combustion or nuclear fission is the conventional source of energy, which are not clean as they generate large amount of green house gas or nuclear waste. Clean energy can be obtained by harnessing renewable energy sources like solar, wind, etc. However, each of these sources has their own limitations and is dependent on geographical locations. The modern day demand of clean, cheap and abundant energy gets fulfilled by the novel fuels that have been developed through hadronic mechanics/chemistry. In the present paper, a short review on such novel fuels like Hadronic energy of non-nuclear type (combustion of MagneGas) and nuclear type (intermediate controlled nuclear fusion and particle type like stimulated neutron decay) has been presented.

  9. Simplified jet fuel reaction mechanism for lean burn combustion application

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Kundu, Krishna; Ghorashi, Bahman

    1993-01-01

    Successful modeling of combustion and emissions in gas turbine engine combustors requires an adequate description of the reaction mechanism. Detailed mechanisms contain a large number of chemical species participating simultaneously in many elementary kinetic steps. Current computational fluid dynamic models must include fuel vaporization, fuel-air mixing, chemical reactions, and complicated boundary geometries. A five-step Jet-A fuel mechanism which involves pyrolysis and subsequent oxidation of paraffin and aromatic compounds is presented. This mechanism is verified by comparing with Jet-A fuel ignition delay time experimental data, and species concentrations obtained from flametube experiments. This five-step mechanism appears to be better than the current one- and two-step mechanisms.

  10. Fuels for Advanced Combustion Engines Research Diesel Fuels: Analysis of Physical and Chemical Properties

    SciTech Connect

    Gallant, Tom; Franz, Jim; Alnajjar, Mikhail; Storey, John Morse; Lewis Sr, Samuel Arthur; Sluder, Scott; Cannella, William C; Fairbridge, Craig; Hager, Darcy; Dettman, Heather; Luecke, Jon; Ratcliff, Matthew A.; Zigler, Brad

    2009-01-01

    The CRC Fuels for Advanced Combustion Engines working group has worked to identify a matrix of research diesel fuels for use in advanced combustion research applications. Nine fuels were specified and formulated to investigate the effects of cetane number aromatic content and 90% distillation fraction. Standard ASTM analyses were performed on the fuels as well as GC/MS and /u1H//u1/u3C NMR analyses and thermodynamic characterizations. Details of the actual results of the fuel formulations compared with the design values are presented, as well as results from standard analyses, such as heating value, viscosity and density. Cetane number characterizations were accomplished by using both the engine method and the Ignition Quality Tester (IQT/sT) apparatus.

  11. Combustion of PMMA in a solid fuel ramjet

    SciTech Connect

    Korting, P.A.O.G.; Van der Geld, C.W.M.; Vos, J.B.; Wijchers, T.; Nina, M.N.R.

    1986-01-01

    The combustion behaviour of polymethyl methacrylate (PMMA) in a solid fuel ramjet was investigated using a connected pipe test facility. At pressures below 0,6 MPa almost no soot is formed, the flame is blueish and the regression rate appears to be primarily controlled by convection. At higher pressures, soot is formed and radiative heat transfer appears to be increasingly important. As a result, the regression rate becomes pressure dependant, while the effect of mass flux on regression rate decreases. Oxygen content in the air and air inlet temperature also affect combustion behaviour. No grain size effect on regression rate is noticed. Spectroscopic measurements demonstrated the presence of OH, C/sub 2/ and CH in the combustion chamber. The combustion efficiency varied between 70 and 76% and can be increased by increasing the size of the aft mixing chamber, the fuel grain length or the oxygen content in the air. Cold flow computer calculations were performed and showed good agreement with experimentally obtained results.

  12. Vaporization and combustion of fuel droplets at supercritical conditions

    NASA Technical Reports Server (NTRS)

    Yang, Vigor

    1991-01-01

    Vaporization and combustion liquid-fuel droplets in both sub- and super-critical environments have been examined. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. In addition, the dynamic responses of droplet vaporization and combustion to ambient-pressure oscillations are investigated. Results indicate that the droplet gasification and burning mechanisms depend greatly on the ambient pressure. In particular, a rapid enlargement of the vaporization and combustion responses occurs when the droplet surface reaches its critical point, mainly due to the strong variations of latent heat of vaporization and thermophysical properties at the critical state.

  13. Fireside Corrosion in Oxy-fuel Combustion of Coal

    SciTech Connect

    G. R. Holcomb; J. Tylczak; G. H. Meier; B. Lutz; K. Jung; N. Mu; N. M. Yanar; F. S. Pettit; J. Zhu; A. Wise; D. Laughlin; S. Sridhar

    2012-05-20

    Oxy-fuel combustion is burning a fuel in oxygen rather than air. The low nitrogen flue gas that results is relatively easy to capture CO{sub 2} from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N{sub 2} with CO{sub 2} and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe-Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions.

  14. Fuel-rich catalytic combustion: A fuel processor for high-speed propulsion

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Rollbuhler, R. James; Lezberg, Erwin A.

    1990-01-01

    Fuel-rich catalytic combustion of Jet-A fuel was studied over the equivalence ratio range 4.7 to 7.8, which yielded combustion temperatures of 1250 to 1060 K. The process was soot-free and the gaseous products were similar to those obtained in the iso-octane study. A carbon atom balance across the catalyst bed calculated for the gaseous products accounted for about 70 to 90 percent of the fuel carbon; the balance was condensed as a liquid in the cold trap. It was shown that 52 to 77 percent of the fuel carbon was C1, C2, and C3 molecules. The viability of using fuel-rich catalytic combustion as a technique for preheating a practical fuel to very high temperatures was demonstrated. Preliminary results from the scaled up version of the catalytic combustor produced a high-temperature fuel containing large amounts of hydrogen and carbon monoxide. The balance of the fuel was completely vaporized and in various stages of pyrolysis and oxidation. Visual observations indicate that there was no soot present.

  15. Chemistry and Transport Properties for Jet Fuel Combustion

    DTIC Science & Technology

    2013-04-01

    Engineering 2150 GG Brown Ann Arbor MI 48109-2125 9. SPONSORING...methyl  ester  moiety  in   biodiesel  combustion:   A   kinetic   modeling   comparison   of   methyl   butanoate   and...Jet  Fuel  Surrogates”  PhD  Thesis,   Mechanical   Engineering ,  University  of  Michigan,  2010.    

  16. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  17. Combustion studies of coal derived solid fuels by thermogravimetric analysis. III. Correlation between burnout temperature and carbon combustion efficiency

    USGS Publications Warehouse

    Rostam-Abadi, M.; DeBarr, J.A.; Chen, W.T.

    1990-01-01

    Burning profiles of 35-53 ??m size fractions of an Illinois coal and three partially devolatilized coals prepared from the original coal were obtained using a thermogravimetric analyzer. The burning profile burnout temperatures were higher for lower volatile fuels and correlated well with carbon combustion efficiencies of the fuels when burned in a laboratory-scale laminar flow reactor. Fuels with higher burnout temperatures had lower carbon combustion efficiencies under various time-temperature conditions in the laboratory-scale reactor. ?? 1990.

  18. Geology, fossil fuel potential and environmental concerns of the Caspian Sea

    NASA Astrophysics Data System (ADS)

    Rabinowitz, P.; Yusifov, M.; Arnoldi, J.

    2003-04-01

    The fossil fuel producing areas of the Caspian region consists primarily of two basins, the Precaspian and South Caspian basins, both containing sediments in excess of 20km. The South Caspian Basin, a remnant of Tethys, was formed commencing in the Early-Middle Jurassic as a result of opening of back-arc basins behind volcanic arcs. The PreCaspian Basin extends onshore onto Kazakhstan and Russia and commenced its complicated geological evolution in the Middle Devonian. These basins are presently producing oil and gas in excess of one million barrels per day and two trillion cubic feet per day, respectively. They contain oil and gas reserves that are comparable to those of most other of the world's fossil fuel producing regions, excluding the Middle East. It is anticipated that within a decade these basins will produce over three million barrels of oil and four trillion cubic feet of gas per day. We review the economic, environmental, and geopolitical concerns with respect to exploration and recovery of the region’s fossil fuels. For one, the presence of mud volcanoes, gas hydrates, and earthquakes are a hazard for installation of oil platforms and other facilities. Pollution, attributed in large part to the fossil fuel industry, has created health and other environmental problems such as mass die-off of the Caspian seal, and in part to the large decrease in sturgeon population. Other important environmental concerns include the relatively rapid changes in sea level and desertification of the surrounding regions. There are also important legal questions with respect to ownership of resources beneath the seafloor. In addition, the transportation routes (pipelines) of fossil fuels that are anticipated to be recovered over the next decades have yet to be fully determined. Despite many of the political uncertainties, significant advances have been made in the short time since the breakup of the Soviet Union fueling optimism for the future of the region.

  19. Nitrogen oxides reduction by carbonaceous materials and carbon dioxide separation using regenerative metal oxides from fossil fuel based flue gas

    NASA Astrophysics Data System (ADS)

    Gupta, Himanshu

    The ever-growing energy demands due to rising global population and continuing lifestyle improvements has placed indispensable emphasis on fossil fuels. Combustion of fossil fuels leads to the emission of harmful gaseous pollutants such as oxides of sulfur (SOx) and nitrogen (NOx), carbon dioxide (CO2), mercury, particulate matter, etc. Documented evidence has proved that this air pollution leads to adverse environmental health. This dissertation focuses on the development of technologies for the control of NOx and CO2 emissions. The first part of the thesis (Chapters 2--6) deals with the development of carbon based post combustion NOx reduction technology called CARBONOX process. High temperature combustion oxidizes both atmospheric nitrogen and organic nitrogen in coal to nitric oxide (NO). The reaction rate between graphite and NO is slow and requires high temperature (>900°C). The presence of metallic species in coal char catalyzes the reaction. The reaction temperature is lowered in the presence of oxygen to about 600--850°C. Chemical impregnation, specifically sodium compounds, further lowers the reaction temperature to 350--600°C. Activated high sodium lignite char (HSLC) provided the best performance for NO reduction. The requirement of char for NOx reduction is about 8--12 g carbon/g NO reduced in the presence of 2% oxygen in the inlet gas. The second part of this dissertation (chapter 7--8) focuses on the development of a reaction-based process for the separation of CO2 from combustion flue gas. Certain metal oxides react with CO2 forming metal carbonates under flue gas conditions. They can be calcined separately to yield CO2. Calcium oxide (CaO) has been identified as a viable metal oxide for the carbonation-calcination reaction (CCR) scheme. CaO synthesized from naturally occurring precursors (limestone and dolomite) attained 45--55% of their stoichiometric conversion due to the susceptibility of their microporous structure. High surface area

  20. Combustion characterization of beneficiated coal-based fuels

    SciTech Connect

    Chow, O.K.; Nsakala, N.Y.

    1990-08-01

    The objectives of this project include: (1) the development of an engineering data base which will provide detailed information on the properties of BCFs influencing combustion, ash deposition, ash erosion, particulate collection, and emissions; and (2) the application of this technical data base to predict the performance and economic impacts of firing the BCFs in various commercial boiler designs. The technical approach used to develop the technical data includes: bench-scale fuel property, conbustion, and ash deposition tests; pilot-scale combustion and ash effects tests; and full-scale combustion tests. Subcontractors to CE to perform parts of the test work are the Massachusetts Institute of Technology (MIT), Physical Sciences, Inc. Technology Company (PSIT) and the University of North Dakota Energy and Environmental Research Center (UNDEERC). Twenty fuels will be characterized during the three-year base program: three feed coals, fifteen BCFs, and two conventionally cleaned coals for the full-scale tests. Approximately nine BCFs will be in dry ultra-fine coal (DUC) form, and six BCFs will be in coal-water fuel (CWF) form. Additional BCFs would be characterized during optional project supplements.

  1. NOVEL GAS SENSORS FOR HIGH-TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect

    Palitha Jayaweera

    2004-05-01

    SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to operate at high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. Under this research project we are developing sensors for multiple gas detection in a single package along with data acquisition and control software and hardware. The sensor package can be easily integrated into online monitoring systems for active emission control. This report details the research activities performed from October 2003 to April 2004.

  2. FUEL FORMULATION EFFECTS ON DIESEL FUEL INJECTION, COMBUSTION, EMISSIONS AND EMISSION CONTROL

    SciTech Connect

    Boehman, A; Alam, M; Song, J; Acharya, R; Szybist, J; Zello, V; Miller, K

    2003-08-24

    This paper describes work under a U.S. DOE sponsored Ultra Clean Fuels project entitled ''Ultra Clean Fuels from Natural Gas,'' Cooperative Agreement No. DE-FC26-01NT41098. In this study we have examined the incremental benefits of moving from low sulfur diesel fuel and ultra low sulfur diesel fuel to an ultra clean fuel, Fischer-Tropsch diesel fuel produced from natural gas. Blending with biodiesel, B100, was also considered. The impact of fuel formulation on fuel injection timing, bulk modulus of compressibility, in-cylinder combustion processes, gaseous and particulate emissions, DPF regeneration temperature and urea-SCR NOx control has been examined. The primary test engine is a 5.9L Cummins ISB, which has been instrumented for in-cylinder combustion analysis and in-cylinder visualization with an engine videoscope. A single-cylinder engine has also been used to examine in detail the impacts of fuel formulation on injection timing in a pump-line-nozzle fueling system, to assist in the interpretation of results from the ISB engine.

  3. Sources of black carbon in aerosols: fossil fuel burning vs. biomass burning

    NASA Astrophysics Data System (ADS)

    Hsieh, Y.

    2013-12-01

    The uncertainty in black carbon (BC) analysis and our inability to directly quantify the BC sources in the atmosphere has led to the uncertainty in compiling a regional or global BC emission inventory attributed to biomass burnings. We initiate this study to demonstrate a new approach, which quantifies the source of BC in the atmosphere between biomass and fossil fuel burnings. We applied the newly developed multi-element scanning thermal analysis (MESTA) technology to quantify BC and organic carbon (OC), respectively, in aerosol samples. MESTA can also separate BC from OC for subsequent radiocarbon analyses. Because fossil fuel has been depleted of radiocarbon and biomass has radiocarbon of the modern atmospheric level, we can quantify the sources of BC between fossil fuel and biomass burnings. We sampled the PM2.5 in the ambient air of central Tallahassee and its rural areas during the May-June (prescribed burning) and Nov-Dec (non-burning) periods. The results indicate that biomass burning contributed 89×1% and 67×2% of BC, respectively, during May-June and Nov.-Dec. periods. The rest of PM2.5 BC was contributed from fossil fuel burning. The radiocarbon contents of the OC was 103.42×0.55 percent modern carbon (pmC), which is consistent with the current atmospheric level with a trace of the bomb radiocarbon remained from the open atmosphere nuclear testing.

