Sample records for fossilized vertebrate integument

  1. Non-integumentary melanosomes can bias reconstructions of the colours of fossil vertebrate skin

    NASA Astrophysics Data System (ADS)

    McNamara, Maria; Kaye, Jonathan; Benton, Mike; Orr, Patrick

    2017-04-01

    The soft tissues of many fossil vertebrates preserve melanosomes - micron-scale organelles used to inform on original integumentary coloration and the evolution of visual signalling strategies through time. In extant vertebrates, however, melanosomes also occur in internal tissues, and hence melanosomes preserved in fossils may not derive solely from the integument. Here, by analyzing the internal tissues of extant and fossil frogs, we show that non-integumentary melanosomes are extremely abundant; they are usually localised to the torso in fossils but can also occur in the limbs, presumably due to dispersal during decay. Melanosomes from the body outlines of fossils cannot, therefore, reliably inform on integumentary coloration. Crucially, non-integumentary and integumentary melanosomes differ in geometry in both fossil and modern frogs and, in fossils, occur as discrete layers. Analysis of melanosome geometry, distribution and size-specific layering is required to differentiate integumentary from non-integumentary melanosomes and is essential to any attempt to reconstruct the original colours of vertebrate skin.

  2. Reconstructing Carotenoid-Based and Structural Coloration in Fossil Skin.

    PubMed

    McNamara, Maria E; Orr, Patrick J; Kearns, Stuart L; Alcalá, Luis; Anadón, Pere; Peñalver, Enrique

    2016-04-25

    Evidence of original coloration in fossils provides insights into the visual communication strategies used by ancient animals and the functional evolution of coloration over time [1-7]. Hitherto, all reconstructions of the colors of reptile integument and the plumage of fossil birds and feathered dinosaurs have been of melanin-based coloration [1-6]. Extant animals also use other mechanisms for producing color [8], but these have not been identified in fossils. Here we report the first examples of carotenoid-based coloration in the fossil record, and of structural coloration in fossil integument. The fossil skin, from a 10 million-year-old colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain) [9, 10], preserves dermal pigment cells (chromatophores)-xanthophores, iridophores, and melanophores-in calcium phosphate. Comparison with chromatophore abundance and position in extant reptiles [11-15] indicates that the fossil snake was pale-colored in ventral regions; dorsal and lateral regions were green with brown-black and yellow-green transverse blotches. Such coloration most likely functioned in substrate matching and intraspecific signaling. Skin replicated in authigenic minerals is not uncommon in exceptionally preserved fossils [16, 17], and dermal pigment cells generate coloration in numerous reptile, amphibian, and fish taxa today [18]. Our discovery thus represents a new means by which to reconstruct the original coloration of exceptionally preserved fossil vertebrates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Adaptation to the sky: Defining the feather with integument fossils from mesozoic China and experimental evidence from molecular laboratories.

    PubMed

    Chuong, Cheng-Ming; Wu, Ping; Zhang, Fu-Cheng; Xu, Xing; Yu, Minke; Widelitz, Randall B; Jiang, Ting-Xin; Hou, Lianhai

    2003-08-15

    In this special issue on the Evo-Devo of amniote integuments, Alibardi has discussed the adaptation of the integument to the land. Here we will discuss the adaptation to the sky. We first review a series of fossil discoveries representing intermediate forms of feathers or feather-like appendages from dinosaurs and Mesozoic birds from the Jehol Biota of China. We then discuss the molecular and developmental biological experiments using chicken integuments as the model. Feather forms can be modulated using retrovirus mediated gene mis-expression that mimics those found in nature today and in the evolutionary past. The molecular conversions among different types of integument appendages (feather, scale, tooth) are discussed. From this evidence, we recognize that not all organisms with feathers are birds, and that not all skin appendages with hierarchical branches are feathers. We develop a set of criteria for true avian feathers: 1) possessing actively proliferating cells in the proximal follicle for proximo-distal growth mode; 2) forming hierarchical branches of rachis, barbs, and barbules, with barbs formed by differential cell death and bilaterally or radially symmetric; 3) having a follicle structure, with mesenchyme core during development; 4) when mature, consisting of epithelia without mesenchyme core and with two sides of the vane facing the previous basal and supra-basal layers, respectively; and 5) having stem cells and dermal papilla in the follicle and hence the ability to molt and regenerate. A model of feather evolution from feather bud --> barbs --> barbules --> rachis is presented, which is opposite to the old view of scale plate --> rachis --> barbs --> barbules (Regal, '75; Q Rev Biol 50:35). Copyright 2003 Wiley-Liss, Inc.

  4. Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye.

    PubMed

    Gabbott, Sarah E; Donoghue, Philip C J; Sansom, Robert S; Vinther, Jakob; Dolocan, Andrei; Purnell, Mark A

    2016-08-17

    The success of vertebrates is linked to the evolution of a camera-style eye and sophisticated visual system. In the absence of useful data from fossils, scenarios for evolutionary assembly of the vertebrate eye have been based necessarily on evidence from development, molecular genetics and comparative anatomy in living vertebrates. Unfortunately, steps in the transition from a light-sensitive 'eye spot' in invertebrate chordates to an image-forming camera-style eye in jawed vertebrates are constrained only by hagfish and lampreys (cyclostomes), which are interpreted to reflect either an intermediate or degenerate condition. Here, we report-based on evidence of size, shape, preservation mode and localized occurrence-the presence of melanosomes (pigment-bearing organelles) in fossil cyclostome eyes. Time of flight secondary ion mass spectrometry analyses reveal secondary ions with a relative intensity characteristic of melanin as revealed through principal components analyses. Our data support the hypotheses that extant hagfish eyes are degenerate, not rudimentary, that cyclostomes are monophyletic, and that the ancestral vertebrate had a functional visual system. We also demonstrate integument pigmentation in fossil lampreys, opening up the exciting possibility of investigating colour patterning in Palaeozoic vertebrates. The examples we report add to the record of melanosome preservation in Carboniferous fossils and attest to surprising durability of melanosomes and biomolecular melanin. © 2016 The Authors.

  5. Pigmented anatomy in Carboniferous cyclostomes and the evolution of the vertebrate eye

    PubMed Central

    Gabbott, Sarah E.; Sansom, Robert S.; Vinther, Jakob; Dolocan, Andrei; Purnell, Mark A.

    2016-01-01

    The success of vertebrates is linked to the evolution of a camera-style eye and sophisticated visual system. In the absence of useful data from fossils, scenarios for evolutionary assembly of the vertebrate eye have been based necessarily on evidence from development, molecular genetics and comparative anatomy in living vertebrates. Unfortunately, steps in the transition from a light-sensitive ‘eye spot’ in invertebrate chordates to an image-forming camera-style eye in jawed vertebrates are constrained only by hagfish and lampreys (cyclostomes), which are interpreted to reflect either an intermediate or degenerate condition. Here, we report—based on evidence of size, shape, preservation mode and localized occurrence—the presence of melanosomes (pigment-bearing organelles) in fossil cyclostome eyes. Time of flight secondary ion mass spectrometry analyses reveal secondary ions with a relative intensity characteristic of melanin as revealed through principal components analyses. Our data support the hypotheses that extant hagfish eyes are degenerate, not rudimentary, that cyclostomes are monophyletic, and that the ancestral vertebrate had a functional visual system. We also demonstrate integument pigmentation in fossil lampreys, opening up the exciting possibility of investigating colour patterning in Palaeozoic vertebrates. The examples we report add to the record of melanosome preservation in Carboniferous fossils and attest to surprising durability of melanosomes and biomolecular melanin. PMID:27488650

  6. Evidence for Evolution from the Vertebrate Fossil Record.

    ERIC Educational Resources Information Center

    Gingerich, Philip D.

    1983-01-01

    Discusses three examples of evolutionary transition in the vertebrate fossil record, considering evolutionary transitions at the species level. Uses archaic squirrel-like Paleocine primates, the earliest primates of modern aspect, as examples. Also reviews new evidence on the origin of whales and their transition from land to sea. (JN)

  7. Discriminating signal from noise in the fossil record of early vertebrates reveals cryptic evolutionary history

    PubMed Central

    Sansom, Robert S.; Randle, Emma; Donoghue, Philip C. J.

    2015-01-01

    The fossil record of early vertebrates has been influential in elucidating the evolutionary assembly of the gnathostome bodyplan. Understanding of the timing and tempo of vertebrate innovations remains, however, mired in a literal reading of the fossil record. Early jawless vertebrates (ostracoderms) exhibit restriction to shallow-water environments. The distribution of their stratigraphic occurrences therefore reflects not only flux in diversity, but also secular variation in facies representation of the rock record. Using stratigraphic, phylogenetic and palaeoenvironmental data, we assessed the veracity of the fossil records of the jawless relatives of jawed vertebrates (Osteostraci, Galeaspida, Thelodonti, Heterostraci). Non-random models of fossil recovery potential using Palaeozoic sea-level changes were used to calculate confidence intervals of clade origins. These intervals extend the timescale for possible origins into the Upper Ordovician; these estimates ameliorate the long ghost lineages inferred for Osteostraci, Galeaspida and Heterostraci, given their known stratigraphic occurrences and stem–gnathostome phylogeny. Diversity changes through the Silurian and Devonian were found to lie within the expected limits predicted from estimates of fossil record quality indicating that it is geological, rather than biological factors, that are responsible for shifts in diversity. Environmental restriction also appears to belie ostracoderm extinction and demise rather than competition with jawed vertebrates. PMID:25520359

  8. Experimental taphonomy and the anatomy and diversity of the earliest fossil vertebrates (Chengjiang Biota, Cambrian, China)

    NASA Astrophysics Data System (ADS)

    Purnell, Mark; Gabbott, Sarah; Murdock, Duncan; Cong, Peiyun

    2016-04-01

    The oldest fossil vertebrates are from the Lower Cambrian Chengjiang biota of China, which contains four genera of fish-like, primitive vertebrates: Haikouichthys, Myllokunmingia, Zhongjianichthys and Zhongxiniscus. These fossils play key roles in calibrating molecular clocks and informing our view of the anatomy of animals close to the origin of vertebrates, potentially including transitional forms between vertebrates and their nearest relatives. Despite the evident importance of these fossils, the degree to which taphonomic processes have affected their anatomical completeness has not been investigated. For example, some or all might have been affected by stemward slippage - the pattern observed in experimental decay of non-biomineralised chordates in which preferential decay of synapomorphies and retention of plesiomorphic characters would cause fossil taxa to erroneously occupy more basal positions than they should. This hypothesis is based on experimental data derived from decay of non-biomineralised chordates under laboratory conditions. We have expanded this analysis to include a broader range of potentially significant environmental variables; we have also compared and combined the results of experiments from several taxa to identify general patterns of chordate decay. Examination of the Chengjiang vertebrates in the light of these results demonstrates that, contrary to some assertions, experimentally derived models of phylogenetic bias are applicable to fossils. Anatomical and phylogenetic interpretations of early vertebrates that do not take taphonomic biases into account risk overestimating diversity and the evolutionary significance of differences between fossil specimens.

  9. Do fossil vertebrate biominerals hold the key to the Palaeozoic climate?

    NASA Astrophysics Data System (ADS)

    Žigaitė, Ž.

    2012-04-01

    Fossil vertebrate hard tissues - teeth and dermoskeleton - are considered among the most geochemically stable biominerals, and therefore are widely used for palaeoenvironmental and palaeoclimatic reconstructions. Elemental and isotopic compositions of fossil dental tissues may provide unique palaeoenvironmental information, ranging from the diet and trophic positions on a food chain, to the palaeosalinity and water temperatures of ancient seas. However, the post-mortem alteration and re-crystallisation of fossil hard tissues may hamper these interpretations. Chemical composition and isotopic equilibrium of the biomineral change readily at any time from the earliest diagenesis to the final laboratory acid treatment during the fossil preparation. This is why particular attention shall be given to the preservation of fossil tissues, evaluating carefully the level of possible alteration in the primary geochemical composition. Pre-evaluation of fossil preservation can be made by semi-quantitative spot geochemistry analyses on fine polished teeth and scale thin sections using Energy Dispersive X-ray Spectroscopy (EDS), and help to preview the chemical composition of biomineral. The Electron Backscatter Diffractometry (EBSD) is useful to examine the cristallinity and possible structural alterations. In addition, rare earth element (REE) abundances can be measured in situ within the fine fossil tissues (such as enamel) using Laser Ablation Inductively Coupled Plasma Mass-spectrometry (LA-ICP-MS), giving evidence on the selective geochemical resilience between separate vertebrate hard tissues. Therefore, in order to decipher the geochemical signal correctly, the evaluation of preservation is a necessary starting point to any further studies of fossil biomineral geochemistry.

  10. First investigation of the collagen D-band ultrastructure in fossilized vertebrate integument.

    PubMed

    Lingham-Soliar, Theagarten; Wesley-Smith, James

    2008-10-07

    The ultrastructure of dermal fibres of a 200Myr thunniform ichthyosaur, Ichthyosaurus, specifically the 67nm axial repeat D-banding of the fibrils, which characterizes collagen, is presented for the first time by means of scanning electron microscopy (SEM) analysis. The fragment of material investigated is part of previously described fossilized skin comprising an architecture of layers of oppositely oriented fibre bundles. The wider implication, as indicated by the extraordinary quality of preservation, is the robustness of the collagen molecule at the ultrastructural level, which presumably contributed to its survival during the initial processes of decomposition prior to mineralization. Investigation of the elemental composition of the sample by SEM-energy dispersive X-ray spectroscopy indicates that calcite and phosphate played important roles in the rapid mineralization and fine replication of the collagen fibres and fibrils. The exceedingly small sample used in the investigation and high level of information achieved indicate the potential for minimal damage to prized museum specimens; for example, ultrastructural investigations by SEM may be used to help resolve highly contentious questions, for example, 'protofeathers' in the Chinese dinosaurs.

  11. First investigation of the collagen D-band ultrastructure in fossilized vertebrate integument

    PubMed Central

    Lingham-Soliar, Theagarten; Wesley-Smith, James

    2008-01-01

    The ultrastructure of dermal fibres of a 200 Myr thunniform ichthyosaur, Ichthyosaurus, specifically the 67 nm axial repeat D-banding of the fibrils, which characterizes collagen, is presented for the first time by means of scanning electron microscopy (SEM) analysis. The fragment of material investigated is part of previously described fossilized skin comprising an architecture of layers of oppositely oriented fibre bundles. The wider implication, as indicated by the extraordinary quality of preservation, is the robustness of the collagen molecule at the ultrastructural level, which presumably contributed to its survival during the initial processes of decomposition prior to mineralization. Investigation of the elemental composition of the sample by SEM–energy dispersive X-ray spectroscopy indicates that calcite and phosphate played important roles in the rapid mineralization and fine replication of the collagen fibres and fibrils. The exceedingly small sample used in the investigation and high level of information achieved indicate the potential for minimal damage to prized museum specimens; for example, ultrastructural investigations by SEM may be used to help resolve highly contentious questions, for example, ‘protofeathers’ in the Chinese dinosaurs. PMID:18577504

  12. Charles Darwin's beagle voyage, fossil vertebrate succession, and "the gradual birth & death of species".

    PubMed

    Brinkman, Paul D

    2010-01-01

    The prevailing view among historians of science holds that Charles Darwin became a convinced transmutationist only in the early spring of 1837, after his Beagle collections had been examined by expert British naturalists. With respect to the fossil vertebrate evidence, some historians believe that Darwin was incapable of seeing or understanding the transmutationist implications of his specimens without the help of Richard Owen. There is ample evidence, however, that he clearly recognized the similarities between several of the fossil vertebrates he collected and some of the extant fauna of South America before he returned to Britain. These comparisons, recorded in his correspondence, his diary and his notebooks during the voyage, were instances of a phenomenon that he later called the "law of the succession of types." Moreover, on the Beagle, he was following a geological research agenda outlined in the second volume of Charles Lyell's Principles of Geology, which implies that paleontological data alone could provide an insight into the laws which govern the appearance of new species. Since Darwin claims in On the Origin of Species that fossil vertebrate succession was one of the key lines of evidence that led him to question the fixity of species, it seems certain that he was seriously contemplating transmutation during the Beagle voyage. If so, historians of science need to reconsider both the role of Britain's expert naturalists and the importance of the fossil vertebrate evidence in the development of Darwin's ideas on transmutation.

  13. Caught in the act: the first record of copulating fossil vertebrates.

    PubMed

    Joyce, Walter G; Micklich, Norbert; Schaal, Stephan F K; Scheyer, Torsten M

    2012-10-23

    The behaviour of fossil organisms can typically be inferred only indirectly, but rare fossil finds can provide surprising insights. Here, we report from the Eocene Messel Pit Fossil Site between Darmstadt and Frankfurt, Germany numerous pairs of the fossil carettochelyid turtle Allaeochelys crassesculpta that represent for the first time among fossil vertebrates couples that perished during copulation. Females of this taxon can be distinguished from males by their relatively shorter tails and development of plastral kinesis. The preservation of mating pairs has important taphonomic implications for the Messel Pit Fossil Site, as it is unlikely that the turtles would mate in poisonous surface waters. Instead, the turtles initiated copulation in habitable surface waters, but perished when their skin absorbed poisons while sinking into toxic layers. The mating pairs from Messel are therefore more consistent with a stratified, volcanic maar lake with inhabitable surface waters and a deadly abyss.

  14. 3D microstructural architecture of muscle attachments in extant and fossil vertebrates revealed by synchrotron microtomography.

    PubMed

    Sanchez, Sophie; Dupret, Vincent; Tafforeau, Paul; Trinajstic, Katherine M; Ryll, Bettina; Gouttenoire, Pierre-Jean; Wretman, Lovisa; Zylberberg, Louise; Peyrin, Françoise; Ahlberg, Per E

    2013-01-01

    Firm attachments binding muscles to skeleton are crucial mechanical components of the vertebrate body. These attachments (entheses) are complex three-dimensional structures, containing distinctive arrangements of cells and fibre systems embedded in the bone, which can be modified during ontogeny. Until recently it has only been possible to obtain 2D surface and thin section images of entheses, leaving their 3D histology largely unstudied except by extrapolation from 2D data. Entheses are frequently preserved in fossil bones, but sectioning is inappropriate for rare or unique fossil material. Here we present the first non-destructive 3D investigation, by propagation phase contrast synchrotron microtomography (PPC-SRµCT), of enthesis histology in extant and fossil vertebrates. We are able to identify entheses in the humerus of the salamander Desmognathus from the organization of bone-cell lacunae and extrinsic fibres. Statistical analysis of the lacunae differentiates types of attachments, and the orientation of the fibres, reflect the approximate alignment of the muscle. Similar histological structures, including ontogenetically related pattern changes, are perfectly preserved in two 380 million year old fossil vertebrates, the placoderm Compagopiscis croucheri and the sarcopterygian fish Eusthenopteron foordi. We are able to determine the position of entheses in fossil vertebrates, the approximate orientation of the attached muscles, and aspects of their ontogenetic histories, from PPC-SRµCT data. Sub-micron microtomography thus provides a powerful tool for studying the structure, development, evolution and palaeobiology of muscle attachments.

  15. Lucy's back: Reassessment of fossils associated with the A.L. 288-1 vertebral column.

    PubMed

    Meyer, Marc R; Williams, Scott A; Smith, Michael P; Sawyer, Gary J

    2015-08-01

    The Australopithecus afarensis partial skeleton A.L. 288-1, popularly known as "Lucy" is associated with nine vertebrae. The vertebrae were given provisional level assignments to locations within the vertebral column by their discoverers and later workers. The continuity of the thoracic series differs in these assessments, which has implications for functional interpretations and comparative studies with other fossil hominins. Johanson and colleagues described one vertebral element (A.L. 288-1am) as uniquely worn amongst the A.L. 288-1 fossil assemblage, a condition unobservable on casts of the fossils. Here, we reassess the species attribution and serial position of this vertebral fragment and other vertebrae in the A.L. 288-1 series. When compared to the other vertebrae, A.L. 288-1am falls well below the expected size within a given spinal column. Furthermore, we demonstrate this vertebra exhibits non-metric characters absent in hominoids but common in large-bodied papionins. Quantitative analyses situate this vertebra within the genus Theropithecus, which today is solely represented by the gelada baboon but was the most abundant cercopithecoid in the KH-1s deposit at Hadar where Lucy was discovered. Our additional analyses confirm that the remainder of the A.L. 288-1 vertebral material belongs to A. afarensis, and we provide new level assignments for some of the other vertebrae, resulting in a continuous articular series of thoracic vertebrae, from T6 to T11. This work does not refute previous work on Lucy or its importance for human evolution, but rather highlights the importance of studying original fossils, as well as the efficacy of the scientific method. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. REE compositions in fossil vertebrate dental tissues indicate biomineral preservation

    NASA Astrophysics Data System (ADS)

    Žigaite, Ž.; Kear, B.; Pérez-Huerta, A.; Jeffries, T.; Blom, H.

    2012-04-01

    Rare earth element (REE) abundances have been measured in a number of Palaeozoic and Mesozoic dental tissues using Laser Ablation Inductively Coupled Plasma Mass-spectrometry (LA-ICP-MS). Fossil vertebrates analysed comprise scales and tesserae of Silurian and Devonian acanthodians, chondrichthyans, galeaspids, mongolepids, thelodonts, as well as teeth of Cretaceous lungfish and marine reptiles. The evaluation of fossil preservation level has been made by semi-quantitative spot geochemistry analyses on fine polished teeth and scale thin sections, using Energy Dispersive X-ray Spectroscopy (EDS). Fossil teeth and scales with significant structure and colour alteration have shown elevated heavy element concentrations, and the silicification of bioapatite has been common in their tissues. Stable oxygen isotope measurements (δ18O) of bulk biomineral have been conducted in parallel, and showed comparatively lower heavy oxygen values in the same fossil tissues with stronger visible alteration. Significant difference in REE concentrations has been observed between the dentine and enamel of Cretaceous plesiosaurs, suggesting the enamel to be more geochemically resistant to diagenetic overprint.

  17. A comprehensive database of quality-rated fossil ages for Sahul's Quaternary vertebrates.

    PubMed

    Rodríguez-Rey, Marta; Herrando-Pérez, Salvador; Brook, Barry W; Saltré, Frédérik; Alroy, John; Beeton, Nicholas; Bird, Michael I; Cooper, Alan; Gillespie, Richard; Jacobs, Zenobia; Johnson, Christopher N; Miller, Gifford H; Prideaux, Gavin J; Roberts, Richard G; Turney, Chris S M; Bradshaw, Corey J A

    2016-07-19

    The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery.

  18. A comprehensive database of quality-rated fossil ages for Sahul’s Quaternary vertebrates

    PubMed Central

    Rodríguez-Rey, Marta; Herrando-Pérez, Salvador; Brook, Barry W.; Saltré, Frédérik; Alroy, John; Beeton, Nicholas; Bird, Michael I.; Cooper, Alan; Gillespie, Richard; Jacobs, Zenobia; Johnson, Christopher N.; Miller, Gifford H.; Prideaux, Gavin J.; Roberts, Richard G.; Turney, Chris S.M.; Bradshaw, Corey J.A.

    2016-01-01

    The study of palaeo-chronologies using fossil data provides evidence for past ecological and evolutionary processes, and is therefore useful for predicting patterns and impacts of future environmental change. However, the robustness of inferences made from fossil ages relies heavily on both the quantity and quality of available data. We compiled Quaternary non-human vertebrate fossil ages from Sahul published up to 2013. This, the FosSahul database, includes 9,302 fossil records from 363 deposits, for a total of 478 species within 215 genera, of which 27 are from extinct and extant megafaunal species (2,559 records). We also provide a rating of reliability of individual absolute age based on the dating protocols and association between the dated materials and the fossil remains. Our proposed rating system identified 2,422 records with high-quality ages (i.e., a reduction of 74%). There are many applications of the database, including disentangling the confounding influences of hypothetical extinction drivers, better spatial distribution estimates of species relative to palaeo-climates, and potentially identifying new areas for fossil discovery. PMID:27434208

  19. X-ray computed tomography datasets for forensic analysis of vertebrate fossils.

    PubMed

    Rowe, Timothy B; Luo, Zhe-Xi; Ketcham, Richard A; Maisano, Jessica A; Colbert, Matthew W

    2016-06-07

    We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils.

  20. X-ray computed tomography datasets for forensic analysis of vertebrate fossils

    PubMed Central

    Rowe, Timothy B.; Luo, Zhe-Xi; Ketcham, Richard A.; Maisano, Jessica A.; Colbert, Matthew W.

    2016-01-01

    We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils. PMID:27272251

  1. New Mesozoic and Cenozoic fossils from Ecuador: Invertebrates, vertebrates, plants, and microfossils

    NASA Astrophysics Data System (ADS)

    Cadena, Edwin A.; Mejia-Molina, Alejandra; Brito, Carla M.; Peñafiel, Sofia; Sanmartin, Kleber J.; Sarmiento, Luis B.

    2018-04-01

    Ecuador is well known for its extensive extant biodiversity, however, its paleobiodiversity is still poorly explored. Here we report seven new Mesozoic and Cenozoic fossil localities from the Pacific coast, inter-Andean depression and Napo basin of Ecuador, including vertebrates, invertebrates, plants, and microfossils. The first of these localities is called El Refugio, located near the small town of Chota, Imbabura Province, from where we report several morphotypes of fossil leaves and a mycetopodid freshwater mussel of the Upper Miocene Chota Formation. A second site is also located near the town of Chota, corresponding to potentially Pleistocene to Holocene lake deposits from which we report the occurrence of leaves and fossil diatoms. A third locality is at the Pacific coast of the country, near Rocafuerte, a town in Esmeraldas Province, from which we report a late Miocene palm leaf. We also report the first partially articulated skull with teeth from a Miocene scombridid (Mackerels) fish from El Cruce locality, and completely preserved seeds from La Pila locality, both sites from Manabí Province. Two late Cretaceous fossil sites from the Napo Province, one near Puerto Napo showing a good record of fossil shrimps and a second near the town of Loreto shows the occurrence of granular amber and small gymnosperms seeds and cuticles. All these new sites and fossils show the high potential of the sedimentary sequences and basins of Ecuador for paleontological studies and for a better understanding of the fossil record of the country and northern South America.

  2. Tyrannosauroid integument reveals conflicting patterns of gigantism and feather evolution.

    PubMed

    Bell, Phil R; Campione, Nicolás E; Persons, W Scott; Currie, Philip J; Larson, Peter L; Tanke, Darren H; Bakker, Robert T

    2017-06-01

    Recent evidence for feathers in theropods has led to speculations that the largest tyrannosaurids, including Tyrannosaurus rex , were extensively feathered. We describe fossil integument from Tyrannosaurus and other tyrannosaurids ( Albertosaurus, Daspletosaurus, Gorgosaurus and Tarbosaurus ), confirming that these large-bodied forms possessed scaly, reptilian-like skin. Body size evolution in tyrannosauroids reveals two independent occurrences of gigantism; specifically, the large sizes in Yutyrannus and tyrannosaurids were independently derived. These new findings demonstrate that extensive feather coverings observed in some early tyrannosauroids were lost by the Albian, basal to Tyrannosauridae. This loss is unrelated to palaeoclimate but possibly tied to the evolution of gigantism, although other mechanisms exist. © 2017 The Author(s).

  3. New occurrences of fossilized feathers: systematics and taphonomy of the Santana Formation of the Araripe Basin (Cretaceous), NE, Brazil

    PubMed Central

    Anelli, Luiz Eduardo; Petri, Setembrino; Romero, Guilherme Raffaeli

    2016-01-01

    Here we describe three fossil feathers from the Early Cretaceous Santana Formation of the Araripe Basin, Brazil. Feathers are the most complex multiform vertebrate integuments; they perform different functions, occurring in both avian and non-avian dinosaurs. Despite their rarity, fossil feathers have been found across the world. Most of the Brazilian feather fossil record comes from the Santana Formation. This formation is composed of two members: Crato (lake) and Romualdo (lagoon); both of which are predominantly reduced deposits, precluding bottom dwelling organisms, resulting in exceptional preservation of the fossils. Despite arid and hot conditions during the Cretaceous, life teemed in the adjacency of this paleolake. Feathered non-avian dinosaurs have not yet been described from the Crato Member, even though there are suggestions of their presence in nearby basins. Our description of the three feathers from the Crato laminated limestone reveals that, despite the small sample size, they can be referred to coelurosaurian theropods. Moreover, based on comparisons with extant feather morphotypes they can be identified as one contour feather and two downy feathers. Despite their rareness and low taxonomic potential, fossilized feathers can offer insights about the paleobiology of its owners and the paleoecology of the Araripe Basin. PMID:27441102

  4. Upper Devonian vertebrate taphonomy and sedimentology from the Klunas fossil site, Tervete Formation, Latvia

    NASA Astrophysics Data System (ADS)

    Vasiļkova, J.; Lukševičs, E.; Stinkulis, Ä.¢.; Zupinš, I.

    2012-04-01

    The deposits of the Tervete Formation, Famennian Stage of Latvia, comprising weakly cemented sandstone and sand intercalated with dolomitic marls, siltstone and clay, have been traditionally interpreted as having formed in a shallow, rather restricted sea with lowered salinity. During seven field seasons the excavations took place in the south-western part of Latvia, at the Klunas site, and resulted in extensive palaeontological and sedimentological data. The taphonomical analysis has been performed, having evaluated the size, sorting, orientation of the fossils, articulation and skeletal preservation as well as the degree of fragmentation and abrasion. The sedimentological analysis involved interpretation of sedimentary structures, palaeocurrent direction reconstruction, grain-size analysis and approximate water depth calculations. The vertebrate assemblage of the Klunas site represents all known taxa of the Sparnene Regional Stage of the Baltic Devonian, comprising placoderms Bothriolepis ornata Eichwald, B. jani Lukševičs, Phyllolepis tolli Vasiliauskas, Dunkleosteus sp. and Chelyophorus sp., sarcopterygians Holoptychius nobilissimus Agassiz, Platycephalichthys skuenicus Vorobyeva, Cryptolepis sp., Conchodus sp., Glyptopomus ? sp., "Strunius" ? sp., and Dipterus sp., as well as an undetermined actinopterygian. Placoderms Bothriolepis ornata and B. jani dominate the assemblage. The fossils are represented in the main by fully disarticulated placoderm plates and plate fragments, sarcopterygian scales and teeth, rarely bones of the head and shoulder girdle, and acanthodian spines and scales. The characteristic feature is the great amount of fragmentary remains several times exceeding the number of intact bones. The horizontal distribution of the bones over the studied area is not homogenous, distinct zones of increased or decreased density of fossils can be traced. Zones of the increased density usually contain many elements of various sizes, whereas zones of the

  5. Exceptionally well preserved late Quaternary plant and vertebrate fossils from a blue hole on Abaco, The Bahamas.

    PubMed

    Steadman, David W; Franz, Richard; Morgan, Gary S; Albury, Nancy A; Kakuk, Brian; Broad, Kenneth; Franz, Shelley E; Tinker, Keith; Pateman, Michael P; Lott, Terry A; Jarzen, David M; Dilcher, David L

    2007-12-11

    We report Quaternary vertebrate and plant fossils from Sawmill Sink, a "blue hole" (a water-filled sinkhole) on Great Abaco Island, The Bahamas. The fossils are well preserved because of deposition in anoxic salt water. Vertebrate fossils from peat on the talus cone are radiocarbon-dated from approximately 4,200 to 1,000 cal BP (Late Holocene). The peat produced skeletons of two extinct species (tortoise Chelonoidis undescribed sp. and Caracara Caracara creightoni) and two extant species no longer in The Bahamas (Cuban crocodile, Crocodylus rhombifer; and Cooper's or Gundlach's Hawk, Accipiter cooperii or Accipiter gundlachii). A different, inorganic bone deposit on a limestone ledge in Sawmill Sink is a Late Pleistocene owl roost that features lizards (one species), snakes (three species), birds (25 species), and bats (four species). The owl roost fauna includes Rallus undescribed sp. (extinct; the first Bahamian flightless rail) and four other locally extinct species of birds (Cooper's/Gundlach's Hawk, A. cooperii/gundlachii; flicker Colaptes sp.; Cave Swallow, Petrochelidon fulva; and Eastern Meadowlark, Sturnella magna) and mammals (Bahamian hutia, Geocapromys ingrahami; and a bat, Myotis sp.). The exquisitely preserved fossils from Sawmill Sink suggest a grassy pineland as the dominant plant community on Abaco in the Late Pleistocene, with a heavier component of coppice (tropical dry evergreen forest) in the Late Holocene. Important in its own right, this information also will help biologists and government planners to develop conservation programs in The Bahamas that consider long-term ecological and cultural processes.

  6. Developmental patterning of sub-epidermal cells in the outer integument of Arabidopsis seeds

    PubMed Central

    Fiume, Elisa; Coen, Olivier; Xu, Wenjia; Lepiniec, Loïc

    2017-01-01

    The seed, the reproductive unit of angiosperms, is generally protected by the seed coat. The seed coat is made of one or two integuments, each comprising two epidermal cells layers and, in some cases, extra sub-epidermal cell layers. The thickness of the seed-coat affects several aspects of seed biology such as dormancy, germination and mortality. In Arabidopsis, the inner integument displays one or two sub-epidermal cell layers that originate from periclinal cell divisions of the innermost epidermal cell layer. By contrast, the outer integument was considered to be two-cell layered. Here, we show that sub-epidermal chalazal cells grow in between the epidermal outer integument cell layers to create an incomplete three-cell layered outer integument. We found that the MADS box transcription factor TRANSPARENT TESTA 16 represses growth of the chalaza and formation of sub-epidermal outer integument cells. Finally, we demonstrate that sub-epidermal cells of the outer and inner integument respond differently to the repressive mechanism mediated by FERTILIZATION INDEPENDENT SEED Polycomb group proteins and to fertilization signals. Our data suggest that integument cell origin rather than sub-epidermal cell position underlies different responses to fertilization. PMID:29141031

  7. Late Cretaceous Extreme Polar Warmth recorded by Vertebrate Fossils from the High Canadian Arctic

    NASA Astrophysics Data System (ADS)

    Vandermark, D.; Tarduno, J. A.; Brinkman, D.

    2006-12-01

    A vertebrate fossil assemblage from Late Cretaceous (Coniacian-Turonian, ~92 to 86 Ma) rocks on Axel Heiberg Island in the High Canadian Arctic reflects what was once a diverse community of freshwater fishes and reptiles. Paleomagnetic data indicate a paleolatitude of ~71° N for the site; the fossils are from non-migratory fauna, so they can provide insight into Late Cretaceous polar climate. The fossil assemblage includes large (> 2.4 m long) champsosaurs (extinct crocodilelike reptiles). The presence of large champsosaurs suggests a mean annual temperature > 14 °C (and perhaps as great as 25 °C). Here we summarize findings and analyses following the discovery of the fossil-bearing strata in 1996. Examination of larger fish elements, isolated teeth and SEM studies of microstructures indicates the presence of lepisosteids, amiids and teleosts (Friedman et al., 2003) Interestingly, the only other known occurrence of amiids and lepisosteids, fossil or recent, are from intervals of extreme warmth during the Tertiary. Turtles present in the assemblage include Boreralochelys axelheibergensis, a generically indeterminate eucryptodire and a trioychid (Brinkman and Tarduno, 2005). The level of turtle diversity is also comparable to mid-latitude assemblages with a mean annual paleotemperature of at least 14 °C. A large portion of the champsosaur fossil assemblage is comprised of elements from subadults. This dominance of subadults is similar to that seen from low latitude sites. Because of the sensitivity of juveniles to ice formation, the make-up of the Arctic champsosaur population further indicates that the Late Cretaceous saw an interval of extreme warmth and low seasonality. We note the temporal coincidence of these fossils with volcanism at large igneous provinces (including high Arctic volcanism) and suggest that a pulse in volcanic carbon dioxide emissions helped cause the global warmth.

  8. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates.

    PubMed

    Chin, Diana D; Matloff, Laura Y; Stowers, Amanda Kay; Tucci, Emily R; Lentink, David

    2017-06-01

    Harnessing flight strategies refined by millions of years of evolution can help expedite the design of more efficient, manoeuvrable and robust flying robots. This review synthesizes recent advances and highlights remaining gaps in our understanding of how bird and bat wing adaptations enable effective flight. Included in this discussion is an evaluation of how current robotic analogues measure up to their biological sources of inspiration. Studies of vertebrate wings have revealed skeletal systems well suited for enduring the loads required during flight, but the mechanisms that drive coordinated motions between bones and connected integuments remain ill-described. Similarly, vertebrate flight muscles have adapted to sustain increased wing loading, but a lack of in vivo studies limits our understanding of specific muscular functions. Forelimb adaptations diverge at the integument level, but both bird feathers and bat membranes yield aerodynamic surfaces with a level of robustness unparalleled by engineered wings. These morphological adaptations enable a diverse range of kinematics tuned for different flight speeds and manoeuvres. By integrating vertebrate flight specializations-particularly those that enable greater robustness and adaptability-into the design and control of robotic wings, engineers can begin narrowing the wide margin that currently exists between flying robots and vertebrates. In turn, these robotic wings can help biologists create experiments that would be impossible in vivo . © 2017 The Author(s).

  9. Inspiration for wing design: how forelimb specialization enables active flight in modern vertebrates

    PubMed Central

    2017-01-01

    Harnessing flight strategies refined by millions of years of evolution can help expedite the design of more efficient, manoeuvrable and robust flying robots. This review synthesizes recent advances and highlights remaining gaps in our understanding of how bird and bat wing adaptations enable effective flight. Included in this discussion is an evaluation of how current robotic analogues measure up to their biological sources of inspiration. Studies of vertebrate wings have revealed skeletal systems well suited for enduring the loads required during flight, but the mechanisms that drive coordinated motions between bones and connected integuments remain ill-described. Similarly, vertebrate flight muscles have adapted to sustain increased wing loading, but a lack of in vivo studies limits our understanding of specific muscular functions. Forelimb adaptations diverge at the integument level, but both bird feathers and bat membranes yield aerodynamic surfaces with a level of robustness unparalleled by engineered wings. These morphological adaptations enable a diverse range of kinematics tuned for different flight speeds and manoeuvres. By integrating vertebrate flight specializations—particularly those that enable greater robustness and adaptability—into the design and control of robotic wings, engineers can begin narrowing the wide margin that currently exists between flying robots and vertebrates. In turn, these robotic wings can help biologists create experiments that would be impossible in vivo. PMID:28592663

  10. The skin: The many functions of fish integument

    USGS Publications Warehouse

    Elliott, Diane G.; Farrell, Anthony P.

    2011-01-01

    The integument or skin is the envelope that not only separates and protects a fish from its environment, but also provides the means through which most contacts with the outer world are made. It is a large organ and is continuous with the linings of all body openings, and also covers the fins. Fish integument is a multifunctional organ, and its components may serve important roles in protection, communication, sensory perception, locomotion, respiration, ion regulation, excretion, and thermal regulation.

  11. Evo-Devo of Amniote Integuments and Appendages

    PubMed Central

    Wu, Ping; Hou, Lianhai; Plikus, Maksim; Hughes, Michael; Scehnet, Jeffrey; Suksaweang, Sanong; Widelitz, Randall B.; Jiang, Ting-Xin; Chuong, Cheng-Ming

    2015-01-01

    Integuments form the boundary between an organism and the environment. The evolution of novel developmental mechanisms in integuments and appendages allows animals to live in diverse ecological environments. Here we focus on amniotes. The major achievement for reptile skin is an adaptation to the land with the formation of a successful barrier. The stratum corneum enables this barrier to prevent water loss from the skin and allowed amphibian/reptile ancestors to go onto the land. Overlapping scales and production of β-keratins provide strong protection. Epidermal invagination led to the formation of avian feather and mammalian hair follicles in the dermis. Both adopted a proximal - distal growth mode that maintains endothermy. Feathers form hierarchical branches which produce the vane that makes flight possible. Recent discoveries of feathered dinosaurs in China inspire new thinking on the origin of feathers. In the laboratory, epithelial - mesenchymal recombinations and molecular mis-expressions were carried out to test the plasticity of epithelial organ formation. We review the work on the transformation of scales into feathers, conversion between barbs and rachis, and the production of “chicken teeth”. In mammals, tilting the balance of the BMP pathway in K14 noggin transgenic mice alters the number, size and phenotypes of different ectodermal organs, making investigators rethink the distinction between morpho-regulation and pathological changes. Models on the evolution of feathers and hairs from reptile integuments are discussed. A hypothetical Evo-Devo space where diverse integument appendages can be placed according to complex phenotypes and novel developmental mechanisms is presented. PMID:15272390

  12. Developmental patterning of the sub-epidermal integument cell layer in Arabidopsis seeds

    PubMed Central

    Coen, Olivier; Fiume, Elisa; Xu, Wenjia; De Vos, Delphine; Lu, Jing; Pechoux, Christine; Lepiniec, Loïc

    2017-01-01

    Angiosperm seed development is a paradigm of tissue cross-talk. Proper seed formation requires spatial and temporal coordination of the fertilization products – embryo and endosperm – and the surrounding seed coat maternal tissue. In early Arabidopsis seed development, all seed integuments were thought to respond homogenously to endosperm growth. Here, we show that the sub-epidermal integument cell layer has a unique developmental program. We characterized the cell patterning of the sub-epidermal integument cell layer, which initiates a previously uncharacterized extra cell layer, and identified TRANSPARENT TESTA 16 and SEEDSTICK MADS box transcription factors as master regulators of its polar development and cell architecture. Our data indicate that the differentiation of the sub-epidermal integument cell layer is insensitive to endosperm growth alone and to the repressive mechanism established by FERTILIZATION INDEPENDENT ENDOSPERM and MULTICOPY SUPPRESSOR OF IRA1 Polycomb group proteins. This work demonstrates the different responses of epidermal and sub-epidermal integument cell layers to fertilization. PMID:28348169

  13. Structure of the integument of southern right whales, Eubalaena australis.

    PubMed

    Reeb, Desray; Best, Peter Barrington; Kidson, Susan Hillary

    2007-06-01

    Skin (integument) anatomy reflects adaptations to particular environments. It is hypothesized that cetacean (whale) integument will show unique anatomical adaptations to an aquatic environment, particularly regarding differences in temperature, density, and pressure. In this study, the gross and histological structure of the southern right whale integument is described and compared with terrestrial mammals and previous descriptions of mysticete (baleen whale) and odontocete (toothed whale) species. Samples were taken of the integument of 98 free-swimming southern right whales, Eubalaena australis, and examined by both light and electron microscopy. Results show that three epidermal layers are present, with the stratum corneum being parakeratotic in nature. As in bowhead whales, southern right whales possess an acanthotic epidermis and a notably thick hypodermis, with epidermal rods and extensive papillomatosis. However, unlike bowhead whales, southern right whales possess an uninterrupted hypodermal layer. Surprisingly, the integument of balaenids (right and bowhead mysticetes) in general is more like that of odontocetes than that of the more closely related balaenopterids (rorqual mysticetes). Similarities to odontocetes were found specifically in the collagen fibers in a fat-free zone of the reticular dermal layer and the elastic fibers in the dermal and hypodermal layers. Callosities, a distinctive feature of this genus, have a slightly thicker stratum corneum and are usually associated with hairs that have innervated and vascularized follicles. These hairs may function as vibrissae, thus aiding in aquatic foraging by allowing rapid detection of changes in prey density. Although the thick insulatory integument makes right whales bulky and slow-moving, it is an adaptation for living in cold water. Epidermal thickness, presence of epidermal rods, and callosities may act as barriers against mechanical injury from bodily contact with conspecifics or hard surfaces in

  14. Insights into the diagenetic environment of fossil marine vertebrates of the Pisco Formation (late Miocene, Peru) from mineralogical and Sr-isotope data

    NASA Astrophysics Data System (ADS)

    Gioncada, A.; Petrini, R.; Bosio, G.; Gariboldi, K.; Collareta, A.; Malinverno, E.; Bonaccorsi, E.; Di Celma, C.; Pasero, M.; Urbina, M.; Bianucci, G.

    2018-01-01

    The late Miocene Pisco Formation of Peru is an outstanding example of richness and high-quality preservation of fossil marine vertebrates. In order to reconstruct the fossilization path, we present new textural, mineralogical and Sr-isotope data of diagenetic minerals formed in correspondence of fossil specimens such as marine vertebrates and mollusks. These fossil specimens were found at Cerro los Quesos, in the Ica Desert, within the diatomaceous strata of the Pisco Formation. Dolomite, gypsum, anhydrite and Mn minerals are the main phases found, while the calcium carbonate originally forming the mollusk valves is replaced by gypsum. An early formation of dolomite and of Mn minerals, triggered by the modifications of the geochemical environment due to organic matter degradation, is suggested by the textural relationships and is confirmed by the Sr isotopic ratio of dolomite, which agrees with that of seawater at the time of sedimentation. Instead, gypsum Sr isotopic ratios indicate a pre-Miocene seawater-derived brine circulating within the sedimentary sequence as a source for Sr. Oxidation of diagenetic sulfide causing a lowering of the pH of porewater is proposed as an explanation for Ca-carbonate dissolution. The diagenetic chemical environment was, nevertheless, favorable to bone preservation.

  15. Medullary bone in fossils: function, evolution and significance in growth curve reconstructions of extinct vertebrates.

    PubMed

    Prondvai, E

    2017-03-01

    Medullary bone (MB) is a special endosteal tissue forming in the bones of female birds during egg laying to serve as a labile calcium reservoir for building the hard eggshell. Therefore, the presence of MB reported in multiple nonavian dinosaurs is currently considered as evidence that those specimens were sexually mature females in their reproductive period. This interpretation has led to further inferences on species-specific growth strategies and related life-history aspects of these extinct vertebrates. However, a few studies questioned the reproductive significance of fossil MB by either regarding the tissue pathological or attributing alternative functions to it. This study reviews the general inferences on extinct vertebrates and discusses the primary role, distribution, regulation and adaptive significance of avian MB to point out important but largely overlooked uncertainties and inconsistencies in this matter. Emerging discordancy is demonstrated when the presence of MB vs. trade-off between growth and reproduction is used for interpreting dinosaurian growth curves. Synthesis of these data suggests that fossil MB was related to high calcium turnover rates but not exclusively to egg laying. Furthermore, revised application of Allosaurus growth data by modelling individual-based growth curves implies a much higher intraspecific variability in growth strategies, including timing of sexual maturation, than usually acknowledged. New hypotheses raised here to resolve these incongruences also propose new directions of research on the origin and functional evolution of this curious bone tissue. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  16. Brochosomal coats turn leafhopper (Insecta, Hemiptera, Cicadellidae) integument to superhydrophobic state

    PubMed Central

    Rakitov, Roman; Gorb, Stanislav N.

    2013-01-01

    Leafhoppers (Insecta, Hemiptera, Cicadellidae) actively coat their integuments with brochosomes, hollow proteinaceous spheres of usually 200–700 nm in diameter, with honeycombed walls. The coats have been previously suggested to act as a water-repellent and anti-adhesive protective barrier against the insect's own exudates. We estimated their wettability through contact angle (CA) measurements of water, diiodomethane, ethylene glycol and ethanol on detached wings of the leafhoppers Alnetoidia alneti, Athysanus argentarius and Cicadella viridis. Intact brochosome-coated integuments were repellent to all test liquids, except ethanol, and exhibited superhydrophobicity, with the average water CAs of 165–172°, and the apparent surface free energy (SFE) estimates not exceeding 0.74 mN m−1. By contrast, the integuments from which brochosomes were removed with a peeling technique using fluid polyvinylsiloxane displayed water CAs of only 103–129° and SFEs above 20 mN m−1. Observations of water-sprayed wings in a cryo-scanning electron microscope confirmed that brochosomal coats prevented water from contacting the integument. Their superhydrophobic properties appear to result from fractal roughness, which dramatically reduces the area of contact with high-surface-tension liquids, including, presumably, leafhopper exudates. PMID:23235705

  17. Morphological characterization of the anuran integument of the Proceratophrys and Odontophrynus genera (Amphibia, Anuran, Leptodactylidae).

    PubMed

    Felsemburgh, F A; Carvalho-e-Silva, S P; de Brito-Gitirana, L

    2007-01-01

    The morphological characteristics of the leptodactylid integument of Proceratophrys and Odontophrynus genera were investigated by means of stereoscopic, low vacuum scanning electron and light microscopy. The integument surface of Proceratophrys boiei, Proceratophrys laticeps and Proceratophrys appendiculata exhibited several projections, while the integument of Odontophrynus americanus had rounded elevations with smooth profile. Light microscopic observations showed the basic integument morphology for all anurans, i.e., an epidermis and a dermis, which is subdivided into a spongious layer and a compact layer. The epidermis is formed by basal, intermediary and cornified layers. However, in Proceratophrys genus the cornified layer had an irregular outline, while in O. americanus the external surface was smooth. In the spongious dermis, mucous and venom exocrine glands were observed, but in O. americanus an exclusive glandular type with apocrine secretory pattern was identified. The integument morphology showed peculiar characteristics that may be helpful for genus distinction. Thus, morphological methods may be considered as an efficient means to characterize and to differentiate anuran genera.

  18. The evolution of vertebral formulae in Hominoidea.

    PubMed

    Thompson, Nathan E; Almécija, Sergio

    2017-09-01

    Primate vertebral formulae have long been investigated because of their link to locomotor behavior and overall body plan. Knowledge of the ancestral vertebral formulae in the hominoid tree of life is necessary to interpret the pattern of evolution among apes, and to critically evaluate the morphological adaptations involved in the transition to hominin bipedalism. Though many evolutionary hypotheses have been proposed based on living and fossil species, the application of quantitative phylogenetic methods for thoroughly reconstructing ancestral vertebral formulae and formally testing patterns of vertebral evolution is lacking. To estimate the most probable scenarios of hominoid vertebral evolution, we utilized an iterative ancestral state reconstruction approach to determine likely ancestral vertebral counts in apes, humans, and other anthropoid out-groups. All available ape and hominin fossil taxa with an inferred regional vertebral count were included in the analysis. Sensitivity iterations were performed both by changing the phylogenetic position of fossil taxa with a contentious placement, and by changing the inferred number of vertebrae in taxa with uncertain morphology. Our ancestral state reconstruction results generally support a short-backed hypothesis of human evolution, with a Pan-Homo last common ancestor possessing a vertebral formulae of 7:13:4:6 (cervical:thoracic:lumbar:sacral). Our results indicate that an initial reduction in lumbar vertebral count and increase in sacral count is a synapomorphy of crown hominoids (supporting an intermediate-backed hypothesis for the origins of the great ape-human clade). Further reduction in lumbar count occurs independently in orangutans and African apes. Our results highlight the complexity and homoplastic nature of vertebral count evolution, and give little support to the long-backed hypothesis of human evolution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Vertebrate Fossils Imply Paleo-elevations of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Deng, T.; Wang, X.; Li, Q.; Wu, F.; Wang, S.; Hou, S.

    2017-12-01

    The uplift of the Tibetan Plateau remains unclear, and its paleo-elevation reconstructions are crucial to interpret the geodynamic evolution and to understand the climatic changes in Asia. Uplift histories of the Tibetan Plateau based on different proxies differ considerably, and two viewpoints are pointedly opposing on the paleo-elevation estimations of the Tibetan Plateau. One viewpoint is that the Tibetan Plateau did not strongly uplift to reach its modern elevation until the Late Miocene, but another one, mainly based on stable isotopes, argues that the Tibetan Plateau formed early during the Indo-Asian collision and reached its modern elevation in the Paleogene or by the Middle Miocene. In 1839, Hugh Falconer firstly reported some rhinocerotid fossils collected from the Zanda Basin in Tibet, China and indicated that the Himalayas have uplifted by more than 2,000 m since several million years ago. In recent years, the vertebrate fossils discovered from the Tibetan Plateau and its surrounding areas implied a high plateau since the late Early Miocene. During the Oligocene, giant rhinos lived in northwestern China to the north of the Tibetan Plateau, while they were also distributed in the Indo-Pakistan subcontinent to the south of this plateau, which indicates that the elevation of the Tibetan Plateau was not too high to prevent exchanges of large mammals; giant rhinos, the rhinocerotid Aprotodon, and chalicotheres still dispersed north and south of "Tibetan Plateau". A tropical-subtropical lowland fish fauna was also present in the central part of this plateau during the Late Oligocene, in which Eoanabas thibetana was inferred to be closely related to extant climbing perches from South Asia and Sub-Saharan Africa. In contrast, during the Middle Miocene, the shovel-tusked elephant Platybelodon was found from many localities north of the Tibetan Plateau, while its trace was absent in the Siwaliks of the subcontinent, which implies that the Tibetan Plateau had

  20. Conservation of globin genes in the "living fossil" Latimeria chalumnae and reconstruction of the evolution of the vertebrate globin family.

    PubMed

    Schwarze, Kim; Burmester, Thorsten

    2013-09-01

    The (hemo-)globins are among the best-investigated proteins in biomedical sciences. These small heme-proteins play an important role in oxygen supply, but may also have other functions. In addition to well known hemoglobin and myoglobin, six other vertebrate globin types have been identified in recent years: neuroglobin, cytoglobin, globin E, globin X, globin Y, and androglobin. Analyses of the genome of the "living fossil" Latimeria chalumnae show that the coelacanth is the only known vertebrate that includes all eight globin types. Thus, Latimeria can also be considered as a "globin fossil". Analyses of gene synteny and phylogenetic reconstructions allow us to trace the evolution and the functional changes of the vertebrate globin family. Neuroglobin and globin X diverged from the other globin types before the separation of Protostomia and Deuterostomia. The cytoglobins, which are unlikely to be involved in O2 supply, form the earliest globin branch within the jawed vertebrates (Gnathostomata), but do not group with the agnathan hemoglobins, as it has been proposed before. There is strong evidence from phylogenetic reconstructions and gene synteny that the eye-specific globin E and muscle-specific myoglobin constitute a common clade, suggesting a similar role in intracellular O2 supply. Latimeria possesses two α- and two β-hemoglobin chains, of which one α-chain emerged prior to the divergence of Actinopterygii and Sarcopterygii, but has been retained only in the coelacanth. Notably, the embryonic hemoglobin α-chains of Gnathostomata derive from a common ancestor, while the embryonic β-chains - with the exception of a more complex pattern in the coelacanth and amphibians - display a clade-specific evolution. Globin Y is associated with the hemoglobin gene cluster, but its phylogenetic position is not resolved. Our data show an early divergence of distinct globin types in the vertebrate evolution before the emergence of tetrapods. The subsequent loss of

  1. Microscopical and elemental FESEM and Phenom ProX-SEM-EDS analysis of osteocyte- and blood vessel-like microstructures obtained from fossil vertebrates of the Eocene Messel Pit, Germany.

    PubMed

    Cadena, Edwin

    2016-01-01

    The Eocene (∾48 Ma) Messel Pit in Germany is a UNESCO World Heritage Site because of its exceptionally preserved fossils, including vertebrates, invertebrates, and plants. Messel fossil vertebrates are typically characterized by their articulated state, and in some cases the skin, hair, feathers, scales and stomach contents are also preserved. Despite the exceptional macroscopic preservation of Messel fossil vertebrates, the microstructural aspect of these fossils has been poorly explored. In particular, soft tissue structures such as hair or feathers have not been chemically analyzed, nor have bone microstructures. I report here the preservation and recovery of osteocyte-like and blood vessel-like microstructures from the bone of Messel Pit specimens, including the turtles Allaeochelys crassesculpta and Neochelys franzeni, the crocodile Diplocynodon darwini, and the pangolin Eomanis krebsi. I used a Field Emission Scanning Electron Microscope (FESEM) and a Phenom ProX desktop scanning electron microscope (LOT-QuantumDesign) equipped with a thermionic CeB6 source and a high sensitivity multi-mode backscatter electron (BSE) for microscopical and elemental characterization of these bone microstructures. Osteocyte-like and blood vessel-like microstructures are constituted by a thin layer (∾50 nm thickness), external and internal mottled texture with slightly marked striations. Circular to linear marks are common on the external surface of the osteocyte-like microstructures and are interpreted as microbial troughs. Iron (Fe) is the most abundant element found in the osteocyte-like and blood vessel-like microstructures, but not in the bone matrix or collagen fibril-like microstructures. The occurrence of well-preserved soft-tissue elements (at least their physical form) establishes a promising background for future studies on preservation of biomolecules (proteins or DNA) in Messel Pit fossils.

  2. Rare earth and trace elements of fossil vertebrate bioapatite as palaeoenvironmental and sedimentological proxies

    NASA Astrophysics Data System (ADS)

    Žigaitė, Živilė; Fadel, Alexandre; Pérez-Huerta, Alberto; Jeffries, Teresa

    2015-04-01

    Rare earth (REE) and trace element compositions of fossil vertebrate dental microremains have been studied in Silurian and Devonian vertebrate dental scales and spines in-situ, using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). Samples were selected from the well-known Silurian bone beds of Vesiku and Ohesaare in Saaremaa island of Estonia, and a number of Lower Devonian localities from Spitsbergen (Svalbard), Andrée Land group. Biomineral preservation was assessed using spot semi-quantitative elemental chemistry (SEM-EDS) and electron back-scatter difractometry (EBSD) for cristallinity imaging. The obtained PAAS shale-normalised REE concentrations were evaluated using basic geochemical calculations and quantifications. The REE patterns from the Lower Devonian vertebrate apatite from Andrée Land, Spitsbergen (Wood Bay and Grey Hœk formations) did not show any recognisable taxon-specific behavior, but had rather well expressed differences of REE compositions related to biomineral structure and sedimentary settings, suggesting REE instead to reflect burial environments and sedimentological history. The Eu anomaly recorded in two of the studied localities but not in the other indicate different taphonomic conditions and palaeoenvironment, while La/Sm, La/Yb ratios sugeest considerable influence of terrestrial freshwater during the early diagenesis. The La/Yb and La/Sm plots also agree with the average REE concentrations, reflecting domination of the adsoption over substitution as principal REE uptake mechanism in the fossils which had significantly lower overall REE concentrations, and vice versa. Vesiku (Homerian, Wenlock) microremains yielded very uniform REE patterns with slightly lower overall REE concentrations in enameloid than in dentine, with strong enrichment in middle REE and depletion in heavy REE. Negative Europium (Eu) anomaly was pronounced in all the profiles, but Cerium (Ce) anomalies were not detected suggesting possible

  3. On the importance of stratigraphic control for vertebrate fossil sites in Channel Islands National Park, California, USA: Examples from new Mammuthus finds on San Miguel Island

    USGS Publications Warehouse

    Pigati, Jeffery S.; Muhs, Daniel R.; McGeehin, John P.

    2016-01-01

    Quaternary vertebrate fossils, most notably mammoth remains, are relatively common on the northern Channel Islands of California. Well-preserved cranial, dental, and appendicular elements of Mammuthus exilis (pygmy mammoth) and Mammuthus columbi (Columbian mammoth) have been recovered from hundreds of localities on the islands during the past half-century or more. Despite this paleontological wealth, the geologic context of the fossils is described in the published literature only briefly or not at all, which has hampered the interpretation of associated 14C ages and reconstruction of past environmental conditions. We recently discovered a partial tusk, several large bones, and a tooth enamel plate (all likely mammoth) at two sites on the northwest flank of San Miguel Island, California. At both localities, we documented the stratigraphic context of the fossils, described the host sediments in detail, and collected charcoal and terrestrial gastropod shells for radiocarbon dating. The resulting 14C ages indicate that the mammoths were present on San Miguel Island between ∼20 and 17 ka as well as between ∼14 and 13 ka (thousands of calibrated 14C years before present), similar to other mammoth sites on San Miguel, Santa Cruz, and Santa Rosa Islands. In addition to documenting the geologic context and ages of the fossils, we present a series of protocols for documenting and reporting geologic and stratigraphic information at fossil sites on the California Channel Islands in general, and in Channel Islands National Park in particular, so that pertinent information is collected prior to excavation of vertebrate materials, thus maximizing their scientific value.

  4. DNA demethylation activates genes in seed maternal integument development in rice (Oryza sativa L.).

    PubMed

    Wang, Yifeng; Lin, Haiyan; Tong, Xiaohong; Hou, Yuxuan; Chang, Yuxiao; Zhang, Jian

    2017-11-01

    DNA methylation is an important epigenetic modification that regulates various plant developmental processes. Rice seed integument determines the seed size. However, the role of DNA methylation in its development remains largely unknown. Here, we report the first dynamic DNA methylomic profiling of rice maternal integument before and after pollination by using a whole-genome bisulfite deep sequencing approach. Analysis of DNA methylation patterns identified 4238 differentially methylated regions underpin 4112 differentially methylated genes, including GW2, DEP1, RGB1 and numerous other regulators participated in maternal integument development. Bisulfite sanger sequencing and qRT-PCR of six differentially methylated genes revealed extensive occurrence of DNA hypomethylation triggered by double fertilization at IAP compared with IBP, suggesting that DNA demethylation might be a key mechanism to activate numerous maternal controlling genes. These results presented here not only greatly expanded the rice methylome dataset, but also shed novel insight into the regulatory roles of DNA methylation in rice seed maternal integument development. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Miocene vertebrates and North Florida shorelines

    USGS Publications Warehouse

    Olsen, S.J.

    1968-01-01

    Vertebrate fossils from ten localities, spread across northern Florida, give evidence of shorelines and deltas that have previously been established on geologic evidence or invertebrates alone. Terrestrial mammal remains, in association with shallow-water forms, indicate a deltaic assemblage and in several instances specific animals suggest restricted water depths at the time of sediment deposition. Fortunately diagnostic fragments of Miocene horses, Merychippus and Parahippus, are present in these beds, allowing for a rather close age evaluation of these sediments. Adequate fossil material has been collected from these localities to suggest the past environment and ecological conditions for the forms represented. By utilizing a suggested course of experiments with stream table apparatus it is possible to use the orientation of the fossil vertebrate remains as aids in determining past conditions of sediment accumulation. ?? 1968.

  6. Transition from two to one integument in Prunus species: expression pattern of INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT).

    PubMed

    Lora, Jorge; Hormaza, José I; Herrero, Maria

    2015-10-01

    While gymnosperm ovules have one integument, in most angiosperms two integuments surround the ovules. Unitegmic ovules have arisen independently several times during the evolution of angiosperms, but the ultimate genetic cause of the presence of a single integument remains elusive. We compared species of the genus Prunus that have different numbers of integuments: bitegmic species, such as Prunus armeniaca (apricot) and Prunus persica (peach), and unitegmic species, such as Prunus incisa, analyzing the expression pattern of genes that are involved in integument development in Arabidopsis thaliana: INNER NO OUTER (INO), ABERRANT TESTA SHAPE (ATS) and ETTIN (ETT). Bitegmic and unitegmic species showed similar INO expression patterns, indicative of the conservation of an outer integument. However, expression of ETT, which occurs in the boundary of the outer and inner integuments, was altered in unitegmic ovules, which showed lack of ETT expression. These results strongly suggest that the presence of a single integument could be attributable to the amalgamation of two integuments and support the role of ETT in the fusion of the outer and inner integuments in unitegmic ovules, a situation that could be widespread in other unitegmic species of angiosperms. © 2015 Consejo Superior de Investigaciones Cientificas. New Phytologist © 2015 New Phytologist Trust.

  7. First direct evidence of a vertebrate three-level trophic chain in the fossil record.

    PubMed

    Kriwet, Jürgen; Witzmann, Florian; Klug, Stefanie; Heidtke, Ulrich H J

    2008-01-22

    We describe the first known occurrence of a Permian shark specimen preserving two temnospondyl amphibians in its digestive tract as well as the remains of an acanthodian fish, which was ingested by one of the temnospondyls. This exceptional find provides for the first time direct evidence of a vertebrate three-level food chain in the fossil record with the simultaneous preservation of three trophic levels. Our analysis shows that small-sized Lower Permian xenacanthid sharks of the genus Triodus preyed on larval piscivorous amphibians. The recorded trophic interaction can be explained by the adaptation of certain xenacanthids to fully freshwater environments and the fact that in these same environments, large temnospondyls occupied the niche of modern crocodiles. This unique faunal association has not been documented after the Permian and Triassic. Therefore, this Palaeozoic three-level food chain provides strong and independent support for changes in aquatic trophic chain structures through time.

  8. First direct evidence of a vertebrate three-level trophic chain in the fossil record

    PubMed Central

    Kriwet, Jürgen; Witzmann, Florian; Klug, Stefanie; Heidtke, Ulrich H.J

    2007-01-01

    We describe the first known occurrence of a Permian shark specimen preserving two temnospondyl amphibians in its digestive tract as well as the remains of an acanthodian fish, which was ingested by one of the temnospondyls. This exceptional find provides for the first time direct evidence of a vertebrate three-level food chain in the fossil record with the simultaneous preservation of three trophic levels. Our analysis shows that small-sized Lower Permian xenacanthid sharks of the genus Triodus preyed on larval piscivorous amphibians. The recorded trophic interaction can be explained by the adaptation of certain xenacanthids to fully freshwater environments and the fact that in these same environments, large temnospondyls occupied the niche of modern crocodiles. This unique faunal association has not been documented after the Permian and Triassic. Therefore, this Palaeozoic three-level food chain provides strong and independent support for changes in aquatic trophic chain structures through time. PMID:17971323

  9. Travels with the Fossil Hunters

    NASA Astrophysics Data System (ADS)

    Whybrow, Peter J.

    2000-04-01

    Whether dodging bullets in West Africa, or rabid dogs in Pakistan, surviving yak-butter tea in Tibet, or eating raw fish in China, the life of a globe-trotting fossil hunter is often hazardous and always filled with surprises. Travels with the Fossil Hunters lets readers share the wonder, joys of discovery, and excitement of these intrepid scientists. Packed with more than 100 beautiful, full-color photographs, the volume takes readers on twelve expeditions to remote parts of the world in search of diverse fossil remains, from those of dinosaurs to human ancestors. Each expedition by paleontologists from London's Natural History Museum reveals the problems and challenges of working in extreme conditions, from the deserts of the Sahara and Yemen to the frozen wastes of Antarctica, from the mountains of India to the forests of Latvia. Along the way they also describe the paleontology and geology of the countries they visit and the scientific reasons for their expeditions. With a foreword from Sir David Attenborough and an introduction from Richard Fortey, this fascinating book will appeal to amateur and professional fossil hunters alike and to readers interested in accounts of exotic locales. Peter Whybrow is a research scientist at the Natural History Museum, London. His research interests include Arabian Miocene vertebrates, paleoclimates, paleogeography, and biotic diversity. He is senior editor with A. Hill of Fossil Vertebrates of Arabia (Yale University Press, New Haven, 1999).

  10. Influence of Microbial Biofilms on the Preservation of Primary Soft Tissue in Fossil and Extant Archosaurs

    PubMed Central

    Peterson, Joseph E.; Lenczewski, Melissa E.; Scherer, Reed P.

    2010-01-01

    Background Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. Methodology/Principal Findings This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Conclusions/Significance Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure. PMID:20967227

  11. Influence of microbial biofilms on the preservation of primary soft tissue in fossil and extant archosaurs.

    PubMed

    Peterson, Joseph E; Lenczewski, Melissa E; Scherer, Reed P

    2010-10-12

    Mineralized and permineralized bone is the most common form of fossilization in the vertebrate record. Preservation of gross soft tissues is extremely rare, but recent studies have suggested that primary soft tissues and biomolecules are more commonly preserved within preserved bones than had been presumed. Some of these claims have been challenged, with presentation of evidence suggesting that some of the structures are microbial artifacts, not primary soft tissues. The identification of biomolecules in fossil vertebrate extracts from a specimen of Brachylophosaurus canadensis has shown the interpretation of preserved organic remains as microbial biofilm to be highly unlikely. These discussions also propose a variety of potential mechanisms that would permit the preservation of soft-tissues in vertebrate fossils over geologic time. This study experimentally examines the role of microbial biofilms in soft-tissue preservation in vertebrate fossils by quantitatively establishing the growth and morphology of biofilms on extant archosaur bone. These results are microscopically and morphologically compared with soft-tissue extracts from vertebrate fossils from the Hell Creek Formation of southeastern Montana (Latest Maastrichtian) in order to investigate the potential role of microbial biofilms on the preservation of fossil bone and bound organic matter in a variety of taphonomic settings. Based on these analyses, we highlight a mechanism whereby this bound organic matter may be preserved. Results of the study indicate that the crystallization of microbial biofilms on decomposing organic matter within vertebrate bone in early taphonomic stages may contribute to the preservation of primary soft tissues deeper in the bone structure.

  12. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates

    NASA Astrophysics Data System (ADS)

    Iniesto, Miguel; Buscalioni, Ángela D.; Carmen Guerrero, M.; Benzerara, Karim; Moreira, David; López-Archilla, Ana I.

    2016-05-01

    Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses. Once placed on mats, the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas. The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye. The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies, the swim bladder and muscles in fish, and the bone marrow in frog legs. This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long time.

  13. Involvement of microbial mats in early fossilization by decay delay and formation of impressions and replicas of vertebrates and invertebrates

    PubMed Central

    Iniesto, Miguel; Buscalioni, Ángela D.; Carmen Guerrero, M.; Benzerara, Karim; Moreira, David; López-Archilla, Ana I.

    2016-01-01

    Microbial mats have been hypothesized to improve the persistence and the preservation of organic remains during fossilization processes. We test this hypothesis with long-term experiments (up to 5.5 years) using invertebrate and vertebrate corpses. Once placed on mats, the microbial community coats the corpses and forms a three-dimensional sarcophagus composed of microbial cells and exopolymeric substances (EPS). This coverage provides a template for i) moulding superficial features, resulting in negative impressions, and ii) generating replicas. The impressions of fly setulae, fish scales and frog skin verrucae are shaped mainly by small cells in an EPS matrix. Microbes also replicate delicate structures such as the three successive layers that compose a fish eye. The sarcophagus protects the body integrity, allowing the persistence of inner organs such as the ovaries and digestive apparatus in flies, the swim bladder and muscles in fish, and the bone marrow in frog legs. This study brings strong experimental evidence to the idea that mats favour metazoan fossilization by moulding, replicating and delaying decay. Rapid burial has classically been invoked as a mechanism to explain exceptional preservation. However, mats may play a similar role during early fossilization as they can preserve complex features for a long time. PMID:27162204

  14. Metabolic-morphologic characteristics of the integument of teleost fish with mature lymphocystis nodules.

    PubMed

    Spitzer, R H; Koch, E A; Reid, R B; Downing, S W

    1982-01-01

    Normal and virus-infected (lymphocystis disease) integument from five species of teleosts was examined by light and TEM autoradiography and SEM to establish metabolic-morphologic characteristics of integument with mature lymphocystis cells (LC's). LC's with numerous morphologic attributes of a late developmental stage showed highest incorporation of [3H]-thymidine in vivo (1-91 h) above the intracytoplasmic inclusion body (ci) with little radiolabel in nuclei, cytoplasmic icosahedral deoxyriboviruses (ICDV's) or capsule. Analysis by quantitative autoradiography revealed that the % total cell label in ci and cytoplasm did not vary appreciably from 1-91 h and was corroborative with morphologic criteria of maturity. A possibly phylogenetic difference was noted between teleosts, wherein normal integument showed uptake of [3H]-thymidine in vivo (1 h) by cells at all levels of the epidermis, and cyclostomes (Spitzer et al. 1979) wherein labeling was confined to the basal third of the epidermis. Among four infected teleost species, the mean diameters of the ICDV's measured under the same conditions, ranged from 259.5 nm to 290.0 nm with the mean for each species differing significantly (p less than 0.01) from each of the other means. Ruptured LC's were shown by TEM and SEM to have released ICDV's onto the lesions and integument. Various stages of LC degeneration, host response, and integumental repair processes were documented. An evaluation of labeling in vivo of the capsular matrix was compatible ([3H]-D-galactose greater than [3H]-L-lysine much greater than [3H]-L-fucose) with a glycosaminoglycan-protein structure.

  15. The evolution of early vertebrate photoreceptors.

    PubMed

    Collin, Shaun P; Davies, Wayne L; Hart, Nathan S; Hunt, David M

    2009-10-12

    Meeting the challenge of sampling an ancient aquatic landscape by the early vertebrates was crucial to their survival and would establish a retinal bauplan to be used by all subsequent vertebrate descendents. Image-forming eyes were under tremendous selection pressure and the ability to identify suitable prey and detect potential predators was thought to be one of the major drivers of speciation in the Early Cambrian. Based on the fossil record, we know that hagfishes, lampreys, holocephalans, elasmobranchs and lungfishes occupy critical stages in vertebrate evolution, having remained relatively unchanged over hundreds of millions of years. Now using extant representatives of these 'living fossils', we are able to piece together the evolution of vertebrate photoreception. While photoreception in hagfishes appears to be based on light detection and controlling circadian rhythms, rather than image formation, the photoreceptors of lampreys fall into five distinct classes and represent a critical stage in the dichotomy of rods and cones. At least four types of retinal cones sample the visual environment in lampreys mediating photopic (and potentially colour) vision, a sampling strategy retained by lungfishes, some modern teleosts, reptiles and birds. Trichromacy is retained in cartilaginous fishes (at least in batoids and holocephalans), where it is predicted that true scotopic (dim light) vision evolved in the common ancestor of all living gnathostomes. The capacity to discriminate colour and balance the tradeoff between resolution and sensitivity in the early vertebrates was an important driver of eye evolution, where many of the ocular features evolved were retained as vertebrates progressed on to land.

  16. Assessment of Plumage and Integument Condition in Dual-Purpose Breeds and Conventional Layers.

    PubMed

    Giersberg, Mona Franziska; Spindler, Birgit; Kemper, Nicole

    2017-12-12

    The assessment of plumage and integument condition in laying hens provides useful information about the occurrence of feather pecking and cannibalism. Although feather loss and skin injuries can result from mechanical abrasion or clinical diseases, they are valid animal-based indicators for behavioural disorders. This particularly applies to damage on the back and tail region of the hens. The aim was to evaluate the behaviour of dual-purpose breeds (Lohmann Dual, LD) and conventional layer hybrids (Lohmann Brown plus, LB+), and to compare a mere visual assessment (Visual S c oring, VSc), with a method involving the handling of individual animals (Hands-on S c oring, HSc). During weekly VSc, the hens' plumage and integument were scored on five body parts. HSc was carried out on seven study days applying the same scoring scale as for VSc. In LB+ hens, minor plumage damage started at 25 weeks and increased to the 71st week. With 99.5% of LB+ showing feather loss to a different extent, the back was the most severely affected body part. In contrast, only between 4.5% and 7% of LD showed minor feather loss at the end of the study. Integument damage reached a peak, with 6% affected LB+ in week 66. Injuries were found only sporadically in LD hens. Spearman's rho for the comparison of plumages scores given in VSc and HSc was >0.90 ( p < 0.01) in both hybrids for most of the tested body regions and weeks, except for the breast/belly region. However, VSc and HSc were equally valid for detecting skin injuries of all of the body regions ( r s > 0.86, p < 0.01). Damaging behaviour only occurred in the LB+ flocks, though both of the genetic strains were kept under the same conditions. The visual scoring method was suitable for detecting both plumage and integument damage.

  17. Contemporaneous trace and body fossils from a late Pleistocene Lakebed in Victoria, Australia, allow assessment of bias in the fossil record.

    PubMed

    Camens, Aaron Bruce; Carey, Stephen Paul

    2013-01-01

    The co-occurrence of vertebrate trace and body fossils within a single geological formation is rare and the probability of these parallel records being contemporaneous (i.e. on or near the same bedding plane) is extremely low. We report here a late Pleistocene locality from the Victorian Volcanic Plains in south-eastern Australia in which demonstrably contemporaneous, but independently accumulated vertebrate trace and body fossils occur. Bite marks from a variety of taxa are also present on the bones. This site provides a unique opportunity to examine the biases of these divergent fossil records (skeletal, footprints and bite marks) that sampled a single fauna. The skeletal record produced the most complete fauna, with the footprint record indicating a markedly different faunal composition with less diversity and the feeding traces suggesting the presence, amongst others, of a predator not represented by either the skeletal or footprint records. We found that the large extinct marsupial predator Thylacoleo was the only taxon apparently represented by all three records, suggesting that the behavioral characteristics of large carnivores may increase the likelihood of their presence being detected within a fossil fauna. In contrast, Diprotodon (the largest-ever marsupial) was represented only by trace fossils at this site and was absent from the site's skeletal record, despite its being a common and easily detected presence in late Pleistocene skeletal fossil faunas elsewhere in Australia. Small mammals absent from the footprint record for the site were represented by skeletal fossils and bite marks on bones.

  18. Contemporaneous Trace and Body Fossils from a Late Pleistocene Lakebed in Victoria, Australia, Allow Assessment of Bias in the Fossil Record

    PubMed Central

    Camens, Aaron Bruce; Carey, Stephen Paul

    2013-01-01

    The co-occurrence of vertebrate trace and body fossils within a single geological formation is rare and the probability of these parallel records being contemporaneous (i.e. on or near the same bedding plane) is extremely low. We report here a late Pleistocene locality from the Victorian Volcanic Plains in south-eastern Australia in which demonstrably contemporaneous, but independently accumulated vertebrate trace and body fossils occur. Bite marks from a variety of taxa are also present on the bones. This site provides a unique opportunity to examine the biases of these divergent fossil records (skeletal, footprints and bite marks) that sampled a single fauna. The skeletal record produced the most complete fauna, with the footprint record indicating a markedly different faunal composition with less diversity and the feeding traces suggesting the presence, amongst others, of a predator not represented by either the skeletal or footprint records. We found that the large extinct marsupial predator Thylacoleo was the only taxon apparently represented by all three records, suggesting that the behavioral characteristics of large carnivores may increase the likelihood of their presence being detected within a fossil fauna. In contrast, Diprotodon (the largest-ever marsupial) was represented only by trace fossils at this site and was absent from the site's skeletal record, despite its being a common and easily detected presence in late Pleistocene skeletal fossil faunas elsewhere in Australia. Small mammals absent from the footprint record for the site were represented by skeletal fossils and bite marks on bones. PMID:23301008

  19. Vestibular blueprint in early vertebrates.

    PubMed

    Straka, Hans; Baker, Robert

    2013-11-19

    Central vestibular neurons form identifiable subgroups within the boundaries of classically outlined octavolateral nuclei in primitive vertebrates that are distinct from those processing lateral line, electrosensory, and auditory signals. Each vestibular subgroup exhibits a particular morpho-physiological property that receives origin-specific sensory inputs from semicircular canal and otolith organs. Behaviorally characterized phenotypes send discrete axonal projections to extraocular, spinal, and cerebellar targets including other ipsi- and contralateral vestibular nuclei. The anatomical locations of vestibuloocular and vestibulospinal neurons correlate with genetically defined hindbrain compartments that are well conserved throughout vertebrate evolution though some variability exists in fossil and extant vertebrate species. The different vestibular subgroups exhibit a robust sensorimotor signal processing complemented with a high degree of vestibular and visual adaptive plasticity.

  20. The characters of Palaeozoic jawed vertebrates

    PubMed Central

    Brazeau, Martin D; Friedman, Matt

    2014-01-01

    Newly discovered fossils from the Silurian and Devonian periods are beginning to challenge embedded perceptions about the origin and early diversification of jawed vertebrates (gnathostomes). Nevertheless, an explicit cladistic framework for the relationships of these fossils relative to the principal crown lineages of the jawed vertebrates (osteichthyans: bony fishes and tetrapods; chondrichthyans: sharks, batoids, and chimaeras) remains elusive. We critically review the systematics and character distributions of early gnathostomes and provide a clearly stated hierarchy of synapomorphies covering the jaw-bearing stem gnathostomes and osteichthyan and chondrichthyan stem groups. We show that character lists, designed to support the monophyly of putative groups, tend to overstate their strength and lack cladistic corroboration. By contrast, synapomorphic hierarchies are more open to refutation and must explicitly confront conflicting evidence. Our proposed synapomorphy scheme is used to evaluate the status of the problematic fossil groups Acanthodii and Placodermi, and suggest profitable avenues for future research. We interpret placoderms as a paraphyletic array of stem-group gnathostomes, and suggest what we regard as two equally plausible placements of acanthodians: exclusively on the chondrichthyan stem, or distributed on both the chondrichthyan and osteichthyan stems. PMID:25750460

  1. Palynologically calibrated vertebrate record from North Dakota consistent with abrupt dinosaur extinction at the Cretaceous-Tertiary boundary

    USGS Publications Warehouse

    Pearson, D.A.; Schaefer, T.; Johnson, K.R.; Nichols, D.J.

