OVERVIEW OF CYANIDE PLANT FOUNDATIONS, ZINC BOXES, TANKS, AND TAILINGS ...
OVERVIEW OF CYANIDE PLANT FOUNDATIONS, ZINC BOXES, TANKS, AND TAILINGS PILES, LOOKING NORTHEAST. THE LOWER TRAM TERMINAL AND MILL SITE IS AT TOP CENTER IN THE DISTANCE. THE DARK SPOT JUST BELOW THE TRAM TERMINAL ARE REMAINS OF THE DEWATERING BUILDING. THE MAIN ACCESS ROAD IS AT UPPER LEFT. THE FOUNDATIONS AT CENTER SUPPORTED SIX 25 FT. OR GREATER DIAMETER SETTLING TANKS WHERE TAILINGS FROM THE MILL SETTLED IN A CYANIDE SOLUTION IN ORDER TO RECLAIM ANY GOLD CONTENT. THE PREGNANT SOLUTION WAS THEN RUN THROUGH THE ZINC BOXES ON THE GROUND AT CENTER RIGHT, WHERE ZINC SHAVINGS WERE INTRODUCED, CAUSING THE GOLD TO PRECIPITATE OUT OF THE CYANIDE SOLUTION, WHICH COULD BE USED AGAIN. THE FLAT AREA IN THE FOREGROUND WITH THE TANK AND TANK HOOPS IS THE FOOTPRINT OF A LARGE BUILDING WHERE THE PRECIPITATION AND FURTHER FILTERING AND FINAL CASTING TOOK PLACE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
TOP VIEW OF CYANIDE PLANT FOUNDATIONS. ZINC BOXES, TANKS, AND ...
TOP VIEW OF CYANIDE PLANT FOUNDATIONS. ZINC BOXES, TANKS, AND TAILINGS PILES, LOOKING SOUTHWEST FROM MAIN ACCESS ROAD. THE FOUNDATIONS AT CENTER SUPPORTED SIX 25 FT. OR GREATER DIAMETER SETTLING TANKS. IN THE FOREGROUND ARE REMAINS OF TWO PREPARATION TANKS AT LEFT NEXT TO A BUILDING FOOTPRINT AT RIGHT. ZINC BOXES ARE JUST ABOVE THE PREPARATION TANKS ON LEFT. THE WATER TANK AT CENTER IS NEARBY A SHAFT. THE COLLAPSED TANK JUST IN FRONT OF THE WATER TANK IS ANOTHER WATER HOLDING TANK THAT CONNECTS DIRECTLY TO THE PIPELINE THAT CARRIED WATER FROM A NEARBY SPRING A QUARTER MILE OFF TO THE RIGHT (SEE CA-291-41 FOR DETAIL). THE LEFT OF THE CENTER WATER TANK IS A LARGE TAILINGS PILE. DEATH VALLEY IS IN THE DISTANCE. SEE CA-291-40 FOR IDENTICAL B&W NEGATIVE. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
TOP VIEW OF CYANIDE PLANT FOUNDATIONS, ZINC BOXES, TANKS, AND ...
TOP VIEW OF CYANIDE PLANT FOUNDATIONS, ZINC BOXES, TANKS, AND TAILINGS PILES, LOOKING SOUTHWEST FROM MAIN ACCESS ROAD. THE FOUNDATIONS AT CENTER SUPPORTED SIX 25 FT. OR GREATER DIAMETER SETTLING TANKS. IN THE FOREGROUND ARE REMAINS OF TWO PREPARATION TANKS AT LEFT NEXT TO A BUILDING FOOTPRINT AT RIGHT. ZINC BOXES ARE JUST ABOVE THE PREPARATION TANKS ON LEFT. THE WATER TANK AT CENTER IS NEARBY A SHAFT. THE COLLAPSED TANK JUST IN FRONT OF THE WATER TANK IS ANOTHER WATER HOLDING TANK THAT CONNECTS DIRECTLY TO THE PIPELINE THAT CARRIED WATER FROM A NEARBY SPRING A QUARTER MILE OFF TO THE RIGHT (SEE CA-291-41 FOR DETAIL). THE LEFT OF THE CENTER WATER TANK IS A LARGE TAILINGS PILE. DEATH VALLEY IS IN THE DISTANCE. SEE CA-291-53 (CT) FOR IDENTICAL COLOR TRANSPARENCY. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
miR-128 modulates chemosensitivity and invasion of prostate cancer cells through targeting ZEB1.
Sun, Xianglun; Li, Youkong; Yu, Jie; Pei, Hong; Luo, Pengcheng; Zhang, Jie
2015-05-01
Recent reports strongly suggest the profound role of miRNAs in cancer therapeutic response and progression, including invasion and metastasis. The sensitivity to therapy and invasion is the major obstacle for successful treatment in prostate cancer. We aimed to investigate the regulative effect of miR-128/zinc-finger E-box-binding homeobox 1 axis on prostate cancer cell chemosensitivity and invasion. The miR-128 expression pattern of prostate cancer cell lines and tissues was detected by real-time reverse transcriptase-polymerase chain reaction, while the mRNA and protein expression levels of zinc-finger E-box-binding homeobox 1 were measured by real-time reverse transcriptase-polymerase chain reaction and western blot assay, respectively. Dual-luciferase reporter gene assay was used to find the direct target of miR-128. Furthermore, prostate cancer cells were treated with miR-128 mimic or zinc-finger E-box-binding homeobox 1-siRNA, and then the cells' chemosensitivity and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and transwell assay, respectively. We found miR-128 expression obviously decreased in prostate cancer tissues compared with paired normal tissues. Restored miR-128 expression sensitized prostate cancer cells to cisplatin and inhibited the invasion. Furthermore, there was an inverse expression pattern between miR-128 and zinc-finger E-box-binding homeobox 1 in prostate cancer cells and tissues, and zinc-finger E-box-binding homeobox 1 was identified as a direct target of miR-128 in prostate cancer. Knockdown of zinc-finger E-box-binding homeobox 1 expression efficiently sensitized prostate cancer cells to cisplatin and inhibited the invasion. However, ectopic zinc-finger E-box-binding homeobox 1 expression impaired the effects of miR-128 on chemosensitivity and invasion in prostate cancer cells. miR-128 functions as a potential cancer suppressor in prostate cancer progression and rational therapeutic strategies for prostate cancer would be developed based on miR-128/zinc-finger E-box-binding homeobox 1 axis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Bütof, Lucy; Schmidt-Vogler, Christopher; Herzberg, Martin; Große, Cornelia
2017-01-01
ABSTRACT Zinc is an essential trace element, yet it is toxic at high concentrations. In the betaproteobacterium Cupriavidus metallidurans, the highly efficient removal of surplus zinc from the periplasm is responsible for the outstanding metal resistance of the organism. Rather than having a typical Zur-dependent, high-affinity ATP-binding cassette transporter of the ABC protein superfamily for zinc uptake at low concentrations, C. metallidurans has the secondary zinc importer ZupT of the zinc-regulated transporter, iron-regulated transporter (ZRT/IRT)-like protein (ZIP) family. It is important to understand, therefore, how this zinc-resistant bacterium copes with exposure to low zinc concentrations. Members of the Zur regulon in C. metallidurans were identified by comparing the transcriptomes of a Δzur mutant and its parent strain. The consensus sequence of the Zur-binding box was derived for the zupTp promoter-regulatory region by use of a truncation assay. The motif was used to predict possible Zur boxes upstream of Zur regulon members. The binding of Zur to these boxes was confirmed. Two Zur boxes upstream of the cobW1 gene, encoding a putative zinc chaperone, proved to be required for complete repression of cobW1 and its downstream genes in cells cultivated in mineral salts medium. A Zur box upstream of each of zur-cobW2, cobW3, and zupT permitted both low expression levels of these genes and their upregulation under conditions of zinc starvation. This demonstrates a compartmentalization of zinc homeostasis in C. metallidurans, where the periplasm is responsible for the removal of surplus zinc, cytoplasmic components are responsible for the management of zinc as an essential cofactor, and the two compartments are connected by ZupT. IMPORTANCE Elucidating zinc homeostasis is necessary for understanding both host-pathogen interactions and the performance of free-living bacteria in their natural environments. Escherichia coli acquires zinc under conditions of low zinc concentrations via the Zur-controlled ZnuABC importer of the ABC superfamily, and this was also the paradigm for other bacteria. In contrast, the heavy-metal-resistant bacterium C. metallidurans achieves high tolerance to zinc through sophisticated zinc handling and efflux systems operating on periplasmic zinc ions, so that removal of surplus zinc is a periplasmic feature in this bacterium. It is shown here that this process is augmented by the management of zinc by cytoplasmic zinc chaperones, whose synthesis is controlled by the Zur regulator. This demonstrates a new mechanism, involving compartmentalization, for organizing zinc homeostasis. PMID:28808127
Bütof, Lucy; Schmidt-Vogler, Christopher; Herzberg, Martin; Große, Cornelia; Nies, Dietrich H
2017-08-14
Zinc is an essential trace element and at the same time it is toxic at high concentrations. In the beta-proteobacterium Cupriavidus metallidurans the highly efficient removal of surplus zinc from the periplasm is responsible for its outstanding metal resistance. Rather than having a typical Zur-dependent, high-affinity ATP-binding cassette transporter of the ABC protein superfamily for zinc uptake at low concentrations, C. metallidurans instead has the secondary zinc importer ZupT of the ZRT/IRT (ZIP) family. It is important to understand, therefore, how this zinc-resistant bacterium copes when it is exposed to low zinc concentrations. Members of the Zur regulon in C. metallidurans were identified by comparing the transcriptomes of a Δ zur mutant and its parent strain. The consensus sequence of the Zur-binding box was derived for the zupTp promoter-regulatory region using a truncation assay. The motif was used to predict possible Zur-boxes upstream of Zur regulon members. Binding of Zur to these boxes was confirmed. Two Zur-boxes upstream of the cobW 1 gene, encoding a putative zinc chaperone, proved to be required for complete repression of cobW 1 and its downstream genes in cells cultivated in mineral salts medium. A Zur box upstream of each of zur-cobW 2 , cobW 3 and zupT permitted low-expression level of these genes plus their up-regulation under zinc starvation conditions. This demonstrates a compartmentalization of zinc homeostasis in C. metallidurans with the periplasm being responsible for removal of surplus zinc and cytoplasmic components for management of zinc as an essential co-factor, with both compartments connected by ZupT. Importance Elucidating zinc homeostasis is necessary to understand both host-pathogen interactions and performance of free-living bacteria in their natural environment. Escherichia coli acquires zinc under low zinc concentrations by the Zur-controlled ZnuABC importer of the ABC superfamily, and this was also the paradigm for other bacteria. In contrast, the heavy metal-resistant bacterium C. metallidurans achieves high tolerance to zinc due to sophisticated zinc handling and efflux systems operating on periplasmic zinc ions, so that removal of surplus zinc is a periplasmic feature in this bacterium. It is shown here that this process is augmented by management of zinc through cytoplasmic zinc chaperones, whose syntheses are controlled by the Zur regulator. This demonstrates a new mechanism to organize zinc homeostasis through compartmentalization. Copyright © 2017 American Society for Microbiology.