  4. A FEASIBILITY STUDY FOR THE COPROCESSING OF FOSSIL FUELS WITH BIOMASS BY THE HYDROCARB PROCESS

    EPA Science Inventory

    The report describes and gives results of an assessment of a new process concept for the production of carbon and methanol from fossil fuels. The Hydrocarb Process consists of the hydrogasification of carbonaceous material to produce methane, which is subsequently thermally decom...

  5. Liquid fossil-fuel technology. Quarterly technical progress report, April-June 1982

    SciTech Connect

    Linville, B.

    1982-10-01

    This report primarily covers in-house oil, gas, and synfuel research and lists the contracted research. The report is broken into the following areas: liquid fossil fuel cycle, extraction, processing, utilization, and project integration and technology transfer. BETC publications are listed. (DLC)

  6. Impacts of Wind and Solar on Fossil-Fueled Generators: Preprint

    SciTech Connect

    Lew, D.; Brinkman, G.; Kumar, N.; Besuner, P.; Agan, D.; Lefton, S.

    2012-08-01

    High penetrations of wind and solar power will impact the operations of the remaining generators on the power system. Regional integration studies have shown that wind and solar may cause fossil-fueled generators to cycle on and off and ramp down to part load more frequently and potentially more rapidly. Increased cycling, deeper load following, and rapid ramping may result in wear-and-tear impacts on fossil-fueled generators that lead to increased capital and maintenance costs, increased equivalent forced outage rates, and degraded performance over time. Heat rates and emissions from fossil-fueled generators may be higher during cycling and ramping than during steady-state operation. Many wind and solar integration studies have not taken these increased cost and emissions impacts into account because data have not been available. This analysis considers the cost and emissions impacts of cycling and ramping of fossil-fueled generation to refine assessments of wind and solar impacts on the power system.

  7. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    NASA Technical Reports Server (NTRS)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  8. Separation of biospheric and fossil fuel fluxes of CO2 by atmospheric inversion of CO2 and 14CO2 measurements: Observation System Simulations

    NASA Astrophysics Data System (ADS)

    Basu, Sourish; Bharat Miller, John; Lehman, Scott

    2016-05-01

    National annual total CO2 emissions from combustion of fossil fuels are likely known to within 5-10 % for most developed countries. However, uncertainties are inevitably larger (by unknown amounts) for emission estimates at regional and monthly scales, or for developing countries. Given recent international efforts to establish emission reduction targets, independent determination and verification of regional and national scale fossil fuel CO2 emissions are likely to become increasingly important. Here, we take advantage of the fact that precise measurements of 14C in CO2 provide a largely unbiased tracer for recently added fossil-fuel-derived CO2 in the atmosphere and present an atmospheric inversion technique to jointly assimilate observations of CO2 and 14CO2 in order to simultaneously estimate fossil fuel emissions and biospheric exchange fluxes of CO2. Using this method in a set of Observation System Simulation Experiments (OSSEs), we show that given the coverage of 14CO2 measurements available in 2010 (969 over North America, 1063 globally), we can recover the US national total fossil fuel emission to better than 1 % for the year and to within 5 % for most months. Increasing the number of 14CO2 observations to ˜ 5000 per year over North America, as recently recommended by the National Academy of Science (NAS) (Pacala et al., 2010), we recover monthly emissions to within 5 % for all months for the US as a whole and also for smaller, highly emissive regions over which the specified data coverage is relatively dense, such as for the New England states or the NY-NJ-PA tri-state area. This result suggests that, given continued improvement in state-of-the art transport models, a measurement program similar in scale to that recommended by the NAS can provide for independent verification of bottom-up inventories of fossil fuel CO2 at the regional and national scale. In addition, we show that the dual tracer inversion framework can detect and minimize biases in

  9. Decadal trends in fossil fuel energy consumption and related air pollutant emissions

    NASA Astrophysics Data System (ADS)

    Shekar Reddy, M.; Venkataraman, C.; Boucher, O.

    2003-04-01

    The economic liberalization in the early 1990s in India fuelled the industrial production, enabled the decadal annual average rate of 5.9% in the gross domestic product (GDP) during 1990-2000. This resulted in a steady increase of fossil fuels energy consumption throughout the decade. This paper investigates the trends in the GDP growth rate, sectoral fossil fuels consumption and resultant atmospheric air pollutant emissions during the above period. The fossil fuels energy consumption in the 1990 was 6875 PJ, and increased to 10801 PJ in 2000, with a decadal annual average growth rate of 5.7%. Share of the coal and petroleum fuels are 52% and 35%, respectively during 2000. The relative share contribution of power, industrial, transport, and domestic sectors are 40%, 48%, 5% and 7%, respectively. The contribution of various sectors to fossil fuels energy consumption, and the relative distribution of the different fuels within each sector will be discussed. The annual sulfur dioxide (SO_2) and aerosols (particulate matter, black carbon, organic carbon) emissions are estimated using sector and fuel specific average emission factors (mass of pollutant per unit mass of fuel burnt). The estimates take into account the changes in the fuel characteristics and technology during the study period. The estimated SO_2 emissions are 1.7 Tg S yr-1 in 1990 and increased to 2.5 Tg S yr-1 in 2000, with an annual average increase of 5%. Majority of the SO_2 emissions are from coal consumption accounting 62%, predominantly from the power plants. Trends in fuel and sectoral contributions to SO2 emissions over the decade will be presented. In the transportation sector, diesels contribute significantly to BC. Notably, in India, two-stroke engines account for 78% of total vehicle fleet, and contribute significantly to organic carbon emissions. An analysis of available SO_2 and aerosols concentration measurements will be made to explore the possible correlations between trends in the

  10. 3D computation of hydrogen-fueled combustion around turbine blade-effect of arrangement of injector holes-

    NASA Astrophysics Data System (ADS)

    Yamamoto, Makoto; Ikeda, Junichi; Inaba, Kazuaki

    2006-09-01

    Recently, a number of environmental problems caused from fossil fuel combustion have been focused on. In addition, with the eventual depletion of fossil energy resources, hydrogen gas is expected to be an alternative energy resource in the near future. It is characterized by high energy per unit weight, high reaction rate, wide range of flammability and the low emission property. On the other hand, many researches have been underway in several countries to improve a propulsion system for an advanced aircraft. The system is required to have higher power, lighter weight and lower emissions than existing ones. In such a future propulsion system, hydrogen gas would be one of the promising fuels for realizing the requirements. Considering these backgrounds, our group has proposed a new cycle concept for hydrogen-fueled aircraft propulsion system. In the present study, we perform 3 dimensional computations of turbulent flow fields with hydrogen-fueled combustion around a turbine blade. The main objective is to clarify the influence of arrangement of hydrogen injector holes. Changing the chordwise and spanwise spacings of the holes, the 3 dimensional nature of the flow and thermal fields is numerically studied.

  11. Power Gas and Combined Cycles: Clean Power From Fossil Fuels

    ERIC Educational Resources Information Center

    Metz, William D.

    1973-01-01

    The combined-cycle system is currently regarded as a useful procedure for producing electricity. This system can burn natural gas and oil distillates in addition to coal. In the future when natural gas stocks will be low, coal may become an important fuel for such systems. Considerable effort must be made for research on coal gasification and…

  12. Aluminum-26 in the early solar system - Fossil or fuel

    NASA Technical Reports Server (NTRS)

    Lee, T.; Papanastassiou, D. A.; Wasserburg, G. J.

    1977-01-01

    The isotopic composition of Mg was measured in different phases of a Ca-Al-rich inclusion in the Allende meteorite. Large excesses of Mg-26 of up to 10% were found. These excesses correlate strictly with the Al-27/Mg-24 ratio for four coexisting phases with distinctive chemical compositions. Models of in situ decay of Al-26 within the solar system and of mixing of interstellar dust grains containing fossil Al-26 with normal solar system material are presented. The observed correlation provides definitive evidence for the presence of Al-26 in the early solar system. This requires either injection of freshly synthesized nucleosynthetic material into the solar system immediately before condensation and planet formation, or local production within the solar system by intense activity of the early sun. Planets promptly produced from material with the inferred Al-26/Al-27 would melt within about 300,000 years.

  13. Broad Specification Fuels Combustion Technology Program, Phase 2

    NASA Technical Reports Server (NTRS)

    Lohmann, R. P.; Jeroszko, R. A.; Kennedy, J. B.

    1990-01-01

    An experimental evaluation of two advanced technology combustor concepts was conducted to evolve and assess their capability for operation on broadened properties fuels. The concepts were based on the results of Phase 1 of the Broad Specification Fuel Combustor Technology Program which indicated that combustors with variable geometry or staged combustion zones had a flexibility of operation that could facilitate operation on these fuels. Emphasis in defining these concepts included the use of single pipe as opposed to duplex or staged fuels systems to avoid the risk of coking associated with the reduction in thermal stability expected in broadened properties fuels. The first concept was a variable geometry combustor in which the airflow into the primary zone could be altered through valves on the front while the second was an outgrowth of the staged Vorbix combustor, evolved under the NASA/P&W ECCP and EEE programs incorporating simplified fuel and air introduction. The results of the investigation, which involved the use of Experimental Referee Broad Specification (ERBS) fuel, indicated that in the form initially conceived, both of these combustor concepts were deficient in performance relative to many of the program goals for performance emissions. However, variations of both combustors were evaluated that incorporated features to simulate conceptual enhancement to demonstrate the long range potential of the combustor. In both cases, significant improvements relative to the program goals were observed.

  14. Determination of wood burning and fossil fuel contribution of black carbon at Delhi, India using aerosol light absorption technique.

    PubMed

    Tiwari, S; Pipal, A S; Srivastava, A K; Bisht, D S; Pandithurai, G

    2015-02-01

    A comprehensive measurement program of effective black carbon (eBC), fine particle (PM2.5), and carbon monoxide (CO) was undertaken during 1 December 2011 to 31 March 2012 (winter period) in Delhi, India. The mean mass concentrations of eBC, PM2.5, and CO were recorded as 12.1 ± 8.7 μg/m(3), 182.75 ± 114.5 μg/m(3), and 3.41 ± 1.6 ppm, respectively, during the study period. Also, the absorption Angstrom exponent (AAE) was estimated from eBC and varied from 0.38 to 1.29 with a mean value of 1.09 ± 0.11. The frequency of occurrence of AAE was ~17 % less than unity whereas ~83 % greater than unity was observed during the winter period in Delhi. The mass concentrations of eBC were found to be higher by ~34 % of the average value of eBC (12.1 μg/m(3)) during the study period. Sources of eBC were estimated, and they were ~94 % from fossil fuel (eBCff) combustion whereas only 6 % was from wood burning (eBCwb). The ratio between eBCff and eBCwb was 15, which indicates a higher impact from fossil fuels compared to biomass burning. When comparing eBCff during day and night, a factor of three higher concentrations was observed in nighttime than daytime, and it is due to combustion of fossil fuel (diesel vehicle emission) and shallow boundary layer conditions. The contribution of eBCwb in eBC was higher between 1800 and 2100 hours due to burning of wood/biomass. A significant correlation between eBC and PM2.5 (r = 0.78) and eBC and CO (r = 0.46) indicates the similarity in location sources. The mass concentration of eBC was highest (23.4 μg/m(3)) during the month of December when the mean visibility (VIS) was lowest (1.31 km). Regression analysis among wind speed (WS), VIS, soot particles, and CO was studied, and significant negative relationships were seen between VIS and eBC (-0.65), eBCff (-0.66), eBCwb (-0.34), and CO (-0.65); however, between WS and eBC (-0.68), eBCff (-0.67), eBCwb (-0.28), and CO (-0.53). The regression analysis indicated

  15. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  16. Fuel-Flexible Combustion System for Co-production Plant Applications

    SciTech Connect

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  17. Spatial Relationships of Sector-Specific Fossil-fuel CO2 Emissions in the United States

    SciTech Connect

    Zhou, Yuyu; Gurney, Kevin R.

    2011-07-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision-makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multi-state spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multi-state perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements. Keywords: Fossil-fuel

  18. The geographical distribution of fossil fuels unused when limiting global warming to 2 °C

    NASA Astrophysics Data System (ADS)

    McGlade, Christophe; Ekins, Paul

    2015-01-01

    Policy makers have generally agreed that the average global temperature rise caused by greenhouse gas emissions should not exceed 2 °C above the average global temperature of pre-industrial times. It has been estimated that to have at least a 50 per cent chance of keeping warming below 2 °C throughout the twenty-first century, the cumulative carbon emissions between 2011 and 2050 need to be limited to around 1,100 gigatonnes of carbon dioxide (Gt CO2). However, the greenhouse gas emissions contained in present estimates of global fossil fuel reserves are around three times higher than this, and so the unabated use of all current fossil fuel reserves is incompatible with a warming limit of 2 °C. Here we use a single integrated assessment model that contains estimates of the quantities, locations and nature of the world's oil, gas and coal reserves and resources, and which is shown to be consistent with a wide variety of modelling approaches with different assumptions, to explore the implications of this emissions limit for fossil fuel production in different regions. Our results suggest that, globally, a third of oil reserves, half of gas reserves and over 80 per cent of current coal reserves should remain unused from 2010 to 2050 in order to meet the target of 2 °C. We show that development of resources in the Arctic and any increase in unconventional oil production are incommensurate with efforts to limit average global warming to 2 °C. Our results show that policy makers' instincts to exploit rapidly and completely their territorial fossil fuels are, in aggregate, inconsistent with their commitments to this temperature limit. Implementation of this policy commitment would also render unnecessary continued substantial expenditure on fossil fuel exploration, because any new discoveries could not lead to increased aggregate production.