    2001-01-01

    New data from 17 Cretaceous-Tertiary (K-T) boundary sections and 53 vertebrate sites in the Hell Creek and Fort Union Formations in southwestern North Dakota document a 1.76 m barren interval between the highest Cretaceous vertebrate fossils and the palynologically recognized K-T boundary. The boundary is above the formational contact at 15 localities and coincident with it at two, demonstrating that the formational contact is diachronous. Dinosaurs are common in the highest Cretaceous vertebrate samples and a partial dinosaur skeleton in the Fort Union Formation is the highest recorded Cretaceous vertebrate fossil in this area.

  2. Deep proteome analysis of gerontoplasts from the inner integument of developing seeds of Jatropha curcas.

    PubMed

    Shah, Mohibullah; Soares, Emanoella L; Lima, Magda L B; Pinheiro, Camila B; Soares, Arlete A; Domont, Gilberto B; Nogueira, Fabio C S; Campos, Francisco A P

    2016-06-30

    The inner integument of Jatropha curcas seeds is a non-photosynthetic tissue that acts primarily as a conduit for the delivery of nutrients to the embryo and endosperm. In this study we performed a histological and transmission electron microscopy analysis of the inner integument in stages prior to fertilization to 25days after pollination, to establish the structural changes associated with the plastid to gerontoplast transition. This study showed that plastids are subjected to progressive changes, which include the dismantling of the internal membrane system, matrix degradation and the formation of stromule-derived vesicles. A proteome analysis of gerontoplasts isolated from the inner integument at 25days after pollination, resulted in the identification of 1923 proteins, which were involved in a myriad of metabolic functions, such as synthesis of amino acids and fatty acids. Among the identified proteins, were also a number of hydrolases (peptidases, lipases and carbohydrases), which presumably are involved in the ordered dismantling of this organelle to provide additional sources of nutrients for the growing embryo and endosperm. The dataset we provide here may provide a foundation for the study of the proteome changes associated with the plastid to gerontoplast transition in non-photosynthetic tissues. We describe ultrastructural features of gerontoplasts isolated from the inner integument of developing seeds of Jatropha curcas, together with a deep proteome analysis of these gerontoplasts. This article explores a new aspect of the biology of plastids, namely the ultrastructural and proteome changes associated with the transition plastid to gerontoplast in a non-photosynthetic tissue. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Fossil evidence and stages of elongation of the Giraffa camelopardalis neck

    PubMed Central

    Danowitz, Melinda; Vasilyev, Aleksandr; Kortlandt, Victoria; Solounias, Nikos

    2015-01-01

    Several evolutionary theories have been proposed to explain the adaptation of the long giraffe neck; however, few studies examine the fossil cervical vertebrae. We incorporate extinct giraffids, and the okapi and giraffe cervical vertebral specimens in a comprehensive analysis of the anatomy and elongation of the neck. We establish and evaluate 20 character states that relate to general, cranial and caudal vertebral lengthening, and calculate a length-to-width ratio to measure the relative slenderness of the vertebrae. Our sample includes cervical vertebrae (n=71) of 11 taxa representing all seven subfamilies. We also perform a computational comparison of the C3 of Samotherium and Giraffa camelopardalis, which demonstrates that cervical elongation occurs disproportionately along the cranial–caudal vertebral axis. Using the morphological characters and calculated ratios, we propose stages in cervical lengthening, which are supported by the mathematical transformations using fossil and extant specimens. We find that cervical elongation is anisometric and unexpectedly precedes Giraffidae. Within the family, cranial vertebral elongation is the first lengthening stage observed followed by caudal vertebral elongation, which accounts for the extremely long neck of the giraffe. PMID:26587249

  4. Hydrodynamic role of fish squamosal integument as an analog of the surfaces directly formed by the turbulent flow. Report 2: Hydrodynamic function of squamosal integument

    NASA Technical Reports Server (NTRS)

    Kudryashov, A. F.; Barsukov, V. V.

    1980-01-01

    The stream flowing round the slowly swimming squama free fish can be laminized with the aid of the external slime coat alone. The slime of the fish with well developed squamae can laminize the stream together with the squamatic integument. Adjustments preventing a loss of the slime during laminization are better developed in the fastest squama free fishes.

  5. Pleistocene vertebrates of the Yukon Territory

    NASA Astrophysics Data System (ADS)

    Harington, C. R.

    2011-08-01

    Unglaciated parts of the Yukon constitute one of the most important areas in North America for yielding Pleistocene vertebrate fossils. Nearly 30 vertebrate faunal localities are reviewed spanning a period of about 1.6 Ma (million years ago) to the close of the Pleistocene some 10 000 BP (radiocarbon years before present, taken as 1950). The vertebrate fossils represent at least 8 species of fishes, 1 amphibian, 41 species of birds and 83 species of mammals. Dominant among the large mammals are: steppe bison ( Bison priscus), horse ( Equus sp.), woolly mammoth ( Mammuthus primigenius), and caribou ( Rangifer tarandus) - signature species of the Mammoth Steppe fauna ( Fig. 1), which was widespread from the British Isles, through northern Europe, and Siberia to Alaska, Yukon and adjacent Northwest Territories. The Yukon faunas extend from Herschel Island in the north to Revenue Creek in the south and from the Alaskan border in the west to Ketza River in the east. The Yukon holds evidence of the earliest-known people in North America. Artifacts made from bison, mammoth and caribou bones from Bluefish Caves, Old Crow Basin and Dawson City areas show that people had a substantial knowledge of making and using bone tools at least by 25 000 BP, and possibly as early as 40 000 BP. A suggested chronological sequence of Yukon Pleistocene vertebrates ( Table 1) facilitates comparison of selected faunas and indicates the known duration of various taxa.

  6. Late Cretaceous terrestrial vertebrate fauna, North Slope, Alaska

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemens, W.A.; Allison, C.W.

    1985-01-01

    Closely related terrestrial vertebrates in Cretaceous mid-latitude (30/sup 0/ to 50/sup 0/) faunas of North America and Asia as well as scattered occurrences of footprints and skin impressions suggested that in the Late Mesozoic the Alaskan North Slope supported a diverse fauna. In 1961 abundant skeletal elements of Cretaceous, Alaskan dinosaurs (hadrosaurids) were discovered by the late R.L. Liscomb. This material is being described by K.L. Davies. Additional fossils collected by E.M. Brouwers and her associates include skeletal elements of hadrosaurid and carnosaurian (.tyrannosaurid) dinosaurs and other vertebrates. The fossil locality on the North Slope is not at about 70/supmore » 0/N. In the Late Cretaceous the members of this fauna were subject to the daylight regime and environment at a paleolatitude closer to 80/sup 0/N. Current hypotheses attributing extinctions of dinosaurs and some other terrestrial vertebrates to impact of an extraterrestrial object cite periods of darkness, decreased temperature (possibly followed by extreme warming) and acid rain as the direct causes of their demise. Unless members of this North Slope fauna undertook long-distance migrations, their high latitude occurrence indicates groups of dinosaurs and other terrestrial vertebrates regularly tolerated months of darkness.« less

  7. Possible Protective Effect of Hydroxychloroquine on Retarding the Occurrence of Integument Damage in Lupus: Data from LUMINA, a Multiethnic Cohort

    PubMed Central

    Pons-Estel, Guillermo J.; Alarcón, Graciela S.; González, Luis A.; Zhang, Jie; Vilá, Luis M.; Reveille, John D.; McGwin, Gerald

    2010-01-01

    Objective To determine the features predictive of time-to-integument damage in patients with systemic lupus erythematosus (SLE) from a multiethnic cohort (LUMINA). Methods SLE LUMINA patients (n=580), age ≥16 years, disease duration ≤5 years at baseline (T0), of African American, Hispanic and Caucasian ethnicity were studied. Integument damage was defined per the SLICC damage index (scarring alopecia, extensive skin scarring and skin ulcers lasting at least six months); factors associated with time-to-its occurrence were examined by Cox proportional univariable and multivariable (main model) hazards regression analyses. Two alternative models were also examined; in model 1 all patients, regardless of when integument damage occurred (n=94), were included; in model 2 a time-varying approach (GEE) was employed. Results Thirty-nine (6.7%) of 580 patients developed integument damage over a mean (SD) total disease duration of 5.9 (3.7) years and were included in the main multivariable regression model. After adjusting for discoid rash, nailfold infarcts, photosensitivity and Raynaud’s phenomenon (significant in the univariable analyses), disease activity over time [Hazard ratio (HR)=1.17; 95% Confidence interval (CI) 1.09–1.26)] was associated with a shorter time-to-integument damage whereas hydroxychloroquine use (HR=0.23, 95% CI 0.12–0.47) and Texan-Hispanic (HR=0.35; 95% CI 0.14–0.87) and Caucasian ethnicities (HR=0.37; 95% CI 0.14–0.99) were associated with a longer time. Results of the alternative models were consistent with those of the main model albeit in model 2 the association with hydroxychloroquine was not significant. Conclusions Our data indicate that hydroxychloroquine use is possibly associated with a delay in integument damage development in patients with SLE. PMID:20391486

  8. Integument coloration signals reproductive success, heterozygosity, and antioxidant levels in chick-rearing black-legged kittiwakes

    NASA Astrophysics Data System (ADS)

    Leclaire, Sarah; White, Joël; Arnoux, Emilie; Faivre, Bruno; Vetter, Nathanaël; Hatch, Scott A.; Danchin, Étienne

    2011-09-01

    Carotenoid pigments are important for immunity and as antioxidants, and carotenoid-based colors are believed to provide honest signals of individual quality. Other colorless but more efficient antioxidants such as vitamins A and E may protect carotenoids from bleaching. Carotenoid-based colors have thus recently been suggested to reflect the concentration of such colorless antioxidants, but this has rarely been tested. Furthermore, although evidence is accruing for multiple genetic criteria for mate choice, carotenoid-based colors have rarely been shown to reflect both phenotypic and genetic quality. In this study, we investigated whether gape, tongue, eye-ring, and bill coloration of chick-rearing black-legged kittiwakes Rissa tridactyla reflected circulating levels of carotenoids and vitamins A and E. We further investigated whether integument coloration reflected phenotypic (body condition and fledging success) and genetic quality (heterozygosity). We found that the coloration of fleshy integuments was correlated with carotenoid and vitamin A levels and fledging success but only in males. Furthermore, the coloration of tongue and eye-ring was correlated with heterozygosity in both males and females. Integument colors might therefore be reliable signals of individual quality used by birds to adjust their parental care during the chick-rearing period.

  9. Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN.

    PubMed

    Enugutti, Balaji; Schneitz, Kay

    2013-01-02

    The coordination of growth within a tissue layer is of critical importance for tissue morphogenesis. For example, cells within the epidermis undergo stereotypic cell divisions that are oriented along the plane of the layer (planar growth), thereby propagating the layered epidermal structure. Little is known about the developmental control that regulates such planar growth in plants. Recent evidence suggested that the Arabidopsis AGC VIII protein kinase UNICORN (UCN) maintains planar growth by suppressing the formation of ectopic multicellular protrusions in several floral tissues including integuments. In the current model UCN controls this process during integument development by directly interacting with the ABERRANT TESTA SHAPE (ATS) protein, a member of the KANADI (KAN) family of transcription factors, thereby repressing its activity. Here we report on the further characterization of the UCN mechanism. Phenotypic analysis of flowers of ucn-1 plants impaired in floral homeotic gene activity revealed that any of the four floral whorls could produce organs carrying ucn-1 protrusions. The ectopic outgrowths of ucn integuments did not accumulate detectable signals of the auxin and cytokinin reporters DR5rev::GFP and ARR5::GUS, respectively. Furthermore, wild-type and ucn-1 seedlings showed similarly strong callus formation upon in vitro culture on callus-inducing medium. We also show that ovules of ucn-1 plants carrying the dominant ats allele sk21-D exhibited more pronounced protrusion formation. Finally ovules of ucn-1 ett-1 double mutants and ucn-1 ett-1 arf4-1 triple mutants displayed an additive phenotype. These data deepen the molecular insight into the UCN-mediated control of planar growth during integument development. The presented evidence indicates that UCN downstream signaling does not involve the control of auxin or cytokinin homeostasis. The results also reveal that UCN interacts with ATS independently of an ATS/ETT complex required for integument

  10. Genetic analysis of ectopic growth suppression during planar growth of integuments mediated by the Arabidopsis AGC protein kinase UNICORN

    PubMed Central

    2013-01-01

    Background The coordination of growth within a tissue layer is of critical importance for tissue morphogenesis. For example, cells within the epidermis undergo stereotypic cell divisions that are oriented along the plane of the layer (planar growth), thereby propagating the layered epidermal structure. Little is known about the developmental control that regulates such planar growth in plants. Recent evidence suggested that the Arabidopsis AGC VIII protein kinase UNICORN (UCN) maintains planar growth by suppressing the formation of ectopic multicellular protrusions in several floral tissues including integuments. In the current model UCN controls this process during integument development by directly interacting with the ABERRANT TESTA SHAPE (ATS) protein, a member of the KANADI (KAN) family of transcription factors, thereby repressing its activity. Here we report on the further characterization of the UCN mechanism. Results Phenotypic analysis of flowers of ucn-1 plants impaired in floral homeotic gene activity revealed that any of the four floral whorls could produce organs carrying ucn-1 protrusions. The ectopic outgrowths of ucn integuments did not accumulate detectable signals of the auxin and cytokinin reporters DR5rev::GFP and ARR5::GUS, respectively. Furthermore, wild-type and ucn-1 seedlings showed similarly strong callus formation upon in vitro culture on callus-inducing medium. We also show that ovules of ucn-1 plants carrying the dominant ats allele sk21-D exhibited more pronounced protrusion formation. Finally ovules of ucn-1 ett-1 double mutants and ucn-1 ett-1 arf4-1 triple mutants displayed an additive phenotype. Conclusions These data deepen the molecular insight into the UCN-mediated control of planar growth during integument development. The presented evidence indicates that UCN downstream signaling does not involve the control of auxin or cytokinin homeostasis. The results also reveal that UCN interacts with ATS independently of an ATS

  11. Macroevolutionary developmental biology: Embryos, fossils, and phylogenies.

    PubMed

    Organ, Chris L; Cooper, Lisa Noelle; Hieronymus, Tobin L

    2015-10-01

    The field of evolutionary developmental biology is broadly focused on identifying the genetic and developmental mechanisms underlying morphological diversity. Connecting the genotype with the phenotype means that evo-devo research often considers a wide range of evidence, from genetics and morphology to fossils. In this commentary, we provide an overview and framework for integrating fossil ontogenetic data with developmental data using phylogenetic comparative methods to test macroevolutionary hypotheses. We survey the vertebrate fossil record of preserved embryos and discuss how phylogenetic comparative methods can integrate data from developmental genetics and paleontology. Fossil embryos provide limited, yet critical, developmental data from deep time. They help constrain when developmental innovations first appeared during the history of life and also reveal the order in which related morphologies evolved. Phylogenetic comparative methods provide a powerful statistical approach that allows evo-devo researchers to infer the presence of nonpreserved developmental traits in fossil species and to detect discordant evolutionary patterns and processes across levels of biological organization. © 2015 Wiley Periodicals, Inc.

  12. Fossilization of melanosomes via sulfurization.

    PubMed

    McNamara, Maria E; van Dongen, Bart E; Lockyer, Nick P; Bull, Ian D; Orr, Patrick J

    2016-05-01

    Fossil melanin granules (melanosomes) are an important resource for inferring the evolutionary history of colour and its functions in animals. The taphonomy of melanin and melanosomes, however, is incompletely understood. In particular, the chemical processes responsible for melanosome preservation have not been investigated. As a result, the origins of sulfur-bearing compounds in fossil melanosomes are difficult to resolve. This has implications for interpretations of original colour in fossils based on potential sulfur-rich phaeomelanosomes. Here we use pyrolysis gas chromatography mass spectrometry (Py-GCMS), fourier transform infrared spectroscopy (FTIR) and time of flight secondary ion mass spectrometry (ToF-SIMS) to assess the mode of preservation of fossil microstructures, confirmed as melanosomes based on the presence of melanin, preserved in frogs from the Late Miocene Libros biota (NE Spain). Our results reveal a high abundance of organosulfur compounds and non-sulfurized fatty acid methyl esters in both the fossil tissues and host sediment; chemical signatures in the fossil tissues are inconsistent with preservation of phaeomelanin. Our results reflect preservation via the diagenetic incorporation of sulfur, i.e. sulfurization (natural vulcanization), and other polymerization processes. Organosulfur compounds and/or elevated concentrations of sulfur have been reported from melanosomes preserved in various invertebrate and vertebrate fossils and depositional settings, suggesting that preservation through sulfurization is likely to be widespread. Future studies of sulfur-rich fossil melanosomes require that the geochemistry of the host sediment is tested for evidence of sulfurization in order to constrain interpretations of potential phaeomelanosomes and thus of original integumentary colour in fossils.

  13. Integument coloration signals reproductive success, heterozygosity, and antioxidant levels in chick-rearing black-legged kittiwakes

    USGS Publications Warehouse

    Leclaire, S.; White, J.; Arnoux, E.; Faivre, B.; Vetter, N.; Hatch, Shyla A.; Danchin, E.

    2011-01-01

    Carotenoid pigments are important for immunity and as antioxidants, and carotenoid-based colors are believed to provide honest signals of individual quality. Other colorless but more efficient antioxidants such as vitamins A and E may protect carotenoids from bleaching. Carotenoid-based colors have thus recently been suggested to reflect the concentration of such colorless antioxidants, but this has rarely been tested. Furthermore, although evidence is accruing for multiple genetic criteria for mate choice, carotenoid-based colors have rarely been shown to reflect both phenotypic and genetic quality. In this study, we investigated whether gape, tongue, eye-ring, and bill coloration of chick-rearing black-legged kittiwakes Rissa tridactyla reflected circulating levels of carotenoids and vitamins A and E. We further investigated whether integument coloration reflected phenotypic (body condition and fledging success) and genetic quality (heterozygosity). We found that the coloration of fleshy integuments was correlated with carotenoid and vitamin A levels and fledging success but only in males. Furthermore, the coloration of tongue and eye-ring was correlated with heterozygosity in both males and females. Integument colors might therefore be reliable signals of individual quality used by birds to adjust their parental care during the chick-rearing period. ?? Springer-Verlag 2011.

  14. Investigating the stratigraphy and palaeoenvironments for a suite of newly discovered mid-Cretaceous vertebrate fossil-localities in the Winton Formation, Queensland, Australia

    NASA Astrophysics Data System (ADS)

    Tucker, Ryan T.; Roberts, Eric M.; Darlington, Vikie; Salisbury, Steven W.

    2017-08-01

    The Winton Formation of central Queensland is recognized as a quintessential source of mid-Cretaceous terrestrial faunas and floras in Australia. However, sedimentological investigations linking fossil assemblages and palaeoenvironments across this unit remain limited. The intent of this study was to interpret depositional environments and improve stratigraphic correlations between multiple fossil localities within the preserved Winton Formation in the Eromanga Basin, including Isisford, Lark Quarry, and Bladensburg National Park. Twenty-three facies and six repeated facies associations were documented, indicating a mosaic of marginal marine to inland alluvial depositional environments. These developed synchronously with the final regression of the Eromanga Seaway from central Australia during the late Albian-early Turonian. Investigations of regional- and local-scale structural features and outcrop, core and well analysis were combined with detrital zircon provenance signatures to help correlate stratigraphy and vertebrate faunas across the basin. Significant palaeoenvironmental differences exist between the lower and upper portions of the preserved Winton Formation, warranting informal subdivisions; a lower tidally influenced fluvial-deltaic member and an upper inland alluvial member. This work further demonstrates that the Isisford fauna is part of the lower member of the preserved Winton Formation; whereas, fossil localities around Winton, including Lark Quarry and Bladensburg National Park, are part of the upper member of the Winton Formation. These results permit a more meaningful framework for both regional and global comparisons of the Winton flora and fauna.

  15. Insect diversity in the fossil record

    NASA Technical Reports Server (NTRS)

    Labandeira, C. C.; Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1993-01-01

    Insects possess a surprisingly extensive fossil record. Compilation of the geochronologic ranges of insect families demonstrates that their diversity exceeds that of preserved vertebrate tetrapods through 91 percent of their evolutionary history. The great diversity of insects was achieved not by high origination rates but rather by low extinction rates comparable to the low rates of slowly evolving marine invertebrate groups. The great radiation of modern insects began 245 million years ago and was not accelerated by the expansion of angiosperms during the Cretaceous period. The basic trophic machinery of insects was in place nearly 100 million years before angiosperms appeared in the fossil record.

  16. Correlation and taphonomy of late Cretaceous vertebrate localities in Fruitland and Kirtland formations, San Juan basin, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hunt, A.P.

    Most fossil vertebrates in the Fruitland and Kirtland formations occur in two narrow stratigraphic intervals. The upper interval comprises the approximately 30 m-thick Naashoibito Member of the Kirtland formation. Fossiliferous localities within this interval are physically correlatable within the small and continuous outcrop belt of this unit. The lower fossiliferous interval comprises a 20 m-thick sequence between the stratigraphically highest, thick coal bed (1 m thick) in the Fruitland Formation and distinctive brown tabular sandstones in the lower Kirtland formation, which differ in color and geometry from adjacent sandstone bodies. Localities within this interval occur in physically discontinuous outcrops, principallymore » between Hunter Wash in the northwest and Coal Creek in the southeast. These localities can be correlated utilizing the upper Fruitland coal, the lower Kirtland sandstones, and a series of volcanic ashes. Measurement of 38 stratigraphic sections and examination of more than 100 subsurface geophysical logs has allowed detailed correlation between the principal areas of vertebrate-fossil occurrences in Hunter Wash and the Fossil Forest. The occurrence of fossils in the Naashoibito is related to energy of depositional environment. Farther north, coarser deposits of the McDermott Member of the Animas Formation, which represent proximal facies of the Naashoibito, lack abundant fossil vertebrates. The geographic extent of vertebrate fossils in the upper Fruitland and lower Kirtland coincides with the extent of the tabular brown sandstones in the lower Kirtland and is related to Laramide downwarping of the central San Juan basin.« less

  17. Gibberellins Regulate Ovule Integument Development by Interfering with the Transcription Factor ATS1[OPEN

    PubMed Central

    Sacristan, Raquel

    2016-01-01

    Gibberellins (GAs) are plant hormones that regulate most plant life cycle aspects, including flowering and fruit development. Here, we demonstrate the implication of GAs in ovule development. DELLA proteins, negative GA response regulators, act as positive factors for ovule integument development in a mechanism that involves transcription factor ABERRANT TESTA SHAPE (ATS). The seeds of the della global mutant, a complete loss-of-function of DELLA, and the ats-1 mutant are remarkably similar, with a round shape, a disorganized testa, and viviparism. These defects are the result of an alteration in integuments that fail to fully develop and are shorter than in wild-type plants. ats-1 also shows some GA-related phenotypes, for example, higher germination rates and early flowering. In fact, ats-1 has elevated GA levels due to the activation of GA biosynthesis genes, which indicates that ATS inhibits GA biosynthesis. Moreover, DELLAs and ATS proteins interact, which suggests the formation of a transcriptional complex that regulates the expression of genes involved in integument growth. Therefore, the repression of GA biosynthesis by ATS would result in the stabilization of DELLAs to ensure correct ATS-DELLA complex formation. The requirement of both activities to coordinate proper ovule development strongly argues that the ATS-DELLA complex acts as a key molecular factor. This work provides the first evidence for a role of GAs in ovule and seed development. PMID:27794102

  18. Magnetic resonance spectroscopy and imaging for the study of fossils.

    PubMed

    Giovannetti, Giulio; Guerrini, Andrea; Salvadori, Piero A

    2016-07-01

    Computed tomography (CT) has long been used for investigating palaeontological specimens, as it is a nondestructive technique which avoids the need to dissolve or ionize the fossil sample. However, magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) have recently gained ground as analytical tools for examination of palaeontological samples, by nondestructively providing information about the structure and composition of fossils. While MRI techniques are able to reveal the three-dimensional geometry of the trace fossil, MRS can provide information on the chemical composition of the samples. The multidimensional nature of MR (magnetic resonance) signals has potential to provide rich three-dimensional data on the palaeontological specimens and also to help in elucidating paleopathological and paleoecological questions. In this work the verified applications and the emerging uses of MRI and MRS in paleontology are reviewed, with particular attention to fossil spores, fossil plants, ambers, fossil invertebrates, and fossil vertebrate studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Scenes from the past: initial investigation of early jurassic vertebrate fossils with multidetector CT.

    PubMed

    Bolliger, Stephan A; Ross, Steffen; Thali, Michael J; Hostettler, Bernhard; Menkveld-Gfeller, Ursula

    2012-01-01

    The study of fossils permits the reconstruction of past life on our planet and enhances our understanding of evolutionary processes. However, many fossils are difficult to recognize, being encased in a lithified matrix whose tedious removal is required before examination is possible. The authors describe the use of multidetector computed tomography (CT) in locating, identifying, and examining fossil remains of crocodilians (Mesosuchia) embedded in hard shale, all without removing the matrix. In addition, they describe how three-dimensional (3D) reformatted CT images provided details that were helpful for extraction and preparation. Multidetector CT can help experienced paleontologists localize and characterize fossils in the matrix of a promising rock specimen in a nondestructive manner. Moreover, with its capacity to generate highly accurate 3D images, multidetector CT can help determine whether the fossils warrant extraction and can assist in planning the extraction process. Thus, multidetector CT may well become an invaluable tool in the field of paleoradiology.

  20. Vertebrate paleontology, stratigraphy, and paleohydrology of Tule Springs Fossil Beds National Monument, Nevada (USA)

    USGS Publications Warehouse

    Springer, Kathleen; Pigati, Jeffery S.; Scott, Eric

    2017-01-01

    Tule Springs Fossil Beds National Monument (TUSK) preserves 22,650 acres of the upper Las Vegas Wash in the northern Las Vegas Valley (Nevada, USA). TUSK is home to extensive and stratigraphically complex groundwater discharge (GWD) deposits, called the Las Vegas Formation, which represent springs and desert wetlands that covered much of the valley during the late Quaternary. The GWD deposits record hydrologic changes that occurred here in a dynamic and temporally congruent response to abrupt climatic oscillations over the last ~300 ka (thousands of years). The deposits also entomb the Tule Springs Local Fauna (TSLF), one of the most significant late Pleistocene (Rancholabrean) vertebrate assemblages in the American Southwest. The TSLF is both prolific and diverse, and includes a large mammal assemblage dominated by Mammuthus columbi and Camelops hesternus. Two (and possibly three) distinct species of Equus, two species of Bison, Panthera atrox, Smilodon fatalis, Canis dirus, Megalonyx jeffersonii, and Nothrotheriops shastensis are also present, and newly recognized faunal components include micromammals, amphibians, snakes, and birds. Invertebrates, plant macrofossils, and pollen also occur in the deposits and provide important and complementary paleoenvironmental information. This field compendium highlights the faunal assemblage in the classic stratigraphic sequences of the Las Vegas Formation within TUSK, emphasizes the significant hydrologic changes that occurred in the area during the recent geologic past, and examines the subsequent and repeated effect of rapid climate change on the local desert wetland ecosystem.

  1. Passive water collection with the integument: mechanisms and their biomimetic potential.

    PubMed

    Comanns, Philipp

    2018-05-22

    Several mechanisms of water acquisition have evolved in animals living in arid habitats to cope with limited water supply. They enable access to water sources such as rain, dew, thermally facilitated condensation on the skin, fog, or moisture from a damp substrate. This Review describes how a significant number of animals - in excess of 39 species from 24 genera - have acquired the ability to passively collect water with their integument. This ability results from chemical and structural properties of the integument, which, in each species, facilitate one or more of six basic mechanisms: increased surface wettability, increased spreading area, transport of water over relatively large distances, accumulation and storage of collected water, condensation, and utilization of gravity. Details are described for each basic mechanism. The potential for bio-inspired improvement of technical applications has been demonstrated in many cases, in particular for several wetting phenomena, fog collection and passive, directional transport of liquids. Also considered here are potential applications in the fields of water supply, lubrication, heat exchangers, microfluidics and hygiene products. These present opportunities for innovations, not only in product functionality, but also for fabrication processes, where resources and environmental impact can be reduced. © 2018. Published by The Company of Biologists Ltd.

  2. Correlation between Hox code and vertebral morphology in archosaurs.

    PubMed

    Böhmer, Christine; Rauhut, Oliver W M; Wörheide, Gert

    2015-07-07

    The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns.

  3. Correlation between Hox code and vertebral morphology in archosaurs

    PubMed Central

    Böhmer, Christine; Rauhut, Oliver W. M.; Wörheide, Gert

    2015-01-01

    The relationship between developmental genes and phenotypic variation is of central interest in evolutionary biology. An excellent example is the role of Hox genes in the anteroposterior regionalization of the vertebral column in vertebrates. Archosaurs (crocodiles, dinosaurs including birds) are highly variable both in vertebral morphology and number. Nevertheless, functionally equivalent Hox genes are active in the axial skeleton during embryonic development, indicating that the morphological variation across taxa is likely owing to modifications in the pattern of Hox gene expression. By using geometric morphometrics, we demonstrate a correlation between vertebral Hox code and quantifiable vertebral morphology in modern archosaurs, in which the boundaries between morphological subgroups of vertebrae can be linked to anterior Hox gene expression boundaries. Our findings reveal homologous units of cervical vertebrae in modern archosaurs, each with their specific Hox gene pattern, enabling us to trace these homologies in the extinct sauropodomorph dinosaurs, a group with highly variable vertebral counts. Based on the quantifiable vertebral morphology, this allows us to infer the underlying genetic mechanisms in vertebral evolution in fossils, which represents not only an important case study, but will lead to a better understanding of the origin of morphological disparity in recent archosaur vertebral columns. PMID:26085583

  4. Paleoenvironmental model for the occurrence of vertebrate fossils in Carboniferous coal-bearing strata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hook, R.W.

    An interdisciplinary investigation was undertaken to identify the paleoenvironmental factors that governed the accumulation and preservation of a prolific Upper Carboniferous vertebrate assemblage known from a cannel coal underlying the Upper Freeport coal in the Diamond Coal Mine of Linton, Ohio. Stratigraphic data from previous work and field studies within an approximately 15 km radius of the fossil locality show that the channel occupies a 10 km long, north-northwest trending abandoned channel that occurs within a sandstone-dominated, fining-upwards fluvial sequence. Petrographic analysis of samples from eight sites along the course of the abandoned channel establishes that the cannel is composedmore » primarily of spores and very fine-grained micrinitic groundmass. Abundant primary pyrite and the absence of well-reserved humic materials suggest that the fossiliferous cannel originated as a sapropelic peat within a non-acidic anaerobic environment. Skeletal remains of animals are well preserved with little to no mineralogic alteration. Outside the abandoned channel in the Linton area and to the north, Upper Freeport coal averages 1 m in thickness. To the south, the Upper Freeport horizon is represented by interbedded flint clays and freshwater limestones. These sediment distribution patterns reflect the synsedimentary influence of the Transylvania Fault Zone, a previously documented, basement-controlled feature which trends east-west through the study area. Contemporaneous movement along this fault produced a topographic high in the Linton area which was locally entrenched by northward-flowing rivers. Upper Freeport swamps developed on this upthrown surface whereas carbonate lakes formed to the south of the fault zone in topographically lower areas.« less

  5. Vertebrate paleontological exploration of the Upper Cretaceous succession in the Dakhla and Kharga Oases, Western Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Sallam, Hesham M.; O'Connor, Patrick M.; Kora, Mahmoud; Sertich, Joseph J. W.; Seiffert, Erik R.; Faris, Mahmoud; Ouda, Khaled; El-Dawoudi, Iman; Saber, Sara; El-Sayed, Sanaa

    2016-05-01

    The Campanian and Maastrichtian stages are very poorly documented time intervals in Africa's record of terrestrial vertebrate evolution. Upper Cretaceous deposits exposed in southern Egypt, near the Dakhla and Kharga Oases in the Western Desert, preserve abundant vertebrate fossils in nearshore marine environments, but have not yet been the focus of intensive collection and description. Our recent paleontological work in these areas has resulted in the discovery of numerous new vertebrate fossil-bearing localities within the middle Campanian Qusier Formation and the upper Campanian-lower Maastrichtian Duwi Formation. Fossil remains recovered from the Campanian-aged Quseir Formation include sharks, rays, actinopterygian and sarcopterygian fishes, turtles, and rare terrestrial archosaurians, including some of the only dinosaurs known from this interval on continental Africa. The upper Campanian/lower Maastrichtian Duwi Formation preserves sharks, sawfish, actinopterygians, and marine reptiles (mosasaurs and plesiosaurs). Notably absent from these collections are representatives of Mammalia and Avialae, both of which remain effectively undocumented in the Upper Cretaceous rocks of Africa and Arabia. New age constraints on the examined rock units is provided by 23 nannofossil taxa, some of which are reported from the Duwi Formation for the first time. Fossil discoveries from rock units of this age are essential for characterizing the degree of endemism that may have developed as the continent became increasingly tectonically isolated from the rest of Gondwana, not to mention for fully evaluating origin and diversification hypotheses of major modern groups of vertebrates (e.g., crown birds, placental mammals).

  6. Quaternary vertebrate faunas from Sumba, Indonesia: implications for Wallacean biogeography and evolution

    PubMed Central

    Crees, Jennifer J.; Hansford, James; Jeffree, Timothy E.; Crumpton, Nick; Kurniawan, Iwan; Setiyabudi, Erick; Paranggarimu, Umbu; Dosseto, Anthony; van den Bergh, Gerrit D.

    2017-01-01

    Historical patterns of diversity, biogeography and faunal turnover remain poorly understood for Wallacea, the biologically and geologically complex island region between the Asian and Australian continental shelves. A distinctive Quaternary vertebrate fauna containing the small-bodied hominin Homo floresiensis, pygmy Stegodon proboscideans, varanids and giant murids has been described from Flores, but Quaternary faunas are poorly known from most other Lesser Sunda Islands. We report the discovery of extensive new fossil vertebrate collections from Pleistocene and Holocene deposits on Sumba, a large Wallacean island situated less than 50 km south of Flores. A fossil assemblage recovered from a Pleistocene deposit at Lewapaku in the interior highlands of Sumba, which may be close to 1 million years old, contains a series of skeletal elements of a very small Stegodon referable to S. sumbaensis, a tooth attributable to Varanus komodoensis, and fragmentary remains of unidentified giant murids. Holocene cave deposits at Mahaniwa dated to approximately 2000–3500 BP yielded extensive material of two new genera of endemic large-bodied murids, as well as fossils of an extinct frugivorous varanid. This new baseline for reconstructing Wallacean faunal histories reveals that Sumba's Quaternary vertebrate fauna, although phylogenetically distinctive, was comparable in diversity and composition to the Quaternary fauna of Flores, suggesting that similar assemblages may have characterized Quaternary terrestrial ecosystems on many or all of the larger Lesser Sunda Islands. PMID:28855367

  7. Deadly hairs, lethal feathers--convergent evolution of poisonous integument in mammals and birds.

    PubMed

    Plikus, Maksim V; Astrowski, Aliaksandr A

    2014-07-01

    Hairs and feathers are textbook examples of the convergent evolution of the follicular appendage structure between mammals and birds. While broadly recognized for their convergent thermoregulatory, camouflage and sexual display functions, hairs and feathers are rarely thought of as deadly defence tools. Several recent studies, however, show that in some species of mammals and birds, the integument can, in fact, be a de facto lethal weapon. One mammalian example is provided by African crested rats, which seek for and chew on the bark of plants containing the highly potent toxin, ouabain. These rats then coat their fur with ouabain-containing saliva. For efficient toxin retention, the rodents have evolved highly specialized fenestrated and mostly hollow hair shafts that soak up liquids, which essentially function as wicks. On the avian side of the vertebrate integumental variety spectrum, several species of birds of New Guinea have evolved resistance to highly potent batrachotoxins, which they acquire from their insect diet. While the mechanism of bird toxicity remains obscure, in a recently published issue of the journal, Dumbacher and Menon explore the intriguing idea that to achieve efficient storage of batrachotoxins in their skin, some birds exploit the basic permeability barrier function of their epidermis. Batrachotoxins become preferentially sequestered in their epidermis and are then transferred to feathers, likely through the exploitation of specialized avian lipid-storing multigranular body organelles. Here, we discuss wider implications of this intriguing concept. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Melanins in Fossil Animals: Is It Possible to Infer Life History Traits from the Coloration of Extinct Species?

    PubMed Central

    Negro, Juan J.; Finlayson, Clive; Galván, Ismael

    2018-01-01

    Paleo-colour scientists have recently made the transition from describing melanin-based colouration in fossil specimens to inferring life-history traits of the species involved. Two such cases correspond to counter-shaded dinosaurs: dark-coloured due to melanins dorsally, and light-coloured ventrally. We believe that colour reconstruction of fossils based on the shape of preserved microstructures—the majority of paleo-colour studies involve melanin granules—is not without risks. In addition, animals with contrasting dorso-ventral colouration may be under different selection pressures beyond the need for camouflage, including, for instance, visual communication or ultraviolet (UV) protection. Melanin production is costly, and animals may invest less in areas of the integument where pigments are less needed. In addition, melanocytes exposed to UV radiation produce more melanin than unexposed melanocytes. Pigment economization may thus explain the colour pattern of some counter-shaded animals, including extinct species. Even in well-studied extant species, their diversity of hues and patterns is far from being understood; inferring colours and their functions in species only known from one or few specimens from the fossil record should be exerted with special prudence. PMID:29360744

  9. Integument Mycobiota of Wild European Hedgehogs (Erinaceus europaeus) from Catalonia, Spain.

    PubMed

    Molina-López, R A; Adelantado, C; Arosemena, E L; Obón, E; Darwich, L; Calvo, M A

    2012-01-01

    There are some reports about the risk of manipulating wild hedgehogs since they can be reservoirs of potential zoonotic agents like dermatophytes. The aim of this study was to describe the integument mycobiota, with special attention to dermatophytes of wild European hedgehogs. Samples from spines and fur were cultured separately in Sabouraud dextrose agar (SDA) with antibiotic and dermatophyte test medium (DTM) plates. Nineteen different fungal genera were isolated from 91 cultures of 102 hedgehogs. The most prevalent genera were Cladosporium (79.1%), Penicillium (74.7%), Alternaria (64.8%), and Rhizopus (63.7%). A lower prevalence of Aspergillus (P = 0,035; χ (2) = 8,633) and Arthrinium (P = 0,043; χ (2) = 8,173) was isolated during the spring time and higher frequencies of Fusarium (P = 0,015; χ (2) = 10,533) during the autumn. The prevalence of Acremonium was significantly higher in young animals (70%, 26/37) than in adults (30%, 11/37) (P = 0,019; χ (2) = 5,915). Moreover, the majority of the saprophytic species that grew at the SDA culture were also detected at the DTM. Finally, no cases of ringworm were diagnosed and no dermatophytes spp. were isolated. Concluding, this study provides the first description of fungal mycobiota of the integument of wild European hedgehogs in Spain, showing a large number of saprophytic species and the absence of dermatophytes.

  10. Integument Mycobiota of Wild European Hedgehogs (Erinaceus europaeus) from Catalonia, Spain

    PubMed Central

    Molina-López, R. A.; Adelantado, C.; Arosemena, E. L.; Obón, E.; Darwich, L.; Calvo, M. A.

    2012-01-01

    There are some reports about the risk of manipulating wild hedgehogs since they can be reservoirs of potential zoonotic agents like dermatophytes. The aim of this study was to describe the integument mycobiota, with special attention to dermatophytes of wild European hedgehogs. Samples from spines and fur were cultured separately in Sabouraud dextrose agar (SDA) with antibiotic and dermatophyte test medium (DTM) plates. Nineteen different fungal genera were isolated from 91 cultures of 102 hedgehogs. The most prevalent genera were Cladosporium (79.1%), Penicillium (74.7%), Alternaria (64.8%), and Rhizopus (63.7%). A lower prevalence of Aspergillus (P = 0,035; χ 2 = 8,633) and Arthrinium (P = 0,043; χ 2 = 8,173) was isolated during the spring time and higher frequencies of Fusarium (P = 0,015; χ 2 = 10,533) during the autumn. The prevalence of Acremonium was significantly higher in young animals (70%, 26/37) than in adults (30%, 11/37) (P = 0,019; χ 2 = 5,915). Moreover, the majority of the saprophytic species that grew at the SDA culture were also detected at the DTM. Finally, no cases of ringworm were diagnosed and no dermatophytes spp. were isolated. Concluding, this study provides the first description of fungal mycobiota of the integument of wild European hedgehogs in Spain, showing a large number of saprophytic species and the absence of dermatophytes. PMID:23762757

  11. A comparative study of the ocular skeleton of fossil and modern chondrichthyans

    PubMed Central

    Pilgrim, Brettney L; Franz-Odendaal, Tamara A

    2009-01-01

    Many vertebrates have an ocular skeleton composed of cartilage and/or bone situated within the sclera of the eye. In this study we investigated whether modern and fossil sharks have an ocular skeleton, and whether it is conserved in morphology. We describe the scleral skeletal elements of three species of modern sharks and compare them to those found in fossil sharks from the Cleveland Shale (360 Mya). We also compare the elements to contemporaneous arthrodires from the same deposit. Surprisingly, the morphology of the skeletal support of the eye was found to differ significantly between modern and fossil sharks. All three modern shark species examined (spiny dogfish shark Squalus acanthias, porbeagle shark Lamna nasus and blue shark Prionace glauca) have a continuous skeletal element that encapsulates much of the eyeball; however, the tissue composition is different in each species. Histological and morphological examination revealed scleral cartilage with distinct tesserae in parts of the sclera of the porbeagle and blue shark, and more diffuse calcification in the dogfish. Strengthening of the scleral cartilage by means of tesserae has not been reported previously in the shark eye. In striking contrast, the ocular skeleton of fossil sharks comprises a series of individual elements that are arranged in a ring, similar to the arrangement in modern and fossil reptiles. Fossil arthrodires also have a multi-unit sclerotic ring but these are composed of fewer elements than in fossil sharks. The morphology of these elements has implications for the behaviour and visual capabilities of sharks that lived during the Devonian Period. This is the first time that such a dramatic variation in the morphology of scleral skeletal elements has been observed in a single lineage (Chondrichthyes), making this lineage important for broadening our understanding of the evolution of these elements within jawed vertebrates. PMID:19538630

  12. The Evolution and Fossil History of Sensory Perception in Amniote Vertebrates

    NASA Astrophysics Data System (ADS)

    Müller, Johannes; Bickelmann, Constanze; Sobral, Gabriela

    2018-05-01

    Sensory perception is of crucial importance for animals to interact with their biotic and abiotic environment. In amniotes, the clade including modern mammals (Synapsida), modern reptiles (Reptilia), and their fossil relatives, the evolution of sensory perception took place in a stepwise manner after amniotes appeared in the Carboniferous. Fossil evidence suggests that Paleozoic taxa had only a limited amount of sensory capacities relative to later forms, with the majority of more sophisticated types of sensing evolving during the Triassic and Jurassic. Alongside the evolution of improved sensory capacities, various types of social communication evolved across different groups. At present there is no definitive evidence for a relationship between sensory evolution and species diversification. It cannot be excluded, however, that selection for improved sensing was partially triggered by biotic interactions, e.g., in the context of niche competition, whereas ecospace expansion, especially during the Mesozoic, might also have played an important role.

  13. The eyes of Tullimonstrum reveal a vertebrate affinity.

    PubMed

    Clements, Thomas; Dolocan, Andrei; Martin, Peter; Purnell, Mark A; Vinther, Jakob; Gabbott, Sarah E

    2016-04-28

    Tullimonstrum gregarium is an iconic soft-bodied fossil from the Carboniferous Mazon Creek Lagerstätte (Illinois, USA). Despite a large number of specimens and distinct anatomy, various analyses over the past five decades have failed to determine the phylogenetic affinities of the 'Tully monster', and although it has been allied to such disparate phyla as the Mollusca, Annelida or Chordata, it remains enigmatic. The nature and phylogenetic affinities of Tullimonstrum have defied confident systematic placement because none of its preserved anatomy provides unequivocal evidence of homology, without which comparative analysis fails. Here we show that the eyes of Tullimonstrum possess ultrastructural details indicating homology with vertebrate eyes. Anatomical analysis using scanning electron microscopy reveals that the eyes of Tullimonstrum preserve a retina defined by a thick sheet comprising distinct layers of spheroidal and cylindrical melanosomes. Time-of-flight secondary ion mass spectrometry and multivariate statistics provide further evidence that these microbodies are melanosomes. A range of animals have melanin in their eyes, but the possession of melanosomes of two distinct morphologies arranged in layers, forming retinal pigment epithelium, is a synapomorphy of vertebrates. Our analysis indicates that in addition to evidence of colour patterning, ecology and thermoregulation, fossil melanosomes can also carry a phylogenetic signal. Identification in Tullimonstrum of spheroidal and cylindrical melanosomes forming the remains of retinal pigment epithelium indicates that it is a vertebrate; considering its body parts in this new light suggests it was an anatomically unusual member of total group Vertebrata.

  14. Middle Pleistocene vertebrate fossils from the Nefud Desert, Saudi Arabia: Implications for biogeography and palaeoecology

    NASA Astrophysics Data System (ADS)

    Stimpson, Christopher M.; Lister, Adrian; Parton, Ash; Clark-Balzan, Laine; Breeze, Paul S.; Drake, Nick A.; Groucutt, Huw S.; Jennings, Richard; Scerri, Eleanor M. L.; White, Tom S.; Zahir, Muhammad; Duval, Mathieu; Grün, Rainer; Al-Omari, Abdulaziz; Al Murayyi, Khalid Sultan M.; Zalmout, Iyaed S.; Mufarreh, Yahya A.; Memesh, Abdullah M.; Petraglia, Michael D.

    2016-07-01

    The current paucity of Pleistocene vertebrate records from the Arabian Peninsula - a landmass of over 3 million km2 - is a significant gap in our knowledge of the Quaternary. Such data are critical lines of contextual evidence for considering animal and hominin dispersals between Africa and Eurasia generally, and hominin palaeoecology in the Pleistocene landscapes of the Arabian interior specifically. Here, we describe an important contribution to the record and report stratigraphically-constrained fossils of mammals, birds and reptiles from recent excavations at Ti's al Ghadah in the southwestern Nefud Desert. Combined U-series and ESR analyses of Oryx sp. teeth indicate that the assemblage is Middle Pleistocene in age and dates to ca. 500 ka. The identified fauna is a biogeographical admixture that consists of likely endemics and taxa of African and Eurasian affinity and includes extinct and extant (or related Pleistocene forms of) mammals (Palaeoloxodon cf. recki, Panthera cf. gombaszogenis, Equus hemionus, cf. Crocuta crocuta, Vulpes sp., Canis anthus, Oryx sp.), the first Pleistocene records of birds from the Arabian Peninsula (Struthio sp., Neophron percnopterus, Milvus cf. migrans, Tachybaptus sp. Anas sp., Pterocles orientalis, Motacilla cf. alba) and reptiles (Varanidae/Uromastyx sp.). We infer that the assemblage reflects mortality in populations of herbivorous animals and their predators and scavengers that were attracted to freshwater and plant resources in the inter-dune basin. At present, there is no evidence to suggest hominin agency in the accumulation of the bone assemblages. The inferred ecological characteristics of the taxa recovered indicate the presence, at least periodically, of substantial water-bodies and open grassland habitats.

  15. Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates

    PubMed Central

    Sire, Jean-Yves; Donoghue, Philip C J; Vickaryous, Matthews K

    2009-01-01

    Most non-tetrapod vertebrates develop mineralized extra-oral elements within the integument. Known collectively as the integumentary skeleton, these elements represent the structurally diverse skin-bound contribution to the dermal skeleton. In this review we begin by summarizing what is known about the histological diversity of the four main groups of integumentary skeletal tissues: hypermineralized (capping) tissues; dentine; plywood-like tissues; and bone. For most modern taxa, the integumentary skeleton has undergone widespread reduction and modification often rendering the homology and relationships of these elements confused and uncertain. Fundamentally, however, all integumentary skeletal elements are derived (alone or in combination) from only two types of cell condensations: odontogenic and osteogenic condensations. We review the origin and diversification of the integumentary skeleton in aquatic non-tetrapods (including stem gnathostomes), focusing on tissues derived from odontogenic (hypermineralized tissues, dentines and elasmodine) and osteogenic (bone tissues) cell condensations. The novelty of our new scenario of integumentary skeletal evolution resides in the demonstration that elasmodine, the main component of elasmoid scales, is odontogenic in origin. Based on available data we propose that elasmodine is a form of lamellar dentine. Given its widespread distribution in non-tetrapod lineages we further propose that elasmodine is a very ancient tissue in vertebrates and predict that it will be found in ancestral rhombic scales and cosmoid scales. PMID:19422423

  16. Prevalence of the genus Cladosporium on the integument of leaf-cutting ants characterized by 454 pyrosequencing.

    PubMed

    Duarte, A P M; Ferro, M; Rodrigues, A; Bacci, M; Nagamoto, N S; Forti, L C; Pagnocca, F C

    2016-09-01

    The relationship of attine ants with their mutualistic fungus and other microorganisms has been studied during the last two centuries. However, previous studies about the diversity of fungi in the ants' microenvironment are based mostly on culture-dependent approaches, lacking a broad characterization of the fungal ant-associated community. Here, we analysed the fungal diversity found on the integument of Atta capiguara and Atta laevigata alate ants using 454 pyrosequencing. We obtained 35,453 ITS reads grouped into 99 molecular operational taxonomic units (MOTUs). Data analysis revealed that A. capiguara drones had the highest diversity of MOTUs. Besides the occurrence of several uncultured fungi, the mycobiota analysis revealed that the most abundant taxa were the Cladosporium-complex, Cryptococcus laurentii and Epicoccum sp. Taxa in the genus Cladosporium were predominant in all samples, comprising 67.9 % of all reads. The remarkable presence of the genus Cladosporium on the integument of leaf-cutting ants alates from distinct ant species suggests that this fungus is favored in this microenvironment.

  17. Pattern of Variations in Abscisic Acid Content in Suspensors, Embryos, and Integuments of Developing Phaseolus coccineus Seeds 1

    PubMed Central

    Perata, Pierdomenico; Picciarelli, Piero; Alpi, Amedeo

    1990-01-01

    Free abscisic acid (ABA) content in suspensors, embryos, and integuments was determined during seed development of Phaseolus coccineus. A highly specific and sensitive solid-phase radioimmunoassay based on a monocional antibody raised against free (S)-ABA was used for ABA quantification. Very small amounts of ABA were detected in the suspensor during initial stages of development; later two peaks of ABA occurred. Levels of ABA in the embryo and integument show a coincident triphasic distribution: two maxima in ABA content occurred when the embryo was 11 to 12 and 15 to 16 millimeters in length; later, when the embryo was 19 to 20 millimeters long, a further increase was observed. The role of ABA in runner bean seeds is discussed in relation to the development of the different seed tissues. PMID:16667915

  18. Teacher Training and Authentic Scientific Research Utilizing Cretaceous Fossil Resources

    NASA Astrophysics Data System (ADS)

    Danch, J. M.

    2016-12-01

    The readily accessible Cretaceous fossil beds of central New Jersey provide an excellent opportunity for both teacher training in the utilization of paleontological resources in the classroom and authentic scientific student research at the middle and high school levels. Woodbridge Township New Jersey School District teachers participated in field trips to various fossiliferous sites to obtain photographic and video data and invertebrate and vertebrate fossil specimens for use in the classroom. Teachers were also presented with techniques allowing them to mentor students in performing authentic paleontological research. Students participated in multi-year research projects utilizing Cretaceous fossils collected in the field and presented their findings at science fairs and symposia. A workshop for K - 12 teachers statewide was developed for the New Jersey Science Convention providing information about New Jersey fossil resources and allowing participants to obtain, study and classify specimens. Additionally, the workshop provided participants with the information necessary for them to plan and conduct their own field trips.

  19. Finding fossils in new ways: an artificial neural network approach to predicting the location of productive fossil localities.

    PubMed

    Anemone, Robert; Emerson, Charles; Conroy, Glenn

    2011-01-01

    Chance and serendipity have long played a role in the location of productive fossil localities by vertebrate paleontologists and paleoanthropologists. We offer an alternative approach, informed by methods borrowed from the geographic information sciences and using recent advances in computer science, to more efficiently predict where fossil localities might be found. Our model uses an artificial neural network (ANN) that is trained to recognize the spectral characteristics of known productive localities and other land cover classes, such as forest, wetlands, and scrubland, within a study area based on the analysis of remotely sensed (RS) imagery. Using these spectral signatures, the model then classifies other pixels throughout the study area. The results of the neural network classification can be examined and further manipulated within a geographic information systems (GIS) software package. While we have developed and tested this model on fossil mammal localities in deposits of Paleocene and Eocene age in the Great Divide Basin of southwestern Wyoming, a similar analytical approach can be easily applied to fossil-bearing sedimentary deposits of any age in any part of the world. We suggest that new analytical tools and methods of the geographic sciences, including remote sensing and geographic information systems, are poised to greatly enrich paleoanthropological investigations, and that these new methods should be embraced by field workers in the search for, and geospatial analysis of, fossil primates and hominins. Copyright © 2011 Wiley-Liss, Inc.

  20. Molybdenum cofactor deficiency causes translucent integument, male-biased lethality, and flaccid paralysis in the silkworm Bombyx mori.

    PubMed

    Fujii, Tsuguru; Yamamoto, Kimiko; Banno, Yutaka

    2016-06-01

    Uric acid accumulates in the epidermis of Bombyx mori larvae and renders the larval integument opaque and white. Yamamoto translucent (oya) is a novel spontaneous mutant with a translucent larval integument and unique phenotypic characteristics, such as male-biased lethality and flaccid larval paralysis. Xanthine dehydrogenase (XDH) that requires a molybdenum cofactor (MoCo) for its activity is a key enzyme for uric acid synthesis. It has been observed that injection of a bovine xanthine oxidase, which corresponds functionally to XDH and contains its own MoCo activity, changes the integuments of oya mutants from translucent to opaque and white. This finding suggests that XDH/MoCo activity might be defective in oya mutants. Our linkage analysis identified an association between the oya locus and chromosome 23. Because XDH is not linked to chromosome 23 in B. mori, MoCo appears to be defective in oya mutants. In eukaryotes, MoCo is synthesized by a conserved biosynthesis pathway governed by four loci (MOCS1, MOCS2, MOCS3, and GEPH). Through a candidate gene approach followed by sequence analysis, a 6-bp deletion was detected in an exon of the B. mori molybdenum cofactor synthesis-step 1 gene (BmMOCS1) in the oya strain. Moreover, recombination was not observed between the oya and BmMOCS1 loci. These results indicate that the BmMOCS1 locus is responsible for the oya locus. Finally, we discuss the potential cause of male-biased lethality and flaccid paralysis observed in the oya mutants. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Discovery of fossil lamprey larva from the Lower Cretaceous reveals its three-phased life cycle

    PubMed Central

    Chang, Mee-mann; Wu, Feixiang; Miao, Desui; Zhang, Jiangyong

    2014-01-01

    Lampreys are one of the two surviving jawless vertebrate groups and one of a few vertebrate groups with the best exemplified metamorphosis during their life cycle, which consists of a long-lasting larval stage, a peculiar metamorphosis, and a relatively short adulthood with a markedly different anatomy. Although the fossil records have revealed that many general features of extant lamprey adults were already formed by the Late Devonian (ca. 360 Ma), little is known about the life cycle of the fossil lampreys because of the lack of fossilized lamprey larvae or transformers. Here we report the first to our knowledge discovery of exceptionally preserved premetamorphic and metamorphosing larvae of the fossil lamprey Mesomyzon mengae from the Lower Cretaceous of Inner Mongolia, China. These fossil ammocoetes look surprisingly modern in having an eel-like body with tiny eyes, oral hood and lower lip, anteriorly positioned branchial region, and a continuous dorsal skin fin fold and in sharing a similar feeding habit, as judged from the detritus left in the gut. In contrast, the larger metamorphosing individuals have slightly enlarged eyes relative to large otic capsules, thickened oral hood or pointed snout, and discernable radials but still anteriorly extended branchial area and lack a suctorial oral disk, which characterize the early stages of the metamorphosis of extant lampreys. Our discovery not only documents the larval conditions of fossil lampreys but also indicates the three-phased life cycle in lampreys emerged essentially in their present mode no later than the Early Cretaceous. PMID:25313060

  2. Role of sediment size and biostratinomy on the development of biofilms in recent avian vertebrate remains

    NASA Astrophysics Data System (ADS)

    Peterson, Joseph E.; Lenczewski, Melissa E.; Clawson, Steven R.; Warnock, Jonathan P.

    2017-04-01

    Microscopic soft tissues have been identified in fossil vertebrate remains collected from various lithologies. However, the diagenetic mechanisms to preserve such tissues have remained elusive. While previous studies have described infiltration of biofilms in Haversian and Volkmann’s canals, biostratinomic alteration (e.g., trampling), and iron derived from hemoglobin as playing roles in the preservation processes, the influence of sediment texture has not previously been investigated. This study uses a Kolmogorov Smirnov Goodness-of-Fit test to explore the influence of biostratinomic variability and burial media against the infiltration of biofilms in bone samples. Controlled columns of sediment with bone samples were used to simulate burial and subsequent groundwater flow. Sediments used in this study include clay-, silt-, and sand-sized particles modeled after various fluvial facies commonly associated with fossil vertebrates. Extant limb bone samples obtained from Gallus gallus domesticus (Domestic Chicken) buried in clay-rich sediment exhibit heavy biofilm infiltration, while bones buried in sands and silts exhibit moderate levels. Crushed bones exhibit significantly lower biofilm infiltration than whole bone samples. Strong interactions between biostratinomic alteration and sediment size are also identified with respect to biofilm development. Sediments modeling crevasse splay deposits exhibit considerable variability; whole-bone crevasse splay samples exhibit higher frequencies of high-level biofilm infiltration, and crushed-bone samples in modeled crevasse splay deposits display relatively high frequencies of low-level biofilm infiltration. These results suggest that sediment size, depositional setting, and biostratinomic condition play key roles in biofilm infiltration in vertebrate remains, and may influence soft tissue preservation in fossil vertebrates.

  3. Architecture of the integument in lower teleostomes: functional morphology and evolutionary implications.

    PubMed

    Gemballa, Sven; Bartsch, Peter

    2002-09-01

    A bony ganoid squamation is the plesiomorphic type in actinopterygians. During evolution, it was replaced by weak and more flexible elasmoid scales. We provide a comparative description of the integument of "ganoid" fishes and "nonganoid" fishes that considers all dermal components of mechanical significance (stratum compactum, morphology of ganoid scales, and their regional differences) in order to develop a functional understanding of the ganoid integument as a whole. Data were obtained for the extant "ganoid" fishes (Polypteridae and Lepisosteidae) and for closely related "lower" actinopterygians (Acipenser ruthenus, Amia calva) and "lower" sarcopterygians (Latimeria chalumnae, Neoceratodus forsteri). Body curvatures during steady undulatory locomotion, sharp turns, prey-strikes, and fast starts in "ganoid" fishes were measured from videotapes. Extreme body curvatures as measured in anesthetized specimens are never reached during steady swimming, but are sometimes closely approached in certain situations (sharp turns, prey-strike). During extreme body curvatures we measured high values of lateral strain on the convex and on the concave side of the body. Scale overlap changes considerably (66-127% in Lepisosteus, 42-140% in Polypterus). The ganoid squamation forms a protective coat, but at the same time it permits extreme body curvatures. This is reflected in characteristic morphological features of the ganoid scales, such as an anterior process, concave anterior margin, and peg-and-socket articulation. These characters are most pronounced in the anterior body region, where maximum changes in scale overlap are required. The anterior processes and anterior concave margin, together with the attached stratum compactum, guide movements in a horizontal plane during bending. Displacements of scales relative to each other are possible for scales of different scale rows, but are impeded in scales of the same scale row due to the peg-and-socket articulation. Furthermore

  4. Ancient duplications and functional divergence in the interferon regulatory factors of vertebrates provide insights into the evolution of vertebrate immune systems.

    PubMed

    Du, Kang; Zhong, Zaixuan; Fang, Chengchi; Dai, Wei; Shen, Yanjun; Gan, Xiaoni; He, Shunping

    2018-04-01

    Interferon regulatory factors (IRFs) were first discovered as transcription factors that regulate the transcription of human interferon (IFN)-β. Increasing evidence shows that they might be important players involved in Adaptive immune system (AIS) evolution. Although numbers of IRFs have been identified in chordates, the evolutionary history and functional diversity of this gene family during the early evolution of vertebrates have remained obscure. Using IRF HMM profile and HMMER searches, we identified 148 IRFs in 11 vertebrates and 4 protochordates. For them, we reconstructed the phylogenetic relationships, determined the synteny conservation, investigated the profile of natural selection, and analyzed the expression patterns in four "living fossil" vertebrates: lamprey, elephant shark, coelacanth and bichir. The results from phylogeny and synteny analysis imply that vertebrate IRFs evolved from three predecessors, instead of four as suggested in a previous study, as results from an ancient duplication followed by special expansions and lost during the vertebrate evolution. The profile of natural selection and expression reveals functional dynamics during the process. Together, they suggest that the 2nd whole-genome duplication (2WGD) provided raw materials for innovation in the IRF family, and that the birth of type-I IFN might be an important factor inducing the establishment of IRF-mediated immune networks. As a member involved in the AIS evolution, IRF provide insights into the process and mechanism involved in the complexity and novelties of vertebrate immune systems. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Fossilized Mammalian Erythrocytes Associated With a Tick Reveal Ancient Piroplasms.

    PubMed

    Poinar, George

    2017-07-01

    Ticks transmit a variety of pathogenic organisms to vertebrates, especially mammals. The fossil record of such associations is extremely rare. An engorged nymphal tick of the genus Ambylomma in Dominican amber was surrounded by erythrocytes from its mammalian host. Some of the exposed erythrocytes contained developmental stages of a hemoprotozoan resembling members of the Order Piroplasmida. The fossil piroplasm is described, its stages compared with those of extant piroplasms, and reasons provided why the mammalian host could have been a primate. The parasites were also found in the gut epithelial cells and body cavity of the fossil tick. Aside from providing the first fossil mammalian red blood cells and the first fossil intraerythrocytic hemoparasites, the present discovery shows that tick-piroplasm associations were already well established in the Tertiary. This discovery provides a timescale that can be used in future studies on the evolution of the Piroplasmida. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com Version of Record, first published online March 20, 2017 with fixed content and layout in compliance with Art. 8.1.3.2 ICZN.

  6. A new Permian gnetalean cone as fossil evidence for supporting current molecular phylogeny.

    PubMed

    Wang, Zi-Qiang

    2004-08-01

    The order Gnetales has been the central focus of controversy in seed plant phylogeny. Traditional treatment of morphology supports the anthophyte hypothesis with Gnetales sister to angiosperms but current molecular data reject this hypothesis. A new fossil gnetalean cone, Palaeognetaleana auspicia gen. et sp. nov., is reported from the Upper Permian in North China, and its phylogenic implications are considered. Samples of cones from the upper part of the Upper Permian redbeds of Baode section, northwestern Shanxi Province, China, were examined. The cone is characterized by its unusual nature of reproduction that combines features of post-Triassic gnetaleans and some of the Palaeozoic conifers. It is made up of a number of imbricate axillary units, each simply formed by an ovule and a subtending bract, which may be comparable with the axillary seed-scale complex of some of the Palaeozoic conifer cones. The cone exhibits at least a partially bisexual character that appears to have pollen sacs with monosulcate ribbed pollen grains and sessile, asymmetric, and radiospermic ovules. The ovule has an integument of three envelopes: an outer one of pointed scales; a middle sclerified one; and an inner cuticle that extends upward into a micropyle with an oblique tip. The new Permian cone has unequivocal affinity with the Gnetales. The fossil has considerably extended the divergence time of the Gnetales from 140 (210?) back to 270 myr ago and, therefore, provides the first significant fossil evidence to support the current conclusion based on molecular data of seed plants, i.e. monophyletic gymnosperms, comprising the Gnetales are closely related to conifers.

  7. Isolation, Purification, and Identification of an Important Pigment, Sepiapterin, from Integument of the lemon Mutant of the Silkworm, Bombyx mori

    PubMed Central

    Wang, Jing; Wang, Wenjing; Liu, Chaoliang; Meng, Yan

    2013-01-01

    Sepiapterin is the precursor of tetrahydrobiopterin, an important coenzyme of aromatic amino acid hydroxylases, the lack of which leads to a variety of physiological metabolic diseases or neurological syndromes in humans. Sepiapterin is a main pigment component in the integument of the lemon mutant of the silkworm, Bombyx mori (L.) (Lepidoptera: Bombycidae), and is present there in extremely high content, so lemon is a valuable genetic resource to extract sepiapterin. In this study, an effective experimental system was set up for isolation and purification of sepiapterin from lemon silkworms by optimizing homogenization solvent, elution buffer, and separation chromatographic column. The results showed that ethanol was the most suitable solvent to homogenize the integument, with a concentration of 50% and solid:liquid ratio of 1:20 (g/mL). Sepiapterin was purified successively by column chromatography of cellulose Ecteola, sephadex G-25-150, and cellulose phosphate, and was identified by ultraviolet-visible absorption spectrometry. A stable and accurate high performance liquid chromatography method was constructed to identify sepiapterin and conduct qualitative and quantitative analyses. Sepiapterin of high purity was achieved, and the harvest reached about 40 ug/g of integument in the experiments. This work helps to obtaining natural sepiapterin in large amounts in order to use the lemon B. mori mutant to produce BH4 in vitro. PMID:24773269

  8. Assessment of Plumage and Integument Condition in Dual-Purpose Breeds and Conventional Layers

    PubMed Central

    Spindler, Birgit; Kemper, Nicole

    2017-01-01

    Simple Summary Behavioural problems, such as injurious pecking, are major welfare concerns in laying hen husbandry. To take adequate measures at the right time, useful information about the occurrence of these problems in a flock can be obtained by examining the hens for feather loss and skin injuries. Although feather loss and injuries can also result from mechanical abrasion or health issues, they provide strong evidence of behavioural problems in a flock, particularly when observed on the back and the tail of the animals. In our study, the behaviour of two genetic strains of laying hens (conventional layers and dual-purpose breeds) was evaluated by means of two different methods for assessing the feathers and the skin on distinct body parts of the animals. One method was a mere visual inspection of the flocks, whereas the other included the capture and handling of individual hens. Damaging behaviour, which resulted in severe feather loss and skin injuries, only occurred in the conventional layers. Both of the methods provided similar results for feather loss and injuries for most of the tested body regions and weeks. Therefore, the mere visual method was sufficient to detect injurious behaviour in laying hens. Abstract The assessment of plumage and integument condition in laying hens provides useful information about the occurrence of feather pecking and cannibalism. Although feather loss and skin injuries can result from mechanical abrasion or clinical diseases, they are valid animal-based indicators for behavioural disorders. This particularly applies to damage on the back and tail region of the hens. The aim was to evaluate the behaviour of dual-purpose breeds (Lohmann Dual, LD) and conventional layer hybrids (Lohmann Brown plus, LB+), and to compare a mere visual assessment (Visual Scoring, VSc), with a method involving the handling of individual animals (Hands-on Scoring, HSc). During weekly VSc, the hens’ plumage and integument were scored on five body

  9. Mid-Holocene vertebrate bone Concentration-Lagerstätte on oceanic island Mauritius provides a window into the ecosystem of the dodo ( Raphus cucullatus)

    NASA Astrophysics Data System (ADS)

    Rijsdijk, Kenneth F.; Hume, Julian P.; Bunnik, Frans; Florens, F. B. Vincent; Baider, Claudia; Shapiro, Beth; van der Plicht, Johannes; Janoo, Anwar; Griffiths, Owen; van den Hoek Ostende, Lars W.; Cremer, Holger; Vernimmen, Tamara; De Louw, Perry G. B.; Bholah, Assenjee; Saumtally, Salem; Porch, Nicolas; Haile, James; Buckley, Mike; Collins, Matthew; Gittenberger, Edmund

    2009-01-01

    Although the recent history of human colonisation and impact on Mauritius is well documented, virtually no records of the pre-human native ecosystem exist, making it difficult to assess the magnitude of the changes brought about by human settlement. Here, we describe a 4000-year-old fossil bed at Mare aux Songes (MAS) in south-eastern Mauritius that contains both macrofossils (vertebrate fauna, gastropods, insects and flora) and microfossils (diatoms, pollen, spores and phytoliths). With >250 bone fragments/m 2 and comprising 50% of all known extinct and extant vertebrate species ( ns = 44) of Mauritius, MAS may constitute the first Holocene vertebrate bone Concentration-Lagerstätte identified on an oceanic volcanic island. Fossil remains are dominated by extinct giant tortoises Cylindraspis spp. (63%), passerines (˜10%), small bats (7.8%) and dodo Raphus cucullatus (7.1%). Twelve radiocarbon ages [four of them duplicates] from bones and other material suggest that accumulation of fossils took place within several centuries. An exceptional combination of abiotic conditions led to preservation of bones, bone collagen, plant tissue and microfossils. Although bone collagen is well preserved, DNA from dodo and other Mauritian vertebrates has proved difficult. Our analysis suggests that from ca 4000 years ago (4 ka), rising sea levels created a freshwater lake at MAS, generating an oasis in an otherwise dry environment which attracted a diverse vertebrate fauna. Subsequent aridification in the south-west Indian Ocean region may have increased carcass accumulation during droughts, contributing to the exceptionally high fossil concentration. The abundance of floral and faunal remains in this Lagerstätte offers a unique opportunity to reconstruct a pre-human ecosystem on an oceanic island, providing a key foundation for assessing the vulnerability of island ecosystems to human impact.

  10. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils.

    PubMed

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F; Currano, Ellen D; Jacobs, Louis L; Sylvestersen, Rene Lyng; Gabbott, Sarah E; Vinther, Jakob

    2015-10-13

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns.

  11. Chemical, experimental, and morphological evidence for diagenetically altered melanin in exceptionally preserved fossils

    PubMed Central

    Colleary, Caitlin; Dolocan, Andrei; Gardner, James; Singh, Suresh; Wuttke, Michael; Rabenstein, Renate; Habersetzer, Jörg; Schaal, Stephan; Feseha, Mulugeta; Clemens, Matthew; Jacobs, Bonnie F.; Currano, Ellen D.; Jacobs, Louis L.; Sylvestersen, Rene Lyng; Gabbott, Sarah E.; Vinther, Jakob

    2015-01-01

    In living organisms, color patterns, behavior, and ecology are closely linked. Thus, detection of fossil pigments may permit inferences about important aspects of ancient animal ecology and evolution. Melanin-bearing melanosomes were suggested to preserve as organic residues in exceptionally preserved fossils, retaining distinct morphology that is associated with aspects of original color patterns. Nevertheless, these oblong and spherical structures have also been identified as fossilized bacteria. To date, chemical studies have not directly considered the effects of diagenesis on melanin preservation, and how this may influence its identification. Here we use time-of-flight secondary ion mass spectrometry to identify and chemically characterize melanin in a diverse sample of previously unstudied extant and fossil taxa, including fossils with notably different diagenetic histories and geologic ages. We document signatures consistent with melanin preservation in fossils ranging from feathers, to mammals, to amphibians. Using principal component analyses, we characterize putative mixtures of eumelanin and phaeomelanin in both fossil and extant samples. Surprisingly, both extant and fossil amphibians generally exhibit melanosomes with a mixed eumelanin/phaeomelanin composition rather than pure eumelanin, as assumed previously. We argue that experimental maturation of modern melanin samples replicates diagenetic chemical alteration of melanin observed in fossils. This refutes the hypothesis that such fossil microbodies could be bacteria, and demonstrates that melanin is widely responsible for the organic soft tissue outlines in vertebrates found at exceptional fossil localities, thus allowing for the reconstruction of certain aspects of original pigment patterns. PMID:26417094

  12. The draft genome of Ciona intestinalis: insights into chordate and vertebrate origins.

    PubMed

    Dehal, Paramvir; Satou, Yutaka; Campbell, Robert K; Chapman, Jarrod; Degnan, Bernard; De Tomaso, Anthony; Davidson, Brad; Di Gregorio, Anna; Gelpke, Maarten; Goodstein, David M; Harafuji, Naoe; Hastings, Kenneth E M; Ho, Isaac; Hotta, Kohji; Huang, Wayne; Kawashima, Takeshi; Lemaire, Patrick; Martinez, Diego; Meinertzhagen, Ian A; Necula, Simona; Nonaka, Masaru; Putnam, Nik; Rash, Sam; Saiga, Hidetoshi; Satake, Masanobu; Terry, Astrid; Yamada, Lixy; Wang, Hong-Gang; Awazu, Satoko; Azumi, Kaoru; Boore, Jeffrey; Branno, Margherita; Chin-Bow, Stephen; DeSantis, Rosaria; Doyle, Sharon; Francino, Pilar; Keys, David N; Haga, Shinobu; Hayashi, Hiroko; Hino, Kyosuke; Imai, Kaoru S; Inaba, Kazuo; Kano, Shungo; Kobayashi, Kenji; Kobayashi, Mari; Lee, Byung-In; Makabe, Kazuhiro W; Manohar, Chitra; Matassi, Giorgio; Medina, Monica; Mochizuki, Yasuaki; Mount, Steve; Morishita, Tomomi; Miura, Sachiko; Nakayama, Akie; Nishizaka, Satoko; Nomoto, Hisayo; Ohta, Fumiko; Oishi, Kazuko; Rigoutsos, Isidore; Sano, Masako; Sasaki, Akane; Sasakura, Yasunori; Shoguchi, Eiichi; Shin-i, Tadasu; Spagnuolo, Antoinetta; Stainier, Didier; Suzuki, Miho M; Tassy, Olivier; Takatori, Naohito; Tokuoka, Miki; Yagi, Kasumi; Yoshizaki, Fumiko; Wada, Shuichi; Zhang, Cindy; Hyatt, P Douglas; Larimer, Frank; Detter, Chris; Doggett, Norman; Glavina, Tijana; Hawkins, Trevor; Richardson, Paul; Lucas, Susan; Kohara, Yuji; Levine, Michael; Satoh, Nori; Rokhsar, Daniel S

    2002-12-13

    The first chordates appear in the fossil record at the time of the Cambrian explosion, nearly 550 million years ago. The modern ascidian tadpole represents a plausible approximation to these ancestral chordates. To illuminate the origins of chordate and vertebrates, we generated a draft of the protein-coding portion of the genome of the most studied ascidian, Ciona intestinalis. The Ciona genome contains approximately 16,000 protein-coding genes, similar to the number in other invertebrates, but only half that found in vertebrates. Vertebrate gene families are typically found in simplified form in Ciona, suggesting that ascidians contain the basic ancestral complement of genes involved in cell signaling and development. The ascidian genome has also acquired a number of lineage-specific innovations, including a group of genes engaged in cellulose metabolism that are related to those in bacteria and fungi.

  13. The Tule Springs local fauna: Rancholabrean vertebrates from the Las Vegas Formation, Nevada

    USGS Publications Warehouse

    Scott, Eric; Springer, Kathleen; Sagebiel, James C.

    2017-01-01

    A middle to late Pleistocene sedimentary sequence in the upper Las Vegas Wash, north of Las Vegas, Nevada, has yielded the largest open-site Rancholabrean vertebrate fossil assemblage in the southern Great Basin and Mojave Deserts. Recent paleontologic field studies have led to the discovery of hundreds of fossil localities and specimens, greatly extending the geographic and temporal footprint of original investigations in the early 1960s. The significance of the deposits and their entombed fossils led to the preservation of 22,650 acres of the upper Las Vegas Wash as Tule Springs Fossil Beds National Monument. These discoveries also warrant designation of the assemblage as a local fauna, named for the site of the original paleontologic studies at Tule Springs.The large mammal component of the Tule Springs local fauna is dominated by remains of Mammuthus columbi as well as Camelops hesternus, along with less common remains of Equus (including E. scotti) and Bison. Large carnivorans including Canis dirus, Smilodon fatalis, and Panthera atrox are also recorded. Micromammals, amphibians, lizards, snakes, birds, invertebrates, plant macrofossils, and pollen also occur in the deposits and provide important and complementary paleoenvironmental information. The fauna occurs within the Las Vegas Formation, an extensive and stratigraphically complex sequence of groundwater discharge deposits that represent a mosaic of desert wetland environments. Radiometric and luminescence dating indicates the sequence spans the last ∼570 ka, and records hydrologic changes in a dynamic and temporally congruent response to northern hemispheric abrupt climatic oscillations. The vertebrate fauna occurs in multiple stratigraphic horizons in this sequence, with ages of the fossils spanning from ∼100 to ∼12.5 ka.

  14. Early Pliocene anuran fossils from Kanapoi, Kenya, and the first fossil record for the African burrowing frog Hemisus (Neobatrachia: Hemisotidae).

    PubMed

    Delfino, Massimo

    2017-07-13

    Isolated amphibian bones from the early Pliocene of Kanapoi (West Turkana, Kenya) help to improve the scarce fossil record of the late Neogene and Quaternary amphibians from East Africa. All currently available 579 bones are referable exclusively to the Anura (frogs and toads). More than half of the remains (366) are identified as Hemisus cf. Hemisus marmoratus, an extant species that still inhabits Kenya, but apparently not the northwest of the country and the Turkana area in particular. The rest of the remains are identified simply as Anura indet. because of poor preservation or non congruence with the relatively few African extant taxa whose osteology is known in detail. The Hemisus material represents the first fossil record for Hemisotidae, an endemic African family of peculiar, head-first burrowing frogs, whose sister taxon relationships indicate a divergence from brevicipitids in the Late Cretaceous or early Paleocene. The ecological requirements of extant H. marmoratus suggest that the Kanapoi area surrounding the fluvial and deltaic settings, from where the fossil remains of vertebrates were buried, was likely a grassland or relatively dry, open low tree-shrub savanna. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Modular evolution of the Cetacean vertebral column.

    PubMed

    Buchholtz, Emily A

    2007-01-01

    Modular theory predicts that hierarchical developmental processes generate hierarchical phenotypic units that are capable of independent modification. The vertebral column is an overtly modular structure, and its rapid phenotypic transformation in cetacean evolution provides a case study for modularity. Terrestrial mammals have five morphologically discrete vertebral series that are now known to be coincident with Hox gene expression patterns. Here, I present the hypothesis that in living Carnivora and Artiodactyla, and by inference in the terrestrial ancestors of whales, the series are themselves components of larger precaudal and caudal modular units. Column morphology in a series of fossil and living whales is used to predict the type and sequence of developmental changes responsible for modification of that ancestral pattern. Developmental innovations inferred include independent meristic additions to the precaudal column in basal archaeocetes and basilosaurids, stepwise homeotic reduction of the sacral series in protocetids, and dissociation of the caudal series into anterior tail and fluke subunits in basilosaurids. The most dramatic change was the novel association of lumbar and anterior caudal vertebrae in a module that crosses the precaudal/caudal boundary. This large unit is defined by shared patterns of vertebral morphology, count, and size in all living whales (Neoceti).