Crystal structure of the UBR-box from UBR6/FBXO11 reveals domain swapping mediated by zinc binding.
Muñoz-Escobar, Juliana; Kozlov, Guennadi; Gehring, Kalle
2017-10-01
The UBR-box is a 70-residue zinc finger domain present in the UBR family of E3 ubiquitin ligases that directly binds N-terminal degradation signals in substrate proteins. UBR6, also called FBXO11, is an UBR-box containing E3 ubiquitin ligase that does not bind N-terminal signals. Here, we present the crystal structure of the UBR-box domain from human UBR6. The dimeric crystal structure reveals a unique form of domain swapping mediated by zinc coordination, where three independent protein chains come together to regenerate the topology of the monomeric UBR-box fold. Analysis of the structure suggests that the absence of N-terminal residue binding arises from the lack of an amino acid binding pocket. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.
Cardiac tissue enriched factors serum response factor and GATA-4 are mutual coregulators
NASA Technical Reports Server (NTRS)
Belaguli, N. S.; Sepulveda, J. L.; Nigam, V.; Charron, F.; Nemer, M.; Schwartz, R. J.
2000-01-01
Combinatorial interaction among cardiac tissue-restricted enriched transcription factors may facilitate the expression of cardiac tissue-restricted genes. Here we show that the MADS box factor serum response factor (SRF) cooperates with the zinc finger protein GATA-4 to synergistically activate numerous myogenic and nonmyogenic serum response element (SRE)-dependent promoters in CV1 fibroblasts. In the absence of GATA binding sites, synergistic activation depends on binding of SRF to the proximal CArG box sequence in the cardiac and skeletal alpha-actin promoter. GATA-4's C-terminal activation domain is obligatory for synergistic coactivation with SRF, and its N-terminal domain and first zinc finger are inhibitory. SRF and GATA-4 physically associate both in vivo and in vitro through their MADS box and the second zinc finger domains as determined by protein A pullout assays and by in vivo one-hybrid transfection assays using Gal4 fusion proteins. Other cardiovascular tissue-restricted GATA factors, such as GATA-5 and GATA-6, were equivalent to GATA-4 in coactivating SRE-dependent targets. Thus, interaction between the MADS box and C4 zinc finger proteins, a novel regulatory paradigm, mediates activation of SRF-dependent gene expression.
... 0043 Arthritis Foundation P.O. Box 7669 Atlanta GA Atlanta, GA 30357 help@arthritis.org http://www.arthritis.org ... 0043 Arthritis Foundation P.O. Box 7669 Atlanta GA Atlanta, GA 30357 help@arthritis.org http://www. ...
... Aicardi Syndrome Foundation P.O. Box 3202 St. Charles IL St. Charles, IL 60174 web@aicardisyndrome.org http://www.aicardisyndrome. ... Aicardi Syndrome Foundation P.O. Box 3202 St. Charles IL St. Charles, IL 60174 web@aicardisyndrome.org ...
Takeda, A; Tamano, H; Imano, S; Oku, N
2010-07-14
The amygdala is enriched with histochemically reactive zinc, which is dynamically coupled with neuronal activity and co-released with glutamate. The dynamics of the zinc in the amygdala was analyzed in rats, which were subjected to inescapable stress, to understand the role of the zinc in emotional behavior. In the communication box, two rats were subjected to foot shock stress and anxiety stress experiencing emotional responses of foot-shocked rat under amygdalar perfusion. Extracellular zinc was increased by foot shock stress, while decreased by anxiety stress, suggesting that the differential changes in extracellular zinc are associated with emotional behavior. In rats conditioned with foot shock, furthermore, extracellular zinc was increased again in the recall of fear (foot shock) in the same box without foot shock. When this recall was performed under perfusion with CaEDTA, a membrane-impermeable zinc chelator, to examine the role of the increase in extracellular zinc, the time of freezing behavior was more increased, suggesting that zinc released in the lateral amygdala during the recall of fear participates in freezing behavior. To examine the role of the increase in extracellular zinc during fear conditioning, fear conditioning was also performed under perfusion with CaEDTA. The time of freezing behavior was more increased in the contextual recall, suggesting that zinc released in the lateral nucleus during fear conditioning also participates in freezing behavior in the recall. In brain slice experiment, CaEDTA enhanced presynaptic activity (exocytosis) in the lateral nucleus after activation of the entorhinal cortex. The present paper demonstrates that zinc released in the lateral amygdala may participate in emotional behavior in response to fear. Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.
Electrolyte Loss Tendencies of Primary Silver-Zinc Cells
NASA Technical Reports Server (NTRS)
Thaller, Lawrence H.; Juvinall, Gordon L.
1997-01-01
Since silver zinc cells are not hermetically sealed, care must be taken to prevent the loss of electrolyte which can result in shorting paths within the battery box. Prelaunch battery processing is important in being able to minimize any problems with expelled electrolyte.
Hydrophobic, Porous Battery Boxes
NASA Technical Reports Server (NTRS)
Bragg, Bobby J.; Casey, John E., Jr.
1995-01-01
Boxes made of porous, hydrophobic polymers developed to contain aqueous potassium hydroxide electrolyte solutions of zinc/air batteries while allowing air to diffuse in as needed for operation. Used on other types of batteries for in-cabin use in which electrolytes aqueous and from which gases generated during operation must be vented without allowing electrolytes to leak out.
Mabrouk, T; Lemay, G
1994-01-01
It has been demonstrated that the sigma 3 protein of reovirus harbors a zinc-binding domain in its amino-terminal portion. A putative zinc finger in the CCHH form is located in this domain and was considered to be a good candidate for the zinc-binding motif. We performed site-directed mutagenesis to substitute amino acids in this region and demonstrated that many of these mutants, although expressed in COS cells, were unstable compared with the wild-type protein. Further analysis revealed that zinc-binding capability, as measured by retention on a zinc chelate affinity adsorbent, correlates with stability. These studies also allowed us to identify a CCHC box as the most probable zinc-binding motif. Images PMID:8035527
Bridge Failure Due to Inadequate Design of Bed Protection
NASA Astrophysics Data System (ADS)
Gupta, Yogita; Kaur, Suneet; Dindorkar, Nitin
2017-12-01
The shallow foundation is generally provided on non-erodible strata or where scour depth is less. It is also preferable for low perennial flow or standing water condition. In the present case study shallow foundation is adopted for box type bridge. The total length of the bridge is 132.98 m, consisting of eight unit of RCC box. Each unit is composed of three cell box. The bottom slab of box unit is acted as raft foundation, founded 500 mm below ground level. River bed protection work is provided on both upstream and downstream side along the whole length of the bridge as it is founded above scour level. The bridge collapsed during the monsoon just after two years of service. The present paper explains the cause of failure. This study on failure of the bridge illustrates the importance of bridge inspection before and after monsoon period and importance of the timely maintenance. Standard specifications of Indian Road Congress for the river bed protection work are also included.
In vitro microleakage of luting cements and crown foundation material.