  19. Indoor air quality scenario in India-An outline of household fuel combustion

    NASA Astrophysics Data System (ADS)

    Rohra, Himanshi; Taneja, Ajay

    2016-03-01

    Most of the research around the world has been on outdoor air pollution, but in India we have a more severe problem of Indoor Air Pollution (IAP). The foremost factor cited for is burning of fossil fuels for cooking. Among the 70% of the country's rural population, about 80% households rely on biomass fuel making India to top the list of countries with largest population lacking access to cleaner fuel for cooking. 4 million deaths and 5% disability-adjusted life-years is an upshot of exposure to IAP from unhealthy cooking making it globally the most critical environmental risk factor. India alone bears the highest burden (28% needless deaths) among developing countries. Moreover, about ¼ of ambient PM2.5 in the country comes from household cookfuels. These considerations have prompted the discussion of the present knowledge on the disastrous health effects of pollutants emitted by biomass combustion in India. Additionally, Particulate Matter as an indoor air pollutant is highlighted with main focus on its spatial temporal variation and some recent Indian studies are further explored. As there are no specific norms for IAP in India, urgent need has arisen for implementing the strategies to create public awareness. Moreover improvement in ventilation and modification in the pattern of fuel will also contribute to eradicate this national health issue.

  20. NOVEL GAS SENSORS FOR HIGH-TEMPERATURE FOSSIL FUEL APPLICATIONS

    SciTech Connect

    Palitha Jayaweera

    2004-05-01

    SRI is developing ceramic-based microsensors for detection of exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes and are designed to operate at high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. Under this research project we are developing sensors for multiple gas detection in a single package along with data acquisition and control software and hardware. The sensor package can be easily integrated into online monitoring systems for active emission control. This report details the research activities performed from May 2004 to October 2004 including testing of catalytic materials, sensor design and fabrication, and software development.

  1. The Krakow clean fossil fuels and energy efficiency program

    SciTech Connect

    Feibus, H.

    1995-12-31

    The joint effort by Polish and American organizations in Krakow has accomplished a great deal in just a few years. In particular, the low emission sources program has had major successes. Poland and America have a lot to learn from each other in the clean and economical use of coal. Both our countries are major producers and users of coal. Both have had to deal with the emissions of particulate and organics from coal combustion. We were fortunate, since our free market economy and democratic government helped us deal with a lot of these problems in the 1950s. In Poland, the freedom to solve these problems has evolved only in the last few years. In the first phase of the program, Polish and American engineers ran combustion tests on boilers and stoves in Krakow. They also performed analyses on the cost and feasibility of various equipment changes. The results of the first phase were used in refining the spreadsheet model to give better estimates of costs emissions. The first phase also included analyses of incentives for proceeding with needed changes. These analyses identified actions needed to create a market for the goods and services which control pollution. Such actions could include privatization, regulation, or financial incentives. The second phase of the program consisted of public meetings in Chicago, Washington, and Krakow. The purpose of the meetings was to inform U.S. and Polish firms about the results of phase 1 and to encourage them to compete to take part in phase 3. The third phase currently underway consists of the commercial ventures that were competitively selected. These ventures were consistent with recommendations unanimously made by the BSC. The three phases of the Polish-American program are discussed.

  2. Development of an Advanced Flameless Combustion Heat Source Utilizing Heavy Fuels

    DTIC Science & Technology

    2010-07-01

    captive flameless heat generation. CDI’s unique success in achieving stabilization in captive combustion for light fuels such as methanol, ethanol and...7 4.3.2 Light Fuel Testing/Calibration (Methanol and Ethanol ).............................................. 10 4.3.3 Heavy Fuel Testing...9 Figure 3. Catalytic Combustion Data for Methanol & Ethanol ...................................................11 Figure 4. Catalytic

  3. Fuel property effects on engine combustion processes. Final report

    SciTech Connect

    Cernansky, N.P.; Miller, D.L.

    1995-04-27

    A major obstacle to improving spark ignition engine efficiency is the limitations on compression ratio imposed by tendency of hydrocarbon fuels to knock (autoignite). A research program investigated the knock problem in spark ignition engines. Objective was to understand low and intermediate temperature chemistry of combustion processes relevant to autoignition and knock and to determine fuel property effects. Experiments were conducted in an optically and physically accessible research engine, static reactor, and an atmospheric pressure flow reactor (APFR). Chemical kinetic models were developed for prediction of species evolution and autoignition behavior. The work provided insight into low and intermediate temperature chemistry prior to autoignition of n-butane, iso-butane, n-pentane, 1-pentene, n-heptane, iso-octane and some binary blends. Study of effects of ethers (MTBE, ETBE, TAME and DIPE ) and alcohols (methanol and ethanol) on the oxidation and autoignition of primary reference fuel (PRF) blends.

  4. Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers

    DOEpatents

    Reifman, Jaques; Feldman, Earl E.; Wei, Thomas Y. C.; Glickert, Roger W.

    2003-01-01

    The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

  5. The Impact of Alternative Fuels on Combustion Kinetics

    SciTech Connect

    Pitz, W J; Westbrook, C K

    2009-07-30

    The research targets the development of detailed kinetic models to quantitatively characterize the impact of alternative fuels on the performance of Navy turbines and diesel engines. Such impacts include kinetic properties such as cetane number, flame speed, and emissions as well as physical properties such as the impact of boiling point distributions on fuel vaporization and mixing. The primary focus will be Fischer-Tropsch liquids made from natural gas, coal or biomass. The models will include both the effects of operation with these alternative fuels as well as blends of these fuels with conventional petroleum-based fuels. The team will develop the requisite kinetic rules for specific reaction types and incorporate these into detailed kinetic mechanisms to predict the combustion performance of neat alternative fuels as well as blends of these fuels with conventional fuels. Reduced kinetic models will be then developed to allow solution of the coupled kinetics/transport problems. This is a collaboration between the Colorado School of Mines (CSM) and the Lawrence Livermore National Laboratory (LLNL). The CSM/LLNL team plans to build on the substantial progress made in recent years in developing accurate detailed chemical mechanisms for the oxidation and pyrolysis of conventional fuels. Particular emphasis will be placed upon reactions of the isoalkanes and the daughter radicals, especially tertiary radicals, formed by abstraction from the isoalkanes. The various components of the program are described. We have been developing the kinetic models for two iso-dodecane molecules, using the same kinetic modeling formalisms that were developed for the gasoline and diesel primary reference fuels. These mechanisms, and the thermochemical and transport coefficient submodels for them, are very close to completion at the time of this report, and we expect them to be available for kinetic simulations early in the coming year. They will provide a basis for prediction and

  6. Combustion of liquid-fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor; Hsaio, C. C.

    1992-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both subcritical and supercritical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates variable thermophysical properties, finite-rate chemical kinetics, and a full treatment of liquid-vapor phase equilibrium at the drop surface. The governing equations and associated interfacial boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures in the range of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influence on fluid transport, gas-liquid interfacial thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibit a considerable change in the combustion mechanism at the critical pressure, mainly as a result of reduced mass diffusivity and latent heat of vaporization with increased pressure.

  7. Periodic Partial Extinction Regime in Acoustically Coupled Fuel Droplet Combustion

    NASA Astrophysics Data System (ADS)

    Plascencia Quiroz, Miguel; Bennewitz, John; Vargas, Andres; Sim, Hyung Sub; Smith, Owen; Karagozian, Ann

    2016-11-01

    This experimental study investigates the response of burning liquid fuel droplets exposed to standing acoustic waves, extending prior studies quantifying mean and temporal flame response to moderate acoustic excitation. This investigation explores alternative fuels exposed to a range of acoustic forcing conditions (frequencies and amplitudes), with a focus on ethanol and JP-8. Three fundamental flame regimes are observed: sustained oscillatory combustion, periodic partial extinction and reignition (PPER), and full extinction. Phase-locked OH* chemiluminescence imaging and local temporal pressure measurements allow quantification of the combustion-acoustic coupling through the local Rayleigh index G. As expected, PPER produces negative G values, despite having clear flame oscillations. PPER is observed to occur at low-frequency, high amplitude excitation, where the acoustic time scales are large compared with kinetic/reaction times scales for diffusion-limited combustion processes. These quantitative differences in behavior are determined to depend on localized fluid mechanical strain created by the acoustic excitation as well as reaction kinetics. Supported by AFOSR Grant FA9550-15-1-0339.

  8. Spiking of Hydrocarbon Fuels with Silanes-based Combustion Enhancers

    NASA Astrophysics Data System (ADS)

    Hidding, Bernhard; Fikri, Mustapha; Bozkurt, Metehan; Schulz, Christof; Soltner, Theresa; Kornath, Andreas; Pfitzner, Michael; Lang, Martin; Adamczyk, Andrew J.; Broadbelt, Linda; Ellerbrock, Hartwig; Simone, Domenico; Bruno, Claudio

    The concept of spiking hydrocarbon fuels such as kerosenes with liquid silicon hydrides in order to render the fuel combination hypergolic and to improve the combustion efficiency is presented and preliminarily analyzed. In view of scarcity of available data, various approaches are used, among them quantum-mechanical ab initio calculations for the thermodynamics and shock-tube measurements for the kinetics of higher, liquid silanes. Based on these results and other data, performance predictions indicate that miscible hydrocarbon/silicon hydride fuels (HC/SH) have the potential to be stored in a single tank, to be hypergolic with many oxidizers, and to yield similar, partly better specific impulses (and volume-specific impulses) than hydrocarbon fuels without silane additives. A variety of hybrid HC/SH fuel combinations seems to be accessible, which might offer the possibility to design a fuel combination with characteristics adjustable in a wide range. The current and future availability of larger amounts of liquid silanes is discussed.

  9. Fuel injection pump for an internal combustion engine

    SciTech Connect

    Yoshinaga, T.; Igashira, T.; Sakakibara, Y.; Abe, S.; Natsuyama, Y.

    1988-12-27

    This patent describes a fuel injection pump for an internal combustion engine comprising: a body having a cylinder bore, low pressure chamber, an overflow passage coupled to the cylinder bore and communicating with the low pressure chamber, and a feed passage formed in the cylinder bore and open to the cylinder bore; a plunger slidably housed in the cylinder bore to define a high pressure chamber therein; valve means for opening and closing the overflow passage to the cylinder bore according to a fuel pressure acting thereon, the valve means opening to cause undischarged surplus fuel to spill from the high pressure chamber through the overflow passage; a piezoelectric actuator attached to the body to expand and contract according to a voltage applied thereto to vary the fuel pressure in the control chamber and thereby open and close the valve means to control a fuel supply; and means for opening and closing the feed passage, the opening and closing means opening the feed passage to feed the low pressure fuel in the low pressure chamber to the control chamber through the overflow passage, the high pressure chamber and the feed passage on an intake action of the plunger and then closing the feed passage on an intake action of the plunger, and then closing the feed passage to hold the pressure in the control chamber at a desired value.

  10. Combustion Characteristics of Liquid Normal Alkane Fuels in a Model Combustor of Supersonic Combustion Ramjet Engine

    NASA Astrophysics Data System (ADS)

    今村, 宰; 石川, 雄太; 鈴木, 俊介; 福本, 皓士郎; 西田, 俊介; 氏家, 康成; 津江, 光洋

    Effect of kinds of one-component n-alkane liquid fuels on combustion characteristics was investigated experimentally using a model combustor of scramjet engine. The inlet condition of a model combustor is 2.0 of Mach number, up to 2400K of total temperature, and 0.38MPa of total pressure. Five kinds of n-alkane are tested, of which carbon numbers are 7, 8, 10, 13, and 16. They are more chemically active and less volatile with an increase of alkane carbon number. Fuels are injected to the combustor in the upstream of cavity with barbotage nitrogen gas and self-ignition performance was investigated. The result shows that self-ignition occurs with less equivalence ratio when alkane carbon number is smaller. This indicates that physical characteristic of fuel, namely volatile of fuel, is dominant for self-ignition behavior. Effect on flame-holding performance is also examined with adding pilot hydrogen and combustion is kept after cutting off pilot hydrogen with the least equivalence ratio where alkane carbon number is from 8 to 10. These points are discussed qualitatively from the conflict effect of chemical and physical properties on alkane carbon number.

  11. Exploration for fossil and nuclear fuels from orbital altitudes

    NASA Technical Reports Server (NTRS)

    Short, N. M.

    1975-01-01

    A review of satellite-based photographic (optical and infrared) and microwave exploration and large-area mapping of the earth's surface in the ERTS program. Synoptic cloud-free coverage of large areas has been achieved with planimetric vertical views of the earth's surface useful in compiling close-to-orthographic mosaics. Radar penetration of cloud cover and infrared penetration of forest cover have been successful to some extent. Geological applications include map editing (with corrections in scale and computer processing of images), landforms analysis, structural geology studies, lithological identification, and exploration for minerals and fuels. Limitations of the method are noted.

  12. Hydrogen milestone could help lower fossil fuel refining costs

    SciTech Connect

    McGraw, Jennifer

    2009-01-01

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  13. Hydrogen milestone could help lower fossil fuel refining costs

    ScienceCinema

    McGraw, Jennifer

    2016-07-12

    Hydrogen researchers at the U.S. Department of Energy's Idaho National Laboratory have reached another milestone on the road to reducing carbon emissions and protecting the nation against the effects of peaking world oil production. Stephen Herring, laboratory fellow and technical director of the INL High Temperature Electrolysis team, today announced that the latest fuel cell modification has set a new mark in endurance. The group's Integrated Laboratory Scale experiment has now operated continuously for 2,583 hours at higher efficiencies than previously attained. Learn more about INL research at http://www.facebook.com/idahonationallaboratory.

  14. Novel Gas Sensors for High-Temperature Fossil Fuel Applications

    SciTech Connect

    Palitha Jayaweera; Francis Tanzella

    2005-03-01

    SRI International (SRI) is developing ceramic-based microsensors to detect exhaust gases such as NO, NO{sub 2}, and CO in advanced combustion and gasification systems under this DOE NETL-sponsored research project. The sensors detect the electrochemical activity of the exhaust gas species on catalytic electrodes attached to a solid state electrolyte and are designed to operate at the high temperatures, elevated pressures, and corrosive environments typical of large power generation exhausts. The sensors can be easily integrated into online monitoring systems for active emission control. The ultimate objective is to develop sensors for multiple gas detection in a single package, along with data acquisition and control software and hardware, so that the information can be used for closed-loop control in novel advanced power generation systems. This report details the Phase I Proof-of-Concept, research activities performed from October 2003 to March 2005. SRI's research work includes synthesis of catalytic materials, sensor design and fabrication, software development, and demonstration of pulse voltammetric analysis of NO, NO{sub 2}, and CO gases on catalytic electrodes.

  15. High pressure combustion of liquid fuels. [alcohol and n-paraffin fuels

    NASA Technical Reports Server (NTRS)

    Canada, G. S.