  16. The shape of pterosaur evolution: evidence from the fossil record.

    PubMed

    Dyke, G J; McGowan, A J; Nudds, R L; Smith, D

    2009-04-01

    Although pterosaurs are a well-known lineage of Mesozoic flying reptiles, their fossil record and evolutionary dynamics have never been adequately quantified. On the basis of a comprehensive data set of fossil occurrences correlated with taxon-specific limb measurements, we show that the geological ages of pterosaur specimens closely approximate hypothesized patterns of phylogenetic divergence. Although the fossil record has expanded greatly in recent years, collectorship still approximates a sigmoid curve over time as many more specimens (and thus taxa) still remain undiscovered, yet our data suggest that the pterosaur fossil record is unbiased by sites of exceptional preservation (lagerstätte). This is because as new species are discovered the number of known formations and sites yielding pterosaur fossils has also increased - this would not be expected if the bulk of the record came from just a few exceptional faunas. Pterosaur morphological diversification is, however, strongly age biased: rarefaction analysis shows that peaks of diversity occur in the Late Jurassic and Early Cretaceous correlated with periods of increased limb disparity. In this respect, pterosaurs appear unique amongst flying vertebrates in that their disparity seems to have peaked relatively late in clade history. Comparative analyses also show that there is little evidence that the evolutionary diversification of pterosaurs was in any way constrained by the appearance and radiation of birds.

  17. Gaps in the Rock and Fossil Records and Implications for the Rate and Mode of Evolution.

    ERIC Educational Resources Information Center

    Smith, Grant Sackett

    1988-01-01

    Examines three types of gaps in the fossil record: real gaps, imaginary gaps, and temporary gaps. Reviews some recent evidence concerning evolution from the paleontological record of microfossils, invertebrates, and vertebrates in order to make some general conclusions regarding the manner in which life evolved on earth. (CW)

  18. Early development of rostrum saw-teeth in a fossil ray tests classical theories of the evolution of vertebrate dentitions.

    PubMed

    Smith, Moya Meredith; Riley, Alex; Fraser, Gareth J; Underwood, Charlie; Welten, Monique; Kriwet, Jürgen; Pfaff, Cathrin; Johanson, Zerina

    2015-10-07

    In classical theory, teeth of vertebrate dentitions evolved from co-option of external skin denticles into the oral cavity. This hypothesis predicts that ordered tooth arrangement and regulated replacement in the oral dentition were also derived from skin denticles. The fossil batoid ray Schizorhiza stromeri (Chondrichthyes; Cretaceous) provides a test of this theory. Schizorhiza preserves an extended cartilaginous rostrum with closely spaced, alternating saw-teeth, different from sawfish and sawsharks today. Multiple replacement teeth reveal unique new data from micro-CT scanning, showing how the 'cone-in-cone' series of ordered saw-teeth sets arrange themselves developmentally, to become enclosed by the roots of pre-existing saw-teeth. At the rostrum tip, newly developing saw-teeth are present, as mineralized crown tips within a vascular, cartilaginous furrow; these reorient via two 90° rotations then relocate laterally between previously formed roots. Saw-tooth replacement slows mid-rostrum where fewer saw-teeth are regenerated. These exceptional developmental data reveal regulated order for serial self-renewal, maintaining the saw edge with ever-increasing saw-tooth size. This mimics tooth replacement in chondrichthyans, but differs in the crown reorientation and their enclosure directly between roots of predecessor saw-teeth. Schizorhiza saw-tooth development is decoupled from the jaw teeth and their replacement, dependent on a dental lamina. This highly specialized rostral saw, derived from diversification of skin denticles, is distinct from the dentition and demonstrates the potential developmental plasticity of skin denticles. © 2015 The Authors.

  19. Nervous systems and scenarios for the invertebrate-to-vertebrate transition

    PubMed Central

    Holland, Nicholas D.

    2016-01-01

    Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. PMID:26598728

  20. Nervous systems and scenarios for the invertebrate-to-vertebrate transition.

    PubMed

    Holland, Nicholas D

    2016-01-05

    Older evolutionary scenarios for the origin of vertebrates often gave nervous systems top billing in accordance with the notion that a big-brained Homo sapiens crowned a tree of life shaped mainly by progressive evolution. Now, however, tree thinking positions all extant organisms equidistant from the tree's root, and molecular phylogenies indicate that regressive evolution is more common than previously suspected. Even so, contemporary theories of vertebrate origin still focus on the nervous system because of its functional importance, its richness in characters for comparative biology, and its central position in the two currently prominent scenarios for the invertebrate-to-vertebrate transition, which grew out of the markedly neurocentric annelid and enteropneust theories of the nineteenth century. Both these scenarios compare phyla with diverse overall body plans. This diversity, exacerbated by the scarcity of relevant fossil data, makes it challenging to establish plausible homologies between component parts (e.g. nervous system regions). In addition, our current understanding of the relation between genotype and phenotype is too preliminary to permit us to convert gene network data into structural features in any simple way. These issues are discussed here with special reference to the evolution of nervous systems during proposed transitions from invertebrates to vertebrates. © 2015 The Author(s).

  1. Using extant taxa to inform studies of fossil footprints

    NASA Astrophysics Data System (ADS)

    Falkingham, Peter; Gatesy, Stephen

    2016-04-01

    Attempting to use the fossilized footprints of extinct animals to study their palaeobiology and palaeoecology is notoriously difficult. The inconvenient extinction of the trackmaker makes direct correlation between footprints and foot far from straightforward. However, footprints are the only direct evidence of vertebrate motion recorded in the fossil record, and are potentially a source of data on palaeobiology that cannot be obtained from osteological remains alone. Our interests lie in recovering information about the movements of dinosaurs from their tracks. In particular, the Hitchcock collection of early Jurassic tracks held at the Beneski Museum of Natural History, Amherst, provide a rare look into the 3D form of tracks at and below the surface the animal walked on. Breaking naturally along laminations into 'track books', the specimens present sediment deformation at multiple levels, and in doing so record more of the foot's motion than a single surface might. In order to utilize this rich information source to study the now extinct trackmakers, the process of track formation must be understood at a fundamental level; the interaction of the moving foot and compliant substrate. We used bi-planar X-ray techniques (X-ray Reconstruction of Moving Morphology) to record the limb and foot motions of a Guineafowl traversing both granular and cohesive substrates. This data was supplemented with photogrammetric records of the resultant track surfaces, as well as the motion of metal beads within the sediment, to provide a full experimental dataset of foot and footprint formation. The physical experimental data was used to generate computer simulations of the process using high performance computing and the Discrete Element Method. The resultant simulations showed excellent congruence with reality, and enabled visualization within the sediment volume, and throughout the track-forming process. This physical and virtual experimental set-up has provided major insight into

  2. Morphological alterations in the synganglion and integument of Rhipicephalus sanguineus ticks exposed to aqueous extracts of neem leaves (Azadirachta indica A. JUSS).

    PubMed

    Remedio, R N; Nunes, P H; Anholeto, L A; Camargo-Mathias, M I

    2014-12-01

    Currently, the necessity of controlling infestation by ticks, especially by Rhipicephalus sanguineus, has led researchers and public health managers around the world to search for new and more efficient control methods. This way, we can highlight neem (Azadirachta indica A. Juss) leaf, bark, and seed extracts, which have been very effective on tick control, and moreover causing less damage to the environment and to the host. This study showed the potential of neem as a control method for R. sanguineus through morphological and morphometric evaluation of the integument and synganglion of females, in semiengorged stage. To attain this, routine techniques of optical microscopy, scanning electron microscopy and morphometry of the cuticle and subcuticle of the integument were applied. Expressive morphological alterations were observed in both organs, presenting a dose-dependent effect. Integument epithelial cells and nerve cells of the synganglion showed signs of cell vacuolation, dilated intercellular boundaries, and cellular disorganization, alterations not previously reported in studies with neem. In addition, variations in subcuticle thickness were also observed. In general, the effects of neem are multiple, and affect the morphology and physiology of target animals in various ways. The results presented in this work are the first evidence of its effects in the coating and nervous system of ticks, thus allowing an indication of neem aqueous extracts as a potential control method of the brown dog tick and opening new perspectives on acaricide use. © 2014 Wiley Periodicals, Inc.

  3. The potential of paleozoic nonmarine trace fossils for paleoecological interpretations

    USGS Publications Warehouse

    Maples, C.G.; Archer, A.W.

    1989-01-01

    Many Late Paleozoic environments have been interpreted as marine because of the co-occurrence of supposedly exclusively marine trace fossils. Beginning in the Late Ordovician, however, nonmarine trace-fossil diversity increased throughout the Paleozoic. This diversification of nonmarine organisms and nonmarine trace fossils was especially prevalent in Devonian and later times. Diversification of freshwater organisms is indicated by the large number of freshwater fish, arthropods, annelids and molluscs that had developed by the Carboniferous. In addition to diverse freshwater assemblages, entirely terrestrial vertebrate and invertebrate ecosystems had developed by the Devonian. This rapid diversification of freshwater and terrestrial organisms is inherently linked to development and diversification of land plants and subsequent shedding of large quantities of organic detritus in nonmarine and marginal-marine areas. Nearshore marine organisms and their larvae that are able to tolerate relatively short periods of lowered salinities will follow salt-water wedges inland during times of reduced freshwater discharge. Similarly, amphidromous marine organisms will migrate periodically inland into nonmarine environments. Undoubtedly, both of these processes were active in the Paleozoic. However, both processes are restricted to stream/distributary channels, interdistributary bays, or estuaries. Therefore, the presence of diverse trace-fossil assemblages in association with floodplain deposits is interpreted to reflect true nonmarine adaptation and diversity. Conversely, diverse trace-fossil assemblages in association with stream/distributary channel deposits, interdistributary-bay deposits, or estuarine deposits may reflect migration of salt-water wedges inland, or migration of marine organisms into freshwater environments (amphidromy), or both. ?? 1989.

  4. 40Ar/39Ar ages for the fossil-bearing Gyeongsang Supergroup in South Korea

    NASA Astrophysics Data System (ADS)

    Chang, S. C.; Hemming, S. R.

    2016-12-01

    Since the 1970s, abundant vertebrate fossils have been documented from the Cretaceous Gyeongsang Supergroup in the Gyeongsang Basin and some small nearby basins of the Korean Peninsula, including dinosaurs, pterosaurs, crocodilians, turtles and fish. In addition to body fossils, well-preserved dinosaur, bird and pterosaur tracks have been found from these formations. Well-preserved and extensive vertebrate ichnofaunas from the Gyeongsang Supergroup represent the largest known concentration of Cretaceous vertebrate track sites reported from the Asian continent. Determining the age of the Gyeongsang Supergroup is critical to understanding several fundamental questions related to evolution and paleo-biogeography. However, limited radioisotopic studies for the Gyeongsang Supergroup have been previously reported. Additionally, the large uncertainties of previous data and the incomplete stratigraphic description of the samples limit their value for high-resolution chronostratigraphy. In this study, we aim to establish high-precision 40Ar/39Ar ages for two well-known tuffs from the middle and the upper part of the Gyeongsang Supergroup, and one rhyolite from the uppermost Gyeongsang Supergroup. Our preliminary 40Ar/39Ar data for the Kusandong Tuff indicates that the middle part of the Gyeongsang Supergroup is 78-82 Ma. This is consistent with the hypothesized extension of the Jehol biota into Korea and the preliminary results suggest that refinement of the time scale for these strata is a practical goal. The Gyeongsang Supergroup sample has great potential for substantially increasing our knowledge of Mesozoic terrestrial ecosystems.

  5. Oldest near-complete acanthodian: the first vertebrate from the Silurian Bertie Formation Konservat-Lagerstätte, Ontario.

    PubMed

    Burrow, Carole J; Rudkin, David

    2014-01-01

    The relationships between early jawed vertebrates have been much debated, with cladistic analyses yielding little consensus on the position (or positions) of acanthodians with respect to other groups. Whereas one recent analysis showed various acanthodians (classically known as 'spiny sharks') as stem osteichthyans (bony fishes) and others as stem chondrichthyans, another shows the acanthodians as a paraphyletic group of stem chondrichthyans, and the latest analysis shows acanthodians as the monophyletic sister group of the Chondrichthyes. A small specimen of the ischnacanthiform acanthodian Nerepisacanthus denisoni is the first vertebrate fossil collected from the Late Silurian Bertie Formation Konservat-Lagerstätte of southern Ontario, Canada, a deposit well-known for its spectacular eurypterid fossils. The fish is the only near complete acanthodian from pre-Devonian strata worldwide, and confirms that Nerepisacanthus has dentigerous jaw bones, body scales with superposed crown growth zones formed of ondontocytic mesodentine, and a patch of chondrichthyan-like scales posterior to the jaw joint. The combination of features found in Nerepisacanthus supports the hypothesis that acanthodians could be a group, or even a clade, on the chondrichthyan stem. Cladistic analyses of early jawed vertebrates incorporating Nerepisacanthus, and updated data on other acanthodians based on publications in press, should help clarify their relationships.

  6. Is evolutionary history repeatedly rewritten in light of new fossil discoveries?

    PubMed

    Tarver, J E; Donoghue, P C J; Benton, M J

    2011-02-22

    Mass media and popular science journals commonly report that new fossil discoveries have 'rewritten evolutionary history'. Is this merely journalistic hyperbole or is our sampling of systematic diversity so limited that attempts to derive evolutionary history from these datasets are premature? We use two exemplars-catarrhine primates (Old World monkeys and apes) and non-avian dinosaurs-to investigate how the maturity of datasets can be assessed. Both groups have been intensively studied over the past 200 years and so should represent pinnacles in our knowledge of vertebrate systematic diversity. We test the maturity of these datasets by assessing the completeness of their fossil records, their susceptibility to changes in macroevolutionary hypotheses and the balance of their phylogenies through study time. Catarrhines have shown prolonged stability, with discoveries of new species being evenly distributed across the phylogeny, and thus have had little impact on our understanding of their fossil record, diversification and evolution. The reverse is true for dinosaurs, where the addition of new species has been non-random and, consequentially, their fossil record, tree shape and our understanding of their diversification is rapidly changing. The conclusions derived from these analyses are relevant more generally: the maturity of systematic datasets can and should be assessed before they are exploited to derive grand macroevolutionary hypotheses.

  7. Comparative Taphonomy, Taphofacies, and Bonebeds of the Mio-Pliocene Purisima Formation, Central California: Strong Physical Control on Marine Vertebrate Preservation in Shallow Marine Settings

    PubMed Central

    Boessenecker, Robert W.; Perry, Frank A.; Schmitt, James G.

    2014-01-01

    Background Taphonomic study of marine vertebrate remains has traditionally focused on single skeletons, lagerstätten, or bonebed genesis with few attempts to document environmental gradients in preservation. As such, establishment of a concrete taphonomic model for shallow marine vertebrate assemblages is lacking. The Neogene Purisima Formation of Northern California, a richly fossiliferous unit recording nearshore to offshore depositional settings, offers a unique opportunity to examine preservational trends across these settings. Methodology/Principal Findings Lithofacies analysis was conducted to place vertebrate fossils within a hydrodynamic and depositional environmental context. Taphonomic data including abrasion, fragmentation, phosphatization, articulation, polish, and biogenic bone modification were recorded for over 1000 vertebrate fossils of sharks, bony fish, birds, pinnipeds, odontocetes, mysticetes, sirenians, and land mammals. These data were used to compare both preservation of multiple taxa within a single lithofacies and preservation of individual taxa across lithofacies to document environmental gradients in preservation. Differential preservation between taxa indicates strong preservational bias within the Purisima Formation. Varying levels of abrasion, fragmentation, phosphatization, and articulation are strongly correlative with physical processes of sediment transport and sedimentation rate. Preservational characteristics were used to delineate four taphofacies corresponding to inner, middle, and outer shelf settings, and bonebeds. Application of sequence stratigraphic methods shows that bonebeds mark major stratigraphic discontinuities, while packages of rock between discontinuities consistently exhibit onshore-offshore changes in taphofacies. Conclusions/Significance Changes in vertebrate preservation and bonebed character between lithofacies closely correspond to onshore-offshore changes in depositional setting, indicating that the

  8. Comparative taphonomy, taphofacies, and bonebeds of the Mio-Pliocene Purisima Formation, central California: strong physical control on marine vertebrate preservation in shallow marine settings.

    PubMed

    Boessenecker, Robert W; Perry, Frank A; Schmitt, James G

    2014-01-01

    Taphonomic study of marine vertebrate remains has traditionally focused on single skeletons, lagerstätten, or bonebed genesis with few attempts to document environmental gradients in preservation. As such, establishment of a concrete taphonomic model for shallow marine vertebrate assemblages is lacking. The Neogene Purisima Formation of Northern California, a richly fossiliferous unit recording nearshore to offshore depositional settings, offers a unique opportunity to examine preservational trends across these settings. Lithofacies analysis was conducted to place vertebrate fossils within a hydrodynamic and depositional environmental context. Taphonomic data including abrasion, fragmentation, phosphatization, articulation, polish, and biogenic bone modification were recorded for over 1000 vertebrate fossils of sharks, bony fish, birds, pinnipeds, odontocetes, mysticetes, sirenians, and land mammals. These data were used to compare both preservation of multiple taxa within a single lithofacies and preservation of individual taxa across lithofacies to document environmental gradients in preservation. Differential preservation between taxa indicates strong preservational bias within the Purisima Formation. Varying levels of abrasion, fragmentation, phosphatization, and articulation are strongly correlative with physical processes of sediment transport and sedimentation rate. Preservational characteristics were used to delineate four taphofacies corresponding to inner, middle, and outer shelf settings, and bonebeds. Application of sequence stratigraphic methods shows that bonebeds mark major stratigraphic discontinuities, while packages of rock between discontinuities consistently exhibit onshore-offshore changes in taphofacies. Changes in vertebrate preservation and bonebed character between lithofacies closely correspond to onshore-offshore changes in depositional setting, indicating that the dominant control of preservation is exerted by physical processes. The

  9. Paleophysiology: From Fossils to the Future.

    PubMed

    Vermeij, Geerat J

    2015-10-01

    Future environments may resemble conditions that have not existed for millions of years. To assess the adaptive options available to organisms evolving under such circumstances, it is instructive to probe paleophysiology, the ways in which ancient life coped with its physical and chemical surroundings. To do this, we need reliable proxies that are based on fundamental principles, quantitatively verified in living species, and observable in fossil remains. Insights have already come from vertebrates and plants, and others will likely emerge for marine animals if promising proxies are validated. Many questions remain about the circumstances for the evolution of environmental tolerances, metabolic rates, biomineralization, and physiological responses to interacting species, and about how living organisms will perform under exceptional conditions. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Oxygen mask related nasal integument and osteocartilagenous disorders in F-16 fighter pilots.

    PubMed

    Schreinemakers, J Rieneke C; Westers, Paul; van Amerongen, Pieter; Kon, Moshe

    2013-01-01

    A preliminary survey showed half of the participating Royal Netherlands Air Force (RNLAF) F-16 fighter pilots to have nasal integument and osteocartilagenous disorders related to wearing in-flight oxygen masks. To make an inventory of these disorders and possible associated factors. All RNLAF F-16 pilots were requested to fill out a semi-structured questionnaire for a cross-sectional survey. Additionally, one squadron in The Netherlands and pilots in operational theater were asked to participate in a prospective study that required filling out a pain score after each flight. Pilot- and flight-related variables on all participants were collected from the RNLAF database. A linear mixed model was built to identify associated factors with the post-flight pain score. The response rate to the survey was 83%. Ninety of the 108 participants (88%, 6 missing) reported tenderness, irritation, pain, erythema, skin lesions, callous skin, or swelling of nasal bridge integument or architecture. Seventy-two participants (71%, 6 missing) reported their symptoms to be troublesome after a mean of 6±3 out of 10 flights (0;10, 54 missing). Sixty-six pilots participated in scoring post-flight pain. Pain scores were significantly higher if a participant had ≥3 nasal disorders, after longer than average flights, after flying abroad, and after flying with night vision goggles (respectively +2.7 points, p = 0.003; +0.2 points, p = 0.027; +1.8 points, p = 0.001; +1.2 points p = 0.005). Longer than average NVG flights and more than average NVG hours per annum decreased painscores (respectively -0.8 points, p = 0.017; -0.04 points, p = 0.005). The majority of the RNLAF F-16 fighter pilot community has nasal disorders in the contact area of the oxygen mask, including pain. Six pilot- or flight-related characteristics influence the experienced level of pain.

  11. Cretaceous Vertebrate Tracksites - Korean Cretaceous Dinosaur Coast World Heritage Nomination Site

    NASA Astrophysics Data System (ADS)

    Huh, M.; Woo, K. S.; Lim, J. D.; Paik, I. S.

    2009-04-01

    South Korea is one of the best known regions in the world for Cretaceous fossil footprints, which are also world-renowned. Korea has produced more scientifically named bird tracks (ichnotaxa) than any other region in the world. It has also produced the world's largest pterosaur tracks. Dinosaur tracksites also have the highest frequency of vertebrate track-bearing levels currently known in any stratigraphic sequence. Among the areas that have the best track records, and the greatest scientific significance with best documentation, Korea ranks very highly. Objective analysis of important individual tracksites and tracksite regions must be based on multiple criteria including: size of site, number of tracks, trackways and track bearing levels, number of valid named ichnotaxa including types, number of scientific publications, quality of preservation. The unique and distinctive dinosaur tracksites are known as one of the world's most important dinosaur track localities. In particular, the dinosaur track sites in southern coastal area of Korea are very unique. In the sites, we have excavated over 10,000 dinosaur tracks. The Hwasun sites show diverse gaits with unusual walking patterns and postures in some tracks. The pterosaur tracks are the most immense in the world. The longest pterosaur trackway yet known from any track sites suggests that pterosaurs were competent terrestrial locomotors. This ichnofauna contains the first pterosaur tracks reported from Asia. The Haenam Uhangri pterosaur assigns to a new genus Haenamichnus which accomodates the new ichnospecies, Haenamichnus uhangriensis. At least 12 track types have been reported from the Haman and Jindong Formations (probably late Lower Cretaceous). These include the types of bird tracks assigned to Koreanornis, Jindongornipes, Ignotornis and Goseongornipes. In addition the bird tracks Hwangsanipes, Uhangrichnus, the pterosaur track Haenamichnus and the dinosaur tracks, Brontopodus, Caririchnium, Minisauripus and

  12. Integrated Paleoenvironmental Reconstruction and Taphonomy of a Unique Upper Cretaceous Vertebrate-Bearing Locality (Velaux, Southeastern France).

    PubMed

    Cincotta, Aude; Yans, Johan; Godefroit, Pascal; Garcia, Géraldine; Dejax, Jean; Benammi, Mouloud; Amico, Sauveur; Valentin, Xavier

    2015-01-01

    The Velaux-La Bastide Neuve fossil-bearing site (Bouches-du-Rhône, France) has yielded a diverse vertebrate assemblage dominated by dinosaurs, including the titanosaur Atsinganosaurus velauciensis. We here provide a complete inventory of vertebrate fossils collected during two large-scale field campaigns. Numerous crocodilian teeth occur together with complete skulls. Pterosaur, hybodont shark and fish elements are also represented but uncommon. Magnetostratigraphic analyses associated with biostratigraphic data from dinosaur eggshell and charophytes suggest a Late Campanian age for the locality. Lithologic and taphonomic studies, associated with microfacies and palynofacies analyses, indicate a fluvial setting of moderate energy with broad floodplain. Palynomorphs are quite rare; only three taxa of pollen grains occur: a bisaccate taxon, a second form probably belonging to the Normapolles complex, and another tricolporate taxon. Despite the good state of preservation, these taxa are generally difficult to identify, since they are scarce and have a very minute size. Most of the vertebrate remains are well preserved and suggest transport of the carcasses over short distances before accumulation in channel and overbank facies, together with reworked Aptian grains of glauconite, followed by a rapid burial. The bones accumulated in three thin layers that differ by their depositional modes and their taphonomic histories. Numerous calcareous and iron oxides-rich paleosols developed on the floodplain, suggesting an alternating dry and humid climate in the region during the Late Campanian.

  13. DEVELOPMENTAL PALEOBIOLOGY OF THE VERTEBRATE SKELETON.

    PubMed

    Rücklin, Martin; Donoghue, Philip C J; Cunningham, John A; Marone, Federica; Stampanoni, Marco

    2014-07-01

    Studies of the development of organisms can reveal crucial information on homology of structures. Developmental data are not peculiar to living organisms, and they are routinely preserved in the mineralized tissues that comprise the vertebrate skeleton, allowing us to obtain direct insight into the developmental evolution of this most formative of vertebrate innovations. The pattern of developmental processes is recorded in fossils as successive stages inferred from the gross morphology of multiple specimens and, more reliably and routinely, through the ontogenetic stages of development seen in the skeletal histology of individuals. Traditional techniques are destructive and restricted to a 2-D plane with the third dimension inferred. Effective non-invasive methods of visualizing paleohistology to reconstruct developmental stages of the skeleton are necessary. In a brief survey of paleohistological techniques we discuss the pros and cons of these methods. The use of tomographic methods to reconstruct development of organs is exemplified by the study of the placoderm dentition. Testing evidence for the presence of teeth in placoderms, the first jawed vertebrates, we compare the methods that have been used. These include inferring the development from morphology, and using serial sectioning, microCT or synchrotron X-ray tomographic microscopy (SRXTM) to reconstruct growth stages and directions of growth. The ensuing developmental interpretations are biased by the methods and degree of inference. The most direct and reliable method is using SRXTM data to trace sclerochronology. The resulting developmental data can be used to resolve homology and test hypotheses on the origin of evolutionary novelties.

  14. The origin and diversification of the developmental mechanisms that pattern the vertebrate head skeleton.

    PubMed

    Square, Tyler; Jandzik, David; Romášek, Marek; Cerny, Robert; Medeiros, Daniel Meulemans

    2017-07-15

    The apparent evolvability of the vertebrate head skeleton has allowed a diverse array of shapes, sizes, and compositions of the head in order to better adapt species to their environments. This encompasses feeding, breathing, sensing, and communicating: the head skeleton somehow participated in the evolution of all these critical processes for the last 500 million years. Through evolution, present head diversity was made possible via developmental modifications to the first head skeletal genetic program. Understanding the development of the vertebrate common ancestor's head skeleton is thus an important step in identifying how different lineages have respectively achieved their many innovations in the head. To this end, cyclostomes (jawless vertebrates) are extremely useful, having diverged from jawed vertebrates approximately 400 million years ago, at the deepest node within living vertebrates. From this ancestral vantage point (that is, the node connecting cyclostomes and gnathostomes) we can best identify the earliest major differences in development between vertebrate classes, and start to address how these might translate onto morphology. In this review we survey what is currently known about the cell biology and gene expression during head development in modern vertebrates, allowing us to better characterize the developmental genetics driving head skeleton formation in the most recent common ancestor of all living vertebrates. By pairing this vertebrate composite with information from fossil chordates, we can also deduce how gene regulatory modules might have been arranged in the ancestral vertebrate head. Together, we can immediately begin to understand which aspects of head skeletal development are the most conserved, and which are divergent, informing us as to when the first differences appear during development, and thus which pathways or cell types might be involved in generating lineage specific shape and structure. Copyright © 2017 Elsevier Inc. All

  15. The role of the integument as a barrier to penetration of ice into overwintering hatchlings of the painted turtle (Chrysemys picta).

    PubMed

    Willard, R; Packard, G C; Packard, M J; Tucker, J K

    2000-11-01

    Hatchlings of the North American painted turtle (Chrysemys picta) spend their first winter of life inside a shallow, subterranean hibernaculum (the natal nest) where they may be exposed for extended periods to ice and cold. Hatchlings seemingly survive exposure to such conditions by becoming supercooled (i.e., by remaining unfrozen at temperatures below the equilibrium freezing point for body fluids), so we investigated the role of their integument in preventing ice from penetrating into body compartments from surrounding soil. We first showed that hatchlings whose epidermis has been damaged are more likely to be penetrated by growing crystals of ice than are turtles whose cutaneous barrier is intact. We next studied integument from a forelimb by light microscopy and discovered that the basal part of the alpha-keratin layer of the epidermis contains a dense layer of lipid. Skin from the forelimb of other neonatal turtles lacks such a layer of lipid in the epidermis, and these other turtles also are highly susceptible to inoculative freezing. Moreover, epidermis from the neck of hatchling painted turtles lacks the lipid layer, and this region of the skin is readily penetrated by growing crystals of ice. We therefore conclude that the resistance to inoculation imposed by skin on the limbs of hatchling painted turtles results from the presence of lipids in the alpha-keratin layer of the epidermis. Neonates apparently are able to avoid freezing during winter by drawing much of the body inside the shell, leaving only the ice-resistant integument of the limbs exposed to ice in the environment. The combination of behavior and skin morphology enables overwintering hatchlings to exploit an adaptive strategy based on supercooling. Copyright 2000 Wiley-Liss, Inc.

  16. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards

    PubMed Central

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang

    2011-01-01

    Summary Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive – and for Phrynosoma directed – transport of water. PMID:21977432

  17. Moisture harvesting and water transport through specialized micro-structures on the integument of lizards.

    PubMed

    Comanns, Philipp; Effertz, Christian; Hischen, Florian; Staudt, Konrad; Böhme, Wolfgang; Baumgartner, Werner

    2011-01-01

    Several lizard species that live in arid areas have developed special abilities to collect water with their bodies' surfaces and to ingest the so collected moisture. This is called rain- or moisture-harvesting. The water can originate from air humidity, fog, dew, rain or even from humid soil. The integument (i.e., the skin plus skin derivatives such as scales) has developed features so that the water spreads and is soaked into a capillary system in between the reptiles' scales. Within this capillary system the water is transported to the mouth where it is ingested. We have investigated three different lizard species which have developed the ability for moisture harvesting independently, viz. the Australian thorny devil (Moloch horridus), the Arabian toadhead agama (Phrynocephalus arabicus) and the Texas horned lizard (Phrynosoma cornutum). All three lizards have a honeycomb like micro ornamentation on the outer surface of the scales and a complex capillary system in between the scales. By investigation of individual scales and by producing and characterising polymer replicas of the reptiles' integuments, we found that the honeycomb like structures render the surface superhydrophilic, most likely by holding a water film physically stable. Furthermore, the condensation of air humidity is improved on this surface by about 100% in comparison to unstructured surfaces. This allows the animals to collect moisture with their entire body surface. The collected water is transported into the capillary system. For Phrynosoma cornutum we found the interesting effect that, in contrast to the other two investigated species, the water flow in the capillary system is not uniform but directed to the mouth. Taken together we found that the micro ornamentation yields a superhydrophilic surface, and the semi-tubular capillaries allow for an efficient passive - and for Phrynosoma directed - transport of water.

  18. Integrated Analyses Resolve Conflicts over Squamate Reptile Phylogeny and Reveal Unexpected Placements for Fossil Taxa

    PubMed Central

    Reeder, Tod W.; Townsend, Ted M.; Mulcahy, Daniel G.; Noonan, Brice P.; Wood, Perry L.; Sites, Jack W.; Wiens, John J.

    2015-01-01

    Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement. PMID:25803280

  19. Integrated analyses resolve conflicts over squamate reptile phylogeny and reveal unexpected placements for fossil taxa.

    PubMed

    Reeder, Tod W; Townsend, Ted M; Mulcahy, Daniel G; Noonan, Brice P; Wood, Perry L; Sites, Jack W; Wiens, John J

    2015-01-01

    Squamate reptiles (lizards and snakes) are a pivotal group whose relationships have become increasingly controversial. Squamates include >9000 species, making them the second largest group of terrestrial vertebrates. They are important medicinally and as model systems for ecological and evolutionary research. However, studies of squamate biology are hindered by uncertainty over their relationships, and some consider squamate phylogeny unresolved, given recent conflicts between molecular and morphological results. To resolve these conflicts, we expand existing morphological and molecular datasets for squamates (691 morphological characters and 46 genes, for 161 living and 49 fossil taxa, including a new set of 81 morphological characters and adding two genes from published studies) and perform integrated analyses. Our results resolve higher-level relationships as indicated by molecular analyses, and reveal hidden morphological support for the molecular hypothesis (but not vice-versa). Furthermore, we find that integrating molecular, morphological, and paleontological data leads to surprising placements for two major fossil clades (Mosasauria and Polyglyphanodontia). These results further demonstrate the importance of combining fossil and molecular information, and the potential problems of estimating the placement of fossil taxa from morphological data alone. Thus, our results caution against estimating fossil relationships without considering relevant molecular data, and against placing fossils into molecular trees (e.g. for dating analyses) without considering the possible impact of molecular data on their placement.

  20. Integrated Paleoenvironmental Reconstruction and Taphonomy of a Unique Upper Cretaceous Vertebrate-Bearing Locality (Velaux, Southeastern France)

    PubMed Central

    Cincotta, Aude; Yans, Johan; Godefroit, Pascal; Garcia, Géraldine; Dejax, Jean; Benammi, Mouloud; Amico, Sauveur; Valentin, Xavier

    2015-01-01

    The Velaux-La Bastide Neuve fossil-bearing site (Bouches-du-Rhône, France) has yielded a diverse vertebrate assemblage dominated by dinosaurs, including the titanosaur Atsinganosaurus velauciensis. We here provide a complete inventory of vertebrate fossils collected during two large-scale field campaigns. Numerous crocodilian teeth occur together with complete skulls. Pterosaur, hybodont shark and fish elements are also represented but uncommon. Magnetostratigraphic analyses associated with biostratigraphic data from dinosaur eggshell and charophytes suggest a Late Campanian age for the locality. Lithologic and taphonomic studies, associated with microfacies and palynofacies analyses, indicate a fluvial setting of moderate energy with broad floodplain. Palynomorphs are quite rare; only three taxa of pollen grains occur: a bisaccate taxon, a second form probably belonging to the Normapolles complex, and another tricolporate taxon. Despite the good state of preservation, these taxa are generally difficult to identify, since they are scarce and have a very minute size. Most of the vertebrate remains are well preserved and suggest transport of the carcasses over short distances before accumulation in channel and overbank facies, together with reworked Aptian grains of glauconite, followed by a rapid burial. The bones accumulated in three thin layers that differ by their depositional modes and their taphonomic histories. Numerous calcareous and iron oxides-rich paleosols developed on the floodplain, suggesting an alternating dry and humid climate in the region during the Late Campanian. PMID:26287486

  1. Oxygen Mask Related Nasal Integument and Osteocartilagenous Disorders in F-16 Fighter Pilots

    PubMed Central

    Schreinemakers, J. Rieneke C.; Westers, Paul; van Amerongen, Pieter; Kon, Moshe

    2013-01-01

    Background A preliminary survey showed half of the participating Royal Netherlands Air Force (RNLAF) F-16 fighter pilots to have nasal integument and osteocartilagenous disorders related to wearing in-flight oxygen masks. Aim To make an inventory of these disorders and possible associated factors. Methods All RNLAF F-16 pilots were requested to fill out a semi-structured questionnaire for a cross-sectional survey. Additionally, one squadron in The Netherlands and pilots in operational theater were asked to participate in a prospective study that required filling out a pain score after each flight. Pilot- and flight-related variables on all participants were collected from the RNLAF database. A linear mixed model was built to identify associated factors with the post-flight pain score. Results The response rate to the survey was 83%. Ninety of the 108 participants (88%, 6 missing) reported tenderness, irritation, pain, erythema, skin lesions, callous skin, or swelling of nasal bridge integument or architecture. Seventy-two participants (71%, 6 missing) reported their symptoms to be troublesome after a mean of 6±3 out of 10 flights (0;10, 54 missing). Sixty-six pilots participated in scoring post-flight pain. Pain scores were significantly higher if a participant had ≥3 nasal disorders, after longer than average flights, after flying abroad, and after flying with night vision goggles (respectively +2.7 points, p = 0.003; +0.2 points, p = 0.027; +1.8 points, p = 0.001; +1.2 points p = 0.005). Longer than average NVG flights and more than average NVG hours per annum decreased painscores (respectively −0.8 points, p = 0.017; −0.04 points, p = 0.005). Conclusions The majority of the RNLAF F-16 fighter pilot community has nasal disorders in the contact area of the oxygen mask, including pain. Six pilot- or flight-related characteristics influence the experienced level of pain. PMID:23505413

  2. The cuticular localization of integument peptides from particular routing categories.

    PubMed

    Locke, M; Kiss, A; Sass, M

    1994-10-01

    The distribution of integument peptides in relation to chitin and structural features has been studied in the surface epidermis of the caterpillar of Calpodes ethlius by immunoblotting and immunogold labelling using antibodies prepared to peptides isolated from lamellate endocuticle or from hemolymph. The intermoult cuticle consists of an epicuticle, an endocuticle of many chitin containing lamellae, and a chitin containing assembly zone directly above the apical epidermal microvilli and the perimicrovillar space. During the intermoult, the epidermis secretes peptides constitutively, that is, secretory vesicles containing peptides exocytose without accumulating, traverse the perimicrovillar space and form lamellae in the assembly zone. At moulting, the epidermis deposits ecdysial droplets in addition. These interrupt the last few lamellae which later go on to become the perforated ecdysial membrane. The integument is involved with four routing classes of peptide. Secretion is apical into the cuticle (C), basal into the hemolymph (H), bidirectional (BD), or transported to the cuticle across the epidermis from the hemolymph (T). Some peptides change their routing at moulting. There are several patterns of localization. (1) C and BD cuticular peptides occur mainly in chitin containing lamellate cuticle. (2) Some are also present in epicuticle, and are therefore not obligatorily linked to chitin or matrix between chitin fibers. Cuticular peptides that also occur in the hemolymph are glycosylated, whereas most that are only secreted apically into the cuticle are not. All BD but few C peptides carry alpha-D-glucose/alpha-D-mannose. Some C and BD peptides carry N-acetyl glucosamine. (3) C36 extracted from cuticle has most N-acetyl glucosamine and colocalizes with chitin rather than the protein matrix. It is therefore probably the main link between chitin fibers and the matrix. (4) H235 is barely detectable at the apical cell surface during the intermoult but is abundant

  3. The 'Tully monster' is a vertebrate.

    PubMed

    McCoy, Victoria E; Saupe, Erin E; Lamsdell, James C; Tarhan, Lidya G; McMahon, Sean; Lidgard, Scott; Mayer, Paul; Whalen, Christopher D; Soriano, Carmen; Finney, Lydia; Vogt, Stefan; Clark, Elizabeth G; Anderson, Ross P; Petermann, Holger; Locatelli, Emma R; Briggs, Derek E G

    2016-04-28

    Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica', particularly the 'weird wonders' of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years.

  4. Fossil evidence for the origin of aquatic locomotion in archaeocete whales.

    PubMed

    Thewissen, J G; Hussain, S T; Arif, M

    1994-01-14

    Recent members of the order Cetacea (whales, dolphins, and porpoises) move in the water by vertical tail beats and cannot locomote on land. Their hindlimbs are not visible externally and the bones are reduced to one or a few splints that commonly lack joints. However, cetaceans originated from four-legged land mammals that used their limbs for locomotion and were probably apt runners. Because there are no relatively complete limbs for archaic archaeocete cetaceans, it is not known how the transition in locomotory organs from land to water occurred. Recovery of a skeleton of an early fossil cetacean from the Kuldana Formation, Pakistan, documents transitional modes of locomotion, and allows hypotheses concerning swimming in early cetaceans to be tested. The fossil indicates that archaic whales swam by undulating their vertebral column, thus forcing their feet up and down in a way similar to modern otters. Their movements on land probably resembled those of sea lions to some degree, and involved protraction and retraction of the abducted limbs.

  5. Influence of depositional environment in fossil teeth: a micro-XRF and XAFS study

    NASA Astrophysics Data System (ADS)

    Zougrou, I. M.; Katsikini, M.; Pinakidou, F.; Papadopoulou, L.; Tsoukala, E.; Paloura, E. C.

    2014-04-01

    The formation of metal-rich phases during the fossilization of vertebrate fossil teeth, recovered from various deposition environments in northern Greece, is studied by means of synchrotron radiation X-ray fluorescence (SR-XRF) as well as Fe and Mn K edge X-ray absorption fine structure (XAFS) spectroscopy. XRF line-scans from the samples' cross-sections revealed different contamination paths for Mn and Fe. The two-dimensional XRF maps illustrate the spatial distribution of P, Ca, Mn and Fe as well as the precipitation of Fe-rich phases in cementum, dentin and dentinal tubules. Goethite, lepidocrocite and ferrihydrite were detected in the samples' cross-section by means of Fe K edge EXAFS spectroscopy. Moreover the Fe and Mn K edge EXAFS revealed the presence of vivianite and birnessite (MnO2) on the external surface of two samples.

  6. Contradicting habitat type-extinction risk relationships between living and fossil amphibians

    NASA Astrophysics Data System (ADS)

    Tietje, Melanie; Rödel, Mark-Oliver

    2017-05-01

    Trait analysis has become a crucial tool for assessing the extinction risk of species. While some extinction risk-trait relationships have been often identical between different living taxa, a temporal comparison of fossil taxa with related current taxa was rarely considered. However, we argue that it is important to know if extinction risk-trait relations are constant or changing over time. Herein we investigated the influence of habitat type on the persistence length of amphibian species. Living amphibians are regarded as the most threatened group of terrestrial vertebrates and thus of high interest to conservationists. Species from different habitat types show differences in extinction risk, i.e. species depending on flowing waters being more threatened than those breeding in stagnant sites. After assessing the quality of the available amphibian fossil data, we show that today's habitat type-extinction risk relationship is reversed compared to fossil amphibians, former taxa persisting longer when living in rivers and streams, thus suggesting a change of effect direction of this trait. Neither differences between amphibian orders nor environmentally caused preservation effects could explain this pattern. We argue this change to be most likely a result of anthropogenic influence, which turned a once favourable strategy into a disadvantage.

  7. Fossilized bioelectric wire - the trace fossil Trichichnus

    NASA Astrophysics Data System (ADS)

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2014-12-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the interface oxic - anoxic zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that produced by modern large, mat-forming, sulphide-oxidizing bacteria, belonging mostly to Trichichnus-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized "electric wire".

  8. Fossilized bioelectric wire - the trace fossil Trichichnus

    NASA Astrophysics Data System (ADS)

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2015-04-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic-anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized "electric wire".

  9. Spatial coordination of compensatory eye movements in vertebrates: form and function.

    PubMed

    Graf, W

    1988-01-01

    The semicircular canals of the labyrinth of vertebrates provide one way of motion detection in three-dimensional space. The fully developed form of the vertebrate labyrinth consists of six semicircular canals, three on each side of the head, whose spatial arrangement (vertical canals are placed diagonally in the head, horizontal canals are oriented earth horizontally) follows three interconnected principles: 1) bilateral symmetry, 2) push-pull operational mode, and 3) mutual orthogonality. Other sensory and motor systems related to vestibular reflexes, such as the extraocular muscles or the "optokinetic" coordinate axes encoded in the activity of the visually driven cells of the accessory optic system, share the same geometrical framework. This framework is also reflected in the anatomical networks mediating compensatory eye movements, linking each of the semicircular canals to a particular set of extraocular muscles (so-called principal vestibuloocular reflex connections to yoke muscles). These classical vestibulo-oculomotor relationships have been verified at many levels of the vertebrate hierarchy, including lateral- and frontal-eyed animals. The particular spatial orientation of the semicircular canals requires further comment and phylogenetic evaluation. The spatial arrangement of the vertical canals is already present in fossil ostracoderms, and is also exemplified in lampreys, the modern forms of once abundant agnathan species that populated the Silurian and Devonian oceans. The lampreys and ostracoderms lack horizontal canals, which appear later in all descendent vertebrates. The fully developed vertebrate labyrinth with its six semicircular canals displays distinct differences that are obvious when comparing distant taxa (e.g. elasmobranchs versus other vertebrates). Whereas the common crus of the semicircular canals in teleosts through mammals is formed between the anterior and the posterior semicircular canal, it occurs between the anterior and the

  10. A terrestrial vertebrate palaeontological review of Aldabra Atoll, Aldabra Group, Seychelles

    PubMed Central

    2018-01-01

    The Pleistocene vertebrate assemblage of Aldabra Atoll has been comparatively well studied. Three Upper Pleistocene fossil localities have been described yielding birds, reptiles and terrestrial molluscs. Those of Bassin Cabri and Bassin Lebine on Ile Picard are undated but must be in excess of 136,000 YBP, whereas Point Hodoul on Malabar Island is circa 100,000 YBP. Aldabra was seemingly completely submerged between deposition of the Ile Picard and Point Hodoul deposits, resulting in local faunal extinctions. Here we present the results of an ongoing study of fossil material collected on Ile Picard in 1987, which reveals a more diverse assemblage than previously realised. Notable discoveries are an Ardeola heron, three Procellariformes, tropic-bird Phaethon, gull Larus, rail Dryolimnas, harrier Circus and owl Tyto, plus evidence of recolonisation of the atoll by some seabirds, rail, harrier, owl, giant tortoises and lizards after the Ile Picard/Point Hodoul submergence event. PMID:29590117

  11. Discovery of the fossil otter Enhydritherium terraenovae (Carnivora, Mammalia) in Mexico reconciles a palaeozoogeographic mystery.

    PubMed

    Tseng, Z Jack; Pacheco-Castro, Adolfo; Carranza-Castañeda, Oscar; Aranda-Gómez, José Jorge; Wang, Xiaoming; Troncoso, Hilda

    2017-06-01

    The North American fossil otter Enhydritherium terraenovae is thought to be partially convergent in ecological niche with the living sea otter Enhydra lutris , both having low-crowned crushing teeth and a close association with marine environments. Fossil records of Enhydritherium are found in mostly marginal marine deposits in California and Florida; despite presence of very rich records of fossil terrestrial mammals in contemporaneous localities inland, no Enhydritherium fossils are hitherto known in interior North America. Here we report the first occurrence of Enhydritherium outside of Florida and California, in a land-locked terrestrial mammal fauna of the upper Miocene deposits of Juchipila Basin, Zacatecas State, Mexico. This new occurrence of Enhydritherium is at least 200 km from the modern Pacific coastline, and nearly 600 km from the Gulf of Mexico. Besides providing further evidence that Enhydritherium was not dependent on coastal marine environments as originally interpreted, this discovery leads us to propose a new east-to-west dispersal route between the Florida and California Enhydritherium populations through central Mexico. The proximity of the fossil locality to nearby populations of modern neotropical otters Lontra longicaudis suggests that trans-Mexican freshwater corridors for vertebrate species in riparian habitats may have persisted for a prolonged period of time, pre-dating the Great American Biotic Interchange. © 2017 The Author(s).

  12. Stripes and belly-spots – a review of pigment cell morphogenesis in vertebrates

    PubMed Central

    Kelsh, Robert N.; Harris, Melissa L.; Colanesi, Sarah; Erickson, Carol A.

    2009-01-01

    Pigment patterns in the integument have long-attracted attention from both scientists and non-scientists alike since their natural attractiveness combines with their excellence as models for the general problem of pattern formation. Pigment cells are formed from the neural crest and must migrate to reach their final locations. In this review, we focus on our current understanding of mechanisms underlying the control of pigment cell migration and patterning in diverse vertebrates. The model systems discussed here –chick, mouse, and zebrafish – each provide unique insights into the major morphogenetic events driving pigment pattern formation. In birds and mammals, melanoblasts must be specified before they can migrate on the dorsolateral pathway. Transmembrane receptors involved in guiding them onto this route include EphB2 and Ednrb2 in chick, and Kit in mouse. Terminal migration depends, in part, upon extracellular matrix reorganization by ADAMTS20. Invasion of the ectoderm, especially into the feather germ and hair follicles, requires specific signals that are beginning to be characterized. We summarize our current understanding of the mechanisms regulating melanoblast number and organization in the epidermis. We note the apparent differences in pigment pattern formation in poikilothermic vertebrates when compared with birds and mammals. With more pigment cell types, migration pathways are more complex and largely unexplored; nevertheless, a role for Kit signaling in melanophore migration is clear and indicates that at least some patterning mechanisms may be highly conserved. We summarize the multiple factors thought to contribute to zebrafish embryonic pigment pattern formation, highlighting a recent study identifying Sdf1a as one factor crucial for regulation of melanophore positioning. Finally, we discuss the mechanisms generating a second, metamorphic pigment pattern in adult fish, emphasizing recent studies strengthening the evidence that undifferentiated

  13. Characterization of an entomopathogenic fungi target integument protein, Bombyx mori single domain von Willebrand factor type C, in the silkworm, Bombyx mori.

    PubMed

    Han, F; Lu, A; Yuan, Y; Huang, W; Beerntsen, B T; Huang, J; Ling, E

    2017-06-01

    The insect cuticle works as the first line of defence to protect insects from pathogenic infections and water evaporation. However, the old cuticle must be shed in order to enter the next developmental stage. During each ecdysis, moulting fluids are produced and secreted into the area among the old and new cuticles. In a previous study, the protein Bombyx mori single domain von Willebrand factor type C (BmSVWC; BGIBMGA011399) was identified in the moulting fluids of Bo. mori and demonstrated to regulate ecdysis. In this study we show that in Bo. mori larvae, BmSVWC primarily locates to the integument (epidermal cells and cuticle), wing discs and head. During the moulting stage, BmSVWC is released into the moulting fluids, and is then produced again by epidermal cells after ecdysis. Fungal infection was shown to decrease the amount of BmSVWC in the cuticle, which indicates that BmSVWC is a target protein of entomopathogenic fungi. Thus, BmSVWC is mainly involved in maintaining the integrity of the integument structure, which serves to protect insects from physical damage and pathogenic infection. © 2017 The Royal Entomological Society.

  14. Vertebrate records in polar sediments: Biological responses to past climate change and human activities

    NASA Astrophysics Data System (ADS)

    Sun, L. G.; Emslie, S. D.; Huang, T.; Blais, J. M.; Xie, Z. Q.; Liu, X. D.; Yin, X. B.; Wang, Y. H.; Huang, W.; Hodgson, D. A.; Smol, J. P.

    2013-11-01

    Biological responses to climate and environmental changes in remote polar regions are of increasing interest in global change research. Terrestrial and marine polar ecosystems have suffered from impacts of both rapid climate change and intense human activities, and large fluctuations in the population sizes of seabirds, seals, and Antarctic krill have been observed in the past decades. To understand the mechanisms driving these regime shifts in polar ecosystems, it is important to first distinguish the influences of natural forcing from anthropogenic activities. Therefore, investigations of past changes of polar ecosystems prior to human contact are relevant for placing recent human-induced changes within a long-term historical context. Here we focus our review on the fossil, sub-fossil, archaeological, and biogeochemical remains of marine vertebrates in polar sediments. These remains include well-preserved tissues such as bones, hairs and feathers, and biogeochemical markers and other proxy indicators, including deposits of guano and excrement, which can accumulate in lake and terrestrial sediments over thousands of years. Analyses of these remains have provided insight into both natural and anthropogenic impacts on marine vertebrates over millennia and have helped identify the causal agents for these impacts. Furthermore, land-based seabirds and marine mammals have been shown to play an important role as bio-vectors in polar environments as they transport significant amounts of nutrients and anthropogenic contaminants between ocean and terrestrial ecosystems.

  15. Vertebrate land invasions-past, present, and future: an introduction to the symposium.

    PubMed

    Ashley-Ross, Miriam A; Hsieh, S Tonia; Gibb, Alice C; Blob, Richard W

    2013-08-01

    The transition from aquatic to terrestrial habitats was a seminal event in vertebrate evolution because it precipitated a sudden radiation of species as new land animals diversified in response to novel physical and biological conditions. However, the first stages of this environmental transition presented numerous challenges to ancestrally aquatic organisms, and necessitated changes in the morphological and physiological mechanisms that underlie most life processes, among them movement, feeding, respiration, and reproduction. How did solutions to these functional challenges evolve? One approach to this question is to examine modern vertebrate species that face analogous demands; just as the first tetrapods lived at the margins of bodies of water and likely moved between water and land regularly, many extant fishes and amphibians use their body systems in both aquatic and terrestrial habitats on a daily basis. Thus, studies of amphibious vertebrates elucidate the functional demands of two very different habitats and clarify our understanding of the initial evolutionary challenges of moving onto land. A complementary approach is to use studies of the fossil record and comparative development to gain new perspectives on form and function of modern amphibious and non-amphibious vertebrate taxa. Based on the synthetic approaches presented in the symposium, it is clear that our understanding of aquatic-to-terrestrial transitions is greatly improved by the reciprocal integration of paleontological and neontological perspectives. In addition, common themes and new insights that emerged from this symposium point to the value of innovative approaches, new model species, and cutting-edge research techniques to elucidate the functional challenges and evolutionary changes associated with vertebrates' invasion of the land.

  16. New postcranial fossils of Australopithecus afarensis from Hadar, Ethiopia (1990-2007).

    PubMed

    Ward, Carol V; Kimbel, William H; Harmon, Elizabeth H; Johanson, Donald C

    2012-07-01

    Renewed fieldwork at Hadar, Ethiopia, from 1990 to 2007, by a team based at the Institute of Human Origins, Arizona State University, resulted in the recovery of 49 new postcranial fossils attributed to Australopithecus afarensis. These fossils include elements from both the upper and lower limbs as well as the axial skeleton, and increase the sample size of previously known elements for A. afarensis. The expanded Hadar sample provides evidence of multiple new individuals that are intermediate in size between the smallest and largest individuals previously documented, and so support the hypothesis that a single dimorphic species is represented. Consideration of the functional anatomy of the new fossils supports the hypothesis that no functional or behavioral differences need to be invoked to explain the morphological variation between large and small A. afarensis individuals. Several specimens provide important new data about this species, including new vertebrae supporting the hypothesis that A. afarensis may have had a more human-like thoracic form than previously appreciated, with an invaginated thoracic vertebral column. A distal pollical phalanx confirms the presence of a human-like flexor pollicis longus muscle in A. afarensis. The new fossils include the first complete fourth metatarsal known for A. afarensis. This specimen exhibits the dorsoplantarly expanded base, axial torsion and domed head typical of humans, revealing the presence of human-like permanent longitudinal and transverse arches and extension of the metatarsophalangeal joints as in human-like heel-off during gait. The new Hadar postcranial fossils provide a more complete picture of postcranial functional anatomy, and individual and temporal variation within this sample. They provide the basis for further in-depth analyses of the behavioral and evolutionary significance of A. afarensis anatomy, and greater insight into the biology and evolution of these early hominins. Copyright © 2011

  17. The ‘Tully monster’ is a vertebrate

    NASA Astrophysics Data System (ADS)

    McCoy, Victoria E.; Saupe, Erin E.; Lamsdell, James C.; Tarhan, Lidya G.; McMahon, Sean; Lidgard, Scott; Mayer, Paul; Whalen, Christopher D.; Soriano, Carmen; Finney, Lydia; Vogt, Stefan; Clark, Elizabeth G.; Anderson, Ross P.; Petermann, Holger; Locatelli, Emma R.; Briggs, Derek E. G.

    2016-04-01

    Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the ‘problem of the problematica’, particularly the ‘weird wonders’ of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium, popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million years ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans, polychaetes, gastropods, conodonts, and the stem arthropod Opabinia. Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes. We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys, a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years.

  18. Marquee Fossils

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2008-01-01

    Professors of an online graduate-level paleontology class developed the concept of marquee fossils--fossils that have one or more unique characteristics that capture the attention and direct observation of students. In the classroom, Marquee fossils integrate the geology, biology, and environmental science involved in the study of fossilized…

  19. Fossil Explorers

    ERIC Educational Resources Information Center

    Moran, Sean; McLaughlin, Cheryl; MacFadden, Bruce; Jacobbe, Elizabeth; Poole, Michael

    2015-01-01

    Many young learners are fascinated with fossils, particularly charismatic forms such as dinosaurs and giant sharks. Fossils provide tangible, objective evidence of life that lived millions of years ago. They also provide a timescale of evolution not typically appreciated by young learners. Fossils and the science of paleontology can, therefore,…

  20. A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates.

    PubMed

    Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang

    2013-01-07

    Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought.

  1. Vertebral shape and body elongation in Triturus newts.

    PubMed

    Urošević, Aleksandar; Slijepčević, Maja D; Arntzen, Jan W; Ivanović, Ana

    2016-10-01

    Body elongation in vertebrates is often related to a lengthening of the vertebrae and an increase in their number. Changes in the number and shape of vertebrae are not necessarily linked. In tailed amphibians, a change in body shape is mostly associated with an increase in the number of trunk and tail vertebrae. Body elongation without a numerical change of vertebrae is rare. In Triturus aquatic salamanders body elongation is achieved by trunk elongation through an increase in the number of trunk vertebrae. We used computed microtomography and three-dimensional geometric morphometrics to document the size, shape and number of trunk vertebrae in seven Triturus species. The data suggest that body elongation has occurred more frequently than body shortening, possibly related to a more aquatic versus a more terrestrial locomotor style. Our results show that body elongation is achieved through an increase in the number of trunk vertebrae, and that interspecific differences in vertebral shape are correlated with this pattern of elongation. More gracile trunk vertebrae were found in the more elongated species. The shape differences are such that single trunk vertebrae can be used for the identification of species with a possible application in the identification of subfossil and fossil material. Copyright © 2016 Elsevier GmbH. All rights reserved.

  2. New craniodental fossils of papionin monkeys from Cooper's D, South Africa.

    PubMed

    Folinsbee, Kaila E; Reisz, Robert R

    2013-08-01

    Papionin monkey fossils are common in the Plio-Pleistocene aged karst cave deposits northwest of Johannesburg in South Africa. These deposits have yielded important primate and other vertebrate fauna since their discovery in the early part of the 20th century. In this article, we describe new primate cranial and dental specimens from excavations at the site of Cooper's D in the Sterkfontein Valley that date to around 1.5 million years ago. Unlike other localities in southern Africa, most of the new fossils are referred to Theropithecus oswaldi oswaldi, an extinct gramnivorous monkey related to the living gelada. Diagnostic features of T. o. oswaldi crania and teeth include large, thickly enameled molars with tall, columnar cusps, and high molar relief, an upright mandibular ramus, postorbital constriction, and anterior fusion of temporal lines. Also present in the new sample are teeth referred to Papio sp., which show low crowned bunodont molars, and a number of indeterminate papionin teeth and skull fragments. The presence of T. o. oswaldi at Cooper's D extends the list of known localities where the taxon is found, and may indicate the presence of an open, grassland environment in the area during the early Pleistocene. The abundance of theropith fossils at Cooper's suggests that Papio was not consistently the most common papionin in southern Africa over the past three million years. Copyright © 2013 Wiley Periodicals, Inc.

  3. Radioactivity in fossils at the Hagerman Fossil Beds National Monument.

    PubMed

    Farmer, C Neal; Kathren, Ronald L; Christensen, Craig

    2008-08-01

    Since 1996, higher than background levels of naturally occurring radioactivity have been documented in both fossil and mineral deposits at Hagerman Fossil Beds National Monument in south-central Idaho. Radioactive fossil sites occur primarily within an elevation zone of 900-1000 m above sea level and are most commonly found associated with ancient river channels filled with sand. Fossils found in clay rich deposits do not exhibit discernable levels of radioactivity. Out of 300 randomly selected fossils, approximately three-fourths exhibit detectable levels of natural radioactivity ranging from 1 to 2 orders of magnitude above ambient background levels when surveyed with a portable hand held Geiger-Muller survey instrument. Mineral deposits in geologic strata also show above ambient background levels of radioactivity. Radiochemical lab analysis has documented the presence of numerous natural radioactive isotopes. It is postulated that ancient groundwater transported radioactive elements through sand bodies containing fossils which precipitated out of solution during the fossilization process. The elevated levels of natural radioactivity in fossils may require special precautions to ensure that exposures to personnel from stored or displayed items are kept as low as reasonably achievable (ALARA).

  4. A compendium of fossil marine animal families, 2nd edition

    NASA Technical Reports Server (NTRS)

    Sepkoski, J. J. Jr; Sepkoski JJ, J. r. (Principal Investigator)

    1992-01-01

    A comprehensive listing of 4075 taxonomic families of marine animals known from the fossil record is presented. This listing covers invertebrates, vertebrates, and animal-like protists, gives time intervals of apparent origination and extinction, and provides literature sources for these data. The time intervals are mostly 81 internationally recognized stratigraphic stages; more than half of the data are resolved to one of 145 substage divisions, providing more highly resolved data for studies of taxic macroevolution. Families are classified by order, class, and phylum, reflecting current classifications in the published literature. This compendium is a new edition of the 1982 publication, correcting errors and presenting greater stratigraphic resolution and more current ideas about acceptable families and their classification.

  5. Terrestrial origin of viviparity in mesozoic marine reptiles indicated by early triassic embryonic fossils.

    PubMed

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction.

  6. Fossilized bioelectric wire – the trace fossil Trichichnus

    PubMed Central

    Kędzierski, M.; Uchman, A.; Sawlowicz, Z.; Briguglio, A.

    2015-01-01

    The trace fossil Trichichnus is proposed as an indicator of fossil bioelectric bacterial activity at the oxic–anoxic interface zone of marine sediments. This fulfils the idea that such processes, commonly found in the modern realm, should be also present in the geological past. Trichichnus is an exceptional trace fossil due to its very thin diameter (mostly less than 1 mm) and common pyritic filling. It is ubiquitous in some fine-grained sediments, where it has been interpreted as a burrow formed deeper than any other trace fossils, below the redox boundary. Trichichnus, formerly referred to as deeply burrowed invertebrates, has been found as remnant of a fossilized intrasediment bacterial mat that is pyritized. As visualized in 3-D by means of X-ray computed microtomography scanner, Trichichnus forms dense filamentous fabric, which reflects that it is produced by modern large, mat-forming, sulfide-oxidizing bacteria, belonging mostly to Thioploca-related taxa, which are able to house a complex bacterial consortium. Several stages of Trichichnus formation, including filamentous, bacterial mat and its pyritization, are proposed to explain an electron exchange between oxic and suboxic/anoxic layers in the sediment. Therefore, Trichichnus can be considered a fossilized “electric wire”. PMID:26290671

  7. Histology and affinity of anaspids, and the early evolution of the vertebrate dermal skeleton

    PubMed Central

    Keating, Joseph N.; Donoghue, Philip C. J.

    2016-01-01

    The assembly of the gnathostome bodyplan constitutes a formative episode in vertebrate evolutionary history, an interval in which the mineralized skeleton and its canonical suite of cell and tissue types originated. Fossil jawless fishes, assigned to the gnathostome stem-lineage, provide an unparalleled insight into the origin and evolution of the skeleton, hindered only by uncertainty over the phylogenetic position and evolutionary significance of key clades. Chief among these are the jawless anaspids, whose skeletal composition, a rich source of phylogenetic information, is poorly characterized. Here we survey the histology of representatives spanning anaspid diversity and infer their generalized skeletal architecture. The anaspid dermal skeleton is composed of odontodes comprising spheritic dentine and enameloid, overlying a basal layer of acellular parallel fibre bone containing an extensive shallow canal network. A recoded and revised phylogenetic analysis using equal and implied weights parsimony resolves anaspids as monophyletic, nested among stem-gnathostomes. Our results suggest the anaspid dermal skeleton is a degenerate derivative of a histologically more complex ancestral vertebrate skeleton, rather than reflecting primitive simplicity. Hypotheses that anaspids are ancestral skeletonizing lampreys, or a derived lineage of jawless vertebrates with paired fins, are rejected. PMID:26962140

  8. Early evolution of vertebrate photoreception: lessons from lampreys and lungfishes.

    PubMed

    Collin, Shaun P

    2009-03-01

    Lampreys (Agnatha) and lungfish (Dipnoi) are representatives of the earliest and the intermediate stages in vertebrate evolution, respectively, and survived in the Cambrian (approximately 540 mA, lampreys) and Devonian (approximately 400 mA, lungfishes) Periods. The unique phylogenetic position of these two groups presents us with an exciting opportunity to understand life in ancient times and to begin to trace the evolution of vision and photoreception in vertebrates. Using a multidisciplinary approach employing anatomical and molecular techniques, the evolution of photoreception is explored in these extant, living fossils to predict the environmental lighting conditions to which our vertebrate ancestors were exposed. Contrary to expectations, the retinae of the southern hemisphere lamprey (Geotria australis Gray, 1851) and the Australian lungfish (Neoceratodus forsteri Krefft, 1870) are far from "primitive," each possessing five types of photoreceptors, many with spectral filters for tuning the light. Detailed ultrastructural analysis reveals that all five receptor types in G. australis are cone-like, whereas N. forsteri possesses four cone types and a single type of rod. Each receptor type also contains a different visual pigment (opsin gene); that is, LWS, SWS1, SWS2, RhA and RhB in G. australis and LWS, SWS1, SWS2, Rh1 and Rh2 in N. forsteri, all of which are expressed within the retina and are sensitive to different parts of the electromagnetic spectrum, providing the potential for pentachromatic and tetrachromatic color vision, respectively. © 2009 ISZS, Blackwell Publishing and IOZ/CAS.

  9. Developmental evidence for serial homology of the vertebrate jaw and gill arch skeleton

    PubMed Central

    Gillis, J. Andrew; Modrell, Melinda S.; Baker, Clare V. H.

    2013-01-01

    Gegenbaur’s classical hypothesis of jaw-gill arch serial homology is widely cited, but remains unsupported by either paleontological evidence (e.g. a series of fossils reflecting the stepwise transformation of a gill arch into a jaw) or developmental genetic data (e.g. shared molecular mechanisms underlying segment identity in the mandibular, hyoid and gill arch endoskeletons). Here we show that nested expression of Dlx genes – the “Dlx code” that specifies upper and lower jaw identity in mammals and teleosts – is a primitive feature of the mandibular, hyoid and gill arches of jawed vertebrates. Using fate-mapping techniques, we demonstrate that the principal dorsal and ventral endoskeletal segments of the jaw, hyoid and gill arches of the skate Leucoraja erinacea derive from molecularly equivalent mesenchymal domains of combinatorial Dlx gene expression. Our data suggest that vertebrate jaw, hyoid and gill arch cartilages are serially homologous, and were primitively patterned dorsoventrally by a common Dlx blueprint. PMID:23385581

  10. Integument pattern formation involves genetic and epigenetic controls: feather arrays simulated by digital hormone models

    PubMed Central

    Jiang, Ting-Xin; Widelitz, Randall B.; Shen, Wei-Min; Will, Peter; Wu, Da-Yu; Lin, Chih-Min; Jung, Han-Sung; Chuong, Cheng-Ming

    2015-01-01

    Pattern formation is a fundamental morphogenetic process. Models based on genetic and epigenetic control have been proposed but remain controversial. Here we use feather morphogenesis for further evaluation. Adhesion molecules and/or signaling molecules were first expressed homogenously in feather tracts (restrictive mode, appear earlier) or directly in bud or inter-bud regions (de novo mode, appear later). They either activate or inhibit bud formation, but paradoxically co-localize in the bud. Using feather bud reconstitution, we showed that completely dissociated cells can reform periodic patterns without reference to previous positional codes. The patterning process has the characteristics of being self-organizing, dynamic and plastic. The final pattern is an equilibrium state reached by competition, and the number and size of buds can be altered based on cell number and activator/inhibitor ratio, respectively. We developed a Digital Hormone Model which consists of (1) competent cells without identity that move randomly in a space, (2) extracellular signaling hormones which diffuse by a reaction-diffusion mechanism and activate or inhibit cell adhesion, and (3) cells which respond with topological stochastic actions manifested as changes in cell adhesion. Based on probability, the results are cell clusters arranged in dots or stripes. Thus genetic control provides combinational molecular information which defines the properties of the cells but not the final pattern. Epigenetic control governs interactions among cells and their environment based on physical-chemical rules (such as those described in the Digital Hormone Model). Complex integument patterning is the sum of these two components of control and that is why integument patterns are usually similar but non-identical. These principles may be shared by other pattern formation processes such as barb ridge formation, fingerprints, pigmentation patterning, etc. The Digital Hormone Model can also be applied to

  11. Fossil Crinoids

    NASA Astrophysics Data System (ADS)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    1999-10-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  12. Fossil Crinoids

    NASA Astrophysics Data System (ADS)

    Hess, Hans; Ausich, William I.; Brett, Carlton E.; Simms, Michael J.

    2003-01-01

    Crinoids have graced the oceans for more than 500 million years. Among the most attractive fossils, crinoids had a key role in the ecology of marine communities through much of the fossil record, and their remains are prominent rock forming constituents of many limestones. This is the first comprehensive volume to bring together their form and function, classification, evolutionary history, occurrence, preservation and ecology. The main part of the book is devoted to assemblages of intact fossil crinoids, which are described in their geological setting in twenty-three chapters ranging from the Ordovician to the Tertiary. The final chapter deals with living sea lilies and feather stars. The volume is exquisitely illustrated with abundant photographs and line drawings of crinoids from sites around the world. This authoritative account recreates a fascinating picture of fossil crinoids for paleontologists, geologists, evolutionary and marine biologists, ecologists and amateur fossil collectors.

  13. The Pipe Creek Sinkhole biota, a diverse late tertiary continental fossil assemblage from Grant County, Indiana

    USGS Publications Warehouse

    Farlow, J.O.; Sunderman, J.A.; Havens, J.J.; Swinehart, A.L.; Holman, J.A.; Richards, R.L.; Miller, N.G.; Martin, R.A.; Hunt, R.M.; Storrs, G.W.; Curry, B. Brandon; Fluegeman, R.H.; Dawson, M.; Flint, M.E.T.

    2001-01-01

    Quarrying in east-central Indiana has uncovered richly fossiliferous unconsolidated sediment buried beneath Pleistocene glacial till. The fossiliferous layer is part of a sedimentary deposit that accumulated in a sinkhole developed in the limestone flank beds of a Paleozoic reef. Plant and animal (mostly vertebrate) remains are abundant in the fossil assemblage. Plants are represented by a diversity of terrestrial and wetland forms, all of extant species. The vertebrate assemblage (here designated the Pipe Creek Sinkhole local fauna) is dominated by frogs and pond turtles, but fishes, birds; snakes and small and large mammals are also present; both extinct and extant taxa are represented. The mammalian assemblage indicates an early Pliocene age (latest Hemphillian or earliest Blancan North American Land Mammal Age). This is the first Tertiary continental biota discovered in the interior of the eastern half of North America.

  14. The ‘Tully monster’ is a vertebrate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Victoria E.; Saupe, Erin E.; Lamsdell, James C.

    Abstract Problematic fossils, extinct taxa of enigmatic morphology that cannot be assigned to a known major group, were once a major issue in palaeontology. A long-favoured solution to the 'problem of the problematica'(1), particularly the 'weird wonders'(2) of the Cambrian Burgess Shale, was to consider them representatives of extinct phyla. A combination of new evidence and modern approaches to phylogenetic analysis has now resolved the affinities of most of these forms. Perhaps the most notable exception is Tullimonstrum gregarium(3), popularly known as the Tully monster, a large soft-bodied organism from the late Carboniferous Mazon Creek biota (approximately 309-307 million yearsmore » ago) of Illinois, USA, which was designated the official state fossil of Illinois in 1989. Its phylogenetic position has remained uncertain and it has been compared with nemerteans(4,5), polychaetes(4), gastropods(4), conodonts(6), and the stem arthropod Opabinia(4). Here we review the morphology of Tullimonstrum based on an analysis of more than 1,200 specimens. We find that the anterior proboscis ends in a buccal apparatus containing teeth, the eyes project laterally on a long rigid bar, and the elongate segmented body bears a caudal fin with dorsal and ventral lobes(3-6). We describe new evidence for a notochord, cartilaginous arcualia, gill pouches, articulations within the proboscis, and multiple tooth rows adjacent to the mouth. This combination of characters, supported by phylogenetic analysis, identifies Tullimonstrum as a vertebrate, and places it on the stem lineage to lampreys (Petromyzontida). In addition to increasing the known morphological disparity of extinct lampreys(7-9), a chordate affinity for T. gregarium resolves the nature of a soft-bodied fossil which has been debated for more than 50 years« less

  15. Unusual anal fin in a Devonian jawless vertebrate reveals complex origins of paired appendages

    PubMed Central

    Sansom, Robert S.; Gabbott, Sarah E.; Purnell, M. A.

    2013-01-01

    Jawed vertebrates (gnathostomes) have undergone radical anatomical and developmental changes in comparison with their jawless cousins (cyclostomes). Key among these is paired appendages (fins, legs and wings), which first evolved at some point on the gnathostome stem. The anatomy of fossil stem gnathostomes is, therefore, fundamental to our understanding of the nature and timing of the origin of this complex innovation. Here, we show that Euphanerops, a fossil jawless fish from the Devonian, possessed paired anal-fin radials, but no pectoral or pelvic fins. This unique condition occurs at an early stage on the stem-gnathostome lineage. This condition, and comparison with the varied condition of paired fins in other ostracoderms, indicates that there was a large amount of developmental plasticity during this episode—rather than a gradual evolution of this complex feature. Apparently, a number of different clades were exploring morphospace or undergoing multiple losses. PMID:23576777

  16. Developmental palaeontology in synapsids: the fossil record of ontogeny in mammals and their closest relatives

    PubMed Central

    Sánchez-Villagra, Marcelo R.

    2010-01-01

    The study of fossilized ontogenies in mammals is mostly restricted to postnatal and late stages of growth, but nevertheless can deliver great insights into life history and evolutionary mechanisms affecting all aspects of development. Fossils provide evidence of developmental plasticity determined by ecological factors, as when allometric relations are modified in species which invaded a new space with a very different selection regime. This is the case of dwarfing and gigantism evolution in islands. Skeletochronological studies are restricted to the examination of growth marks mostly in the cement and dentine of teeth and can provide absolute age estimates. These, together with dental replacement data considered in a phylogenetic context, provide life-history information such as maturation time and longevity. Palaeohistology and dental replacement data document the more or less gradual but also convergent evolution of mammalian growth features during early synapsid evolution. Adult phenotypes of extinct mammals can inform developmental processes by showing a combination of features or levels of integration unrecorded in living species. Some adult features such as vertebral number, easily recorded in fossils, provide indirect information about somitogenesis and hox-gene expression boundaries. Developmental palaeontology is relevant for the discourse of ecological developmental biology, an area of research where features of growth and variation are fundamental and accessible among fossil mammals. PMID:20071389

  17. Vertebral pneumatocysts.

    PubMed

    Arslan, G; Ceken, K; Cubuk, M; Ozkaynak, C; Lüleci, E

    2001-01-01

    To review the prevalence and location of vertebral pneumatocysts and evaluate the CT findings of these benign lesions. Retrospectively we reviewed CT images of 89 patients with suspected disc disease during a 6-month period. Distinctive CT pattern of intraosseous pneumatocysts involving the cervical, thoracic and lumbar spine was found. In 8 patients (9%), 10 vertebral pneumatocysts were detected. Five were located in the vertebral body and 4 of these were associated with vacuum phenomenon in adjacent intervertebral discs. Five were located near the facet joint and all were associated with vacuum phenomenon in adjacent facet joint. Intraosseous pneumatocyst is a benign lesion, therefore biopsy and follow-up are unnecessary. Although vertebral pneumatocysts seem to be uncommon with a few reported cases, this study shows them to be more frequent than previously thought.

  18. A geochronologic framework for the Ziegler Reservoir fossil site, Snowmass Village, Colorado

    USGS Publications Warehouse

    Mahan, Shannon; Gray, Harrison J.; Pigati, Jeffrey S.; Wilson, Jim; Lifton, Nathaniel A.; Paces, James B.; Blaauw, Maarten

    2014-01-01

    The Ziegler Reservoir fossil site near Snowmass Village, Colorado, provides a unique opportunity to reconstruct high-altitude paleoenvironmental conditions in the Rocky Mountains during the last interglacial period. We used four different techniques to establish a chronological framework for the site. Radiocarbon dating of lake organics, bone collagen, and shell carbonate, and in situ cosmogenic 10Be and 26Al ages on a boulder on the crest of a moraine that impounded the lake suggest that the ages of the sediments that hosted the fossils are between ~ 140 ka and > 45 ka. Uranium-series ages of vertebrate remains generally fall within these bounds, but extremely low uranium concentrations and evidence of open-system behavior limit their utility. Optically stimulated luminescence (OSL) ages (n = 18) obtained from fine-grained quartz maintain stratigraphic order, were replicable, and provide reliable ages for the lake sediments. Analysis of the equivalent dose (DE) dispersion of the OSL samples showed that the sediments were fully bleached prior to deposition and low scatter suggests that eolian processes were likely the dominant transport mechanism for fine-grained sediments into the lake. The resulting ages show that the fossil-bearing sediments span the latest part of marine isotope stage (MIS) 6, all of MIS 5 and MIS 4, and the earliest part of MIS 3.

  19. Continental fossil vertebrates from the mid-Cretaceous (Albian-Cenomanian) Alcântara Formation, Brazil, and their relationship with contemporaneous faunas from North Africa

    NASA Astrophysics Data System (ADS)

    Candeiro, Carlos Roberto A.; Fanti, Federico; Therrien, François; Lamanna, Matthew C.

    2011-05-01

    The Albian-Cenomanian Alcântara Formation of northeastern Brazil preserves the most diverse continental vertebrate fauna of this age yet known from northern South America. The Alcântara vertebrate assemblage, consisting of elasmobranchs, actinopterygians, sarcopterygians, turtles, crocodyliforms, pterosaurs, and non-avian dinosaurs, displays close similarities to contemporaneous faunas from North Africa. The co-occurrence of as many as eight freshwater or estuarine fish taxa ( Onchopristis, Bartschichthys, Lepidotes, Stephanodus, Mawsonia, Arganodus, Ceratodus africanus, and possibly Ceratodus humei) and up to seven terrestrial archosaur taxa ( Sigilmassasaurus, Rebbachisauridae, Baryonychinae, Spinosaurinae, Carcharodontosauridae, possibly Pholidosauridae, and doubtfully Bahariasaurus) suggests that a land route connecting northeastern Brazil and North Africa existed at least until the Albian. Interestingly, most components of this mid-Cretaceous northern South American/North African assemblage are not shared with coeval southern South American faunas, which are themselves characterized by a number of distinct freshwater and terrestrial vertebrate taxa (e.g., chelid turtles, megaraptoran and unenlagiine theropods). These results suggest that, although mid-Cretaceous faunal interchange was probably possible between northern South America and North Africa, paleogeographic, paleoclimatic, and/or paleoenvironmental barriers may have hindered continental vertebrate dispersal between northern and southern South America during this time.

  20. A new stem-neopterygian fish from the Middle Triassic of China shows the earliest over-water gliding strategy of the vertebrates

    PubMed Central

    Xu, Guang-Hui; Zhao, Li-Jun; Gao, Ke-Qin; Wu, Fei-Xiang

    2013-01-01

    Flying fishes are extraordinary aquatic vertebrates capable of gliding great distances over water by exploiting their enlarged pectoral fins and asymmetrical caudal fin. Some 50 species of extant flying fishes are classified in the Exocoetidae (Neopterygii: Teleostei), which have a fossil record no older than the Eocene. The Thoracopteridae is the only pre-Cenozoic group of non-teleosts that shows an array of features associated with the capability of over-water gliding. Until recently, however, the fossil record of the Thoracopteridae has been limited to the Upper Triassic of Austria and Italy. Here, we report the discovery of exceptionally well-preserved fossils of a new thoracopterid flying fish from the Middle Triassic of China, which represents the earliest evidence of an over-water gliding strategy in vertebrates. The results of a phylogenetic analysis resolve the Thoracopteridae as a stem-group of the Neopterygii that is more crown-ward than the Peltopleuriformes, yet more basal than the Luganoiiformes. As the first record of the Thoracopteride in Asia, this new discovery extends the geographical distribution of this group from the western to eastern rim of the Palaeotethys Ocean, providing new evidence to support the Triassic biological exchanges between Europe and southern China. Additionally, the Middle Triassic date of the new thoracopterid supports the hypothesis that the re-establishment of marine ecosystems after end-Permian mass extinction is more rapid than previously thought. PMID:23118437

  1. V. Terrestrial vertebrates

    Treesearch

    Dean Pearson; Deborah Finch

    2011-01-01

    Within the Interior West, terrestrial vertebrates do not represent a large number of invasive species relative to invasive weeds, aquatic vertebrates, and invertebrates. However, several invasive terrestrial vertebrate species do cause substantial economic and ecological damage in the U.S. and in this region (Pimental 2000, 2007; Bergman and others 2002; Finch and...