Lindquist, T J; Connolly, J
2001-03-01
Microleakage is a concern for the long-term prognosis of a cemented crown and foundation. The aims of this investigation were, first, to evaluate microleakage of zinc phosphate cement and resin-reinforced glass ionomer cement under ideal (dry) versus contaminated (wet) conditions, and second, to compare 3 foundations under both ideal and contaminated conditions. One hundred forty extracted molar teeth were cleaned and mounted. Tooth preparations for complete veneer cast crowns were completed with a chamfer finish line. A mesial surface class II cavity preparation 4 mm wide buccolingually and 2 mm deep was made in each tooth. Seven restorative groups were formed: amalgam/cavity varnish, amalgam/dentinal bonding agent, and composite/dentinal bonding agent, each with dry and contaminated groups, and a seventh group of class II cavity preparations without foundations. Finish lines for crown margins were refined 1.5 mm gingival to the restoration. Artificial crowns were cast in type III gold. Treatment groups were divided into 4 cement groups: dry and contaminated zinc phosphate cement and dry and contaminated resin-reinforced glass ionomer cement. The specimens were thermocycled and immersed in erythrosine B solution for 24 hours. Subsequently, they were rinsed, and their coronal portions were embedded in clear resin. Teeth were sectioned mesiodistally, and standard photomicrographs were made. The microleakage of each restoration and crown was measured. The least foundation microleakage was recorded for amalgam/dentinal bonding agents (ideal group) and composite/dentinal bonding agents (ideal group). The most microleakage was observed within the group without a foundation. In cement groups, the control and experiment sides were evaluated separately but displayed the same order of finding. The least leakage was recorded with resin-reinforced glass ionomer cement (ideal group); the most microleakage was noted with zinc phosphate cement (ideal group). An interaction was demonstrated on the experimental side between cements and the foundations (P=.0001). Within the experimental conditions of this study, less microleakage was recorded with resin-reinforced glass ionomer cement (ideal or contaminated) than with zinc phosphate cement (ideal or contaminated). There also was less microleakage evident with a foundation of silver amalgam or composite when a dentinal bonding agent was used under ideal conditions.
Wu, Bao-Qiang; Jiang, Yong; Zhu, Feng; Sun, Dong-Lin
2017-01-01
Background and Aim: Long noncoding RNA-plasmacytoma variant translocation 1 is identified to be highly expressed and exhibits oncogenic activity in a variety of human malignancies, including pancreatic cancer. However, little is known about the overall biological role and mechanism of plasmacytoma variant translocation 1 in pancreatic cancer so far. In this study, we investigated the effect of plasmacytoma variant translocation 1 on pancreatic cancer cell proliferation and migration as well as epithelial–mesenchymal transition. Methods: Pancreatic cancer tissue specimens and cell line were used in this study, with normal tissue and cell line acting as control. Results: It showed that plasmacytoma variant translocation 1 expression was significantly upregulated in pancreatic cancer tissues or cell line compared to normal groups. Plasmacytoma variant translocation 1 downregulation significantly inhibited zinc finger E-box-binding protein 1/Snail expression but promoted p21 expression, and it also inhibited the cell proliferation and migration. Additionally, p21 downregulation enhanced, and p21 overexpression repressed, zinc finger E-box-binding protein 1/Snail expression and cells proliferation in PANC-1 cells. However, p21 downregulation reversed the effect of plasmacytoma variant translocation 1 downregulation on zinc finger E-box-binding protein 1/Snail expression and cell proliferation and migration. Conclusion: Plasmacytoma variant translocation 1 promoted epithelial–mesenchymal transition and cell proliferation and migration through downregulating p21 in pancreatic cancer cells. PMID:28355965
Moazedi, A A; Ghotbeddin, Z; Parham, G H
2007-08-15
The aim of the present study was to evaluate the effects of dose-dependent of zinc chloride on short-term and long-term memory in a shuttle box. Young Wistar rats (94+/-10 g) (age 27-30 days) consumed zinc chloride drinking water in five different doses (20, 30, 50, 70 and 100 mg kg(-1) day(-1)) for two weeks by gavage. After 14 days on experimental diets, a shuttle box used to test short- and long-term memory. Two criteria considering for behavioral test, including latency in entering dark chamber and time spent in the dark chamber. This experiment shows that after 2 weeks oral administration of ZnCl2 with (20, 30 and 50 mg kg(-1) day(-1)) doses, the rat's working (short-term) has been improved (p<0.05). Whereas ZnCl2 with 30 mg kg(-1) day(-1) dose has been more effected than other doses (p<0.001). But rat which received ZnCl2 with 100 mg kg(-1) day(-1), has been shown significant impairment in working memory (p<0.05) and there was no significant difference in reference (long-term) memory for any of groups. In general, this study has demonstrated that zinc chloride consumption with 30 mg kg(-1) day(-1) dose for two weeks was more effective than other doses on short-term memory. But consumption of ZnCl2 with 100 mg kg(-1) day(-1) dose for two week had the negative effect on short-term memory. On the other hand, zinc supplementation did not have an effect on long-term memory.
Myers, Samuel S; Wessells, K Ryan; Kloog, Itai; Zanobetti, Antonella; Schwartz, Joel
2015-10-01
Increasing concentrations of atmospheric carbon dioxide (CO2) lower the content of zinc and other nutrients in important food crops. Zinc deficiency is currently responsible for large burdens of disease globally, and the populations who are at highest risk of zinc deficiency also receive most of their dietary zinc from crops. By modelling dietary intake of bioavailable zinc for the populations of 188 countries under both an ambient CO2 and elevated CO2 scenario, we sought to estimate the effect of anthropogenic CO2 emissions on the global risk of zinc deficiency. We estimated per capita per day bioavailable intake of zinc for the populations of 188 countries at ambient CO2 concentrations (375-384 ppm) using food balance sheet data for 2003-07 from the Food and Agriculture Organization. We then used previously published data from free air CO2 enrichment and open-top chamber experiments to model zinc intake at elevated CO2 concentrations (550 ppm, which is the concentration expected by 2050). Estimates developed by the International Zinc Nutrition Consultative Group were used for country-specific theoretical mean daily per-capita physiological requirements for zinc. Finally, we used these data on zinc bioavailability and population-weighted estimated average zinc requirements to estimate the risk of inadequate zinc intake among the populations of the different nations under the two scenarios (ambient and elevated CO2). The difference between the population at risk at elevated and ambient CO2 concentrations (ie, population at new risk of zinc deficiency) was our measure of impact. The total number of people estimated to be placed at new risk of zinc deficiency by 2050 was 138 million (95% CI 120-156). The people likely to be most affected live in Africa and South Asia, with nearly 48 million (32-63) residing in India alone. Global maps of increased risk show significant heterogeneity. Our results indicate that one heretofore unquantified human health effect associated with anthropogenic CO2 emissions will be a significant increase in the human population at risk of zinc deficiency. Our country-specific findings can be used to help guide interventions aimed at reducing this vulnerability. Bill & Melinda Gates Foundation, Winslow Foundation. Copyright © 2015 Myers et al. Open access article published under the terms of CC BY-NC-ND. Published by Elsevier Ltd.. All rights reserved.
Hierarchical Carbon Fibers with ZnO Nanowires for Volatile Sensing in Composite Curing (Postprint)
2014-07-01
needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a volatile sensor. ZnO nanowires are demonstrated to function as...processing. For this work, we report on the foundational study needed to demonstrate the use of Zinc Oxide (ZnO) nanowire coated carbon fibers as a...array of ZnO nanowires. Zinc oxide nanowires become more conductive in the presence of ethanol – as analyte sorbs to the surface, electron density
Structural dynamic and thermal stress analysis of nuclear reactor vessel support system
NASA Technical Reports Server (NTRS)
Chi-Diango, J.
1972-01-01
A nuclear reactor vessel is supported by a Z-ring and a box ring girder. The two proposed structural configurations to transmit the loads from the Z-ring and the box ring girder to the foundation are shown. The cantilever concrete ledge transmitting the load from the Z-ring and the box girder via the cavity wall to the foundation is shown, along with the loads being transmitted through one of the six steel columns. Both of these two supporting systems were analyzed by using rigid format 9 of NASTRAN for dynamic loads, and the thermal stresses were analyzed by AXISOL. The six column configuration was modeled by a combination of plate and bar elements, and the concrete cantilever ledge configuration was modeled by plate elements. Both configurations were found structurally satisfactory; however, nonstructural considerations favored the concrete cantilever ledge.
Lee, Dong-Kee; Suh, Dongchul; Edenberg, Howard J; Hur, Man-Wook
2002-07-26
The POZ domain is a protein-protein interaction motif that is found in many transcription factors, which are important for development, oncogenesis, apoptosis, and transcription repression. We cloned the POZ domain transcription factor, FBI-1, that recognizes the cis-element (bp -38 to -22) located just upstream of the core Sp1 binding sites (bp -22 to +22) of the ADH5/FDH minimal promoter (bp -38 to +61) in vitro and in vivo, as revealed by electrophoretic mobility shift assay and chromatin immunoprecipitation assay. The ADH5/FDH minimal promoter is potently repressed by the FBI-1. Glutathione S-transferase fusion protein pull-down showed that the POZ domains of FBI-1, Plzf, and Bcl-6 directly interact with the zinc finger DNA binding domain of Sp1. DNase I footprinting assays showed that the interaction prevents binding of Sp1 to the GC boxes of the ADH5/FDH promoter. Gal4-POZ domain fusions targeted proximal to the GC boxes repress transcription of the Gal4 upstream activator sequence-Sp1-adenovirus major late promoter. Our data suggest that POZ domain represses transcription by interacting with Sp1 zinc fingers and by interfering with the DNA binding activity of Sp1.
Karami, Mohammad; Ehsanivostacolaee, Simin; Moazedi, Ali Ahmad; Nosrati, Anahita
2013-01-01
In this study the effect of zinc chloride (ZnCl2) administration on the short-term and long-term memory of rats were assessed. We enrolled six groups of adult female and control group of eight Wistar rats in each group. One group was control group with free access to food and water, and five groups drunk zinc chloride in different doses (20, 30, 50, 70 and 100 mg/kg/day) in drinking water for two weeks during lactation .One month after birth, a shuttle box used to short- term and long-term memory and the latency in entering the dark chamber as well. This experiment showed that maternal 70 mg/kg dietary zinc during lactation influenced the working memory of rats' offspring in all groups. Rats received 100 mg/kg/day zinc during lactation so they had significant impairment in working memory (short-term) of their offspring (P<0.05). There was no significant difference in reference (long-term) memory of all groups. Drug consumption below70 mg/kg/day zinc chloride during lactation had no effect. While enhanced 100 mg/ kg/ day zinc in lactating rats could cause short-term memory impairment.