    1974-01-01

    Measurements were made of the burning rates and liquid surface temperatures for a number of alcohol and n-paraffin fuels under natural and forced convection conditions. Porous spheres ranging in size from 0.64-1.9 cm O.D. were emloyed to simulate the fuel droplets. The natural convection cold gas tests considered the combustion in air of methanol, ethanol, propanol-1, n-pentane, n-heptane, and n-decane droplets at pressures up to 78 atmospheres. The pressure levels of the natural convection tests were high enough so that near critical combustion was observed for methanol and ethanol vaporization rates and liquid surface temperature measurements were made of droplets burning in a simulated combustion chamber environment. Ambient oxygen molar concentrations included 13%, 9.5% and pure evaporation. Fuels used in the forced convection atmospheric tests included those listed above for the natural convection tests. The ambient gas temperature ranged from 600 to 1500 K and the Reynolds number varied from 30 to 300. The high pressure forced convection tests employed ethanol and n-heptane as fuels over a pressure range of one to 40 atmospheres. The ambient gas temperature was 1145 K for the two combustion cases and 1255 K for the evaporation case.

  16. GREENHOUSE GASES FROM BIOMASS AND FOSSIL FUEL STOVES IN DEVELOPING COUNTRIES: A MANILA PILOT STUDY

    EPA Science Inventory

    Samples were taken of the combustion gases released by household cookstoves in Manila, Philippines. In a total of 24 samples, 14 cookstoves were tested. These were fueled by liquefied petroleum gas (LPG), kerosene (three kinds of stoves), charcoal, and wood. Ambient samples were ...

  17. Experimental results with hydrogen fueled internal combustion engines

    NASA Technical Reports Server (NTRS)

    De Boer, P. C. T.; Mclean, W. J.; Homan, H. S.

    1975-01-01

    The paper focuses on the most important experimental findings for hydrogen-fueled internal combustion engines, with particular reference to the application of these findings to the assessment of the potential of hydrogen engines. Emphasis is on the various tradeoffs that can be made, such as between maximum efficiency, maximum power, and minimum NO emissions. The various possibilities for induction and ignition are described. Some projections are made about areas in which hydrogen engines may find their initial application and about optimum ways to design such engines. It is shown that hydrogen-fueled reciprocal internal combustion engines offer important advantages with respect to thermal efficiency and exhaust emissions. Problems arising from preignition can suitably be avoided by restricting the fuel-air equivalence ratio to values below about 0.5. The direct cylinder injection appears to be a very attractive way to operate the engine, because it combines a wide range of possible power outputs with a high thermal efficiency and very low NO emissions at part loads.

  18. On-Line Measurement of Heat of Combustion of Gaseous Hydrocarbon Fuel Mixtures

    NASA Technical Reports Server (NTRS)

    Sprinkle, Danny R.; Chaturvedi, Sushil K.; Kheireddine, Ali

    1996-01-01

    A method for the on-line measurement of the heat of combustion of gaseous hydrocarbon fuel mixtures has been developed and tested. The method involves combustion of a test gas with a measured quantity of air to achieve a preset concentration of oxygen in the combustion products. This method involves using a controller which maintains the fuel (gas) volumetric flow rate at a level consistent with the desired oxygen concentration in the combustion products. The heat of combustion is determined form a known correlation with the fuel flow rate. An on-line computer accesses the fuel flow data and displays the heat of combustion measurement at desired time intervals. This technique appears to be especially applicable for measuring heats of combustion of hydrocarbon mixtures of unknown composition such as natural gas.

  19. CO₂ emission mitigation and fossil fuel markets: Dynamic and international aspects of climate policies

    DOE PAGES

    Bauer, Nico; Bosetti, Valentina; Hamdi-Cherif, Meriem; ...

    2015-01-01

    This paper explores a multi-model scenario ensemble to assess the impacts of idealized and non-idealized climate change stabilization policies on fossil fuel markets. Under idealized conditions climate policies significantly reduce coal use in the short- and long-term. Reductions in oil and gas use are much smaller, particularly until 2030, but revenues decrease much more because oil and gas prices are higher than coal prices. A first deviation from optimal transition pathways is delayed action that relaxes global emission targets until 2030 in accordance with the Copenhagen pledges. Fossil fuel markets revert back to the no-policy case: though coal use increasesmore » strongest, revenue gains are higher for oil and gas. To balance the carbon budget over the 21st century, the long-term reallocation of fossil fuels is significantly larger—twice and more—than the short-term distortion. This amplifying effect results from coal lock-in and inter-fuel substitution effects to balance the full-century carbon budget. The second deviation from the optimal transition pathway relaxes the global participation assumption. The result here is less clear-cut across models, as we find carbon leakage effects ranging from positive to negative because trade and substitution patterns of coal, oil, and gas differ across models. In summary, distortions of fossil fuel markets resulting from relaxed short-term global emission targets are more important and less uncertain than the issue of carbon leakage from early mover action.« less

  20. Basic combustion and pollutant-formation processes for pulverized fuels. Quarterly technical progress report No. 1, 1 October 1980-31 December 1980

    SciTech Connect

    Germane, Geoffery J.; Smoot, L. Douglas

    1981-01-15

    A study of basic combustion and pollutant formation processes for pulverized solid fossil fuels has been initiated. The solid fossil fuels under consideration for this research include such solid fuels as non-bituminous coal types, solvent refined coal, combustion char, petroleum coke, oil shale and tar sand. The potential industrial application of pulverized fuels other than coal provides some promise for relief from present and future conventional fuel shortages. Utilization problems with these fuels such as flame stability, fuel handling, pollutant emission and ash and slag formation in large-scale furnaces may be fundamentally addressed in laboratory reactors using properly scaled operating variables. An extensive literature search was begun to assess current knowledge relative to utilization of these fuels. This review will provide a basis for selection of three solid fuels for testing. Pertinent information from industrial contacts will also be used in the fuel selection. The criteria to be used in the selection of these fuels include availability for economic industrial use, adaptability, grindability, flame stability, entrainability, uniformity, applicability to direct firing with air, solidity with heating, availability to the BYU Combustion Laboratory, cost, other physical characteristics affecting their use, industrial input and recommendations, and DOE approval. The existing laboratory coal combustor at BYU will be modified to provide flexibility for a potentially wide range of operating characteristics with the selected solid fuels. A computer system has been identified for interface both to the reactor for data acquisition and control of operating variables and to the main research computer for final data reduction and display.

  1. Catalytic iron oxide for lime regeneration in carbonaceous fuel combustion

    DOEpatents

    Shen, Ming-Shing; Yang, Ralph T.

    1980-01-01

    Lime utilization for sulfurous oxides absorption in fluidized combustion of carbonaceous fuels is improved by impregnation of porous lime particulates with iron oxide. The impregnation is achieved by spraying an aqueous solution of mixed iron sulfate and sulfite on the limestone before transfer to the fluidized bed combustor, whereby the iron compounds react with the limestone substrate to form iron oxide at the limestone surface. It is found that iron oxide present in the spent limestone acts as a catalyst to regenerate the spent limestone in a reducing environment. With only small quantities of iron oxide the calcium can be recycled at a significantly increased rate.

  2. Premixer assembly for mixing air and fuel for combustion

    SciTech Connect

    York, William David; Johnson, Thomas Edward; Keener, Christopher Paul

    2016-12-13

    A premixer assembly for mixing air and fuel for combustion includes a plurality of tubes disposed at a head end of a combustor assembly. Also included is a tube of the plurality of tubes, the tube including an inlet end and an outlet end. Further included is at least one non-circular portion of the tube extending along a length of the tube, the at least one non-circular portion having a non-circular cross-section, and the tube having a substantially constant cross-sectional area along its length

  3. Analysis of the uncertainty associated with national fossil fuel CO2 emissions datasets for use in the global Fossil Fuel Data Assimilation System (FFDAS) and carbon budgets

    NASA Astrophysics Data System (ADS)

    Song, Y.; Gurney, K. R.; Rayner, P. J.; Asefi-Najafabady, S.

    2012-12-01

    High resolution quantification of global fossil fuel CO2 emissions has become essential in research aimed at understanding the global carbon cycle and supporting the verification of international agreements on greenhouse gas emission reductions. The Fossil Fuel Data Assimilation System (FFDAS) was used to estimate global fossil fuel carbon emissions at 0.25 degree from 1992 to 2010. FFDAS quantifies CO2 emissions based on areal population density, per capita economic activity, energy intensity and carbon intensity. A critical constraint to this system is the estimation of national-scale fossil fuel CO2 emissions disaggregated into economic sectors. Furthermore, prior uncertainty estimation is an important aspect of the FFDAS. Objective techniques to quantify uncertainty for the national emissions are essential. There are several institutional datasets that quantify national carbon emissions, including British Petroleum (BP), the International Energy Agency (IEA), the Energy Information Administration (EIA), and the Carbon Dioxide Information and Analysis Center (CDIAC). These four datasets have been "harmonized" by Jordan Macknick for inter-comparison purposes (Macknick, Carbon Management, 2011). The harmonization attempted to generate consistency among the different institutional datasets via a variety of techniques such as reclassifying into consistent emitting categories, recalculating based on consistent emission factors, and converting into consistent units. These harmonized data form the basis of our uncertainty estimation. We summarized the maximum, minimum and mean national carbon emissions for all the datasets from 1992 to 2010. We calculated key statistics highlighting the remaining differences among the harmonized datasets. We combine the span (max - min) of datasets for each country and year with the standard deviation of the national spans over time. We utilize the economic sectoral definitions from IEA to disaggregate the national total emission into

  4. Fireside Corrosion in Oxy-fuel Combustion of Coal

    SciTech Connect

    Holcomb, Gordon R; Tylczak, Joseph; Meier, Gerald H; Lutz, Bradley; Jung, Keeyoung; Mu, Nan; Yanar, Nazik M; Pettit, Frederick S; Zhu, Jingxi; Wise, Adam; Laughlin, David E.; Sridhar, Seetharaman

    2013-11-25

    Oxy-fuel combustion is burning a fuel in oxygen rather than air for ease of capture of CO2 from for reuse or sequestration. Corrosion issues associated with the environment change (replacement of much of the N2 with CO2 and higher sulfur levels) from air- to oxy-firing were examined. Alloys studied included model Fe–Cr alloys and commercial ferritic steels, austenitic steels, and nickel base superalloys. The corrosion behavior is described in terms of corrosion rates, scale morphologies, and scale/ash interactions for the different environmental conditions. Evidence was found for a hreshold for severe attack between 10-4 and 10-3 atm of SO3 at 700ºC.

  5. Chemical Characterization of Waste Fuel for Fluidized Bed Combustion

    NASA Astrophysics Data System (ADS)

    Claesson, F.; Skrifvars, B.-J.; Elled, A.-L.; Johansson, A.

    Combustible waste is very heterogeneous and the variation in chemical composition is of great significance for the performance of the combustors in terms of boiler availability and power efficiency. For example, the content of alkali, Chlorine and sulfur affect agglomeration, fouling and corrosion mechanisms, which often limits the steam data and requires counteracts such as soot blowing and outages. An increased knowledge on favorable levels and ratios of fuel components are therefore highly important when developing waste combustors, both existing and future. However, to be able to make good predictions of reactions, reliable fuel analyses are a necessity and they are difficult to perform because of the heterogeneity of waste. As a consequence, it is also difficult to complete pro-active measure to reduce unwanted reactions.

  6. Toxicity evaluation of 2-hydroxybiphenyl and other compounds involved in studies of fossil fuels biodesulphurisation.

    PubMed

    Alves, L; Paixão, S M

    2011-10-01

    The acute toxicity of some compounds used in fossil fuels biodesulphurisation studies, on the respiration activity, was evaluated by Gordonia alkanivorans and Rhodococcus erythropolis. Moreover, the effect of 2-hydroxybiphenyl on cell growth of both strains was also determined, using batch (chronic bioassays) and continuous cultures. The IC₅₀ values obtained showed the toxicity of all the compounds tested to both strains, specially the high toxicity of 2-HBP. These results were confirmed by the chronic toxicity data. The toxicity data sets highlight for a higher sensitivity to the toxicant by the strain presenting a lower growth rate, due to a lower cells number in contact with the toxicant. Thus, microorganisms exhibiting faster generation times could be more resistant to 2-HBP accumulation during a BDS process. The physiological response of both strains to 2-HBP pulse in a steady-state continuous culture shows their potential to be used in a future fossil fuel BDS process.

  7. Formulating energy policies related to fossil fuel use: Critical uncertainties in the global carbon cycle

    SciTech Connect

    Post, W.M.; Dale, V.H.; DeAngelis, D.L.; Mann, L.K.; Mulholland, P.J.; O'Neill, R.V.; Peng, T.-H.; Farrell, M.P.

    1990-01-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs. 87 refs.

  8. Opportunities and insights for reducing fossil fuel consumption by households and organizations

    NASA Astrophysics Data System (ADS)

    Stern, Paul C.; Janda, Kathryn B.; Brown, Marilyn A.; Steg, Linda; Vine, Edward L.; Lutzenhiser, Loren

    2016-05-01

    Realizing the ambitious commitments of the 2015 Paris Climate Conference (COP21) will require new ways of meeting human needs previously met by burning fossil fuels. Technological developments will be critical, but so will accelerated adoption of promising low-emission technologies and practices. National commitments will be more achievable if interventions take into account key psychological, social, cultural and organizational factors that influence energy choices, along with factors of an infrastructural, technical and economic nature. Broader engagement of social and behavioural science is needed to identify promising opportunities for reducing fossil fuel consumption. Here we discuss opportunities for change in households and organizations, primarily at short and intermediate timescales, and identify opportunities that have been underused in much of energy policy. Based on this survey, we suggest design principles for interventions by governments and other organizations, and identify areas of emphasis for future social science and interdisciplinary research.

  9. Formulating Energy Policies Related to Fossil Fuel Use: Critical Uncertainties in the Global Carbon Cycle

    DOE R&D Accomplishments Database

    Post, W. M.; Dale, V. H.; DeAngelis, D. L.; Mann, L. K.; Mulholland, P. J.; O`Neill, R. V.; Peng, T. -H.; Farrell, M. P.

    1990-02-01

    The global carbon cycle is the dynamic interaction among the earth's carbon sources and sinks. Four reservoirs can be identified, including the atmosphere, terrestrial biosphere, oceans, and sediments. Atmospheric CO{sub 2} concentration is determined by characteristics of carbon fluxes among major reservoirs of the global carbon cycle. The objective of this paper is to document the knowns, and unknowns and uncertainties associated with key questions that if answered will increase the understanding of the portion of past, present, and future atmospheric CO{sub 2} attributable to fossil fuel burning. Documented atmospheric increases in CO{sub 2} levels are thought to result primarily from fossil fuel use and, perhaps, deforestation. However, the observed atmospheric CO{sub 2} increase is less than expected from current understanding of the global carbon cycle because of poorly understood interactions among the major carbon reservoirs.