  2. "Fossil" Forecasting.

    ERIC Educational Resources Information Center

    Brody, Michael J.; deOnis, Ann

    2001-01-01

    Presents a density study in which students calculate the density of limestone substrate to determine if the specimen contains any fossils. Explains how to make fossils and addresses national standards. (YDS)

  3. Terrestrial Origin of Viviparity in Mesozoic Marine Reptiles Indicated by Early Triassic Embryonic Fossils

    PubMed Central

    Motani, Ryosuke; Jiang, Da-yong; Tintori, Andrea; Rieppel, Olivier; Chen, Guan-bao

    2014-01-01

    Viviparity in Mesozoic marine reptiles has traditionally been considered an aquatic adaptation. We report a new fossil specimen that strongly contradicts this traditional interpretation. The new specimen contains the oldest fossil embryos of Mesozoic marine reptile that are about 10 million years older than previous such records. The fossil belongs to Chaohusaurus (Reptilia, Ichthyopterygia), which is the oldest of Mesozoic marine reptiles (ca. 248 million years ago, Early Triassic). This exceptional specimen captures an articulated embryo in birth position, with its skull just emerged from the maternal pelvis. Its headfirst birth posture, which is unlikely to be a breech condition, strongly indicates a terrestrial origin of viviparity, in contrast to the traditional view. The tail-first birth posture in derived ichthyopterygians, convergent with the conditions in whales and sea cows, therefore is a secondary feature. The unequivocally marine origin of viviparity is so far not known among amniotes, a subset of vertebrate animals comprising mammals and reptiles, including birds. Therefore, obligate marine amniotes appear to have evolved almost exclusively from viviparous land ancestors. Viviparous land reptiles most likely appeared much earlier than currently thought, at least as early as the recovery phase from the end-Permian mass extinction. PMID:24533127

  4. Exceptional fossil preservation demonstrates a new mode of axial skeleton elongation in early ray-finned fishes.

    PubMed

    Maxwell, Erin E; Furrer, Heinz; Sánchez-Villagra, Marcelo R

    2013-01-01

    Elongate body plans have evolved independently multiple times in vertebrates, and involve either an increase in the number or in the length of the vertebrae. Here, we describe a new mechanism of body elongation in saurichthyids, an extinct group of elongate early ray-finned fishes. The rare preservation of soft tissue in a specimen of Saurichthys curionii from the Middle Triassic (Ladinian) of Switzerland provides significant new information on the relationship between the musculature and the skeleton. This new fossil material shows that elongation in these fishes results from doubling the number of neural arch-like elements per myomeric segment. This unique way of generating an elongate body plan demonstrates the evolutionary lability of the vertebral column in non-teleostean fishes. The shape and arrangement of preserved myosepta suggest that S. curionii was not a highly flexible fish, in spite of the increase in the number of neural arch-like elements.

  5. Proliferative and Non-Proliferative Lesions of the Rat and Mouse Integument

    PubMed Central

    Mecklenburg, Lars; Kusewitt, Donna; Kolly, Carine; Treumann, Silke; Adams, E. Terence; Diegel, Kelly; Yamate, Jyoji; Kaufmann, Wolfgang; Müller, Susanne; Danilenko, Dimitry; Bradley, Alys

    2014-01-01

    The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for Lesions in Rats and Mice) project is a joint initiative of the societies of toxicological pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North America (STP). Its aim is to develop an internationally-accepted nomenclature for proliferative and non-proliferative lesions in laboratory rodents. A widely accepted international harmonization of nomenclature in laboratory animals will decrease confusion among regulatory and scientific research organizations in different countries and will provide a common language to increase and enrich international exchanges of information among toxicologists and pathologists. The purpose of this publication is to provide a standardized nomenclature for classifying microscopical lesions observed in the integument of laboratory rats and mice. Example colour images are provided for most lesions. The standardized nomenclature presented in this document and additional colour images are also available electronically at http://www.goreni.org. The nomenclature presented herein is based on histopathology databases from government, academia, and industrial laboratories throughout the world, and covers lesions that develop spontaneously as well as those induced by exposure to various test materials. (DOI: 10.1293/tox.26.27S; J Toxicol Pathol 2013; 26: 27S–57S) PMID:25035577

  6. Modeling neck mobility in fossil turtles.

    PubMed

    Werneburg, Ingmar; Hinz, Juliane K; Gumpenberger, Michaela; Volpato, Virginie; Natchev, Nikolay; Joyce, Walter G

    2015-05-01

    Turtles have the unparalleled ability to retract their heads and necks within their shell but little is known about the evolution of this trait. Extensive analysis of neck mobility in turtles using radiographs, CT scans, and morphometry reveals that basal turtles possessed less mobility in the neck relative to their extant relatives, although the anatomical prerequisites for modern mobility were already established. Many extant turtles are able to achieve hypermobility by dislocating the central articulations, which raises cautions about reconstructing the mobility of fossil vertebrates. A 3D-model of the Late Triassic turtle Proganochelys quenstedti reveals that this early stem turtle was able to retract its head by tucking it sideways below the shell. The simple ventrolateral bend seen in this stem turtle, however, contrasts with the complex double-bend of extant turtles. The initial evolution of neck retraction therefore occurred in a near-synchrony with the origin of the turtle shell as a place to hide the unprotected neck. In this early, simplified retraction mode, the conical osteoderms on the neck provided further protection. © 2014 Wiley Periodicals, Inc.

  7. Modes of fossil preservation

    USGS Publications Warehouse

    Schopf, J.M.

    1975-01-01

    The processes of geologic preservation are important for understanding the organisms represented by fossils. Some fossil differences are due to basic differences in organization of animals and plants, but the interpretation of fossils has also tended to be influenced by modes of preservation. Four modes of preservation generally can be distinguished: (1) Cellular permineralization ("petrifaction") preserves anatomical detail, and, occasionally, even cytologic structures. (2) Coalified compression, best illustrated by structures from coal but characteristic of many plant fossils in shale, preserves anatomical details in distorted form and produces surface replicas (impressions) on enclosing matrix. (3) Authigenic preservation replicates surface form or outline (molds and casts) prior to distortion by compression and, depending on cementation and timing, may intergrade with fossils that have been subject to compression. (4) Duripartic (hard part) preservation is characteristic of fossil skeletal remains, predominantly animal. Molds, pseudomorphs, or casts may form as bulk replacements following dissolution of the original fossil material, usually by leaching. Classification of the kinds of preservation in fossils will aid in identifying the processes responsible for modifying the fossil remains of both animals and plants. ?? 1975.

  8. Unusual horizontal transfer of a long interspersed nuclear element between distant vertebrate classes

    PubMed Central

    Kordis, Dusan; Gubensek, Franc

    1998-01-01

    We have shown previously by Southern blot analysis that Bov-B long interspersed nuclear elements (LINEs) are present in different Viperidae snake species. To address the question as to whether Bov-B LINEs really have been transmitted horizontally between vertebrate classes, the analysis has been extended to a larger number of vertebrate, invertebrate, and plant species. In this paper, the evolutionary origin of Bov-B LINEs is shown unequivocally to be in Squamata. The previously proposed horizontal transfer of Bov-B LINEs in vertebrates has been confirmed by their discontinuous phylogenetic distribution in Squamata (Serpentes and two lizard infra-orders) as well as in Ruminantia, by the high level of nucleotide identity, and by their phylogenetic relationships. The horizontal transfer of Bov-B LINEs from Squamata to the ancestor of Ruminantia is evident from the genetic distances and discontinuous phylogenetic distribution. The ancestor of Colubroidea snakes is a possible donor of Bov-B LINEs to Ruminantia. The timing of horizontal transfer has been estimated from the distribution of Bov-B LINEs in Ruminantia and the fossil data of Ruminantia to be 40–50 My ago. The phylogenetic relationships of Bov-B LINEs from the various Squamata species agrees with that of the species phylogeny, suggesting that Bov-B LINEs have been maintained stably by vertical transmission since the origin of Squamata in the Mesozoic era. PMID:9724768

  9. Scale insect larvae preserved in vertebrate coprolites (Le Quesnoy, France, Lower Eocene): paleoecological insights.

    PubMed

    Robin, Ninon; Foldi, Imre; Godinot, Marc; Petit, Gilles

    2016-10-01

    Coprolites of terrestrial vertebrates from the Sparnacian Le Quesnoy locality (Ypresian, Eocene, MP7, 53 Ma; Oise, France) were examined for possible parasitic helminth eggs. The extraction of the coprolite components was performed by a weak acetolyse and a slide mounting in glycerin. This long examination did not reveal paleoparasite remains, which may be explained through several arguments. However, some pollen grains, some enigmatic components, and two well-preserved first-instar cochineal nymphs (Hemiptera: Sternorrhyncha: Coccoidea) were evidenced in coprolites. Identified as Coccidae, these larvae are the earliest stage of the scale insect development ever reported as fossil, revealing the specific environment of preservation that fossilized scats may provide. These observations, combined to the coprolites morphotype, enable to ascribe the fossil scats producer to a small herbivorous mammal present in the deposit (early perissodactyls or Plesiadapidae). Regarding the ecology of extant representatives of Coccidae, this mammal was a likely foliage consumer, and the abundant Juglandaceae and/or Tiliaceae from Le Quesnoy might have lived parasitized by scale insects. These Early Eocene parasites had an already well-established dissemination strategy, with prevalent minute first-instar larvae. The herein performed extraction technique appears well-suited for the study of carbonate coprolites and could certainly be useful for evidencing other kind of microorganisms (including internal parasites).

  10. Scale insect larvae preserved in vertebrate coprolites (Le Quesnoy, France, Lower Eocene): paleoecological insights

    NASA Astrophysics Data System (ADS)

    Robin, Ninon; Foldi, Imre; Godinot, Marc; Petit, Gilles

    2016-10-01

    Coprolites of terrestrial vertebrates from the Sparnacian Le Quesnoy locality (Ypresian, Eocene, MP7, 53 Ma; Oise, France) were examined for possible parasitic helminth eggs. The extraction of the coprolite components was performed by a weak acetolyse and a slide mounting in glycerin. This long examination did not reveal paleoparasite remains, which may be explained through several arguments. However, some pollen grains, some enigmatic components, and two well-preserved first-instar cochineal nymphs (Hemiptera: Sternorrhyncha: Coccoidea) were evidenced in coprolites. Identified as Coccidae, these larvae are the earliest stage of the scale insect development ever reported as fossil, revealing the specific environment of preservation that fossilized scats may provide. These observations, combined to the coprolites morphotype, enable to ascribe the fossil scats producer to a small herbivorous mammal present in the deposit (early perissodactyls or Plesiadapidae). Regarding the ecology of extant representatives of Coccidae, this mammal was a likely foliage consumer, and the abundant Juglandaceae and/or Tiliaceae from Le Quesnoy might have lived parasitized by scale insects. These Early Eocene parasites had an already well-established dissemination strategy, with prevalent minute first-instar larvae. The herein performed extraction technique appears well-suited for the study of carbonate coprolites and could certainly be useful for evidencing other kind of microorganisms (including internal parasites).

  11. Vertebral formula and congenital abnormalities of the vertebral column in rabbits.

    PubMed

    Proks, P; Stehlik, L; Nyvltova, I; Necas, A; Vignoli, M; Jekl, V

    2018-06-01

    The aim of this retrospective study of 330 rabbits (164 males, 166 females) was to determine different vertebral formulas and prevalence of congenital vertebral anomalies in rabbits from radiographs of the cervical (C), thoracic (Th), lumbar (L) and sacral (S) segments of the vertebral column. The number of vertebrae in each segment of vertebral column, position of anticlinal vertebra and localisation and type of congenital abnormalities were recorded. In 280/330 rabbits (84.8%) with normal vertebral morphology, seven vertebral formulas were identified: C7/Th12/L7/S4 (252/330, 76.4%), C7/Th12/L6/S4 (11/330, 3.3%), C7/Th13/L7/S4 (8/330, 2.4%), C7/Th12/L7/S5 (4/330, 1.2%), C7/Th12/L8/S4 (3/330, 0.9%), C7/Th12/L7/S6 (1/330, 0.3%) and C7/Th11/L7/S4 (1/330, 0.3%). The anticlinal vertebra was identified as Th10 in 56.4% of rabbits and Th11 in 42.4% of rabbits. Congenital spinal abnormalities were identified in 50/330 (15.2%) rabbits, predominantly as a single pathology (n=44). Transitional vertebrae represented the most common abnormalities (n=41 rabbits) in the thoracolumbar (n=35) and lumbosacral segments (n=6). Five variants of thoracolumbar transitional vertebrae were identified. Cervical butterfly vertebrae were detected in three rabbits. One rabbit exhibited three congenital vertebral anomalies: cervical block vertebra, thoracic hemivertebra and thoracolumbar transitional vertebra. Five rabbits exhibited congenital vertebral abnormalities with concurrent malalignment, specifically cervical kyphosis/short vertebra (n=1), thoracic lordoscoliosis/thoracolumbar transitional vertebrae (n=1), thoracic kyphoscoliosis/wedge vertebrae (n=2) and thoracolumbar lordoscoliosis/thoracolumbar transitional vertebrae/lumbosacral transitional vertebrae (n=1). These findings suggest that vertebral columns in rabbits display a wide range of morphologies, with occasional congenital malformations. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Evolution of the hominoid vertebral column: The long and the short of it.

    PubMed

    Williams, Scott A; Russo, Gabrielle A

    2015-01-01

    The postcranial axial skeleton exhibits considerable morphological and functional diversity among living primates. Particularly striking are the derived features in hominoids that distinguish them from most other primates and mammals. In contrast to the primitive catarrhine morphotype, which presumably possessed an external (protruding) tail and emphasized more pronograde trunk posture, all living hominoids are characterized by the absence of an external tail and adaptations to orthograde trunk posture. Moreover, modern humans evolved unique vertebral features that satisfy the demands of balancing an upright torso over the hind limbs during habitual terrestrial bipedalism. Our ability to identify the evolutionary timing and understand the functional and phylogenetic significance of these fundamental changes in postcranial axial skeletal anatomy in the hominoid fossil record is key to reconstructing ancestral hominoid patterns and retracing the evolutionary pathways that led to living apes and modern humans. Here, we provide an overview of what is known about evolution of the hominoid vertebral column, focusing on the currently available anatomical evidence of three major transitions: tail loss and adaptations to orthograde posture and bipedal locomotion. © 2015 Wiley Periodicals, Inc.

  13. Confirmation of Romer's Gap as a low oxygen interval constraining the timing of initial arthropod and vertebrate terrestrialization

    PubMed Central

    Ward, Peter; Labandeira, Conrad; Laurin, Michel; Berner, Robert A.

    2006-01-01

    The first terrestrialization of species that evolved from previously aquatic taxa was a seminal event in evolutionary history. For vertebrates, one of the most important terrestrialized groups, this event was interrupted by a time interval known as Romer's Gap, for which, until recently, few fossils were known. Here, we argue that geochronologic range data of terrestrial arthropods show a pattern similar to that of vertebrates. Thus, Romer's Gap is real, occupied an interval from 360 million years before present (MYBP) to 345 MYBP, and occurred when environmental conditions were unfavorable for air-breathing, terrestrial animals. These model results suggest that atmospheric oxygen levels were the major driver of successful terrestrialization, and a low-oxygen interval accounts for Romer's Gap. Results also show that terrestrialization among members of arthropod and vertebrate clades occurred in two distinct phases. The first phase was a 65-million-year (My) interval from 425 to 360 MYBP, representing an earlier, prolonged event of complete arthropod terrestrialization of smaller-sized forms (425–385 MYBP) and a subsequent, modest, and briefer event of incipient terrestrialization of larger-sized, aquatic vertebrates (385–360 MYBP). The second phase began at 345 MYBP, characterized by numerous new terrestrial species emerging in both major clades. The first and second terrestrialization phases bracket Romer's Gap, which represents a depauperate spectrum of major arthropod and vertebrate taxa before a major Late Paleozoic colonization of terrestrial habitats. PMID:17065318

  14. Development of the Synarcual in the Elephant Sharks (Holocephali; Chondrichthyes): Implications for Vertebral Formation and Fusion.

    PubMed

    Johanson, Zerina; Boisvert, Catherine; Maksimenko, Anton; Currie, Peter; Trinajstic, Kate

    2015-01-01

    The synarcual is a structure incorporating multiple elements of two or more anterior vertebrae of the axial skeleton, forming immediately posterior to the cranium. It has been convergently acquired in the fossil group 'Placodermi', in Chondrichthyes (Holocephali, Batoidea), within the teleost group Syngnathiformes, and to varying degrees in a range of mammalian taxa. In addition, cervical vertebral fusion presents as an abnormal pathology in a variety of human disorders. Vertebrae develop from axially arranged somites, so that fusion could result from a failure of somite segmentation early in development, or from later heterotopic development of intervertebral bone or cartilage. Examination of early developmental stages indicates that in the Batoidea and the 'Placodermi', individual vertebrae developed normally and only later become incorporated into the synarcual, implying regular somite segmentation and vertebral development. Here we show that in the holocephalan Callorhinchus milii, uniform and regular vertebral segmentation also occurs, with anterior individual vertebra developing separately with subsequent fusion into a synarcual. Vertebral elements forming directly behind the synarcual continue to be incorporated into the synarcual through growth. This appears to be a common pattern through the Vertebrata. Research into human disorders, presenting as cervical fusion at birth, focuses on gene misexpression studies in humans and other mammals such as the mouse. However, in chondrichthyans, vertebral fusion represents the normal morphology, moreover, taxa such Leucoraja (Batoidea) and Callorhinchus (Holocephali) are increasingly used as laboratory animals, and the Callorhinchus genome has been sequenced and is available for study. Our observations on synarcual development in three major groups of early jawed vertebrates indicate that fusion involves heterotopic cartilage and perichondral bone/mineralised cartilage developing outside the regular skeleton. We

  15. Development of the Synarcual in the Elephant Sharks (Holocephali; Chondrichthyes): Implications for Vertebral Formation and Fusion

    PubMed Central

    Johanson, Zerina; Boisvert, Catherine; Maksimenko, Anton; Currie, Peter; Trinajstic, Kate

    2015-01-01

    The synarcual is a structure incorporating multiple elements of two or more anterior vertebrae of the axial skeleton, forming immediately posterior to the cranium. It has been convergently acquired in the fossil group ‘Placodermi’, in Chondrichthyes (Holocephali, Batoidea), within the teleost group Syngnathiformes, and to varying degrees in a range of mammalian taxa. In addition, cervical vertebral fusion presents as an abnormal pathology in a variety of human disorders. Vertebrae develop from axially arranged somites, so that fusion could result from a failure of somite segmentation early in development, or from later heterotopic development of intervertebral bone or cartilage. Examination of early developmental stages indicates that in the Batoidea and the ‘Placodermi’, individual vertebrae developed normally and only later become incorporated into the synarcual, implying regular somite segmentation and vertebral development. Here we show that in the holocephalan Callorhinchus milii, uniform and regular vertebral segmentation also occurs, with anterior individual vertebra developing separately with subsequent fusion into a synarcual. Vertebral elements forming directly behind the synarcual continue to be incorporated into the synarcual through growth. This appears to be a common pattern through the Vertebrata. Research into human disorders, presenting as cervical fusion at birth, focuses on gene misexpression studies in humans and other mammals such as the mouse. However, in chondrichthyans, vertebral fusion represents the normal morphology, moreover, taxa such Leucoraja (Batoidea) and Callorhinchus (Holocephali) are increasingly used as laboratory animals, and the Callorhinchus genome has been sequenced and is available for study. Our observations on synarcual development in three major groups of early jawed vertebrates indicate that fusion involves heterotopic cartilage and perichondral bone/mineralised cartilage developing outside the regular skeleton

  16. The incidence of secondary vertebral fracture of vertebral augmentation techniques versus conservative treatment for painful osteoporotic vertebral fractures: a systematic review and meta-analysis.

    PubMed

    Song, Dawei; Meng, Bin; Gan, Minfeng; Niu, Junjie; Li, Shiyan; Chen, Hao; Yuan, Chenxi; Yang, Huilin

    2015-08-01

    Percutaneous vertebroplasty (PVP) and balloon kyphoplasty (BKP) are minimally invasive and effective vertebral augmentation techniques for managing osteoporotic vertebral compression fractures (OVCFs). Recent meta-analyses have compared the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques or conservative treatment; however, the inclusions were not thorough and rigorous enough, and the effects of each technique on the incidence of secondary vertebral fractures remain unclear. To perform an updated systematic review and meta-analysis of the studies with more rigorous inclusion criteria on the effects of vertebral augmentation techniques and conservative treatment for OVCF on the incidence of secondary vertebral fractures. PubMed, MEDLINE, EMBASE, SpringerLink, Web of Science, and the Cochrane Library database were searched for relevant original articles comparing the incidence of secondary vertebral fractures between vertebral augmentation techniques and conservative treatment for patients with OVCFs. Randomized controlled trials (RCTs) and prospective non-randomized controlled trials (NRCTs) were identified. The methodological qualities of the studies were evaluated, relevant data were extracted and recorded, and an appropriate meta-analysis was conducted. A total of 13 articles were included. The pooled results from included studies showed no statistically significant differences in the incidence of secondary vertebral fractures between patients treated with vertebral augmentation techniques and conservative treatment. Subgroup analysis comparing different study designs, durations of symptoms, follow-up times, races of patients, and techniques were conducted, and no significant differences in the incidence of secondary fractures were identified (P > 0.05). No obvious publication bias was detected by either Begg's test (P = 0.360 > 0.05) or Egger's test (P = 0.373 > 0.05). Despite current thinking in the

  17. The Completeness of the Fossil Record of Mesozoic Birds: Implications for Early Avian Evolution

    PubMed Central

    Brocklehurst, Neil; Upchurch, Paul; Mannion, Philip D.; O'Connor, Jingmai

    2012-01-01

    Many palaeobiological analyses have concluded that modern birds (Neornithes) radiated no earlier than the Maastrichtian, whereas molecular clock studies have argued for a much earlier origination. Here, we assess the quality of the fossil record of Mesozoic avian species, using a recently proposed character completeness metric which calculates the percentage of phylogenetic characters that can be scored for each taxon. Estimates of fossil record quality are plotted against geological time and compared to estimates of species level diversity, sea level, and depositional environment. Geographical controls on the avian fossil record are investigated by comparing the completeness scores of species in different continental regions and latitudinal bins. Avian fossil record quality varies greatly with peaks during the Tithonian-early Berriasian, Aptian, and Coniacian–Santonian, and troughs during the Albian-Turonian and the Maastrichtian. The completeness metric correlates more strongly with a ‘sampling corrected’ residual diversity curve of avian species than with the raw taxic diversity curve, suggesting that the abundance and diversity of birds might influence the probability of high quality specimens being preserved. There is no correlation between avian completeness and sea level, the number of fluviolacustrine localities or a recently constructed character completeness metric of sauropodomorph dinosaurs. Comparisons between the completeness of Mesozoic birds and sauropodomorphs suggest that small delicate vertebrate skeletons are more easily destroyed by taphonomic processes, but more easily preserved whole. Lagerstätten deposits might therefore have a stronger impact on reconstructions of diversity of smaller organisms relative to more robust forms. The relatively poor quality of the avian fossil record in the Late Cretaceous combined with very patchy regional sampling means that it is possible neornithine lineages were present throughout this interval but

  18. A volumetric technique for fossil body mass estimation applied to Australopithecus afarensis.

    PubMed

    Brassey, Charlotte A; O'Mahoney, Thomas G; Chamberlain, Andrew T; Sellers, William I

    2018-02-01

    Fossil body mass estimation is a well established practice within the field of physical anthropology. Previous studies have relied upon traditional allometric approaches, in which the relationship between one/several skeletal dimensions and body mass in a range of modern taxa is used in a predictive capacity. The lack of relatively complete skeletons has thus far limited the potential application of alternative mass estimation techniques, such as volumetric reconstruction, to fossil hominins. Yet across vertebrate paleontology more broadly, novel volumetric approaches are resulting in predicted values for fossil body mass very different to those estimated by traditional allometry. Here we present a new digital reconstruction of Australopithecus afarensis (A.L. 288-1; 'Lucy') and a convex hull-based volumetric estimate of body mass. The technique relies upon identifying a predictable relationship between the 'shrink-wrapped' volume of the skeleton and known body mass in a range of modern taxa, and subsequent application to an articulated model of the fossil taxa of interest. Our calibration dataset comprises whole body computed tomography (CT) scans of 15 species of modern primate. The resulting predictive model is characterized by a high correlation coefficient (r 2  = 0.988) and a percentage standard error of 20%, and performs well when applied to modern individuals of known body mass. Application of the convex hull technique to A. afarensis results in a relatively low body mass estimate of 20.4 kg (95% prediction interval 13.5-30.9 kg). A sensitivity analysis on the articulation of the chest region highlights the sensitivity of our approach to the reconstruction of the trunk, and the incomplete nature of the preserved ribcage may explain the low values for predicted body mass here. We suggest that the heaviest of previous estimates would require the thorax to be expanded to an unlikely extent, yet this can only be properly tested when more complete fossils

  19. The oldest fossil mushroom.

    PubMed

    Heads, Sam W; Miller, Andrew N; Crane, J Leland; Thomas, M Jared; Ruffatto, Danielle M; Methven, Andrew S; Raudabaugh, Daniel B; Wang, Yinan

    2017-01-01

    A new fossil mushroom is described and illustrated from the Lower Cretaceous Crato Formation of northeast Brazil. Gondwanagaricites magnificus gen. et sp. nov. is remarkable for its exceptional preservation as a mineralized replacement in laminated limestone, as all other fossil mushrooms are known from amber inclusions. Gondwanagaricites represents the oldest fossil mushroom to date and the first fossil mushroom from Gondwana.

  20. The oldest fossil mushroom

    PubMed Central

    Miller, Andrew N.; Crane, J. Leland; Thomas, M. Jared; Ruffatto, Danielle M.; Methven, Andrew S.; Raudabaugh, Daniel B.; Wang, Yinan

    2017-01-01

    A new fossil mushroom is described and illustrated from the Lower Cretaceous Crato Formation of northeast Brazil. Gondwanagaricites magnificus gen. et sp. nov. is remarkable for its exceptional preservation as a mineralized replacement in laminated limestone, as all other fossil mushrooms are known from amber inclusions. Gondwanagaricites represents the oldest fossil mushroom to date and the first fossil mushroom from Gondwana. PMID:28591180

  1. The Purisima Formation at Capitola Beach, Santa Cruz County, CA: A Deeper Examination of Pliocene Fossils

    NASA Astrophysics Data System (ADS)

    White, L. D.; Brooks, K.; Chen, R.; Chen, T.; James, T.; Gonzales, J.; Schumaker, D.; Williams, D.

    2005-12-01

    Fossil samples from the Pliocene Purisima Formation at Capitola Beach in Santa Cruz County, CA were collected in July-August 2005. The Purisima Formation composes the bulk of the cliffs exposed at Capitola Beach and a rich assemblage of well-preserved fossils occur in gray to brown sandstone and siltstone. Erosion of the cliff face averages 0.3 meter/year and fresh cliff falls in the winter and spring months of 2005 provided an excellent opportunity to resample the Capitola Beach section of the Purisima Formation previously documented by Perry (1988). Organisms were identified from information in Perry (1988) and were compared with collections at the California Academy of Sciences. The most abundant fossils found are from the phylum Mollusca, classes Bivalvia and Gastropoda. Abundant bivalve taxa are: Anadara trilineata, Clinocardium meekianum, Macoma sp., Protothaca staleyi, and Tresus pajaroanus. Also common are the gastropods, Calyptraea fastigata, Crepdiula princeps, Mitrella gausapata, Nassarius grammatus, Nassarius californianus, Natica clausa, and Olivella pedroana. Less common invertebrate fossils are from the phylum Echinodermata ( Dendraster sp., the extinct fossil sand dollar) and from the phylum Arthropoda ( Crustacea), crab fragments ( Cancer) and barnacles ( Balanus). Because numerous fossils are concentrated as fragments in shell beds, Norris (1986) and Perry (1988) believe many were redeposited as storm beds during strong current events that promoted rapid burial. In contrast, whale and other vertebrate bones are common in certain horizons and their presence may be related to the conditions that promoted phosphate mineralization, such as episodes of low sedimentation rates and prolonged exposure on the seafloor (Föllmi and Garrison, 1991). The bone beds, together with the rich infaunal and epifaunal invertebrate assemblages, represent a community of invertebrate organisms that thrived in a shallow marine sea during the Pliocene epoch, approximately

  2. Will My Fossil Float?

    ERIC Educational Resources Information Center

    Riesser, Sharon; Airey, Linda

    1993-01-01

    Explains how young students can be introduced to fossils. Suggests books to read and science activities including "Fossils to Eat" where students make fossils from peanut butter, honey, and powdered milk. (PR)

  3. Fossil Energy Program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-01-01

    Increased utilization of coal and other fossil fuel alternatives as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, component development and process evaluation studies, technical support to major liquefaction projects, process analysis and engineering evaluations, fossil energy environmental analysis, flue gas desulfurization, solid waste disposal, coal preparation waste utilization, plant control development, atmospheric fluidized bed coal combustor for cogeneration, TVA FBC demonstration plant program technical support, PFBC systems analysis, fossil fuel applications assessments, performance assurance system support for fossil energy projects, international energy technology assessment, and general equilibrium models of liquid and gaseous fuel supplies.

  4. Organic molecules as chemical fossils - The molecular fossil record

    NASA Technical Reports Server (NTRS)

    Eglinton, G.

    1983-01-01

    The study of biochemical clues to the early earth and the origin of life is discussed. The methods used in such investigation are described, including the extraction, fractionation, and analysis of geolipids and the analysis of kerogen. The occurrence of molecular fossils in the geological record is examined, discussing proposed precursor-product relationships and the molecular assessment of deep sea sediments, ancient sediments, and crude petroleums. Alterations in the molecular record due to diagenesis and catagenesis are considered, and the use of microbial lipids as molecular fossils is discussed. The results of searches for molecular fossils in Precambrian sediments are assessed.

  5. Electron Microscopy and Analytical X-ray Characterization of Compositional and Nanoscale Structural Changes in Fossil Bone

    NASA Astrophysics Data System (ADS)

    Boatman, Elizabeth Marie

    highly conserved in these four fossil specimens. Finally, the results of this study indicate that bioapatite can be preserved in even the most ancient vertebrate specimens, further supporting the idea that fossilization is a preservational process. This work also underlines the importance of using appropriately selected characterization and analytical techniques for the study of fossil bone, especially from the perspective of spatial resolution and the scale of the bone structural features in question.

  6. Chronology for the Cueva Victoria fossil site (SE Spain): Evidence for Early Pleistocene Afro-Iberian dispersals.

    PubMed

    Gibert, Luis; Scott, Gary R; Scholz, Denis; Budsky, Alexander; Ferràndez, Carles; Ribot, Francesc; Martin, Robert A; Lería, María

    2016-01-01

    Cueva Victoria has provided remains of more than 90 species of fossil vertebrates, including a hominin phalanx, and the only specimens of the African cercopithecid Theropithecus oswaldi in Europe. To constrain the age of the vertebrate remains we used paleomagnetism, vertebrate biostratigraphy and (230)Th/U dating. Normal polarity was identified in the non-fossiliferous lowest and highest stratigraphic units (red clay and capping flowstones) while reverse polarity was found in the intermediate stratigraphic unit (fossiliferous breccia). A lower polarity change occurred during the deposition of the decalcification clay, when the cave was closed and karstification was active. A second polarity change occurred during the capping flowstone formation, when the upper galleries were filled with breccia. The mammal association indicates a post-Jaramillo age, which allows us to correlate this upper reversal with the Brunhes-Matuyama boundary (0.78 Ma). Consequently, the lower reversal (N-R) is interpreted as the end of the Jaramillo magnetochron (0.99 Ma). These ages bracket the age of the fossiliferous breccia between 0.99 and 0.78 Ma, suggesting that the capping flowstone was formed during the wet Marine Isotopic Stage 19, which includes the Brunhes-Matuyama boundary. Fossil remains of Theropithecus have been only found in situ ∼1 m below the B/M boundary, which allows us to place the arrival of Theropithecus to Cueva Victoria at ∼0.9-0.85 Ma. The fauna of Cueva Victoria lived during a period of important climatic change, known as the Early-Middle Pleistocene Climatic Transition. The occurrence of the oldest European Acheulean tools at the contemporaneous nearby site of Cueva Negra suggest an African dispersal into SE Iberia through the Strait of Gibraltar during MIS 22, when sea-level was ∼100 m below its present position, allowing the passage into Europe of, at least, Theropithecus and Homo bearing Acheulean technology. Copyright © 2015 Elsevier Ltd. All

  7. An early Oligocene fossil demonstrates treeshrews are slowly evolving "living fossils".

    PubMed

    Li, Qiang; Ni, Xijun

    2016-01-14

    Treeshrews are widely considered a "living model" of an ancestral primate, and have long been called "living fossils". Actual fossils of treeshrews, however, are extremely rare. We report a new fossil species of Ptilocercus treeshrew recovered from the early Oligocene (~34 Ma) of China that represents the oldest definitive fossil record of the crown group of treeshrews and nearly doubles the temporal length of their fossil record. The fossil species is strikingly similar to the living Ptilocercus lowii, a species generally recognized as the most plesiomorphic extant treeshrew. It demonstrates that Ptilocercus treeshrews have undergone little evolutionary change in their morphology since the early Oligocene. Morphological comparisons and phylogenetic analysis support the long-standing idea that Ptilocercus treeshrews are morphologically conservative and have probably retained many characters present in the common stock that gave rise to archontans, which include primates, flying lemurs, plesiadapiforms and treeshrews. This discovery provides an exceptional example of slow morphological evolution in a mammalian group over a period of 34 million years. The persistent and stable tropical environment in Southeast Asia through the Cenozoic likely played a critical role in the survival of such a morphologically conservative lineage.

  8. FOSSIL2 energy policy model documentation: FOSSIL2 documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at severalmore » levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume III lists the model equations and a one line definition for equations, in a short, readable format.« less

  9. Fossil Fuels.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  10. Ediacara Fossils

    ERIC Educational Resources Information Center

    Science Teacher, 2005

    2005-01-01

    Now, a research team from Virginia Tech and Nanjing Institute of Geology and Paleontology has discovered uniquely well-preserved fossil forms from 550-million-year-old rocks of the Ediacaran Period. The research appears in the Proceedings of the National Academy of Sciences. The discovery of these unusually preserved fossils reveals unprecedented…

  11. Fossil Fishes from China Provide First Evidence of Dermal Pelvic Girdles in Osteichthyans

    PubMed Central

    Zhu, Min; Yu, Xiaobo; Choo, Brian; Qu, Qingming; Jia, Liantao; Zhao, Wenjin; Qiao, Tuo; Lu, Jing

    2012-01-01

    Background The pectoral and pelvic girdles support paired fins and limbs, and have transformed significantly in the diversification of gnathostomes or jawed vertebrates (including osteichthyans, chondrichthyans, acanthodians and placoderms). For instance, changes in the pectoral and pelvic girdles accompanied the transition of fins to limbs as some osteichthyans (a clade that contains the vast majority of vertebrates – bony fishes and tetrapods) ventured from aquatic to terrestrial environments. The fossil record shows that the pectoral girdles of early osteichthyans (e.g., Lophosteus, Andreolepis, Psarolepis and Guiyu) retained part of the primitive gnathostome pectoral girdle condition with spines and/or other dermal components. However, very little is known about the condition of the pelvic girdle in the earliest osteichthyans. Living osteichthyans, like chondrichthyans (cartilaginous fishes), have exclusively endoskeletal pelvic girdles, while dermal pelvic girdle components (plates and/or spines) have so far been found only in some extinct placoderms and acanthodians. Consequently, whether the pectoral and pelvic girdles are primitively similar in osteichthyans cannot be adequately evaluated, and phylogeny-based inferences regarding the primitive pelvic girdle condition in osteichthyans cannot be tested against available fossil evidence. Methodology/Principal Findings Here we report the first discovery of spine-bearing dermal pelvic girdles in early osteichthyans, based on a new articulated specimen of Guiyu oneiros from the Late Ludlow (Silurian) Kuanti Formation, Yunnan, as well as a re-examination of the previously described holotype. We also describe disarticulated pelvic girdles of Psarolepis romeri from the Lochkovian (Early Devonian) Xitun Formation, Yunnan, which resemble the previously reported pectoral girdles in having integrated dermal and endoskeletal components with polybasal fin articulation. Conclusions/Significance The new findings reveal

  12. Assessing the fidelity of marine vertebrate microfossil δ18O signatures and their potential for palaeo-ecological and -climatic reconstructions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roelofs, Brett; Barham, Milo; Cliff, John

    Conodont biogenic apatite has become a preferred analytical target for oxygen isotope studies investigating ocean temperature and palaeoclimate change in the Palaeozoic. Despite the growing application in geochemical based palaeoenvironmental reconstructions, the paucity or absence of conodont fossils in certain facies necessitates greater flexibility in selection of robust oxygen bearing compounds for analysis. Microvertebrates offer a potential substitute for conodonts from the middle Palaeozoic. Microvertebrate bioapatite is particularly advantageous given a fossil record extending to the present with representatives across freshwater to fully marine environments, thus widening the scope of oxygen isotope studies on bioapatite. However, significant tissue heterogeneity withinmore » vertebrates and differential susceptibility of these tissues to diagenetic alteration have been raised as potential problems affecting the reliability of the oxygen isotope ratios as palaeoclimate proxies. Pristine microvertebrate and co-occurring conodont fossils from the Late Devonian and Early Carboniferous of the Lennard Shelf, Canning Basin, Western Australia, were analysed using bulk (gas isotope ratio mass spectrometry) and in-situ (secondary ion mass spectrometry) methodologies, with the latter technique allowing investigation of specific tissues within vertebrate elements. The δ18Oconodont results may be interpreted in terms of palaeolatitudinally and environmentally sensible palaeotemperatures and provide a baseline standard for comparison against δ18Omicrovertebrate values. Despite an absence of obvious diagenetic influences, GIRMS of microvertebrate denticles yielded δ18O values depleted by 2-4 ‰ relative to co-occurring conodonts. SIMS analysis of hypermineralised tissues in both scales and teeth produced δ18O values comparable with those of associated conodonts. The susceptibility of porous phosphatic fossil tissues to microbial activity, fluid interaction and

  13. An analytical approach for estimating fossil record and diversification events in sharks, skates and rays.

    PubMed

    Guinot, Guillaume; Adnet, Sylvain; Cappetta, Henri

    2012-01-01

    Modern selachians and their supposed sister group (hybodont sharks) have a long and successful evolutionary history. Yet, although selachian remains are considered relatively common in the fossil record in comparison with other marine vertebrates, little is known about the quality of their fossil record. Similarly, only a few works based on specific time intervals have attempted to identify major events that marked the evolutionary history of this group. Phylogenetic hypotheses concerning modern selachians' interrelationships are numerous but differ significantly and no consensus has been found. The aim of the present study is to take advantage of the range of recent phylogenetic hypotheses in order to assess the fit of the selachian fossil record to phylogenies, according to two different branching methods. Compilation of these data allowed the inference of an estimated range of diversity through time and evolutionary events that marked this group over the past 300 Ma are identified. Results indicate that with the exception of high taxonomic ranks (orders), the selachian fossil record is by far imperfect, particularly for generic and post-Triassic data. Timing and amplitude of the various identified events that marked the selachian evolutionary history are discussed. Some identified diversity events were mentioned in previous works using alternative methods (Early Jurassic, mid-Cretaceous, K/T boundary and late Paleogene diversity drops), thus reinforcing the efficiency of the methodology presented here in inferring evolutionary events. Other events (Permian/Triassic, Early and Late Cretaceous diversifications; Triassic/Jurassic extinction) are newly identified. Relationships between these events and paleoenvironmental characteristics and other groups' evolutionary history are proposed.

  14. C-isotope composition of fossil sedges and grasses

    NASA Astrophysics Data System (ADS)

    Kurschner, Wolfram M.

    2010-05-01

    C4 plants differ from C3 plants regarding their anatomy and their C-isotope composition. Both features can be used in the geological record to determine the presence of C4 plants. Yet, the evolution of the C4 pathway in the fossil record is enigmatic as palaeobotanical and geological evidence for C4 plants is sparse. The oldest structural evidence for Kranz anatomy has been found in Late Miocene permineralized grass leaf remains. But studies on the C-isotope composition of sedimentary organic matter indicate that abundant C4 biomass was present in N-America and Asia throughout the Miocene in expanding savannahs and grasslands. The success of C4 plants appears to be related also to an increasing seasonal aridity in the tropical climate belts and the co-evolution of grazers. However, C- isotope composition of palaeosols or vertebrate teeth only allows to estimate the abundance of C4 plant biomass in the vegetation or in the diet without further taxonomical specification which plant groups would have had C4 metabolism. In this contribution the first extensive C-isotope analysis of fossil seeds of sedges and a few grasses are presented. The age of the carpological material ranges from Late Eocene to Pliocene and was collected from several central European brown coal deposits. The 52 different taxa studied include several species of Carex, Cladiocarya, Eriopherum, Eleocharis, Scirpus, Sparganium. Most of them representing herbaceous elements of a (sub)tropical vegetation growing near the edge of a lake. The C-isotope composition of the fossil seeds varies between -30 and -23 o/oo indicating C3 photosynthesis. This first systematic inventory shows that C4 plants were absent in the European (sub)tropical brown coal forming wetland vegetation during the Tertiary. These preliminary data are in agreement with phylogenetic studies which predict the origin of C4 plants outside the European realm.

  15. FOSSIL2 energy policy model documentation: FOSSIL2 documentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large, as is appropriate for a system dynamics simulation model. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at severalmore » levels. Volumes II and III of this report list the equations that comprise the FOSSIL2 model, along with variable definitions and a cross-reference list of the model variables. Volume II provides the model equations with each of their variables defined, while Volume III lists the equations, and a one line definition for equations, in a shorter, more readable format.« less

  16. Fossil Simulation in the Classroom

    ERIC Educational Resources Information Center

    Hoehn, Robert G.

    1977-01-01

    Describes classroom science demonstrations and experiments that simulate the process of fossil formation. Lists materials, procedures and suggestions for successful activities. Includes ten student activities (coral fossils, leaf fossils, leaf scars, carbonization, etc.). Describes a fossil game in which students work in pairs. (CS)

  17. The potential of chemical fingerprinting of tephra for stratigraphic correlations in the fossil Lagerstätte of the Pisco Formation (Peru)

    NASA Astrophysics Data System (ADS)

    Bosio, Giulia; Gioncada, Anna; Malinverno, Elisa; Villa, Igor Maria; Di Celma, Claudio; Gariboldi, Karen; Urbina, Mario; Bianucci, Giovanni

    2017-04-01

    The upper Miocene Pisco Formation (Peru) represents a world-known fossil Lagerstätte containing abundant and exceptionally well-preserved marine vertebrates. A detailed chronostratigraphic reconstruction is indispensable to study this fossil record and to understand the evolution of marine vertebrates. Recent work (Bianucci et al., 2016; Di Celma et al., 2016; Gariboldi et al., in press) in the area of the western Ica River Valley defined a detailed chronostratigraphic framework for the Pisco Formation, containing all the fossil vertebrates observed in the area. Such chronostratigraphic framework, based on new 40Ar/39Ar ages on biotite from tephra layers integrated with diatom biostratigraphy, implements previous scattered radiometric data (Brand et al., 2011; Esperante et al., 2015). Tephra layers representing primary air-fall deposition of volcanic ash from the Peruvian Andes volcanoes are very frequent in the Pisco Formation. Several of them do not show evidence of reworking or bioturbation. Due to their regional dispersal and to their geologically instantaneous deposition (Lowe, 2011), they provide the opportunity not only to date specific layers, when suitable for radiometric age determination, but also to correlate different localities, through the chemical fingerprinting of tephra. We collected more than 200 tephra layers from different localities in the Ica Desert along six measured stratigraphic sections. Based on the estimated stratigraphic position, we analyzed specific tephra layers through petrographic characterization, glass shard morphology, electron probe microanalyses of glass shards and, where present, biotite crystals. Despite some difficulties encountered, such as similar magma or mineral composition, local weathering, lack of record due to marine current transport and change in depositional environments among different localities, the correspondence of the obtained data allowed to verify correlations that were supposed during field work and to

  18. Anthropometric measurements and vertebral deformities. European Vertebral Osteoporosis Study (EVOS) Group.

    PubMed

    Johnell, O; O'Neill, T; Felsenberg, D; Kanis, J; Cooper, C; Silman, A J

    1997-08-15

    To investigate the association between anthropometric indices and morphometrically determined vertebral deformity, the authors carried out a cross-sectional study using data from the European Vertebral Osteoporosis Study (EVOS), a population-based study of vertebral osteoporosis in 36 European centers from 19 countries. A total of 16,047 EVOS subjects were included in this analysis, of whom 1,973 subjects (915 males, 1,058 females) (12.3%) aged 50 years or over had one or more vertebral deformities ("cases"). The cases were compared with the 14,074 subjects (6,539 males, 7,535 females) with morphometrically normal spines ("controls"). Data were collected on self-reported height at age 25 years and minimum weight after age 25 years, as well as on current measured height and weight. Body mass index (BMI) and height and weight change were calculated from these data. The relations between these variables and vertebral deformity were examined separately by sex with logistic regression adjusting for age, smoking, and physical activity. In females, there was a significant trend of decreasing risk with increasing quintile of current weight, current BMI, and weight gain since age 25 years. In males, subjects in the lightest quintile for these measures were at increased risk but there was no evidence of a trend. An ecologic analysis by country revealed a negative correlation between mean BMI and the prevalence of deformity in females but not in males. The authors conclude that low body weight is associated with presence of vertebral deformity.

  19. Evolution of endothelin receptors in vertebrates.

    PubMed

    Braasch, Ingo; Schartl, Manfred

    2014-12-01

    Endothelin receptors are G protein coupled receptors (GPCRs) of the β-group of rhodopsin receptors that bind to endothelin ligands, which are 21 amino acid long peptides derived from longer prepro-endothelin precursors. The most basal Ednr-like GPCR is found outside vertebrates in the cephalochordate amphioxus, but endothelin ligands are only present among vertebrates, including the lineages of jawless vertebrates (lampreys and hagfishes), cartilaginous vertebrates (sharks, rays, and chimaeras), and bony vertebrates (ray-finned fishes and lobe-finned vertebrates including tetrapods). A bona fide endothelin system is thus a vertebrate-specific innovation with important roles for regulating the cardiovascular system, renal and pulmonary processes, as well as for the development of the vertebrate-specific neural crest cell population and its derivatives. Expectedly, dysregulation of endothelin receptors and the endothelin system leads to a multitude of human diseases. Despite the importance of different types of endothelin receptors for vertebrate development and physiology, current knowledge on endothelin ligand-receptor interactions, on the expression of endothelin receptors and their ligands, and on the functional roles of the endothelin system for embryonic development and in adult vertebrates is very much biased towards amniote vertebrates. Recent analyses from a variety of vertebrate lineages, however, have shown that the endothelin system in lineages such as teleost fish and lampreys is more diverse and is divergent from the mammalian endothelin system. This diversity is mainly based on differential evolution of numerous endothelin system components among vertebrate lineages generated by two rounds of whole genome duplication (three in teleosts) during vertebrate evolution. Here we review current understanding of the evolutionary history of the endothelin receptor family in vertebrates supplemented with surveys on the endothelin receptor gene complement of

  20. Three-dimensional morphometrics of thoracic vertebrae in Neandertals and the fossil evidence from El Sidrón (Asturias, Northern Spain).

    PubMed

    Bastir, Markus; García Martínez, Daniel; Rios, Luis; Higuero, Antonio; Barash, Alon; Martelli, Sandra; García Tabernero, Antonio; Estalrrich, Almudena; Huguet, Rosa; de la Rasilla, Marco; Rosas, Antonio

    2017-07-01

    Well preserved thoracic vertebrae of Neandertals are rare. However, such fossils are important as their three-dimensional (3D) spatial configuration can contribute to the understanding of the size and shape of the thoracic spine and the entire thorax. This is because the vertebral body and transverse processes provide the articulation and attachment sites for the ribs. Dorsal orientation of the transverse processes relative to the vertebral body also rotates the attached ribs in a way that could affect thorax width. Previous research indicates possible evidence for greater dorsal orientation of the transverse processes and small vertebral body heights in Neandertals, but their 3D vertebral structure has not yet been addressed. Here we present 15 new vertebral remains from the El Sidrón Neandertals (Asturias, Northern Spain) and used 3D geometric morphometrics to address the above issues by comparing two particularly well preserved El Sidrón remains (SD-1619, SD-1641) with thoracic vertebrae from other Neandertals and a sample of anatomically modern humans. Centroid sizes of El Sidrón vertebrae are within the human range. Neandertals have larger T1 and probably also T2. The El Sidrón vertebrae are similar in 3D shape to those of other Neandertals, which differ from Homo sapiens particularly in central-lower regions (T6-T10) of the thoracic spine. Differences include more dorsally and cranially oriented transverse processes, less caudally oriented spinous processes, and vertebral bodies that are anteroposteriorly and craniocaudally short. The results fit with current reconstructions of Neandertal thorax morphology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate, with or without laminectomy, for spinal canal stenosis and vertebral instability caused by congenital thoracic vertebral anomalies.

    PubMed

    Aikawa, Takeshi; Kanazono, Shinichi; Yoshigae, Yuki; Sharp, Nicholas J H; Muñana, Karen R

    2007-07-01

    To describe diagnostic findings, surgical technique, and outcome in dogs with thoracic spinal canal stenosis and vertebral instability secondary to congenital vertebral anomalies. Retrospective clinical study. Dogs (n=9) with thoracic spinal canal stenosis. Medical records (1995-1996; 2000-2006) of 9 dogs with a myelographic diagnosis of spinal canal stenosis and/or vertebral instability secondary to congenital vertebral anomaly that were surgically managed by vertebral stabilization with or without laminectomy were reviewed. Data on pre- and postoperative neurologic status, diagnostic findings, surgical techniques, and outcomes were retrieved. Follow-up evaluations were performed at 1, 2, and 6 months. Long-term outcome was assessed by means of clinical examination or owner telephone interviews. Spinal cord compression was confirmed by myelography, and in 2 dogs, dynamic compression by stress myelography. Eight dogs regained the ability to ambulate postoperatively. One dog with a partial recovery regained voluntary movement but did not become ambulatory. Spinal cord injury secondary to congenital vertebral anomaly may have a good outcome when treated by vertebral stabilization with or without laminectomy. Adequate stabilization of the vertebrae and improved neurologic outcome were achieved in most dogs. Vertebral stabilization using positively threaded profile pins and polymethylmethacrylate with or without laminectomy is an effective treatment for spinal canal stenosis and vertebral instability secondary to congenital thoracic vertebral anomalies.

  2. Paleomagnetism of the Cretaceous Galula Formation and implications for vertebrate evolution

    NASA Astrophysics Data System (ADS)

    Widlansky, Sarah J.; Clyde, William C.; O'Connor, Patrick M.; Roberts, Eric M.; Stevens, Nancy J.

    2018-03-01

    This study uses magnetostratigraphy to help constrain the age of the paleontologically important Galula Formation (Rukwa Rift Basin, southwestern Tanzania). The formation preserves a Cretaceous vertebrate fauna, including saurischian dinosaurs, a putative gondwanatherian mammal, and notosuchian crocodyliforms. With better dating, the Galula Formation and its fossils help fill a temporal gap in our understanding of vertebrate evolution in continental Africa, enabling better evaluation of competing paleobiogeographic hypotheses concerning faunal exchange throughout Gondwana during the Cretaceous. Paleomagnetic samples for this study were collected from the Namba (higher in section) and Mtuka (lower in section) members of the Galula Formation and underwent stepwise thermal demagnetization. All samples displayed a strong normal magnetic polarity overprint, and maximum unblocking temperatures at approximately 690 °C. Three short reversed intervals were identified in the Namba Member, whereas the Mtuka Member lacked any clear reversals. Given the relatively limited existing age constraints, one interpretation correlates the Namba Member to Chron C32. An alternative correlation assigns reversals in the Namba Member to recently proposed short reversals near the end of the Cretaceous Normal Superchron (Chron C34), a time that is traditionally interpreted as having stable normal polarity. The lack of reversals in the Mtuka Member supports deposition within Chron C34. These data suggest that the Namba Member is no older than Late Cretaceous (Cenomanian-Campanian), with the Mtuka Member less well constrained to the middle Cretaceous (Aptian-Cenomanian). The paleomagnetic results are supported by the application of fold and reversal tests for paleomagnetic stability, and paleomagnetic poles for the Namba (246.4°/77.9°, α95 5.9°) and Mtuka (217.1°/72.2°, α95 11.1°) members closely matching the apparent polar wander path for Africa during the Late Cretaceous. These

  3. Substantial vertebral body osteophytes protect against severe vertebral fractures in compression

    PubMed Central

    Aubin, Carl-Éric; Chaumoître, Kathia; Mac-Thiong, Jean-Marc; Ménard, Anne-Laure; Petit, Yvan; Garo, Anaïs; Arnoux, Pierre-Jean

    2017-01-01

    Recent findings suggest that vertebral osteophytes increase the resistance of the spine to compression. However, the role of vertebral osteophytes on the biomechanical response of the spine under fast dynamic compression, up to failure, is unclear. Seventeen human spine specimens composed of three vertebrae (from T5-T7 to T11-L1) and their surrounding soft tissues were harvested from nine cadavers, aged 77 to 92 years. Specimens were imaged using quantitative computer tomography (QCT) for medical observation, classification of the intervertebral disc degeneration (Thomson grade) and measurement of the vertebral trabecular density (VTD), height and cross-sectional area. Specimens were divided into two groups (with (n = 9) or without (n = 8) substantial vertebral body osteophytes) and compressed axially at a dynamic displacement rate of 1 m/s, up to failure. Normalized force-displacement curves, videos and QCT images allowed characterizing failure parameters (force, displacement and energy at failure) and fracture patterns. Results were analyzed using chi-squared tests for sampling distributions and linear regression for correlations between VTD and failure parameters. Specimens with substantial vertebral body osteophytes present higher stiffness (2.7 times on average) and force at failure (1.8 times on average) than other segments. The presence of osteophytes significantly influences the location, pattern and type of fracture. VTD was a good predictor of the dynamic force and energy at failure for specimens without substantial osteophytes. This study also showed that vertebral body osteophytes provide a protective mechanism to the underlying vertebra against severe compression fractures. PMID:29065144

  4. Primary extracranial vertebral artery aneurysms.

    PubMed

    Morasch, Mark D; Phade, Sachin V; Naughton, Peter; Garcia-Toca, Manuel; Escobar, Guillermo; Berguer, Ramon

    2013-05-01

    Extracranial vertebral artery aneurysms are uncommon and are usually associated with trauma or dissection. Primary cervical vertebral aneurysms are even rarer and are not well described. The presentation and natural history are unknown and operative management can be difficult. Accessing aneurysms at the skull base can be difficult and, because the frail arteries are often afflicted with connective tissue abnormalities, direct repair can be particularly challenging. We describe the presentation and surgical management of patients with primary extracranial vertebral artery aneurysms. In this study we performed a retrospective, multi-institutional review of patients with primary aneurysms within the extracranial vertebral artery. Between January 2000 and January 2011, 7 patients, aged 12-56 years, were noted to have 9 primary extracranial vertebral artery aneurysms. All had underlying connective tissue or another hereditary disorder, including Ehler-Danlos syndrome (n=3), Marfan's disease (n=2), neurofibromatosis (n=1), and an unspecified connective tissue abnormality (n=1). Eight of 9 aneurysms were managed operatively, including an attempted bypass that ultimately required vertebral ligation; the contralateral aneurysm on this patient has not been treated. Open interventions included vertebral bypass with vein, external carotid autograft, and vertebral transposition to the internal carotid artery. Special techniques were used for handling the anastomoses in patients with Ehler-Danlos syndrome. Although endovascular exclusion was not performed in isolation, 2 hybrid procedures were performed. There were no instances of perioperative stroke or death. Primary extracranial vertebral artery aneurysms are rare and occur in patients with hereditary disorders. Operative intervention is warranted in symptomatic patients. Exclusion and reconstruction may be performed with open and hybrid techniques with low morbidity and mortality. Copyright © 2013 Elsevier Inc. All rights

  5. Fossils from Quaternary fluvial archives: Sources of biostratigraphical, biogeographical and palaeoclimatic evidence

    NASA Astrophysics Data System (ADS)

    White, Tom S.; Bridgland, David R.; Limondin-Lozouet, Nicole; Schreve, Danielle C.

    2017-06-01

    Fluvial sedimentary archives have the potential to preserve a wide variety of palaeontological evidence, ranging from robust bones and teeth found in coarse gravel aggradations to delicate insect remains and plant macrofossils from fine-grained deposits. Over the last decade, advances in Quaternary biostratigraphy based on vertebrate and invertebrate fossils (primarily mammals and molluscs) have been made in many parts of the world, resulting in improved relative chronologies for fluviatile sequences. Complementary fossil groups, such as insects, ostracods and plant macrofossils, are also increasingly used in multi-proxy palaeoclimatic and palaeoenvironmental reconstructions, allowing direct comparison of the climates and environments that prevailed at different times across widely separated regions. This paper reviews these topics on a regional basis, with an emphasis on the latest published information, and represents an update to the 2007 review compiled by the FLAG-inspired IGCP 449 biostratigraphy subgroup. Disparities in the level of detail available for different regions can largely be attributed to varying potential for preservation of fossil material, which is especially poor in areas of non-calcareous bedrock, but to some extent also reflect research priorities in different parts of the world. Recognition of the value of biostratigraphical and palaeoclimatic frameworks, which have been refined over many decades in the 'core regions' for such research (particularly for the late Middle and Late Pleistocene of NW Europe), has focussed attention on the need to accumulate similar palaeontological datasets in areas lacking such long research histories. Although the emerging datasets from these understudied regions currently allow only tentative conclusions to be drawn, they represent an important stage in the development of independent biostratigraphical and palaeoenvironmental schemes, which can then be compared and contrasted.

  6. An extinct vertebrate preserved by its living hybridogenetic descendant.

    PubMed

    Dubey, Sylvain; Dufresnes, Christophe

    2017-10-06

    Hybridogenesis is a special mode of hybrid reproduction where one parental genome is eliminated and the other is transmitted clonally. We propose that this mechanism can perpetuate the genome of extinct species, based on new genetic data from Pelophylax water frogs. We characterized the genetic makeup of Italian hybridogenetic hybrids (P. kl. hispanicus and esculentus) and identified a new endemic lineage of Eastern-Mediterranean origin as one parental ancestor of P. kl. hispanicus. This taxon is nowadays extinct in the wild but its germline subsists through its hybridogenetic descendant, which can thus be considered as a "semi living fossil". Such rare situation calls for realistic efforts of de-extinction through selective breeding without genetic engineering, and fuels the topical controversy of reviving long extinct species. "Ghost" species hidden by taxa of hybrid origin may be more frequent than suspected in vertebrate groups that experienced a strong history of hybridization and semi-sexual reproduction.

  7. Life history reconstruction of modern and fossil sockeye salmon ( Oncorhynchus nerka) by oxygen isotopic analysis of otoliths, vertebrae, and teeth: Implication for paleoenvironmental reconstructions

    NASA Astrophysics Data System (ADS)

    Zazzo, A.; Smith, G. R.; Patterson, W. P.; Dufour, E.

    2006-09-01

    We evaluate the use of oxygen isotope values of biogenic apatite for tracking freshwater to marine migration in modern and fossil Pacific sockeye salmon. Oxygen isotope analyses of otoliths, vertebrae, and teeth of three anadromous modern sockeye salmon from Alaska establish a basis for the interpretation of fossil vertebrae and tooth apatite from Pleistocene sockeye salmon of the Skokomish River Valley, Washington. High resolution δ18O profiles in salmon otoliths provide, at a monthly resolution, a detailed record of individual history including continental rearing, migration to sea, seasonal variation in sea surface temperatures during marine life, and spawning migration before capture. Pacific salmon teeth are constantly renewed with the last set of teeth forming under the influence of freshwater. Therefore, they do not allow inference concerning sea-run versus landlocked life history in fossil salmon. Salmon vertebrae are also ambiguous indicators of life history regarding fresh versus marine water because centra are minimally ossified in the freshwater stages of life and the outermost layer of vertebral bone might be resorbed to provide nutrients during the non-feeding phase of the spawning migration. Therefore, δ18O values of accretionary growth rings in sea-run salmon vertebrae are dominated by the marine signal only if they are not diagenetically altered in freshwater deposits. In Pleistocene sockeye reported here, neither the teeth nor vertebral apatite present clear marine δ18O values due to the combined effects of tooth replacement and diagenetic alteration of bone and dentine. δ18O(PO 4) values of fossil vertebrae are intermediate between δ18O(PO 4) values of enamel and basal tooth dentin. Assuming a similar rate of isotope exchange of vertebrae and dentine with freshwater during diagenesis, these results are interpreted to reflect formation of the teeth under the influence of freshwater, and formation of the vertebrae under the influence of

  8. An 110 Ma Crocodilian-Bearing Vertebrate Assemblage Preserved Between Basalt Flows on a mid-Pacific Seamount, ODP Site 865, Allison Guyot

    NASA Astrophysics Data System (ADS)

    Firth, J. V.; Yancey, T.; Alvarez-Zarikian, C.

    2006-12-01

    fossils are found within this unit. The lower unit grades upwards into a 5 cm thick black organic mudstone consisting of mostly amorphous organic debris, colonial algae, and smaller amounts of terrestrial spores, carbonized plant debris, and amber. No vertebrate remains are observed within the black mudstone. This unit in turn grades upwards into an 8 cm unit of mudstone with a coarsening-upwards grain size trend. This upper 8 cm unit contains only rare vertebrate remains, but has numerous oyster fragments and abundant, well preserved, articulated ostracod shells. The ostracod assemblage consists entirely of Cytherella (Suborder Platycopina). The entire 30 cm unit contains common pyrite, glauconite, and plant debris, and lacks calcareous fossils except in the uppermost part. This, as well as the occurrence of abundant Cytherella indicate sediment deposition in a restricted marine environment with low oxygen conditions. This discovery represents possibly the only known record of mid-Cretaceous reptilian remains from the mid- Pacific region, and the entire fossil assemblage provides valuable data for understanding the history of biotic migrations across the Cretaceous Pacific oceanic island realm. The intercalations of basalt flows with restricted marine and terrestrial sediments can be found not only in this ODP drill core but in others around the Pacific and shows the possibility of future discoveries of this type by scientific drilling of old seamounts.

  9. Repeated vertebral augmentation for new vertebral compression fractures of postvertebral augmentation patients: a nationwide cohort study

    PubMed Central

    Liang, Cheng-Loong; Wang, Hao-Kwan; Syu, Fei-Kai; Wang, Kuo-Wei; Lu, Kang; Liliang, Po-Chou

    2015-01-01

    Purpose Postvertebral augmentation vertebral compression fractures are common; repeated vertebral augmentation is usually performed for prompt pain relief. This study aimed to evaluate the incidence and risk factors of repeat vertebral augmentation. Methods We performed a retrospective, nationwide, population-based longitudinal observation study, using the National Health Insurance Research Database (NHIRD) of Taiwan. All patients who received vertebral augmentation for vertebral compression fractures were evaluated. The collected data included patient characteristics (demographics, comorbidities, and medication exposure) and repeat vertebral augmentation. Kaplan–Meier and stratified Cox proportional hazard regressions were performed for analyses. Results The overall incidence of repeat vertebral augmentation was 11.3% during the follow-up until 2010. Patients with the following characteristics were at greater risk for repeat vertebral augmentation: female sex (AOR=1.24; 95% confidence interval [CI]: 1.10–2.36), advanced age (AOR=1.60; 95% CI: 1.32–2.08), diabetes mellitus (AOR=4.31; 95% CI: 4.05–5.88), cerebrovascular disease (AOR=4.09; 95% CI: 3.44–5.76), dementia (AOR=1.97; 95% CI: 1.69–2.33), blindness or low vision (AOR=3.72; 95% CI: 2.32–3.95), hypertension (AOR=2.58; 95% CI: 2.35–3.47), and hyperlipidemia (AOR=2.09; 95% CI: 1.67–2.22). Patients taking calcium/vitamin D (AOR=2.98; 95% CI: 1.83–3.93), bisphosphonates (AOR=2.11; 95% CI: 1.26–2.61), or calcitonin (AOR=4.59; 95% CI: 3.40–5.77) were less likely to undergo repeat vertebral augmentation; however, those taking steroids (AOR=7.28; 95% CI: 6.32–8.08), acetaminophen (AOR=3.54; 95% CI: 2.75–4.83), or nonsteroidal anti-inflammatory drugs (NSAIDs) (AOR=6.14; 95% CI: 5.08–7.41) were more likely to undergo repeat vertebral augmentation. Conclusion We conclude that the incidence of repeat vertebral augmentation is rather high. An understanding of risk factors predicting repeat

  10. Vertebrate assemblages from the early Late Cretaceous of southeastern Morocco: An overview

    NASA Astrophysics Data System (ADS)

    Cavin, L.; Tong, H.; Boudad, L.; Meister, C.; Piuz, A.; Tabouelle, J.; Aarab, M.; Amiot, R.; Buffetaut, E.; Dyke, G.; Hua, S.; Le Loeuff, J.

    2010-07-01

    Fossils of vertebrates have been found in great abundance in the continental and marine early Late Cretaceous sediments of Southeastern Morocco for more than 50 years. About 80 vertebrate taxa have so far been recorded from this region, many of which were recognised and diagnosed for the first time based on specimens recovered from these sediments. In this paper, we use published data together with new field data to present an updated overview of Moroccan early Late Cretaceous vertebrate assemblages. The Cretaceous series we have studied encompasses three Formations, the Ifezouane and Aoufous Formations, which are continental and deltaic in origin and are often grouped under the name "Kem Kem beds", and the Akrabou Formation which is marine in origin. New field observations allow us to place four recognised vertebrate clusters, corresponding to one compound assemblage and three assemblages, within a general temporal framework. In particular, two ammonite bioevents characterise the lower part of the Upper Cenomanian ( Calycoceras guerangeri Zone) at the base of the Akrabou Formation and the upper part of the Lower Turonian ( Mammites nodosoides Zone), that may extend into the Middle Turonian within the Akrabou Formation, and allow for more accurate dating of the marine sequence in the study area. We are not yet able to distinguish a specific assemblage that characterises the Ifezouane Formation when compared to the similar Aoufous Formation, and as a result we regard the oldest of the four vertebrate "assemblages" in this region to be the compound assemblage of the "Kem Kem beds". This well-known vertebrate assemblage comprises a mixture of terrestrial (and aerial), freshwater and brackish vertebrates. The archosaur component of this fauna appears to show an intriguingly high proportion of large-bodied carnivorous taxa, which may indicate a peculiar trophic chain, although collecting biases alter this palaeontological signal. A small and restricted assemblage, the

  11. The effects of neem oil (Azadirachta indica A. JUSS) enriched with different concentrations of azadirachtin on the integument of semi-engorged Rhipicephalus sanguineus sensu lato (Acari: Ixodidae) females.

    PubMed

    Lima de Souza, José Ribamar; Remedio, Rafael Neodini; Arnosti, André; de Abreu, Rusleyd Maria Magalhães; Camargo-Mathias, Maria Izabel

    2017-08-01

    Several studies searching for methods to control Rhipicephalus sanguineus s.l., (dog tick) infestations have been developed aiming to minimize the damages caused by these ectoparasites to the hosts and the environment, which is harmed by the indiscriminate use of toxic acaricide products. In this scenario, neem oil has been used as a natural alternative against ticks, once this chemical has repellent properties and interferes in the growth regulation of these ectoparasites, inhibiting ecdysis. The present study evaluated the effects of azadirachtin-enriched neem oil on the integument of semi-engorged R.sanguineus s.l., females through morphohistological techniques. The results showed the occurrence of significant morphological and histochemical alterations, mainly in the females exposed to higher concentrations, which demonstrates the dose-dependent action of the chemical. A decrease in the cuticle thickness was observed, as well as a modification in the distribution of the epithelial cells, which displayed pyknotic and fragmented nuclei, and intensely vacuolated cytoplasm, indicating that these cells would be undergoing death processes. These morphological alterations observed in the integument of the females exposed to the azadirachtin-enriched neem oil encourage the use of this chemical as a strategy to control these ectoparasites. © 2017 Wiley Periodicals, Inc.

  12. Investigation of Chemical and Physical Changes to Bioapatite During Fossilization Using Trace Element Geochemistry, Infrared Spectroscopy and Stable Isotopes

    NASA Astrophysics Data System (ADS)

    Suarez, C. A.; Kohn, M. J.

    2013-12-01

    Bioapatite in the form of vertebrate bone can be used for a wide variety of paleo-proxies, from determination of ancient diet to the isotopic composition of meteoric water. Bioapatite alteration during diagenesis is a constant barrier to the use of fossil bone as a paleo-proxy. To elucidate the physical and chemical alteration of bone apatite during fossilization, we analyzed an assortment of fossil bones of different ages for trace elements, using LA-ICP-MS, stable isotopes, and reflected IR spectroscopy. One set of fossil bones from the Pleistocene of Idaho show a diffusion recrystallization profile, however, rare earth element (REE) profiles indicate diffusion adsorption. This suggests that REE diffusion is controlled by changing (namely decreasing) boundary conditions (i.e. decreasing concentration of REE in surrounding pore fluids). Reflected IR analysis along this concentration profile reveal that areas high in U have lost type A carbonate from the crystal structure in addition to water and organics. Stable isotopic analysis of carbon and oxygen will determine what, if any, change in the isotopic composition of the carbonate component of apatite has occurred do to the diffusion and recrystallization process. Analysis of much older bone from the Cretaceous of China reveal shallow REE and U concentration profiles and very uniform reflected IR spectra with a significant loss of type A carbonate throughout the entire bone cortex. Analysis of stable isotopes through the bone cortex will be compared to the stable isotopes collected from the Pleistocene of Idaho.

  13. THE GB/3D Fossil Types Online Database

    NASA Astrophysics Data System (ADS)

    Howe, M. P.; McCormick, T.

    2012-12-01

    The ICZN and the International Code of Nomenclature for algae, fungi and plants require that every species or subspecies of organism (living & fossil), should have a type or reference specimen to define its characteristic features. These specimens are held in collections around the world and must be available for study. Over time, type specimens can deteriorate or become lost. The British Geological Survey, the National Museum of Wales, the Sedgwick Museum Cambridge and the Oxford Museum of Natural History are working together to create an online database of the type fossils they hold. The web portal provides data about each specimen, searchable on taxonomic, stratigraphic and spatial criteria. For each specimen it is possible to view and download high resolution photographs, and for many of them, 'anaglyph' stereo pairs and 3D scans are available. The portal also provides educational resources (OERs). The rise to prominence of the Web has transformed expectations in accessing information and the Web is now usually the first port of call. However, while many geological museums are providing web-searchable text catalogues, few have undertaken a large-scale program of providing images and 3D models. This project has tackled the issues of merging four distinct data holdings, and setting up workflows to image and scan large numbers of disparate fossils, ranging from small invertebrate macrofossils to large vertebrate skeletal elements. There are three advantages in providing such resources: (1) All users can exploit the collections more efficiently. End-users can view specimens remotely and assess their nature, preservation quality and completeness - in some cases this may be sufficient. It will reduce the need for institutions to send specimens (which are often fragile and always irreplaceable) to researchers by post, or for researchers to make possibly long, expensive and environmentally damaging journeys. (2) A public outreach and education dividend - the ability to

  14. Restoring Fossil Creek

    ERIC Educational Resources Information Center

    Flaccus, Kathleen; Vlieg, Julie; Marks, Jane C.; LeRoy, Carri J.

    2004-01-01

    Fossil Creek had been dammed for the past 90 years, and plans were underway to restore the stream. The creek runs through Central Arizona and flows from the high plateaus to the desert, cutting through the same formations that form the Grand Canyon. This article discusses the Fossil Creek monitoring project. In this project, students and teachers…

  15. Rapid onset aggressive vertebral haemangioma.

    PubMed

    Cheung, Nicholas K; Doorenbosch, Xenia; Christie, John G

    2011-03-01

    Vertebral haemangiomas are generally benign asymptomatic vascular tumours seen commonly in the adult population. Presentations in paediatric populations are extremely rare, which can result in rapid onset of neurological symptoms. We present a highly unusual case of an aggressive paediatric vertebral haemangioma causing significant cord compression. A 13-year-old boy presented with only 2 weeks duration of progressive gait disturbance, truncal ataxia and loss of bladder control. Magnetic resonance imaging (MRI) of the spine revealed a large vascular epidural mass extending between T6 and T8 vertebral bodies. Associated displacement and compression of the spinal cord was present. A highly vascular bony lesion was found during surgery. Histopathology identified this tumour to be a vertebral haemangioma. We present an extremely unusual acute presentation of a paediatric vertebral haemangioma. This study highlights the need for early diagnosis, MRI for investigation and urgent surgical management. © Springer-Verlag 2011

  16. Children's Ideas about Fossils and Foundational Concepts Related to Fossils

    ERIC Educational Resources Information Center

    Borgerding, Lisa A.; Raven, Sara

    2018-01-01

    Many standards documents and learning progressions recommend evolution learning in elementary grades. Given young children's interest in dinosaurs and other fossils, fossil investigations can provide a rich entry into evolutionary biology for young learners. Educational psychology literature has addressed children's reasoning about foundational…

  17. Vertebrate community on an ice-age Caribbean island

    PubMed Central

    Steadman, David W.; Albury, Nancy A.; Kakuk, Brian; Mead, Jim I.; Soto-Centeno, J. Angel; Singleton, Hayley M.; Franklin, Janet

    2015-01-01

    We report 95 vertebrate taxa (13 fishes, 11 reptiles, 63 birds, 8 mammals) from late Pleistocene bone deposits in Sawmill Sink, Abaco, The Bahamas. The >5,000 fossils were recovered by scuba divers on ledges at depths of 27–35 m below sea level. Of the 95 species, 39 (41%) no longer occur on Abaco (4 reptiles, 31 birds, 4 mammals). We estimate that 17 of the 39 losses (all of them birds) are linked to changes during the Pleistocene–Holocene Transition (PHT) (∼15–9 ka) in climate (becoming more warm and moist), habitat (expansion of broadleaf forest at the expense of pine woodland), sea level (rising from −80 m to nearly modern levels), and island area (receding from ∼17,000 km2 to 1,214 km2). The remaining 22 losses likely are related to the presence of humans on Abaco for the past 1,000 y. Thus, the late Holocene arrival of people probably depleted more populations than the dramatic physical and biological changes associated with the PHT. PMID:26483484

  18. Bayesian Morphological Clock Methods Resurrect Placoderm Monophyly and Reveal Rapid Early Evolution in Jawed Vertebrates.

    PubMed

    King, Benedict; Qiao, Tuo; Lee, Michael S Y; Zhu, Min; Long, John A

    2017-07-01

    The phylogeny of early gnathostomes provides an important framework for understanding one of the most significant evolutionary events, the origin and diversification of jawed vertebrates. A series of recent cladistic analyses have suggested that the placoderms, an extinct group of armoured fish, form a paraphyletic group basal to all other jawed vertebrates. We revised and expanded this morphological data set, most notably by sampling autapomorphies in a similar way to parsimony-informative traits, thus ensuring this data (unlike most existing morphological data sets) satisfied an important assumption of Bayesian tip-dated morphological clock approaches. We also found problems with characters supporting placoderm paraphyly, including character correlation and incorrect codings. Analysis of this data set reveals that paraphyly and monophyly of core placoderms (excluding maxillate forms) are essentially equally parsimonious. The two alternative topologies have different root positions for the jawed vertebrates but are otherwise similar. However, analysis using tip-dated clock methods reveals strong support for placoderm monophyly, due to this analysis favoring trees with more balanced rates of evolution. Furthermore, enforcing placoderm paraphyly results in higher levels and unusual patterns of rate heterogeneity among branches, similar to that generated from simulated trees reconstructed with incorrect root positions. These simulations also show that Bayesian tip-dated clock methods outperform parsimony when the outgroup is largely uninformative (e.g., due to inapplicable characters), as might be the case here. The analysis also reveals that gnathostomes underwent a rapid burst of evolution during the Silurian period which declined during the Early Devonian. This rapid evolution during a period with few articulated fossils might partly explain the difficulty in ascertaining the root position of jawed vertebrates. © The Author(s) 2016. Published by Oxford University

  19. Clumped isotope paleothermometry of eggshells as an indicator of vertebrate endothermy

    NASA Astrophysics Data System (ADS)

    Canavan, R. R.; Field, D. J.; Therrien, F.; Zelenitsky, D.; Affek, H. P.

    2014-12-01

    Isotopic analyses of the calcite or aragonite shells of aquatic organisms are often used in the study of the environmental conditions in which they grow; however, this approach is less straightforward in the terrestrial realm, where environments may be more heterogeneous. In such terrestrial localities, the bioapatite of vertebrate teeth comprises the typical archival material for isotopic analyses. The calcitic eggshells of birds and other reptiles may provide suitable material for isotopic analyses that are aimed at studying their physiology and ecology. Here we apply a novel thermometer, carbonate clumped isotopes (Δ47), to test for endothermy in extinct non-avian dinosaurs in the context provided by eggs of modern reptiles and birds. These Δ47-derived temperatures should reflect the temperature of shell formation, which in endothermic animals such as birds should represent the mother's internal body temperature. In ectothermic animals, the same is true although their body temperatures are more affected by the external environment and thus Δ47 temperatures could more accurately describe local environmental temperatures during eggshell formation. Fossil eggshells represent appropriate material for reconstructing internal body temperatures of extinct non-avian dinosaurs since they mineralized within the mother's body, and fragments of eggshell are commonly recovered from dinosaur-bearing fossil deposits. The dimensions of these fragments provide sufficient material for the relatively large sample required for clumped isotope analysis (~20mg). Fossil eggshell samples from several taxa of Late Cretaceous non-avian dinosaurs were analyzed using Δ47 paleothermometry. Textural inspection was used as a first test for diagenetic alteration of the original calcite, and histological indicators were used for broad taxonomic identifications. Preliminary results of Δ47-derived body temperature estimates from eggshells are consistent with previous body temperatures

  20. Fossils of parasites: what can the fossil record tell us about the evolution of parasitism?

    PubMed

    Leung, Tommy L F

    2017-02-01

    Parasites are common in many ecosystems, yet because of their nature, they do not fossilise readily and are very rare in the geological record. This makes it challenging to study the evolutionary transition that led to the evolution of parasitism in different taxa. Most studies on the evolution of parasites are based on phylogenies of extant species that were constructed based on morphological and molecular data, but they give us an incomplete picture and offer little information on many important details of parasite-host interactions. The lack of fossil parasites also means we know very little about the roles that parasites played in ecosystems of the past even though it is known that parasites have significant influences on many ecosystems. The goal of this review is to bring attention to known fossils of parasites and parasitism, and provide a conceptual framework for how research on fossil parasites can develop in the future. Despite their rarity, there are some fossil parasites which have been described from different geological eras. These fossils include the free-living stage of parasites, parasites which became fossilised with their hosts, parasite eggs and propagules in coprolites, and traces of pathology inflicted by parasites on the host's body. Judging from the fossil record, while there were some parasite-host relationships which no longer exist in the present day, many parasite taxa which are known from the fossil record seem to have remained relatively unchanged in their general morphology and their patterns of host association over tens or even hundreds of millions of years. It also appears that major evolutionary and ecological transitions throughout the history of life on Earth coincided with the appearance of certain parasite taxa, as the appearance of new host groups also provided new niches for potential parasites. As such, fossil parasites can provide additional data regarding the ecology of their extinct hosts, since many parasites have

  1. Right-handed fossil humans.

    PubMed

    Lozano, Marina; Estalrrich, Almudena; Bondioli, Luca; Fiore, Ivana; Bermúdez de Castro, José-Maria; Arsuaga, Juan Luis; Carbonell, Eudald; Rosas, Antonio; Frayer, David W

    2017-11-01

    Fossil hominids often processed material held between their upper and lower teeth. Pulling with one hand and cutting with the other, they occasionally left impact cut marks on the lip (labial) surface of their incisors and canines. From these actions, it possible to determine the dominant hand used. The frequency of these oblique striations in an array of fossil hominins documents the typically modern pattern of 9 right- to 1 left-hander. This ratio among living Homo sapiens differs from that among chimpanzees and bonobos and more distant primate relatives. Together, all studies of living people affirm that dominant right-handedness is a uniquely modern human trait. The same pattern extends deep into our past. Thus far, the majority of inferred right-handed fossils come from Europe, but a single maxilla from a Homo habilis, OH-65, shows a predominance of right oblique scratches, thus extending right-handedness into the early Pleistocene of Africa. Other studies show right-handedness in more recent African, Chinese, and Levantine fossils, but the sample compiled for non-European fossil specimens remains small. Fossil specimens from Sima del los Huesos and a variety of European Neandertal sites are predominately right-handed. We argue the 9:1 handedness ratio in Neandertals and the earlier inhabitants of Europe constitutes evidence for a modern pattern of handedness well before the appearance of modern Homo sapiens. © 2017 Wiley Periodicals, Inc.