Engine room, showing engine generator foundation and inlet louvers, looking ...
Engine room, showing engine generator foundation and inlet louvers, looking southwest. Note fuel gauge on west wall, left of fuse box, and exhaust pipe through south wall. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA
NASA Astrophysics Data System (ADS)
Zhu, Mei-Yu; Zhao, Ke; Song, Jun; Wang, Chuan-Kui
2018-02-01
Not Available Project supported by the Shandong Provincial Natural Science Foundation, China (Grant No. ZR2014AM026), the National Natural Science Foundation of China (Grant Nos. 11374195 and 11404193), and the Taishan Scholar Project of Shandong Province, China.
Li, Yingjie; Zheng, Yuanyuan; Qian, Jianxin; Chen, Xinmin; Shen, Zhilei; Tao, Liping; Li, Hongxia; Qin, Haihong; Li, Min; Shen, Hui
2012-06-01
Psychological stress (PS) could cause decreased iron absorption and iron redistribution in body resulting in low iron concentration in the bone marrow and inhibition of erythropoiesis. In the present study, we investigated the effect of zinc supplementation on the iron metabolism, erythropoiesis, and oxidative stress status in PS-induced rats. Thirty-two rats were divided into two groups randomly: control group and zinc supplementation group. Each group was subdivided into two subgroups: control group and PS group. Rats received zinc supplementation before PS exposure established by a communication box. We investigated the serum corticosterone (CORT) level; iron apparent absorption; iron contents in liver, spleen, cortex, hippocampus, striatum, and serum; hematological parameters; malondialdehyde (MDA); reduced glutathione (GSH); and superoxide dismutase (SOD). Compared to PS-treated rats with normal diet, the PS-treated rats with zinc supplementation showed increased iron apparent absorption, serum iron, hemoglobin, red blood cell, GSH, and SOD activities; while the serum CORT; iron contents in liver, spleen, and regional brain; and MDA decreased. These results indicated that dietary zinc supplementation had preventive effects against PS-induced iron dyshomeostasis, erythropoiesis inhibition, and oxidative stress status in rats.
Bragantini, Benoit; Tiotiu, Decebal; Rothé, Benjamin; Saliou, Jean-Michel; Marty, Hélène; Cianférani, Sarah; Charpentier, Bruno; Quinternet, Marc; Manival, Xavier
2016-06-05
Zf–HIT family members share the zf–HIT domain (ZHD), which is characterized by a fold in “treble-clef” through interleaved CCCC and CCHC ZnF motifs that both bind a zinc atom. Six proteins containing ZHD are present in human and three in yeast proteome, all belonging to multimodular RNA/protein complexes involved in gene regulation, chromatin remodeling, and snoRNP assembly. An interesting characteristic of the cellular complexes that ensure these functions is the presence of the RuvBL1/2/Rvb1/2 ATPases closely linked with zf–HIT proteins. Human ZNHIT6/BCD1 and its counterpart in yeast Bcd1p were previously characterized as assembly factors of the box C/D snoRNPs. Our data reveal that the ZHD of Bcd1p is necessary but not sufficient for yeast growth and that the motif has no direct RNA-binding capacity but helps Bcd1p maintain the box C/D snoRNAs level in steady state. However, we demonstrated that Bcd1p interacts nonspecifically with RNAs depending on their length. Interestingly, the ZHD of Bcd1p is functionally interchangeable with that of Hit1p, another box C/D snoRNP assembly factor belonging to the zf–HIT family. This prompted us to use NMR to solve the 3D structures of ZHD from yeast Bcd1p and Hit1p to highlight the structural similarity in the zf–HIT family. We identified structural features associated with the requirement of Hit1p and Bcd1p ZHD for cell growth and box C/D snoRNA stability under heat stress. Altogether, our data suggest an important role of ZHD could be to maintain functional folding to the rest of the protein, especially under heat stress conditions.
Zinc stress induces copper depletion in Acinetobacter baumannii.
Hassan, Karl A; Pederick, Victoria G; Elbourne, Liam D H; Paulsen, Ian T; Paton, James C; McDevitt, Christopher A; Eijkelkamp, Bart A
2017-03-11
The first row transition metal ions zinc and copper are essential to the survival of many organisms, although in excess these ions are associated with significant toxicity. Here, we examined the impact of zinc and copper stress on Acinetobacter baumannii, a common opportunistic pathogen. We show that extracellular zinc stress induces a copper-specific depletion phenotype in A. baumannii ATCC 17978. Supplementation with copper not only fails to rescue this phenotype, but further exacerbates the copper depletion. Extensive analysis of the A. baumannii ATCC 17978 genome identified 13 putative zinc/copper resistance efflux pumps. Transcriptional analyses show that four of these transporters are responsive to zinc stress, five to copper stress and seven to the combination of zinc and copper stress, thereby revealing a likely foundation for the zinc-induced copper starvation in A. baumannii. In addition, we show that zinc and copper play crucial roles in management of oxidative stress and the membrane composition of A. baumannii. Further, we reveal that zinc and copper play distinct roles in macrophage-mediated killing of this pathogen. Collectively, this study supports the targeting of metal ion homeostatic mechanisms as an effective antimicrobial strategy against multi-drug resistant bacterial pathogens.
2015-12-01
leukemia zinc finger protein (PLZF) which plays different roles in growth control, senescence, self-renewal, and tumor suppression in various cancer types...Cancer/Prostate Cancer Foundation (SU2C/PCF) study recently revealed that ~10% of tumors harbor promyelocytic leukemia zinc finger (PLZF) genomic...promyelocytic leukemia (APL) patients [7] and was reported as an androgen-responsive tumor suppressor gene[8]. However, the role of PLZF in
NASA Astrophysics Data System (ADS)
Fatnanta, F.; Satibi, S.; Muhardi
2018-03-01
In an area dominated by thick peat soil layers, driven piles foundation is often used. These piles are generally skin friction piles where the pile tips do not reach hard stratum. Since the bearing capacity of the piles rely on the resistance of their smooth skin, the bearing capacity of the piles are generally low. One way to increase the bearing capacity of the piles is by installing helical plates around the pile tips. Many research has been performed on helical pile foundation. However, literature on the use of helical pile foundation on peat soil is still hardly found. This research focus on the study of axial bearing capacity of helical pile foundation in peat soil, especially in Riau Province. These full-scale tests on helical pile foundation were performed in a rectangular box partially embedded into the ground. The box is filled with peat soil, which was taken from Rimbo Panjang area in the district of Kampar, Riau Province. Several helical piles with different number, diameter and spacing of the helical plates have been tested and analysed. The tests result show that helical pile with three helical plates of uniform diameter has better bearing capacity compared to other helical piles with varying diameter and different number of helical plates. The bearing capacity of helical pile foundation is affected by the spacing between helical plates. It is found that the effective helical plates spacing for helical pile foundation with diameter of 15cm to 35cm is between 20cm to 30cm. This behaviour may be considered to apply to other type of helical pile foundations in peat soil.
Genome-Wide Identification and Expression of Xenopus F-Box Family of Proteins.
Saritas-Yildirim, Banu; Pliner, Hannah A; Ochoa, Angelica; Silva, Elena M
2015-01-01
Protein degradation via the multistep ubiquitin/26S proteasome pathway is a rapid way to alter the protein profile and drive cell processes and developmental changes. Many key regulators of embryonic development are targeted for degradation by E3 ubiquitin ligases. The most studied family of E3 ubiquitin ligases is the SCF ubiquitin ligases, which use F-box adaptor proteins to recognize and recruit target proteins. Here, we used a bioinformatics screen and phylogenetic analysis to identify and annotate the family of F-box proteins in the Xenopus tropicalis genome. To shed light on the function of the F-box proteins, we analyzed expression of F-box genes during early stages of Xenopus development. Many F-box genes are broadly expressed with expression domains localized to diverse tissues including brain, spinal cord, eye, neural crest derivatives, somites, kidneys, and heart. All together, our genome-wide identification and expression profiling of the Xenopus F-box family of proteins provide a foundation for future research aimed to identify the precise role of F-box dependent E3 ubiquitin ligases and their targets in the regulatory circuits of development.
The Proof of the ``Vortex Theory of Matter''
NASA Astrophysics Data System (ADS)
Moon, Russell
2009-11-01
According to the Vortex Theory, protons and electrons are three-dimensional holes connected by fourth-dimensional vortices. It was further theorized that when photons are absorbed then readmitted by atoms, the photon is absorbed into the proton, moves through the fourth-dimensional vortex, then reemerges back into three-dimensional space through the electron. To prove this hypothesis, an experiment was conducted using a hollow aluminum sphere containing a powerful permanent magnet suspended directly above a zinc plate. Ultraviolet light was then shined upon the zinc. The zinc emits electrons via the photoelectric effect that are attracted to the surface of the aluminum sphere. The sphere was removed from above the zinc plate and repositioned above a sensitive infrared digital camera in another room. The ball and camera were placed within a darkened box inside a Faraday cage. Light was shined upon the zinc plate and the picture taken by the camera was observed. When the light was turned on above the zinc plate in one room, the camera recorded increased light coming from the surface of the sphere within the other room; when the light was turned off, the intensity of the infrared light coming from the surface of the sphere was suddenly diminished. Five other tests were then performed to eliminate other possible explanations such as quantum-entangled electrons.