  10. A process concept for utilizing fossil fuel resources with reduced CO sub 2 emission

    SciTech Connect

    Steinberg, M.

    1989-04-01

    There is increasing evidence of the probability of a global carbon dioxide greenhouse warming effect. The concentration of CO{sub 2} in the atmosphere at the turn of the century was 280 ppM; presently it is 345 ppM, an increase of 23%. This increase has resulted mainly from human activity in burning increasing amounts of fossil fuel -- coal, oil, gas and from deforestation, the cutting down of forested areas. This paper discusses studies that have been made dealing with reducing CO{sub 2} emissions from coal burning power plants. Included are: CO{sub 2} can be removed, recovered and stored in the deep oceans; recover and utilize CO{sub 2} as a commodity; large acreages of trees can be planted to photosynthetically absorb the CO{sub 2} from fossil fuel plants; and improve energy technology efficiency of existing and future power plants. 5 refs., 1 fig., 3 tabs.

  11. Effect of heterogeneous catalyst during combustion of diesel fuel

    NASA Astrophysics Data System (ADS)

    Arefeen, Quamrul

    1999-11-01

    With the increase in number of vehicles using diesel engines, the contributions to environmental pollution made by diesel engines is also on the rise. Carbon monoxide, oxides of nitrogen and sulfur, hydrocarbons, and particulates are currently regulated as harmful emissions from diesel engines. Recent technologies to control harmful engine emissions have been almost exclusively directed towards gasoline engines. It is generally held that fuel quality will have to play an important role with all IC engines to meet future stringent regulations. The objective of the present study was to determine the effects of heterogeneous catalyst on combustion. Micron sized solid catalyst, suspended in a specific organic peroxide, has been found to promote better combustion by modifying kinetics and changing the thermodynamics of the reactions. The catalyst reduces emissions without dramatically changing the properties of the fuel. The characteristic parameters of a baseline fuel, and the same fuel with the additive, were analyzed. The dosage of additive used was found to be compatible with commercial diesel. Diesel vehicles were driven unloaded at normal road conditions during the experiments. Exhaust emissions were measured when the trucks were at static conditions and the engine running on idle and at 2000 rpm. The gaseous components in the exhaust, O2, CO2, CO, NO, NO2, NOx, SO2, and CxH y were monitored. Particulates were trapped on a pre-weighed glass filter. Some of the filters were sent to an independent laboratory for microscopic and elemental analysis of the collected debris. Zinc oxide/peroxide suspended in tert-butyl hydro peroxide were used as the heterogeneous fuel catalyst. This combination increased the cetane rating of a commercial diesel fuel from 45 to a level of 70 depending on treatment ratio. A treatment ratio of one ounce additive per 5 gallons of diesel increased cetane number by an average of 5 points. Road mileage with the additive increased by an average

  12. The long-term carbon cycle, fossil fuels and atmospheric composition.

    PubMed

    Berner, Robert A

    2003-11-20

    The long-term carbon cycle operates over millions of years and involves the exchange of carbon between rocks and the Earth's surface. There are many complex feedback pathways between carbon burial, nutrient cycling, atmospheric carbon dioxide and oxygen, and climate. New calculations of carbon fluxes during the Phanerozoic eon (the past 550 million years) illustrate how the long-term carbon cycle has affected the burial of organic matter and fossil-fuel formation, as well as the evolution of atmospheric composition.

  13. Unconventional Fossil-Based Fuels. Economic and Environmental Trade-Offs

    DTIC Science & Technology

    2008-01-01

    Library of Congress Cataloging-in-Publication Data Unconventional fossil-based fuels : economic and environmental trade-offs / Michael Toman ... [et...247, No. 4945, February 23, 1990, pp. 920–924. Baker, John M., Tyson E. Ochsner, Rodney T. Venterea, and Timothy J. Griffis, “Tillage and Soil...D.C., April 20–21, 2006. Lacombe, Romain H., and John E. Parsons, Technologies, Markets and Challenges for Development of the Canadian Oil Sands

  14. Spatial relationships of sector-specific fossil fuel CO2 emissions in the United States

    NASA Astrophysics Data System (ADS)

    Zhou, Yuyu; Gurney, Kevin Robert

    2011-09-01

    Quantification of the spatial distribution of sector-specific fossil fuel CO2 emissions provides strategic information to public and private decision makers on climate change mitigation options and can provide critical constraints to carbon budget studies being performed at the national to urban scales. This study analyzes the spatial distribution and spatial drivers of total and sectoral fossil fuel CO2 emissions at the state and county levels in the United States. The spatial patterns of absolute versus per capita fossil fuel CO2 emissions differ substantially and these differences are sector-specific. Area-based sources such as those in the residential and commercial sectors are driven by a combination of population and surface temperature with per capita emissions largest in the northern latitudes and continental interior. Emission sources associated with large individual manufacturing or electricity producing facilities are heterogeneously distributed in both absolute and per capita metrics. The relationship between surface temperature and sectoral emissions suggests that the increased electricity consumption due to space cooling requirements under a warmer climate may outweigh the savings generated by lessened space heating. Spatial cluster analysis of fossil fuel CO2 emissions confirms that counties with high (low) CO2 emissions tend to be clustered close to other counties with high (low) CO2 emissions and some of the spatial clustering extends to multistate spatial domains. This is particularly true for the residential and transportation sectors, suggesting that emissions mitigation policy might best be approached from the regional or multistate perspective. Our findings underscore the potential for geographically focused, sector-specific emissions mitigation strategies and the importance of accurate spatial distribution of emitting sources when combined with atmospheric monitoring via aircraft, satellite and in situ measurements.

  15. A multiyear, global gridded fossil fuel CO2 emission data product: Evaluation and analysis of results

    NASA Astrophysics Data System (ADS)

    Asefi-Najafabady, S.; Rayner, P. J.; Gurney, K. R.; McRobert, A.; Song, Y.; Coltin, K.; Huang, J.; Elvidge, C.; Baugh, K.

    2014-09-01

    High-resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long-term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long-term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter-term variations reveals the impact of the 2008-2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set.

  16. Fuel NOx production during the combustion of low caloric value fuel

    SciTech Connect

    Colaluca, M.A.; Caraway, J.P.

    1997-07-01

    The objective of this investigation is to identify and qualify physical mechanisms and parameters that affect the combustion of low caloric value gases (LCVG) and the formation of NOx pollutants produced form fuel bound nitrogen. Average physical properties of a low caloric value gas were determined from the products of several industrial coal gasifiers. A computer model was developed, utilizing the PHOENICS computational fluid dynamics software to model the combustion of LCVG. The model incorporates a 3-dimensional physical design and is based on typical industrial combustors. Feed stock to the gasifier can be wood, feed stock manure, cotton gin trash, coal, lignite and numerous forms of organic industrial wastes.

  17. Evaluation of sustainability by a population living near fossil fuel resources in Northwestern Greece.

    PubMed

    Vatalis, Konstantinos I

    2010-12-01

    The emergence of sustainability as a goal in the management of fossil fuel resources is a result of the growing global environmental concern, and highlights some of the issues expected to be significant in coming years. In order to secure social acceptance, the mining industry has to face these challenges by engaging its many different stakeholders and examining their sustainability concerns. For this reason a questionnaire was conducted involving a simple random sampling of inhabitants near an area rich in fossil fuel resources, in order to gather respondents' views on social, economic and environmental benefits. The study discusses new subnational findings on public attitudes to regional sustainability, based on a quantitative research design. The site of the study was the energy-rich Greek region of Kozani, Western Macedonia, one of the country's energy hubs. The paper examines the future perspectives of the area. The conclusions can form a useful framework for energy policy in the wider Balkan area, which contains important fossil fuel resources.

  18. Combustion of liquid fuel droplets in supercritical conditions

    NASA Technical Reports Server (NTRS)

    Shuen, J. S.; Yang, Vigor

    1991-01-01

    A comprehensive analysis of liquid-fuel droplet combustion in both sub- and super-critical environments has been conducted. The formulation is based on the complete conservation equations for both gas and liquid phases, and accommodates finite-rate chemical kinetics and a full treatment of liquid-vapor phase equilibrium at the droplet surface. The governing equations and the associated interface boundary conditions are solved numerically using a fully coupled, implicit scheme with the dual time-stepping integration technique. The model is capable of treating the entire droplet history, including the transition from the subcritical to the supercritical state. As a specific example, the combustion of n-pentane fuel droplets in air is studied for pressures of 5-140 atm. Results indicate that the ambient gas pressure exerts significant control of droplet gasification and burning processes through its influences on the fluid transport, gas/liquid interface thermodynamics, and chemical reactions. The droplet gasification rate increases progressively with pressure. However, the data for the overall burnout time exhibits a significant variation near the critical burning pressure, mainly as a result of reduced mass-diffusion rate and latent heat of vaporization with increased pressure. The influence of droplet size on the burning characteristics is also noted.

  19. Mach 2 combustion characteristics of hydrogen/hydrocarbon fuel mixtures

    NASA Technical Reports Server (NTRS)

    Diskin, Glenn S.; Northam, G. Burton; Bell, Randy A.

    1987-01-01

    The combustion of H2/CH4 and H2/C2H4 mixtures containing 10-70 vol pct hydrocarbon at cumbustor inlet Mach number 2 and temperatures 2000-4000 R is investigated experimentally, applying direct-connect test hardware and techniques similar to those described by Diskin and Northam (1987) in the facilities of the NASA Langley Hypersonic Propulsion Branch. The experimental setup, procedures, and data-reduction methods are described; and the results are presented in extensive tables and graphs and characterized in detail. Fuel type and mixture are found to have little effect on the wall heating rate measured near the combustor exit, but H2/C2H4 is shown to burn much more efficiently than H2/CH4, with no pilot-off blowout at equivalence ratios greater than 0.5. It is suggested that H2/hydrocarbon mixtures are feasible fuels (at least in terms of combustion efficiency) for scramjet SSTO vehicles operating at freestream Mach numbers above 4.

  20. Mach 2 combustion characteristics of hydrogen/hydrocarbon fuel mixtures

    NASA Technical Reports Server (NTRS)

    Diskin, Glenn S.; Jachimowski, C. J.; Northam, G. Burton; Bell, Randy A.

    1987-01-01

    The combustion of H2/CH4 and H2/C2H4 mixtures containing 10 to 70 vol pct hydrocarbon at combustor inlet Mach number 2 and temperatures 2000 to 4000 R is investigated experimentally, applying direct-connect test hardware and techniques similar to those described by Diskin and Northam (1987) in the facilities of the NASA Langley Hypersonic Propulsion Branch. The experimental setup, procedures, and data-reduction methods are described; and the results are presented in extensive tables and graphs and characterized in detail. Fuel type and mixture are found to have little effect on the wall heating rate measured near the combustor exit, but H2/C2H4 is shown to burn much more efficiently than H2/CH4, with no pilot-off blowout equivalence ratios greater than 0.5. It is suggested that H2/hydrocarbon mixtures are feasible fuels (at least in terms of combustion efficiency) for scramjet SSTO vehicles operating at freestream Mach numbers above 4.

  1. Pump for supplying pressurized fuel to fuel injector of internal combustion engine

    SciTech Connect

    Igashira, T.; Sakakibara, Y.; Yoshinaga, T.; Abe, S.

    1987-03-17

    This patent describes a pump for supplying pressurized fuel to a fuel injector of an internal combustion engine comprising: a pump body having a bore; a plunger slidably disposed in the bore, the plunger and the bore forming a pump chamber enlarging and contracting according to displacement of the plunger in the bore. The pump chamber is connected to the fuel injector and holds fuel to be supplied to the fuel injector, the pump chamber sucking fuel from a reservoir when increasing in volume thereof and discharging the fuel when reducing in volume thereof so that pressurized fuel is supplied to the fuel injector. The plunger is provided with a transmitting member; means for urging the plunger in a direction that the plunger reduces the volume of the pump chamber, the urging means having means for applying a substantially constant force. The urging means is a pressure supply mechanism supplying highly pressurized air into the pump body; and a cam rotating in synchronization with rotation of the engine, the cam engaging with the transmitting member for part of the cycle of rotation of the engine so that the plunger increases the volume of the pump chamber. The cam releases the plunger in the remaining cycle of rotation of the engine to allow the urging means to urge the plunger so that the plunger displaces in a direction to reduce the volume of the pump chamber.

  2. Liquid fuel vaporizer and combustion chamber having an adjustable thermal conductor

    SciTech Connect

    Powell, Michael R; Whyatt, Greg A; Howe, Daniel T; Fountain, Matthew S

    2014-03-04

    The efficiency and effectiveness of apparatuses for vaporizing and combusting liquid fuel can be improved using thermal conductors. For example, an apparatus having a liquid fuel vaporizer and a combustion chamber can be characterized by a thermal conductor that conducts heat from the combustion chamber to the vaporizer. The thermal conductor can be a movable member positioned at an insertion depth within the combustion chamber that corresponds to a rate of heat conduction from the combustion chamber to the vaporizer. The rate of heat conduction can, therefore, be adjusted by positioning the movable member at a different insertion depth.

  3. Fuel-rich catalytic combustion of Jet-A fuel-equivalence ratios 5.0 to 8.0

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Gracia-Salcedo, Carmen M.

    1989-01-01

    Fuel-rich catalytic combustion (E.R. greater than 5.0) is a unique technique for preheating a hydrocarbon fuel to temperatures much higher than those obtained by conventional heat exchangers. In addition to producing very reactive molecules, the process upgrades the structure of the fuel by the formation of hydrogen and smaller hydrocarbons and produces a cleaner burning fuel by removing some of the fuel carbon from the soot formation chain. With fuel-rich catalytic combustion as the first stage of a two stage combustion system, enhanced fuel properties can be utilized by both high speed engines, where time for ignition and complete combustion is limited, and engines where emission of thermal NO sub x is critical. Two-stage combustion (rich-lean) has been shown to be effective for NO sub x reduction in stationary burners where residence times are long enough to burn-up the soot formed in the first stage. Such residence times are not available in aircraft engines. Thus, the soot-free nature of the present process is critical for high speed engines. The successful application of fuel-rich catalytic combustion to Jet-A, a multicomponent fuel used in gas turbine combustors, is discusssed.

  4. Coal-water slurry fuel internal combustion engine and method for operating same

    DOEpatents

    McMillian, Michael H.