  2. Identifying osteoporotic vertebral endplate and cortex fractures

    PubMed Central

    Santiago, Fernando Ruiz; Deng, Min; Nogueira-Barbosa, Marcello H.

    2017-01-01

    Osteoporosis is the most common metabolic bone disease, and vertebral fractures (VFs) are the most common osteoporotic fracture. A single atraumatic VF may lead to the diagnosis of osteoporosis. Prevalent VFs increase the risk of future vertebral and non-vertebral osteoporotic fracture independent of bone mineral density (BMD). The accurate and clear reporting of VF is essential to ensure patients with osteoporosis receive appropriate treatment. Radiologist has a vital role in the diagnosis of this disease. Several morphometrical and radiological methods for detecting osteoporotic VF have been proposed, but there is no consensus regarding the definition of osteoporotic VF. A vertebra may fracture yet not ever result in measurable changes in radiographic height or area. To overcome these difficulties, algorithm-based qualitative approach (ABQ) was developed with a focus on the identification of change in the vertebral endplate. Evidence of endplate fracture (rather than variation in vertebral shape) is the primary indicator of osteoporotic fracture according to ABQ criteria. Other changes that may mimic osteoporotic fractures should be systemically excluded. It is also possible that vertebral cortex fracture may not initially occur in endplate. Particularly, vertebral cortex fracture can occur in anterior vertebral cortex without gross vertebral deformity (VD), or fractures deform the anterior vertebral cortex without endplate disruption. This article aims to serve as a teaching material for physicians or researchers to identify vertebral endplate/cortex fracture (ECF). Emphasis is particularly dedicated to identifying ECF which may not be associated apparent vertebral body collapse. We believe a combined approach based on standardized radiologic evaluation by experts and morphometry measurement is the most appropriate approach to detect and classify VFs. PMID:29184768

  3. Postsacral vertebral morphology in relation to tail length among primates and other mammals.

    PubMed

    Russo, Gabrielle A

    2015-02-01

    Tail reduction/loss independently evolved in a number of mammalian lineages, including hominoid primates. One prerequisite to appropriately contextualizing its occurrence and understanding its significance is the ability to track evolutionary changes in tail length throughout the fossil record. However, to date, the bony correlates of tail length variation among living taxa have not been comprehensively examined. This study quantifies postsacral vertebral morphology among living primates and other mammals known to differ in relative tail length (RTL). Linear and angular measurements with known biomechanical significance were collected on the first, mid-, and transition proximal postsacral vertebrae, and their relationship with RTL was assessed using phylogenetic generalized least-squares regression methods. Compared to shorter-tailed primates, longer-tailed primates possess a greater number of postsacral vertebral features associated with increased proximal tail flexibility (e.g., craniocaudally longer vertebral bodies), increased intervertebral body joint range of motion (e.g., more circularly shaped cranial articular surfaces), and increased leverage of tail musculature (e.g., longer spinous processes). These observations are corroborated by the comparative mammalian sample, which shows that distantly related short-tailed (e.g., Phascolarctos, Lynx) and long-tailed (e.g., Dendrolagus, Acinonyx) nonprimate mammals morphologically converge with short-tailed (e.g., Macaca tonkeana) and long-tailed (e.g., Macaca fascicularis) primates, respectively. Multivariate models demonstrate that the variables examined account for 70% (all mammals) to 94% (only primates) of the variance in RTL. Results of this study may be used to infer the tail lengths of extinct primates and other mammals, thereby improving our understanding about the evolution of tail reduction/loss. © 2014 Wiley Periodicals, Inc.

  4. Vertebral numbers and human evolution.

    PubMed

    Williams, Scott A; Middleton, Emily R; Villamil, Catalina I; Shattuck, Milena R

    2016-01-01

    Ever since Tyson (1699), anatomists have noted and compared differences in the regional numbers of vertebrae among humans and other hominoids. Subsequent workers interpreted these differences in phylogenetic, functional, and behavioral frameworks and speculated on the history of vertebral numbers during human evolution. Even in a modern phylogenetic framework and with greatly expanded sample sizes of hominoid species, researchers' conclusions vary drastically, positing that hominins evolved from either a "long-backed" (numerically long lumbar column) or a "short-backed" (numerically short lumbar column) ancestor. We show that these disparate interpretations are due in part to the use of different criteria for what defines a lumbar vertebra, but argue that, regardless of which lumbar definition is used, hominins are similar to their great ape relatives in possessing a short trunk, a rare occurrence in mammals and one that defines the clade Hominoidea. Furthermore, we address the recent claim that the early hominin thoracolumbar configuration is not distinct from that of modern humans and conclude that early hominins show evidence of "cranial shifting," which might explain the anomalous morphology of several early hominin fossils. Finally, we evaluate the competing hypotheses on numbers of vertebrae and argue that the current data support a hominin ancestor with an African ape-like short trunk and lower back. © 2016 Wiley Periodicals, Inc.

  5. Cement Leakage in Percutaneous Vertebral Augmentation for Osteoporotic Vertebral Compression Fractures: Analysis of Risk Factors.

    PubMed

    Xie, Weixing; Jin, Daxiang; Ma, Hui; Ding, Jinyong; Xu, Jixi; Zhang, Shuncong; Liang, De

    2016-05-01

    The risk factors for cement leakage were retrospectively reviewed in 192 patients who underwent percutaneous vertebral augmentation (PVA). To discuss the factors related to the cement leakage in PVA procedure for the treatment of osteoporotic vertebral compression fractures. PVA is widely applied for the treatment of osteoporotic vertebral fractures. Cement leakage is a major complication of this procedure. The risk factors for cement leakage were controversial. A retrospective review of 192 patients who underwent PVA was conducted. The following data were recorded: age, sex, bone density, number of fractured vertebrae before surgery, number of treated vertebrae, severity of the treated vertebrae, operative approach, volume of injected bone cement, preoperative vertebral compression ratio, preoperative local kyphosis angle, intraosseous clefts, preoperative vertebral cortical bone defect, and ratio and type of cement leakage. To study the correlation between each factor and cement leakage ratio, bivariate regression analysis was employed to perform univariate analysis, whereas multivariate linear regression analysis was employed to perform multivariate analysis. The study included 192 patients (282 treated vertebrae), and cement leakage occurred in 100 vertebrae (35.46%). The vertebrae with preoperative cortical bone defects generally exhibited higher cement leakage ratio, and the leakage is typically type C. Vertebrae with intact cortical bones before the procedure tend to experience type S leakage. Univariate analysis showed that patient age, bone density, number of fractured vertebrae before surgery, and vertebral cortical bone were associated with cement leakage ratio (P<0.05). Multivariate analysis showed that the main factors influencing bone cement leakage are bone density and vertebral cortical bone defect, with standardized partial regression coefficients of -0.085 and 0.144, respectively. High bone density and vertebral cortical bone defect are

  6. The non-uniformity of fossil preservation.

    PubMed

    Holland, Steven M

    2016-07-19

    The fossil record provides the primary source of data for calibrating the origin of clades. Although minimum ages of clades are given by the oldest preserved fossil, these underestimate the true age, which must be bracketed by probabilistic methods based on multiple fossil occurrences. Although most of these methods assume uniform preservation rates, this assumption is unsupported over geological timescales. On geologically long timescales (more than 10 Myr), the origin and cessation of sedimentary basins, and long-term variations in tectonic subsidence, eustatic sea level and sedimentation rate control the availability of depositional facies that preserve the environments in which species lived. The loss of doomed sediments, those with a low probability of preservation, imparts a secular trend to fossil preservation. As a result, the fossil record is spatially and temporally non-uniform. Models of fossil preservation should reflect this non-uniformity by using empirical estimates of fossil preservation that are spatially and temporally partitioned, or by using indirect proxies of fossil preservation. Geologically, realistic models of preservation will provide substantially more reliable estimates of the origination of clades.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. © 2016 The Author(s).

  7. The non-uniformity of fossil preservation

    PubMed Central

    2016-01-01

    The fossil record provides the primary source of data for calibrating the origin of clades. Although minimum ages of clades are given by the oldest preserved fossil, these underestimate the true age, which must be bracketed by probabilistic methods based on multiple fossil occurrences. Although most of these methods assume uniform preservation rates, this assumption is unsupported over geological timescales. On geologically long timescales (more than 10 Myr), the origin and cessation of sedimentary basins, and long-term variations in tectonic subsidence, eustatic sea level and sedimentation rate control the availability of depositional facies that preserve the environments in which species lived. The loss of doomed sediments, those with a low probability of preservation, imparts a secular trend to fossil preservation. As a result, the fossil record is spatially and temporally non-uniform. Models of fossil preservation should reflect this non-uniformity by using empirical estimates of fossil preservation that are spatially and temporally partitioned, or by using indirect proxies of fossil preservation. Geologically, realistic models of preservation will provide substantially more reliable estimates of the origination of clades. This article is part of the themed issue ‘Dating species divergences using rocks and clocks’. PMID:27325828

  8. The lamprey: a jawless vertebrate model system for examining origin of the neural crest and other vertebrate traits.

    PubMed

    Green, Stephen A; Bronner, Marianne E

    2014-01-01

    Lampreys are a group of jawless fishes that serve as an important point of comparison for studies of vertebrate evolution. Lampreys and hagfishes are agnathan fishes, the cyclostomes, which sit at a crucial phylogenetic position as the only living sister group of the jawed vertebrates. Comparisons between cyclostomes and jawed vertebrates can help identify shared derived (i.e. synapomorphic) traits that might have been inherited from ancestral early vertebrates, if unlikely to have arisen convergently by chance. One example of a uniquely vertebrate trait is the neural crest, an embryonic tissue that produces many cell types crucial to vertebrate features, such as the craniofacial skeleton, pigmentation of the skin, and much of the peripheral nervous system (Gans and Northcutt, 1983). Invertebrate chordates arguably lack unambiguous neural crest homologs, yet have cells with some similarities, making comparisons with lampreys and jawed vertebrates essential for inferring characteristics of development in early vertebrates, and how they may have evolved from nonvertebrate chordates. Here we review recent research on cyclostome neural crest development, including research on lamprey gene regulatory networks and differentiated neural crest fates. Copyright © 2014 International Society of Differentiation. Published by Elsevier B.V. All rights reserved.

  9. Fossilization of feathers

    NASA Astrophysics Data System (ADS)

    Davis, Paul G.; Briggs, Derek E. G.

    1995-09-01

    Scanning electron microscopy of feathers has revealed evidence that a bacterial glycocalyx (a network of exocellular polysaccharide fibers) played a role in promoting their fossilization in some cases. This mode of preservation has not been reported in other soft tissues. The majority of fossil feathers are preserved as carbonized traces. More rarely, bacteria on the surface are replicated by authigenic minerals (bacterial autolithification). The feathers of Archaeopteryx are preserved mainly by imprintation following early lithification of the substrate and decay of the feather. Lacustrine settings provide the most important taphonomic window for feather preservation. Preservation in terrestrial and normal-marine settings involves very different processes (in amber and in authigenically mineralized coprolites, respectively). Therefore, there may be a significant bias in the avian fossil record in favor of inland water habitats.

  10. Testing Skills in Vertebrates

    ERIC Educational Resources Information Center

    Funk, Mildred Sears; Tosto, Pat

    2007-01-01

    In this article, the authors present a project that gives students examples of basic skills that many vertebrate species develop as they grow and function in their ecosystem. These activities involve information gathering about surroundings, learning how to use objects, and tracking and searching skills. Different vertebrate species may acquire…

  11. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: A Systematic Review

    PubMed Central

    Pron, Gaylene; Holubowich, Corinne; Kaulback, Kellee

    2016-01-01

    Background Cancers that metastasize to the spine and primary cancers such as multiple myeloma can result in vertebral compression fractures or instability. Conservative strategies, including bed rest, bracing, and analgesic use, can be ineffective, resulting in continued pain and progressive functional disability limiting mobility and self-care. Surgery is not usually an option for cancer patients in advanced disease states because of their poor medical health or functional status and limited life expectancy. The objectives of this review were to evaluate the effectiveness and safety of percutaneous image-guided vertebral augmentation techniques, vertebroplasty and kyphoplasty, for palliation of cancer-related vertebral compression fractures. Methods We performed a systematic literature search for studies on vertebral augmentation of cancer-related vertebral compression fractures published from January 1, 2000, to October 2014; abstracts were screened by a single reviewer. For those studies meeting the eligibility criteria, full-text articles were obtained. Owing to the heterogeneity of the clinical reports, we performed a narrative synthesis based on an analytical framework constructed for the type of cancer-related vertebral fractures and the diversity of the vertebral augmentation interventions. Results The evidence review identified 3,391 citations, of which 111 clinical reports (4,235 patients) evaluated the effectiveness of vertebroplasty (78 reports, 2,545 patients) or kyphoplasty (33 reports, 1,690 patients) for patients with mixed primary spinal metastatic cancers, multiple myeloma, or hemangiomas. Overall the mean pain intensity scores often reported within 48 hours of vertebral augmentation (kyphoplasty or vertebroplasty), were significantly reduced. Analgesic use, although variably reported, usually involved parallel decreases, particularly in opioids, and mean pain-related disability scores were also significantly improved. In a randomized controlled

  12. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: A Systematic Review.

    PubMed

    2016-01-01

    Cancers that metastasize to the spine and primary cancers such as multiple myeloma can result in vertebral compression fractures or instability. Conservative strategies, including bed rest, bracing, and analgesic use, can be ineffective, resulting in continued pain and progressive functional disability limiting mobility and self-care. Surgery is not usually an option for cancer patients in advanced disease states because of their poor medical health or functional status and limited life expectancy. The objectives of this review were to evaluate the effectiveness and safety of percutaneous image-guided vertebral augmentation techniques, vertebroplasty and kyphoplasty, for palliation of cancer-related vertebral compression fractures. We performed a systematic literature search for studies on vertebral augmentation of cancer-related vertebral compression fractures published from January 1, 2000, to October 2014; abstracts were screened by a single reviewer. For those studies meeting the eligibility criteria, full-text articles were obtained. Owing to the heterogeneity of the clinical reports, we performed a narrative synthesis based on an analytical framework constructed for the type of cancer-related vertebral fractures and the diversity of the vertebral augmentation interventions. The evidence review identified 3,391 citations, of which 111 clinical reports (4,235 patients) evaluated the effectiveness of vertebroplasty (78 reports, 2,545 patients) or kyphoplasty (33 reports, 1,690 patients) for patients with mixed primary spinal metastatic cancers, multiple myeloma, or hemangiomas. Overall the mean pain intensity scores often reported within 48 hours of vertebral augmentation (kyphoplasty or vertebroplasty), were significantly reduced. Analgesic use, although variably reported, usually involved parallel decreases, particularly in opioids, and mean pain-related disability scores were also significantly improved. In a randomized controlled trial comparing kyphoplasty

  13. Histologic changes produced by 2,3,7,8-tetrachlorodibenzo-p-dioxin in the skin of mice carrying mutations that affect the integument.

    PubMed

    Poland, A; Knutson, J C; Glover, E

    1984-12-01

    2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) produces epidermal hyperplasia and hyperkeratosis, squamous metaplasia of the sebaceous gland, and keratinized cyst formation in 8 strains of mice with the recessive mutation, hairless (hr/hr). The extent of these histologic changes is dependent on the genetic background. No cutaneous lesions are produced in haired (hr/+) mice. In examination of mice with 7 other mutations affecting the integument, TCDD produced similar histologic skin changes in cryptothrix, nude, plucked, and atrichosis; a marginal squamous metaplasia of sebaceous glands in Repeated epilation, and had no effect in fur deficient and Naked mutants. These genetically determined epidermal responses are discussed in light of the mechanism of action of TCDD.

  14. Vertebral body innervation: Implications for pain.

    PubMed

    Buonocore, Michelangelo; Aloisi, Anna Maria; Barbieri, Massimo; Gatti, Anna Maria; Bonezzi, Cesare

    2010-03-01

    Vertebral fractures often cause intractable pain. To define the involvement of vertebral body innervation in pain, we collected specimens from male and female patients during percutaneous kyphoplasty, a procedure used for reconstruction of the vertebral body. Specimens were taken from 31 patients (9 men and 22 women) suffering high-intensity pain before surgery. In total, 1,876 histological preparations were obtained and analysed. Immunohistochemical techniques were used to locate the nerves in the specimens. The nerve fibres were labelled by indirect immunofluorescence with the primary antibody directed against Protein Gene Product 9.5 (PGP 9.5), a pan-neuronal marker; another primary antibody directed against type IV collagen (Col IV) was used to identify vessels and to determine their relationship with vertebral nerve fibres. The mean percentage of samples in which it was possible to identify nerve fibres was 35% in men and 29% in women. The percentages varied depending on the spinal level considered and the sex of the subject, nerve fibres being mostly present around vessels (95%). In conclusion, there is scarce innervation of the vertebral bodies, with a clear prevalence of fibres located around vessels. It seems unlikely that this pattern of vertebral body innervation is involved in vertebral pain or in pain relief following kyphoplasty.

  15. The original colours of fossil beetles

    PubMed Central

    McNamara, Maria E.; Briggs, Derek E. G.; Orr, Patrick J.; Noh, Heeso; Cao, Hui

    2012-01-01

    Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas. Metallic colours in these specimens are generated by an epicuticular multi-layer reflector; the fidelity of its preservation correlates with that of other key cuticular ultrastructures. Where these other ultrastructures are well preserved in non-metallic fossil specimens, we can infer that the original cuticle lacked a multi-layer reflector; its absence in the fossil is not a preservational artefact. Reconstructions of the original colours of the fossils based on the structure of the multi-layer reflector show that the preserved colours are offset systematically to longer wavelengths; this probably reflects alteration of the refractive index of the epicuticle during fossilization. These findings will allow the former presence, and original hue, of metallic structural colours to be identified in diverse fossil insects, thus providing critical evidence of the evolution of structural colour in this group. PMID:21957131

  16. The original colours of fossil beetles.

    PubMed

    McNamara, Maria E; Briggs, Derek E G; Orr, Patrick J; Noh, Heeso; Cao, Hui

    2012-03-22

    Structural colours, the most intense, reflective and pure colours in nature, are generated when light is scattered by complex nanostructures. Metallic structural colours are widespread among modern insects and can be preserved in their fossil counterparts, but it is unclear whether the colours have been altered during fossilization, and whether the absence of colours is always real. To resolve these issues, we investigated fossil beetles from five Cenozoic biotas. Metallic colours in these specimens are generated by an epicuticular multi-layer reflector; the fidelity of its preservation correlates with that of other key cuticular ultrastructures. Where these other ultrastructures are well preserved in non-metallic fossil specimens, we can infer that the original cuticle lacked a multi-layer reflector; its absence in the fossil is not a preservational artefact. Reconstructions of the original colours of the fossils based on the structure of the multi-layer reflector show that the preserved colours are offset systematically to longer wavelengths; this probably reflects alteration of the refractive index of the epicuticle during fossilization. These findings will allow the former presence, and original hue, of metallic structural colours to be identified in diverse fossil insects, thus providing critical evidence of the evolution of structural colour in this group.

  17. Earth's early fossil record: Why not look for similar fossils on Mars?

    NASA Technical Reports Server (NTRS)

    Awramik, Stanley M.

    1989-01-01

    The oldest evidence of life on Earth is discussed with attention being given to the structure and formation of stromatolites and microfossils. Fossilization of microbes in calcium carbonate or chert media is discussed. In searching for fossil remains on Mars, some lessons learned from the study of Earth's earliest fossil record can be applied. Certain sedimentary rock types and sedimentary rock configurations should be targeted for investigation and returned by the Martian rover and ultimately by human explorers. Domical, columnar to wavy laminated stratiform sedimentary rocks that resemble stromatolites should be actively sought. Limestone, other carbonates, and chert are the favored lithology. Being macroscopic, stromatolites might be recognized by an intelligent unmanned rover. In addition, black, waxy chert with conchoidal fracture should be sought. Chert is by far the preferred lithology for the preservation of microbes and chemical fossils. Even under optimal geological conditions (little or no metamorphism or tectonic alteration, excellent outcrops, and good black chert) and using experienced field biogeologists, the chances of finding well preserved microbial remains in chert are very low.

  18. A minimally invasive vertebral hemangioma.

    PubMed

    Van den Broeck, S; Mailleux, P; Joris, J P

    2010-01-01

    We describe a very unusual vertebral hemangioma presenting with a mixture of aggressive-like pattern (epidural extension, T1 hyposignal) and quiescent, inactive lesion (fatty infiltration), in association with a spiculated calcified epidural component.This paper emphasizes that CT and/or MR findings are accurate enough to make formal assessment of vertebral hemangioma, preventing patient's anguish and moreover unnecessary treatment. Furthermore this attractive case proposes a poorly known characteristic of vertebral hemangioma which is usually encountered and described only in skull hemangiomas.

  19. Globally threatened vertebrates on islands with invasive species

    PubMed Central

    Spatz, Dena R.; Zilliacus, Kelly M.; Holmes, Nick D.; Butchart, Stuart H. M.; Genovesi, Piero; Ceballos, Gerardo; Tershy, Bernie R.; Croll, Donald A.

    2017-01-01

    Global biodiversity loss is disproportionately rapid on islands, where invasive species are a major driver of extinctions. To inform conservation planning aimed at preventing extinctions, we identify the distribution and biogeographic patterns of highly threatened terrestrial vertebrates (classified by the International Union for Conservation of Nature) and invasive vertebrates on ~465,000 islands worldwide by conducting a comprehensive literature review and interviews with more than 500 experts. We found that 1189 highly threatened vertebrate species (319 amphibians, 282 reptiles, 296 birds, and 292 mammals) breed on 1288 islands. These taxa represent only 5% of Earth’s terrestrial vertebrates and 41% of all highly threatened terrestrial vertebrates, which occur in <1% of islands worldwide. Information about invasive vertebrates was available for 1030 islands (80% of islands with highly threatened vertebrates). Invasive vertebrates were absent from 24% of these islands, where biosecurity to prevent invasions is a critical management tool. On the 76% of islands where invasive vertebrates were present, management could benefit 39% of Earth’s highly threatened vertebrates. Invasive mammals occurred in 97% of these islands, with Rattus sp. as the most common invasive vertebrate (78%; 609 islands). Our results provide an important baseline for identifying islands for invasive species eradication and other island conservation actions that reduce biodiversity loss. PMID:29075662

  20. Globally threatened vertebrates on islands with invasive species.

    PubMed

    Spatz, Dena R; Zilliacus, Kelly M; Holmes, Nick D; Butchart, Stuart H M; Genovesi, Piero; Ceballos, Gerardo; Tershy, Bernie R; Croll, Donald A

    2017-10-01

    Global biodiversity loss is disproportionately rapid on islands, where invasive species are a major driver of extinctions. To inform conservation planning aimed at preventing extinctions, we identify the distribution and biogeographic patterns of highly threatened terrestrial vertebrates (classified by the International Union for Conservation of Nature) and invasive vertebrates on ~465,000 islands worldwide by conducting a comprehensive literature review and interviews with more than 500 experts. We found that 1189 highly threatened vertebrate species (319 amphibians, 282 reptiles, 296 birds, and 292 mammals) breed on 1288 islands. These taxa represent only 5% of Earth's terrestrial vertebrates and 41% of all highly threatened terrestrial vertebrates, which occur in <1% of islands worldwide. Information about invasive vertebrates was available for 1030 islands (80% of islands with highly threatened vertebrates). Invasive vertebrates were absent from 24% of these islands, where biosecurity to prevent invasions is a critical management tool. On the 76% of islands where invasive vertebrates were present, management could benefit 39% of Earth's highly threatened vertebrates. Invasive mammals occurred in 97% of these islands, with Rattus sp. as the most common invasive vertebrate (78%; 609 islands). Our results provide an important baseline for identifying islands for invasive species eradication and other island conservation actions that reduce biodiversity loss.

  1. Hormonally active phytochemicals and vertebrate evolution.

    PubMed

    Lambert, Max R; Edwards, Thea M

    2017-06-01

    Living plants produce a diversity of chemicals that share structural and functional properties with vertebrate hormones. Wildlife species interact with these chemicals either through consumption of plant materials or aquatic exposure. Accumulating evidence shows that exposure to these hormonally active phytochemicals (HAPs) often has consequences for behavior, physiology, and fecundity. These fitness effects suggest there is potential for an evolutionary response by vertebrates to HAPs. Here, we explore the toxicological HAP-vertebrate relationship in an evolutionary framework and discuss the potential for vertebrates to adapt to or even co-opt the effects of plant-derived chemicals that influence fitness. We lay out several hypotheses about HAPs and provide a path forward to test whether plant-derived chemicals influence vertebrate reproduction and evolution. Studies of phytochemicals with direct impacts on vertebrate reproduction provide an obvious and compelling system for studying evolutionary toxicology. Furthermore, an understanding of whether animal populations evolve in response to HAPs could provide insightful context for the study of rapid evolution and how animals cope with chemical agents in the environment.

  2. Natural Product Molecular Fossils.

    PubMed

    Falk, Heinz; Wolkenstein, Klaus

    The natural products synthesized by organisms that were living a long time ago gave rise to their molecular fossils. These can consist of either the original unchanged compounds or they may undergo peripheral transformations in which their skeletons remain intact. In cases when molecular fossils can be traced to their organismic source, they are termed "geological biomarkers".This contribution describes apolar and polar molecular fossils and, in particular biomarkers, along the lines usually followed in organic chemistry textbooks, and points to their bioprecursors when available. Thus, the apolar compounds are divided in linear and branched alkanes followed by alicyclic compounds and aromatic and heterocyclic molecules, and, in particular, the geoporphyrins. The polar molecular fossils contain as functional groups or constituent units ethers, alcohols, phenols, carbonyl groups, flavonoids, quinones, and acids, or are polymers like kerogen, amber, melanin, proteins, or nucleic acids. The final sections discuss the methodology used and the fundamental processes encountered by the biomolecules described, including diagenesis, catagenesis, and metagenesis.

  3. The legacy of fossil fuels.

    PubMed

    Armaroli, Nicola; Balzani, Vincenzo

    2011-03-01

    Currently, over 80% of the energy used by mankind comes from fossil fuels. Harnessing coal, oil and gas, the energy resources contained in the store of our spaceship, Earth, has prompted a dramatic expansion in energy use and a substantial improvement in the quality of life of billions of individuals in some regions of the world. Powering our civilization with fossil fuels has been very convenient, but now we know that it entails severe consequences. We treat fossil fuels as a resource that anyone anywhere can extract and use in any fashion, and Earth's atmosphere, soil and oceans as a dump for their waste products, including more than 30 Gt/y of carbon dioxide. At present, environmental legacy rather than consistence of exploitable reserves, is the most dramatic problem posed by the relentless increase of fossil fuel global demand. Harmful effects on the environment and human health, usually not incorporated into the pricing of fossil fuels, include immediate and short-term impacts related to their discovery, extraction, transportation, distribution, and burning as well as climate change that are spread over time to future generations or over space to the entire planet. In this essay, several aspects of the fossil fuel legacy are discussed, such as alteration of the carbon cycle, carbon dioxide rise and its measurement, greenhouse effect, anthropogenic climate change, air pollution and human health, geoengineering proposals, land and water degradation, economic problems, indirect effects on the society, and the urgent need of regulatory efforts and related actions to promote a gradual transition out of the fossil fuel era. While manufacturing sustainable solar fuels appears to be a longer-time perspective, alternatives energy sources already exist that have the potential to replace fossil fuels as feedstocks for electricity production. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Evolution of the vertebrate claudin gene family: insights from a basal vertebrate, the sea lamprey.

    PubMed

    Mukendi, Christian; Dean, Nicholas; Lala, Rushil; Smith, Jeramiah; Bronner, Marianne E; Nikitina, Natalya V

    2016-01-01

    Claudins are major constituents of tight junctions, contributing both to their intercellular sealing and selective permeability properties. While claudins and claudin-like molecules are present in some invertebrates, the association of claudins with tight junctions has been conclusively documented only in vertebrates. Here we report the sequencing, phylogenetic analysis and comprehensive spatiotemporal expression analysis of the entire claudin gene family in the basal extant vertebrate, the sea lamprey. Our results demonstrate that clear orthologues to about half of all mammalian claudins are present in the lamprey, suggesting that at least one round of whole genome duplication contributed to the diversification of this gene family. Expression analysis revealed that claudins are expressed in discrete and specific domains, many of which represent vertebrate-specific innovations, such as in cranial ectodermal placodes and the neural crest; whereas others represent structures characteristic of chordates, e.g. pronephros, notochord, somites, endostyle and pharyngeal arches. By comparing the embryonic expression of claudins in the lamprey to that of other vertebrates, we found that ancestral expression patterns were often preserved in higher vertebrates. Morpholino mediated loss of Cldn3b demonstrated a functional role for this protein in placode and pharyngeal arch morphogenesis. Taken together, our data provide novel insights into the origins and evolution of the claudin gene family and the significance of claudin proteins in the evolution of vertebrates.

  5. The Neandertal vertebral column 2: The lumbar spine.

    PubMed

    Gómez-Olivencia, Asier; Arlegi, Mikel; Barash, Alon; Stock, Jay T; Been, Ella

    2017-05-01

    Here we provide the most extensive metric and morphological analysis performed to date on the Neandertal lumbar spine. Neandertal lumbar vertebrae show differences from modern humans in both the vertebral body and in the neural arch, although not all Neandertal lumbar vertebrae differ from modern humans in the same way. Differences in the vertebral foramen are restricted to the lowermost lumbar vertebrae (L4 and L5), differences in the orientation of the upper articular facets appear in the uppermost lumbar vertebrae (probably in L1 and L2-L3), and differences in the horizontal angle of the transverse process appear in L2-L4. Neandertals, when compared to modern humans, show a smaller degree of lumbar lordosis. Based on a still limited fossil sample, early hominins (australopiths and Homo erectus) had a lumbar lordosis that was similar to but below the mean of modern humans. Here, we hypothesize that from this ancestral degree of lumbar lordosis, the Neandertal lineage decreased their lumbar lordosis and Homo sapiens slightly increased theirs. From a postural point of view, the lower degree of lordosis is related to a more vertical position of the sacrum, which is also positioned more ventrally with respect to the dorsal end of the pelvis. This results in a spino-pelvic alignment that, though different from modern humans, maintained an economic postural equilibrium. Some features, such as a lower degree of lumbar lordosis, were already present in the middle Pleistocene populations ancestral to Neandertals. However, these middle Pleistocene populations do not show the full suite of Neandertal lumbar morphologies, which probably means that the characteristic features of the Neandertal lumbar spine did not arise all at once. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Stenting for symptomatic vertebral artery stenosis: The Vertebral Artery Ischaemia Stenting Trial.

    PubMed

    Markus, Hugh S; Larsson, Susanna C; Kuker, Wilhelm; Schulz, Ursula G; Ford, Ian; Rothwell, Peter M; Clifton, Andrew

    2017-09-19

    To compare in the Vertebral Artery Ischaemia Stenting Trial (VIST) the risks and benefits of vertebral angioplasty and stenting with best medical treatment (BMT) alone for symptomatic vertebral artery stenosis. VIST was a prospective, randomized, open-blinded endpoint clinical trial performed in 14 hospitals in the United Kingdom. Participants with symptomatic vertebral stenosis ≥50% were randomly assigned (1:1) to vertebral angioplasty/stenting plus BMT or to BMT alone with randomization stratified by site of stenosis (extracranial vs intracranial). Because of slow recruitment and cessation of funding, recruitment was stopped after 182 participants. Follow-up was a minimum of ≥1 year for each participant. Three patients did not contribute any follow-up data and were excluded, leaving 91 patients in the stent group and 88 in the medical group. Mean follow-up was 3.5 (interquartile range 2.1-4.7) years. Of 61 patients who were stented, stenosis was extracranial in 48 (78.7%) and intracranial in 13 (21.3%). No periprocedural complications occurred with extracranial stenting; 2 strokes occurred during intracranial stenting. The primary endpoint of fatal or nonfatal stroke occurred in 5 patients in the stent group vs 12 in the medical group (hazard ratio 0.40, 95% confidence interval 0.14-1.13, p = 0.08), with an absolute risk reduction of 25 strokes per 1,000 person-years. The hazard ratio for stroke or TIA was 0.50 ( p = 0.05). Stenting in extracranial stenosis appears safe with low complication rates. Large phase 3 trials are required to determine whether stenting reduces stroke risk. ISRCTN95212240. This study provides Class I evidence that for patients with symptomatic vertebral stenosis, angioplasty with stenting does not reduce the risk of stroke. However, the study lacked the precision to exclude a benefit from stenting. Copyright © 2017 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.

  7. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: An Economic Analysis.

    PubMed

    2016-01-01

    Untreated vertebral compression fractures can have serious clinical consequences and impose a considerable impact on patients' quality of life and on caregivers. Since non-surgical management of these fractures has limited effectiveness, vertebral augmentation procedures are gaining acceptance in clinical practice for pain control and fracture stabilization. The objective of this analysis was to determine the cost-effectiveness and budgetary impact of kyphoplasty or vertebroplasty compared with non-surgical management for the treatment of vertebral compression fractures in patients with cancer. We performed a systematic review of health economic studies to identify relevant studies that compare the cost-effectiveness of kyphoplasty or vertebroplasty with non-surgical management for the treatment of vertebral compression fractures in adults with cancer. We also performed a primary cost-effectiveness analysis to assess the clinical benefits and costs of kyphoplasty or vertebroplasty compared with non-surgical management in the same population. We developed a Markov model to forecast benefits and harms of treatments, and corresponding quality-adjusted life years and costs. Clinical data and utility data were derived from published sources, while costing data were derived using Ontario administrative sources. We performed sensitivity analyses to examine the robustness of the results. In addition, a 1-year budget impact analysis was performed using data from Ontario administrative sources. Two scenarios were explored: (a) an increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario, maintaining the current proportion of kyphoplasty versus vertebroplasty; and (b) no increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario but an increase in the proportion of kyphoplasties versus vertebroplasties. The base case considered each of kyphoplasty and vertebroplasty

  8. Vertebral Augmentation Involving Vertebroplasty or Kyphoplasty for Cancer-Related Vertebral Compression Fractures: An Economic Analysis

    PubMed Central

    2016-01-01

    Background Untreated vertebral compression fractures can have serious clinical consequences and impose a considerable impact on patients' quality of life and on caregivers. Since non-surgical management of these fractures has limited effectiveness, vertebral augmentation procedures are gaining acceptance in clinical practice for pain control and fracture stabilization. The objective of this analysis was to determine the cost-effectiveness and budgetary impact of kyphoplasty or vertebroplasty compared with non-surgical management for the treatment of vertebral compression fractures in patients with cancer. Methods We performed a systematic review of health economic studies to identify relevant studies that compare the cost-effectiveness of kyphoplasty or vertebroplasty with non-surgical management for the treatment of vertebral compression fractures in adults with cancer. We also performed a primary cost-effectiveness analysis to assess the clinical benefits and costs of kyphoplasty or vertebroplasty compared with non-surgical management in the same population. We developed a Markov model to forecast benefits and harms of treatments, and corresponding quality-adjusted life years and costs. Clinical data and utility data were derived from published sources, while costing data were derived using Ontario administrative sources. We performed sensitivity analyses to examine the robustness of the results. In addition, a 1-year budget impact analysis was performed using data from Ontario administrative sources. Two scenarios were explored: (a) an increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario, maintaining the current proportion of kyphoplasty versus vertebroplasty; and (b) no increase in the total number of vertebral augmentation procedures performed among patients with cancer in Ontario but an increase in the proportion of kyphoplasties versus vertebroplasties. Results The base case considered each of

  9. Looking at Fossils in New Ways

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    2005-01-01

    Existing fossils could be studied from a different prospective with the use of new methods of analysis for gathering more information. The new techniques of studying fossils binds the new and the old techniques and information and provides another way to look at fossils.

  10. Prospective Single-Site Experience with Radiofrequency-Targeted Vertebral Augmentation for Osteoporotic Vertebral Compression Fracture

    PubMed Central

    Moser, Franklin G.; Maya, Marcel M.; Blaszkiewicz, Laura; Scicli, Andrea; Miller, Larry E.; Block, Jon E.

    2013-01-01

    Vertebral augmentation procedures are widely used to treat osteoporotic vertebral compression fractures (VCFs). We report our initial experience with radiofrequency-targeted vertebral augmentation (RF-TVA) in 20 patients aged 50 to 90 years with single-level, symptomatic osteoporotic VCF between T10 and L5, back pain severity > 4 on a 0 to 10 scale, Oswestry Disability Index ≥ 21%, 20% to 90% vertebral height loss compared to adjacent vertebral body, and fracture age < 6 months. After treatment, patients were followed through hospital discharge and returned for visits after 1 week, 1 month, and 3 months. Back pain severity improved 66% (P < 0.001), from 7.9 (95% CI: 7.1 to 8.6) at pretreatment to 2.7 (95% CI: 1.5 to 4.0) at 3 months. Back function improved 46% (P < 0.001), from 74 (95% CI: 69% to 79%) at pretreatment to 40 (95% CI: 33% to 47%) at 3 months. The percentage of patients regularly consuming pain medication was 70% at pretreatment and only 21% at 3 months. No adverse events related to the device or procedure were reported. RF-TVA reduces back pain severity, improves back function, and reduces pain medication requirements with no observed complications in patients with osteoporotic VCF. PMID:24228187

  11. Scaling of Convex Hull Volume to Body Mass in Modern Primates, Non-Primate Mammals and Birds

    PubMed Central

    Brassey, Charlotte A.; Sellers, William I.

    2014-01-01

    The volumetric method of ‘convex hulling’ has recently been put forward as a mass prediction technique for fossil vertebrates. Convex hulling involves the calculation of minimum convex hull volumes (vol CH) from the complete mounted skeletons of modern museum specimens, which are subsequently regressed against body mass (M b) to derive predictive equations for extinct species. The convex hulling technique has recently been applied to estimate body mass in giant sauropods and fossil ratites, however the biomechanical signal contained within vol CH has remained unclear. Specifically, when vol CH scaling departs from isometry in a group of vertebrates, how might this be interpreted? Here we derive predictive equations for primates, non-primate mammals and birds and compare the scaling behaviour of M b to vol CH between groups. We find predictive equations to be characterised by extremely high correlation coefficients (r 2 = 0.97–0.99) and low mean percentage prediction error (11–20%). Results suggest non-primate mammals scale body mass to vol CH isometrically (b = 0.92, 95%CI = 0.85–1.00, p = 0.08). Birds scale body mass to vol CH with negative allometry (b = 0.81, 95%CI = 0.70–0.91, p = 0.011) and apparent density (vol CH/M b) therefore decreases with mass (r 2 = 0.36, p<0.05). In contrast, primates scale body mass to vol CH with positive allometry (b = 1.07, 95%CI = 1.01–1.12, p = 0.05) and apparent density therefore increases with size (r 2 = 0.46, p = 0.025). We interpret such departures from isometry in the context of the ‘missing mass’ of soft tissues that are excluded from the convex hulling process. We conclude that the convex hulling technique can be justifiably applied to the fossil record when a large proportion of the skeleton is preserved. However we emphasise the need for future studies to quantify interspecific variation in the distribution of soft tissues such as muscle, integument

  12. The ‘Goldilocks’ effect: preservation bias in vertebrate track assemblages

    PubMed Central

    Falkingham, P. L.; Bates, K. T.; Margetts, L.; Manning, P. L.

    2011-01-01

    Finite-element analysis was used to investigate the extent of bias in the ichnological fossil record attributable to body mass. Virtual tracks were simulated for four dinosaur taxa of different sizes (Struthiomimus, Tyrannosaurus, Brachiosaurus and Edmontosaurus), in a range of substrate conditions. Outlines of autopodia were generated based upon osteology and published soft-tissue reconstructions. Loads were applied vertically to the feet equivalent to the weight of the animal, and distributed accordingly to fore- and hindlimbs where relevant. Ideal, semi-infinite elastic–plastic substrates displayed a ‘Goldilocks’ quality where only a narrow range of loads could produce tracks, given that small animals failed to indent the substrate, and larger animals would be unable to traverse the area without becoming mired. If a firm subsurface layer is assumed, a more complete assemblage is possible, though there is a strong bias towards larger, heavier animals. The depths of fossil tracks within an assemblage may indicate thicknesses of mechanically distinct substrate layers at the time of track formation, even when the lithified strata appear compositionally homogeneous. This work increases the effectiveness of using vertebrate tracks as palaeoenvironmental indicators in terms of inferring substrate conditions at the time of track formation. Additionally, simulated undertracks are examined, and it is shown that complex deformation beneath the foot may not be indicative of limb kinematics as has been previously interpreted, but instead ridges and undulations at the base of a track may be a function of sediment displacement vectors and pedal morphology. PMID:21233145

  13. Soft-Bodied Fossils Are Not Simply Rotten Carcasses - Toward a Holistic Understanding of Exceptional Fossil Preservation: Exceptional Fossil Preservation Is Complex and Involves the Interplay of Numerous Biological and Geological Processes.

    PubMed

    Parry, Luke A; Smithwick, Fiann; Nordén, Klara K; Saitta, Evan T; Lozano-Fernandez, Jesus; Tanner, Alastair R; Caron, Jean-Bernard; Edgecombe, Gregory D; Briggs, Derek E G; Vinther, Jakob

    2018-01-01

    Exceptionally preserved fossils are the product of complex interplays of biological and geological processes including burial, autolysis and microbial decay, authigenic mineralization, diagenesis, metamorphism, and finally weathering and exhumation. Determining which tissues are preserved and how biases affect their preservation pathways is important for interpreting fossils in phylogenetic, ecological, and evolutionary frameworks. Although laboratory decay experiments reveal important aspects of fossilization, applying the results directly to the interpretation of exceptionally preserved fossils may overlook the impact of other key processes that remove or preserve morphological information. Investigations of fossils preserving non-biomineralized tissues suggest that certain structures that are decay resistant (e.g., the notochord) are rarely preserved (even where carbonaceous components survive), and decay-prone structures (e.g., nervous systems) can fossilize, albeit rarely. As we review here, decay resistance is an imperfect indicator of fossilization potential, and a suite of biological and geological processes account for the features preserved in exceptional fossils. © 2017 The Authors. BioEssays Published by WILEY Periodicals, Inc.

  14. [Correlation analysis of cement leakage with volume ratio of intravertebral bone cement to vertebral body and vertebral body wall incompetence in percutaneous vertebroplasty for osteoporotic vertebral compression fractures].

    PubMed

    Liang, De; Ye, Linqiang; Jiang, Xiaobing; Huang, Weiquan; Yao, Zhensong; Tang, Yongchao; Zhang, Shuncong; Jin, Daxiang

    2014-11-01

    To investigate the risk factors of cement leakage in percutaneous vertebroplasty (PVP) for osteoporotic vertebral compression fracture (OVCF). Between March 2011 and March 2012, 98 patients with single level OVCF were treated by PVP, and the clinical data were analyzed retrospectively. There were 13 males and 85 females, with a mean age of 77.2 years (range, 54-95 years). The mean disease duration was 43 days (range, 15-120 days), and the mean T score of bone mineral density (BMD) was -3.8 (range, -6.7- -2.5). Bilateral transpedicular approach was used in all the patients. The patients were divided into cement leakage group and no cement leakage group by occurrence of cement leakage based on postoperative CT. Single factor analysis was used to analyze the difference between 2 groups in T score of BMD, operative level, preoperative anterior compression degree of operative vertebrae, preoperative middle compression degree of operative vertebrae, preoperative sagittal Cobb angle of operative vertebrae, preoperative vertebral body wall incompetence, cement volume, and volume ratio of intravertebral bone cement to vertebral body. All relevant factors were introduced to logistic regression analysis to analyze the risk factors of cement leakage. All procedures were performed successfully. The mean operation time was 40 minutes (range, 30-50 minutes), and the mean volume ratio of intravertebral bone cement to vertebral body was 24.88% (range, 7.84%-38.99%). Back pain was alleviated significantly in all the patients postoperatively. All patients were followed up with a mean time of 8 months (range, 6-12 months). Cement leakage occurred in 49 patients. Single factor analysis showed that there were significant differences in the volume ratio of intravertebral bone cement to vertebral body and preoperative vertebral body wall incompetence between 2 groups (P < 0.05), while no significant difference in T score of BMD, operative level, preoperative anterior compression degree of

  15. A new arylalkylamine N-acetyltransferase in silkworm (Bombyx mori) affects integument pigmentation.

    PubMed

    Long, Yaohang; Li, Jiaorong; Zhao, Tianfu; Li, Guannan; Zhu, Yong

    2015-04-01

    Dopamine is a precursor for melanin synthesis. Arylalkylamine N-acetyltransferase (AANAT) is involved in the melatonin formation in insects because it could catalyze the transformation from dopamine to dopamine-N-acetyldopamine. In this study, we identified a new AANAT gene in the silkworm (Bombyx mori) and assessed its role in the silkworm. The cDNA of this gene encodes 233 amino acids that shares 57 % amino acid identity with the Bm-iAANAT protein. We thus refer to this gene as Bm-iAANAT2. To investigate the role of Bm-iAANAT2, we constructed a transgenic interference system using a 3xp3 promoter to suppress the expression of Bm-iAANAT2 in the silkworm. We observed that melanin deposition occurs in the head and integument in transgenic lines. To verify the melanism pattern, dopamine content and the enzyme activity of AANAT were determined by high-performance liquid chromatography (HPLC). We found that an increase in dopamine levels affects melanism patterns on the heads of transgenic B. mori. A reduction in the enzyme activity of AANAT leads to changes in dopamine levels. We analyzed the expression of the Bm-iAANAT2 genes by qPCR and found that the expression of Bm-iAANAT2 gene is significantly lower in transgenic lines. Our results lead us to conclude that Bm-iAANAT2 is a new arylalkylamine N-acetyltransferase gene in the silkworm and is involved in the metabolism of the dopamine to avoid the generation of melanin.

  16. Determining the Cause of the Late Triassic Adamanian-Revueltian Vertebrate Faunal Turnover in Western North America: Climate Change, Bolide Impact, or no Extinction at All?

    NASA Astrophysics Data System (ADS)

    Martz, J. W.

    2016-12-01

    The Triassic was one of the most critical intervals in terrestrial vertebrate history, during which both adaptive radiation and extinction played roles in shaping the future of Mesozoic ecosystems. In recent years, it has become increasingly clear that the transition from the globally diverse ecosystems of the Triassic to the more uniformly dinosaur-dominated ecosystems of the later Mesozoic was complex, involving a variety of environmental changes on both local and global levels. The Adamanian-Revueltian faunal turnover is a putative faunal turnover event identified in the Upper Triassic Chinle Formation of the western United States which involved a decline in diversity among crocodylian-line archosaurs and the extinction of several taxa coincident with the appearance or increase in abundance of other taxa. Careful lithostratigraphic and biostratigraphic work in Petrified Forest National Park in northern Arizona has identified the stratigraphic horizon at which this turnover is likely to have occurred, and sedimentology and improved radioisotopic calibration indicates that the turnover was early Alaunian (middle Norian) and at least roughly coincident with both the Manicouagan bolide impact and an abrupt shift towards a more arid climate in the western United States. However, testing the reality of the turnover and its coincidence with particular environmental changes requires the application of statistical methods highly dependent on the sample sizes and stratigraphic distribution of vertebrate fossils. The problem is exacerbated by the fact that for some vertebrates, the turnover is characterized by changes in abundance rather than range termination, which is more difficult to evaluate statistically, and that some fossils can only be assigned to higher taxa. Moreover, radioisotopic calibration of the putative turnover horizon is coarse, suggesting that correlating faunal turnovers to distant events is more difficult than correlating them to local environmental

  17. The posterior skeletal thorax: rib-vertebral angle and axial vertebral rotation asymmetries in adolescent idiopathic scoliosis.

    PubMed

    Burwell, R G; Aujla, R K; Freeman, B J C; Dangerfield, P H; Cole, A A; Kirby, A S; Polak, F J; Pratt, R K; Moulton, A

    2008-01-01

    The deformity of the ribcage in thoracic adolescent idiopathic scoliosis (AIS) is viewed by most as being secondary to the spinal deformity, though a few consider it primary or involved in curve aggravation. Those who consider it primary ascribe pathogenetic significance to rib-vertebra angle asymmetry. In thoracic AIS, supra-apical rib-vertebra angle differences (RVADs) are reported to be associated with the severity of the Cobb angle. In this paper we attempt to evaluate rib and spinal pathomechanisms in thoracic and thnoracolumbar AIS using spinal radiographs and real-time ultrasound. On the radiographs by costo-vertebral angle asymmetries (rib-vertebral angle differences RVADs, and rib-spinal angle differences RSADs), apical vertebral rotation (AV) and apical vertebral translation (AVT) were measured; and by ultrasound, spine-rib rotation differences (SRRDs) were estimated. RVADs are largest at two and three vertebral levels above the apex where they correlate significantly and positively with Cobb angle and AVT but not AVR. In right thoracic AIS, the cause(s) of the RVA asymmetries is unknown: it may result from trunk muscle imbalance, or from ribs adjusting passively within the constraint of the fourth column of the spine to increasing spinal curvature from whatever cause. Several possible mechanisms may drive axial vertebral rotation including, biplanar spinal asymmetry, relative anterior spinal overgrowth, dorsal shear forces in the presence of normal vertebral axial rotation, asymmetry of rib linear growth, trunk muscle imbalance causing rib-vertebra angle asymmetry weakening the spinal rotation-defending system of bipedal gait, and CNS mechanisms.

  18. CIRSE Guidelines on Percutaneous Vertebral Augmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsoumakidou, Georgia, E-mail: gtsoumakidou@yahoo.com; Too, Chow Wei, E-mail: spyder55@gmail.com; Koch, Guillaume, E-mail: guillaume.koch@gmail.com

    Vertebral compression fracture (VCF) is an important cause of severe debilitating back pain, adversely affecting quality of life, physical function, psychosocial performance, mental health and survival. Different vertebral augmentation procedures (VAPs) are used in order to consolidate the VCFs, relief pain,and whenever posible achieve vertebral body height restoration. In the present review we give the indications, contraindications, safety profile and outcomes of the existing percutaneous VAPs.

  19. Fossil energy program

    NASA Astrophysics Data System (ADS)

    McNeese, L. E.

    1981-12-01

    The progress made during the period from July 1 through September 30 for the Oak Ridge National Laboratory research and development projects in support of the increased utilization of coal and other fossil fuels as sources of clean energy is reported. The following topics are discussed: coal conversion development, chemical research and development, materials technology, fossil energy materials program, liquefaction projects, component development, process analysis, environmental control technology, atmospheric fluidized bed combustion, underground coal gasification, coal preparation and waste utilization.

  20. Light adaptation and the evolution of vertebrate photoreceptors.

    PubMed

    Morshedian, Ala; Fain, Gordon L

    2017-07-15

    Lamprey are cyclostomes, a group of vertebrates that diverged from lines leading to jawed vertebrates (including mammals) in the late Cambrian, 500 million years ago. It may therefore be possible to infer properties of photoreceptors in early vertebrate progenitors by comparing lamprey to other vertebrates. We show that lamprey rods and cones respond to light much like rods and cones in amphibians and mammals. They operate over a similar range of light intensities and adapt to backgrounds and bleaches nearly identically. These correspondences are pervasive and detailed; they argue for the presence of rods and cones very early in the evolution of vertebrates with properties much like those of rods and cones in existing vertebrate species. The earliest vertebrates were agnathans - fish-like organisms without jaws, which first appeared near the end of the Cambrian radiation. One group of agnathans became cyclostomes, which include lamprey and hagfish. Other agnathans gave rise to jawed vertebrates or gnathostomes, the group including all other existing vertebrate species. Because cyclostomes diverged from other vertebrates 500 million years ago, it may be possible to infer some of the properties of the retina of early vertebrate progenitors by comparing lamprey to other vertebrates. We have previously shown that rods and cones in lamprey respond to light much like photoreceptors in other vertebrates and have a similar sensitivity. We now show that these affinities are even closer. Both rods and cones adapt to background light and to bleaches in a manner almost identical to other vertebrate photoreceptors. The operating range in darkness is nearly the same in lamprey and in amphibian or mammalian rods and cones; moreover background light shifts response-intensity curves downward and to the right over a similar range of ambient intensities. Rods show increment saturation at about the same intensity as mammalian rods, and cones never saturate. Bleaches decrease

  1. Embryonic origin of the gnathostome vertebral skeleton

    PubMed Central

    Gillis, J. Andrew

    2017-01-01

    The vertebral column is a key component of the jawed vertebrate (gnathostome) body plan, but the primitive embryonic origin of this skeleton remains unclear. In tetrapods, all vertebral components (neural arches, haemal arches and centra) derive from paraxial mesoderm (somites). However, in teleost fishes, vertebrae have a dual embryonic origin, with arches derived from somites, but centra formed, in part, by secretion of bone matrix from the notochord. Here, we test the embryonic origin of the vertebral skeleton in a cartilaginous fish (the skate, Leucoraja erinacea) which serves as an outgroup to tetrapods and teleosts. We demonstrate, by cell lineage tracing, that both arches and centra are somite-derived. We find no evidence of cellular or matrix contribution from the notochord to the skate vertebral skeleton. These findings indicate that the earliest gnathostome vertebral skeleton was exclusively of somitic origin, with a notochord contribution arising secondarily in teleosts. PMID:29167367

  2. Lymphatic regulation in nonmammalian vertebrates.

    PubMed

    Hedrick, Michael S; Hillman, Stanley S; Drewes, Robert C; Withers, Philip C

    2013-08-01

    All vertebrate animals share in common the production of lymph through net capillary filtration from their closed circulatory system into their tissues. The balance of forces responsible for net capillary filtration and lymph formation is described by the Starling equation, but additional factors such as vascular and interstitial compliance, which vary markedly among vertebrates, also have a significant impact on rates of lymph formation. Why vertebrates show extreme variability in rates of lymph formation and how nonmammalian vertebrates maintain plasma volume homeostasis is unclear. This gap hampers our understanding of the evolution of the lymphatic system and its interaction with the cardiovascular system. The evolutionary origin of the vertebrate lymphatic system is not clear, but recent advances suggest common developmental factors for lymphangiogenesis in teleost fishes, amphibians, and mammals with some significant changes in the water-land transition. The lymphatic system of anuran amphibians is characterized by large lymphatic sacs and two pairs of lymph hearts that return lymph into the venous circulation but no lymph vessels per se. The lymphatic systems of reptiles and some birds have lymph hearts, and both groups have extensive lymph vessels, but their functional role in both lymph movement and plasma volume homeostasis is almost completely unknown. The purpose of this review is to present an evolutionary perspective in how different vertebrates have solved the common problem of the inevitable formation of lymph from their closed circulatory systems and to point out the many gaps in our knowledge of this evolutionary progression.

  3. The first Loranthaceae fossils from Africa

    PubMed Central

    2018-01-01

    Abstract An ongoing re-investigation of the early Miocene Saldanha Bay (South Africa) palynoflora, using combined light and scanning electron microscopy (single grain method), is revealing several pollen types new to the African fossil record. One of the elements identified is Loranthaceae pollen. These grains represent the first and only fossil record of Loranthaceae in Africa. The fossil pollen grains resemble those produced by the core Lorantheae and are comparable to recent Asian as well as some African taxa/lineages. Molecular and fossil signals indicate that Loranthaceae dispersed into Africa via Asia sometime during the Eocene. The present host range of African Loranthaceae and the composition of the palynoflora suggest that the fossil had a range of potential host taxa to parasitise during the early Miocene in the Saldanha Bay region. PMID:29780299

  4. Nanotechnology for treating osteoporotic vertebral fractures

    PubMed Central

    Gao, Chunxia; Wei, Donglei; Yang, Huilin; Chen, Tao; Yang, Lei

    2015-01-01

    Osteoporosis is a serious public health problem affecting hundreds of millions of aged people worldwide, with severe consequences including vertebral fractures that are associated with significant morbidity and mortality. To augment or treat osteoporotic vertebral fractures, a number of surgical approaches including minimally invasive vertebroplasty and kyphoplasty have been developed. However, these approaches face problems and difficulties with efficacy and long-term stability. Recent advances and progress in nanotechnology are opening up new opportunities to improve the surgical procedures for treating osteoporotic vertebral fractures. This article reviews the improvements enabled by new nanomaterials and focuses on new injectable biomaterials like bone cements and surgical instruments for treating vertebral fractures. This article also provides an introduction to osteoporotic vertebral fractures and current clinical treatments, along with the rationale and efficacy of utilizing nanomaterials to modify and improve biomaterials or instruments. In addition, perspectives on future trends with injectable bone cements and surgical instruments enhanced by nanotechnology are provided. PMID:26316746

  5. Vertebral architecture in the earliest stem tetrapods.

    PubMed

    Pierce, Stephanie E; Ahlberg, Per E; Hutchinson, John R; Molnar, Julia L; Sanchez, Sophie; Tafforeau, Paul; Clack, Jennifer A

    2013-02-14

    The construction of the vertebral column has been used as a key anatomical character in defining and diagnosing early tetrapod groups. Rhachitomous vertebrae--in which there is a dorsally placed neural arch and spine, an anteroventrally placed intercentrum and paired, posterodorsally placed pleurocentra--have long been considered the ancestral morphology for tetrapods. Nonetheless, very little is known about vertebral anatomy in the earliest stem tetrapods, because most specimens remain trapped in surrounding matrix, obscuring important anatomical features. Here we describe the three-dimensional vertebral architecture of the Late Devonian stem tetrapod Ichthyostega using propagation phase-contrast X-ray synchrotron microtomography. Our scans reveal a diverse array of new morphological, and associated developmental and functional, characteristics, including a possible posterior-to-anterior vertebral ossification sequence and the first evolutionary appearance of ossified sternal elements. One of the most intriguing features relates to the positional relationships between the vertebral elements, with the pleurocentra being unexpectedly sutured or fused to the intercentra that directly succeed them, indicating a 'reverse' rhachitomous design. Comparison of Ichthyostega with two other stem tetrapods, Acanthostega and Pederpes, shows that reverse rhachitomous vertebrae may be the ancestral condition for limbed vertebrates. This study fundamentally revises our current understanding of vertebral column evolution in the earliest tetrapods and raises questions about the presumed vertebral architecture of tetrapodomorph fish and later, more crownward, tetrapods.

  6. Bayesian phylogenetic estimation of fossil ages.

    PubMed

    Drummond, Alexei J; Stadler, Tanja

    2016-07-19

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth-death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the 'morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses.This article is part of the themed issue 'Dating species divergences using

  7. Bayesian phylogenetic estimation of fossil ages

    PubMed Central

    Drummond, Alexei J.; Stadler, Tanja

    2016-01-01

    Recent advances have allowed for both morphological fossil evidence and molecular sequences to be integrated into a single combined inference of divergence dates under the rule of Bayesian probability. In particular, the fossilized birth–death tree prior and the Lewis-Mk model of discrete morphological evolution allow for the estimation of both divergence times and phylogenetic relationships between fossil and extant taxa. We exploit this statistical framework to investigate the internal consistency of these models by producing phylogenetic estimates of the age of each fossil in turn, within two rich and well-characterized datasets of fossil and extant species (penguins and canids). We find that the estimation accuracy of fossil ages is generally high with credible intervals seldom excluding the true age and median relative error in the two datasets of 5.7% and 13.2%, respectively. The median relative standard error (RSD) was 9.2% and 7.2%, respectively, suggesting good precision, although with some outliers. In fact, in the two datasets we analyse, the phylogenetic estimate of fossil age is on average less than 2 Myr from the mid-point age of the geological strata from which it was excavated. The high level of internal consistency found in our analyses suggests that the Bayesian statistical model employed is an adequate fit for both the geological and morphological data, and provides evidence from real data that the framework used can accurately model the evolution of discrete morphological traits coded from fossil and extant taxa. We anticipate that this approach will have diverse applications beyond divergence time dating, including dating fossils that are temporally unconstrained, testing of the ‘morphological clock', and for uncovering potential model misspecification and/or data errors when controversial phylogenetic hypotheses are obtained based on combined divergence dating analyses. This article is part of the themed issue ‘Dating species divergences

  8. Alternative approaches for vertebrate ecotoxicity tests in the ...

    EPA Pesticide Factsheets

    The need for alternative approaches to the use of vertebrate animals for hazard assessing chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimised wherever possible. For some regulatory purposes, the use of vertebrate organisms for environmental risk assessments (ERA) has even been banned, and in other situations the numbers of organisms tested has been dramatically reduced, or the severity of the procedure refined. However, there is still a long way to go to achieve replacement of vertebrate organisms to generate environmental hazard data. The development of animal alternatives is not just based on ethical considerations but also to reduce the cost of performing vertebrate ecotoxicity tests and in some cases to provide better information aimed at improving ERAs. The present focus paper provides an overview of the considerable advances that have been made towards alternative approaches for ecotoxicity assessments over the last few decades. The need for alternative approaches to the use of vertebrate animals for hazard assessing chemicals and pollutants has become of increasing importance. It is now the first consideration when initiating a vertebrate ecotoxicity test, to ensure that unnecessary use of vertebrate organisms is minimised wherever possible. For some regulatory purposes, the use of vertebrate organi

  9. Reconstruction of the vertebrate ancestral genome reveals dynamic genome reorganization in early vertebrates.

    PubMed

    Nakatani, Yoichiro; Takeda, Hiroyuki; Kohara, Yuji; Morishita, Shinichi

    2007-09-01

    Although several vertebrate genomes have been sequenced, little is known about the genome evolution of early vertebrates and how large-scale genomic changes such as the two rounds of whole-genome duplications (2R WGD) affected evolutionary complexity and novelty in vertebrates. Reconstructing the ancestral vertebrate genome is highly nontrivial because of the difficulty in identifying traces originating from the 2R WGD. To resolve this problem, we developed a novel method capable of pinning down remains of the 2R WGD in the human and medaka fish genomes using invertebrate tunicate and sea urchin genes to define ohnologs, i.e., paralogs produced by the 2R WGD. We validated the reconstruction using the chicken genome, which was not considered in the reconstruction step, and observed that many ancestral proto-chromosomes were retained in the chicken genome and had one-to-one correspondence to chicken microchromosomes, thereby confirming the reconstructed ancestral genomes. Our reconstruction revealed a contrast between the slow karyotype evolution after the second WGD and the rapid, lineage-specific genome reorganizations that occurred in the ancestral lineages of major taxonomic groups such as teleost fishes, amphibians, reptiles, and marsupials.

  10. Vertebral sclerosis in adults.

    PubMed Central

    Russell, A S; Percy, J S; Lentle, B C

    1979-01-01

    Narrowing of the intervertebral disc space with sclerosis of the adjacent vertebral bodies may occur as a consequence of infection, neoplasia, trauma, or rheumatic disease. Some patients have been described with backache and these radiological appearances without any primary cause being apparent. The lesions were almost always of 1 or, at most, 2 vertebrae and most frequently involved the inferior margin of L4. We describe 3 patients with far more extensive vertebral involvement and present the clinical, radiological, scintiscan, and histological findings. The only patient we have seen with the better known, isolated L4/5 lesion was shown on biopsy to have staphylococcal osteomyelitis. For this reason we would still recommend a biopsy of all such sclerotic vertebral lesions if they occur in the absence of other rheumatic disease. Images PMID:434941

  11. Behavioral fever in ectothermic vertebrates.

    PubMed

    Rakus, Krzysztof; Ronsmans, Maygane; Vanderplasschen, Alain

    2017-01-01

    Fever is an evolutionary conserved defense mechanism which is present in both endothermic and ectothermic vertebrates. Ectotherms in response to infection can increase their body temperature by moving to warmer places. This process is known as behavioral fever. In this review, we summarize the current knowledge on the mechanisms of induction of fever in mammals. We further discuss the evolutionary conserved mechanisms existing between fever of mammals and behavioral fever of ectothermic vertebrates. Finally, the experimental evidences supporting an adaptive value of behavioral fever expressed by ectothermic vertebrates are summarized. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Building the backbone: the development and evolution of vertebral patterning.

    PubMed

    Fleming, Angeleen; Kishida, Marcia G; Kimmel, Charles B; Keynes, Roger J

    2015-05-15

    The segmented vertebral column comprises a repeat series of vertebrae, each consisting of two key components: the vertebral body (or centrum) and the vertebral arches. Despite being a defining feature of the vertebrates, much remains to be understood about vertebral development and evolution. Particular controversy surrounds whether vertebral component structures are homologous across vertebrates, how somite and vertebral patterning are connected, and the developmental origin of vertebral bone-mineralizing cells. Here, we assemble evidence from ichthyologists, palaeontologists and developmental biologists to consider these issues. Vertebral arch elements were present in early stem vertebrates, whereas centra arose later. We argue that centra are homologous among jawed vertebrates, and review evidence in teleosts that the notochord plays an instructive role in segmental patterning, alongside the somites, and contributes to mineralization. By clarifying the evolutionary relationship between centra and arches, and their varying modes of skeletal mineralization, we can better appreciate the detailed mechanisms that regulate and diversify vertebral patterning. © 2015. Published by The Company of Biologists Ltd.

  13. Sustainability of Fossil Fuels

    NASA Astrophysics Data System (ADS)

    Lackner, K. S.

    2002-05-01

    For a sustainable world economy, energy is a bottleneck. Energy is at the basis of a modern, technological society, but unlike materials it cannot be recycled. Energy or more precisely "negentropy" (the opposite of entropy) is always consumed. Thus, one either accepts the use of large but finite resources or must stay within the limits imposed by dilute but self-renewing resources like sunlight. The challenge of sustainable energy is exacerbated by likely growth in world energy demand due to increased population and increased wealth. Most of the world still has to undergo the transition to a wealthy, stable society with the near zero population growth that characterizes a modern industrial society. This represents a huge unmet demand. If ten billion people were to consume energy like North Americans do today, world energy demand would be ten times higher. In addition, technological advances while often improving energy efficiency tend to raise energy demand by offering more opportunity for consumption. Energy consumption still increases at close to the 2.3% per year that would lead to a tenfold increase over the course of the next century. Meeting future energy demands while phasing out fossil fuels appears extremely difficult. Instead, the world needs sustainable or nearly sustainable fossil fuels. I propose the following definition of sustainable under which fossil fuels would well qualify: The use of a technology or resource is sustainable if the intended and unintended consequences will not force its abandonment within a reasonable planning horizon. Of course sustainable technologies must not be limited by resource depletion but this is only one of many concerns. Environmental impacts, excessive land use, and other constraints can equally limit the use of a technology and thus render it unsustainable. In the foreseeable future, fossil fuels are not limited by resource depletion. However, environmental concerns based on climate change and other environmental

  14. Assessing trace element diffusion models in fossil and sub-fossil bone

    NASA Astrophysics Data System (ADS)

    Suarez, C. A.; Kohn, M. J.

    2012-12-01

    Three different diffusion models have been proposed to explain trace element uptake during fossilization of bone: diffusion-adsorption (DA), diffusion-recrystallization (DR), and double-medium diffusion (DMD). Theoretically, differences in trace element profiles, particularly the rare earth elements (REE) and U, can discriminate among these possibilities. In this study, we tested which model best explains natural samples by analyzing trace element profiles in natural bone using laser-ablation inductively-coupled plasma mass spectrometry (LA-ICP-MS). Fossil bones ranging in age from a few ka to over 100 Ma were analyzed along traverses from the outer cortical edge to the inner marrow cavity margin. Forty major, minor and trace elements were analyzed, notably Ca, P, transition metals, Sr, Ba, REE, U, Th and Pb. Spatial and analytical resolutions were ~10 μm and ~100 ppb respectively. Many specimens show commonly observed exponential decreases in REE from the outer edge and marrow cavity, with relatively homogeneous U distributions. Yet, most significantly, specimens from American Falls (last interglacial) and Duck Point (last glacial maximum) show distinctive U plateaus adjacent to the outer and inner cortical bone margins. Whereas exponential profiles can be produced by different uptake processes, such plateaus are diagnostic of a DR mechanism. Our work is consistent with recent investigation of trace element diffusivities in modern fresh and deproteinated bone. These studies show similar diffusion rates for REE and U, so the profound disparity in U vs. REE profiles in most fossils cannot result solely from differences in volume diffusion within the context of DA and DMD. Rather, as a recrystallization front propagates into bone, the bone appears to encode changing soil water compositions with earlier vs. later compositions reflected in the bone margin vs. interior. Soil water U concentrations apparently remain nearly fixed during fossilization, whereas REE are

  15. Department of Vertebrate Zoology, NMNH

    Science.gov Websites

    Research & Collections About Us Get Involved Calendar Department ofVertebrate Zoology Red-eyed Libraries Staff Contact Us NMNH Home › Research & Collections › Department of Vertebrate Zoology the study of animals with backbones. Research in the department covers fishes, amphibians, reptiles

  16. Variation of canine vertebral bone architecture in computed tomography

    PubMed Central

    Cheon, Byunggyu; Park, Seungjo; Lee, Sang-kwon; Park, Jun-Gyu; Cho, Kyoung-Oh

    2018-01-01

    Focal vertebral bone density changes were assessed in vertebral computed tomography (CT) images obtained from clinically healthy dogs without diseases that affect bone density. The number, location, and density of lesions were determined. A total of 429 vertebral CT images from 20 dogs were reviewed, and 99 focal vertebral changes were identified in 14 dogs. Focal vertebral bone density changes were mainly found in thoracic vertebrae (29.6%) as hyperattenuating (86.9%) lesions. All focal vertebral changes were observed at the vertebral body, except for a single hyperattenuating change in one thoracic transverse process. Among the hyperattenuating changes, multifocal changes (53.5%) were more common than single changes (46.5%). Most of the hypoattenuating changes were single (92.3%). Eight dogs, 40% of the 20 dogs in the study and 61.6% of the 13 dogs showing focal vertebral changes in the thoracic vertebra, had hyperattenuating changes at the 7th or 8th thoracic vertebra. Our results indicate that focal changes in vertebral bone density are commonly identified on vertebral CT images in healthy dogs, and these changes should be taken into consideration on interpretation of CT images. PMID:28693309

  17. FOSSIL2 energy policy model documentation: generic structures of the FOSSIL2 model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1980-10-01

    This report discusses the structure, derivations, assumptions, and mathematical formulation of the FOSSIL2 model. Each major facet of the model - supply/demand interactions, industry financing, and production - has been designed to parallel closely the actual cause/effect relationships determining the behavior of the United States energy system. The data base for the FOSSIL2 program is large. When possible, all data were obtained from sources well known to experts in the energy field. Cost and resource estimates are based on DOE data whenever possible. This report presents the FOSSIL2 model at several levels. In Volume I, an overview of the basicmore » structures, assumptions, and behavior of the FOSSIL2 model is presented so that the reader can understand the results of various policy tests. The discussion covers the three major building blocks, or generic structures, used to construct the model: supply/demand balance; finance and capital formation; and energy production. These structures reflect the components and interactions of the major processes within each energy industry that directly affect the dynamics of fuel supply, demand, and price within the energy system as a whole.« less

  18. Oligocene-miocene mammalian fossils from Hongyazi Basin and its bearing on tectonics of Danghe Nanshan in northern Tibetan plateau.

    PubMed

    Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An

    2013-01-01

    A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan'ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan'ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan is

  19. Oligocene-Miocene Mammalian Fossils from Hongyazi Basin and Its Bearing on Tectonics of Danghe Nanshan in Northern Tibetan Plateau

    PubMed Central

    Li, Qiang; Wang, Xiaoming; Xie, Guangpu; Yin, An

    2013-01-01

    A shortage of Cenozoic vertebrate fossils in the Tibetan Plateau has been an obstacle in our understanding of biological evolution in response to changes in tectonism, topography, and environment. This is especially true for Paleogene records, so far known by only two sites along the northern rim of the Plateau. We report a Hongyazi Basin in northern Tibetan Plateau that produces at least three mammalian faunas that span Oligocene through late Miocene. Located at the foothills of the Danghe Nanshan and presently connected to the northern margin of the Suganhu Basin through the Greater Haltang River, the intermountain basin is controlled by the tectonics of the Danghe Nanshan to the north and Chahan’ebotu Mountain to the south, making the basin sediments well suited for inferring the evolutionary history of these two mountain ranges. At the bottom of the local section, the Oligocene Haltang Fauna is best compared to the early Oligocene Desmatolagus-Karakoromys decessus assemblage in the Dingdanggou Fauna in Tabenbuluk Basin. The Middle Miocene Ebotu Fauna from the middle Hongyazi section shares many taxa with the late Middle Miocene Tunggur mammal assemblage in Inner Mongolia, such as Heterosminthus orientalis, Megacricetodon sinensis, Democricetodon lindsayi, and Alloptox gobiensis. Toward the top of the section, the Hongyazi Fauna includes late Miocene elements typical of Hipparion faunas of North China. All three faunas are of typical North China-Central Asian characteristics, suggesting a lack of geographic barriers for faunal differentiation through the late Miocene. Sedimentary packages producing these faunas are arrayed from north to south in progressively younger strata, consistent with a compressive regime to accommodate shortening between Danghe Nanshan and Chahan’ebotu Mountain by thrust faults and folds. With additional constraints from vertebrate fossils along the northern flanks of the Danghe Nanshan, an eastward propagation of the Danghe Nanshan

  20. Selective Preservation of Fossil Ghost Fish

    NASA Astrophysics Data System (ADS)

    Meacham, Amanda

    2016-04-01

    A unique type of fossil fish preservation has been discovered in the Angelo Member (Fossil Lake) of the Green River Formation. The Angelo Member is a predominately evaporative deposit dominated by dolomite, but contains facies of fossiliferous laminated calcimicrite. Fossil fish occurring in two beds conspicuously lack bones. Fish in the lower bed are only preserved as organic material, including skin, pigments, and eyes. Fish in the upper bed have three-dimensional etching where bones once existed but also contain skin, pigments, and eyes. The top third of the upper bed often contains calcite crystals that are pseudomorphs after trona and possibly halite. Preliminary mineralogical analysis and mapping of evaporate facies suggests that this unique preservation may be related to lake geochemical conditions, such as high pH and alkalinity. To our knowledge, this is the first time this type of preservation has been observed and studied. Fossils and sediments within these beds are being studied both vertically and laterally through the one-meter thick sequence containing the fossil fish using XRD, isotopic, SEM, thin section, and total organic carbon analysis. Nine quarries, 0.5-1 meter square, were excavated for both fossils and rock samples along with 17 additional rock sample locations across an approximately 25-kilometer square region. This investigation has the capability of reconstructing the paleoenvironment and lake chemistry of Fossil Lake during the deposition of the "ghost-fish" beds and solving the mystery of the "missing bones" and the unusual process of preservation.

  1. Metamerism in cephalochordates and the problem of the vertebrate head.

    PubMed

    Onai, Takayuki; Adachi, Noritaka; Kuratani, Shigeru

    2017-01-01

    The vertebrate head characteristically exhibits a complex pattern with sense organs, brain, paired eyes and jaw muscles, and the brain case is not found in other chordates. How the extant vertebrate head has evolved remains enigmatic. Historically, there have been two conflicting views on the origin of the vertebrate head, segmental and non-segmental views. According to the segmentalists, the vertebrate head is organized as a metameric structure composed of segments equivalent to those in the trunk; a metamere in the vertebrate head was assumed to consist of a somite, a branchial arch and a set of cranial nerves, considering that the head evolved from rostral segments of amphioxus-like ancestral vertebrates. Non-segmentalists, however, considered that the vertebrate head was not segmental. In that case, the ancestral state of the vertebrate head may be non-segmented, and rostral segments in amphioxus might have been secondarily gained, or extant vertebrates might have evolved through radical modifications of amphioxus-like ancestral vertebrate head. Comparative studies of mesodermal development in amphioxus and vertebrate gastrula embryos have revealed that mesodermal gene expressions become segregated into two domains anteroposteriorly to specify the head mesoderm and trunk mesoderm only in vertebrates; in this segregation, key genes such as delta and hairy, involved in segment formation, are expressed in the trunk mesoderm, but not in the head mesoderm, strongly suggesting that the head mesoderm of extant vertebrates is not segmented. Taken together, the above finding possibly adds a new insight into the origin of the vertebrate head; the vertebrate head mesoderm would have evolved through an anteroposterior polarization of the paraxial mesoderm if the ancestral vertebrate had been amphioxus-like.

  2. Vertebral hemangiomas: their demographical characteristics, location along the spine and position within the vertebral body.

    PubMed

    Slon, Viviane; Stein, Dan; Cohen, Haim; Sella-Tunis, Tatiana; May, Hila; Hershkovitz, Israel

    2015-10-01

    Vertebral hemangiomas (VHs) are the most common form of benign tumors in the spine. The aim of this research was to study the prevalence of VHs in the human population, their distribution along the spine and their location in the vertebral body. The presence of VHs was assessed in full spine CT scans of 196 adults. Demographic data were gathered from medical records. VHs were present in 26.0% of the individuals studied, a rate significantly higher (χ2=43.338, p<0.001) than the prevalence reported in the literature (10.7%). Multiple VHs (≥2) appeared in 7.2% of the population studied. VHs prevalence is sex-independent, appearing in 28.6% of females and 23.5% of males (χ2=0.663, p=0.416); and age-dependent: the mean age of affected individuals (65.8 years) was significantly higher (p<0.001) than unaffected individuals (56.2 years). VH size was also age-dependent (p=0.023). No vertebra was significantly more prone to be affected by a hemangioma. T11 and T12 show the highest prevalence of VHs (3.57% of vertebrae affected). VHs were found in similar percentages in the anterior and posterior parts of the vertebral body (52.8 vs. 47.2%, respectively); and at its center and periphery (50.1 and 49.9%, respectively). VHs usually appeared at mid-height of the vertebral body or slightly higher. The reported prevalence of VHs is dependent on the demographic structure of the population studied, the size of the VHs and the method used to identify them. Overall, the phenomenon is more frequent than usually reported. VHs may appear at all vertebral levels and in all areas of the vertebral body.