The Proof of the ``Vortex Theory of Matter''
NASA Astrophysics Data System (ADS)
Gridnev, Konstantin; Moon, Russell; Vasiliev, Victor
2009-11-01
According to the Vortex Theory, protons and electrons are three-dimensional holes connected by fourth-dimensional vortices. It was further theorized that when photons are absorbed then readmitted by atoms, the photon is absorbed into the proton, moves through the fourth-dimensional vortex, then reemerges back into three-dimensional space through the electron^2. To prove this hypothesis, an experiment was conducted using a hollow aluminum sphere containing a powerful permanent magnet suspended directly above a zinc plate. Ultraviolet light was then shined upon the zinc. The zinc emits electrons via the photoelectric effect that are attracted to the surface of the aluminum sphere. The sphere was removed from above the zinc plate and repositioned above a sensitive infrared digital camera in another room. The ball and camera were placed within a darkened box inside a Faraday cage. Light was shined upon the zinc plate and the picture taken by the camera was observed. When the light was turned on above the zinc plate in one room, the camera recorded increased light coming from the surface of the sphere within the other room; when the light was turned off, the intensity of the infrared light coming from the surface of the sphere was suddenly diminished. Five other tests were then performed to eliminate other possible explanations such as quantum-entangled electrons.
The Proof of the ``Vortex Theory of Matter''
NASA Astrophysics Data System (ADS)
Gridnev, Konstantin; Moon, Russell; Vasiliev, Victor
2009-10-01
According to the Vortex Theory, protons and electrons are three-dimensional holes connected by fourth-dimensional vortices. It was further theorized that when photons are absorbed then readmitted by atoms, the photon is absorbed into the proton, moves through the fourth-dimensional vortex, then reemerges back into three-dimensional space through the electron^2. To prove this hypothesis, an experiment was conducted using a hollow aluminum sphere containing a powerful permanent magnet suspended directly above a zinc plate. Ultraviolet light was then shined upon the zinc. The zinc emits electrons via the photoelectric effect that are attracted to the surface of the aluminum sphere. The sphere was removed from above the zinc plate and repositioned above a sensitive infrared digital camera in another room. The ball and camera were placed within a darkened box inside a Faraday cage. Light was shined upon the zinc plate and the picture taken by the camera was observed. When the light was turned on above the zinc plate in one room, the camera recorded increased light coming from the surface of the sphere within the other room; when the light was turned off, the intensity of the infrared light coming from the surface of the sphere was suddenly diminished. Five other tests were then performed to eliminate other possible explanations such as quantum-entangled electrons.
The Proof of the ``Vortex Theory of Matter''
NASA Astrophysics Data System (ADS)
Moon, Russell; Gridnev, Konstantin; Vasiliev, Victor
2010-02-01
According to the Vortex Theory, protons and electrons are three-dimensional holes connected by fourth-dimensional vortices. It was further theorized that when photons are absorbed then readmitted by atoms, the photon is absorbed into the proton, moves through the fourth-dimensional vortex, then reemerges back into three-dimensional space through the electron. To prove this hypothesis, an experiment was conducted using a hollow aluminum sphere containing a powerful permanent magnet suspended directly above a zinc plate. Ultraviolet light was then shined upon the zinc. The zinc emits electrons via the photoelectric effect that are attracted to the surface of the aluminum sphere. The sphere was removed from above the zinc plate and repositioned above a sensitive infrared digital camera in another room. The ball and camera were placed within a darkened box inside a Faraday cage. Light was shined upon the zinc plate and the picture taken by the camera was observed. When the light was turned on above the zinc plate in one room, the camera recorded increased light coming from the surface of the sphere within the other room; when the light was turned off, the intensity of the infrared light coming from the surface of the sphere was suddenly diminished. Five other tests were then performed to eliminate other possible explanations such as quantum-entangled electrons. )
... Conferences & Events Practice Management Home Resources Quality Clinical Data Registry Research Reimbursement Inquiries Find an ENT News About Us Our Campaigns Foundation Governance Diversity Honorary Awards & Lectures Employment Opportunities Renting Space ...
... recommend the use of weights, splints, other adaptive equipment, and special plates and utensils for eating. Speech- ... on tremor also is available from the following organizations: International Essential Tremor Foundation P.O. Box 14005 ...
Expression analysis of genes encoding double B-box zinc finger proteins in maize.
Li, Wenlan; Wang, Jingchao; Sun, Qi; Li, Wencai; Yu, Yanli; Zhao, Meng; Meng, Zhaodong
2017-11-01
The B-box proteins play key roles in plant development. The double B-box (DBB) family is one of the subfamily of the B-box family, with two B-box domains and without a CCT domain. In this study, 12 maize double B-box genes (ZmDBBs) were identified through a genome-wide survey. Phylogenetic analysis of DBB proteins from maize, rice, Sorghum bicolor, Arabidopsis, and poplar classified them into five major clades. Gene duplication analysis indicated that segmental duplications made a large contribution to the expansion of ZmDBBs. Furthermore, a large number of cis-acting regulatory elements related to plant development, response to light and phytohormone were identified in the promoter regions of the ZmDBB genes. The expression patterns of the ZmDBB genes in various tissues and different developmental stages demonstrated that ZmDBBs might play essential roles in plant development, and some ZmDBB genes might have unique function in specific developmental stages. In addition, several ZmDBB genes showed diurnal expression pattern. The expression levels of some ZmDBB genes changed significantly under light/dark treatment conditions and phytohormone treatments, implying that they might participate in light signaling pathway and hormone signaling. Our results will provide new information to better understand the complexity of the DBB gene family in maize.
Treatment of suspended solids and heavy metals from urban stormwater runoff by a tree box filter.
Geronimo, F K F; Maniquiz-Redillas, M C; Tobio, J A S; Kim, L H
2014-01-01
Particulates, inorganic and toxic constituents are the most common pollutants associated with urban stormwater runoff. Heavy metals such as chromium, nickel, copper, zinc, cadmium and lead are found to be in high concentration on paved roads or parking lots due to vehicle emissions. In order to control the rapid increase of pollutant loads in stormwater runoff, the Korean Ministry of Environment proposed the utilization of low impact developments. One of these was the application of tree box filters that act as a bioretention treatment system which executes filtration and sorption processes. In this study, a tree box filter located adjacent to an impervious parking lot was developed to treat suspended solids and heavy metal concentrations from urban stormwater runoff. In total, 11 storm events were monitored from July 2010 to August 2012. The results showed that the tree box filter was highly effective in removing particulates (up to 95%) and heavy metals (at least 70%) from the urban stormwater runoff. Furthermore, the tree box filter was capable of reducing the volume runoff by 40% at a hydraulic loading rate of 1 m/day and below.
Yanagihara, Angel A.; Shohet, Ralph V.
2012-01-01
Chironex fleckeri (Australian box jellyfish) stings can cause acute cardiovascular collapse and death. We developed methods to recover venom with high specific activity, and evaluated the effects of both total venom and constituent porins at doses equivalent to lethal envenomation. Marked potassium release occurred within 5 min and hemolysis within 20 min in human red blood cells (RBC) exposed to venom or purified venom porin. Electron microscopy revealed abundant ∼12-nm transmembrane pores in RBC exposed to purified venom porins. C57BL/6 mice injected with venom showed rapid decline in ejection fraction with progression to electromechanical dissociation and electrocardiographic findings consistent with acute hyperkalemia. Recognizing that porin assembly can be inhibited by zinc, we found that zinc gluconate inhibited potassium efflux from RBC exposed to total venom or purified porin, and prolonged survival time in mice following venom injection. These findings suggest that hyperkalemia is the critical event following Chironex fleckeri envenomation and that rapid administration of zinc could be life saving in human sting victims. PMID:23251508
Wu, Baolei; Lei, Delin; Wang, Lei; Yang, Xinjie; Jia, Sen; Yang, Zihui; Shan, Chun; Yang, Xi; Zhang, Chenping; Lu, Bin
2016-01-01
MicroRNAs (miRNAs) are implicated in the pathogenesis of oral squamous-cell carcinoma (OSCC). miR-101 is involved in the development and progression of OSCC, but the biological functions and underlying molecular mechanisms of this miRNA remain largely unknown. In this study, we showed that miR-101 was underexpressed in OSCC tissues and cell lines. miR-101 downregulation was inversely correlated with zinc finger E-box binding homeobox 1 (ZEB1) expression, lymph-node metastasis, and poor prognosis in OSCC patients. Enhanced expression of miR-101 significantly inhibited OSCC cell proliferation, apoptosis resistance, migration and invasion in vitro, and suppressed tumor growth and lung metastasis in vivo. Bioinformatics analyses showed that miR-101 directly targeted ZEB1, as confirmed by a dual-luciferase reporter assay. The inhibitory effects of miR-101 on OSCC growth and metastasis were attenuated and phenocopied by ZEB1 overexpression and knockdown, respectively. Overall, our findings indicated that miRNA-101 reduced OSCC growth and metastasis by targeting ZEB1 and provided new evidence of miR-101 as a potential therapeutic target for OSCC patients. PMID:27429852
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichida, Yu, E-mail: ichida-y@ncchd.go.jp; Utsunomiya, Yuko; Onodera, Masafumi
2016-03-18
Zinc finger protein 809 (ZFP809) belongs to the Kruppel-associated box-containing zinc finger protein (KRAB-ZFP) family and functions in repressing the expression of Moloney murine leukemia virus (MoMLV). ZFP809 binds to the primer-binding site (PBS)located downstream of the MoMLV-long terminal repeat (LTR) and induces epigenetic modifications at integration sites, such as repressive histone modifications and de novo DNA methylation. KRAB-ZFPs contain consensus TGEKP linkers between C2H2 zinc fingers. The phosphorylation of threonine residues within linkers leads to the inactivation of zinc finger binding to target sequences. ZFP809 also contains consensus linkers between zinc fingers. However, the function of ZFP809 linkers remainsmore » unknown. In the present study, we constructed ZFP809 proteins containing mutated linkers and examined their ability to silence transgene expression driven by MLV, binding ability to MLV PBS, and cellular localization. The results of the present study revealed that the linkers affected the ability of ZFP809 to silence transgene expression. Furthermore, this effect could be partly attributed to changes in the localization of ZFP809 proteins containing mutated linkers. Further characterization of ZFP809 linkers is required for understanding the functions and features of KRAB-ZFP-containing linkers. - Highlights: • ZFP809 has three consensus linkers between the zinc fingers. • Linkers are required for ZFP809 to silence transgene expression driven by MLV-LTR. • Linkers affect the precise nuclear localization of ZFP809.« less
... of education, research, clinical, and awareness initiatives. Contact Us Click here to send us an email! Mail: Vasculitis Foundation PO Box 28660 ... 436.8211 or 1.800.277.9474 Email us Privacy Medical Disclaimer FAQs Terms Other Ways To ...