    1992-01-01

    An internal combustion engine fueled with a coal-water slurry is described. About 90 percent of the coal-water slurry charge utilized in the power cycle of the engine is directly injected into the main combustion chamber where it is ignited by a hot stream of combustion gases discharged from a pilot combustion chamber of a size less than about 10 percent of the total clearance volume of main combustion chamber with the piston at top dead center. The stream of hot combustion gases is provided by injecting less than about 10 percent of the total coal-water slurry charge into the pilot combustion chamber and using a portion of the air from the main combustion chamber that has been heated by the walls defining the pilot combustion chamber as the ignition source for the coal-water slurry injected into the pilot combustion chamber.

  5. Fuel combustion exhibiting low NO{sub x} and CO levels

    DOEpatents

    Keller, J.O.; Bramlette, T.T.; Barr, P.K.

    1996-07-30

    Method and apparatus are disclosed for safely combusting a fuel in such a manner that very low levels of NO{sub x} and CO are produced. The apparatus comprises an inlet line containing a fuel and an inlet line containing an oxidant. Coupled to the fuel line and to the oxidant line is a mixing means for thoroughly mixing the fuel and the oxidant without combusting them. Coupled to the mixing means is a means for injecting the mixed fuel and oxidant, in the form of a large-scale fluid dynamic structure, into a combustion region. Coupled to the combustion region is a means for producing a periodic flow field within the combustion region to mix the fuel and the oxidant with ambient gases in order to lower the temperature of combustion. The means for producing a periodic flow field can be a pulse combustor, a rotating band, or a rotating cylinder within an acoustic chamber positioned upstream or downstream of the region of combustion. The mixing means can be a one-way flapper valve; a rotating cylinder; a rotating band having slots that expose open ends of said fuel inlet line and said oxidant inlet line simultaneously; or a set of coaxial fuel annuli and oxidizer annuli. The means for producing a periodic flow field may or may not be in communication with an acoustic resonance. When employed, the acoustic resonance may be upstream or downstream of the region of combustion. 14 figs.

  6. THE INFLUENCE OF CARBON BURNOUT ON SUBMICRON PARTICLE FORMATION FROM EMULSIFIED FUEL OIL COMBUSTION

    EPA Science Inventory

    The paper gives results of an examination of particle behavior and particle size distributions from the combustion of different fuel oils and emulsified fuels in three experimental combusators. Results indicate that improved carbon (C) burnout from fule oil combustion, either by...

  7. Challenges faced when using radiocarbon measurements to estimate fossil fuel emissions in the UK.

    NASA Astrophysics Data System (ADS)

    Wenger, A.; O'Doherty, S.; Rigby, M. L.; Ganesan, A.; Manning, A.; Allen, G.

    2015-12-01

    Estimating the anthropogenic component of carbon dioxide emissions from direct atmospheric measurements is difficult, due to the large natural carbon dioxide fluxes. One way of determining the fossil fuel component of atmospheric carbon dioxide is the use of radiocarbon measurements. Whilst carbon reservoirs with a reasonably fast carbon exchange rate all have a similar radiocarbon content, fossil fuels are completely devoid of radiocarbon due to their age. Previous studies have 14CO2 (UK) this approach is compromised by the high density of 14CO2 emitting nuclear power plants. Of the 16 nuclear reactors in the UK, 14 are advanced gas cooled reactors, which have one of the highest 14CO2 emission rates of all reactor types. These radiocarbon emissions not only lead to a serious underestimation of the recently added fossil fuel CO2, by masking the depletion of 14C in CO2, but can in fact overshadow the depletion by a factor of 2 or more. While a correction for this enhancement can be applied, the emissions from the nuclear power plants are highly variable, and an accurate correction is therefore not straightforward. We present the first attempt to quantify UK fossil fuel CO2 emissions through the use of 14CO2. We employ a sampling strategy that makes use of a Lagrangian particle dispersion model, in combination with nuclear industry emission estimates, to forecast "good" sampling times, in an attempt to minimize the correction due to emissions from the nuclear industry. As part of the Greenhouse gAs Uk and Global Emissions (GAUGE) project, 14CO2measurements are performed at two measurement sites in the UK and Ireland, as well as during science flights around the UK. The measurement locations have been chosen with a focus on high emitting regions such as London and the Midlands. We discuss the unique challenges that face the determination of fossil fuel emissions through radiocarbon measurements in the UK and our sampling strategy to deal with them. In addition we

  8. Combustion

    NASA Technical Reports Server (NTRS)

    Bulzan, Dan

    2007-01-01

    An overview of the emissions related research being conducted as part of the Fundamental Aeronautics Subsonics Fixed Wing Project is presented. The overview includes project metrics, milestones, and descriptions of major research areas. The overview also includes information on some of the emissions research being conducted under NASA Research Announcements. Objective: Development of comprehensive detailed and reduced kinetic mechanisms of jet fuels for chemically-reacting flow modeling. Scientific Challenges: 1) Developing experimental facilities capable of handling higher hydrocarbons and providing benchmark combustion data. 2) Determining and understanding ignition and combustion characteristics, such as laminar flame speeds, extinction stretch rates, and autoignition delays, of jet fuels and hydrocarbons relevant to jet surrogates. 3) Developing comprehensive kinetic models for jet fuels.

  9. Comprehensive Fuel Spray Modeling and Impacts on Chamber Acoustics in Combustion Dynamics Simulations

    DTIC Science & Technology

    2013-05-01

    Acoustics in Combustion Dynamics Simulations 5a. CONTRACT NUMBER In-House 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Yoon, C...spray modeling and its effects on chamber acoustics in combustion dynamics simulations. The fuel spray is modeled using an Eulerian-Lagrangian...limitations in describing secondary atomization. In addition, effects of fuel spray modeling on chamber acoustics are studied using combustion dynamics

  10. The combustion properties analysis of various liquid fuels based on crude oil and renewables

    NASA Astrophysics Data System (ADS)

    Grab-Rogalinski, K.; Szwaja, S.

    2016-09-01

    The paper presents results of investigation on combustion properties analysis of hydrocarbon based liquid fuels commonly used in the CI engine. The analysis was performed with aid of the CRU (Combustion Research Unit). CRU is the machine consisted of a constant volume combustion chamber equipped with one or two fuel injectors and a pressure sensor. Fuel can be injected under various both injection pressure and injection duration, also with two injector versions two stage combustion with pilot injection can be simulated, that makes it possible to introduce and modify additional parameter which is injection delay (defined as the time between pilot and main injection). On a basis of this investigation such combustion parameters as pressure increase, rate of heat release, ignition delay and combustion duration can be determined. The research was performed for the four fuels as follows: LFO, HFO, Biofuel from rape seeds and Glycerol under various injection parameters as well as combustion chamber thermodynamic conditions. Under these tests the change in such injection parameters as injection pressure, use of pilot injection, injection delay and injection duration, for main injection, were made. Moreover, fuels were tested under different conditions of load, what was determined by initial conditions (pressure and temperature) in the combustion chamber. Stored data from research allows to compare combustion parameters for fuels applied to tests and show this comparison in diagrams.

  11. Long-term tradeoffs between nuclear- and fossil-fuel burning

    SciTech Connect

    Krakowski, R.A.

    1996-12-31

    A global energy/economics/environmental (E{sup 3}) model has been adapted with a nuclear energy/materials model to understand better {open_quotes}top-level{close_quotes}, long-term trade offs between civilian nuclear power, nuclear-weapons proliferation, fossil-fuel burning, and global economic welfare. Using a {open_quotes}business-as-usual{close_quotes} (BAU) point-of-departure case, economic, resource, proliferation-risk implications of plutonium recycle in LAIRs, greenhouse-gas-mitigating carbon taxes, and a range of nuclear energy costs (capital and fuel) considerations have been examined. After describing the essential elements of the analysis approach being developed to support the Los Alamos Nuclear Vision Project, preliminary examples of parametric variations about the BAU base-case scenario are presented. The results described herein represent a sampling from more extensive results collected in a separate report. The primary motivation here is: (a) to compare the BAU basecase with results from other studies; (b) to model on a regionally resolved global basis long-term (to year {approximately}2100) evolution of plutonium accumulation in a variety of forms under a limited range of fuel-cycle scenarios; and (c) to illustrate a preliminary connectivity between risks associated with nuclear proliferation and fossil-fuel burning (e.g., greenhouse-gas accumulations).

  12. Development of Nuclear Renewable Oil Shale Systems for Flexible Electricity and Reduced Fossil Fuel Emissions

    SciTech Connect

    Daniel Curtis; Charles Forsberg; Humberto Garcia

    2015-05-01

    We propose the development of Nuclear Renewable Oil Shale Systems (NROSS) in northern Europe, China, and the western United States to provide large supplies of flexible, dispatchable, very-low-carbon electricity and fossil fuel production with reduced CO2 emissions. NROSS are a class of large hybrid energy systems in which base-load nuclear reactors provide the primary energy used to produce shale oil from kerogen deposits and simultaneously provide flexible, dispatchable, very-low-carbon electricity to the grid. Kerogen is solid organic matter trapped in sedimentary shale, and large reserves of this resource, called oil shale, are found in northern Europe, China, and the western United States. NROSS couples electricity generation and transportation fuel production in a single operation, reduces lifecycle carbon emissions from the fuel produced, improves revenue for the nuclear plant, and enables a major shift toward a very-low-carbon electricity grid. NROSS will require a significant development effort in the United States, where kerogen resources have never been developed on a large scale. In Europe, however, nuclear plants have been used for process heat delivery (district heating), and kerogen use is familiar in certain countries. Europe, China, and the United States all have the opportunity to use large scale NROSS development to enable major growth in renewable generation and either substantially reduce or eliminate their dependence on foreign fossil fuel supplies, accelerating their transitions to cleaner, more efficient, and more reliable energy systems.

  13. Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines

    SciTech Connect

    Srinivasan, K. K.; Krishnan, S. R.; Qi, Y.

    2012-05-09

    Dual fuel pilot ignited natural gas engines are identified as an efficient and viable alternative to conventional diesel engines. This paper examines cyclic combustion fluctuations in conventional dual fuel and in dual fuel partially premixed low temperature combustion (LTC). Conventional dual fueling with 95% (energy basis) natural gas (NG) substitution reduces NOx emissions by almost 90%t relative to straight diesel operation; however, this is accompanied by 98% increase in HC emissions, 10 percentage points reduction in fuel conversion efficiency (FCE) and 12 percentage points increase in COVimep. Dual fuel LTC is achieved by injection of a small amount of diesel fuel (2-3 percent on an energy basis) to ignite a premixed natural gas₋air mixture to attain very low NOx emissions (less than 0.2 g/kWh). Cyclic variations in both combustion modes were analyzed by observing the cyclic fluctuations in start of combustion (SOC), peak cylinder pressures (Pmax), combustion phasing (Ca50), and the separation between the diesel injection event and Ca50 (termed "relative combustion phasing" ). For conventional dual fueling, as % NG increases, Pmax decreases, SOC and Ca50 are delayed, and cyclic variations increase. For dual fuel LTC, as diesel injection timing is advanced from 20° to 60° BTDC, the relative combustion phasing is identified as an important combustion parameter along with SoC, Pmax, and CaPmax. For both combustion modes, cyclic variations were characterized by alternating slow and fast burn cycles, especially at high %NG and advanced injection timings. Finally, heat release return maps were analyzed to demonstrate thermal management strategies as an effective tool to mitigate cyclic combustion variations, especially in dual fuel LTC.

  14. Method and equipment for treatment of fuel for fluidized bed combustion

    SciTech Connect

    Beranek, J.; Cermak, J.; Dobrozemsky, J.; Fibinger, V.

    1982-04-20

    The invention relates to the method and equipment for treatment of fuel for fluidized bed combustion, which includes drying, classification and crushing of the fuel. The method for treatment of fuel comprises mixing the fuel with hot ash removed from the fluidized bed combustor and drying said mixture in a fluidized bed dryer in which the velocity of the fluidization fluid equals or is lower than the minimum fluidization velocity of particles in the fluidized bed combustor. The equipment for treatment of fuel comprises a bunker, crusher and dryer, comprising a fluidized bed dryer provided with appropriate piping for interconnection of the fluidized bed dryer, fluidized bed combuster, fuel bunker and crusher.

  15. Experimental Study of Unsupported Nonane fuel Droplet Combustion in Microgravity

    NASA Technical Reports Server (NTRS)

    Callahan, B. J.; Avedisian, C. T.; Hertzog, D. E.; Berkery, J. W.

    1999-01-01

    Soot formation in droplet flames is the basic component of the particulate emission process that occurs in spray combustion. The complexity of soot formation motivates a one-dimensional transport condition which has obvious advantages in modeling. Recent models of spherically symmetric droplet combustion have made this assumption when incorporating such aspects as detailed chemistry and radiation. Interestingly, spherical symmetry does not necessarily restrict the results because it has been observed that the properties of carbon formed in flames are not strongly affected by the nature of the fuel or flaming configuration. What is affected, however, are the forces acting on the soot aggregates and where they are trapped by a balance of drag and thermophoretic forces. The distribution of these forces depends on the transport conditions of the flame. Prior studies of spherical droplet flames have examined the droplet burning history of alkanes, alcohols and aromatics. Data are typically the evolution of droplet, flame, extinction, and soot shell diameters. These data are only now just beginning to find their way into comprehensive numerical models of droplet combustion to test proposed oxidation schemes for fuels such as methanol and heptane. In the present study, we report new measurements on the burning history of unsupported nonane droplets in a convection-free environment to promote spherical symmetry. The far-field gas is atmospheric pressure air at room temperature. The evolution of droplet diameter was measured using high speed cine photography of a spark-ignited, droplet within a confined volume in a drop tower. The initial droplet diameters varied between 0.5 mm and 0.6 mm. The challenge of unsupported droplets is to form, deploy and ignite them with minimal disturbance, and then to keep them in the camera field of view. Because of the difficulty of this undertaking, more sophisticated diagnostics for studying soot than photographic were not used. Supporting

  16. Preliminary carbon isotope measurements of fossil fuel and biogenic emissions from the Brazilian Southeastern region

    NASA Astrophysics Data System (ADS)

    Oliveira, F. M.; Santos, G.; Macario, K.; Muniz, M.; Queiroz, E.; Park, J.