  3. The stratigraphic distribution of large marine vertebrates and shell beds in the Pliocene of Tuscany

    NASA Astrophysics Data System (ADS)

    Dominici, Stefano; Benvenuti, Marco; Danise, Silvia

    2015-04-01

    The record of 337 shark fossils, 142 cetaceans and 10 sea cows from the Pliocene of Tuscany, mostly from historical museum collections, is revised. The majority of these fossils are concentrated at a few geographic sites from separated hinterland basins, on the South-Western side of the Northern Apennines. To better understand the meaning of these concentrations, the sequence stratigraphic distribution of more recent findings of large marine vertebrates is reconstructed against a high-resolution framework based on sedimentary facies analysis. These remains are usually covered by, or included in mudstones deposited far from the coast (N=12), skeletons being usually articulated, slightly displaced, and often bioeroded. A minor part of better preserved articulated skeletons is associated with sandstones from deltaic paleonenvironments (N=2). Marine mammal and shark remains may be associated with laterally-continuous shell accumulations, a type of concentration occurring at maximum flooding surfaces, separating relatively coarse-grained facies from open marine mudstones. Shell beds were bulk-sampled at 66 locations from six basins, covering a wide range of sedimentary facies, and spanning a chronologic interval of about 2.5 million years. A dataset of 62,655 mollusc specimens belonging to 496 species formed the basis of a statistical study to reconstruct the structure of the benthic communities, and to estimate paleodepths from intertidal to upper bathyal settings. Mollusc associations closely mirror the distribution of sedimentary facies, allowing for a fine tuning of the sequence stratigraphic architecture. Merging paleogeographic, stratigraphic and paleoecologic data, we conclude that the more abundant and diverse accumulations of large vertebrates took place in settings under the influence of coastal upwelling. A modern analogue occurs today in the Ligurian Sea, on the Tuscan offshore, where abundant nutrients carried by deep-marine currents of Western origin

  4. The Expanding Diversity of RNA Viruses in Vertebrates.

    PubMed

    Wang, Wenqiang; Han, Guan-Zhu

    2018-06-01

    The diversity of RNA viruses in vertebrates remains largely unexplored. The discovery of 214 novel vertebrate-associated RNA viruses will likely help us to understand the diversity and evolution of RNA viruses in vertebrates. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The Quaternary fossil-pollen record and global change

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grimm, E.C.

    Fossil pollen provide one of the most valuable records of vegetation and climate change during the recent geological past. Advantages of the fossil-pollen record are that deposits containing fossil pollen are widespread, especially in areas having natural lakes, that fossil pollen occurs in continuous stratigraphic sequences spanning millennia, and that fossil pollen occurs in quantitative assemblages permitting a multivariate approach for reconstructing past vegetation and climates. Because of stratigraphic continuity, fossil pollen records climate cycles on a wide range of scales, from annual to the 100 ka Milankovitch cycles. Receiving particular emphasis recently are decadal to century scale changes, possiblemore » from the sediments of varved lakes, and late Pleistocene events on a 5--10 ka scale possibly correlating with the Heinrich events in the North Atlantic marine record or the Dansgaard-Oeschger events in the Greenland ice-core record. Researchers have long reconstructed vegetation and climate by qualitative interpretation of the fossil-pollen record. Recently quantitative interpretation has developed with the aid of large fossil-pollen databases and sophisticated numerical models. In addition, fossil pollen are important climate proxy data for validating General Circulation Models, which are used for predicting the possible magnitude future climate change. Fossil-pollen data also contribute to an understanding of ecological issues associated with global climate change, including questions of how and how rapidly ecosystems might respond to abrupt climate change.« less

  6. Unusual vertebral artery origins: examples and related pathology.

    PubMed

    Koenigsberg, Robert A; Pereira, Lorianne; Nair, Bronwyn; McCormick, Daniel; Schwartzman, Robert

    2003-06-01

    Anomalies of the vertebral arteries are uncommon, but important to recognize in the diagnosis and catheter based evaluation and treatment of patients suffering cerebrovascular disease. This article illustrates our experience with such anomalies. These include the vertebral artery arising as the fourth and most distal branch of the aortic arch, as a right subclavian artery branch arising distal to the right thyrocervical trunk, as a right common carotid artery branch in a patient with an aberrant right subclavian artery, and a case of left vertebral artery proximal duplication, with both aortic and left subclavian vertebral arteries present in the same patient; the latter join to form a single distal cervical vertebral artery. Copyright 2003 Wiley-Liss, Inc.

  7. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Ulevicius, V.; Byčenkienė, S.; Bozzetti, C.; Vlachou, A.; Plauškaitė, K.; Mordas, G.; Dudoitis, V.; Abbaszade, G.; Remeikis, V.; Garbaras, A.; Masalaite, A.; Blees, J.; Fröhlich, R.; Dällenbach, K. R.; Canonaco, F.; Slowik, J. G.; Dommen, J.; Zimmermann, R.; Schnelle-Kreis, J.; Salazar, G. A.; Agrios, K.; Szidat, S.; El Haddad, I.; Prévôt, A. S. H.

    2015-09-01

    In early spring the Baltic region is frequently affected by high pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 μg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the TC, respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 % and 7-12 %, respectively. Isotope ratio of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  8. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    NASA Astrophysics Data System (ADS)

    Ulevicius, Vidmantas; Byčenkienė, Steigvilė; Bozzetti, Carlo; Vlachou, Athanasia; Plauškaitė, Kristina; Mordas, Genrik; Dudoitis, Vadimas; Abbaszade, Gülcin; Remeikis, Vidmantas; Garbaras, Andrius; Masalaite, Agne; Blees, Jan; Fröhlich, Roman; Dällenbach, Kaspar R.; Canonaco, Francesco; Slowik, Jay G.; Dommen, Josef; Zimmermann, Ralf; Schnelle-Kreis, Jürgen; Salazar, Gary A.; Agrios, Konstantinos; Szidat, Sönke; El Haddad, Imad; Prévôt, André S. H.

    2016-05-01

    In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 µg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the total carbon (TC), respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 and 7-13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  9. A Case of Duplicated Right Vertebral Artery.

    PubMed

    Motomura, Mayuko; Watanabe, Koichi; Tabira, Yoko; Iwanaga, Joe; Matsuuchi, Wakako; Yoshida, Daichi; Saga, Tsuyoshi; Yamaki, Koh-Ichi

    2018-04-27

    We encountered a case of duplicated right vertebral artery during an anatomical dissection course for medical students in 2015. Two vertebral arteries were found in the right neck of a 91-year-old female cadaver. The proximal leg of the arteries arose from the area between the right subclavian artery and the right common carotid artery that diverged from the brachiocephalic artery. The distal leg arose from the right subclavian artery as expected. The proximal leg entered the transverse foramen of the fourth cervical vertebra and the distal leg entered the transverse foramen of the sixth cervical vertebra. The two right vertebral arteries joined to form one artery just after the origin of the right vertebral artery of the brachiocephalic artery entered the transverse foramen of the fourth cervical vertebra. This artery then traveled up in the transverse foramina and became the basilar artery, joining with the left vertebral artery. We discuss the embryological origin of this case and review previously reported cases.

  10. Innate immunity in vertebrates: an overview.

    PubMed

    Riera Romo, Mario; Pérez-Martínez, Dayana; Castillo Ferrer, Camila

    2016-06-01

    Innate immunity is a semi-specific and widely distributed form of immunity, which represents the first line of defence against pathogens. This type of immunity is critical to maintain homeostasis and prevent microbe invasion, eliminating a great variety of pathogens and contributing with the activation of the adaptive immune response. The components of innate immunity include physical and chemical barriers, humoral and cell-mediated components, which are present in all jawed vertebrates. The understanding of innate defence mechanisms in non-mammalian vertebrates is the key to comprehend the general picture of vertebrate innate immunity and its evolutionary history. This is also essential for the identification of new molecules with applications in immunopharmacology and immunotherapy. In this review, we describe and discuss the main elements of vertebrate innate immunity, presenting core findings in this field and identifying areas that need further investigation. © 2016 John Wiley & Sons Ltd.

  11. Evidence for historical human-induced extinctions of vertebrate species on La Désirade (French West Indies)

    NASA Astrophysics Data System (ADS)

    Boudadi-Maligne, Myriam; Bailon, Salvador; Bochaton, Corentin; Casagrande, Fabrice; Grouard, Sandrine; Serrand, Nathalie; Lenoble, Arnaud

    2016-01-01

    Pit cave 6 on Pointe Gros Rempart (Baie-Mahault, La Désirade, French West Indies) is a stratified fossil-bearing site. While the archaeological material and faunal remains from the oldest assemblage demonstrate it to have formed during the Amerindian period, the second assemblage dates to the first one-hundred years of the island's colonial period (mid-18th to mid-19th centuries). Faunal analysis revealed the presence of 4 now locally extinct or extinct species, three of which have never before been documented on La Désirade (Ameiva sp., Leiocephalus cf. cuneus and Alsophis sp.). Changing faunal spectrums (invertebrates and vertebrates) due to environmental destabilisation combined with aspects of the island's colonial economy demonstrate habitat degradation and over-grazing to be the principal causes of extinctions and or extirpations.

  12. Fossil Groups as Cosmological Labs

    NASA Astrophysics Data System (ADS)

    D'Onghia, Elena

    Optical and X-ray measurements of fossil groups (FGs) suggest that they are old and relaxed systems. If FGs are assembled at higher redshift, there is enough time for intermediate-luminosity galaxies to merge, resulting in the formation of the brightest group galaxy (BGG). We carry out the first, systematic study of a large sample of FGs, the "FOssil Group Origins'' (FOGO) based on an International Time Project at the Roque de los Muchachos Observatory. For ten FOGO FGs we have been awarded time at SUZAKU Telescope to measure the temperature of the hot intragroup gas (IGM). For these systems we plan to evaluate and correlate their X-ray luminosity and X-ray temperature, Lx-Tx, optical luminosity and X-ray temperature, Lopt-Tx, and group velocity dispersion with their X-ray temperature, sigma V-Tx, as compared to the non fossil systems. By combining these observations with state-of-art cosmological hydrodynamical simulations we will open a new window into the study of the IGM and the nature of fossil systems. Our proposed work will be of direct relevance for the understanding and interpretation of data from several NASA science missions. Specifically, the scaling relations obtained from these data combined with our predictions obtained using state-of-the-art hydrodynamical simulation numerical adopting a new hydrodynamical scheme will motivate new proposal on CHANDRA X-ray telescope for fossil groups and clusters. We will additionally create a public Online Planetarium Show. This will be an educational site, containing an interactive program called: "A Voyage to our Universe''. In the show we will provide observed images of fossil groups and similar images and movies obtained from the numerical simulations showing their evolution. The online planetarium show will be a useful reference and an interactive educational tool for both students and the public.

  13. Effects of dietary supplementation of ferulic acid and gamma-oryzanol on integument color and suppression of oxidative stress in cultured red sea bream, Pagrus major.

    PubMed

    Maoka, Takashi; Tanimoto, Fumio; Sano, Mitsuhiko; Tsurukawa, Kanji; Tsuno, Takuo; Tsujiwaki, Satomi; Ishimaru, Katsuya; Takii, Kenji

    2008-01-01

    The effects of ferulic acid (FA) and gamma-oryzanol (OZ) supplementation on cultured red sea bream were examined. Commercial brown fish meal diets supplemented with FA (0.01-0.5%) or OZ (0.05-0.5%) were given to zero-year, cultured red sea bream for 98 days. After the experiment, the brightness of the integument color ("L" value) of FA- and OZ-administrated fish was higher than that of control fish. Furthermore, 2-Thiobarbituric acid reactive substances (TBARS) in the liver of FA- and OZ-administrated fish was lower than in control fish. These results indicate that FA and OZ suppressed not only dark-color pigmentation but also oxidative stress in cultured red sea bream.

  14. Calcium isotopes in fossil bones and teeth — Diagenetic versus biogenic origin

    NASA Astrophysics Data System (ADS)

    Heuser, Alexander; Tütken, Thomas; Gussone, Nikolaus; Galer, Stephen J. G.

    2011-06-01

    We present the first systematic study of Ca isotopes ( δ44/40Ca) in Late Triassic to Late Cretaceous dinosaur bones and teeth (enamel and dentin) from sympatric herbivorous and carnivorous dinosaurs. The samples derive from five different localities, and data from embedding sediments are also presented. Additional δ44/40Ca in skeletal tissues from modern reptiles and birds (avian dinosaurs) were measured for comparison in order to examine whether the original Ca isotopic composition in dinosaur skeletal apatite was preserved or might have changed during the diagenesis and fossilization process. δ44/40Ca of fossil skeletal tissues range from -1.62‰ ( Tyrannosaurus rex enamel) to +1.08‰ ( Brachiosaurus brancai bone), while values in modern archosaur bones and teeth range from -1.63‰ (caiman enamel) to -0.37‰ (ostrich bone). The average δ44/40Ca of the three types of fossil skeletal tissue analyzed - bone, dentin and enamel - show some systematic differences: while δ44/40Ca in bone exhibits the highest values, while δ44/40Ca in enamel has the lowest values, and dentin δ44/40Ca falls in between. Values of δ44/40Ca in the remains of herbivorous dinosaurs (0.1-1.1‰) are generally higher than those of bones of modern mammalian herbivores (-2.6‰ to -0.8‰) and from modern herbivorous archosaurs, which exhibit intermediate δ44/40Ca (-0.8‰ to -0.4‰). These systematic isotopic shifts may reflect physiological differences between dinosaurs, mammals and reptiles representing different taxonomic groups of vertebrates. Systematic offsets in skeletal apatite δ44/40Ca between herbivorous and carnivorous dinosaurs are not obvious, indicating a lack of a clear-cut Trophic Level Effect (TLE) shift between herbivores and carnivores in dinosaurs. This observation can be explained if the carnivorous dinosaurs in this study fed mainly on soft tissues from their prey and did not ingest hard (calcified) tissue to much extent. The most striking indication that the

  15. Traversing the mountaintop: world fossil fuel production to 2050

    PubMed Central

    Nehring, Richard

    2009-01-01

    During the past century, fossil fuels—petroleum liquids, natural gas and coal—were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85–93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios—low, medium and high—are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15–30 years. The subsequent peak plateau will last for 10–15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030. PMID:19770156

  16. Traversing the mountaintop: world fossil fuel production to 2050.

    PubMed

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  17. Constrained vertebrate evolution by pleiotropic genes.

    PubMed

    Hu, Haiyang; Uesaka, Masahiro; Guo, Song; Shimai, Kotaro; Lu, Tsai-Ming; Li, Fang; Fujimoto, Satoko; Ishikawa, Masato; Liu, Shiping; Sasagawa, Yohei; Zhang, Guojie; Kuratani, Shigeru; Yu, Jr-Kai; Kusakabe, Takehiro G; Khaitovich, Philipp; Irie, Naoki

    2017-11-01

    Despite morphological diversification of chordates over 550 million years of evolution, their shared basic anatomical pattern (or 'bodyplan') remains conserved by unknown mechanisms. The developmental hourglass model attributes this to phylum-wide conserved, constrained organogenesis stages that pattern the bodyplan (the phylotype hypothesis); however, there has been no quantitative testing of this idea with a phylum-wide comparison of species. Here, based on data from early-to-late embryonic transcriptomes collected from eight chordates, we suggest that the phylotype hypothesis would be better applied to vertebrates than chordates. Furthermore, we found that vertebrates' conserved mid-embryonic developmental programmes are intensively recruited to other developmental processes, and the degree of the recruitment positively correlates with their evolutionary conservation and essentiality for normal development. Thus, we propose that the intensively recruited genetic system during vertebrates' organogenesis period imposed constraints on its diversification through pleiotropic constraints, which ultimately led to the common anatomical pattern observed in vertebrates.

  18. Influence of physical activity on vertebral strength during late adolescence.

    PubMed

    Junno, Juho-Antti; Paananen, Markus; Karppinen, Jaro; Tammelin, Tuija; Niinimäki, Jaakko; Lammentausta, Eveliina; Niskanen, Markku; Nieminen, Miika T; Järvelin, Marjo-Riitta; Takatalo, Jani; Tervonen, Osmo; Tuukkanen, Juha

    2013-02-01

    Reduced vertebral strength is a clear risk factor for vertebral fractures. Men and women with vertebral fractures often have reduced vertebral size and bone mineral density (BMD). Vertebral strength is controlled by both genetic and developmental factors. Malnutrition and low levels of physical activity are commonly considered to result in reduced bone size during growth. Several studies have also demonstrated the general relationship between BMD and physical activity in the appendicular skeleton. In this study, we wanted to clarify the role of physical activity on vertebral bodies. Vertebral dimensions appear to generally be less pliant than long bones when lifetime changes occur. We wanted to explore the association between physical activity during late adolescence and vertebral strength parameters such as cross-sectional size and BMD. The association between physical activity and vertebral strength was explored by measuring vertebral strength parameters and defining the level of physical activity during adolescence. The study population consisted of 6,928 males and females who, at 15 to 16 and 19 years of age, responded to a mailed questionnaire inquiring about their physical activity. A total of 558 individuals at the mean age of 21 years underwent magnetic resonance imaging (MRI) scans. We measured the dimensions of the fourth lumbar vertebra from the MRI scans of the Northern Finland Birth Cohort 1986 and performed T2* relaxation time mapping, reflective of BMD. Vertebral strength was based on these two parameters. We analyzed the association of physical activity on vertebral strength using the analysis of variance. We observed no association between the level of physical activity during late adolescence and vertebral strength at 21 years. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Evolutionary Specialization of Tactile Perception in Vertebrates.

    PubMed

    Schneider, Eve R; Gracheva, Elena O; Bagriantsev, Slav N

    2016-05-01

    Evolution has endowed vertebrates with the remarkable tactile ability to explore the world through the perception of physical force. Yet the sense of touch remains one of the least well understood senses at the cellular and molecular level. Vertebrates specializing in tactile perception can highlight general principles of mechanotransduction. Here, we review cellular and molecular adaptations that underlie the sense of touch in typical and acutely mechanosensitive vertebrates. ©2016 Int. Union Physiol. Sci./Am. Physiol. Soc.

  20. New insights into Mesozoic cycad evolution: an exploration of anatomically preserved Cycadaceae seeds from the Jurassic Oxford Clay biota

    PubMed Central

    Rees, Andrew R.; Raine, Robert J.; Rothwell, Gar W.; Hollingworth, Neville T.J.

    2017-01-01

    Most knowledge concerning Mesozoic Era floras has come from compression fossils. This has been augmented in the last 20 years by rarer permineralized material showing cellular preservation. Here, we describe a new genus of anatomically preserved gymnosperm seed from the Callovian–Oxfordian (Jurassic) Oxford Clay Formation (UK), using a combination of traditional sectioning and synchrotron radiation X-ray micro-tomography (SRXMT). Oxfordiana motturii gen. et sp. nov. is large and bilaterally symmetrical. It has prominent external ribs, and has a three-layered integument comprising: a narrow outer layer of thick walled cells; a thick middle parenchymatous layer; and innermost a thin fleshy layer. The integument has a longitudinal interior groove and micropyle, enveloping a nucellus with a small pollen chamber. The large size, bilateral symmetry and integumentary groove demonstrate an affinity for the new species within the cycads. Moreover, the internal groove in extant taxa is an autapomorphy of the genus Cycas, where it facilitates seed germination. Based upon the unique seed germination mechanism shared with living species of the Cycadaceae, we conclude that O. motturii is a member of the stem-group lineage leading to Cycas after the Jurassic divergence of the Cycadaceae from other extant cycads. SRXMT—for the first time successfully applied to fossils already prepared as slides—reveals the distribution of different mineral phases within the fossil, and allows us to evaluate the taphonomy of Oxfordiana. An early pyrite phase replicates the external surfaces of individual cells, a later carbonate component infilling void spaces. The resulting taphonomic model suggests that the relatively small size of the fossils was key to their exceptional preservation, concentrating sulfate-reducing bacteria in a locally closed microenvironment and thus facilitating soft-tissue permineralization. PMID:28875075

  1. Facultative parthenogenesis in vertebrates: reproductive error or chance?

    PubMed

    Lampert, K P

    2008-01-01

    Parthenogenesis, the development of an embryo from a female gamete without any contribution of a male gamete, is very rare in vertebrates. Parthenogenetically reproducing species have, so far, only been found in the Squamate reptiles (lizards and snakes). Facultative parthenogenesis, switching between sexual and clonal reproduction, although quite common in invertebrates, e.g. Daphnia and aphids, seems to be even rarer in vertebrates. However, isolated cases of parthenogenetic development have been reported in all vertebrate groups. Facultative parthenogenesis in vertebrates has only been found in captive animals but might simply have been overlooked in natural populations. Even though its evolutionary impact is hard to determine and very likely varies depending on the ploidy restoration mechanisms and sex-determining mechanisms involved, facultative parthenogenesis is already discussed in conservation biology and medical research. To raise interest for facultative parthenogenesis especially in evolutionary biology, I summarize the current knowledge about facultative parthenogenesis in the different vertebrate groups, introduce mechanisms of diploid oocyte formation and discuss the genetic consequences and potential evolutionary impact of facultative parthenogenesis in vertebrates.

  2. Ancient deuterostome origins of vertebrate brain signalling centres.

    PubMed

    Pani, Ariel M; Mullarkey, Erin E; Aronowicz, Jochanan; Assimacopoulos, Stavroula; Grove, Elizabeth A; Lowe, Christopher J

    2012-03-14

    Neuroectodermal signalling centres induce and pattern many novel vertebrate brain structures but are absent, or divergent, in invertebrate chordates. This has led to the idea that signalling-centre genetic programs were first assembled in stem vertebrates and potentially drove morphological innovations of the brain. However, this scenario presumes that extant cephalochordates accurately represent ancestral chordate characters, which has not been tested using close chordate outgroups. Here we report that genetic programs homologous to three vertebrate signalling centres-the anterior neural ridge, zona limitans intrathalamica and isthmic organizer-are present in the hemichordate Saccoglossus kowalevskii. Fgf8/17/18 (a single gene homologous to vertebrate Fgf8, Fgf17 and Fgf18), sfrp1/5, hh and wnt1 are expressed in vertebrate-like arrangements in hemichordate ectoderm, and homologous genetic mechanisms regulate ectodermal patterning in both animals. We propose that these genetic programs were components of an unexpectedly complex, ancient genetic regulatory scaffold for deuterostome body patterning that degenerated in amphioxus and ascidians, but was retained to pattern divergent structures in hemichordates and vertebrates. © 2012 Macmillan Publishers Limited. All rights reserved

  3. Fossil Leaves and Fossil Leaf n-Alkanes: Reconstructing the First Closed Canopied Rainforests

    NASA Astrophysics Data System (ADS)

    Graham, H. V.; Freeman, K. H.

    2013-12-01

    Although the age and location is disputed, the rise of the first closed-canopy forest is likely linked with the expansion of angiosperms in the late Cretacous or early Cenozoic. The carbon isotope 'canopy effect' reflects the extent of canopy closure, and is well documented in δ13C values of the leaves and leaf lipids in modern forests. To test the extent of canopy closure among the oldest documented angiosperm tropical forests, we analyzed isotopic characteristics of leaf fossils and leaf waxes from the Guaduas and Cerrejón Formations. The Guaduas Fm. (Maastrichtian) contains some of the earliest angiosperm fossils in the Neotropics, and both leaf morphology and pollen records at this site suggest an open-canopy structure. The Cerrejón Fm. (Paleocene) contains what are believed to be the first recorded fossil leaves from a closed-canopy forest. We analyzed the bulk carbon isotope content (δ13Cleaf) of 199 fossil leaves, as well as the n-alkane concentration and chain-length distribution, and δ13C of alkanes (δ13Clipid) of 73 fossil leaves and adjacent sediment samples. Fossil leaves are dominated by eudicots and include ten modern plant families (Apocynaceae, Bombaceae, Euphorbaceae, Fabaceae, Lauraceae, Malvaceae, Meliaceae, Menispermaceae, Moraceae, Sapotaceae). We interpreted extent of canopy coverage based on the range of δ13Cleaf values. The narrow range of δ13C values in leaves from the Guaduas Fm (2.7‰) is consistent with an open canopy. A significantly wider range in values (6.3‰) suggests a closed-canopy signature for site 0315 of the Cerrejón Fm,. In contrast, at Site 0318, a lacustrine deposit, leaves had a narrow range (3.3‰) in δ13C values, and this is not consistent with a closed-canopy, but is consistent with leaf assemblages from a forest edge. Leaves that accumulate in lake sediments tend to be biased toward plants living at the lake edge, which do not experience closed-canopy conditions, and do not express the isotopic

  4. The prevalence of radiographic vertebral fractures in Latin American countries: the Latin American Vertebral Osteoporosis Study (LAVOS).

    PubMed

    Clark, P; Cons-Molina, F; Deleze, M; Ragi, S; Haddock, L; Zanchetta, J R; Jaller, J J; Palermo, L; Talavera, J O; Messina, D O; Morales-Torres, J; Salmeron, J; Navarrete, A; Suarez, E; Pérez, C M; Cummings, S R

    2009-02-01

    In the first population-based study of vertebral fractures in Latin America, we found a 11.18 (95% CI 9.23-13.4) prevalence of radiographically ascertained vertebral fractures in a random sample of 1,922 women from cities within five different countries. These figures are similar to findings from studies in Beijing, China, some regions of Europe, and slightly lower than those found in the USA using the same standardized methodology. We report the first study of radiographic vertebral fractures in Latin America. An age-stratified random sample of 1,922 women aged 50 years and older from Argentina, Brazil, Colombia, Mexico, and Puerto Rico were included. In all cases a standardized questionnaire and lateral X-rays of the lumbar and thoracic spine were obtained after informed consent. A standardized prevalence of 11.18 (95% CI 9.23-13.4) was found. The prevalence was similar in all five countries, increasing from 6.9% (95% CI 4.6-9.1) in women aged 50-59 years to 27.8% (95% CI 23.1-32.4) in those 80 years and older (p for trend < 0.001). Among different risk factors, self-reported height loss OR = 1.63 (95% CI: 1.18-2.25), and previous history of fracture OR = 1.52 (95% CI: 1.14-2.03) were significantly (p < 0.003 and p < 0.04 respectably) associated with the presence of radiographic vertebral fractures in the multivariate analysis. In the bivariate analyses HRT was associated with a 35% lower risk OR = 0.65 (95% CI: 0.46-0.93) and physical activity with a 27% lower risk of having a vertebral fracture OR = 0.73 (95% CI: 0.55-0.98), but were not statistically significant in multivariate analyses We conclude that radiographically ascertained vertebral fractures are common in Latin America. Health authorities in the region should be aware and consider implementing measures to prevent vertebral fractures.

  5. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    NASA Astrophysics Data System (ADS)

    Weber, Florence R.; Hamilton, Thomas D.; Hopkins, David M.; Repenning, Charles A.; Haas, Herbert

    1981-09-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode.

  6. Canyon Creek: A late Pleistocene vertebrate locality in interior Alaska

    USGS Publications Warehouse

    Weber, F.R.; Hamilton, T.D.; Hopkins, D.M.; Repenning, C.A.; Haas, H.

    1981-01-01

    The Canyon Creek vertebrate-fossil locality is an extensive road cut near Fairbanks that exposes sediments that range in age from early Wisconsin to late Holocene. Tanana River gravel at the base of the section evidently formed during the Delta Glaciation of the north-central Alaska Range. Younger layers and lenses of fluvial sand are interbedded with arkosic gravel from Canyon Creek that contains tephra as well as fossil bones of an interstadial fauna about 40,000 years old. Solifluction deposits containing ventifacts, wedge casts, and rodent burrows formed during a subsequent period of periglacial activity that took place during the maximum phase of Donnelly Glaciation about 25,000-17,000 years ago. Overlying sheets of eolian sand are separated by a 9500-year-old paleosol that may correlate with a phase of early Holocene spruce expansion through central Alaska. The Pleistocene fauna from Canyon Creek consists of rodents (indicated by burrows), Mammuthus primigenius (woolly mammoth), Equus lambei (Yukon wild ass), Camelops hesternus (western camel), Bison sp. cf. B. crassicornis (large-horned bison), Ovis sp. cf. O. dalli (mountain sheep), Canis sp. cf. C. lupus (wolf), Lepus sp. cf. L. othus or L. arcticus (tundra hare), and Rangifer sp. (caribou). This assemblage suggests an open landscape in which trees and tall shrubs were either absent or confined to sheltered and moist sites. Camelops evidently was present in eastern Beringia during the middle Wisconsin interstadial interval but may have disappeared during the following glacial episode. The stratigraphic section at Canyon Creek appears to demonstrate that the Delta Glaciation of the north-central Alaska Range is at least in part of early Wisconsin age and was separated from the succeeding Donnelly Glaciation by an interstadial rather than interglacial episode. ?? 1981.

  7. Evolution and development of the vertebrate neck

    PubMed Central

    Ericsson, Rolf; Knight, Robert; Johanson, Zerina

    2013-01-01

    Muscles of the vertebrate neck include the cucullaris and hypobranchials. Although a functional neck first evolved in the lobe-finned fishes (Sarcopterygii) with the separation of the pectoral/shoulder girdle from the skull, the neck muscles themselves have a much earlier origin among the vertebrates. For example, lampreys possess hypobranchial muscles, and may also possess the cucullaris. Recent research in chick has established that these two muscles groups have different origins, the hypobranchial muscles having a somitic origin but the cucullaris muscle deriving from anterior lateral plate mesoderm associated with somites 1–3. Additionally, the cucullaris utilizes genetic pathways more similar to the head than the trunk musculature. Although the latter results are from experiments in the chick, cucullaris homologues occur in a variety of more basal vertebrates such as the sharks and zebrafish. Data are urgently needed from these taxa to determine whether the cucullaris in these groups also derives from lateral plate mesoderm or from the anterior somites, and whether the former or the latter represent the basal vertebrate condition. Other lateral plate mesoderm derivatives include the appendicular skeleton (fins, limbs and supporting girdles). If the cucullaris is a definitive lateral plate-derived structure it may have evolved in conjunction with the shoulder/limb skeleton in vertebrates and thereby provided a greater degree of flexibility to the heads of predatory vertebrates. PMID:22697305

  8. The Variety of Vertebrate Mechanisms of Sex Determination

    PubMed Central

    Trukhina, Antonina V.; Lukina, Natalia A.; Wackerow-Kouzova, Natalia D.; Smirnov, Alexander F.

    2013-01-01

    The review deals with features of sex determination in vertebrates. The mechanisms of sex determination are compared between fishes, amphibians, reptilians, birds, and mammals. We focus on structural and functional differences in the role of sex-determining genes in different vertebrates. Special attention is paid to the role of estrogens in sex determination in nonmammalian vertebrates. PMID:24369014

  9. The variety of vertebrate mechanisms of sex determination.

    PubMed

    Trukhina, Antonina V; Lukina, Natalia A; Wackerow-Kouzova, Natalia D; Smirnov, Alexander F

    2013-01-01

    The review deals with features of sex determination in vertebrates. The mechanisms of sex determination are compared between fishes, amphibians, reptilians, birds, and mammals. We focus on structural and functional differences in the role of sex-determining genes in different vertebrates. Special attention is paid to the role of estrogens in sex determination in nonmammalian vertebrates.

  10. Progress of fossil fuel science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demirbas, M.F.

    2007-07-01

    Coal is the most abundant and widely distributed fossil fuel. More than 45% of the world's electricity is generated from coal, and it is the major fuel for generating electricity worldwide. The known coal reserves in the world are enough for more than 215 years of consumption, while the known oil reserves are only about 39 times of the world's consumption and the known natural gas reserves are about 63 times of the world's consumption level in 1998. In recent years, there have been effective scientific investigations on Turkish fossil fuels, which are considerable focused on coal resources. Coal ismore » a major fossil fuel source for Turkey. Turkish coal consumption has been stable over the past decade and currently accounts for about 24% of the country's total energy consumption. Lignite coal has had the biggest share in total fossil fuel production, at 43%, in Turkey. Turkish researchers may investigate ten broad pathways of coal species upgrading, such as desulfurization and oxydesulfurization, pyrolysis and hydropyrolysis, liquefaction and hydroliquefaction, extraction and supercritical fluid extraction, gasification, oxidation, briquetting, flotation, and structure identification.« less

  11. Peptidoglycan Recognition Protein S2 From Silkworm Integument: Characterization, Microbe-Induced Expression, and Involvement in the Immune-Deficiency Pathway

    PubMed Central

    Yang, Jie; Wang, Xiaonan; Tang, Shunming; Shen, Zhongyuan; Wu, Jinmei

    2015-01-01

    Peptidoglycan recognition protein (PGRP) binds specifically to peptidoglycan and plays an important role as a pattern recognition receptor in the innate immunity of insects. The cDNA of a short-type PGRP, an open reading frame of 588 bp encoding a polypeptide of 196 amino acids, was cloned from Bombyx mori. A phylogenetic tree was constructed, and the results showed that BmPGRP-S2 was most similar to Drosophila melanogaster PGRP (DmPGRP-SA). The induced expression profile of BmPGRP-S2 in healthy Escherichia coli- and Bacillus subtilis-challenged B. mori was measured using semiquantitative reverse transcriptase polymerase chain reaction analysis. The expression of BmPGRP-S2 was upregulated at 24 h by E. coli and Ba. subtilis challenge. In addition, in the integument of B. mori, RNAi knockdown of BmPGRP-S2 caused an obvious reduction in the transcription expression of the transcription factor Relish and in antibacterial effector genes Attacin, Gloverin, and Moricin. The results indicated that BmPGRP-S2 participates in the signal transduction pathway of B. mori. PMID:25797797

  12. Surgical treatment of hematogenous vertebral Aspergillus osteomyelitis.

    PubMed

    Bridwell, K H; Campbell, J W; Barenkamp, S J

    1990-04-01

    Three cases of Aspergillus fumigatas vertebral osteomyelitis failed courses of medical treatment. Each was subsequently treated with anterior vertebral debridement and posterior segmental spinal instrumentation. Despite poor nutritional and immune systems, resolution of the infection and subsequent anterior ankylosis occurred in each patient, with follow-up ranging from 1 to 3 years. If patients with aspergillus vertebral osteomyelitis do not respond to medical treatment, early surgical debridement and stabilization in combination with intravenous amphotericin B can lead to resolution and bony ankylosis.

  13. New evidence suggests pyroclastic flows are responsible for the remarkable preservation of the Jehol biota

    NASA Astrophysics Data System (ADS)

    Jiang, Baoyu; Harlow, George E.; Wohletz, Kenneth; Zhou, Zhonghe; Meng, Jin

    2014-02-01

    The lower Cretaceous Yixian and Jiufotang formations contain numerous exceptionally well-preserved invertebrate, vertebrate and plant fossils that comprise the Jehol Biota. Freshwater and terrestrial fossils of the biota usually occur together within some horizons and have been interpreted as deposits of mass mortality events. The nature of the events and the mechanisms behind the exceptional preservation of the fossils, however, are poorly understood. Here, after examining and analysing sediments and residual fossils from several key horizons, we postulate that the causal events were mainly phreatomagmatic eruptions. Pyroclastic density currents were probably responsible for the major causalities and for transporting the bulk of the terrestrial vertebrates from different habitats, such as lizards, birds, non-avian dinosaurs and mammals, into lacustrine environments for burial. Terrestrial vertebrate carcasses transported by and sealed within the pyroclastic flows were clearly preserved as exceptional fossils through this process.

  14. The earliest Permian shark fossils from Texas and their implications for later marine faunas

    NASA Astrophysics Data System (ADS)

    Shell, R.; Ciampaglio, C. N.

    2017-12-01

    Complex marine vertebrate faunas from lower Permian rocks are incredibly rare. Recent research suggests that the composition of what few communities can be found varied wildly, especially in regard to the presence or absence of Hybodontiform sharks. Early Permian marine faunas in Texas are generally richer in Hybodont sharks than similarly aged communities in Russia and Bolivia, but the cause of this variation is unknown. A fossil hybodont spine fragment from just above the Pennsylvanian/Permian boundary in Texas, however, suggests that that regional climatic events allowed Hybodont sharks to migrate into the Permian Basin at the outset of the Permian itself. As the Basin evolved tectonically and sedimentologically, these sharks likely evolved to fill new niches as they opened up- which may have resulted in the increased number of Hybodont species in the Permian of Texas: a major factor to consider in the faunal evolution of the Western Interior Seaway during the Mesozoic and beyond.

  15. Combining phylogenomics and fossils in higher-level squamate reptile phylogeny: molecular data change the placement of fossil taxa.

    PubMed

    Wiens, John J; Kuczynski, Caitlin A; Townsend, Ted; Reeder, Tod W; Mulcahy, Daniel G; Sites, Jack W

    2010-12-01

    Molecular data offer great potential to resolve the phylogeny of living taxa but can molecular data improve our understanding of relationships of fossil taxa? Simulations suggest that this is possible, but few empirical examples have demonstrated the ability of molecular data to change the placement of fossil taxa. We offer such an example here. We analyze the placement of snakes among squamate reptiles, combining published morphological data (363 characters) and new DNA sequence data (15,794 characters, 22 nuclear loci) for 45 living and 19 fossil taxa. We find several intriguing results. First, some fossil taxa undergo major changes in their phylogenetic position when molecular data are added. Second, most fossil taxa are placed with strong support in the expected clades by the combined data Bayesian analyses, despite each having >98% missing cells and despite recent suggestions that extensive missing data are problematic for Bayesian phylogenetics. Third, morphological data can change the placement of living taxa in combined analyses, even when there is an overwhelming majority of molecular characters. Finally, we find strong but apparently misleading signal in the morphological data, seemingly associated with a burrowing lifestyle in snakes, amphisbaenians, and dibamids. Overall, our results suggest promise for an integrated and comprehensive Tree of Life by combining molecular and morphological data for living and fossil taxa.

  16. Probe into the Internal Mechanism of Interlanguage Fossilization

    ERIC Educational Resources Information Center

    Huang, Qian

    2009-01-01

    Interlanguage fossilization is normal for second language acquisition. It is also a hotspot for studies on theory of foreign language acquisition. Many reasons cause the interlanguage fossilization. This paper probes into the internal mechanism of interlanguage fossilization from five aspects, namely the physiological aspect, the psychological…

  17. VerSeDa: vertebrate secretome database

    PubMed Central

    Cortazar, Ana R.; Oguiza, José A.

    2017-01-01

    Based on the current tools, de novo secretome (full set of proteins secreted by an organism) prediction is a time consuming bioinformatic task that requires a multifactorial analysis in order to obtain reliable in silico predictions. Hence, to accelerate this process and offer researchers a reliable repository where secretome information can be obtained for vertebrates and model organisms, we have developed VerSeDa (Vertebrate Secretome Database). This freely available database stores information about proteins that are predicted to be secreted through the classical and non-classical mechanisms, for the wide range of vertebrate species deposited at the NCBI, UCSC and ENSEMBL sites. To our knowledge, VerSeDa is the only state-of-the-art database designed to store secretome data from multiple vertebrate genomes, thus, saving an important amount of time spent in the prediction of protein features that can be retrieved from this repository directly. Database URL: VerSeDa is freely available at http://genomics.cicbiogune.es/VerSeDa/index.php PMID:28365718

  18. VerSeDa: vertebrate secretome database.

    PubMed

    Cortazar, Ana R; Oguiza, José A; Aransay, Ana M; Lavín, José L

    2017-01-01

    Based on the current tools, de novo secretome (full set of proteins secreted by an organism) prediction is a time consuming bioinformatic task that requires a multifactorial analysis in order to obtain reliable in silico predictions. Hence, to accelerate this process and offer researchers a reliable repository where secretome information can be obtained for vertebrates and model organisms, we have developed VerSeDa (Vertebrate Secretome Database). This freely available database stores information about proteins that are predicted to be secreted through the classical and non-classical mechanisms, for the wide range of vertebrate species deposited at the NCBI, UCSC and ENSEMBL sites. To our knowledge, VerSeDa is the only state-of-the-art database designed to store secretome data from multiple vertebrate genomes, thus, saving an important amount of time spent in the prediction of protein features that can be retrieved from this repository directly. VerSeDa is freely available at http://genomics.cicbiogune.es/VerSeDa/index.php. © The Author(s) 2017. Published by Oxford University Press.

  19. Primate diversification inferred from phylogenies and fossils.

    PubMed

    Herrera, James P

    2017-12-01

    Biodiversity arises from the balance between speciation and extinction. Fossils record the origins and disappearance of organisms, and the branching patterns of molecular phylogenies allow estimation of speciation and extinction rates, but the patterns of diversification are frequently incongruent between these two data sources. I tested two hypotheses about the diversification of primates based on ∼600 fossil species and 90% complete phylogenies of living species: (1) diversification rates increased through time; (2) a significant extinction event occurred in the Oligocene. Consistent with the first hypothesis, analyses of phylogenies supported increasing speciation rates and negligible extinction rates. In contrast, fossils showed that while speciation rates increased, speciation and extinction rates tended to be nearly equal, resulting in zero net diversification. Partially supporting the second hypothesis, the fossil data recorded a clear pattern of diversity decline in the Oligocene, although diversification rates were near zero. The phylogeny supported increased extinction ∼34 Ma, but also elevated extinction ∼10 Ma, coinciding with diversity declines in some fossil clades. The results demonstrated that estimates of speciation and extinction ignoring fossils are insufficient to infer diversification and information on extinct lineages should be incorporated into phylogenetic analyses. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  20. Age and depositional conditions of the marine vertebrate concentration Lagerstätte at Gomez Farías, southern Coahuila, Mexico

    NASA Astrophysics Data System (ADS)

    Zell, Patrick; Beckmann, Seija; Stinnesbeck, Wolfgang

    2014-12-01

    A 1.5 m thick coquinite discovered in the Upper Jurassic La Casita Formation of the Sierra El Jabalà near Gomez Farías, Coahuila, northeastern Mexico qualifies as a concentration Lagerstâtte owing to its richness in marine vertebrates. Ichthyosaurs, pliosaurs and crocodilians were described to some detail, but other taxa remained unstudied and the precise biostratigraphical age, as well as paleoecological conditions that led to the formation of the fossil deposit, are not known in detail. Here we describe ammonites, aptychi, bivalves and radiolarians, which allow for a stratigraphic assignation of the deposit to the uppermost Kimmeridgian Beckeri Zone. The unit under consideration accumulated in a hemipelagic mud bottom environment during a period of time characterized by low oxygen conditions, while a short term benthic colonization phase near the top of the coquinite corresponds to increased oxygen availability. A combination of upwelling, bottom currents, winnowing, offshore winds, storm events, circulatory nutrient traps, low oxygenated bottom waters, and a transgressional regime with reduced net sedimentation was crucial factors for the subsequent concentration of fossils, as well as for marine phosphate generation and phosphorus migration.

  1. Molecular signatures that are distinctive characteristics of the vertebrates and chordates and supporting a grouping of vertebrates with the tunicates.

    PubMed

    Gupta, Radhey S

    2016-01-01

    Members of the phylum Chordata and the subphylum Vertebrata are presently distinguished solely on the basis of morphological characteristics. The relationship of the vertebrates to the two non-vertebrate chordate subphyla is also a subject of debate. Analyses of protein sequences have identified multiple conserved signature indels (CSIs) that are specific for Chordata or for Vertebrata. Five CSIs in 4 important proteins are specific for the Vertebrata, whereas two other CSIs are uniquely found in all sequenced chordate species including Ciona intestinalis and Oikapleura dioica (Tunicates) as well as Branchiostoma floridae (Cephalochordates). The shared presence of these molecular signatures by all vertebrates/chordate species, but in no other animal taxa, strongly indicates that the genetic changes represented by the identified CSIs diagnose monophyletic groups. Two other discovered CSIs are uniquely shared by different vertebrate species and by either one (Ciona intestinalis) or both tunicate (Ciona and Oikapleura) species, but they are not found in Branchiostoma or other animal species. Specific presence of these CSIs in different vertebrates and either one or both tunicate species provides strong independent evidence that the vertebrate species are more closely related to the urochordates (tunicates) than to the cephalochordates. Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Proceedings: 1990 fossil plant cycling conference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-12-01

    Fossil plant cycling continues to be a key issue for many electric utilities. EPRI's previous cycling workshops, held in 1983, 1985, and 1987, allowed utilities to benefit from collective industry experience in the conversion of baseload fossil units to cyclic operation. Continued improvements in equipment, retrofits, diagnostics, and controls were highlighted at the 1990 conference. The objective is to provide a forum for utility discussions of the cycling operation of fossil fuel power plants. Potomac Electric Power Company (PEPCO) hosted the 1990 EPRI Fossil Fuel Cycling Conference in Washington, DC, on December 4--6, 1990. More than 130 representatives from utilities,more » vendors, government agencies, universities, and industry associations attended the conference. Following the general session, technical sessions covered such topics as plant modifications, utility retrofit experience, cycling economics, life assessment, controls, environmental controls, and energy storage. Attendees also toured PEPCO's Potomac River generating station, the site of an earlier EPRI cycling conversion study.« less

  3. The pre-vertebrate origins of neurogenic placodes.

    PubMed

    Abitua, Philip Barron; Gainous, T Blair; Kaczmarczyk, Angela N; Winchell, Christopher J; Hudson, Clare; Kamata, Kaori; Nakagawa, Masashi; Tsuda, Motoyuki; Kusakabe, Takehiro G; Levine, Michael

    2015-08-27

    The sudden appearance of the neural crest and neurogenic placodes in early branching vertebrates has puzzled biologists for over a century. These embryonic tissues contribute to the development of the cranium and associated sensory organs, which were crucial for the evolution of the vertebrate "new head". A previous study suggests that rudimentary neural crest cells existed in ancestral chordates. However, the evolutionary origins of neurogenic placodes have remained obscure owing to a paucity of embryonic data from tunicates, the closest living relatives to those early vertebrates. Here we show that the tunicate Ciona intestinalis exhibits a proto-placodal ectoderm (PPE) that requires inhibition of bone morphogenetic protein (BMP) and expresses the key regulatory determinant Six1/2 and its co-factor Eya, a developmental process conserved across vertebrates. The Ciona PPE is shown to produce ciliated neurons that express genes for gonadotropin-releasing hormone (GnRH), a G-protein-coupled receptor for relaxin-3 (RXFP3) and a functional cyclic nucleotide-gated channel (CNGA), which suggests dual chemosensory and neurosecretory activities. These observations provide evidence that Ciona has a neurogenic proto-placode, which forms neurons that appear to be related to those derived from the olfactory placode and hypothalamic neurons of vertebrates. We discuss the possibility that the PPE-derived GnRH neurons of Ciona resemble an ancestral cell type, a progenitor to the complex neuronal circuit that integrates sensory information and neuroendocrine functions in vertebrates.

  4. Comparing primate crania: The importance of fossils.

    PubMed

    Fleagle, John G; Gilbert, Christopher C; Baden, Andrea L

    2016-10-01

    Extant primate crania represent a small subset of primate crania that have existed. The main objective here is to examine how the inclusion of fossil crania changes our understanding of primate cranial diversity relative to analyses of extant primates. We hypothesize that fossil taxa will change the major axes of cranial shape, occupy new areas of morphospace, change the relative diversity of major primate clades, and fill in notable gaps separating major primate taxa/clades. Eighteen 3D landmarks were collected on 157 extant and fossil crania representing 90 genera. Data were subjected to a Generalized Procrustes Analysis then principal components analysis. Relative diversity between clades was assessed using an F-statistic. Fossil taxa do not significantly alter major axes of cranial shape, but they do occupy unique areas of morphospace, change the relative diversity between clades, and fill in notable gaps in primate cranial evolution. Strepsirrhines remain significantly less diverse than anthropoids. Fossil hominins fill the gap in cranial morphospace between extant great apes and modern humans. The morphospace outlined by living primates largely includes that occupied by fossil taxa, suggesting that the cranial diversity of living primates generally encompasses the total diversity that has evolved in this Order. The evolution of the anthropoid cranium was a significant event allowing anthropoids to achieve significantly greater cranial diversity compared to strepsirrhines. Fossil taxa fill in notable gaps within and between clades, highlighting their transitional nature and eliminating the appearance of large morphological distances between extant taxa, particularly in the case of extant hominids. © 2016 Wiley Periodicals, Inc.

  5. Building the Vertebrate Spine

    NASA Astrophysics Data System (ADS)

    Pourquié, Olivier

    2008-03-01

    The vertebrate body can be subdivided along the antero-posterior (AP) axis into repeated structures called segments. This periodic pattern is established during embryogenesis by the somitogenesis process. Somites are generated in a rhythmic fashion from the paraxial mesoderm and subsequently differentiate to give rise to the vertebrae and skeletal muscles of the body. Somite formation involves an oscillator-the segmentation clock-whose periodic signal is converted into the periodic array of somite boundaries. This clock drives the dynamic expression of cyclic genes in the presomitic mesoderm and requires Notch and Wnt signaling. Microarray studies of the mouse presomitic mesoderm transcriptome reveal that the segmentation clock drives the periodic expression of a large network of cyclic genes involved in cell signaling. Mutually exclusive activation of the Notch/FGF and Wnt pathways during each cycle suggests that coordinated regulation of these three pathways underlies the clock oscillator. In humans, mutations in the genes associated to the function of this oscillator such as Dll3 or Lunatic Fringe result in abnormal segmentation of the vertebral column such as those seen in congenital scoliosis. Whereas the segmentation clock is thought to set the pace of vertebrate segmentation, the translation of this pulsation into the reiterated arrangement of segment boundaries along the AP axis involves dynamic gradients of FGF and Wnt signaling. The FGF signaling gradient is established based on an unusual mechanism involving mRNA decay which provides an efficient means to couple the spatio-temporal activation of segmentation to the posterior elongation of the embryo. Another striking aspect of somite production is the strict bilateral symmetry of the process. Retinoic acid was shown to control aspects of this coordination by buffering destabilizing effects from the embryonic left-right machinery. Defects in this embryonic program controlling vertebral symmetry might lead

  6. Vertebral fracture after aircraft ejection during Operation Desert Storm.

    PubMed

    Osborne, R G; Cook, A A

    1997-04-01

    During Operation Desert Storm, 21 United States and 2 Italian military personnel were held in Iraq as prisoners of war. Of these, 18 had ejected from fixed-wing, ejection seat-equipped, combat aircraft prior to their capture. Of the 18, 6 (33%) had sustained vertebral fractures; 4 of these were compression fractures. This fracture rate is comparable to that of previously studied groups. Fractures were noted to be at several different vertebral sites and after ejecting from a variety of aircraft. Apart from contusions and abrasions, vertebral fractures were the most common injuries discovered in this repatriated population. None of the vertebral fractures produced recognizable neurological disability. The development of vertebral fractures was neither associated with the use of any particular ejection system or aircraft nor did the development of vertebral fractures appear dependent on the age, height or length of service of the affected personnel. Ejected aircrew with low altitude mission profiles seemed more predisposed to vertebral fracture than those at high altitudes, but with a small sample population, this relationship was not statistically significant (p > 0.25). Reliable data were unavailable on aircrew positioning and preparation time for ejection.

  7. The CW domain, a structural module shared amongst vertebrates, vertebrate-infecting parasites and higher plants.

    PubMed

    Perry, Jason; Zhao, Yunde

    2003-11-01

    A previously undetected domain, named CW for its conserved cysteine and tryptophan residues, appears to be a four-cysteine zinc-finger motif found exclusively in vertebrates, vertebrate-infecting parasites and higher plants. Of the twelve distinct nuclear protein families that comprise the CW domain-containing superfamily, only the microrchida (MORC) family has begun to be characterized. However, several families contain other domains suggesting a relationship between the CW domain and either chromatin methylation status or early embryonic development.

  8. Molecular evolution of the vertebrate mechanosensory cell and ear.

    PubMed

    Fritzsch, Bernd; Beisel, Kirk W; Pauley, Sarah; Soukup, Garrett

    2007-01-01

    The molecular basis of mechanosensation, mechanosensory cell development and mechanosensory organ development is reviewed with an emphasis on its evolution. In contrast to eye evolution and development, which apparently modified a genetic program through intercalation of genes between the master control genes on the top (Pax6, Eya1, Six1) of the hierarchy and the structural genes (rhodopsin) at the bottom, the as yet molecularly unknown mechanosensory channel precludes such a firm conclusion for mechanosensors. However, recent years have seen the identification of several structural genes which are involved in mechanosensory tethering and several transcription factors controlling mechanosensory cell and organ development; these warrant the interpretation of available data in very much the same fashion as for eye evolution: molecular homology combined with potential morphological parallelism. This assertion of molecular homology is strongly supported by recent findings of a highly conserved set of microRNAs that appear to be associated with mechanosensory cell development across phyla. The conservation of transcription factors and their regulators fits very well to the known or presumed mechanosensory specializations which can be mostly grouped as variations of a common cellular theme. Given the widespread distribution of the molecular ability to form mechanosensory cells, it comes as no surprise that structurally different mechanosensory organs evolved in different phyla, presenting a variation of a common theme specified by a conserved set of transcription factors in their cellular development. Within vertebrates and arthropods, some mechanosensory organs evolved into auditory organs, greatly increasing sensitivity to sound through modifications of accessory structures to direct sound to the specific sensory epithelia. However, while great attention has been paid to the evolution of these accessory structures in vertebrate fossils, comparatively less attention has

  9. Organic preservation of fossil musculature with ultracellular detail

    PubMed Central

    McNamara, Maria; Orr, Patrick J.; Kearns, Stuart L.; Alcalá, Luis; Anadón, Pere; Peñalver-Mollá, Enrique

    2010-01-01

    The very labile (decay-prone), non-biomineralized, tissues of organisms are rarely fossilized. Occurrences thereof are invaluable supplements to a body fossil record dominated by biomineralized tissues, which alone are extremely unrepresentative of diversity in modern and ancient ecosystems. Fossil examples of extremely labile tissues (e.g. muscle) that exhibit a high degree of morphological fidelity are almost invariably replicated by inorganic compounds such as calcium phosphate. There is no consensus as to whether such tissues can be preserved with similar morphological fidelity as organic remains, except when enclosed inside amber. Here, we report fossilized musculature from an approximately 18 Myr old salamander from lacustrine sediments of Ribesalbes, Spain. The muscle is preserved organically, in three dimensions, and with the highest fidelity of morphological preservation yet documented from the fossil record. Preserved ultrastructural details include myofilaments, endomysium, layering within the sarcolemma, and endomysial circulatory vessels infilled with blood. Slight differences between the fossil tissues and their counterparts in extant amphibians reflect limited degradation during fossilization. Our results provide unequivocal evidence that high-fidelity organic preservation of extremely labile tissues is not only feasible, but likely to be common. This is supported by the discovery of similarly preserved tissues in the Eocene Grube Messel biota. PMID:19828545

  10. Three-dimensionally preserved integument reveals hydrodynamic adaptations in the extinct marine lizard Ectenosaurus (Reptilia, Mosasauridae).

    PubMed

    Lindgren, Johan; Everhart, Michael J; Caldwell, Michael W

    2011-01-01

    The physical properties of water and the environment it presents to its inhabitants provide stringent constraints and selection pressures affecting aquatic adaptation and evolution. Mosasaurs (a group of secondarily aquatic reptiles that occupied a broad array of predatory niches in the Cretaceous marine ecosystems about 98-65 million years ago) have traditionally been considered as anguilliform locomotors capable only of generating short bursts of speed during brief ambush pursuits. Here we report on an exceptionally preserved, long-snouted mosasaur (Ectenosaurus clidastoides) from the Santonian (Upper Cretaceous) part of the Smoky Hill Chalk Member of the Niobrara Formation in western Kansas, USA, that contains phosphatized remains of the integument displaying both depth and structure. The small, ovoid neck and/or anterior trunk scales exhibit a longitudinal central keel, and are obliquely arrayed into an alternating pattern where neighboring scales overlap one another. Supportive sculpturing in the form of two parallel, longitudinal ridges on the inner scale surface and a complex system of multiple, superimposed layers of straight, cross-woven helical fiber bundles in the underlying dermis, may have served to minimize surface deformation and frictional drag during locomotion. Additional parallel fiber bundles oriented at acute angles to the long axis of the animal presumably provided stiffness in the lateral plane. These features suggest that the anterior torso of Ectenosaurus was held somewhat rigid during swimming, thereby limiting propulsive movements to the posterior body and tail.

  11. Dinosaur Fossil, Leonardo, at Ellington Field

    NASA Image and Video Library

    2008-03-14

    Documentation of NASA's partnership with the Houston Museum of Natural Science and Montana's Great Plains Dinosaur Museum to provide an insulated facility at Ellington Field in which the Leonardo Project Team was able to X-ray Leonardo, a 77 million year old dinosaur fossil. View of the Brachylophosaurus fossil called Leonardo.

  12. A diverse Rancholabrean vertebrate microfauna from southern California includes the first fossil record of ensatina ( Ensatina eschscholtzii: Plethodontidae)

    NASA Astrophysics Data System (ADS)

    Wake, Thomas A.; Roeder, Mark A.

    2009-11-01

    Analysis of late Pleistocene fossils recovered from near the Huntington Beach, California (USA), pier (site LACM 7679) has revealed a diverse fauna dating to approximately 40 14C ka BP. Extinct megafauna (three genera) are present; however, a microfauna including three genera of fish, five genera of amphibians, twelve genera of reptiles, two genera of birds, and ten genera of small mammals dominates the assemblage in terms of diversity. Additional identification of seven genera of non-marine mollusks and various macro- and microscopic plant remains including grasses, three families of herbs, and seven genera of trees provides a wealth of information concerning the past ecology of what is currently a coastal dune field complex. During the Rancholabrean Period, the LACM 7679 locality was approximately 10 km inland from the Pleistocene coastline and contained lush riparian zones interspersed with coastal sage scrub, a few trees, and grasslands teeming with a variety of small and large animals.

  13. Kyphoplasty for vertebral augmentation in the elderly with osteoporotic vertebral compression fractures: scenarios and review of recent studies.

    PubMed

    Bednar, Timothy; Heyde, Christoph E; Bednar, Grace; Nguyen, David; Volpi, Elena; Przkora, Rene

    2013-11-01

    Vertebral compression fractures caused by osteoporosis are among the most common fractures in the elderly. The treatment focuses on pain control, maintenance of independence, and management of the osteoporosis. Elderly patients often encounter adverse effects to pain medications, do not tolerate bed rest, and are not ideal candidates for invasive spinal reconstructive surgery. Percutaneous vertebral augmentation (vertebroplasty or kyphoplasty) has become popular as a less-invasive alternative. However, studies have questioned the effectiveness of these procedures. The authors conducted a MEDLINE search using relevant search terms including osteoporosis, osteoporotic vertebral compression fracture, elderly, kyphoplasty and vertebroplasty. Two elderly patients presented with a fracture of their third and first lumbar vertebral body, respectively. One patient progressed well with conservative treatment, whereas the other patient was hospitalized secondary to pain after conservative measures failed to offer improvement. The hospitalized patient subsequently opted for a kyphoplasty and was able to resume his normal daily activities after the procedure. Selecting patients on an individual case-by-case basis can optimize the effectiveness and outcomes of a vertebral augmentation. This process includes the documentation of an osteoporotic vertebral compression fracture with the aide of imaging studies, including the acuity of the fracture as well as the correlation with the physical examination findings. Patients who are functional and improving under a conservative regimen are not candidates for kyphoplasty. However, if the conservative management is not successful after 4 to 6 weeks and the patient is at risk to become bedridden, an augmentation should be considered. A kyphoplasty procedure may be preferred over vertebroplasty, given the lower risk profile and better outcomes regarding spinal alignment. Published by Elsevier HS Journals, Inc.

  14. Non-contiguous multifocal vertebral osteomyelitis caused by Serratia marcescens.

    PubMed

    Lau, Jen Xin; Li, Jordan Yuanzhi; Yong, Tuck Yean

    2015-03-01

    Serratia marcescens is a common nosocomial infection but a rare cause of osteomyelitis and more so of vertebral osteomyelitis. Vertebral osteomyelitis caused by this organism has been reported in few studies. We report a case of S. marcescens vertebral discitis and osteomyelitis affecting multiple non-contiguous vertebras. Although Staphylococcus aureus is the most common cause of vertebral osteomyelitis, rare causes, such as S. marcescens, need to be considered, especially when risk factors such as intravenous heroin use, post-spinal surgery and immunosuppression are present. Therefore, blood culture and where necessary biopsy of the infected region should be undertaken to establish the causative organism and determine appropriate antibiotic susceptibility. Prompt diagnosis of S. marcescens vertebral osteomyelitis followed by the appropriate treatment can achieve successful outcomes.

  15. Handed behavior in hagfish--an ancient vertebrate lineage--and a survey of lateralized behaviors in other invertebrate chordates and elongate vertebrates.

    PubMed

    Miyashita, Tetsuto; Palmer, A Richard

    2014-04-01

    Hagfish represent an ancient lineage of boneless and jawless vertebrates. Among several curious behaviors they exhibit, solitary individuals in one dominant genus of hagfish (Eptatretus spp.) regularly rest in a tightly coiled posture. We present the first systematic treatment of this distinctive behavior. Individual northeastern Pacific hagfish (E. stoutii) exhibited significant handedness (preferred orientation of coiling). However, right-coiling and left-coiling individuals were equally common in the population. Individual hagfish likely develop a preference for one direction by repeating the preceding coiling direction. We also revisit classical accounts of chordate natural history and compare the coiling behavior of Eptatretus with other handed or lateralized behaviors in non-vertebrate chordates, lampreys, and derived vertebrates with elongate bodies. Handed behaviors occur in many of these groups, but they likely evolved independently. In contrast to vertebrates, morphological asymmetries may bias lateralized larval behaviors toward one side in cephalochordates and tunicates. As a consequence, no known handed behavior can be inferred to have existed in the common ancestor of vertebrates.

  16. Health state utility values and patient-reported outcomes before and after vertebral and non-vertebral fractures in an osteoporosis clinical trial.

    PubMed

    Imai, T; Tanaka, S; Kawakami, K; Miyazaki, T; Hagino, H; Shiraki, M

    2017-06-01

    We assessed the health state utility value (HSUV) reductions associated with vertebral fractures using data collected in the Japanese Osteoporosis Intervention Trial-03 (JOINT-03). Our analysis revealed that assessment of HSUVs after morphometric vertebral fracture is important to capture the burden of vertebral fractures. Evaluation of the HSUV after fracture is important to calculate the quality-adjusted life years (QALYs) of osteoporosis patients, which is essential information in the context of health economic evaluation. JOINT-03 study patients were aged ≥65 years and treated with risedronate and vitamin K 2 or risedronate alone. Radiographic information and patient-reported outcomes measured by EQ-5D and a visual analogue scale (VAS) were assessed at registration and followed up after 6, 12, and 24 months. According to differences among the dates of these assessments and the radiographic information, we classified the follow-up HSUVs calculated based on EQ-5D results into before or after fracture categories regardless of clinical symptoms. Among 2922 follow-up HSUVs, 201 HSUVs were categorized as HSUVs that were observed after incident vertebral fractures on X-ray films. The median time from the detection of an incident vertebral fracture until the EQ-5D assessment was 53 days (25th percentile, 0 day; 75th percentile, 357 days). The impact of incident vertebral fractures on HSUVs was quantified as -0.03. Among the five health profile domains on the EQ-5D, an incident vertebral fracture had significant effects on anxiety/depression, self-care, and usual activities. The results suggest that incident morphometric vertebral fracture was associated with impairment of the HSUV for patients with osteoporosis not only immediately but also several months after the fracture.

  17. Caudal lumbar vertebral fractures in California Quarter Horse and Thoroughbred racehorses.

    PubMed

    Collar, E M; Zavodovskaya, R; Spriet, M; Hitchens, P L; Wisner, T; Uzal, F A; Stover, S M

    2015-09-01

    To gain insight into the pathophysiology of equine lumbar vertebral fractures in racehorses. To characterise equine lumbar vertebral fractures in California racehorses. Retrospective case series and prospective case-control study. Racehorse post mortem reports and jockey injury reports were retrospectively reviewed. Vertebral specimens from 6 racehorses affected with lumbar vertebral fractures and 4 control racehorses subjected to euthanasia for nonspinal fracture were assessed using visual, radiographic, computed tomography and histological examinations. Lumbar vertebral fractures occurred in 38 Quarter Horse and 29 Thoroughbred racehorses over a 22 year period, primarily involving the 5th and/or 6th lumbar vertebrae (L5-L6; 87% of Quarter Horses and 48% of Thoroughbreds). Lumbar vertebral fractures were the third most common musculoskeletal cause of death in Quarter Horses and frequently involved a jockey injury. Lumbar vertebral specimens contained anatomical variations in the number of vertebrae, dorsal spinous processes and intertransverse articulations. Lumbar vertebral fractures examined in 6 racehorse specimens (5 Quarter Horses and one Thoroughbred) coursed obliquely in a cranioventral to caudodorsal direction across the adjacent L5-L6 vertebral endplates and intervertebral disc, although one case involved only one endplate. All cases had evidence of abnormalities on the ventral aspect of the vertebral bodies consistent with pre-existing, maladaptive pathology. Lumbar vertebral fractures occur in racehorses with pre-existing pathology at the L5-L6 vertebral junction that is likely predisposes horses to catastrophic fracture. Knowledge of these findings should encourage assessment of the lumbar vertebrae, therefore increasing detection of mild vertebral injuries and preventing catastrophic racehorse and associated jockey injuries. © 2014 EVJ Ltd.

  18. Late development of hagfish vertebral elements.

    PubMed

    Ota, Kinya G; Fujimoto, Satoko; Oisi, Yasuhiro; Kuratani, Shigeru

    2013-05-01

    It has been demonstrated recently that hagfishes, one of two groups of extant jawless vertebrates, have cartilaginous vertebral elements. Embryological and gene expression analyses have also shown that this group of animals develops a sclerotome, the potential primordium of the axial skeleton. However, it has not been shown unequivocally that the hagfish sclerotome truly differentiates into cartilage, because access to late-stage embryos and information about the cartilaginous extracellular matrix (ECM) are lacking for these animals. Here we investigated the expression patterns of the biglycan/decorin (BGN/DCN) gene in the inshore hagfish, Eptatretus burgeri. The homologue of this gene encodes the major noncollagenous component of the cartilaginous ECM among gnathostomes. We clearly identified the expression of this gene in adult vertebral tissues and in embryonic mesenchymal cells on the ventral aspect of the notochord. Taking into account that the sclerotome in the gnathostomes expresses BGN/DCN gene during the chondrogenesis, it is highly expected the hagfish BGN/DCN-positive mesenchymal cells are derived from the sclerotomes. We propose that hagfishes and gnathostomes share conserved developmental mechanisms not only in their somite differentiation, but also in chondrogenesis of their vertebral elements. Copyright © 2013 Wiley Periodicals, Inc.

  19. Reintroduction of locally extinct vertebrates impacts arid soil fungal communities.

    PubMed

    Clarke, Laurence J; Weyrich, Laura S; Cooper, Alan

    2015-06-01

    Introduced species have contributed to extinction of native vertebrates in many parts of the world. Changes to vertebrate assemblages are also likely to alter microbial communities through coextinction of some taxa and the introduction of others. Many attempts to restore degraded habitats involve removal of exotic vertebrates (livestock and feral animals) and reintroduction of locally extinct species, but the impact of such reintroductions on microbial communities is largely unknown. We used high-throughput DNA sequencing of the fungal internal transcribed spacer I (ITS1) region to examine whether replacing exotic vertebrates with reintroduced native vertebrates led to changes in soil fungal communities at a reserve in arid central Australia. Soil fungal diversity was significantly different between dune and swale (interdune) habitats. Fungal communities also differed significantly between sites with exotic or reintroduced native vertebrates after controlling for the effect of habitat. Several fungal operational taxonomic units (OTUs) found exclusively inside the reserve were present in scats from reintroduced native vertebrates, providing a direct link between the vertebrate assemblage and soil microbial communities. Our results show that changes to vertebrate assemblages through local extinctions and the invasion of exotic species can alter soil fungal communities. If local extinction of one or several species results in the coextinction of microbial taxa, the full complement of ecological interactions may never be restored. © 2015 John Wiley & Sons Ltd.

  20. Thyroglobulin Represents a Novel Molecular Architecture of Vertebrates.

    PubMed

    Holzer, Guillaume; Morishita, Yoshiaki; Fini, Jean-Baptiste; Lorin, Thibault; Gillet, Benjamin; Hughes, Sandrine; Tohmé, Marie; Deléage, Gilbert; Demeneix, Barbara; Arvan, Peter; Laudet, Vincent

    2016-08-05

    Thyroid hormones modulate not only multiple functions in vertebrates (energy metabolism, central nervous system function, seasonal changes in physiology, and behavior) but also in some non-vertebrates where they control critical post-embryonic developmental transitions such as metamorphosis. Despite their obvious biological importance, the thyroid hormone precursor protein, thyroglobulin (Tg), has been experimentally investigated only in mammals. This may bias our view of how thyroid hormones are produced in other organisms. In this study we searched genomic databases and found Tg orthologs in all vertebrates including the sea lamprey (Petromyzon marinus). We cloned a full-size Tg coding sequence from western clawed frog (Xenopus tropicalis) and zebrafish (Danio rerio). Comparisons between the representative mammal, amphibian, teleost fish, and basal vertebrate indicate that all of the different domains of Tg, as well as Tg regional structure, are conserved throughout the vertebrates. Indeed, in Xenopus, zebrafish, and lamprey Tgs, key residues, including the hormonogenic tyrosines and the disulfide bond-forming cysteines critical for Tg function, are well conserved despite overall divergence of amino acid sequences. We uncovered upstream sequences that include start codons of zebrafish and Xenopus Tgs and experimentally proved that these are full-length secreted proteins, which are specifically recognized by antibodies against rat Tg. By contrast, we have not been able to find any orthologs of Tg among non-vertebrate species. Thus, Tg appears to be a novel protein elaborated as a single event at the base of vertebrates and virtually unchanged thereafter. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Vertebrate richness and biogeography in the Big Thicket of Texas

    Treesearch

    Michael H MacRoberts; Barbara R. MacRoberts; D. Craig Rudolph

    2010-01-01

    The Big Thicket of Texas has been described as rich in species and a “crossroads:” a place where organisms from many different regions meet. We examine the species richness and regional affiliations of Big Thicket vertebrates. We found that the Big Thicket is neither exceptionally rich in vertebrates nor is it a crossroads for vertebrates. Its vertebrate fauna is...

  2. Imperfect isolation: factors and filters shaping Madagascar's extant vertebrate fauna.

    PubMed

    Samonds, Karen E; Godfrey, Laurie R; Ali, Jason R; Goodman, Steven M; Vences, Miguel; Sutherland, Michael R; Irwin, Mitchell T; Krause, David W

    2013-01-01

    Analyses of phylogenetic topology and estimates of divergence timing have facilitated a reconstruction of Madagascar's colonization events by vertebrate animals, but that information alone does not reveal the major factors shaping the island's biogeographic history. Here, we examine profiles of Malagasy vertebrate clades through time within the context of the island's paleogeographical evolution to determine how particular events influenced the arrival of the island's extant groups. First we compare vertebrate profiles on Madagascar before and after selected events; then we compare tetrapod profiles on Madagascar to contemporary tetrapod compositions globally. We show that changes from the Mesozoic to the Cenozoic in the proportions of Madagascar's tetrapod clades (particularly its increase in the representation of birds and mammals) are tied to changes in their relative proportions elsewhere on the globe. Differences in the representation of vertebrate classes from the Mesozoic to the Cenozoic reflect the effects of extinction (i.e., the non-random susceptibility of the different vertebrate clades to purported catastrophic global events 65 million years ago), and new evolutionary opportunities for a subset of vertebrates with the relatively high potential for transoceanic dispersal potential. In comparison, changes in vertebrate class representation during the Cenozoic are minor. Despite the fact that the island's isolation has resulted in high vertebrate endemism and a unique and taxonomically imbalanced extant vertebrate assemblage (both hailed as testimony to its long isolation), that isolation was never complete. Indeed, Madagascar's extant tetrapod fauna owes more to colonization during the Cenozoic than to earlier arrivals. Madagascar's unusual vertebrate assemblage needs to be understood with reference to the basal character of clades originating prior to the K-T extinction, as well as to the differential transoceanic dispersal advantage of other, more

  3. Instabilities in biofilms: The Kinneyia Fossil

    NASA Astrophysics Data System (ADS)

    Thomas, K. R.; Goehring, L.; Porada, H.; Wittig, R.; Herminghaus, S.

    2012-12-01

    Kinneyia structures are a wrinkle-type fossil pattern most often observed in ancient siliclastic sediment surfaces. Characterised by millimetre-scale ripples with flat-topped crests, these fossils are generally found in areas that were formally littoral habitats. Thin-section observations indicate that Kinneyia formed in surfaces covered by ancient microbial mats. However, to date there has been no conclusive explanation as to the process involved in the formation of these fossils. We propose that the key mechanism involved in the formation of the Kinneyia pattern is a Kelvin-Helmholtz-type instability induced in a viscoelastic film under flowing water. A ripple corrugation is spontaneously induced in the film, which grows in amplitude over time. Such a mechanism is expected to result in a ripple instability with a wavelength proportional to the thickness of the film. Experiments carried out using viscoelastic models microbial mats confirm this prediction, showing a wavelength roughly three times the thickness of the film. The behaviour is independent on the viscoelastic properties of the film. This model corresponds well with the fossil records, which show a reduced wavelength at the boundaries of the fossilised structures where the mat is expected to have been thinner. Fossils were collected from two ancient shallow sea bed sites in Namibia from the terminal Proterozoic period. The fossils are seen to overlay a storm deposit of 15-30cm in thickness. The ripples form on top of this deposit in the veneer, which sedimented after the storm event. Analysis of the shape of the fossilised patterns indicates a similar relationship between the wavelength and amplitude of the ripples to that observed experimentally. A strong directional dependence of the ripples is also observed.

  4. Cerium anomaly at microscale in fossils.

    PubMed

    Gueriau, Pierre; Mocuta, Cristian; Bertrand, Loïc

    2015-09-01

    Patterns in rare earth element (REE) concentrations are essential instruments to assess geochemical processes in Earth and environmental sciences. Excursions in the "cerium anomaly" are widely used to inform on past redox conditions in sediments. This proxy resources to the specificity of cerium to adopt both the +III and +IV oxidation states, while most rare earths are purely trivalent and share very similar reactivity and transport properties. In practical terms, the level of cerium anomaly is established through elemental point quantification and profiling. All these models rely on a supposed homogeneity of the cerium oxidation state within the samples. However, this has never been demonstrated, whereas the cerium concentration can significantly vary within a sample, as shown for fossils, which would vastly complicate interpretation of REE patterns. Here, we report direct micrometric mapping of Ce speciation through synchrotron X-ray absorption spectroscopy and production of local rare earth patterns in paleontological fossil tissues through X-ray fluorescence mapping. The sensitivity of the approach is demonstrated on well-preserved fishes and crustaceans from the Late Cretaceous (ca. 95 million years (Myr) old). The presence of Ce under the +IV form within the fossil tissues is attributed to slightly oxidative local conditions of burial and agrees well with the limited negative cerium anomaly observed in REE patterns. The [Ce(IV)]/[Ce(tot)] ratio appears remarkably stable at the microscale within each fossil and is similar between fossils from the locality. Speciation maps were obtained from an original combination of synchrotron microbeam X-ray fluorescence, absorption spectroscopy, and diffraction, together with light and electron microscopy. This work also highlights the need for more systematic studies of cerium geochemistry at the microscale in paleontological contexts, in particular across fossil histologies.

  5. A unified anatomy ontology of the vertebrate skeletal system.

    PubMed

    Dahdul, Wasila M; Balhoff, James P; Blackburn, David C; Diehl, Alexander D; Haendel, Melissa A; Hall, Brian K; Lapp, Hilmar; Lundberg, John G; Mungall, Christopher J; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E; Vickaryous, Matthew K; Westerfield, Monte; Mabee, Paula M

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity.

  6. A Unified Anatomy Ontology of the Vertebrate Skeletal System

    PubMed Central

    Dahdul, Wasila M.; Balhoff, James P.; Blackburn, David C.; Diehl, Alexander D.; Haendel, Melissa A.; Hall, Brian K.; Lapp, Hilmar; Lundberg, John G.; Mungall, Christopher J.; Ringwald, Martin; Segerdell, Erik; Van Slyke, Ceri E.; Vickaryous, Matthew K.; Westerfield, Monte; Mabee, Paula M.

    2012-01-01

    The skeleton is of fundamental importance in research in comparative vertebrate morphology, paleontology, biomechanics, developmental biology, and systematics. Motivated by research questions that require computational access to and comparative reasoning across the diverse skeletal phenotypes of vertebrates, we developed a module of anatomical concepts for the skeletal system, the Vertebrate Skeletal Anatomy Ontology (VSAO), to accommodate and unify the existing skeletal terminologies for the species-specific (mouse, the frog Xenopus, zebrafish) and multispecies (teleost, amphibian) vertebrate anatomy ontologies. Previous differences between these terminologies prevented even simple queries across databases pertaining to vertebrate morphology. This module of upper-level and specific skeletal terms currently includes 223 defined terms and 179 synonyms that integrate skeletal cells, tissues, biological processes, organs (skeletal elements such as bones and cartilages), and subdivisions of the skeletal system. The VSAO is designed to integrate with other ontologies, including the Common Anatomy Reference Ontology (CARO), Gene Ontology (GO), Uberon, and Cell Ontology (CL), and it is freely available to the community to be updated with additional terms required for research. Its structure accommodates anatomical variation among vertebrate species in development, structure, and composition. Annotation of diverse vertebrate phenotypes with this ontology will enable novel inquiries across the full spectrum of phenotypic diversity. PMID:23251424

  7. Triple oxygen isotopes and clumped isotopes in modern vertebrate and dinosaur biominerals: Records of paleoecology, paleoaridity, and paleo-carbon-cycling

    NASA Astrophysics Data System (ADS)

    Hu, H.; Passey, B. H.; Lehmann, S. B.; Levin, N. E.; Montanari, S.; Chin, K.; Johnson, B. J.

    2015-12-01

    The parameter Δ17O describes the departure of δ17O from an expected equilibrium relationship with δ18O, which can be caused by factors such as evaporation of parent waters, and photochemical reactions among oxygen-bearing gases in stratosphere. Hence, the Δ17O of water records information about environmental aridity, and the Δ17O of atmospheric O2 is related to atmospheric concentrations of CO2 and O2, and gross primary productivity (GPP). Vertebrates incorporate Δ17O signals of input water (e.g. drinking water and free food water) and atmospheric O2 into body water through respiration, and biominerals forming in equilibrium with body water can preserve this signal over geological timescales. The preservation of fossil biominerals can be evaluated by clumped isotopes as they record the temperature of mineralization, be it primary mineralization in the living animal (at body temperature), or secondary mineralization during diagenesis. We can distinguish the alteration of samples from the deviation between observed clumped isotope temperatures and plausible body temperatures. Meanwhile, diagenesis tends to moderate Δ17O of biominerals towards Δ17O of meteoric waters, such that measured Δ17O values reflect the minimum anomaly in fossil samples. Thus, preservation of anomalous Δ17O indicates at least partial preservation of the original signal. We present Δ17O data from both modern vertebrate and fossil dinosaur biominerals. We use a 17O-enabled body water model to explore the influence of aridity and dietary ecology on animal Δ17O, and to predict the degree of dilution of the atmospheric O2 Δ17O signal by other sources of oxygen to the animal. We observe: 1) animals consuming more leaf water than drinking water are "evaporation sensitive" (ES) animals, and have lower Δ17O relative to "evaporation insensitive" animals in the same climates; 2) ES animals from arid climates have lower Δ17O values compared to ES animals from humid climates, which forms the

  8. Fossil Energy: Drivers and Challenges.

    NASA Astrophysics Data System (ADS)

    Friedmann, Julio

    2007-04-01

    Concerns about rapid economic growth, energy security, and global climate change have created a new landscape for fossil energy exploration, production, and utilization. Since 85% of primary energy supply comes from fossil fuels, and 85% of greenhouse gas emissions come from fossil fuel consumption, new and difficult technical and political challenges confront commercial, governmental, and public stakeholders. As such, concerns over climate change are explicitly weighed against security of international and domestic energy supplies, with economic premiums paid for either or both. Efficiency improvements, fuel conservation, and deployment of nuclear and renewable supplies will help both concerns, but are unlikely to offset growth in the coming decades. As such, new technologies and undertakings must both provide high quality fossil energy with minimal environmental impacts. The largest and most difficult of these undertakings is carbon management, wherein CO2 emissions are sequestered indefinitely at substantial incremental cost. Geological formations provide both high confidence and high capacity for CO2 storage, but present scientific and technical challenges. Oil and gas supply can be partially sustained and replaced through exploitation of unconventional fossil fuels such as tar-sands, methane hydrates, coal-to-liquids, and oil shales. These fuels provide enormous reserves that can be exploited at current costs, but generally require substantial energy to process. In most cases, the energy return on investment (EROI) is dropping, and unconventional fuels are generally more carbon intensive than conventional, presenting additional carbon management challenges. Ultimately, a large and sustained science and technology program akin to the Apollo project will be needed to address these concerns. Unfortunately, real funding in energy research has dropped dramatically (75%) in the past three decades, and novel designs in fission and fusion are not likely to provide any

  9. Divergence time estimates of mammals from molecular clocks and fossils: relevance of new fossil finds from India.

    PubMed

    Prasad, G V R

    2009-11-01

    This paper presents a brief review of recent advances in the classification of mammals at higher levels using fossils and molecular clocks. It also discusses latest fossil discoveries from the Cretaceous - Eocene (66-55 m.y.) rocks of India and their relevance to our current understanding of placental mammal origins and diversifications.