Xu, Zongda; Sun, Lidan; Zhou, Yuzhen; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang
2015-10-01
SQUAMOSA promoter-binding protein (SBP)-box family genes encode plant-specific transcription factors that play crucial roles in plant development, especially flower and fruit development. However, little information on this gene family is available for Prunus mume, an ornamental and fruit tree widely cultivated in East Asia. To explore the evolution of SBP-box genes in Prunus and explore their functions in flower and fruit development, we performed a genome-wide analysis of the SBP-box gene family in P. mume. Fifteen SBP-box genes were identified, and 11 of them contained an miR156 target site. Phylogenetic and comprehensive bioinformatics analyses revealed that different groups of SBP-box genes have undergone different evolutionary processes and varied in their length, structure, and motif composition. Purifying selection has been the main selective constraint on both paralogous and orthologous SBP-box genes. In addition, the sequences of orthologous SBP-box genes did not diverge widely after the split of P. mume and Prunus persica. Expression analysis of P. mume SBP-box genes revealed their diverse spatiotemporal expression patterns. Three duplicated SBP-box genes may have undergone subfunctionalization in Prunus. Most of the SBP-box genes showed high transcript levels in flower buds and young fruit. The four miR156-nontargeted genes were upregulated during fruit ripening. Together, these results provide information about the evolution of SBP-box genes in Prunus. The expression analysis lays the foundation for further research on the functions of SBP-box genes in P. mume and other Prunus species, especially during flower and fruit development.
Wenz, Jan; Kochan, Alexander; Wadepohl, Hubert; Gade, Lutz H
2017-03-20
A new class of chiral C 2 -symmetric N-donor pincer ligands, 2,5-bis(2-oxazolinyldimethylmethyl)pyrroles (PdmBox)H, was synthesized starting from the readily available ethyl 2,2-dimethyl-3-oxobutanoate (1). The synthesis of the ligand backbone was achieved by oxidative enole coupling with CuC1 2 followed by Paal-Knorr-type pyrrole synthesis. The corresponding protioligands ( R PdmBox)H (R = iPr: 5a; Ph: 5b) were obtained by condensation with amino alcohols and subsequent zinc-catalyzed cyclization. Reaction of the lithiated ligands with [NiCl 2 (dme)] yielded the corresponding square-planar nickel(II) complexes [( R PdmBox)NiCl] (6a/b). Salt metathesis of 6a with the corresponding alkali or cesium salts in acetone led to the formation of air- and moisture-stable [( iPr PdmBox)NiX] (X = F (7), X = Br (8), X = I (9), X = N 3 (10), X = OAc (11). Furthermore, the conversion of [( iPr PdmBox)NiF] (7) with hydride transfer reagents such as PhSiH 3 led to the stable hydrido species [( iPr PdmBox)NiH] (27), the stoichiometric transformations of which were studied. Treatment of 6a with organometallic reagents such as ZnEt 2 , PhLi, PhC≡CLi, NsLi, or ( 4F Bn) 2 Mg(THF) 2 gave the corresponding alkyl, alkynyl, or aryl complexes. The availability of the new nonisomerizable PdmBox pincer ligands allowed the comparative study of their ligation to square-planar complexes as helically twisted spectator ligands as opposed to the enforced planar rigidity of their iso-PmBox analogues and the way this influences the reactivity of the Ni complexes.
Hand, Jacqelyn M; Zhang, Kun; Wang, Lei; Koganti, Prasanthi P; Mastrantoni, Kristen; Rajput, Sandeep K; Ashry, Mohamed; Smith, George W; Yao, Jianbo
2017-04-01
Zinc finger (ZNF) transcription factors interact with DNA through zinc finger motifs and play important roles in a variety of cellular functions including cell growth, proliferation, development, apoptosis, and intracellular signal transduction. One-third of ZNF proteins in metazoans contain a highly conserved N-terminal motif known as the Krüppel-associated box (KRAB) domain, which acts as a potent, DNA-binding dependent transcriptional repression module. Analysis of RNA-Seq data generated from a bovine oocyte cDNA library identified a novel transcript, which encodes a KRAB-containing ZNF transcription factor (named ZNFO). Characterization of ZNFO mRNA expression revealed that it is exclusively expressed in bovine oocytes and early embryos. A GFP reporter assay demonstrated that ZNFO protein localizes specifically to the nucleus, supporting its role in transcriptional regulation. To test the role of ZNFO in early embryonic development, zygotes were generated by in vitro maturation and fertilization of oocytes, and injected with small interfering RNA (siRNA) designed to knockdown ZNFO. Cleavage rates were not affected by ZNFO siRNA injection. However, embryonic development to 8- to 16-cell stage and blastocyst stage was significantly reduced relative to the uninjected and negative control siRNA-injected embryos. Further, interaction of ZNFO with the highly conserved co-factor, KRAB-associated protein-1 (KAP1), was demonstrated, and evidence supporting transcriptional repression by ZNFO was demonstrated using a GAL4-luciferase reporter system. Results of described studies demonstrate that ZNFO is a maternally-derived oocyte-specific nuclear factor required for early embryonic development in cattle, presumably functioning by repressing transcription. Copyright © 2017 Elsevier B.V. All rights reserved.
Balabanova, Biljana; Stafilov, Trajče; Šajn, Robert; Andonovska, Katerina Bačeva
2017-02-23
Distributions of a total of 21 elements were monitored in significantly lead-zinc polluted area using moss species (Hypnum cupressiforme and Camptothecium lutescens) used interchangeably, covering a denser sampling network. Interspecies comparison was conducted using Box-Cox transformed values, due to their skewed distribution. The median concentrations of trace elements in the both mosses examined decreased in the following order: Fe>Mn>Zn>Pb>Cu>Ni∼Cr∼As>Co>Cd>Hg. For almost all analyzed elements, H. cupressiforme revealed higher bio-accumulative abilities. For arsenic contents was obtained ER-value in favor of C. lutescens. The ER for the element contents according to the distance from the pollution source in selected areas was significantly enriched for the anthropogenic introduced elements As, Cd, Cu, Pb and Zn. After Box-Cox transformation of the content values, T B was significantly different for As (4.82), Cd (3.84), Cu (2.95), Pb (4.38), and Zn (4.23). Multivariate factor analysis singled out four elemental associations: F1 (Al-Co-Cr-Fe-Li-Ni-V), F2 (Cd-Pb-Zn), F3 (Ca-Mg-Na-P) and F4 (Cu) with a total variance of 89%. Spatial distribution visualized the hazardously higher contents of "hot spots" of Cd > 1.30 mg/kg, Cu > 22 mg/kg, Pb > 130 mg/kg and Zn > 160 mg/kg. Therefore, main approach in moss biomonitoring should be based on data management of the element distribution by reducing the effect of extreme values (considering Box-Cox data transformation); the interspecies variation in sampling media does not deviate in relation to H. cupressiforme vs. C. lutescens.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-06-21
..., import data that shows that imports of bedding foundations (which are directly competitive with box springs) decreased in 2012 from 2011 levels, a list of bedding companies and sawmills that employed...
Hou, Hongmin; Li, Jun; Gao, Min; Singer, Stacy D.; Wang, Hao; Mao, Linyong; Fei, Zhangjun; Wang, Xiping
2013-01-01
Background The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. Methodology/Principal Findings Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis ‘Shang-24’ revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. Conclusion The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop. PMID:23527172
Flutter analysis of composite box beams
NASA Technical Reports Server (NTRS)
Hodges, Dewey H.; Greenman, Matthew
1995-01-01
The dynamic aeroelastic instability of flutter is an important factor in the design of modern high-speed, flexible aircraft. The current trend is toward the creative use of composites to delay flutter. To obtain an optimum design, we need an accurate as well as efficient model. As a first step towards this goal, flutter analysis is carried out for an unswept composite box beam using a linear structural model and Theodorsen's unsteady aerodynamic theory. Structurally, the wing was modeled as a thin-walled box-beam of rectangular cross section. Theodorsen's theory was used to get 2-D unsteady aerodynamic forces, which were integrated over the span. A free-vibration analysis is carried out. These fundamental modes are used to get the flutter solution using the V-g method. Future work is intended to build on this foundation.