    2014-12-01

    Researchers have confirmed that the continuing global rising of atmospheric CO2 content is caused by anthropogenic CO2 contributions. Most of those contributions are essentially associated with burning of fossil fuels (coal, petroleum and natural gas). However, deforestation, biomass burning, and land use changes, can also play important roles. Researchers have showed that 14C measurements of annual plants, such as corn leaf (Hsueh et al. 2007), annual grasses (Wang and Pataki 2012), and leaves of deciduous trees (Park et al. 2013) can be used to obtain time-integrated information of the fossil fuel ration in the atmosphere. Those regional-scale fossil fuel maps are essential for monitoring CO2 emissions mitigation efforts and/or growth spikes around the globe. However, no current data from anthropogenic contributions from both biogenic and fossil carbon has been reported from the major urban areas of Brazil. Here we make use of carbon isotopes (13C and 14C) to infer sources of CO2 in the highly populated Brazilian Southeastern region (over 80 million in 2010). This region leads the country in population, urban population, population density, vehicles, industries, and many other utilities and major infrastructures. For a starting point, we focus on collecting Ipê leaves (Tabebuia, a popular deciduous tree) from across Rio de Janeiro city and state as well as Sao Paulo city during May/June of 2014 to obtain the regional distribution of 13C and 14C of those urban domes. So far, Δ14C range from -10 to 32‰, when δ13C values are running from -26 to -35‰. The result of these preliminary investigations will be presented and discussed.Hsueh et al. 2007 Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America. Geophysical Research Letters. 34: L02816. doi:10.1029/2006GL027032 Wang and Pataki 2012 Drivers of spatial variability in urban plant and soil isotopic composition in the Los Angeles Basin. Plant and Soil 350: 323

  17. Fossil fuels

    SciTech Connect

    Mikulski, B.A.

    1991-05-01

    The Support for East European Democracy (SEED) Act of 1989 required the Secretary of Energy to cooperate with Polish officials to retrofit a coal-fired powerplant in Poland with advanced clean coal technology that has been successfully demonstrated in the United States. The project's goal is to demonstrate a cost-effective technique to control sulfur dioxide (SO{sub 2}) emissions that can be used at other powerplants in Poland. The act required that the retrofit be carried out by United States companies using United States technology and equipment manufactured in the United States. Questions were raised about changes the Department of Energy (DOE) made to its original definition of a United States firm, and about reductions DOE made to its original SO{sub 2} emission requirements for the project. Such changes might result in foreign-owned rather than American-owned firms providing the technology and that the technology might not be the best this country could offer to the Polish people. This paper reviews the reasons for these changes.

  18. Performance/combustion characteristics of six Canadian alternative fuels tested in a bombardier medium speed diesel

    SciTech Connect

    Grimsey, R.G.; Stoneman, R.T.; Webster, G.D.; Chan, D.Y.

    1985-01-01

    Six experimental fuels representative of Canadian future fuel options were tested against a reference fuel in a bombardier 12 cylinder, 4 stroke, 3000 hp, medium speed diesel. The reference fuel was a straight run ASTM number2-d. Each fuel was analyzed for physical and chemical properties. The engine was tested under a marine application propeller law load curve at 8 different engine speeds. Correlations between fuel properties and engine performance/combustion behaviour indicated that the longest ignition delays were observed for fuels with the lowest cetane numbers. Rates of combustion pressure rise increased proportionately with decreased cetane numbers and increased levels of aromatic components. Increases in peak combustion pressures and rates of pressure rise at low engine speeds are not expected to pose durability problems with medium speed engines operating at or near rated speed and load for the fuels tested.

  19. Quantification of fossil fuel CO2 emissions at the urban scale: Results from the Indianapolis Flux Project (INFLUX)

    NASA Astrophysics Data System (ADS)

    Turnbull, J. C.; Cambaliza, M. L.; Sweeney, C.; Karion, A.; Newberger, T.; Tans, P. P.; Lehman, S.; Davis, K. J.; Miles, N. L.; Richardson, S.; Lauvaux, T.; Shepson, P.; Gurney, K. R.; Song, Y.; Razlivanov, I. N.

    2012-12-01

    remove short term atmospheric variability; and direct measurement of the background signal from towers immediately upwind of the urban area and from the boundary layer. We find that CO2ff and other anthropogenic trace gases are consistently enhanced at a tower site downwind of the city. Measurements made directly over or very close to the urban area show only weak correlations between CO2ff and trace gases associated with combustion, likely because the urban plume is not yet well mixed. Total CO2 is also consistently enhanced in the downwind samples, even in summer. In winter, total CO2 enhancement is slightly higher than the fossil fuel CO2 enhancement, in agreement with Indiana's requirement for 10% bioethanol use in gasoline. This result implies that the enhancement in total CO2 can be used to infer CO2ff emissions for Indianapolis during winter. We therefore use the high resolution in situ total CO2 measurements in a simple mass balance model to estimate the urban CO2ff emissions. An initial comparison shows a ~20% difference between the top-down and bottom-up methods.

  20. Comparison of particle size distributions and elemental partitioning from the combustion of pulverized coal and residual fuel oil.

    PubMed

    Linak, W P; Miller, C A; Wendt, J O

    2000-08-01

    U.S. Environmental Protection Agency (EPA) research examining the characteristics of primary PM generated by the combustion of fossil fuels is being conducted in efforts to help determine mechanisms controlling associated adverse health effects. Transition metals are of particular interest, due to the results of studies that have shown cardiopulmonary damage associated with exposure to these elements and their presence in coal and residual fuel oils. Further, elemental speciation may influence this toxicity, as some species are significantly more water-soluble, and potentially more bio-available, than others. This paper presents results of experimental efforts in which three coals and a residual fuel oil were combusted in three different systems simulating process and utility boilers. Particle size distributions (PSDs) were determined using atmospheric and low-pressure impaction as well as electrical mobility, time-of-flight, and light-scattering techniques. Size-classified PM samples from this study are also being utilized by colleagues for animal instillation experiments. Experimental results on the mass and compositions of particles between 0.03 and > 20 microns in aerodynamic diameter show that PM from the combustion of these fuels produces distinctive bimodal and trimodal PSDs, with a fine mode dominated by vaporization, nucleation, and growth processes. Depending on the fuel and combustion equipment, the coarse mode is composed primarily of unburned carbon char and associated inherent trace elements (fuel oil) and fragments of inorganic (largely calcium-alumino-silicate) fly ash including trace elements (coal). The three coals also produced a central mode between 0.8- and 2.0-micron aerodynamic diameter. However, the origins of these particles are less clear because vapor-to-particle growth processes are unlikely to produce particles this large. Possible mechanisms include the liberation of micron-scale mineral inclusions during char fragmentation and burnout

  1. Thermal effect of hydrocarbon fuels combustion after a sudden change in the specific calorific value

    NASA Astrophysics Data System (ADS)

    Saifullin, E. R.; Larionov, V. M.; Busarov, A. V.; Busarov, V. V.

    2016-01-01

    Using associated gas and waste oil refineries in thermal power plants, a complex problem due to the variability in fuel composition. This article explores the burning of hydrocarbon fuel in the case of an abrupt change in its specific combustion heat. Results of the analysis allowed developing a technique of stabilizing the rate of heat release, ensuring complete combustion of the fuel and its minimum flow.

  2. Determination of alternative fuels combustion products: Phase 2 final report

    SciTech Connect

    Whitney, K.A.

    1997-06-01

    This report describes the laboratory efforts to accomplish four independent tasks: (1) speciation of hydrocarbon exhaust emissions from a light-duty vehicle operated over the chassis dynamometer portion of the light-duty FTP after modifications for operation on butane and butane blends; (2) evaluation of NREL`s Variable Conductance Vacuum Insulated Catalytic Converter Test Article 4 for the reduction of cold-start FTP exhaust emissions after extended soak periods for a Ford FFV Taurus operating on E85; (3) support of UDRI in an attempt to define correlations between engine-out combustion products identified by SwRI during chassis dynamometer testing, and those found during flow tube reactor experiments conducted by UDRI; and (4) characterization of small-diameter particulate matter from a Ford Taurus FFV operating in a simulated fuel-rich failure mode on CNG, LPG, M85, E85, and reformulated gasoline. 22 refs., 18 figs., 17 tabs.

  3. Functionalized graphene sheet colloids for enhanced fuel/propellant combustion.

    PubMed

    Sabourin, Justin L; Dabbs, Daniel M; Yetter, Richard A; Dryer, Frederick L; Aksay, Ilhan A

    2009-12-22

    We have compared the combustion of the monopropellant nitromethane with that of nitromethane containing colloidal particles of functionalized graphene sheets or metal hydroxides. The linear steady-state burning rates of the monopropellant and colloidal suspensions were determined at room temperature, under a range of pressures (3.35-14.4 MPa) using argon as a pressurizing fluid. The ignition temperatures were lowered and burning rates increased for the colloidal suspensions compared to those of the liquid monopropellant alone, with the graphene sheet suspension having significantly greater burning rates (i.e., greater than 175%). The relative change in burning rate from neat nitromethane increased with increasing concentrations of fuel additives and decreased with increasing pressure until at high pressures no enhancement was found.

  4. Sensitivity of simulated CO2 concentration to sub-annual variations in fossil fuel CO2 emissions

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Gurney, K. R.; Rayner, P. J.; Baker, D. F.; Liu, Y.; Asefi-Najafabady, S.

    2014-12-01

    This study presents a sensitivity analysis of the impact of sub-annual fossil fuel CO2 emissions on simulated CO2 concentration using a global tracer transport model. Four sensitivity experiments were conducted to investigate the impact of three cyclic components (diurnal, weekly and monthly) and a complete cyclic component (the combination of the three) by comparing with a temporally "flat" fossil fuel CO2 emissions inventory. A complete exploration of these impacts is quantified at annual, seasonal, weekly and diurnal time scales of the CO2concentration for the surface, vertical profile and column-integral structure. Result shows an annual mean surface concentration difference varying from -1.35 ppm to 0.13 ppm at grid scale for the complete cyclic fossil fuel emissions, which is mainly driven by a large negative diurnal rectification and less positive seasonal rectification. The negative diurnal rectification is up to 1.45 ppm at grid scale and primarily due to the covariation of diurnal fossil fuel CO2 emissions and diurnal variations of vertical mixing. The positive seasonal rectification is up to 0.23 ppm at grid scale which is mainly driven by the monthly fossil fuel CO2emissions coupling with atmospheric transport. Both the diurnal and seasonal rectifier effects are indicated at local-to-regional scales with center at large source regions and extend to neighboring regions in mainly Northern Hemisphere. The diurnal fossil fuel CO2 emissions is found to significantly affect the simulated diurnal CO2 amplitude (up to 9.12 ppm at grid scale), which is primarily contributed by the minima concentration differences around local sunset time. Similarly, large impact on the seasonal CO2 amplitude (up to 6.11 ppm) is found at regional scale for the monthly fossil fuel emissions. An impact of diurnal fossil fuel CO2 emissions on simulated afternoon CO2 concentration is also identified by up to 1.13 ppm at local scales. The study demonstrates a large cyclic fossil fuel

  5. Combustion Simulation and Quick-freeze Observation of a Cupola-furnace Process Using a Bio-coke Fuel Based on Tea Scum

    NASA Astrophysics Data System (ADS)

    Ishii, Kazuyoshi; Murata, Hirotoshi; Kuwana, Kazunori; Mizuno, Satoru; Morita, Akihiro; Ida, Tamio

    Global environment problems have become more and more serious in recent years, and reduction of greenhouse gas emission based on Kyoto Protocol adopted at the 3rd conference of the parties of the United nations Framework Convention on Climate Change (COP3); securement of primary energy source and development of clean and renewable energy sources have been pressingly needed in consideration of the predicted depletion of fossil fuel in the future. In this study, we explore the use of a solidified biomass-derived fuel, having the maximum compressive strength of 100MPa and calorific value of 21MJ/kg, in iron-casting or iron-making processes as an alternative fuel to be mixed with coal coke. This study, carried out for internal observation using a quick-freeze technique, observed an actual working cupola furnace under the 20% alternative coal coke operation condition. After quick freeze of the cupola furnace, the solidified biomass fuel was found to inhabit near the iron-melting zone. Especially, this solidified biomass fuel smoothly changes carbonized fuel through high-density state during the operating process. On the other hand, this study tried to simulate gasification combustion under a high temperature environment instead of actual internal combustion of solidified biomass fuel. These combustion mechanisms were confirmed to be similar to diffusion-flame phenomena in general.

  6. Combustion rates of chars from high-volatile fuels for FBC application

    SciTech Connect

    Masi, S.; Salatino, P.; Senneca, O.

    1997-12-31

    The fluidized bed combustion of high volatile fuels is often associated with huge occurrence of comminution phenomena. These result into in-bed generation of substantial amounts of carbon fines which further undergo competitive processes of combustion and elutriation. The small size of carbon fines generated by comminution is such that their further combustion is largely controlled by the intrinsic kinetics of carbon oxidation, alone or in combination with intraparticle diffusion. The competition between fine combustion and elutriation strongly affects the efficiency of fixed carbon conversion and calls for thorough characterization of the combustion kinetics and of residence times of fines in a fluidized bed of coarse solids. In this paper a collection of intrinsic combustion kinetic and porosimetric data for chars from three high-volatile fuels suitable for FBC application is presented. Chars from a Refuse Derived Fuel (RDF), a Tyre Derived Fuel (TDF) and a biomass (Robinia Pseudoacacia) are obtained from devolatilization, in fluidized bed, of fuel samples. Thermogravimetric analysis, mercury porosimetry and helium pycnometry are used to characterize the reactivity and the pore structure of the chars. Combustion rates are characterized over a wide range of temperatures (320--850 C) and oxygen partial pressures, covering the entire range of interest in fluidized bed combustion. Analysis of thermogravimetric and porosimetric data is directed to obtaining the parameters (pre-exponential factors, reaction orders, activation energies, intraparticle diffusivities) of combustion kinetic submodels for application in fluidized bed combustor modeling.