  10. Cervical vertebral erosion caused by bilateral vertebral artery tortuosity, predisposing to spinal, sprain: A medieval case study.

    PubMed

    Darton, Yves

    2014-03-01

    Bone resorption within the cervical spine due to vertebral arterial tortuosities is rarely observed in medical practice because the condition often lacks clinical symptoms. Traumatic complications involving the vertebral arteries are relatively common and occasionally very serious, but very few affect bone, appearing only when survival has been sufficiently long for a pseudoaneurysm to form. CT scans and MRI screening, practised increasingly today following traffic and sports accidents, incidentally show that arterial tortuosities that had stimulated bone resorption are relatively frequent. Only rarely do such tortuosities cause nerve compression or trigger orthopaedic problems, while large pseudoaneurysms and congenital absence of a vertebral pedicle may require surgery to stabilize the spine. There are few publications by palaeopathologists reporting such conditions of the cervical vertebrae. This contribution reports a case of a tiered bilateral tortuosity of the vertebral artery dating from the Early Middle Ages; it provides a basis by which to recognize this type of lesion in osteoarchaeology, and it attests to the fact that multiple tortuosities may lead to spinal instability in the form of spine sprain. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. The vertebral column of Australopithecus sediba.

    PubMed

    Williams, Scott A; Ostrofsky, Kelly R; Frater, Nakita; Churchill, Steven E; Schmid, Peter; Berger, Lee R

    2013-04-12

    Two partial vertebral columns of Australopithecus sediba grant insight into aspects of early hominin spinal mobility, lumbar curvature, vertebral formula, and transitional vertebra position. Au. sediba likely possessed five non-rib-bearing lumbar vertebrae and five sacral elements, the same configuration that occurs modally in modern humans. This finding contrasts with other interpretations of early hominin regional vertebral numbers. Importantly, the transitional vertebra is distinct from and above the last rib-bearing vertebra in Au. sediba, resulting in a functionally longer lower back. This configuration, along with a strongly wedged last lumbar vertebra and other indicators of lordotic posture, would have contributed to a highly flexible spine that is derived compared with earlier members of the genus Australopithecus and similar to that of the Nariokotome Homo erectus skeleton.

  12. Dental development in living and fossil orangutans.

    PubMed

    Smith, Tanya M

    2016-05-01

    Numerous studies have investigated molar development in extant and fossil hominoids, yet relatively little is known about orangutans, the only great ape with an extensive fossil record. This study characterizes aspects of dental development, including cuspal enamel daily secretion rate, long-period line periodicities, cusp-specific molar crown formation times and extension rates, and initiation and completion ages in living and fossil orangutan postcanine teeth. Daily secretion rate and periodicities in living orangutans are similar to previous reports, while crown formation times often exceed published values, although direct comparisons are limited. One wild Bornean individual died at 4.5 years of age with fully erupted first molars (M1s), while a captive individual and a wild Sumatran individual likely erupted their M1s around five or six years of age. These data underscore the need for additional samples of orangutans of known sex, species, and developmental environment to explore potential sources of variation in molar emergence and their relationship to life history variables. Fossil orangutans possess larger crowns than living orangutans, show similarities in periodicities, and have faster daily secretion rate, longer crown formation times, and slower extension rates. Molar crown formation times exceed reported values for other fossil apes, including Gigantopithecus blacki. When compared to African apes, both living and fossil orangutans show greater cuspal enamel thickness values and periodicities, resulting in longer crown formation times and slower extension rates. Several of these variables are similar to modern humans, representing examples of convergent evolution. Molar crown formation does not appear to be equivalent among extant great apes or consistent within living and fossil members of Pongo or Homo. Copyright © 2016 The Author. Published by Elsevier Ltd.. All rights reserved.

  13. Publications - PDF 98-37C | Alaska Division of Geological & Geophysical

    Science.gov Websites

    Bison Fossils; C14; Fossils; Geologic Map; Geology; Gold; Holocene; Mammoth Fossils; Measured Sections Geology; Vertebrate Fossils Top of Page Department of Natural Resources, Division of Geological &

  14. [Infrared spectroscopy and XRD studies of coral fossils].

    PubMed

    Chen, Quan-li; Zhou, Guan-min; Yin, Zuo-wei

    2012-08-01

    Coral fossil is an old remain of multicellular animal on the earth, and formed by various geological processes. The structural characteristics and compositions of the coral fossils with different color and radial texture on the surface were studied by infrared absorption spectroscopy and X-ray powder diffraction analyses. The results show that the studied coral fossils mainly are composed of SiO2, and the radial microstructure characterized by the calcareous coral cross-section is preserved. It is formed by metasomatism by SiO2. The infrared absorption spectra of the coral fossil with different color and texture are essentially the same, showing typical infrared absorption spectra of the quartz jade. XRD analysis shows that the main components of the coral fossils with different color and texture are consistent and mainly composed of SiO2 with a trace amount of other minerals and without CaCO3.

  15. Fossil energy biotechnology: A research needs assessment. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-11-01

    The Office of Program Analysis of the US Department of Energy commissioned this study to evaluate and prioritize research needs in fossil energy biotechnology. The objectives were to identify research initiatives in biotechnology that offer timely and strategic options for the more efficient and effective uses of the Nation`s fossil resource base, particularly the early identification of new and novel applications of biotechnology for the use or conversion of domestic fossil fuels. Fossil energy biotechnology consists of a number of diverse and distinct technologies, all related by the common denominator -- biocatalysis. The expert panel organized 14 technical subjects intomore » three interrelated biotechnology programs: (1) upgrading the fuel value of fossil fuels; (2) bioconversion of fossil feedstocks and refined products to added value chemicals; and, (3) the development of environmental management strategies to minimize and mitigate the release of toxic and hazardous petrochemical wastes.« less

  16. Using Strong Gravitational Lensing to Identify Fossil Group Progenitors

    NASA Astrophysics Data System (ADS)

    Johnson, Lucas E.; Irwin, Jimmy A.; White, Raymond E., III; Wong, Ka-Wah; Maksym, W. Peter; Dupke, Renato A.; Miller, Eric D.; Carrasco, Eleazar R.

    2018-04-01

    Fossil galaxy systems are classically thought to be the end result of galaxy group/cluster evolution, as galaxies experiencing dynamical friction sink to the center of the group potential and merge into a single, giant elliptical that dominates the rest of the members in both mass and luminosity. Most fossil systems discovered lie within z < 0.2, which leads to the question, what were these systems’ progenitors? Such progenitors are expected to have imminent or ongoing major merging near the brightest group galaxy that, when concluded, will meet the fossil criteria within the look forward time. Since strong gravitational lensing preferentially selects groups merging along the line of sight, or systems with a high mass concentration like fossil systems, we searched the CASSOWARY survey of strong-lensing events with the goal of determining whether lensing systems have any predisposition to being fossil systems or progenitors. We find that ∼13% of lensing groups are identified as traditional fossils while only ∼3% of nonlensing control groups are. We also find that ∼23% of lensing systems are traditional fossil progenitors compared to ∼17% for the control sample. Our findings show that strong-lensing systems are more likely to be fossil/pre-fossil systems than comparable nonlensing systems. Cumulative galaxy luminosity functions of the lensing and nonlensing groups also indicate a possible, fundamental difference between strong-lensing and nonlensing systems’ galaxy populations, with lensing systems housing a greater number of bright galaxies even in the outskirts of groups.

  17. Worldwide prevalence and incidence of osteoporotic vertebral fractures.

    PubMed

    Ballane, G; Cauley, J A; Luckey, M M; El-Hajj Fuleihan, G

    2017-05-01

    We investigated the prevalence and incidence of vertebral fractures worldwide. We used a systematic Medline search current to 2015 and updated as per authors' libraries. A total of 62 articles of fair to good quality and comparable methods for vertebral fracture identification were considered. The prevalence of morphometric vertebral fractures in European women is highest in Scandinavia (26%) and lowest in Eastern Europe (18%). Prevalence rates in North America (NA) for White women ≥50 are 20-24%, with a White/Black ratio of 1.6. Rates in women ≥50 years in Latin America are overall lower than Europe and NA (11-19%). In Asia, rates in women above ≥65 are highest in Japan (24%), lowest in Indonesia (9%), and in the Middle East, Lebanon, rates are 20%. The highest-lowest ratio between countries, within and across continents, varied from 1.4-2.6. Incidence data is less abundant and more heterogeneous. Age-standardized rates in studies combining hospitalized and ambulatory vertebral fractures are highest in South Korea, USA, and Hong Kong and lowest in the UK. Neither a North-South gradient nor a relation to urbanization is evident. Conversely, the incidence of hospitalized vertebral fractures in European patients ≥50 shows a North-South gradient with 3-3.7-fold variability. In the USA, rates in Whites are approximately 4-fold higher than in Blacks. Vertebral fractures variation worldwide is lower than observed with hip fractures, and some of highest rates are unexpectedly from Asia. Better quality representative studies are needed. We investigate the occurrence of vertebral fractures, worldwide, using published data current until the present. Worldwide, the variation in vertebral fractures is lower than observed for hip fractures. Some of the highest rates are from North America and unexpectedly Asia. The highest-lowest ratio between countries, within and across continents, varied from 1.4-2.6. Better quality representative data is needed.

  18. Staff Directory, Department of Vertebrate Zoology, NMNH

    Science.gov Websites

    Research & Collections About Us Get Involved Calendar Department ofVertebrate Zoology Chestnut Mammals VZ Online Newsletter Visitor Information Research Fellowships Volunteers and Interns VZ Libraries Staff Contact Us NMNH Home › Research & Collections › Vertebrate Zoology › Staff Directory

  19. Neutron Tomography and X-ray Tomography as Tools for the Morphological Investigation of Non-mammalian Synapsids

    NASA Astrophysics Data System (ADS)

    Laaß, Michael; Schillinger, Burkhard; Werneburg, Ingmar

    As having evolved on the stem line of mammals, the taxonomy and phylogeny of therapsids (Synapsida) are of special interest with respect to early mammalian evolution. Due to the fact that in most cases soft tissue of fossil vertebrates is not preserved, species can only be distinguished by diagnosis of morphological features of the skeleton. Moreover, investigations of vertebrate fossils are often obstructed, because internal cranial anatomy is usually hidden and parts of the fossils may be embedded in stone matrix. As a consequence, most species of non-mammalian synapsids were only defined on the basis of external skeletal features. Our investigations on Diictodon skulls (Therapsida, Anomodontia) show that non-destructive methods are very useful to clearly distinguish fossil species. We, therefore, propose using modern non-destructive techniques such as neutron tomography, synchrotron tomography, and micro-computed tomography (μCT) as standard tools for the investigation and virtual reconstruction of fossils and to include features of the internal cranial anatomy into morphological descriptions and phylogenetic analyses of fossil vertebrates.

  20. THE NATURE OF FOSSIL GALAXY GROUPS: ARE THEY REALLY FOSSILS?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Barbera, F.; Sorrentino, G.; De Carvalho, R. R.

    We use SDSS-DR4 photometric and spectroscopic data out to redshift z {approx} 0.1 combined with ROSAT All Sky Survey X-ray data to produce a sample of 25 fossil groups (FGs), defined as bound systems dominated by a single, luminous elliptical galaxy with extended X-ray emission. We examine possible biases introduced by varying the parameters used to define the sample, and the main pitfalls are also discussed. The spatial density of FGs, estimated via the V/V {sub MAX} test, is 2.83 x 10{sup -6} h {sup 3} {sub 75} Mpc{sup -3} for L{sub X} > 0.89 x 10{sup 42} h {supmore » -2} {sub 75} erg s{sup -1} consistent with Vikhlinin et al., who examined an X-ray overluminous elliptical galaxy sample (OLEG). We compare the general properties of FGs identified here with a sample of bright field ellipticals generated from the same data set. These two samples show no differences in the distribution of neighboring faint galaxy density excess, distance from the red sequence in the color-magnitude diagram, and structural parameters such as a {sub 4} and internal color gradients. Furthermore, examination of stellar populations shows that our 25 FGs have similar ages, metallicities, and {alpha}-enhancement as the bright field ellipticals, undermining the idea that these systems represent fossils of a physical mechanism that occurred at high redshift. Our study reveals no difference between FGs and field ellipticals, suggesting that FGs might not be a distinct family of true fossils, but rather the final stage of mass assembly in the universe.« less

  1. The origin of the vertebrate skeleton

    NASA Astrophysics Data System (ADS)

    Pivar, Stuart

    2011-01-01

    The anatomy of the human and other vertebrates has been well described since the days of Leonardo da Vinci and Vesalius. The causative origin of the configuration of the bones and of their shapes and forms has been addressed over the ensuing centuries by such outstanding investigators as Goethe, Von Baer, Gegenbauer, Wilhelm His and D'Arcy Thompson, who sought to apply mechanical principles to morphogenesis. However, no coherent causative model of morphogenesis has ever been presented. This paper presents a causative model for the origin of the vertebrate skeleton, based on the premise that the body is a mosaic enlargement of self-organized patterns engrained in the membrane of the egg cell. Drawings illustrate the proposed hypothetical origin of membrane patterning and the changes in the hydrostatic equilibrium of the cytoplasm that cause topographical deformations resulting in the vertebrate body form.

  2. An invertebrate stomach's view on vertebrate ecology: certain invertebrates could be used as "vertebrate samplers" and deliver DNA-based information on many aspects of vertebrate ecology.

    PubMed

    Calvignac-Spencer, Sébastien; Leendertz, Fabian H; Gilbert, M Thomas P; Schubert, Grit

    2013-11-01

    Recent studies suggest that vertebrate genetic material ingested by invertebrates (iDNA) can be used to investigate vertebrate ecology. Given the ubiquity of invertebrates that feed on vertebrates across the globe, iDNA might qualify as a very powerful tool for 21st century population and conservation biologists. Here, we identify some invertebrate characteristics that will likely influence iDNA retrieval and elaborate on the potential uses of invertebrate-derived information. We hypothesize that beyond inventorying local faunal diversity, iDNA should allow for more profound insights into wildlife population density, size, mortality, and infectious agents. Based on the similarities of iDNA with other low-quality sources of DNA, a general technical framework for iDNA analyses is proposed. As it is likely that no such thing as a single ideal iDNA sampler exists, forthcoming research efforts should aim at cataloguing invertebrate properties relevant to iDNA retrieval so as to guide future usage of the invertebrate tool box. © 2013 WILEY Periodicals, Inc.

  3. Fossil Cores In The Kepler Data

    NASA Astrophysics Data System (ADS)

    Jackson, Brian

    Most gas giant exoplanets with orbital periods < few days are unstable against tidal decay and may be tidally disrupted before their host stars leave the main sequence. These gas giants probably contain rocky/icy cores, and so their cores will be stranded near their progenitor's Roche limit (few hours orbital period). These fossil cores will evade the Kepler mission's transit search because it is focused on periods > 0.5 days, but finding these fossil cores would provide unprecedented insights into planetary interiors and formation ? e.g., they would be a smoking gun favoring formation of gas giants via core accretion. We propose to search for and characterize fossil cores in the Kepler dataset. We will vet candidates using the Kepler photometry and auxiliary data, collect ground-based spectra of the host stars and radial-velocity (RV) and adaptive optics (AO) data to corroborate candidates. We will also constrain stellar tidal dissipation efficiencies (parameterized by Q) by determining our survey's completeness, elucidating dynamical origins and evolution of exoplanets even if we find no fossil cores. Our preliminary search has already found several dozen candidates, so the proposed survey has a high likelihood of success.

  4. Fossil Crustaceans as Parasites and Hosts.

    PubMed

    Klompmaker, Adiël A; Boxshall, Geoff A

    2015-01-01

    Numerous crustacean lineages have independently moved into parasitism as a mode of life. In modern marine ecosystems, parasitic crustaceans use representatives from many metazoan phyla as hosts. Crustaceans also serve as hosts to a rich diversity of parasites, including other crustaceans. Here, we show that the fossil record of such parasitic interactions is sparse, with only 11 examples, one dating back to the Cambrian. This may be due to the limited preservation potential and small size of parasites, as well as to problems with ascribing traces to parasitism with certainty, and to a lack of targeted research. Although the confirmed stratigraphic ranges are limited for nearly every example, evidence of parasitism related to crustaceans has become increasingly more complete for isopod-induced swellings in decapods so that quantitative analyses can be carried out. Little attention has yet been paid to the origin of parasitism in deep time, but insight can be generated by integrating data on fossils with molecular studies on modern parasites. In addition, there are other traces left by parasites that could fossilize, but have not yet been recognized in the fossil record. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Fossil Energy organization restructured

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Department of Energy has restructured its fossil energy organization to accommodate increases in activity and visibility of the President's $2.5 billion clean coal technology initiative. The realignment also includes changes in the coal research and development program and in supporting staff functions. In the coal program, changes in the organization include the establishment of two associate deputy assistant secretaries, both reporting to the deputy Assistant Secretary for Coal Technology. One associate deputy assistant secretary will oversee the Clean Coal Technology Program. A second associate deputy assistant secretary will manage the coal research and development program. An organizational chart illustratesmore » the new fossil energy headquarters organization.« less

  6. The largest fossil rodent

    PubMed Central

    Rinderknecht, Andrés; Blanco, R. Ernesto

    2008-01-01

    The discovery of an exceptionally well-preserved skull permits the description of the new South American fossil species of the rodent, Josephoartigasia monesi sp. nov. (family: Dinomyidae; Rodentia: Hystricognathi: Caviomorpha). This species with estimated body mass of nearly 1000 kg is the largest yet recorded. The skull sheds new light on the anatomy of the extinct giant rodents of the Dinomyidae, which are known mostly from isolated teeth and incomplete mandible remains. The fossil derives from San José Formation, Uruguay, usually assigned to the Pliocene–Pleistocene (4–2 Myr ago), and the proposed palaeoenvironment where this rodent lived was characterized as an estuarine or deltaic system with forest communities. PMID:18198140

  7. Synthesizing and databasing fossil calibrations: divergence dating and beyond

    PubMed Central

    Ksepka, Daniel T.; Benton, Michael J.; Carrano, Matthew T.; Gandolfo, Maria A.; Head, Jason J.; Hermsen, Elizabeth J.; Joyce, Walter G.; Lamm, Kristin S.; Patané, José S. L.; Phillips, Matthew J.; Polly, P. David; Van Tuinen, Marcel; Ware, Jessica L.; Warnock, Rachel C. M.; Parham, James F.

    2011-01-01

    Divergence dating studies, which combine temporal data from the fossil record with branch length data from molecular phylogenetic trees, represent a rapidly expanding approach to understanding the history of life. National Evolutionary Synthesis Center hosted the first Fossil Calibrations Working Group (3–6 March, 2011, Durham, NC, USA), bringing together palaeontologists, molecular evolutionists and bioinformatics experts to present perspectives from disciplines that generate, model and use fossil calibration data. Presentations and discussions focused on channels for interdisciplinary collaboration, best practices for justifying, reporting and using fossil calibrations and roadblocks to synthesis of palaeontological and molecular data. Bioinformatics solutions were proposed, with the primary objective being a new database for vetted fossil calibrations with linkages to existing resources, targeted for a 2012 launch. PMID:21525049

  8. Suzaku Finds "Fossil" Fireballs from Supernovae

    NASA Image and Video Library

    2017-12-08

    Suzaku Finds "Fossil" Fireballs from Supernovae In a supernova remnant known as the Jellyfish Nebula, Suzaku detected X-rays from fully ionized silicon and sulfur -- an imprint of higher-temperature conditions immediately following the star's explosion. The nebula is about 65 light-years across. (12/30/2009) Credit: JAXA/NASA/Suzaku To learn more go to: www.nasa.gov/mission_pages/astro-e2/news/fossil-fireballs...

  9. Comparative analysis of the integument transcriptomes of the black dilute mutant and the wild-type silkworm Bombyx mori

    PubMed Central

    Wu, Songyuan; Tong, Xiaoling; Peng, Chenxing; Xiong, Gao; Lu, Kunpeng; hu, Hai; Tan, Duan; Li, Chunlin; Han, Minjin; Lu, Cheng; Dai, Fangyin

    2016-01-01

    The insect cuticle is a critical protective shell that is composed predominantly of chitin and various cuticular proteins and pigments. Indeed, insects often change their surface pigment patterns in response to selective pressures, such as threats from predators, sexual selection and environmental changes. However, the molecular mechanisms underlying the construction of the epidermis and its pigmentation patterns are not fully understood. Among Lepidoptera, the silkworm is a favorable model for color pattern research. The black dilute (bd) mutant of silkworm is the result of a spontaneous mutation; the larval body color is notably melanized. We performed integument transcriptome sequencing of the wild-type strain Dazao and the mutant strains +/bd and bd/bd. In these experiments, during an early stage of the fourth molt, a stage at which approximately 51% of genes were expressed genome wide (RPKM ≥1) in each strain. A total of 254 novel transcripts were characterized using Cuffcompare and BLAST analyses. Comparison of the transcriptome data revealed 28 differentially expressed genes (DEGs) that may contribute to bd larval melanism, including 15 cuticular protein genes that were remarkably highly expressed in the bd/bd mutant. We suggest that these significantly up-regulated cuticular proteins may promote melanism in silkworm larvae. PMID:27193628

  10. iDNA screening: Disease vectors as vertebrate samplers.

    PubMed

    Kocher, Arthur; de Thoisy, Benoit; Catzeflis, François; Valière, Sophie; Bañuls, Anne-Laure; Murienne, Jérôme

    2017-11-01

    In the current context of global change and human-induced biodiversity decline, there is an urgent need for developing sampling approaches able to accurately describe the state of biodiversity. Traditional surveys of vertebrate fauna involve time-consuming and skill-demanding field methods. Recently, the use of DNA derived from invertebrate parasites (leeches and blowflies) was suggested as a new tool for vertebrate diversity assessment. Bloodmeal analyses of arthropod disease vectors have long been performed to describe their feeding behaviour, for epidemiological purposes. On the other hand, this existing expertise has not yet been applied to investigate vertebrate fauna per se. Here, we evaluate the usefulness of hematophagous dipterans as vertebrate samplers. Blood-fed sand flies and mosquitoes were collected in Amazonian forest sites and analysed using high-throughput sequencing of short mitochondrial markers. Bloodmeal identifications highlighted contrasting ecological features and feeding behaviour among dipteran species, which allowed unveiling arboreal and terrestrial mammals of various body size, as well as birds, lizards and amphibians. Additionally, lower vertebrate diversity was found in sites undergoing higher levels of human-induced perturbation. These results suggest that, in addition to providing precious information on disease vector host use, dipteran bloodmeal analyses may represent a useful tool in the study of vertebrate communities. Although further effort is required to validate the approach and consider its application to large-scale studies, this first work opens up promising perspectives for biodiversity monitoring and eco-epidemiology. © 2017 John Wiley & Sons Ltd.

  11. Evolution of the vertebrate phototransduction cascade activation steps.

    PubMed

    Lamb, Trevor D; Hunt, David M

    2017-11-01

    We examine the molecular phylogeny of the proteins underlying the activation steps of vertebrate phototransduction, for both agnathan and jawed vertebrate taxa. We expand the number of taxa analysed and we update the alignment and tree building methodology from a previous analysis. For each of the four primary components (the G-protein transducin alpha subunit, Gα T , the cyclic GMP phosphodiesterase, PDE6, and the alpha and beta subunits of the cGMP-gated ion channel, CNGC), the phylogenies appear consistent with expansion from an ancestral proto-vertebrate cascade during two rounds of whole-genome duplication followed by divergence of the agnathan and jawed vertebrate lineages. In each case, we consider possible scenarios for the underlying gene duplications and losses, and we apply relevant constraints to the tree construction. From tests of the topology of the resulting trees, we obtain a scenario for the expansion of each component during 2R that accurately fits the observations. Similar analysis of the visual opsins indicates that the only expansion to have occurred during 2R was the formation of Rh1 and Rh2. Finally, we propose a hypothetical scenario for the conversion of an ancestral chordate cascade into the proto-vertebrate phototransduction cascade, prior to whole-genome duplication. Together, our models provide a plausible account for the origin and expansion of the vertebrate phototransduction cascade. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Evolution of vertebrate sex chromosomes and dosage compensation.

    PubMed

    Graves, Jennifer A Marshall

    2016-01-01

    Differentiated sex chromosomes in mammals and other vertebrates evolved independently but in strikingly similar ways. Vertebrates with differentiated sex chromosomes share the problems of the unequal expression of the genes borne on sex chromosomes, both between the sexes and with respect to autosomes. Dosage compensation of genes on sex chromosomes is surprisingly variable - and can even be absent - in different vertebrate groups. Systems that compensate for different gene dosages include a wide range of global, regional and gene-by-gene processes that differ in their extent and their molecular mechanisms. However, many elements of these control systems are similar across distant phylogenetic divisions and show parallels to other gene silencing systems. These dosage systems cannot be identical by descent but were probably constructed from elements of ancient silencing mechanisms that are ubiquitous among vertebrates and shared throughout eukaryotes.

  13. The fossil record of the sixth extinction.

    PubMed

    Plotnick, Roy E; Smith, Felisa A; Lyons, S Kathleen

    2016-05-01

    Comparing the magnitude of the current biodiversity crisis with those in the fossil record is difficult without an understanding of differential preservation. Integrating data from palaeontological databases with information on IUCN status, ecology and life history characteristics of contemporary mammals, we demonstrate that only a small and biased fraction of threatened species (< 9%) have a fossil record, compared with 20% of non-threatened species. We find strong taphonomic biases related to body size and geographic range. Modern species with a fossil record tend to be large and widespread and were described in the 19(th) century. The expected magnitude of the current extinction based only on species with a fossil record is about half of that of one based on all modern species; values for genera are similar. The record of ancient extinctions may be similarly biased, with many species having originated and gone extinct without leaving a tangible record. © 2016 John Wiley & Sons Ltd/CNRS.

  14. Use of cervical vertebral dimensions for assessment of children growth.

    PubMed

    Caldas, Maria de Paula; Ambrosano, Gláucia Maria Bovi; Haiter-Neto, Francisco

    2007-04-01

    The purpose of this study was to investigate whether skeletal maturation using cephalometric radiographs could be used in a Brazilian population. The study population was selected from the files of the Oral Radiological Clinic of the Dental School of Piracicaba, Brazil and consisted of 128 girls and 110 boys (7.0 to 15.9 years old) who had cephalometric and hand-wrist radiographs taken on the same day. Cervical vertebral bone age was evaluated using the method described by Mito and colleagues in 2002. Bone age was assessed by the Tanner-Whitehouse (TW3) method and was used as a gold standard to determine the reliability of cervical vertebral bone age. An analysis of variance and Tukey's post-hoc test were used to compare cervical vertebral bone age, bone age and chronological age at 5% significance level. The analysis of the Brazilian female children data showed that there was a statistically significant difference (p<0.05) between cervical vertebral bone age and chronological age and between bone age and chronological age. However no statistically significant difference (p>0.05) was found between cervical vertebral bone age and bone age. Differently, the analysis of the male children data revealed a statistically significant difference (p<0.05) between cervical vertebral bone age and bone age and between cervical vertebral bone age and chronological age (p<0.05). The findings of the present study suggest that the method for objectively evaluating skeletal maturation on cephalometric radiographs by determination of vertebral bone age can be applied to Brazilian females only. The development of a new method to objectively evaluate cervical vertebral bone age in males is needed.

  15. Evolutionary growth process of highly conserved sequences in vertebrate genomes.

    PubMed

    Ishibashi, Minaka; Noda, Akiko Ogura; Sakate, Ryuichi; Imanishi, Tadashi

    2012-08-01

    Genome sequence comparison between evolutionarily distant species revealed ultraconserved elements (UCEs) among mammals under strong purifying selection. Most of them were also conserved among vertebrates. Because they tend to be located in the flanking regions of developmental genes, they would have fundamental roles in creating vertebrate body plans. However, the evolutionary origin and selection mechanism of these UCEs remain unclear. Here we report that UCEs arose in primitive vertebrates, and gradually grew in vertebrate evolution. We searched for UCEs in two teleost fishes, Tetraodon nigroviridis and Oryzias latipes, and found 554 UCEs with 100% identity over 100 bps. Comparison of teleost and mammalian UCEs revealed 43 pairs of common, jawed-vertebrate UCEs (jUCE) with high sequence identities, ranging from 83.1% to 99.2%. Ten of them retain lower similarities to the Petromyzon marinus genome, and the substitution rates of four non-exonic jUCEs were reduced after the teleost-mammal divergence, suggesting that robust conservation had been acquired in the jawed vertebrate lineage. Our results indicate that prototypical UCEs originated before the divergence of jawed and jawless vertebrates and have been frozen as perfect conserved sequences in the jawed vertebrate lineage. In addition, our comparative sequence analyses of UCEs and neighboring regions resulted in a discovery of lineage-specific conserved sequences. They were added progressively to prototypical UCEs, suggesting step-wise acquisition of novel regulatory roles. Our results indicate that conserved non-coding elements (CNEs) consist of blocks with distinct evolutionary history, each having been frozen since different evolutionary era along the vertebrate lineage. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Coastal Microstructure: From Active Overturn to Fossil Turbulence

    NASA Astrophysics Data System (ADS)

    Tau Leung, Pak

    2011-11-01

    The Remote Anthropogenic Sensing Program was a five year effort (2001- 2005) to examine subsurface phenomena related to a sewage outfall off the coast of Oahu, Hawaii. This research has implications for basic ocean hydrodynamics, particularly for a greatly improved understanding of the evolution of turbulent patches. It was the first time a microstructure measurement was used to study such a buoyancy-driven turbulence generated by a sea-floor diffuser. In 2004, two stations were selected to represent the near field and ambient conditions. They have nearly identical bathymetrical and hydrographical features and provide an ideal environment for a control experiment. Repeated vertical microstructure measurements were performed at both stations for 20 days. A time series of physical parameters was collected and used for statistical analysis. After comparing the data from both stations, it can be concluded that the turbulent mixing generated by the diffuser contributes to the elevated dissipation rate observed in the pycnocline and bottom boundary layer. To further understand the mixing processes in both regions, data were plotted on a Hydrodynamic Phase Diagram. The overturning stages of the turbulent patches are identified by Hydrodynamic Phase Diagram. This technique provides detailed information on the evolution of the turbulent patches from active overturns to fossilized scalar microstructures in the water column. Results from this study offer new evidence to support the fossil turbulence theory. This study concluded that: 1. Field Data collected near a sea-floor outfall diffuser show that turbulent patches evolve from active (overturning) to fossil (buoyancy-inhibited) stages, consistent with the process of turbulent patch evolution proposed by fossil turbulence theory. 2. The data show that active (overturning) and fossil (buoyancy-inhibited) patches have smaller length scales than the active+fossil (intermediate) stage of patch evolution, consistent with fossil

  17. Are the oldest 'fossils', fossils

    NASA Technical Reports Server (NTRS)

    Schopf, J. W.

    1976-01-01

    A comparative statistical study has been carried out on populations of modern algae, Precambrian algal microfossils, the 'organized elements' of the Orgueil carbonaceous meteorite, and the oldest microfossil-like objects now known (spheroidal bodies from the Fig Tree and Onverwacht Groups of the Swaziland Supergroup, South Africa). The distribution patterns exhibited by the more than 3000 m.y.-old Swaziland microstructures bear considerable resemblance to those of the abiotic 'organized elements' but differ rather markedly from those exhibited by younger, assuredly biogenic, populations. Based on these comparisons, it is concluded that the Swaziland spheroids could be, at least in part, of nonbiologic origin; these oldest known fossil-like microstructures should not be regarded as constituting firm evidence of Archean life.

  18. Evolution of the β-adrenoreceptors in vertebrates.

    PubMed

    Zavala, Kattina; Vandewege, Michael W; Hoffmann, Federico G; Opazo, Juan C

    2017-01-01

    The study of the evolutionary history of genes related to human disease lies at the interface of evolution and medicine. These studies provide the evolutionary context on which medical researchers should work, and are also useful in providing information to suggest further genetic experiments, especially in model species where genetic manipulations can be made. Here we studied the evolution of the β-adrenoreceptor gene family in vertebrates with the aim of adding an evolutionary framework to the already abundant physiological information. Our results show that in addition to the three already described vertebrate β-adrenoreceptor genes there is an additional group containing cyclostome sequences. We suggest that β-adrenoreceptors diversified as a product of the two whole genome duplications that occurred in the ancestor of vertebrates. Gene expression patterns are in general consistent across species, suggesting that expression dynamics were established early in the evolutionary history of vertebrates, and have been maintained since then. Finally, amino acid polymorphisms that are associated to pathological conditions in humans appear to be common in non-human mammals, suggesting that the phenotypic effects of these mutations depend on epistatic interaction with other positions. The evolutionary analysis of the β-adrenoreceptors delivers new insights about the diversity of these receptors in vertebrates, the evolution of the expression patterns and a comparative perspective regarding the polymorphisms that in humans are linked to pathological conditions. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Tracing climatic conditions during the deposition of late Cretaceous-early Eocene phosphate beds in Morocco by geochemical compositions of biogenic apatite fossils

    NASA Astrophysics Data System (ADS)

    Kocsis, L.; Gheerbrant, E.; Mouflih, M.; Cappetta, H.; Yans, J.; Ulianov, A.; Amaghzaz, M.

    2012-04-01

    Morocco's Western Atlantic coast was covered by shallow seas during the late Cretaceous-early Eocene when large amount of phosphate rich sediments were deposited. This time interval envelops a major part of the last greenhouse period and gives the opportunity to study the event's characteristics in shallow water settings. These phosphate deposits are extremely rich in vertebrate fossils, while other types of fossils are rare or often poorly preserved. Hence the local stratigraphy is based on the most abundant marine vertebrate fossils, on the selachian fauna (sharks and rays). Our geochemical investigations were also carried out on these remains, though in some cases frequently found coprolites were involved as well. The main goal of our study was to test whether stable isotope compositions (δ18OPO4, δ13C) of these fossils reflect any of the hyperthermal events and/or the related perturbations in the carbon cycle during the early Paleogene (Lourens et al. 2005) and whether these geochemical signals can be used to refine the local stratigraphy. Additionally, the samples were analyzed for trace element composition in order to better assess local taphonomy and burial conditions. The samples came from two major phosphate regions, the Ouled Abdoun and the Ganntour Basins and they were collected either directly on the field during excavations (Sidi Chennane) or were obtained from museum collections with known stratigraphical position (Sidi Daoui, Ben Guerrir). The phosphate oxygen isotopic compositions of shark teeth display large range across the entire series (18.5-22.4 ) which can partly be related to the habitat of sharks. For instance the genus Striatolamnia often yielded the highest δ18O values indicating possible deep water habitat. Despite the large variation in δ18O values, a general isotope trend is apparent. In the Maastrichtian after a small negative shift, the δ18O values increase till the Danian from where the trend decrease till the Ypresian. The

  20. Gravidity, Parity and Vertebral Dimensions in the Northern Finland Birth Cohort 1966.

    PubMed

    Oura, Petteri; Paananen, Markus; Auvinen, Juha; Niinimäki, Jaakko; Niinimäki, Maarit; Karppinen, Jaro; Junno, Juho-Antti

    2018-03-15

    A population-based birth cohort study. To investigate the association between gravidity, parity and vertebral geometry among middle-aged women. Vertebral size is a recognized determinant of vertebral fracture risk. Yet only a few lifestyle factors that influence vertebral size are known. Pregnancy is a labile period which may affect the maternal vertebral size or shape. The lumbar lordosis angle is permanently deepened by pregnancy, but it remains unclear whether vertebral shape or size contribute to this deepened angle. We aimed to investigate whether gravidity and parity were associated with vertebral cross-sectional area (CSA) and height ratio (anterior height: posterior height) among 705 middle-aged women from the Northern Finland Birth Cohort 1966. We measured the corpus of their fourth lumbar vertebra using magnetic resonance imaging of the lumbar spine at the age of 46. Gravidity and parity were elicited using a questionnaire also at the age of 46. Linear regression analysis was used with adjustments for body mass index, vertebral CSA (height ratio models), and vertebral height (CSA models). We also ran a subgroup analysis which did not include nulliparous women, and we compared nulliparous women with grand multiparous women. The models found no statistically significant associations between the predictors and outcomes. Crude and adjusted results were highly similar, and the subgroup analyses provided analogous results. Pregnancy, or even multiple pregnancies, do not seem to have long-term effects on vertebral geometry. In order to enhance the prevention of vertebral fractures, future studies should aim to reveal more lifestyle determinants of vertebral size. 3.

  1. Gout and the Risk of Non-vertebral Fracture

    PubMed Central

    Kim, Seoyoung C.; Paik, Julie M.; Liu, Jun; Curhan, Gary C.; Solomon, Daniel H.

    2016-01-01

    Prior studies suggest an association between osteoporosis, systemic inflammation and pro-inflammatory cytokines such as IL-1 and IL-6. Conflicting findings exist on the association between hyperuricemia and osteoporosis. Furthermore, it remains unknown whether gout, a common inflammatory arthritis, affects fracture risk. Using data from a US commercial health plan (2004–2013), we evaluated the risk of non-vertebral fracture (i.e. forearm, wrist, hip and pelvis) in patients with gout versus those without. Gout patients were identified with ≥2 diagnosis codes and ≥1 dispensing for a gout-related drug. Non-gout patients, identified with ≥2 visits coded for any diagnosis and ≥1 dispensing for any prescription drugs, were free of gout diagnosis and received no gout-related drugs. Hip fracture was the secondary outcome. Fractures were identified with a combination of diagnosis and procedure codes. Cox proportional hazards models compared the risk of non-vertebral fracture in gout patients versus non-gout, adjusting for over 40 risk factors for osteoporotic fracture. Among gout patients with baseline serum uric acid (sUA) measurements available, we assessed the risk of non-vertebral fracture associated with sUA. We identified 73,202 gout and 219,606 non-gout patients, matched on age, sex, and the date of study entry. The mean age was 60 years and 82% were men. Over the mean 2-year follow-up, the incidence rate of non-vertebral fracture per 1,000 person-years was 2.92 in gout and 2.66 in non-gout. The adjusted hazard ratio (HR) was 0.98 (95%CI 0.85–1.12) for non-vertebral fracture and 0.83 (95%CI 0.65–1.07) for hip fracture in gout versus non-gout. Subgroup analysis (n=15,079) showed no association between baseline sUA and non-vertebral fracture (HR 1.03, 95%CI 0.93–1.15), adjusted for age, sex, comorbidity score and number of any prescription drugs. Gout was not associated with a risk of non-vertebral fracture. Among patients with gout, sUA was not

  2. Gout and the Risk of Non-vertebral Fracture.

    PubMed

    Kim, Seoyoung C; Paik, Julie M; Liu, Jun; Curhan, Gary C; Solomon, Daniel H

    2017-02-01

    Prior studies suggest an association between osteoporosis, systemic inflammation, and pro-inflammatory cytokines such as interleukin (IL)-1 and IL-6. Conflicting findings exist on the association between hyperuricemia and osteoporosis. Furthermore, it remains unknown whether gout, a common inflammatory arthritis, affects fracture risk. Using data from a US commercial health plan (2004-2013), we evaluated the risk of non-vertebral fracture (ie, forearm, wrist, hip, and pelvis) in patients with gout versus those without. Gout patients were identified with ≥2 diagnosis codes and ≥1 dispensing for a gout-related drug. Non-gout patients, identified with ≥2 visits coded for any diagnosis and ≥1 dispensing for any prescription drugs, were free of gout diagnosis and received no gout-related drugs. Hip fracture was the secondary outcome. Fractures were identified with a combination of diagnosis and procedure codes. Cox proportional hazards models compared the risk of non-vertebral fracture in gout patients versus non-gout, adjusting for more than 40 risk factors for osteoporotic fracture. Among gout patients with baseline serum uric acid (sUA) measurements available, we assessed the risk of non-vertebral fracture associated with sUA. We identified 73,202 gout and 219,606 non-gout patients, matched on age, sex, and the date of study entry. The mean age was 60 years and 82% were men. Over the mean 2-year follow-up, the incidence rate of non-vertebral fracture per 1,000 person-years was 2.92 in gout and 2.66 in non-gout. The adjusted hazard ratio (HR) was 0.98 (95% confidence interval [CI] 0.85-1.12) for non-vertebral fracture and 0.83 (95% CI 0.65-1.07) for hip fracture in gout versus non-gout. Subgroup analysis (n = 15,079) showed no association between baseline sUA and non-vertebral fracture (HR = 1.03, 95% CI 0.93-1.15), adjusted for age, sex, comorbidity score, and number of any prescription drugs. Gout was not associated with a risk of non-vertebral

  3. Built for speed: strain in the cartilaginous vertebral columns of sharks.

    PubMed

    Porter, M E; Diaz, Candido; Sturm, Joshua J; Grotmol, Sindre; Summers, A P; Long, John H

    2014-02-01

    In most bony fishes vertebral column strain during locomotion is almost exclusively in the intervertebral joints, and when these joints move there is the potential to store and release strain energy. Since cartilaginous fishes have poorly mineralized vertebral centra, we tested whether the vertebral bodies undergo substantial strain and thus may be sites of energy storage during locomotion. We measured axial strains of the intervertebral joints and vertebrae in vivo and ex vivo to characterize the dynamic behavior of the vertebral column. We used sonomicrometry to directly measure in vivo and in situ strains of intervertebral joints and vertebrae of Squalus acanthias swimming in a flume. For ex vivo measurements, we used a materials testing system to dynamically bend segments of vertebral column at frequencies ranging from 0.25 to 1.00 Hz and a range of physiologically relevant curvatures, which were determined using a kinematic analysis. The vertebral centra of S. acanthias undergo strain during in vivo volitional movements as well as in situ passive movements. Moreover, when isolated segments of vertebral column were tested during mechanical bending, we measured the same magnitudes of strain. These data support our hypothesis that vertebral column strain in lateral bending is not limited to the intervertebral joints. In histological sections, we found that the vertebral column of S. acanthias has an intracentral canal that is open and covered with a velum layer. An open intracentral canal may indicate that the centra are acting as tunics around some sections of a hydrostat, effectively stiffening the vertebral column. These data suggest that the entire vertebral column of sharks, both joints and centra, is mechanically engaged as a dynamic spring during locomotion. Copyright © 2013 Elsevier GmbH. All rights reserved.

  4. WHERE ARE THE FOSSILS OF THE FIRST GALAXIES? II. TRUE FOSSILS, GHOST HALOS, AND THE MISSING BRIGHT SATELLITES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovill, Mia S.; Ricotti, Massimo, E-mail: msbovill@astro.umd.edu

    We use a new set of cold dark matter simulations of the local universe to investigate the distribution of fossils of primordial dwarf galaxies within and around the Milky Way. Throughout, we build upon previous results showing agreement between the observed stellar properties of a subset of the ultra-faint dwarfs and our simulated fossils. Here, we show that fossils of the first galaxies have galactocentric distributions and cumulative luminosity functions consistent with observations. In our model, we predict {approx}300 luminous satellites orbiting the Milky Way, 50%-70% of which are well-preserved fossils. Within the Milky Way virial radius, the majority ofmore » these fossils have luminosities L{sub V} < 10{sup 6} L{sub sun}. Despite our multidimensional agreement with observations at low masses and luminosities, the primordial model produces an overabundance of bright dwarf satellites (L{sub V} > 10{sup 4} L{sub sun}) with respect to observations where observations are nearly complete. The 'bright satellite problem' is most evident in the outer parts of the Milky Way. We estimate that, although relatively bright, the primordial stellar populations are very diffuse, producing a population with surface brightnesses below surveys' detection limits, and are easily stripped by tidal forces. Although we cannot yet present unmistakable evidence for the existence of the fossils of first galaxies in the Local Group, the results of our studies suggest observational strategies that may demonstrate their existence: (1) the detection of 'ghost halos' of primordial stars around isolated dwarfs would prove that stars formed in minihalos (M < 10{sup 8} M{sub sun}) before reionization and strongly suggest that at least a fraction of the ultra-faint dwarfs are fossils of the first galaxies; and (2) the existence of a yet unknown population of {approx}150 Milky Way ultra-faints with half-light radii r{sub hl} {approx} 100-1000 pc and luminosities L{sub V} < 10{sup 4} L{sub sun

  5. [Vertebral artery dissection due to the C6 transverse process and laryngeal cartilage associated with vertebral artery anomaly].

    PubMed

    Kusunoki Nakamoto, Fumiko; Hashimoto Maeda, Meiko; Mori, Kentaro; Hara, Takayuki; Uesaka, Yoshikazu

    2014-01-01

    A 52-year-old woman complained of the sudden onset of a left temporal headache, left neck stiffness and dizziness. Brain magnetic resonance imaging showed a high-intensity lesion in the right medial medulla. Dynamic cerebral angiography revealed vertebral artery dissection and compression at the C6 level due to a transverse process at the C6 level associated with rightward head rotation. Removal of bone and decompression of the vertebral artery were performed from the C5 to C6 levels. Intraoperasively, obstruction of blood flow due to a laryngeal cartilage that rotated with the passive rotation of the patient's head to the right was found. To the best of our knowledge this is the first reported case of vertebral artery occlusion due to a laryngeal cartilage associated with head rotation.

  6. Forty Years Later: Updating the Fossilization Hypothesis

    ERIC Educational Resources Information Center

    Han, ZhaoHong

    2013-01-01

    A founding concept in second language acquisition (SLA) research, fossilization has been fundamental to understanding second language (L2) development. The Fossilization Hypothesis, introduced in Selinker's seminal text (1972), has thus been one of the most influential theories, guiding a significant bulk of SLA research for four decades; 2012…

  7. Where to Dig for Fossils: Combining Climate-Envelope, Taphonomy and Discovery Models

    PubMed Central

    Block, Sebastián; Saltré, Frédérik; Rodríguez-Rey, Marta; Fordham, Damien A.; Unkel, Ingmar; Bradshaw, Corey J. A.

    2016-01-01

    Fossils represent invaluable data to reconstruct the past history of life, yet fossil-rich sites are often rare and difficult to find. The traditional fossil-hunting approach focuses on small areas and has not yet taken advantage of modelling techniques commonly used in ecology to account for an organism’s past distributions. We propose a new method to assist finding fossils at continental scales based on modelling the past distribution of species, the geological suitability of fossil preservation and the likelihood of fossil discovery in the field, and apply it to several genera of Australian megafauna that went extinct in the Late Quaternary. Our models predicted higher fossil potentials for independent sites than for randomly selected locations (mean Kolmogorov-Smirnov statistic = 0.66). We demonstrate the utility of accounting for the distribution history of fossil taxa when trying to find the most suitable areas to look for fossils. For some genera, the probability of finding fossils based on simple climate-envelope models was higher than the probability based on models incorporating current conditions associated with fossil preservation and discovery as predictors. However, combining the outputs from climate-envelope, preservation, and discovery models resulted in the most accurate predictions of potential fossil sites at a continental scale. We proposed potential areas to discover new fossils of Diprotodon, Zygomaturus, Protemnodon, Thylacoleo, and Genyornis, and provide guidelines on how to apply our approach to assist fossil hunting in other continents and geological settings. PMID:27027874

  8. Where to Dig for Fossils: Combining Climate-Envelope, Taphonomy and Discovery Models.

    PubMed

    Block, Sebastián; Saltré, Frédérik; Rodríguez-Rey, Marta; Fordham, Damien A; Unkel, Ingmar; Bradshaw, Corey J A

    2016-01-01

    Fossils represent invaluable data to reconstruct the past history of life, yet fossil-rich sites are often rare and difficult to find. The traditional fossil-hunting approach focuses on small areas and has not yet taken advantage of modelling techniques commonly used in ecology to account for an organism's past distributions. We propose a new method to assist finding fossils at continental scales based on modelling the past distribution of species, the geological suitability of fossil preservation and the likelihood of fossil discovery in the field, and apply it to several genera of Australian megafauna that went extinct in the Late Quaternary. Our models predicted higher fossil potentials for independent sites than for randomly selected locations (mean Kolmogorov-Smirnov statistic = 0.66). We demonstrate the utility of accounting for the distribution history of fossil taxa when trying to find the most suitable areas to look for fossils. For some genera, the probability of finding fossils based on simple climate-envelope models was higher than the probability based on models incorporating current conditions associated with fossil preservation and discovery as predictors. However, combining the outputs from climate-envelope, preservation, and discovery models resulted in the most accurate predictions of potential fossil sites at a continental scale. We proposed potential areas to discover new fossils of Diprotodon, Zygomaturus, Protemnodon, Thylacoleo, and Genyornis, and provide guidelines on how to apply our approach to assist fossil hunting in other continents and geological settings.

  9. Contact Us, Department of Vertebrate Zoology, NMNH

    Science.gov Websites

    Contact Us NMNH Home › Research & Collections › Vertebrate Zoology › Contact Us Contacting Individual Staff Members: To contact members of the Department of Vertebrate Zoology please go to the Staff page. Most members will be linked to their own webpage that contains contact information, research

  10. The generation of vertebral segmental patterning in the chick embryo

    PubMed Central

    Senthinathan, Biruntha; Sousa, Cátia; Tannahill, David; Keynes, Roger

    2012-01-01

    We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline. PMID:22458512

  11. Preventive effects of conservative treatment with short-term teriparatide on the progression of vertebral body collapse after osteoporotic vertebral compression fracture.

    PubMed

    Park, J-H; Kang, K-C; Shin, D-E; Koh, Y-G; Son, J-S; Kim, B-H

    2014-02-01

    The progression of fractured vertebral collapse is not rare after a conservative treatment of vertebral compression fracture (VCF). Teriparatide has been shown to directly stimulate bone formation and improve bone density, but there is a lack of evidence regarding its use in fracture management. Conservative treatment with short-term teriparatide is effective for decreasing the progression of fractured vertebral body collapse. Few studies have reported on the prevention of collapsed vertebral body progression after osteoporotic VCF. Teriparatide rapidly enhances bone formation and increases bone strength. This study evaluated preventive effects of short-term teriparatide on the progression of vertebral body collapse after osteoporotic VCF. Radiographs of 68 women with single-level osteoporotic VCF at thoracolumbar junction (T11-L2) were reviewed. Among them, 32 patients were treated conservatively with teriparatide (minimum 3 months) (group I), and 36 were treated with antiresorptive (group II). We measured kyphosis and wedge angle of the fractured vertebral body, and ratios of anterior, middle, and posterior heights of the collapsed body to posterior height of a normal upper vertebra were determined. The degree of collapse progression was compared between two groups. The progression of fractured vertebral body collapse was shown in both groups, but the degree of progression was significantly lower in group I than in group II. At the last follow-up, mean increments of kyphosis and wedge angle were significantly lower in group I (4.0° ± 4.2° and 3.6° ± 3.6°) than in group II (6.8° ± 4.1° and 5.8° ± 3.5°) (p = 0.032 and p = 0.037). Decrement percentages of anterior and middle border height were significantly lower in group I (9.6 ± 10.3 and 7.4 ± 7.5 %) than in group II (18.1 ± 9.7 and 13.8 ± 12.2 %) (p = 0.001 and p = 0.025), but not in posterior height (p = 0.086). In female patients with single-level osteoporotic VCF at the thoracolumbar junction

  12. Evolution of vertebrates: a view from the crest

    PubMed Central

    Bronner, Marianne E.

    2016-01-01

    The origin of vertebrates was accompanied by the advent of a novel cell type: the neural crest. Emerging from the central nervous system, these cells migrate to diverse locations and differentiate into numerous derivatives. By coupling morphological and gene regulatory information from vertebrates and other chordates, we describe how addition of the neural crest specification program may have enabled cells at the neural plate border to acquire multipotency and migratory ability. Analyzing the topology of the neural crest gene regulatory network can serve as a useful template for understanding vertebrate evolution, including elaboration of neural crest derivatives. PMID:25903629

  13. Comparative evaluation of solar, fission, fusion, and fossil energy resources. Part 4: Energy from fossil fuels

    NASA Technical Reports Server (NTRS)

    Williams, J. R.

    1974-01-01

    The conversion of fossil-fired power plants now burning oil or gas to burn coal is discussed along with the relaxation of air quality standards and the development of coal gasification processes to insure a continued supply of gas from coal. The location of oil fields, refining areas, natural gas fields, and pipelines in the U.S. is shown. The technologies of modern fossil-fired boilers and gas turbines are defined along with the new technologies of fluid-bed boilers and MHD generators.

  14. The vertebral remains of the late Miocene great ape Hispanopithecus laietanus from Can Llobateres 2 (Vallès-Penedès Basin, NE Iberian Peninsula).

    PubMed

    Susanna, Ivette; Alba, David M; Almécija, Sergio; Moyà-Solà, Salvador

    2014-08-01

    Here we describe the vertebral fragments from the partial skeleton IPS18800 of the fossil great ape Hispanopithecus laietanus (Hominidae: Dryopithecinae) from the late Miocene (9.6 Ma) of Can Llobateres 2 (Vallès-Penedès Basin, Catalonia, Spain). The eight specimens (IPS18800.5-IPS18800.12) include a fragment of thoracic vertebral body, three partial bodies and four neural arch fragments of lumbar vertebrae. Despite the retention of primitive features (moderately long lumbar vertebral bodies with slightly concave ventrolateral sides), these specimens display a suite of derived, modern hominoid-like features: thoracic vertebrae with dorsally-situated costal foveae; lumbar vertebrae with non-ventrally-oriented transverse processes originating from a robust pedicle, caudally-long laminae with caudally-oriented spinous process, elliptical end-plates, and moderately stout bodies reduced in length and with no ventral keel. These features, functionally related to orthograde behaviors, are indicative of a broad and shallow thorax with a moderately short and stiff lumbar region in Hispanopithecus. Despite its large body mass (ca. 39-40 kg), its vertebral morphology is more comparable to that of hylobatids and Ateles than to extant great apes. This is confirmed by our morphometric analyses, also indicating that Hispanopithecus most closely resembles Pierolapithecus and Morotopithecus among Miocene apes, whereas Proconsul and Nacholapithecus resemble pronograde monkeys. Only in a few features (craniocaudally short and transversely wide pedicles, transverse processes situated on the pedicle, and slight ventral wedging), Hispanopithecus is more derived towards the extant great ape condition than other Miocene apes. Overall, the vertebral morphology of Hispanopithecus supports previous inferences of an orthograde body plan with suspensory and climbing adaptations. However, given similarities with Ateles and the retention of a longer and more flexible spine than in extant

  15. The Immunoglobulins of Cold-Blooded Vertebrates

    PubMed Central

    Pettinello, Rita; Dooley, Helen

    2014-01-01

    Although lymphocyte-like cells secreting somatically-recombining receptors have been identified in the jawless fishes (hagfish and lamprey), the cartilaginous fishes (sharks, skates, rays and chimaera) are the most phylogenetically distant group relative to mammals in which bona fide immunoglobulins (Igs) have been found. Studies of the antibodies and humoral immune responses of cartilaginous fishes and other cold-blooded vertebrates (bony fishes, amphibians and reptiles) are not only revealing information about the emergence and roles of the different Ig heavy and light chain isotypes, but also the evolution of specialised adaptive features such as isotype switching, somatic hypermutation and affinity maturation. It is becoming increasingly apparent that while the adaptive immune response in these vertebrate lineages arose a long time ago, it is most definitely not primitive and has evolved to become complex and sophisticated. This review will summarise what is currently known about the immunoglobulins of cold-blooded vertebrates and highlight the differences, and commonalities, between these and more “conventional” mammalian species. PMID:25427250

  16. Vertebral reconstruction using the telescopic plate spacer-thoracolumbar (TPS-TL) device.

    PubMed

    Atalay, Basar; Riesenburger, Ron I; Schirmer, Clemens M; Bhadelia, Rafeeque A; Weller, Simcha J

    2010-07-01

    Retrospective study of surgical technique and outcome. The authors conducted a study to evaluate the ability of the TPS-TL (telescopic plate spacer-thoracolumbar) implant to correct kyphotic deformity and restore vertebral body height after vertebrectomy in the thoracolumbar spine. TPS-TL is a novel vertebral body replacement device that consists of an expandable cage with an integrated plate component for transvertebral screw fixation. This is a retrospective study of 20 patients who underwent anterior column reconstruction with TPS-TL after a 1 or 2 level thoracolumbar vertebrectomy. Preoperative and postoperative sagittal alignment and vertebral body heights were radiologically analyzed in all patients. The mean follow-up was 14 months. Preoperative and postoperative Cobb angles were measured to assess sagittal alignment. The average preoperative Cobb angle was 16.0 + or - 7 degrees. This was reduced to 9.8 + or - 10 degrees at the final follow-up (P<0.001). Percent of ideal vertebral body height was used to assess postoperative restoration of vertebral body height. This value was obtained by creating a ratio of the height of the effected vertebral levels to the height of the adjacent normal vertebral bodies. The mean percent of ideal vertebral body height improved from a preoperative value from 86.2 + or - 2% to 93.1 + or - 6% at the final follow-up (P<0.001). The TPS-TL implant is effective in restoring vertebral body height and correcting kyphotic deformity after thoracolumbar vertebrectomy.

  17. Evolution of motor innervation to vertebrate fins and limbs.

    PubMed

    Murakami, Yasunori; Tanaka, Mikiko

    2011-07-01

    The evolution and diversification of vertebrate behaviors associated with locomotion depend highly on the functional transformation of paired appendages. Although the evolution of fins into limbs has long been a focus of interest to scientists, the evolution of neural control during this transition has not received much attention. Recent studies have provided significant progress in the understanding of the genetic and developmental bases of the evolution of fin/limb motor circuitry in vertebrates. Here we compare the organization of the motor neurons in the spinal cord of various vertebrates. We also discuss recent advances in our understanding of these events and how they can provide a mechanistic explanation for the evolution of fin/limb motor circuitry in vertebrates. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. The clinical characteristics and therapy of syndrome of craniocerebral-cervical vertebral injury.

    PubMed

    Liu, Sheng; Liu, Yuan-xin; Wang, Cheng

    2005-06-01

    To explore the clinical characteristics and new treatment for syndrome of craniocerebral-cervical vertebral injury. The clinical data of 52 patients with head injury accompanied by neck injury were analyzed retrospectively. Craniocerebral injury could result in damage to cervical vertebrae, muscles, vessels and nerves, and even cause vertebral artery injury, which may lead to insufficient blood-supply of vertebral-basal artery. All patients were treated with cervical vertebral traction and the results were good. Acute craniocerebral injury with symptom of insufficient blood-supply of vertebral-basal artery, evident neurosis and atlas-axis half-dislocation in X-ray should be treated by cervical vertebral traction, which will yield better outcome.

  19. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode in 2013

    NASA Astrophysics Data System (ADS)

    Zhang, Y.-L.; Huang, R.-J.; El Haddad, I.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Zotter, P.; Bozzetti, C.; Daellenbach, K. R.; Canonaco, F.; Slowik, J. G.; Salazar, G.; Schwikowski, M.; Schnelle-Kreis, J.; Abbaszade, G.; Zimmermann, R.; Baltensperger, U.; Prévôt, A. S. H.; Szidat, S.

    2014-10-01

    During winter 2013, extremely high concentrations (i.e. 4-20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter <2.5 μm) were reported in several large cities in China. In this work, source apportionment of fine carbonaceous aerosols during this haze episode was conducted at four major cities in China including Xian, Beijing, Shanghai and Guangzhou. An effective statistical analysis of a combined dataset from elemental carbon (EC) and organic carbon (OC), radiocarbon (14C) and biomass-burning marker measurements using Latin-hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. We found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% at all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xian (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was rather from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10% and 48 ± 9% of OC and TC, respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8%, 48 ± 18%, 53 ± 4% and 65 ± 26% of non-fossil OC for Xian, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass-burning were mainly attributed to formation of secondary organic carbon

  20. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013

    NASA Astrophysics Data System (ADS)

    Zhang, Y.-L.; Huang, R.-J.; El Haddad, I.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Zotter, P.; Bozzetti, C.; Daellenbach, K. R.; Canonaco, F.; Slowik, J. G.; Salazar, G.; Schwikowski, M.; Schnelle-Kreis, J.; Abbaszade, G.; Zimmermann, R.; Baltensperger, U.; Prévôt, A. S. H.; Szidat, S.

    2015-02-01

    During winter 2013, extremely high concentrations (i.e., 4-20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter < 2.5 μm) mass concentrations (24 h samples) were found in four major cities in China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass

  1. Cervical vertebral and dental maturity in Turkish subjects.

    PubMed

    Başaran, Güvenç; Ozer, Törün; Hamamci, Nihal

    2007-04-01

    The aim of this study was to investigate the relationships between the stages of calcification of teeth and the cervical vertebral maturity stages in Turkish subjects. A retrospective cross-sectional study was designed. The final study population consisted of 590 Turkish subjects. Statistical analysis of the data was performed with computer software. Spearman rank order correlation coefficients were used to assess the relationship between cervical vertebral and dental maturation. For a better understanding of the relationship between cervical vertebral maturation indexes and dental age, percentage distributions of the studied teeth were also calculated. Strict correlations were found between dental and cervical vertebral maturation of Turkish subjects. For males, the sequence from lowest to the highest was third molar, central incisor, canine, first premolar, second premolar, first molar, and second molar. For females, the sequence from lowest to the highest was third molar, canine, second premolar, first premolar, central incisor, first molar, and second molar. Dental maturation stages can be used as a reliable indicator of facial growth.

  2. Vertebral hemangioma coincident with metastasis of colon adenocarcinoma.

    PubMed

    Zapałowicz, Krzysztof; Bierzyńska-Macyszyn, Grażyna; Stasiów, Bartłomiej; Krzan, Aleksandra; Wierzycka, Beata; Kopycka, Anna

    2016-03-01

    The authors report on colon cancer metastasis to the L-3 vertebra, which had been previously found to be involved by an asymptomatic hemangioma. A 61-year-old female patient was admitted after onset of lumbar axial pain and weakness of the right quadriceps muscle. Her medical history included colon cancer that had been diagnosed 3 years earlier and was treated via a right hemicolectomy followed by chemotherapy. Presurgical imaging revealed an asymptomatic hemangioma in the L-3 vertebral body. Computed tomography and MRI of the spine were performed after admission and revealed a hemangioma in the L-3 vertebral body as well as a soft-tissue mass protruding from the L-3 vertebral body to the spinal canal. Treatment consisted of vertebroplasty of the hemangioma, left L-3 hemilaminectomy, and removal of the pathological mass from the spinal canal and the L-3 vertebral body. Histopathological examination revealed the presence of colon cancer metastasis and a hemangioma in the same vertebra.

  3. Allergenicity of vertebrate tropomyosins: Challenging an immunological dogma.

    PubMed

    González-Fernández, J; Daschner, A; Cuéllar, C

    With the exception of tilapia tropomyosin, other anecdotic reports of tropomyosin recognition of vertebrate origin are generally not accompanied by clinical significance and a dogmatic idea is generally accepted about the inexistence of allergenicity of vertebrate tropomyosins, based mainly on sequence similarity evaluations with human tropomyosins. Recently, a specific work-up of a tropomyosin sensitised patient with seafood allergy, demonstrated that the IgE-recognition of tropomyosin from different fish species can be clinically relevant. We hypothesise that some vertebrate tropomyosins could be relevant allergens. The hypothesis is based on the molecular evolution of the proteins and it was tested by in silico methods. Fish, which are primitive vertebrates, could have tropomyosins similar to those of invertebrates. If the hypothesis is confirmed, tropomyosin should be included in different allergy diagnosis tools to improve the medical protocols and management of patients with digestive or cutaneous symptoms after fish intake. Copyright © 2016 SEICAP. Published by Elsevier España, S.L.U. All rights reserved.

  4. New insights about the presence of celestite into fossil bones from Molí del Baró 1 site (Isona i Conca Dellá, Lleida, Spain)

    NASA Astrophysics Data System (ADS)

    Piga, Giampaolo; Brunetti, Antonio; Lasio, Barbara; Malfatti, Luca; Galobart, Àngel; Dalla Vecchia, Fabio M.; Enzo, Stefano

    2015-02-01

    We have addressed an X-ray fluorescence (XRF) and X-ray diffraction (XRD) on a collection of thirteen fossil bone belonging to the Molí del Baró 1 paleontological site located near Sant Romà d'Abella (Isona i Conca Dellà Municipality, Lleida Province, Spain, dated to about 66.5 Ma, to investigate the fossilization occurred in this site in terms of physico-chemical properties. As a general behaviour, the XRD patterns showed the bioapatite mineral at a varying level of percentage, and accordingly, the correspondent XRF spectra turned out to be mainly dominated by the presence of Ca, obviously accompanied by phosphorus. Simultaneously, other elements such as Sr, Fe, Ba and Zn were found at non-negligible concentration levels and helped to assign the phase components in the XRD spectra. In three specimens, it was observed by XRD the rather unusual case where the original bioapatite bone mineral was completely substituted for by other mineralogical phases. In addition to this, celestite was also found as an important phase in ten specimens out of the thirteen examined. The occurrence of celestite in the bone structure appears a rather unusual observation within the literature of bones diagenesis. Its provenance is generally ascribed to marine vertebrate organisms, but the presence in the fossil bones of this site, where no evidence of marine environment exists, can be reconciled with occurrence of refluxing processes involving diagenetically altered fluids which were discharged into beds containing strontium sulphate-rich waters.

  5. Developmental mechanisms of intervertebral disc and vertebral column formation.

    PubMed

    Lawson, Lisa Y; Harfe, Brian D

    2017-11-01

    The vertebral column consists of repeating units of ossified vertebrae that are adjoined by fibrocartilagenous intervertebral discs. These structures form from the embryonic notochord and somitic mesoderm. In humans, congenital malformations of the vertebral column include scoliosis, kyphosis, spina bifida, and Klippel Feil syndrome. In adulthood, a common malady affecting the vertebral column includes disc degeneration and associated back pain. Indeed, recent reports estimate that low back pain is the number one cause of disability worldwide. Our review provides an overview of the molecular mechanisms underlying vertebral column morphogenesis and intervertebral disc development and maintenance, with an emphasis on what has been gleaned from recent genetic studies in mice. The aim of this review is to provide a developmental framework through which vertebral column formation can be understood so that ultimately, research scientists and clinicians alike can restore disc health with appropriately designed gene and cell-based therapies. WIREs Dev Biol 2017, 6:e283. doi: 10.1002/wdev.283 For further resources related to this article, please visit the WIREs website. © 2017 Wiley Periodicals, Inc.

  6. Corticotropin-releasing hormone: Mediator of vertebrate life stage transitions?

    PubMed

    Watanabe, Yugo; Grommen, Sylvia V H; De Groef, Bert

    2016-03-01

    Hormones, particularly thyroid hormones and corticosteroids, play critical roles in vertebrate life stage transitions such as amphibian metamorphosis, hatching in precocial birds, and smoltification in salmonids. Since they synergistically regulate several metabolic and developmental processes that accompany vertebrate life stage transitions, the existence of extensive cross-communication between the adrenal/interrenal and thyroidal axes is not surprising. Synergies of corticosteroids and thyroid hormones are based on effects at the level of tissue hormone sensitivity and gene regulation. In addition, in representative nonmammalian vertebrates, corticotropin-releasing hormone (CRH) stimulates hypophyseal thyrotropin secretion, and thus functions as a common regulator of both the adrenal/interrenal and thyroidal axes to release corticosteroids and thyroid hormones. The dual function of CRH has been speculated to control or affect the timing of vertebrate life history transitions across taxa. After a brief overview of recent insights in the molecular mechanisms behind the synergic actions of thyroid hormones and corticosteroids during life stage transitions, this review examines the evidence for a possible role of CRH in controlling vertebrate life stage transitions. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Giving the early fossil record of sponges a squeeze.

    PubMed

    Antcliffe, Jonathan B; Callow, Richard H T; Brasier, Martin D

    2014-11-01

    Twenty candidate fossils with claim to be the oldest representative of the Phylum Porifera have been re-analysed. Three criteria are used to assess each candidate: (i) the diagnostic criteria needed to categorize sponges in the fossil record; (ii) the presence, or absence, of such diagnostic features in the putative poriferan fossils; and (iii) the age constraints for the candidate fossils. All three criteria are critical to the correct interpretation of any fossil and its placement within an evolutionary context. Our analysis shows that no Precambrian fossil candidate yet satisfies all three of these criteria to be a reliable sponge fossil. The oldest widely accepted candidate, Mongolian silica hexacts from c. 545 million years ago (Ma), are here shown to be cruciform arsenopyrite crystals. The oldest reliable sponge remains are siliceous spicules from the basal Cambrian (Protohertzina anabarica Zone) Soltanieh Formation, Iran, which are described and analysed here in detail for the first time. Extensive archaeocyathan sponge reefs emerge and radiate as late as the middle of the Fortunian Stage of the Cambrian and demonstrate a gradual assembly of their skeletal structure through this time coincident with the evolution of other metazoan groups. Since the Porifera are basal in the Metazoa, their presence within the late Proterozoic has been widely anticipated. Molecular clock calibration for the earliest Porifera and Metazoa should now be based on the Iranian hexactinellid material dated to c. 535 Ma. The earliest convincing fossil sponge remains appeared at around the time of the Precambrian-Cambrian boundary, associated with the great radiation events of that interval. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.

  8. The generation of vertebral segmental patterning in the chick embryo.

    PubMed

    Senthinathan, Biruntha; Sousa, Cátia; Tannahill, David; Keynes, Roger

    2012-06-01

    We have carried out a series of experimental manipulations in the chick embryo to assess whether the notochord, neural tube and spinal nerves influence segmental patterning of the vertebral column. Using Pax1 expression in the somite-derived sclerotomes as a marker for segmentation of the developing intervertebral disc, our results exclude such an influence. In contrast to certain teleost species, where the notochord has been shown to generate segmentation of the vertebral bodies (chordacentra), these experiments indicate that segmental patterning of the avian vertebral column arises autonomously in the somite mesoderm. We suggest that in amniotes, the subdivision of each sclerotome into non-miscible anterior and posterior halves plays a critical role in establishing vertebral segmentation, and in maintaining left/right alignment of the developing vertebral elements at the body midline. © 2012 The Authors. Journal of Anatomy © 2012 Anatomical Society.

  9. Evolution of phototransduction, vertebrate photoreceptors and retina.

    PubMed

    Lamb, Trevor D

    2013-09-01

    Evidence is reviewed from a wide range of studies relevant to the evolution of vertebrate photoreceptors and phototransduction, in order to permit the synthesis of a scenario for the major steps that occurred during the evolution of cones, rods and the vertebrate retina. The ancestral opsin originated more than 700 Mya (million years ago) and duplicated to form three branches before cnidarians diverged from our own lineage. During chordate evolution, ciliary opsins (C-opsins) underwent multiple stages of improvement, giving rise to the 'bleaching' opsins that characterise cones and rods. Prior to the '2R' rounds of whole genome duplication near the base of the vertebrate lineage, 'cone' photoreceptors already existed; they possessed a transduction cascade essentially the same as in modern cones, along with two classes of opsin: SWS and LWS (short- and long-wave-sensitive). These cones appear to have made synaptic contact directly onto ganglion cells, in a two-layered retina that resembled the pineal organ of extant non-mammalian vertebrates. Interestingly, those ganglion cells appear to be descendants of microvillar photoreceptor cells. No lens was associated with this two-layered retina, and it is likely to have mediated circadian timing rather than spatial vision. Subsequently, retinal bipolar cells evolved, as variants of ciliary photoreceptors, and greatly increased the computational power of the retina. With the advent of a lens and extraocular muscles, spatial imaging information became available for central processing, and gave rise to vision in vertebrates more than 500 Mya. The '2R' genome duplications permitted the refinement of cascade components suitable for both rods and cones, and also led to the emergence of five visual opsins. The exact timing of the emergence of 'true rods' is not yet clear, but it may not have occurred until after the divergence of jawed and jawless vertebrates. Copyright © 2013 The Author. Published by Elsevier Ltd.. All

  10. Energy properties of solid fossil fuels and solid biofuels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holubcik, Michal, E-mail: michal.holubcik@fstroj.uniza.sk; Jandacka, Jozef, E-mail: jozef.jandacka@fstroj.uniza.sk; Kolkova, Zuzana, E-mail: zuzana.kolkova@rc.uniza.sk

    The paper deals about the problematic of energy properties of solid biofuels in comparison with solid fossil fuels. Biofuels are alternative to fossil fuels and their properties are very similar. During the experiments were done in detail experiments to obtain various properties of spruce wood pellets and wheat straw pellets like biofuels in comparison with brown coal and black coal like fossil fuels. There were tested moisture content, volatile content, fixed carbon content, ash content, elementary analysis (C, H, N, S content) and ash fusion temperatures. The results show that biofuels have some advantages and also disadvantages in comparison withmore » solid fossil fuels.« less

  11. Collection & Processing of Vertebrate Specimens for Arbovirus Studies.

    ERIC Educational Resources Information Center

    Sudia, W. Daniel; And Others

    Described are techniques used by the National Communicable Disease Center in obtaining blood and tissues from man and other vertebrates for arbovirus isolation and antibody studies. Also included are techniques for capturing and handling vertebrates; banding and marking; restraining and bleeding; storing of specimens to preserve antibody and…

  12. Eumetazoan fossils in terminal Proterozoic phosphorites?

    PubMed Central

    Xiao, Shuhai; Yuan, Xunlai; Knoll, Andrew H.

    2000-01-01

    Phosphatic sedimentary rocks preserve a record of early animal life different from and complementary to that provided by Ediacaran fossils in terminal Proterozoic sandstones and shales. Phosphorites of the Doushantuo Formation, South China, contain eggs, egg cases, and stereoblastulae that document animals of unspecified phylogenetic position; small fossils containing putative spicules may specifically record the presence of sponges. Microfossils recently interpreted as the preserved gastrulae of cnidarian and bilaterian metazoans can alternatively be interpreted as conventional algal cysts and/or egg cases modified by diagenetic processes known to have had a pervasive influence on Doushantuo phosphorites. Regardless of this interpretation, evidence for Doushantuo eumetazoans is provided by millimeter-scale tubes that display tabulation and apical budding characteristic of some Cnidaria, especially the extinct tabulates. Like some Ediacaran remains, these small, benthic, colonial fossils may represent stem-group eumetazoans or stem-group cnidarians that lived in the late Proterozoic ocean. PMID:11095754

  13. Potential for travertine formation: Fossil Creek, Arizona

    Treesearch

    John Malusa; Steven T. Overby; Roderic A. Parnell

    2003-01-01

    Chemical analyses of water emanating from Fossil Springs in Central Arizona were conducted to predict changes in travertine deposition related to changes in stream discharge caused by diversion for hydroelectric power generation. During spring of 1996, water was sampled at 15 locations during normal seepage flow in a 6.7 km reach below Fossil Springs and at full...

  14. Sea-level changes in the Lopingian (late Permian) of the northwestern Tethys and their effects on the terrestrial palaeoenvironments, biota and fossil preservation

    NASA Astrophysics Data System (ADS)

    Kustatscher, Evelyn; Bernardi, Massimo; Petti, Fabio Massimo; Franz, Matthias; van Konijnenburg-van Cittert, Johanna H. A.; Kerp, Hans

    2017-01-01

    The Lopingian is characterised by an aridisation trend and substantial sea-level changes. Hence, the fossil record of this time interval is strongly affected by ecological and taphonomic factors inherent to these long-term processes. Integrated sedimentological and palaeontological studies in the Bletterbach Gorge (Dolomites, N-Italy) allow discrimination between biological signals and preservational bias, shedding light on the effect of sea-level changes on the preservation potential of terrestrial associations of plant remains and tetrapod footprints. Flora A, composed of more humid elements with larger leaf/shoot fragments, appears close to a sea-level highstand and is interpreted as a (par-)autochthonous assemblage of an intrazonal riparian vegetation. Flora B, dominated by xerophytic elements documented by smaller fragments, corresponds to an allochthonous assemblage of an azonal vegetation preserved in floodplain fines of a progradational fluvial plain associated with a sea-level lowstand. The distribution of vertebrate footprints mirrors that of the plant-bearing horizons and their abundance and morphological diversity strongly increases in correspondence with marine transgressions. This could be related to a more diverse fauna (more complex food-web related to more humid conditions) or more favourable taphonomic conditions. However, the most diversified fauna, recorded during the early phases of the regressive phase, is in our interpretation best explained by the rapid burial of footprints due to the increasing energy. Our study provides an explanation for the change in distribution and preservation of plant and animal fossils in the Bletterbach section and shows how the fossil content of continental successions is deeply influenced by sea-level changes.

  15. Preservation of the bone protein osteocalcin in dinosaurs

    NASA Astrophysics Data System (ADS)

    Muyzer, Gerard; Sandberg, Philip; Knapen, Marjo H. J.; Vermeer, Cees; Collins, Matthew; Westbroek, Peter

    1992-10-01

    Two different immunological assays were used to identify the remains of a bone matrix protein, osteocalcin (OC), in the bones of dinosaurs and other fossil vertebrates. Antibodies raised against OC from modern vertebrates showed strong immunological cross-reactivity with modern and relatively young fossil samples and significant reactions with some of the dinosaur bone extracts. The presence of OC was confirmed by the detection of a peptide-bound, uniquely vertebrate amino acid, γcarboxyglutamic acid (Gla). Preservation of OC in fossil bones appears to be strongly dependent on the burial history and not simply on age. These results extend the range of protein preservation in the geologic record and provide a first step toward a molecular phylogeny of the dinosaurs.

  16. Imperfect Isolation: Factors and Filters Shaping Madagascar’s Extant Vertebrate Fauna

    PubMed Central

    Samonds, Karen E.; Godfrey, Laurie R.; Ali, Jason R.; Goodman, Steven M.; Vences, Miguel; Sutherland, Michael R.; Irwin, Mitchell T.; Krause, David W.