Lab-in-a-box @ school: Exiting hands-on experiments in soft matter physics
NASA Astrophysics Data System (ADS)
Jacobs, Karin; Brinkmann, Martin; Müller, Frank
2015-03-01
Soft materials like liquids and polymers are part of everyday life, yet at school, this topic is rarely touched. Within the priority program SPP 1064 'Nano- and Microfluidics' of the German Science Foundation, we designed an outreach project that allows pupils (age 14 to 18) to perform hands-on experiments (www.labinabox.de). The experiments allow them e.g. to feel viscosity and viscoelasticity, experience surface tension or see structure formation. We call the modus operandi 'subjective experiments' to contrast them with the scientifically objective experiments, which pupils often describe as being boring. Over a dozen different experiments under the topic 'physics of fluids' are collected in a big box that travels to the school. Three other topics of boxes are available, 'physics of light, 'physics of liquid crystals', and 'physics of adhesion and friction'. Each experiment can be performed by 1-3 pupils within 10 - 20 min. That way, each scholar can perform 6 to 8 different small experiments within one topic. 'Subjective experiments' especially catch the attention of girls without disadvantaging boys. Both are fascinated by the hands-on physics experience and are therefore eager to perform also 'boring' objective experiments. Morover, before/after polls reveal that their interest in physics has greatly advanced. The project can easily be taken over and/or adapted to other topics in the natural sciences. Financial support of the German Science Foundation DFG is acknowledged.
Brain Resilience: Shedding Light into the Black Box of Adventure Procesess
ERIC Educational Resources Information Center
Allan, John F.; McKenna, Jim; Hind, Karen
2012-01-01
Understanding of the active beneficial processes of adventure learning remains elusive. Resilience may provide one foundation for understanding the positive adaptation derived from Outdoor Adventure Education (OAE) and Adventure Therapy (AT) programming. From a neurological perspective, resilience may be explained by the brain's innate capability…
ERIC Educational Resources Information Center
Lin, Tony; Erfan, Sasan
2016-01-01
Mathematical modeling is an open-ended research subject where no definite answers exist for any problem. Math modeling enables thinking outside the box to connect different fields of studies together including statistics, algebra, calculus, matrices, programming and scientific writing. As an integral part of society, it is the foundation for many…
Setting the Stage for the Interactive Classroom of the 1980s.
ERIC Educational Resources Information Center
Hiraki, Joan; Garcia, Oscar N.
1981-01-01
Under a National Science Foundation CAUSE grant, the Department of Computer Science and Engineering at the University of South Florida, Tampa, is developing an interactive microcomputer/minicomputer/video disk learning system for engineering and science students. Journal availability: Educational Computer, P.O. Box 535, Cupertino, CA 95015.…
Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F.; Hur, Man-Wook
2008-01-01
FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation. PMID:18682402
Choi, Won-Il; Jeon, Bu-Nam; Park, Hyejin; Yoo, Jung-Yoon; Kim, Yeon-Sook; Koh, Dong-In; Kim, Myung-Hwa; Kim, Yu-Ri; Lee, Choong-Eun; Kim, Kyung-Sup; Osborne, Timothy F; Hur, Man-Wook
2008-10-24
FBI-1 (Pokemon/ZBTB7A) is a proto-oncogenic transcription factor of the BTB/POZ (bric-à-brac, tramtrack, and broad complex and pox virus zinc finger) domain family. Recent evidence suggested that FBI-1 might be involved in adipogenic gene expression. Coincidentally, expression of FBI-1 and fatty-acid synthase (FASN) genes are often increased in cancer and immortalized cells. Both FBI-1 and FASN are important in cancer cell proliferation. SREBP-1 is a major regulator of many adipogenic genes, and FBI-1 and SREBP-1 (sterol-responsive element (SRE)-binding protein 1) interact with each other directly via their DNA binding domains. FBI-1 enhanced the transcriptional activation of SREBP-1 on responsive promoters, pGL2-6x(SRE)-Luc and FASN gene. FBI-1 and SREBP-1 synergistically activate transcription of the FASN gene by acting on the proximal GC-box and SRE/E-box. FBI-1, Sp1, and SREBP-1 can bind to all three SRE, GC-box, and SRE/E-box. Binding competition among the three transcription factors on the GC-box and SRE/E-box appears important in the transcription regulation. FBI-1 is apparently changing the binding pattern of Sp1 and SREBP-1 on the two elements in the presence of induced SREBP-1 and drives more Sp1 binding to the proximal promoter with less of an effect on SREBP-1 binding. The changes induced by FBI-1 appear critical in the synergistic transcription activation. The molecular mechanism revealed provides insight into how proto-oncogene FBI-1 may attack the cellular regulatory mechanism of FASN gene expression to provide more phospholipid membrane components needed for rapid cancer cell proliferation.
Zinc Bromide Flow Battery Installation for Islanding and Backup Power
2016-09-18
ability to control the generation has become more difficult with the increase of renewable energy systems such as solar photovoltaics ( PV ) and wind... PV and Inverter Room Building 6311 Rooftop Solar PV 30kW 232kW STC PV Array B5-PS2T33 Pad Switchboard ZnBr Energy Storage System (ESS) PowerBoxEnergy...Agreement • 1.5 MW of Photovoltaic • PV Parking lot lights • 24 Solar Thermal systems including the Combat Training Tank (Pool) Energy/Water Efficiency
NASA Astrophysics Data System (ADS)
Wu, Shao-Hang; Zhang, Nan; Hu, Yong-Sheng; Chen, Hong; Jiang, Da-Peng; Liu, Xing-Yuan
2015-10-01
Strontium-zinc-oxide (SrZnO) films forming the semiconductor layers of thin-film transistors (TFTs) are deposited by using ion-assisted electron beam evaporation. Using strontium-oxide-doped semiconductors, the off-state current can be dramatically reduced by three orders of magnitude. This dramatic improvement is attributed to the incorporation of strontium, which suppresses carrier generation, thereby improving the TFT. Additionally, the presence of strontium inhibits the formation of zinc oxide (ZnO) with the hexagonal wurtzite phase and permits the formation of an unusual phase of ZnO, thus significantly changing the surface morphology of ZnO and effectively reducing the trap density of the channel. Project supported by the National Natural Science Foundation of China (Grant No. 6140031454) and the Innovation Program of Chinese Academy of Sciences and State Key Laboratory of Luminescence and Applications.
Xu, Zongda; Zhang, Qixiang; Sun, Lidan; Du, Dongliang; Cheng, Tangren; Pan, Huitang; Yang, Weiru; Wang, Jia
2014-10-01
MADS-box genes encode transcription factors that play crucial roles in plant development, especially in flower and fruit development. To gain insight into this gene family in Prunus mume, an important ornamental and fruit plant in East Asia, and to elucidate their roles in flower organ determination and fruit development, we performed a genome-wide identification, characterisation and expression analysis of MADS-box genes in this Rosaceae tree. In this study, 80 MADS-box genes were identified in P. mume and categorised into MIKC, Mα, Mβ, Mγ and Mδ groups based on gene structures and phylogenetic relationships. The MIKC group could be further classified into 12 subfamilies. The FLC subfamily was absent in P. mume and the six tandemly arranged DAM genes might experience a species-specific evolution process in P. mume. The MADS-box gene family might experience an evolution process from MIKC genes to Mδ genes to Mα, Mβ and Mγ genes. The expression analysis suggests that P. mume MADS-box genes have diverse functions in P. mume development and the functions of duplicated genes diverged after the duplication events. In addition to its involvement in the development of female gametophytes, type I genes also play roles in male gametophytes development. In conclusion, this study adds to our understanding of the roles that the MADS-box genes played in flower and fruit development and lays a foundation for selecting candidate genes for functional studies in P. mume and other species. Furthermore, this study also provides a basis to study the evolution of the MADS-box family.