  7. Key Technologies for the Development of Fossil Fuels in the 21st Century

    SciTech Connect

    Schock, R

    2002-11-22

    As the world faces growing economic and environmental challenges, the energy mix that fuels the global economy is undergoing rapid change. Yet how this change will evolve in the future is uncertain. What will be the sources of primary energy in twenty years? In fifty years? In different regions of the globe? How will this energy be utilized? Fossil energy currently supplies about ninety percent of the world's primary energy. In Japan this number is closer to eighty percent. It is clear that fossil energy will be a major supplier of global energy for some time to come, but what is not clear is the types of fossil energy and how it will be utilized. The degree to which the abundant supplies of fossil energy, especially coal, will continue to play a major role will depend on whether technology will provide safe, clean and affordable fuel for electricity and transportation. Technology will not only assist in finding more fossil energy in varying regions of the globe but, most importantly, will play a strong role in efficient utilization and in determining the cost of delivering that energy. Several important questions will have to be answered: (1) Will cost effective technologies be found to burn coal more cleanly? Can this be done with drastically reduced or no emitted carbon? (2) Can enough oil be found outside the Middle East to ensure more adequate and secure supplies to fuel the transportation and industrial needs? (3) Will the transportation sector, so heavily dependent on oil, be fueled on another source? (4) Can enough natural gas be assured from enough secure places to ensure investment in the utilization of this lowest-carbon fossil fuel? (5) What will these options cost in research and in the price of energy? The answers to these and other questions challenge leaders and researchers in the fossil energy industry. A World Energy Council (WEC) study of those technologies that might be key sheds some light on what might happen in terms of a wide range of

  8. High efficiency, quasi-instantaneous steam expansion device utilizing fossil or nuclear fuel as the heat source

    SciTech Connect

    Claudio Filippone, Ph.D.

    1999-06-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency.

  9. HIGH EFFICIENCY, QUASI-INSTANTANEOUS STEAM EXPANSION DEVICE UTILIZING FOSSIL OR NUCLEAR FUEL AS THE HEAT SOURCE

    SciTech Connect

    Claudio Filippone, Ph.D.

    1999-06-01

    Thermal-hydraulic analysis of a specially designed steam expansion device (heat cavity) was performed to prove the feasibility of steam expansions at elevated rates for power generation with higher efficiency. The steam expansion process inside the heat cavity greatly depends on the gap within which the steam expands and accelerates. This system can be seen as a miniaturized boiler integrated inside the expander where steam (or the proper fluid) is generated almost instantaneously prior to its expansion in the work-producing unit. Relatively cold water is pulsed inside the heat cavity, where the heat transferred causes the water to flash to steam, thereby increasing its specific volume by a large factor. The gap inside the heat cavity forms a special nozzle-shaped system in which the fluid expands rapidly, accelerating toward the system outlet. The expansion phenomenon is the cause of ever-increasing fluid speed inside the cavity system, eliminating the need for moving parts (pumps, valves, etc.). In fact, the subsequent velocity induced by the sudden fluid expansion causes turbulent conditions, forcing accelerating Reynolds and Nusselt numbers which, in turn, increase the convective heat transfer coefficient. When the combustion of fossil fuels constitutes the heat source, the heat cavity concept can be applied directly inside the stator of conventional turbines, thereby greatly increasing the overall system efficiency.

  10. China: Emissions pattern of the world leader in CO2 emissions from fossil fuel consumption and cement production

    NASA Astrophysics Data System (ADS)

    Gregg, Jay S.; Andres, Robert J.; Marland, Gregg

    2008-04-01

    Release of carbon dioxide (CO2) from fossil fuel combustion and cement manufacture is the primary anthropogenic driver of climate change. Our best estimate is that China became the largest national source of CO2 emissions during 2006. Previously, the United States (US) had occupied that position. However, the annual emission rate in the US has remained relatively stable between 2001-2006 while the emission rate in China has more than doubled, apparently eclipsing that of the US in late 2006. Here we present the seasonal and spatial pattern of CO2 emissions in China, as well as the sectoral breakdown of emissions. Though our best point estimate places China in the lead position in terms of CO2 emissions, we qualify this statement in a discussion of the uncertainty in the underlying data (3-5% for the US; 15-20% for China). Finally, we comment briefly on the implications of China's new position with respect to international agreements to mitigate climate change.

  11. Investigation of Bio-Diesel Fueled Engines under Low-Temperature Combustion Strategies

    SciTech Connect

    Chia-fon F. Lee; Alan C. Hansen

    2010-09-30

    In accordance with meeting DOE technical targets this research was aimed at developing and optimizing new fuel injection technologies and strategies for the combustion of clean burning renewable fuels in diesel engines. In addition a simultaneous minimum 20% improvement in fuel economy was targeted with the aid of this novel advanced combustion system. Biodiesel and other renewable fuels have unique properties that can be leveraged to reduce emissions and increase engine efficiency. This research is an investigation into the combustion characteristics of biodiesel and its impacts on the performance of a Low Temperature Combustion (LTC) engine, which is a novel engine configuration that incorporates technologies and strategies for simultaneously reducing NOx and particulate emissions while increasing engine efficiency. Generating fundamental knowledge about the properties of biodiesel and blends with petroleum-derived diesel and their impact on in-cylinder fuel atomization and combustion processes was an important initial step to being able to optimize fuel injection strategies as well as introduce new technologies. With the benefit of this knowledge experiments were performed on both optical and metal LTC engines in which combustion and emissions could be observed and measured under realistic conditions. With the aid these experiments and detailed combustion models strategies were identified and applied in order to improve fuel economy and simultaneously reduce emissions.

  12. Historic patterns of CO{sub 2} emissions from fossil fuels: Implications for stabilization of emissions

    SciTech Connect

    Andres, R.J.; Marland, G.

    1994-10-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  13. Historic Patterns of CO{sub 2} Emissions from Fossil Fuels: Implications for Stabilization of Emissions

    DOE R&D Accomplishments Database

    Andres, R. J.; Marland, G.

    1994-06-01

    This paper examines the historical record of greenhouse gas emissions since 1950, reviews the prospects for emissions into the future, and projects what would be the short-term outcome if the stated targets of the FCCC were in fact achieved. The examination focuses on the most important of the greenhouse gases, CO{sub 2}. The extensive record of historic CO{sub 2} emissions is explored to ascertain if it is an adequate basis for useful extrapolation into the near future. Global carbon dioxide emissions from fossil fuel consumption have been documented. Emissions grew at 4.3% per year from 1950 until the time of the 1973 oil crisis. Another disruption in growth followed the oil price increases of 1979. Global total emissions have been increasing steadily since the 1982-1983 minimum and have grown by more than 20% since then. At present, emission Of CO{sub 2} from fossil fuel burning is dominated by a few countries: the U.S., the former Soviet Union, China, the developed countries of Europe and Japan. Only 20 countries emit 84% of emissions from all countries. However, rates of growth in many of the developed countries are now very low. In contrast, energy use has grown rapidly over the last 20 years in some of the large, developing economies. Emissions from fossil fuel consumption are now nearly 4 times those from land use change and are the primary cause of measured increases in the atmospheric concentration of CO{sub 2}. The increasing concentration of atmospheric CO{sub 2} has led to rising concern about the possibility of impending changes in the global climate system. In an effort to limit or mitigate potential negative effects of global climate change, 154 countries signed the United Nations Framework Convention on Climate Change (FCCC) in Rio de Janeiro in June, 1992. The FCCC asks all countries to conduct an inventory of their current greenhouse gas emissions setting non-binding targets.

  14. Tracing fossil fuel CO2 using Δ14C in Xi'an City, China

    NASA Astrophysics Data System (ADS)

    Zhou, Weijian; Wu, Shugang; Huo, Wenwen; Xiong, Xiaohu; Cheng, Peng; Lu, Xuefeng; Niu, Zhenchuan

    2014-09-01

    Radiocarbon can be used to trace fossil fuel CO2 (CO2ff) in the atmosphere, because radiocarbon has been depleted in fossil fuels. Here we present our study on the spatial distribution and temporal variations of CO2ff in Xi'an City, China using Δ14C of both green foxtail (Setaria viridis, L. Beauv.) leaf samples and urban air samples collected in the recent years. Our results show that the CO2ff indicated by green foxtail ranged from 14.7 ± 1.7 to 52.6 ± 1.7 ppm, reflecting high CO2ff mole fractions in downtown, industrial areas, and at road sites, and low CO2ff mole fractions in public parks. Meanwhile, the monthly CO2ff reflected by air samples showed higher value in winter (57.8 ± 17.1 ppm) than that in summer (20.2 ± 9.8 ppm) due to the enhancement usage of coal burning and the poor dispersion condition of atmosphere. This study displays that the increased fossil fuel emission is associated with the fast development of Xi'an City in China. It is worth mentioning that the green foxtail samples can be used to map out the CO2ff spatial distribution on large scale quickly and conveniently, while the air samples can be used to trace the CO2ff temporal variations with high resolution effectively. Therefore the Δ14C of both green foxtail and air samples is a good indicator of CO2ff emission.

  15. Effect [of] co-combustion of sewage sludge and biomass on combustion behavior and emissions in pulverized fuel systems

    SciTech Connect

    Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    Biomass not only has a considerable potential as an additional fuel source but also shows a reasonable cost level in comparison to other renewable energies. The practicable fuel types are both residual material from forestry and agriculture, such as wood or straw, and especially cultivated reproducible feedstock such as Miscanthus Sinensis, whole cereal plants, poplars, or willows. Besides as single fuel, it is also considered to be sensible to utilize biomass in co-combustion in existing firing systems, such as pc-fired power stations. Biomass or sewage sludge utilized as additional fuel in coal combustion systems has consequences on combustion behavior, emissions, corrosion and residual matter. The effects of burning sewage sludge and agricultural residuals such as straw and manure as well as specially grown energy plants in combination with coal were studied in a 0.5 MW pulverized fuel test facility and a 20 kW electrically heated combustor. A major aspect of the investigations had been the required preparation and milling of the additional fuels. The investigations showed that in co-combustion of straw with coal, a grinding of 6 mm and finer is sufficient. The definitely coarser milling degree of biomass delays combustion and is observable by in-flame measurements. The investigations reveal that biomass addition has a positive effect on emissions. Since biomass in most cases contains considerably less sulphur than coal, an increasing biomass share in the thermal output makes the SO{sub 2} emissions decrease proportionally. In addition, SO{sub 2} can partly be captured in the ash by the alkaline-earth fractions of the biomass ash. As for sewage sludge, the emissions of SO{sub 2} correlate with the sulphur content of the fuel and, hence, rise with an increasing share of this biomass. Independently from the type, biomass shows a considerably stronger release of volatile matter. This latter fact may have a positive impact on NOx emissions when NOx

  16. Potentially carcinogenic species emitted to the atmosphere by fossil-fueled power plants.

    PubMed Central

    Natusch, D F

    1978-01-01

    The identities and physicochemical characteristics of potentially carcinogenic species emitted to the atmosphere by fossil-fueled power plants are presented and discussed. It is pointed out that many so-called carcinogens are preferentially concentrated on the surface of respirable fly ash particles thus enabling them to come into intimate contact with lung tissues when inhaled. Relatively little information is available about the identities of particulate polycyclic organic compounds whose emission from coal fired power plants may well be substantially greater than hitherto supposed. The importance of chemical changes, which several species may undergo following emission (but prior to inhalation) in determining their potential carcinogenic impact, is stressed. PMID:648494

  17. A Vulnerability-Benefit Analysis of Fossil Fuel CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Delman, E. M.; Stephenson, S. R.; Davis, S. J.; Diffenbaugh, N. S.

    2015-12-01

    Although we can anticipate continued improvements in our understanding of future climate impacts, the central challenge of climate change is not scientific, but rather political and economic. In particular, international climate negotiations center on how to share the burden of uncertain mitigation and adaptation costs. We expose the relative economic interests of different countries by assessing and comparing their vulnerability to climate impacts and the economic benefits they derive from the fossil fuel-based energy system. Vulnerability refers to the propensity of humans and their assets to suffer when impacted by hazards, and we draw upon the results from a number of prior studies that have quantified vulnerability using multivariate indices. As a proxy for benefit, we average CO2 related to each country's extraction of fossil fuels, production of CO2 emissions, and consumption of goods and services (Davis et al., 2011), which should reflect benefits accrued in proportion to national economic dependence on fossil fuels. We define a nondimensional vulnerability-benefit ratio for each nation and find a large range across countries. In general, we confirm that developed and emerging economies such as the U.S., Western Europe, and China rely heavily on fossil fuels and have substantial resources to respond to the impacts of climate change, while smaller, less-developed economies such as Sierra Leone and Vanuatu benefit little from current CO2 emissions and are much more vulnerable to adverse climate impacts. In addition, we identify some countries with a high vulnerability and benefit, such as Iraq and Nigeria; conversely, some nations exhibit both a low vulnerability and benefit, such as New Zealand. In most cases, the ratios reflect the nature of energy-climate policies in each country, although certain nations - such as the United Kingdom and France - assume a level of responsibility incongruous with their ratio and commit to mitigation policy despite

  18. Liquid fossil-fuel technology. Quarterly technical progress report, January-March 1983

    SciTech Connect

    Linville, B.

    1983-07-01

    Accomplishments for the quarter ending March 1983 are presented under the following headings: liquid fossil fuel cycle, processing, utilization, and project integration and technology transfer. Feature articles for this quarter are: (1) abandoned oil field reports issued; (2) oilfield water data bank report published; (3) microbial enhanced recovery report issued; (4) polymer-augmented project could be economic today; (5) carbon dioxide EOR estimates given; (6) BETC passes 65th milestone; and (7) fifty achievements for fifty years (1918-1968). BETC publications are also listed. (ATT)

  19. Sales of Fossil Fuels Produced from Federal and Indian Lands, FY 2003 through FY 2014

    EIA Publications

    2015-01-01

    The U.S. Energy Information Administration estimates that total sales of fossil fuels produced from Federal and Indian Lands increased in fiscal year 2014 compared to fiscal year 2013. Production of crude oil increased 7%, natural gas production declined 7%, natural gas plant liquids production increased by 8%, and coal production increased slightly. Detailed tables and maps of production, by State, are contained in the report. EIA’s estimates are based on data provided by the U.S. Department of the Interior’s Office of Natural Resources Revenue.

  20. Differentiation of primary, secondary and tertiary aromatic amines in fossil fuels using trifluoroacylation

    SciTech Connect

    Thomson, J.S.; Green, J.B.; Yu, S.K.T.; Vrana, R.P.

    1991-12-01

    An analytical method which distinguishes between primary, secondary and tertiary amines has been developed. Trifluoroacetic anhydride, with 4-pyrrolidinopyridine as a catalyst, is used to form di- and mono-trifluoroacylated derivatives of primary and secondary aromatic amines, respectively. Tertiary aromatic amines such as quinoline do not react. GC/MS is then used to analyze the derivatized samples. Retention indices and response factors (relative to 4-fluoroaniline) are reported for >50 pure compounds known or expected to be present in fossil fuel base fractions. Also, results from the analysis of base fractions from mildly hydrotreated SRC II coal liquids and petroleum-derived light cycle oils will be reported.