    2013-01-01

    Analyses of phylogenetic topology and estimates of divergence timing have facilitated a reconstruction of Madagascar’s colonization events by vertebrate animals, but that information alone does not reveal the major factors shaping the island’s biogeographic history. Here, we examine profiles of Malagasy vertebrate clades through time within the context of the island’s paleogeographical evolution to determine how particular events influenced the arrival of the island’s extant groups. First we compare vertebrate profiles on Madagascar before and after selected events; then we compare tetrapod profiles on Madagascar to contemporary tetrapod compositions globally. We show that changes from the Mesozoic to the Cenozoic in the proportions of Madagascar’s tetrapod clades (particularly its increase in the representation of birds and mammals) are tied to changes in their relative proportions elsewhere on the globe. Differences in the representation of vertebrate classes from the Mesozoic to the Cenozoic reflect the effects of extinction (i.e., the non-random susceptibility of the different vertebrate clades to purported catastrophic global events 65 million years ago), and new evolutionary opportunities for a subset of vertebrates with the relatively high potential for transoceanic dispersal potential. In comparison, changes in vertebrate class representation during the Cenozoic are minor. Despite the fact that the island’s isolation has resulted in high vertebrate endemism and a unique and taxonomically imbalanced extant vertebrate assemblage (both hailed as testimony to its long isolation), that isolation was never complete. Indeed, Madagascar’s extant tetrapod fauna owes more to colonization during the Cenozoic than to earlier arrivals. Madagascar’s unusual vertebrate assemblage needs to be understood with reference to the basal character of clades originating prior to the K-T extinction, as well as to the differential transoceanic dispersal advantage of

  17. Association between vertebral cross-sectional area and lumbar lordosis angle in adolescents.

    PubMed

    Wren, Tishya A L; Aggabao, Patricia C; Poorghasamians, Ervin; Chavez, Thomas A; Ponrartana, Skorn; Gilsanz, Vicente

    2017-01-01

    Lumbar lordosis (LL) is more prominent in women than in men, but the mechanisms responsible for this discrepancy are poorly defined. A recent study indicates that newborn girls have smaller vertebral cross-sectional area (CSA) when compared to boys-a difference that persists throughout life and is independent of body size. We determined the relations between vertebral cross-sectional area (CSA) and LL angle and whether sex differences in lumbar lordosis are related to sex differences in vertebral CSA. Using multi-planar magnetic resonance imaging (MRI), we measured vertebral cross-sectional area (CSA) and vertebral height of the spine of 40 healthy boys and 40 girls, ages 9-13 years. Measures of the CSA of the lumbar vertebrae significantly differed between sexes (9.38 ± 1.46 vs. 7.93 ± 0.69 in boys and girls, respectively; P < 0.0001), while the degree of LL was significantly greater in girls than in boys (23.7 ± 6.1 vs. 27.6 ± 8.0 in boys and girls, respectively; P = 0.02). When all subjects were analyzed together, values for LL angle were negatively correlated to vertebral CSA (r = -0.47; P < 0.0001); this was also true when boys and girls were analyzed separately. Multivariate regression analysis indicated that vertebral CSA was independently associated with LL, even after accounting for sex, age, height or vertebral height, and weight. Similar negative relations were present when thoracic vertebrae were analyzed (Model P < 0.0001, R2 = 0.37, thoracic vertebral CSA slope P < 0.0001), suggesting that deficient vertebral cross-sectional dimensions are not merely the consequence of the anterior lumbar curvature. We conclude that vertebral CSA is negatively associated with LL, and that the greater degree of LL in females could, at least in part, be due to smaller vertebral cross-sectional dimensions. Studies are needed to examine the potential relations between vertebral CSA and spinal conditions known to be associated with increased LL, such as spondylolysis

  18. Association between vertebral cross-sectional area and lumbar lordosis angle in adolescents

    PubMed Central

    Aggabao, Patricia C.; Poorghasamians, Ervin; Chavez, Thomas A.

    2017-01-01

    Lumbar lordosis (LL) is more prominent in women than in men, but the mechanisms responsible for this discrepancy are poorly defined. A recent study indicates that newborn girls have smaller vertebral cross-sectional area (CSA) when compared to boys—a difference that persists throughout life and is independent of body size. We determined the relations between vertebral cross-sectional area (CSA) and LL angle and whether sex differences in lumbar lordosis are related to sex differences in vertebral CSA. Using multi-planar magnetic resonance imaging (MRI), we measured vertebral cross-sectional area (CSA) and vertebral height of the spine of 40 healthy boys and 40 girls, ages 9–13 years. Measures of the CSA of the lumbar vertebrae significantly differed between sexes (9.38 ± 1.46 vs. 7.93 ± 0.69 in boys and girls, respectively; P < 0.0001), while the degree of LL was significantly greater in girls than in boys (23.7 ± 6.1 vs. 27.6 ± 8.0 in boys and girls, respectively; P = 0.02). When all subjects were analyzed together, values for LL angle were negatively correlated to vertebral CSA (r = -0.47; P < 0.0001); this was also true when boys and girls were analyzed separately. Multivariate regression analysis indicated that vertebral CSA was independently associated with LL, even after accounting for sex, age, height or vertebral height, and weight. Similar negative relations were present when thoracic vertebrae were analyzed (Model P < 0.0001, R2 = 0.37, thoracic vertebral CSA slope P < 0.0001), suggesting that deficient vertebral cross-sectional dimensions are not merely the consequence of the anterior lumbar curvature. We conclude that vertebral CSA is negatively associated with LL, and that the greater degree of LL in females could, at least in part, be due to smaller vertebral cross-sectional dimensions. Studies are needed to examine the potential relations between vertebral CSA and spinal conditions known to be associated with increased LL, such as

  19. Estimating times of extinction in the fossil record

    PubMed Central

    Marshall, Charles R.

    2016-01-01

    Because the fossil record is incomplete, the last fossil of a taxon is a biased estimate of its true time of extinction. Numerous methods have been developed in the palaeontology literature for estimating the true time of extinction using ages of fossil specimens. These methods, which typically give a confidence interval for estimating the true time of extinction, differ in the assumptions they make and the nature and amount of data they require. We review the literature on such methods and make some recommendations for future directions. PMID:27122005

  20. Estimating times of extinction in the fossil record.

    PubMed

    Wang, Steve C; Marshall, Charles R

    2016-04-01

    Because the fossil record is incomplete, the last fossil of a taxon is a biased estimate of its true time of extinction. Numerous methods have been developed in the palaeontology literature for estimating the true time of extinction using ages of fossil specimens. These methods, which typically give a confidence interval for estimating the true time of extinction, differ in the assumptions they make and the nature and amount of data they require. We review the literature on such methods and make some recommendations for future directions. © 2016 The Author(s).

  1. The first darter (Aves: Anhingidae) fossils from India (late Pliocene).

    PubMed

    Stidham, Thomas; Patnaik, Rajeev; Krishan, Kewal; Singh, Bahadur; Ghosh, Abhik; Singla, Ankita; Kotla, Simran S

    2017-01-01

    New fossils from the latest Pliocene portion of the Tatrot Formation exposed in the Siwalik Hills of northern India represent the first fossil record of a darter (Anhingidae) from India. The darter fossils possibly represent a new species, but the limited information on the fossil record of this group restricts their taxonomic allocation. The Pliocene darter has a deep pit on the distal face of metatarsal trochlea IV not reported in other anhingids, it has an open groove for the m. flexor perforatus et perforans digiti II tendon on the hypotarsus unlike New World anhingid taxa, and these darter specimens are the youngest of the handful of Neogene records of the group from Asia. These fossil specimens begin to fill in a significant geographic and temporal gap in the fossil record of this group that is largely known from other continents and other time periods. The presence of a darter and pelican (along with crabs, fish, turtles, and crocodilians) in the same fossil-bearing horizon strongly indicates the past presence of a substantial water body (large pond, lake, or river) in the interior of northern India in the foothills of the Himalayan Mountains.

  2. The Fossil Calibration Database-A New Resource for Divergence Dating.

    PubMed

    Ksepka, Daniel T; Parham, James F; Allman, James F; Benton, Michael J; Carrano, Matthew T; Cranston, Karen A; Donoghue, Philip C J; Head, Jason J; Hermsen, Elizabeth J; Irmis, Randall B; Joyce, Walter G; Kohli, Manpreet; Lamm, Kristin D; Leehr, Dan; Patané, Josés L; Polly, P David; Phillips, Matthew J; Smith, N Adam; Smith, Nathan D; Van Tuinen, Marcel; Ware, Jessica L; Warnock, Rachel C M

    2015-09-01

    Fossils provide the principal basis for temporal calibrations, which are critical to the accuracy of divergence dating analyses. Translating fossil data into minimum and maximum bounds for calibrations is the most important-often least appreciated-step of divergence dating. Properly justified calibrations require the synthesis of phylogenetic, paleontological, and geological evidence and can be difficult for nonspecialists to formulate. The dynamic nature of the fossil record (e.g., new discoveries, taxonomic revisions, updates of global or local stratigraphy) requires that calibration data be updated continually lest they become obsolete. Here, we announce the Fossil Calibration Database (http://fossilcalibrations.org), a new open-access resource providing vetted fossil calibrations to the scientific community. Calibrations accessioned into this database are based on individual fossil specimens and follow best practices for phylogenetic justification and geochronological constraint. The associated Fossil Calibration Series, a calibration-themed publication series at Palaeontologia Electronica, will serve as a key pipeline for peer-reviewed calibrations to enter the database. © The Author(s) 2015. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  3. Comparison of Radiofrequency-targeted Vertebral Augmentation With Balloon Kyphoplasty for the Treatment of Vertebral Compression Fractures: 2-Year Results.

    PubMed

    Bornemann, Rahel; Jansen, Tom R; Kabir, Koroush; Pennekamp, Peter H; Stüwe, Brit; Wirtz, Dieter C; Pflugmacher, Robert

    2017-04-01

    A retrospective study. The aim of this study was the evaluation of the safety and effectiveness of radiofrequency-targeted vertebral augmentation (RF-TVA) in comparison with balloon kyphoplasty (BK) for the treatment of acute painful vertebral compression fractures (VCFs) on the basis of matched pairs. Vertebroplasty and BK are the common surgical interventions for the treatment of VCF. Both are effective and safe but pose some risks such as adjacent fractures and cement leakage. In 2009, RF-TVA was introduced as an innovative augmentation procedure for the treatment of VCF. A total of 192 patients (116 female; 51-90 y) with VCF (n=303) at 1 to 3 levels were treated with RF-TVA or BK. Functionality (Oswestry Disability Index), pain (visual analogue scale), vertebral height (anterior, middle), and kyphotic angle were evaluated over a 2-year period (postoperatively, 3-4 d, 3, 6, 12, and 24 mo). In addition, operating time and occurrence of cement leakage were recorded. Pain and functionality were significantly improved after both treatments. In both groups, there was an increase in the vertebral height and a decrease in the kyphotic angle, which remained relatively consistent during 24 months. The incidence of cement leakage was 9.4% (n=9) in the RF-TVA group and 24.0% (n=25) in the BK group. The mean operating time with radiofrequency kyphoplasty was 25.9±9.9 minutes, and with balloon kyphoplasty 48.0±18.4 minutes. RF-TVA is a safe and effective procedure for the treatment of vertebral compression fractures when compared with BK. Improvement in pain and functional scores after RF-TVA are durable through 24 months postprocedure and remained better than those after BK at long-term follow-up. Operating time for RF-TVA is shorter and the risk of cement leakage is lower. Both procedures provided similar results in vertebral height restoration and reduction in the kyphotic angle.

  4. A new heart for a new head in vertebrate cardiopharyngeal evolution.

    PubMed

    Diogo, Rui; Kelly, Robert G; Christiaen, Lionel; Levine, Michael; Ziermann, Janine M; Molnar, Julia L; Noden, Drew M; Tzahor, Eldad

    2015-04-23

    It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.

  5. Management of vertebral compression fracture in general practice: BEACH program.

    PubMed

    Megale, Rodrigo Z; Pollack, Allan; Britt, Helena; Latimer, Jane; Naganathan, Vasi; McLachlan, Andrew J; Ferreira, Manuela L

    2017-01-01

    The pain associated with vertebral compression fractures can cause significant loss of function and quality of life for older adults. Despite this, there is little consensus on how best to manage this condition. To describe usual care provided by general practitioners (GPs) in Australia for the management of vertebral compression fractures. Data from the Bettering the Evaluation And Care of Health (BEACH) program collected between April 2005 and March 2015 was used for this study. Each year, a random sample of approximately 1,000 GPs each recorded information on 100 consecutive encounters. We selected those encounters at which vertebral compression fracture was managed. Analyses of management options were limited to encounters with patients aged 50 years or over. i) patient demographics; ii) diagnoses/problems managed; iii) the management provided for vertebral compression fracture during the encounter. Robust 95% confidence intervals, adjusted for the cluster survey design, were used to assess significant differences between group means. Vertebral compression fractures were managed in 211 (0.022%; 95% CI: 0.018-0.025) of the 977,300 BEACH encounters recorded April 2005- March 2015. That provides a national annual estimate of 26,000 (95% CI: 22,000-29,000) encounters at which vertebral fractures were managed. At encounters with patients aged 50 years or over (those at higher risk of primary osteoporosis), prescription of analgesics was the most common management action, particularly opioids analgesics (47.1 per 100 vertebral fractures; 95% CI: 38.4-55.7). Prescriptions of paracetamol (8.2; 95% CI: 4-12.4) or non-steroidal anti-inflammatory drugs (4.1; 95% CI: 1.1-7.1) were less frequent. Non-pharmacological treatment was provided at a rate of 22.4 per 100 vertebral fractures (95% CI: 14.6-30.1). At least one referral (to hospital, specialist, allied health care or other) was given for 12.3 per 100 vertebral fractures (95% CI: 7.8-16.8). The prescription of oral

  6. Evolution and the origin of the visual retinoid cycle in vertebrates.

    PubMed

    Kusakabe, Takehiro G; Takimoto, Noriko; Jin, Minghao; Tsuda, Motoyuki

    2009-10-12

    Absorption of a photon by visual pigments induces isomerization of 11-cis-retinaldehyde (RAL) chromophore to all-trans-RAL. Since the opsins lacking 11-cis-RAL lose light sensitivity, sustained vision requires continuous regeneration of 11-cis-RAL via the process called 'visual cycle'. Protostomes and vertebrates use essentially different machinery of visual pigment regeneration, and the origin and early evolution of the vertebrate visual cycle is an unsolved mystery. Here we compare visual retinoid cycles between different photoreceptors of vertebrates, including rods, cones and non-visual photoreceptors, as well as between vertebrates and invertebrates. The visual cycle systems in ascidians, the closest living relatives of vertebrates, show an intermediate state between vertebrates and non-chordate invertebrates. The ascidian larva may use retinochrome-like opsin as the major isomerase. The entire process of the visual cycle can occur inside the photoreceptor cells with distinct subcellular compartmentalization, although the visual cycle components are also present in surrounding non-photoreceptor cells. The adult ascidian probably uses RPE65 isomerase, and trans-to-cis isomerization may occur in distinct cellular compartments, which is similar to the vertebrate situation. The complete transition to the sophisticated retinoid cycle of vertebrates may have required acquisition of new genes, such as interphotoreceptor retinoid-binding protein, and functional evolution of the visual cycle genes.

  7. The biogeography of threatened insular iguanas and opportunities for invasive vertebrate management

    USGS Publications Warehouse

    Tershy, Bernie R.; Newton, Kelly M.; Spatz, Dena R.; Swinnerton, Kirsty; Iverson, John B.; Fisher, Robert N.; Harlow, Peter S.; Holmes, Nick D.; Croll, Donald A.; Iverson, J.B.; Grant, T. D.; Knapp, C. R.; Pasachnik, S. A.

    2016-01-01

    Iguanas are a particularly threatened group of reptiles, with 61% of species at risk of extinction. Primary threats to iguanas include habitat loss, direct and indirect impacts by invasive vertebrates, overexploitation, and human disturbance. As conspicuous, charismatic vertebrates, iguanas also represent excellent flagships for biodiversity conservation. To assist planning for invasive vertebrate management and thus benefit threatened iguana recovery, we identified all islands with known extant or extirpated populations of Critically Endangered and Endangered insular iguana taxa as recognized by the International Union for Conservation of Nature (IUCN) Red List of Threatened Species. For each island, we determined total area, sovereignty, the presence of invasive alien vertebrates, and human population. For the 23 taxa of threatened insular iguanas we identified 230 populations, of which iguanas were extant on 185 islands and extirpated from 45 islands. Twenty-one iguana taxa (91% of all threatened insular iguana taxa) occurred on at least one island with invasive vertebrates present; 16 taxa had 100% of their population(s) on islands with invasive vertebrates present. Rodents, cats, ungulates, and dogs were the most common invasive vertebrates. We discuss biosecurity, eradication, and control of invasive vertebrates to benefit iguana recovery: (1) on islands already free of invasive vertebrates; (2) on islands with high iguana endemicity; and (3) for species and subspecies with small total populations occurring across multiple small islands. Our analyses provide an important first step toward understanding how invasive vertebrate management can be planned effectively to benefit threatened insular iguanas.

  8. Zygotic Genome Activation in Vertebrates.

    PubMed

    Jukam, David; Shariati, S Ali M; Skotheim, Jan M

    2017-08-21

    The first major developmental transition in vertebrate embryos is the maternal-to-zygotic transition (MZT) when maternal mRNAs are degraded and zygotic transcription begins. During the MZT, the embryo takes charge of gene expression to control cell differentiation and further development. This spectacular organismal transition requires nuclear reprogramming and the initiation of RNAPII at thousands of promoters. Zygotic genome activation (ZGA) is mechanistically coordinated with other embryonic events, including changes in the cell cycle, chromatin state, and nuclear-to-cytoplasmic component ratios. Here, we review progress in understanding vertebrate ZGA dynamics in frogs, fish, mice, and humans to explore differences and emphasize common features. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Posterior internal fixation plus vertebral bone implantation under navigational aid for thoracolumbar fracture treatment

    PubMed Central

    ZHOU, WEI; KONG, WEIQING; ZHAO, BIZHEN; FU, YISHAN; ZHANG, TAO; XU, JIANGUANG

    2013-01-01

    The aim of this study was to investigate the method of posterior thoracolumbar vertebral pedicle screw reduction and fixation combined with vertebral bone implantation via the affected vertebral body under navigational aid for the treatment of thoracolumbar fractures. The efficacy of the procedure was also measured. Between June 2005 and March 2011, posterior thoracolumbar vertebral pedicle screw reduction and fixation plus artificial bone implantation via the affected vertebral pedicle under navigational aid was used to treat 30 patients with thoracolumbar fractures, including 18 males and 12 females, ranging in age from 21 to 57 years. Compared with the values prior to surgery, intraspinal occupation, vertebral height ratio and Cobb angle at the follow-up were significantly improved. At the long-term follow-up, the postoperative Cobb angle loss was <1° and the anterior vertebral body height loss was <2 mm. Posterior thoracolumbar vertebral pedicle screw reduction and fixation combined with vertebral bone implantation via the affected vertebral body under navigational aid may increase the accuracy and safety of surgery, and it is an ideal method of internal implantation. Bone implantation via the affected vertebral body may increase vertebral stability. PMID:23935737

  10. Closure of the vertebral canal in human embryos and fetuses.

    PubMed

    Mekonen, Hayelom K; Hikspoors, Jill P J M; Mommen, Greet; Kruepunga, Nutmethee; Köhler, S Eleonore; Lamers, Wouter H

    2017-08-01

    The vertebral column is the paradigm of the metameric architecture of the vertebrate body. Because the number of somites is a convenient parameter to stage early human embryos, we explored whether the closure of the vertebral canal could be used similarly for staging embryos between 7 and 10 weeks of development. Human embryos (5-10 weeks of development) were visualized using Amira 3D ® reconstruction and Cinema 4D ® remodelling software. Vertebral bodies were identifiable as loose mesenchymal structures between the dense mesenchymal intervertebral discs up to 6 weeks and then differentiated into cartilaginous structures in the 7th week. In this week, the dense mesenchymal neural processes also differentiated into cartilaginous structures. Transverse processes became identifiable at 6 weeks. The growth rate of all vertebral bodies was exponential and similar between 6 and 10 weeks, whereas the intervertebral discs hardly increased in size between 6 and 8 weeks and then followed vertebral growth between 8 and 10 weeks. The neural processes extended dorsolaterally (6th week), dorsally (7th week) and finally dorsomedially (8th and 9th weeks) to fuse at the midthoracic level at 9 weeks. From there, fusion extended cranially and caudally in the 10th week. Closure of the foramen magnum required the development of the supraoccipital bone as a craniomedial extension of the exoccipitals (neural processes of occipital vertebra 4), whereas a growth burst of sacral vertebra 1 delayed closure until 15 weeks. Both the cranial- and caudal-most vertebral bodies fused to form the basioccipital (occipital vertebrae 1-4) and sacrum (sacral vertebrae 1-5). In the sacrum, fusion of its so-called alar processes preceded that of the bodies by at least 6 weeks. In conclusion, the highly ordered and substantial changes in shape of the vertebral bodies leading to the formation of the vertebral canal make the development of the spine an excellent, continuous staging system for

  11. The Evolution of LINE-1 in Vertebrates

    PubMed Central

    Sookdeo, Akash

    2016-01-01

    The abundance and diversity of the LINE-1 (L1) retrotransposon differ greatly among vertebrates. Mammalian genomes contain hundreds of thousands L1s that have accumulated since the origin of mammals. A single group of very similar elements is active at a time in mammals, thus a single lineage of active families has evolved in this group. In contrast, non-mammalian genomes (fish, amphibians, reptiles) harbor a large diversity of concurrently transposing families, which are all represented by very small number of recently inserted copies. Why the pattern of diversity and abundance of L1 is so different among vertebrates remains unknown. To address this issue, we performed a detailed analysis of the evolution of active L1 in 14 mammals and in 3 non-mammalian vertebrate model species. We examined the evolution of base composition and codon bias, the general structure, and the evolution of the different domains of L1 (5′UTR, ORF1, ORF2, 3′UTR). L1s differ substantially in length, base composition, and structure among vertebrates. The most variation is found in the 5′UTR, which is longer in amniotes, and in the ORF1, which tend to evolve faster in mammals. The highly divergent L1 families of lizard, frog, and fish share species-specific features suggesting that they are subjected to the same functional constraints imposed by their host. The relative conservation of the 5′UTR and ORF1 in non-mammalian vertebrates suggests that the repression of transposition by the host does not act in a sequence-specific manner and did not result in an arms race, as is observed in mammals. PMID:28175298

  12. The Evolution of LINE-1 in Vertebrates.

    PubMed

    Boissinot, Stéphane; Sookdeo, Akash

    2016-12-01

    The abundance and diversity of the LINE-1 (L1) retrotransposon differ greatly among vertebrates. Mammalian genomes contain hundreds of thousands L1s that have accumulated since the origin of mammals. A single group of very similar elements is active at a time in mammals, thus a single lineage of active families has evolved in this group. In contrast, non-mammalian genomes (fish, amphibians, reptiles) harbor a large diversity of concurrently transposing families, which are all represented by very small number of recently inserted copies. Why the pattern of diversity and abundance of L1 is so different among vertebrates remains unknown. To address this issue, we performed a detailed analysis of the evolution of active L1 in 14 mammals and in 3 non-mammalian vertebrate model species. We examined the evolution of base composition and codon bias, the general structure, and the evolution of the different domains of L1 (5′UTR, ORF1, ORF2, 3′UTR). L1s differ substantially in length, base composition, and structure among vertebrates. The most variation is found in the 5′UTR, which is longer in amniotes, and in the ORF1, which tend to evolve faster in mammals. The highly divergent L1 families of lizard, frog, and fish share species-specific features suggesting that they are subjected to the same functional constraints imposed by their host. The relative conservation of the 5′UTR and ORF1 in non-mammalian vertebrates suggests that the repression of transposition by the host does not act in a sequence-specific manner and did not result in an arms race, as is observed in mammals.

  13. Proceedings of the sixth annual conference on fossil energy materials. Fossil Energy AR and TD Mateials Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cole, N.C.; Judkins, R.R.

    1992-07-01

    The Sixth Annual Conference on Fossil Energy Materials was held in Oak Ridge, Tennessee, on May 12--14, 1992. The meeting was sponsored by the US Department of Energy`s Office of Fossil Energy through the Advanced Research and Technology Development (AR&TD) Materials Program, and ASM International. The objective of the AR&TD Materials Program is to conduct research and development on materials for longer-term fossil energy applications as well as for generic needs of various fossil fuel technologies. The management of the Program has been decentralized to the DOE Field Office, Oak Ridge with Oak Ridge National Laboratory (ORNL) as the technicalmore » support contractor. The research is performed by staff members at ORNL and by a substantial number of researchers at other national laboratories, universities, and in private industry. The work is divided into the following categories: (1) ceramics, (2) development and corrosion resistance of iron aluminide, advanced austenitic and chromium-niobium alloys, and (3) technology assessment and technology transfer. This conference is held each year to review the work on all of the projects of the Program. The agenda for the meeting is given in Appendix A, and a list of attendees is presented in Appendix B. ASM International cosponsored the conference, for which we are especially grateful.« less

  14. Diagnosis and Management of Vertebral Compression Fractures.

    PubMed

    McCarthy, Jason; Davis, Amy

    2016-07-01

    Vertebral compression fractures (VCFs) are the most common complication of osteoporosis, affecting more than 700,000 Americans annually. Fracture risk increases with age, with four in 10 white women older than 50 years experiencing a hip, spine, or vertebral fracture in their lifetime. VCFs can lead to chronic pain, disfigurement, height loss, impaired activities of daily living, increased risk of pressure sores, pneumonia, and psychological distress. Patients with an acute VCF may report abrupt onset of back pain with position changes, coughing, sneezing, or lifting. Physical examination findings are often normal, but can demonstrate kyphosis and midline spine tenderness. More than two-thirds of patients are asymptomatic and diagnosed incidentally on plain radiography. Acute VCFs may be treated with analgesics such as acetaminophen, nonsteroidal anti-inflammatory drugs, narcotics, and calcitonin. Physicians must be mindful of medication adverse effects in older patients. Other conservative therapeutic options include limited bed rest, bracing, physical therapy, nerve root blocks, and epidural injections. Percutaneous vertebral augmentation, including vertebroplasty and kyphoplasty, is controversial, but can be considered in patients with inadequate pain relief with nonsurgical care or when persistent pain substantially affects quality of life. Family physicians can help prevent vertebral fractures through management of risk factors and the treatment of osteoporosis.

  15. LncRNAs in vertebrates: advances and challenges.

    PubMed

    Mallory, Allison C; Shkumatava, Alena

    2015-10-01

    Beyond the handful of classic and well-characterized long noncoding RNAs (lncRNAs), more recently, hundreds of thousands of lncRNAs have been identified in multiple species including bacteria, plants and vertebrates, and the number of newly annotated lncRNAs continues to increase as more transcriptomes are analyzed. In vertebrates, the expression of many lncRNAs is highly regulated, displaying discrete temporal and spatial expression patterns, suggesting roles in a wide range of developmental processes and setting them apart from classic housekeeping ncRNAs. In addition, the deregulation of a subset of these lncRNAs has been linked to the development of several diseases, including cancers, as well as developmental anomalies. However, the majority of vertebrate lncRNA functions remain enigmatic. As such, a major task at hand is to decipher the biological roles of lncRNAs and uncover the regulatory networks upon which they impinge. This review focuses on our emerging understanding of lncRNAs in vertebrate animals, highlighting some recent advances in their functional analyses across several species and emphasizing the current challenges researchers face to characterize lncRNAs and identify their in vivo functions. Copyright © 2015 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  16. The role of the notochord in amniote vertebral column segmentation.

    PubMed

    Ward, Lizzy; Pang, Angel S W; Evans, Susan E; Stern, Claudio D

    2018-07-01

    The vertebral column is segmented, comprising an alternating series of vertebrae and intervertebral discs along the head-tail axis. The vertebrae and outer portion (annulus fibrosus) of the disc are derived from the sclerotome part of the somites, whereas the inner nucleus pulposus of the disc is derived from the notochord. Here we investigate the role of the notochord in vertebral patterning through a series of microsurgical experiments in chick embryos. Ablation of the notochord causes loss of segmentation of vertebral bodies and discs. However, the notochord cannot segment in the absence of the surrounding sclerotome. To test whether the notochord dictates sclerotome segmentation, we grafted an ectopic notochord. We find that the intrinsic segmentation of the sclerotome is dominant over any segmental information the notochord may possess, and no evidence that the chick notochord is intrinsically segmented. We propose that the segmental pattern of vertebral bodies and discs in chick is dictated by the sclerotome, which first signals to the notochord to ensure that the nucleus pulposus develops in register with the somite-derived annulus fibrosus. Later, the notochord is required for maintenance of sclerotome segmentation as the mature vertebral bodies and intervertebral discs form. These results highlight differences in vertebral development between amniotes and teleosts including zebrafish, where the notochord dictates the segmental pattern. The relative importance of the sclerotome and notochord in vertebral patterning has changed significantly during evolution. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  17. The origin of conodonts and of vertebrate mineralized skeletons

    USGS Publications Warehouse

    Murdock, Duncan J.E.; Dong, Xi-Ping; Repetski, John E.; Marone, Federica; Stampanoni, Marco; Donoghue, Philip C.J.

    2013-01-01

    Conodonts are an extinct group of jawless vertebrates whose tooth-like elements are the earliest instance of a mineralized skeleton in the vertebrate lineage, inspiring the ‘inside-out’ hypothesis that teeth evolved independently of the vertebrate dermal skeleton and before the origin of jaws. However, these propositions have been based on evidence from derived euconodonts. Here we test hypotheses of a paraconodont ancestry of euconodonts using synchrotron radiation X-ray tomographic microscopy to characterize and compare the microstructure of morphologically similar euconodont and paraconodont elements. Paraconodonts exhibit a range of grades of structural differentiation, including tissues and a pattern of growth common to euconodont basal bodies. The different grades of structural differentiation exhibited by paraconodonts demonstrate the stepwise acquisition of euconodont characters, resolving debate over the relationship between these two groups. By implication, the putative homology of euconodont crown tissue and vertebrate enamel must be rejected as these tissues have evolved independently and convergently. Thus, the precise ontogenetic, structural and topological similarities between conodont elements and vertebrate odontodes appear to be a remarkable instance of convergence. The last common ancestor of conodonts and jawed vertebrates probably lacked mineralized skeletal tissues. The hypothesis that teeth evolved before jaws and the inside-out hypothesis of dental evolution must be rejected; teeth seem to have evolved through the extension of odontogenic competence from the external dermis to internal epithelium soon after the origin of jaws.

  18. A new heart for a new head in vertebrate cardiopharyngeal evolution

    PubMed Central

    Diogo, Rui; Kelly, Robert G.; Christiaen, Lionel; Levine, Michael; Ziermann, Janine M.; Molnar, Julia L.; Noden, Drew M.; Tzahor, Eldad

    2015-01-01

    It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts — both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates. PMID:25903628

  19. A Common Fold Mediates Vertebrate Defense and Bacterial Attack

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosado, Carlos J.; Buckle, Ashley M.; Law, Ruby H.P.

    2008-10-02

    Proteins containing membrane attack complex/perforin (MACPF) domains play important roles in vertebrate immunity, embryonic development, and neural-cell migration. In vertebrates, the ninth component of complement and perforin form oligomeric pores that lyse bacteria and kill virus-infected cells, respectively. However, the mechanism of MACPF function is unknown. We determined the crystal structure of a bacterial MACPF protein, Plu-MACPF from Photorhabdus luminescens, to 2.0 angstrom resolution. The MACPF domain reveals structural similarity with poreforming cholesterol-dependent cytolysins (CDCs) from Gram-positive bacteria. This suggests that lytic MACPF proteins may use a CDC-like mechanism to form pores and disrupt cell membranes. Sequence similarity between bacterialmore » and vertebrate MACPF domains suggests that the fold of the CDCs, a family of proteins important for bacterial pathogenesis, is probably used by vertebrates for defense against infection.« less

  20. Evolution of the vertebrate neurocranium: problems of the premandibular domain and the origin of the trabecula.

    PubMed

    Kuratani, Shigeru; Ahlberg, Per E

    2018-01-01

    The subdivision of the gnathostome neurocranium into an anterior neural crest-derived moiety and a posterior mesodermal moiety has attracted the interest of researchers for nearly two centuries. We present a synthetic scenario for the evolution of this structure, uniting developmental data from living cyclostomes and gnathostomes with morphological data from fossil stem gnathostomes in a common phylogenetic framework. Ancestrally, vertebrates had an anteroposteriorly short forebrain, and the neurocranium was essentially mesodermal; skeletal structures derived from premandibular ectomesenchyme were mostly anterior to the brain and formed part of the visceral arch skeleton. The evolution of a one-piece neurocranial 'head shield' in jawless stem gnathostomes, such as galeaspids and osteostracans, caused this mesenchyme to become incorporated into the neurocranium, but its position relative to the brain and nasohypophyseal duct remained unchanged. Basically similar distribution of the premandibular ectomesenchyme is inferred, even in placoderms, the earliest jawed vertebrates, in which the separation of hypophyseal and nasal placodes obliterated the nasohypophyseal duct, leading to redeployment of this ectomesenchyme between the separate placodes and permitting differentiation of the crown gnathostome trabecula that floored the forebrain. Initially this region was very short, and the bulk of the premandibular cranial part projected anteroventral to the nasal capsule, as in jawless stem gnathostomes. Due to the lengthening of the forebrain, the anteriorly projecting 'upper lip' was lost, resulting in the modern gnathostome neurocranium with a long forebrain cavity floored by the trabeculae.

  1. Orientation-Selective Retinal Circuits in Vertebrates

    PubMed Central

    Antinucci, Paride; Hindges, Robert

    2018-01-01

    Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such ‘orientation-selective’ neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates. PMID:29467629

  2. Orientation-Selective Retinal Circuits in Vertebrates.

    PubMed

    Antinucci, Paride; Hindges, Robert

    2018-01-01

    Visual information is already processed in the retina before it is transmitted to higher visual centers in the brain. This includes the extraction of salient features from visual scenes, such as motion directionality or contrast, through neurons belonging to distinct neural circuits. Some retinal neurons are tuned to the orientation of elongated visual stimuli. Such 'orientation-selective' neurons are present in the retinae of most, if not all, vertebrate species analyzed to date, with species-specific differences in frequency and degree of tuning. In some cases, orientation-selective neurons have very stereotyped functional and morphological properties suggesting that they represent distinct cell types. In this review, we describe the retinal cell types underlying orientation selectivity found in various vertebrate species, and highlight their commonalities and differences. In addition, we discuss recent studies that revealed the cellular, synaptic and circuit mechanisms at the basis of retinal orientation selectivity. Finally, we outline the significance of these findings in shaping our current understanding of how this fundamental neural computation is implemented in the visual systems of vertebrates.

  3. Structure and evolution of fossil H II regions

    NASA Technical Reports Server (NTRS)

    Mccray, R.; Schwarz, J.

    1971-01-01

    The structure and evolution of a fossil H II region created by a burst of ionizing radiation from a supernova is considered. The cooling time scale for the shell is about 10 to the 6th power years. Superposition of million-year-old fossil H II regions may account for the temperature and ionization of the interstellar medium. Fossil H II regions are unstable to growth of thermal condensations. Highly ionized filamentary structures form and dissipate in about 10,000 years. Partially ionized clouds form and dissipate in about 10 to the 6th power years.

  4. Benefits of jasmonate-dependent defenses against vertebrate herbivores in nature.

    PubMed

    Machado, Ricardo Ar; McClure, Mark; Hervé, Maxime R; Baldwin, Ian T; Erb, Matthias

    2016-06-29

    Endogenous jasmonates are important regulators of plant defenses. If and how they enable plants to maintain their reproductive output when facing community-level herbivory under natural conditions, however, remains unknown. We demonstrate that jasmonate-deficient Nicotiana attenuata plants suffer more damage by arthropod and vertebrate herbivores than jasmonate-producing plants in nature. However, only damage by vertebrate herbivores translates into a significant reduction in flower production. Vertebrate stem peeling has the strongest negative impact on plant flower production. Stems are defended by jasmonate-dependent nicotine, and the native cottontail rabbit Sylvilagus nuttallii avoids jasmonate-producing N. attenuata shoots because of their high levels of nicotine. Thus, endogenous jasmonates enable plants to resist different types of herbivores in nature, and jasmonate-dependent defenses are important for plants to maintain their reproductive potential when facing vertebrate herbivory. Ecological and evolutionary models on plant defense signaling should aim at integrating arthropod and vertebrate herbivory at the community level.

  5. High prevalence of radiological vertebral fractures in HIV-infected males.

    PubMed

    Torti, Carlo; Mazziotti, Gherardo; Soldini, Pier Antonio; Focà, Emanuele; Maroldi, Roberto; Gotti, Daria; Carosi, Giampiero; Giustina, Andrea

    2012-06-01

    Age-related co-morbidities including osteoporosis are relevant in patients responding to combination antiretroviral therapy (cART). Vertebral fractures are common osteoporotic fractures and their diagnosis is useful for managing at-risk individuals. However, there are few data from HIV-infected patients. Therefore, the aim of this study was to determine the prevalence of and factors associated with vertebral fractures in a population of HIV-infected males. A cross-sectional study of 160 HIV-infected patients with available chest X-rays was conducted from 1998 to 2010. One hundred and sixty-three males with comparable age and with no history of HIV infection were recruited as controls. Semi-quantitative evaluation of vertebral heights in lateral chest X-rays and quantitative morphometry assessment of centrally digitized images using dedicated morphometry software were utilized to detect prevalent vertebral fractures. The result showed that the vertebral fractures were detected in 43/160 (26.9%) HIV-infected patients and in 21/163 (12.9%) controls (P = 0.002). In HIV-infected patients with fractures, 27 had two or more fractures and ten patients had severe fractures. The prevalence of any fractures and multiple fractures in HIV-infected patients receiving cART (29.6 and 20.0%) was slightly higher than in HIV-infected patients not exposed to cART (17.1 and 5.7%), but significantly higher than control subjects (12.9 and 3.7%). At multivariable analyses, body mass index and diabetes mellitus were independently correlated with vertebral fractures in HIV-infected patients. We concluded that a significant proportion of HIV-infected males receiving cART showed vertebral fractures. Furthermore, proactive diagnosis of vertebral fragility fractures is particularly relevant in patients who are overweight or suffer from diabetes.

  6. Thoracic kyphosis and rate of incident vertebral fractures: the Fracture Intervention Trial.

    PubMed

    Katzman, W B; Vittinghoff, E; Kado, D M; Lane, N E; Ensrud, K E; Shipp, K

    2016-03-01

    Biomechanical analyses support the theory that thoracic spine hyperkyphosis may increase risk of new vertebral fractures. While greater kyphosis was associated with an increased rate of incident vertebral fractures, our analysis does not show an independent association of kyphosis on incident fracture, after adjustment for prevalent vertebral fracture. Excessive kyphosis may still be a clinical marker for prevalent vertebral fracture. Biomechanical analyses suggest hyperkyphosis may increase risk of incident vertebral fracture by increasing the load on vertebral bodies during daily activities. We propose to assess the association of kyphosis with incident radiographic vertebral fracture. We used data from the Fracture Intervention Trial among 3038 women 55-81 years of age with low bone mineral density (BMD). Baseline kyphosis angle was measured using a Debrunner kyphometer. Vertebral fractures were assessed at baseline and follow-up from lateral radiographs of the thoracic and lumbar spine. We used Poisson models to estimate the independent association of kyphosis with incident fracture, controlling for age and femoral neck BMD. Mean baseline kyphosis was 48° (SD = 12) (range 7-83). At baseline, 962 (32%) participants had a prevalent fracture. There were 221 incident fractures over a median of 4 years. At baseline, prevalent fracture was associated with 3.7° greater average kyphosis (95% CI 2.8-4.6, p < 0.0005), adjusting for age and femoral neck BMD. Before adjusting for prevalent fracture, each 10° greater kyphosis was associated with 22% increase (95% CI 8-38%, p = 0.001) in annualized rate of new radiographic vertebral fracture, adjusting for age and femoral neck BMD. After additional adjustment for prevalent fracture, estimated increased annualized rate was attenuated and no longer significant, 8% per 10° kyphosis (95% CI -4 to 22%, p = 0.18). While greater kyphosis increased the rate of incident vertebral fractures, our analysis does not

  7. Thoracic kyphosis and rate of incident vertebral fractures: the Fracture Intervention Trial

    PubMed Central

    Vittinghoff, E.; Kado, D. M.; Lane, N. E.; Ensrud, K. E.; Shipp, K.

    2016-01-01

    Summary Biomechanical analyses support the theory that thoracic spine hyperkyphosis may increase risk of new vertebral fractures. While greater kyphosis was associated with an increased rate of incident vertebral fractures, our analysis does not show an independent association of kyphosis on incident fracture, after adjustment for prevalent vertebral fracture. Excessive kyphosis may still be a clinical marker for prevalent vertebral fracture. Introduction Biomechanical analyses suggest hyperkyphosis may increase risk of incident vertebral fracture by increasing the load on vertebral bodies during daily activities. We propose to assess the association of kyphosis with incident radiographic vertebral fracture. Methods We used data from the Fracture Intervention Trial among 3038 women 55–81 years of age with low bone mineral density (BMD). Baseline kyphosis angle was measured using a Debrunner kyphometer. Vertebral fractures were assessed at baseline and follow-up from lateral radiographs of the thoracic and lumbar spine. We used Poisson models to estimate the independent association of kyphosis with incident fracture, controlling for age and femoral neck BMD. Results Mean baseline kyphosis was 48° (SD = 12) (range 7–83). At baseline, 962 (32 %) participants had a prevalent fracture. There were 221 incident fractures over a median of 4 years. At baseline, prevalent fracture was associated with 3.7° greater average kyphosis (95 % CI 2.8–4.6, p < 0.0005), adjusting for age and femoral neck BMD. Before adjusting for prevalent fracture, each 10° greater kyphosis was associated with 22 % increase (95 % CI 8–38 %, p = 0.001) in annualized rate of new radiographic vertebral fracture, adjusting for age and femoral neck BMD. After additional adjustment for prevalent fracture, estimated increased annualized rate was attenuated and no longer significant, 8 % per 10° kyphosis (95 % CI −4 to 22 %, p = 0.18). Conclusions While greater kyphosis increased the rate of

  8. Microbial Fossils Detected in Desert Varnish

    NASA Technical Reports Server (NTRS)

    Flood, B. E.; Allen, C.; Longazo, T.

    2003-01-01

    Mars Global Surveyor Thermal Emission Spectrometer data indicate regions with significant levels of hematite (_Fe2O3). Fe-oxides, like hematite, can form as aqueous mineral precipitates and as such may preserve microscopic fossils or other biosignatures. Several potential terrestrial analogues to martian hematite like hydrothermal vents have preserved microfossils. Microbial fossilization in Fe-oxides is often a function of biomineralization. For example, goethite (FeO2H) encrustation of fungal mycelia from the mid-Tertiary preserved fungal morphologies such that their genera could be determined.

  9. Evolutionary perspectives on clonal reproduction in vertebrate animals

    PubMed Central

    Avise, John C.

    2015-01-01

    A synopsis is provided of different expressions of whole-animal vertebrate clonality (asexual organismal-level reproduction), both in the laboratory and in nature. For vertebrate taxa, such clonal phenomena include the following: human-mediated cloning via artificial nuclear transfer; intergenerational clonality in nature via parthenogenesis and gynogenesis; intergenerational hemiclonality via hybridogenesis and kleptogenesis; intragenerational clonality via polyembryony; and what in effect qualifies as clonal replication via self-fertilization and intense inbreeding by simultaneous hermaphrodites. Each of these clonal or quasi-clonal mechanisms is described, and its evolutionary genetic ramifications are addressed. By affording an atypical vantage on standard vertebrate reproduction, clonality offers fresh perspectives on the evolutionary and ecological significance of recombination-derived genetic variety. PMID:26195735

  10. Bilateral aortic origins of the vertebral arteries with right vertebral artery arising distal to left subclavian artery: case report.

    PubMed

    Al-Okaili, Riyadh; Schwartz, Eric D

    2007-02-01

    Bilateral aortic origins of the vertebral arteries are a rare anatomic variant, with fewer than 20 cases reported in the literature. This particular variant has only been reported twice. A 35-year-old woman presented to the emergency department after trauma to the head and a witnessed convulsion. Subsequent workup included MRI/MRA, which resulted in identification of the anomaly. The clinical importance of aortic arch anomalies lies in that it may be a source of misinterpretation, as one may conclude occlusion of the vertebral artery if the aberrant origin is not included in the MRA or CTA imaging parameters. Therefore, it is important to scan through the entire aortic arch to just below the level of the ligamentum arteriosum when performing these noninvasive modalities. In addition, vertebral arteries arising from the aortic arch have an increased risk of dissection.

  11. Relevant signs of stable and unstable thoracolumbar vertebral column trauma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gehweiler, J.A.; Daffner, R.H.; Osborne, R.L.

    1981-12-01

    One-hundred and seventeen patients with acute thoracolumbar vertebral column fracture or fracture-dislocations were analyzed and classified into stable (36%) and unstable (64%). Eight helpful roentgen signs were observed that may serve to direct attention to serious underlying, often occult, fractures and dislocations. The changes fall into four principal groups: abnormal soft tissues, abnormal vertebral alignment, abnormal joints, and widened vertebral canal. All stable and unstable lesions showed abnormal soft tissues, while 70% demonstrated kyphosis and/or scoliosis, and an abnormal adjacent intervertebral disk space. All unstable lesions showed one or more of the following signs: displaced vertebra, widened interspinous space, abnormalmore » apophyseal joint(s), and widened vertebral canal.« less

  12. Fossilization and Learning Strategies in Second Language Acquisition.

    ERIC Educational Resources Information Center

    Sims, William R.

    1989-01-01

    In interlanguage, the transitional state reaching from one's native language to a given target language, phonological, morphological, syntactic, lexical, sociocultural, or psycholinguistic errors may be generated and systematized by the process of fossilization. Depending on the amount of time needed for remediation, fossilized features may be…

  13. Fossil-Fuel C02 Emissions Database and Exploration System

    NASA Astrophysics Data System (ADS)

    Krassovski, M.; Boden, T.

    2012-04-01

    Fossil-Fuel C02 Emissions Database and Exploration System Misha Krassovski and Tom Boden Carbon Dioxide Information Analysis Center Oak Ridge National Laboratory The Carbon Dioxide Information Analysis Center (CDIAC) at Oak Ridge National Laboratory (ORNL) quantifies the release of carbon from fossil-fuel use and cement production each year at global, regional, and national spatial scales. These estimates are vital to climate change research given the strong evidence suggesting fossil-fuel emissions are responsible for unprecedented levels of carbon dioxide (CO2) in the atmosphere. The CDIAC fossil-fuel emissions time series are based largely on annual energy statistics published for all nations by the United Nations (UN). Publications containing historical energy statistics make it possible to estimate fossil-fuel CO2 emissions back to 1751 before the Industrial Revolution. From these core fossil-fuel CO2 emission time series, CDIAC has developed a number of additional data products to satisfy modeling needs and to address other questions aimed at improving our understanding of the global carbon cycle budget. For example, CDIAC also produces a time series of gridded fossil-fuel CO2 emission estimates and isotopic (e.g., C13) emissions estimates. The gridded data are generated using the methodology described in Andres et al. (2011) and provide monthly and annual estimates for 1751-2008 at 1° latitude by 1° longitude resolution. These gridded emission estimates are being used in the latest IPCC Scientific Assessment (AR4). Isotopic estimates are possible thanks to detailed information for individual nations regarding the carbon content of select fuels (e.g., the carbon signature of natural gas from Russia). CDIAC has recently developed a relational database to house these baseline emissions estimates and associated derived products and a web-based interface to help users worldwide query these data holdings. Users can identify, explore and download desired CDIAC

  14. Hyperconcavity of the lumbar vertebral endplates in the elite football lineman.

    PubMed

    Moorman, Claude T; Johnson, David C; Pavlov, Helene; Barnes, Ronnie; Warren, Russell F; Speer, Kevin P; Guettler, Joseph H

    2004-09-01

    Hyperconcavity of the vertebral endplates is a previously unreported radiologic phenomenon. To analyze hyperconcavity of the vertebral endplates with expansion of the disk space in pre-National Football League lineman and to determine its clinical significance. Descriptive anatomical study. Over a 2-year period (1992-1993), 266 elite football linemen were evaluated at the National Football League scouting combine held in Indianapolis, Indiana. Evaluation focused on the lumbosacral spine and included history, physical examination, and lateral radiographs. Measurements were taken of all the vertebral endplate defects of involved vertebrae and compared with an age-matched control group of 110 patients. The analyzed data revealed the following: (1) hyperconcavity of the vertebral endplates appeared as a distinct entity in a high percentage of pre-National Football League lineman (33%) compared with age-matched controls (8%), (2) there was a trend toward a lower incidence of lumbosacral spine symptoms in those players who displayed hyperconcavity of the vertebral endplates (16%) versus those who did not (25%), and (3) when hyperconcavity of the vertebral endplates was present, all 5 lumbosacral disk spaces were commonly affected. Hyperconcavity of the vertebral endplates and hypertrophy of the disk space are likely adaptive changes occurring over time in response to the repetitive high loading and axial stress experienced in football line play.

  15. Research needs for finely resolved fossil carbon emissions

    USGS Publications Warehouse

    Gurney, K.; Ansley, W.; Mendoza, D.; Petron, G.; Frost, G.; Gregg, J.; Fischer, M.; Pataki, Diane E.; Ackerman, K.; Houweling, S.; Corbin, K.; Andres, R.; Blasing, T.J.

    2007-01-01

    Scientific research on the global carbon cycle has emerged as a high priority in biogeochemistry, climate studies, and global change policy. The emission of carbon dioxide (CO2) from fossil fuel combustion is a dominant driver of the current net carbon fluxes between the land, the oceans, and the atmosphere, and it is a key contributor to the rise in modern radiative forcing. Contrary to a commonly held perception, our quantitative knowledge about these emissions is insufficient to satisfy current scientific and policy needs. A more highly spatially and temporally resolved quantification of the social and economic drivers of fossil fuel combustion, and the resulting CO2 emissions, is essential to supporting scientific and policy progress. In this article, a new community of emissions researchers called the CO2 Fossil Fuel Emission Effort (CO2FFEE) outlines a research agenda to meet the need for improved fossil fuel CO2 emissions information and solicits comment from the scientific community and research agencies.

  16. Anomalous Origin of the Right Vertebral Artery: Incidence and Significance.

    PubMed

    Maiti, Tanmoy Kumar; Konar, Subhas Kanti; Bir, Shyamal; Nanda, Anil; Cuellar, Hugo

    2016-05-01

    Detailed knowledge about anatomic variations of the aortic arch and its multiple branches is extremely important to endovascular and diagnostic radiologists. It is often hypothesized that anomalous origin and distribution of large aortic vessels may alter the cerebral hemodynamics and potentially lead to a vascular pathology. In this article, we describe a case of anomalous origin of the right vertebral artery, which was detected during an intervention. We further reviewed the available literature of anomalous origin of the right vertebral artery. The probable embryologic development and clinical significance are discussed. The incidence of anomalous origin of a vertebral artery seems to be underestimated in recent literature. A careful review of the literature shows more than 100 such cases. The right vertebral artery can arise from the aortic arch or one of its branches. Dual origin of the vertebral artery is not uncommon. The embryologic developmental hypotheses are contradictory and complex. Anomalous origin of the right vertebral artery may not be the sole reason behind a disease process. However, it can certainly lead to a misdiagnosis during diagnostic vascular studies. Detailed information is essential for any surgery or endovascular intervention in this location. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Three-Dimensional Vertebral Wedging in Mild and Moderate Adolescent Idiopathic Scoliosis

    PubMed Central

    Scherrer, Sophie-Anne; Begon, Mickaël; Leardini, Alberto; Coillard, Christine; Rivard, Charles-Hilaire; Allard, Paul

    2013-01-01

    Background Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. Methodology Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50°) participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20°) from the moderate (20° and over) spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. Results Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it) (F = 1.78, p = 0.101). Main effects of vertebral Positions (apex and above or below it) (F = 4.20, p = 0.015) and wedging Planes (F = 34.36, p<0.001) were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6°) than the superior group (2.9°, p = 0.019) and a significantly greater wedging (p≤0.03) along the sagittal plane (4.3°). Conclusions Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support the claim

  18. Physical performance and radiographic and clinical vertebral fractures in older men.

    PubMed

    Cawthon, Peggy M; Blackwell, Terri L; Marshall, Lynn M; Fink, Howard A; Kado, Deborah M; Ensrud, Kristine E; Cauley, Jane A; Black, Dennis; Orwoll, Eric S; Cummings, Steven R; Schousboe, John T

    2014-09-01

    In men, the association between poor physical performance and likelihood of incident vertebral fractures is unknown. Using data from the MrOS study (N = 5958), we describe the association between baseline physical performance (walking speed, grip strength, leg power, repeat chair stands, narrow walk [dynamic balance]) and incidence of radiographic and clinical vertebral fractures. At baseline and follow-up an average of 4.6 years later, radiographic vertebral fractures were assessed using semiquantitative (SQ) scoring on lateral thoracic and lumbar radiographs. Logistic regression modeled the association between physical performance and incident radiographic vertebral fractures (change in SQ grade ≥1 from baseline to follow-up). Every 4 months after baseline, participants self-reported fractures; clinical vertebral fractures were confirmed by centralized radiologist review of the baseline study radiograph and community-acquired spine images. Proportional hazards regression modeled the association between physical performance with incident clinical vertebral fractures. Multivariate models were adjusted for age, bone mineral density (BMD, by dual-energy X-ray absorptiometry [DXA]), clinical center, race, smoking, height, weight, history of falls, activity level, and comorbid medical conditions; physical performance was analyzed as quartiles. Of 4332 men with baseline and repeat radiographs, 192 (4.4%) had an incident radiographic vertebral fracture. With the exception of walking speed, poorer performance on repeat chair stands, leg power, narrow walk, and grip strength were each associated in a graded manner with an increased risk of incident radiographic vertebral fracture (p for trend across quartiles <0.001). In addition, men with performance in the worst quartile on three or more exams had an increased risk of radiographic fracture (odds ratio [OR] = 1.81, 95% confidence interval [CI] 1.33-2.45) compared with men with better performance on all exams

  19. Identifying Fossil Shell Resources via Geophysical Surveys: Chesapeake Bay Region, Virginia

    DTIC Science & Technology

    2016-05-01

    ER D C/ CH L TR -1 6- 4 Chesapeake Fossil Shell Survey Identifying Fossil Shell Resources via Geophysical Surveys: Chesapeake Bay Region...other technical reports published by ERDC, visit the ERDC online library at http://acwc.sdp.sirsi.net/client/default. Chesapeake Fossil Shell...Survey ERDC/CHL TR-16-4 May 2016 Identifying Fossil Shell Resources via Geophysical Surveys: Chesapeake Bay Region, Virginia Heidi M. Wadman and Jesse

  20. A new fossil species supports an early origin for toothed whale echolocation.

    PubMed

    Geisler, Jonathan H; Colbert, Matthew W; Carew, James L

    2014-04-17

    Odontocetes (toothed whales, dolphins and porpoises) hunt and navigate through dark and turbid aquatic environments using echolocation; a key adaptation that relies on the same principles as sonar. Among echolocating vertebrates, odontocetes are unique in producing high-frequency vocalizations at the phonic lips, a constriction in the nasal passages just beneath the blowhole, and then using air sinuses and the melon to modulate their transmission. All extant odontocetes seem to echolocate; however, exactly when and how this complex behaviour--and its underlying anatomy--evolved is largely unknown. Here we report an odontocete fossil, Oligocene in age (approximately 28 Myr ago), from South Carolina (Cotylocara macei, gen. et sp. nov.) that has several features suggestive of echolocation: a dense, thick and downturned rostrum; air sac fossae; cranial asymmetry; and exceptionally broad maxillae. Our phylogenetic analysis places Cotylocara in a basal clade of odontocetes, leading us to infer that a rudimentary form of echolocation evolved in the early Oligocene, shortly after odontocetes diverged from the ancestors of filter-feeding whales (mysticetes). This was followed by enlargement of the facial muscles that modulate echolocation calls, which in turn led to marked, convergent changes in skull shape in the ancestors of Cotylocara, and in the lineage leading to extant odontocetes.

  1. Fossil moonseeds from the Paleogene of West Gondwana (Patagonia, Argentina).

    PubMed

    Jud, Nathan A; Iglesias, Ari; Wilf, Peter; Gandolfo, Maria A

    2018-06-08

    The fossil record is critical for testing biogeographic hypotheses. Menispermaceae (moonseeds) are a widespread family with a rich fossil record and alternative hypotheses related to their origin and diversification. The family is well-represented in Cenozoic deposits of the northern hemisphere, but the record in the southern hemisphere is sparse. Filling in the southern record of moonseeds will improve our ability to evaluate alternative biogeographic hypotheses. Fossils were collected from the Salamanca (early Paleocene, Danian) and the Huitrera (early Eocene, Ypresian) formations in Chubut Province, Argentina. We photographed them using light microscopy, epifluorescence, and scanning electron microscopy and compared the fossils with similar extant and fossil Menispermaceae using herbarium specimens and published literature. We describe fossil leaves and endocarps attributed to Menispermaceae from Argentinean Patagonia. The leaves are identified to the family, and the endocarps are further identified to the tribe Cissampelideae. The Salamancan endocarp is assigned to the extant genus Stephania. These fossils significantly expand the known range of Menispermaceae in South America, and they include the oldest (ca. 64 Ma) unequivocal evidence of the family worldwide. Our findings highlight the importance of West Gondwana in the evolution of Menispermaceae during the Paleogene. Currently, the fossil record does not discern between a Laurasian or Gondwanan origin; however, it does demonstrate that Menispermaceae grew well outside the tropics by the early Paleocene. The endocarps' affinity with Cissampelideae suggests that diversification of the family was well underway by the earliest Paleocene. © 2018 The Authors. American Journal of Botany is published by Wiley Periodicals, Inc. on behalf of the Botanical Society of America.

  2. Middle Miocene vertebrates from the Amazonian Madre de Dios Subandean Zone, Perú

    NASA Astrophysics Data System (ADS)

    Antoine, Pierre-Olivier; Roddaz, Martin; Brichau, Stéphanie; Tejada-Lara, Julia; Salas-Gismondi, Rodolfo; Altamirano, Ali; Louterbach, Mélanie; Lambs, Luc; Otto, Thierry; Brusset, Stéphane

    2013-03-01

    A new middle Miocene vertebrate fauna from Peruvian Amazonia is described. It yields the marsupials Sipalocyon sp. (Hathliacynidae) and Marmosa (Micoureus) cf. laventica (Didelphidae), as well as an unidentified glyptodontine xenarthran and the rodents Guiomys sp. (Caviidae), “Scleromys” sp., cf. quadrangulatus-schurmanni-colombianus (Dinomyidae), an unidentified acaremyid, and cf. Microsteiromys sp. (Erethizontidae). Apatite Fission Track provides a detrital age (17.1 ± 2.4 Ma) for the locality, slightly older than its inferred biochronological age (Colloncuran-early Laventan South American Land Mammal Ages: ˜15.6-13.0 Ma). Put together, both the mammalian assemblage and lithology of the fossil-bearing level point to a mixture of tropical rainforest environment and more open habitats under a monsoonal-like tropical climate. The fully fluvial origin of the concerned sedimentary sequence suggests that the Amazonian Madre de Dios Subandean Zone was not part of the Pebas mega-wetland System by middle Miocene times. This new assemblage seems to reveal a previously undocumented “spatiotemporal transition” between the late early Miocene assemblages from high latitudes (Patagonia and Southern Chile) and the late middle Miocene faunas of low latitudes (Colombia, Perú, Venezuela, and ?Brazil).

  3. Cooperative Learning as a Tool To Teach Vertebrate Anatomy.

    ERIC Educational Resources Information Center

    Koprowski, John L.; Perigo, Nan

    2000-01-01

    Describes a method for teaching biology that includes more investigative exercises that foster an environment for cooperative learning in introductory laboratories that focus on vertebrates. Fosters collaborative learning by facilitating interaction between students as they become experts on their representative vertebrate structures. (SAH)

  4. Management of cement vertebroplasty in the treatment of vertebral hemangioma.

    PubMed

    Boschi, V; Pogorelić, Z; Gulan, G; Perko, Z; Grandić, L; Radonić, V

    2011-01-01

    The vertebral hemangiomas are benign vascular lesions occurring in spine. Although uncommon, symptomatic vertebral hemangiomas can be painful and can limit daily activities. A number of methods have been used in the treatment of symptomatic and aggressive vertebral hemangioma, but none of them is optimal. Treatment with cement vertebroplasty showed very good results. This study aims to illustrate the validity of the treatment with cement vertebroplasty in patients with painful vertebral hemangiomas. From January 2000 to January 2007, 24 patients were treated by percutaneous vertebroplasty because of hemangioma: 16 thoracic, 8 lumbar. There were 11 males and 13 females. The average age at the time of surgery was 48 years. All the patients complained of a pain syndrome resistant to continuing medication. All patients underwent X-ray examination, CT-scan and MR of the involved level preoperatively. A unipedicular approach under fluoroscopic guidance has been performed in all patients. All procedures have been carried out under the local anesthesia. The mean follow-up was 5.8 years. In all the patients a successful outcome has been observed with a complete resolution of pain symptom. Extravertebral vascular cement leakage has been observed in 3 patients, without any clinical radicular syndrome onset due to the epidural diffusion. Clinical and radiological follow-up showed stability of the treatment and absence of pain in all patients. Percutaneous treatment with vertebroplasty for symptomatic vertebral hemangiomas is a valuable, less-invasive, and a quick method that allows a complete and enduring resolution of the painful vertebral symptoms without findings of the vertebral body's fracture.

  5. High prevalence of morphometric vertebral deformities in patients with inflammatory bowel disease.

    PubMed

    Heijckmann, Anna Caroline; Huijberts, Maya S P; Schoon, Erik J; Geusens, Piet; de Vries, Jolanda; Menheere, Paul P C A; van der Veer, Eveline; Wolffenbuttel, Bruce H R; Stockbrugger, Reinhold W; Dumitrescu, Bianca; Nieuwenhuijzen Kruseman, Arie C

    2008-08-01

    Earlier studies have documented that the prevalence of decreased bone mineral density (BMD) is elevated in patients with inflammatory bowel disease. The objective of this study was to investigate the prevalence of vertebral deformities in inflammatory bowel disease patients and their relation with BMD and bone turnover. One hundred and nine patients with Crohn's disease (CD) and 72 with ulcerative colitis (UC) (age 44.5+/-14.2 years) were studied. BMD of the hip (by dual X-ray absorptiometry) was measured and a lateral single energy densitometry of the spine for assessment of vertebral deformities was performed. Serum markers of bone resorption (carboxy-terminal cross-linked telopeptide of type I collagen) and formation (procollagen type I amino-terminal propeptide) were measured, and determinants of prevalent vertebral deformities were assessed using logistic regression analysis. Vertebral deformities were found in 25% of both CD and UC patients. Comparing patients with and without vertebral deformities, no significant difference was found between Z-scores and T-scores of BMD, or levels of serum carboxy-terminal cross-linked telopeptide of type I collagen and serum procollagen type I amino-terminal propeptide. Using logistic regression analysis the only determinant of any morphometric vertebral deformity was sex. The presence of multiple vertebral deformities was associated with older age and glucocorticoid use. The prevalence of morphometric vertebral deformities is high in CD and UC. Male sex, but neither disease activity, bone turnover markers, clinical risk factors, nor BMD predicted their presence. The determinants for having more than one vertebral deformity were age and glucocorticoid use. This implies that in addition to screening for low BMD, morphometric assessment of vertebral deformities is warranted in CD and UC.

  6. The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates

    PubMed Central

    Peat, Julian R.; Ortega-Recalde, Oscar; Kardailsky, Olga; Hore, Timothy A.

    2017-01-01

    Background: Methylation of CG dinucleotides constitutes a critical system of epigenetic memory in bony vertebrates, where it modulates gene expression and suppresses transposon activity. The genomes of studied vertebrates are pervasively hypermethylated, with the exception of regulatory elements such as transcription start sites (TSSs), where the presence of methylation is associated with gene silencing. This system is not found in the sparsely methylated genomes of invertebrates, and establishing how it arose during early vertebrate evolution is impeded by a paucity of epigenetic data from basal vertebrates. Methods: We perform whole-genome bisulfite sequencing to generate the first genome-wide methylation profiles of a cartilaginous fish, the elephant shark Callorhinchus milii. Employing these to determine the elephant shark methylome structure and its relationship with expression, we compare this with higher vertebrates and an invertebrate chordate using published methylation and transcriptome data.  Results: Like higher vertebrates, the majority of elephant shark CG sites are highly methylated, and methylation is abundant across the genome rather than patterned in the mosaic configuration of invertebrates. This global hypermethylation includes transposable elements and the bodies of genes at all expression levels. Significantly, we document an inverse relationship between TSS methylation and expression in the elephant shark, supporting the presence of the repressive regulatory architecture shared by higher vertebrates. Conclusions: Our demonstration that methylation patterns in a cartilaginous fish are characteristic of higher vertebrates imply the conservation of this epigenetic modification system across jawed vertebrates separated by 465 million years of evolution. In addition, these findings position the elephant shark as a valuable model to explore the evolutionary history and function of vertebrate methylation. PMID:28580133

  7. The elephant shark methylome reveals conservation of epigenetic regulation across jawed vertebrates.

    PubMed

    Peat, Julian R; Ortega-Recalde, Oscar; Kardailsky, Olga; Hore, Timothy A

    2017-01-01

    Methylation of CG dinucleotides constitutes a critical system of epigenetic memory in bony vertebrates, where it modulates gene expression and suppresses transposon activity. The genomes of studied vertebrates are pervasively hypermethylated, with the exception of regulatory elements such as transcription start sites (TSSs), where the presence of methylation is associated with gene silencing. This system is not found in the sparsely methylated genomes of invertebrates, and establishing how it arose during early vertebrate evolution is impeded by a paucity of epigenetic data from basal vertebrates.  We perform whole-genome bisulfite sequencing to generate the first genome-wide methylation profiles of a cartilaginous fish, the elephant shark Callorhinchus milii . Employing these to determine the elephant shark methylome structure and its relationship with expression, we compare this with higher vertebrates and an invertebrate chordate using published methylation and transcriptome data.  Results: Like higher vertebrates, the majority of elephant shark CG sites are highly methylated, and methylation is abundant across the genome rather than patterned in the mosaic configuration of invertebrates. This global hypermethylation includes transposable elements and the bodies of genes at all expression levels. Significantly, we document an inverse relationship between TSS methylation and expression in the elephant shark, supporting the presence of the repressive regulatory architecture shared by higher vertebrates.  Our demonstration that methylation patterns in a cartilaginous fish are characteristic of higher vertebrates imply the conservation of this epigenetic modification system across jawed vertebrates separated by 465 million years of evolution. In addition, these findings position the elephant shark as a valuable model to explore the evolutionary history and function of vertebrate methylation.

  8. Beyond fossil fuel–driven nitrogen transformations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jingguang G.; Crooks, Richard M.; Seefeldt, Lance C.

    Nitrogen is fundamental to all of life and many industrial processes. The interchange of nitrogen oxidation states in the industrial production of ammonia, nitric acid, and other commodity chemicals is largely powered by fossil fuels. Here, a key goal of contemporary research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, photo-, and electrocatalytic processes or by adapting the enzymatic processes underlying the natural nitrogen cycle. These approaches, as well as the challenges involved, are discussed in this Review.

  9. Beyond fossil fuel–driven nitrogen transformations

    DOE PAGES

    Chen, Jingguang G.; Crooks, Richard M.; Seefeldt, Lance C.; ...

    2018-05-25

    Nitrogen is fundamental to all of life and many industrial processes. The interchange of nitrogen oxidation states in the industrial production of ammonia, nitric acid, and other commodity chemicals is largely powered by fossil fuels. Here, a key goal of contemporary research in the field of nitrogen chemistry is to minimize the use of fossil fuels by developing more efficient heterogeneous, homogeneous, photo-, and electrocatalytic processes or by adapting the enzymatic processes underlying the natural nitrogen cycle. These approaches, as well as the challenges involved, are discussed in this Review.

  10. Bilateral vertebral artery lesion after dislocating cervical spine trauma. A case report.

    PubMed

    Wirbel, R; Pistorius, G; Braun, C; Eichler, A; Mutschler, W

    1996-06-01

    This case report illustrates the problems associated with diagnosis and management of vertebral artery injuries resulting from dislocating cervical spine trauma. Treatment involved the principles of anterior stabilization of dislocating cervical spine fracture as well as the diagnostic procedures and therapeutic modalities appropriate for vertebral artery lesions. Because vertebral artery injuries with cervical spine trauma are rarely symptomatic, they can easily be overlooked. Bilateral or dominant vertebral artery occlusion, however, may cause fatal ischemic damage to the brain stem and cerebellum. Cervical spine dislocation was stabilized immediately after admission using internal fixation by ventral plate and corticocancellous bone graft. Immediate angiography was performed when brain stem neurologic dysfunction manifested 36 hours after surgery. The patient was treated with anticoagulation, osmotherapy, and controlled hypertension. A fatal outcome resulted in this case of dominant left vertebral artery occlusion. Necropsy even revealed bilateral vertebral artery damage at the level of the osseous lesion. The possibility of the complication of a vertebral artery lesion should be kept in mind when examining patients with cervical spine trauma, especially in patients with fracture-dislocation. Immediate identification by vertebral angiography, magnetic resonance imaging, or thin-slice computed tomography scan is necessary for optimal management of this injury.

  11. 43 CFR 8224.1 - Use of the Fossil Forest Research Natural Area.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Use of the Fossil Forest Research Natural...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.1 Use of the Fossil Forest Research Natural Area. (a) Fossils may be collected...

  12. 43 CFR 8224.1 - Use of the Fossil Forest Research Natural Area.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Use of the Fossil Forest Research Natural...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.1 Use of the Fossil Forest Research Natural Area. (a) Fossils may be collected...

  13. 43 CFR 8224.1 - Use of the Fossil Forest Research Natural Area.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Use of the Fossil Forest Research Natural...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.1 Use of the Fossil Forest Research Natural Area. (a) Fossils may be collected...

  14. 43 CFR 8224.1 - Use of the Fossil Forest Research Natural Area.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Use of the Fossil Forest Research Natural...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RECREATION PROGRAMS PROCEDURES Fossil Forest Research Natural Area § 8224.1 Use of the Fossil Forest Research Natural Area. (a) Fossils may be collected...

  15. A Cretaceous eutriconodont and integument evolution in early mammals.

    PubMed

    Martin, Thomas; Marugán-Lobón, Jesús; Vullo, Romain; Martín-Abad, Hugo; Luo, Zhe-Xi; Buscalioni, Angela D

    2015-10-15

    The Mesozoic era (252-66 million years ago), known as the domain of dinosaurs, witnessed a remarkable ecomorphological diversity of early mammals. The key mammalian characteristics originated during this period and were prerequisite for their evolutionary success after extinction of the non-avian dinosaurs 66 million years ago. Many ecomorphotypes familiar to modern mammal fauna evolved independently early in mammalian evolutionary history. Here we report a 125-million-year-old eutriconodontan mammal from Spain with extraordinary preservation of skin and pelage that extends the record of key mammalian integumentary features into the Mesozoic era. The new mammalian specimen exhibits such typical mammalian features as pelage, mane, pinna, and a variety of skin structures: keratinous dermal scutes, protospines composed of hair-like tubules, and compound follicles with primary and secondary hairs. The skin structures of this new Mesozoic mammal encompass the same combination of integumentary features as those evolved independently in other crown Mammalia, with similarly broad structural variations as in extant mammals. Soft tissues in the thorax and abdomen (alveolar lungs and liver) suggest the presence of a muscular diaphragm. The eutriconodont has molariform tooth replacement, ossified Meckel's cartilage of the middle ear, and specialized xenarthrous articulations of posterior dorsal vertebrae, convergent with extant xenarthran mammals, which strengthened the vertebral column for locomotion.

  16. Fossil group origins. VIII. RX J075243.6+455653 a transitionary fossil group

    NASA Astrophysics Data System (ADS)

    Aguerri, J. A. L.; Longobardi, A.; Zarattini, S.; Kundert, A.; D'Onghia, E.; Domínguez-Palmero, L.

    2018-01-01

    Context. It is thought that fossil systems are relics of structure formation in the primitive Universe. They are galaxy aggregations that have assembled their mass at high redshift with few or no subsequent accretion. Observationally these systems are selected by large magnitude gaps between their 1st and 2nd ranked galaxies (Δm12). Nevertheless, there is still debate over whether or not this observational criterium selects dynamically evolved ancient systems. Aims: We have studied the properties of the nearby fossil group RX J075243.6+455653 in order to understand the mass assembly of this system. Methods: Deep spectroscopic observations allow us to construct the galaxy luminosity function (LF) of RX J075243.6+455653 down to Mr*+6. The analysis of the faint-end of the LF in groups and clusters provides valuable information about the mass assembly of the system. In addition, we have analyzed the nearby large-scale structure around this group. Results: We identified 26 group members within r200 0.96 Mpc. These galaxies are located at Vc = 15551 ± 65 km s-1 and have a velocity dispersion of σc = 333 ± 46 km s-1. The X-ray luminosity of the group is LX = 2.2 × 1043 h70-2 erg s-1, resulting in a mass of M = 4.2 × 1013 h70-1 within 0.5r200. The group has Δm12 = 2.1 within 0.5r200, confirming the fossil nature of this system. RX J075243.6+455653 has a central brightest group galaxy (BGG) with Mr = -22.67, one of the faintest BGGs observed in fossil systems. The LF of the group shows a flat faint-end slope (α = -1.08 ± 0.33). This low density of dwarf galaxies is confirmed by the low value of the dwarf-to-giant ratio (DGR = 0.99 ± 0.49) for this system. Both the lack of dwarf galaxies and the low luminosity of the BGG suggests that RX J075243.6+455653 still has to accrete mass from its nearby environment. This mass accretion will be achieved because it is the dominant structure of a rich environment formed by several groups of galaxies (15) within 7 Mpc from the

  17. Total-Evidence Dating under the Fossilized Birth–Death Process

    PubMed Central

    Zhang, Chi; Stadler, Tanja; Klopfstein, Seraina; Heath, Tracy A.; Ronquist, Fredrik

    2016-01-01

    Bayesian total-evidence dating involves the simultaneous analysis of morphological data from the fossil record and morphological and sequence data from recent organisms, and it accommodates the uncertainty in the placement of fossils while dating the phylogenetic tree. Due to the flexibility of the Bayesian approach, total-evidence dating can also incorporate additional sources of information. Here, we take advantage of this and expand the analysis to include information about fossilization and sampling processes. Our work is based on the recently described fossilized birth–death (FBD) process, which has been used to model speciation, extinction, and fossilization rates that can vary over time in a piecewise manner. So far, sampling of extant and fossil taxa has been assumed to be either complete or uniformly at random, an assumption which is only valid for a minority of data sets. We therefore extend the FBD process to accommodate diversified sampling of extant taxa, which is standard practice in studies of higher-level taxa. We verify the implementation using simulations and apply it to the early radiation of Hymenoptera (wasps, ants, and bees). Previous total-evidence dating analyses of this data set were based on a simple uniform tree prior and dated the initial radiation of extant Hymenoptera to the late Carboniferous (309 Ma). The analyses using the FBD prior under diversified sampling, however, date the radiation to the Triassic and Permian (252 Ma), slightly older than the age of the oldest hymenopteran fossils. By exploring a variety of FBD model assumptions, we show that it is mainly the accommodation of diversified sampling that causes the push toward more recent divergence times. Accounting for diversified sampling thus has the potential to close the long-discussed gap between rocks and clocks. We conclude that the explicit modeling of fossilization and sampling processes can improve divergence time estimates, but only if all important model aspects

  18. Total-Evidence Dating under the Fossilized Birth-Death Process.

    PubMed

    Zhang, Chi; Stadler, Tanja; Klopfstein, Seraina; Heath, Tracy A; Ronquist, Fredrik

    2016-03-01

    Bayesian total-evidence dating involves the simultaneous analysis of morphological data from the fossil record and morphological and sequence data from recent organisms, and it accommodates the uncertainty in the placement of fossils while dating the phylogenetic tree. Due to the flexibility of the Bayesian approach, total-evidence dating can also incorporate additional sources of information. Here, we take advantage of this and expand the analysis to include information about fossilization and sampling processes. Our work is based on the recently described fossilized birth-death (FBD) process, which has been used to model speciation, extinction, and fossilization rates that can vary over time in a piecewise manner. So far, sampling of extant and fossil taxa has been assumed to be either complete or uniformly at random, an assumption which is only valid for a minority of data sets. We therefore extend the FBD process to accommodate diversified sampling of extant taxa, which is standard practice in studies of higher-level taxa. We verify the implementation using simulations and apply it to the early radiation of Hymenoptera (wasps, ants, and bees). Previous total-evidence dating analyses of this data set were based on a simple uniform tree prior and dated the initial radiation of extant Hymenoptera to the late Carboniferous (309 Ma). The analyses using the FBD prior under diversified sampling, however, date the radiation to the Triassic and Permian (252 Ma), slightly older than the age of the oldest hymenopteran fossils. By exploring a variety of FBD model assumptions, we show that it is mainly the accommodation of diversified sampling that causes the push toward more recent divergence times. Accounting for diversified sampling thus has the potential to close the long-discussed gap between rocks and clocks. We conclude that the explicit modeling of fossilization and sampling processes can improve divergence time estimates, but only if all important model aspects

  19. Vertebral Adaptations to Large Body Size in Theropod Dinosaurs.

    PubMed

    Wilson, John P; Woodruff, D Cary; Gardner, Jacob D; Flora, Holley M; Horner, John R; Organ, Chris L

    2016-01-01

    Rugose projections on the anterior and posterior aspects of vertebral neural spines appear throughout Amniota and result from the mineralization of the supraspinous and interspinous ligaments via metaplasia, the process of permanent tissue-type transformation. In mammals, this metaplasia is generally pathological or stress induced, but is a normal part of development in some clades of birds. Such structures, though phylogenetically sporadic, appear throughout the fossil record of non-avian theropod dinosaurs, yet their physiological and adaptive significance has remained unexamined. Here we show novel histologic and phylogenetic evidence that neural spine projections were a physiological response to biomechanical stress in large-bodied theropod species. Metaplastic projections also appear to vary between immature and mature individuals of the same species, with immature animals either lacking them or exhibiting smaller projections, supporting the hypothesis that these structures develop through ontogeny as a result of increasing bending stress subjected to the spinal column. Metaplastic mineralization of spinal ligaments would likely affect the flexibility of the spinal column, increasing passive support for body weight. A stiff spinal column would also provide biomechanical support for the primary hip flexors and, therefore, may have played a role in locomotor efficiency and mobility in large-bodied species. This new association of interspinal ligament metaplasia in Theropoda with large body size contributes additional insight to our understanding of the diverse biomechanical coping mechanisms developed throughout Dinosauria, and stresses the significance of phylogenetic methods when testing for biological trends, evolutionary or not.

  20. A resegmentation-shift model for vertebral patterning.

    PubMed

    Ward, Lizzy; Evans, Susan E; Stern, Claudio D

    2017-02-01

    Segmentation of the vertebrate body axis is established in the embryo by formation of somites, which give rise to the axial muscles (myotome) and vertebrae (sclerotome). To allow a muscle to attach to two successive vertebrae, the myotome and sclerotome must be repositioned by half a segment with respect to each other. Two main models have been put forward: 'resegmentation' proposes that each half-sclerotome joins with the half-sclerotome from the next adjacent somite to form a vertebra containing cells from two successive somites on each side of the midline. The second model postulates that a single vertebra is made from a single somite and that the sclerotome shifts with respect to the myotome. There is conflicting evidence for these models, and the possibility that the mechanism may vary along the vertebral column has not been considered. Here we use DiI and DiO to trace somite contributions to the vertebrae in different axial regions in the chick embryo. We demonstrate that vertebral bodies and neural arches form by resegmentation but that sclerotome cells shift in a region-specific manner according to their dorsoventral position within a segment. We propose a 'resegmentation-shift' model as the mechanism for amniote vertebral patterning. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.