Finkernagel, Florian; Stiewe, Thorsten; Nist, Andrea; Suske, Guntram
2015-01-01
Transcription factors are grouped into families based on sequence similarity within functional domains, particularly DNA-binding domains. The Specificity proteins Sp1, Sp2 and Sp3 are paradigmatic of closely related transcription factors. They share amino-terminal glutamine-rich regions and a conserved carboxy-terminal zinc finger domain that can bind to GC rich motifs in vitro. All three Sp proteins are ubiquitously expressed; yet they carry out unique functions in vivo raising the question of how specificity is achieved. Crucially, it is unknown whether they bind to distinct genomic sites and, if so, how binding site selection is accomplished. In this study, we have examined the genomic binding patterns of Sp1, Sp2 and Sp3 in mouse embryonic fibroblasts by ChIP-seq. Sp1 and Sp3 essentially occupy the same promoters and localize to GC boxes. The genomic binding pattern of Sp2 is different; Sp2 primarily localizes at CCAAT motifs. Consistently, re-expression of Sp2 and Sp3 mutants in corresponding knockout MEFs revealed strikingly different modes of genomic binding site selection. Most significantly, while the zinc fingers dictate genomic binding of Sp3, they are completely dispensable for binding of Sp2. Instead, the glutamine-rich amino-terminal region is sufficient for recruitment of Sp2 to its target promoters in vivo. We have identified the trimeric histone-fold CCAAT box binding transcription factor Nf-y as the major partner for Sp2-chromatin interaction. Nf-y is critical for recruitment of Sp2 to co-occupied regulatory elements. Equally, Sp2 potentiates binding of Nf-y to shared sites indicating the existence of an extensive Sp2-Nf-y interaction network. Our results unveil strikingly different recruitment mechanisms of Sp1/Sp2/Sp3 transcription factor members uncovering an unexpected layer of complexity in their binding to chromatin in vivo. PMID:25793500
Huang, Jianyan; Zhao, Xiaobo; Weng, Xiaoyu; Wang, Lei; Xie, Weibo
2012-01-01
Background The B-box (BBX) -containing proteins are a class of zinc finger proteins that contain one or two B-box domains and play important roles in plant growth and development. The Arabidopsis BBX gene family has recently been re-identified and renamed. However, there has not been a genome-wide survey of the rice BBX (OsBBX) gene family until now. Methodology/Principal Findings In this study, we identified 30 rice BBX genes through a comprehensive bioinformatics analysis. Each gene was assigned a uniform nomenclature. We described the chromosome localizations, gene structures, protein domains, phylogenetic relationship, whole life-cycle expression profile and diurnal expression patterns of the OsBBX family members. Based on the phylogeny and domain constitution, the OsBBX gene family was classified into five subfamilies. The gene duplication analysis revealed that only chromosomal segmental duplication contributed to the expansion of the OsBBX gene family. The expression profile of the OsBBX genes was analyzed by Affymetrix GeneChip microarrays throughout the entire life-cycle of rice cultivar Zhenshan 97 (ZS97). In addition, microarray analysis was performed to obtain the expression patterns of these genes under light/dark conditions and after three phytohormone treatments. This analysis revealed that the expression patterns of the OsBBX genes could be classified into eight groups. Eight genes were regulated under the light/dark treatments, and eleven genes showed differential expression under at least one phytohormone treatment. Moreover, we verified the diurnal expression of the OsBBX genes using the data obtained from the Diurnal Project and qPCR analysis, and the results indicated that many of these genes had a diurnal expression pattern. Conclusions/Significance The combination of the genome-wide identification and the expression and diurnal analysis of the OsBBX gene family should facilitate additional functional studies of the OsBBX genes. PMID:23118960
NASA Astrophysics Data System (ADS)
Jabour, Salih; Hamed, Mazen Y.
2009-04-01
The three dimensional structure of Ferric uptake regulation protein dimer from E. coli, determined by molecular modeling, was docked on a DNA fragment (iron box) and Zn2+ ions were added in two steps. The first step involved the binding of one Zn2+ ion to what is known as the zinc site which consists of the residues Cys 92, Cys 95, Asp 137, Asp141, Arg139, Glu 140, His 145 and His 143 with an average metal-Nitrogen distance of 2.5 Å and metal-oxygen distance of 3.1-3.2 Å. The second Zn2+ ion is bound to the iron activating site formed from the residues Ile 50, His 71, Asn 72, Gly 97, Asp 105 and Ala 109. The binding of the second Zn2+ ion strengthened the binding of the first ion as indicated by the shortening of the zinc-residue distances. Fe2+, when added to the complex consisting of 2Zn2+/Fur dimer/DNA, replaced the Zn2+ ion in the zinc site and when a second Fe2+ was added, it replaced the second zinc ion in the iron activating site. The binding of both zinc and iron ions induced a similar change in Fur conformations, but shifted residues closer to DNA in a different manner. This is discussed along with a possible role for the Zn2+ ion in the Fur dimer binding of DNA in its repressor activity.
Static Scheduler for Hard Real-Time Tasks on Multiprocessor Systems
1992-09-01
Foundation of Computer Science, 1980 . [SIM83] Simons, B., "Multiprocessor Scheduling of Unit-Time Jobs with Arbitrary Release Times and Deadlines", SIAM...Research Office Attn: Dr. David Hislop P. O. Box 12211 Research Triangle Park, NC 27709-2211 31. Persistent Data Systems 75 W. Chapel Ridge Road Attn: Dr
Particle in a Box: An Experiential Environment for Learning Introductory Quantum Mechanics
ERIC Educational Resources Information Center
Anupam, Aditya; Gupta, Ridhima; Naeemi, Azad; JafariNaimi, Nassim
2018-01-01
Quantum mechanics (QMs) is a foundational subject in many science and engineering fields. It is difficult to teach, however, as it requires a fundamental revision of the assumptions and laws of classical physics and probability. Furthermore, introductory QM courses and texts predominantly focus on the mathematical formulations of the subject and…
77 FR 5570 - Notice of Lodging of Consent Decree Under the Clean Water Act
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-03
... Chapter, Hawai'i's Thousand Friends, and Our Children's Earth Foundation) filed a joint stipulation to... DEPARTMENT OF JUSTICE Notice of Lodging of Consent Decree Under the Clean Water Act Notice is....O. Box 7611, U.S. Department of Justice, Washington, DC 20044-7611, and should refer to United...
Potential Mapping of an Indium-Tin-Oxide Glass Box in a GEC Reference Cell
NASA Astrophysics Data System (ADS)
Kaplan, Rebecca; Carmona-Reyes, Jorge; Hyde, Truell; Matthews, Lorin; Casper Program Team
The use of indium-tin-oxide (ITO) coated boxes, as well as boxes coated with other substances, placed on or floating above the lower electrode in studies using Gaseous Electronics Conference Radio Frequency Reference Cells have increased in interest, as have the use of plain glass boxes. This increase in interest is due to the greater ability to control the confinement forces and in effect create dust chain structures which aid in studies within other areas of physics such as; entropy, kinetic dust temperature, plasma balls and coulomb explosions. Further analysis of the data obtained using these boxes shows what appear to be at least two different regions of confinement inside the boxes as well as some unexpected phenomena related to anomalous values and behavior of the electric field. These areas affect the dust to dust and dust to plasma interactions independently in the separate regions and are therefore of great interest. In this study electric potential and electric field maps created in MatLab with data obtained using two probes mounted on CASPER's S-100 nano-manipulator will be presented, connecting the information obtained from these maps to the behavior of the dust observed for different experimental conditions. All of this has been made possible by the opportunity and funding from the CASPER program and the National Science Foundation Grant Number PHY-1262031.
Liu, Xin; Li, Rong; Dai, Yaqing; Chen, Xuesen; Wang, Xiaoyun
2018-04-01
The B-box proteins (BBXs) are a family of zinc finger proteins containing one/two B-box domain(s). Compared with intensive studies of animal BBXs, investigations of the plant BBX family are limited, though some specific plant BBXs have been demonstrated to act as transcription factors in the regulation of flowering and photomorphogenesis. In this study, using a global search of the apple (Malus domestica Borkh.) genome, a total of 64 members of BBX (MdBBX) were identified. All the MdBBXs were divided into five groups based on the phylogenetic relationship, numbers of B-boxes contained and whether there was with an additional CCT domain. According to the characteristics of organ-specific expression, MdBBXs were divided into three groups based on the microarray information. An analysis of cis-acting elements showed that elements related to the stress response were prevalent in the promoter sequences of most MdBBXs. Twelve MdBBX members from different groups were randomly selected and exposed to abiotic stresses. Their expressions were up-regulated to some extent in the roots and leaves. Six among 12 MdBBXs were sensitive to osmotic pressure, salt, cold stress and exogenous abscisic acid treatment, with their expressions enhanced more than 20-fold. Our results suggested that MdBBXs may take part in response to abiotic stress.
F-box proteins involved in cancer-associated drug resistance.
Gong, Jian; Zhou, Yuqian; Liu, Deliang; Huo, Jirong
2018-06-01
The ubiquitin proteasome system (UPS) regulated human biological processes through the appropriate and efficient proteolysis of cellular proteins. F-box proteins are the vital components of SKP1-CUL1-FBP (SCF)-type E3 ubiquitin ligases that determine substrate specificity. As F-box proteins have the ability to control the degradation of several crucial protein targets associated with drug resistance, the dysregulation of these proteins may lead to induction of chemoresistance in cancer cells. Chemotherapy is one of the most conventional therapeutic approaches of treatment of patients with cancer. However, its exclusive application in clinical settings is restricted due to the development of chemoresistance, which typically results treatment failure. Therefore, overcoming drug resistance is considered as one of the most critical issues that researchers and clinician associated with oncology face. The present review serves to provide a comprehensive overview of F-box proteins and their possible targets as well as their correlation with the chemoresistance and chemosensitization of cancer cells. The article also presents an integrated representation of the complex regulatory mechanisms responsible for chemoresistance, which may lay the foundation to explore sensible candidate drugs for therapeutic intervention.
Wang, Shudong; Gu, Junlian; Xu, Zheng; Zhang, Zhiguo; Bai, Tao; Xu, Jianxiang; Cai, Jun; Barnes, Gregory; Liu, Qiu-Ju; Freedman, Jonathan H; Wang, Yonggang; Liu, Quan; Zheng, Yang; Cai, Lu
2017-06-01
Obesity often leads to obesity-related cardiac hypertrophy (ORCH), which is suppressed by zinc-induced inactivation of p38 mitogen-activated protein kinase (p38 MAPK). In this study, we investigated the mechanisms by which zinc inactivates p38 MAPK to prevent ORCH. Mice (4-week old) were fed either high fat diet (HFD, 60% kcal fat) or normal diet (ND, 10% kcal fat) containing variable amounts of zinc (deficiency, normal and supplement) for 3 and 6 months. P38 MAPK siRNA and the p38 MAPK inhibitor SB203580 were used to suppress p38 MAPK activity in vitro and in vivo, respectively. HFD activated p38 MAPK and increased expression of B-cell lymphoma/CLL 10 (BCL10) and caspase recruitment domain family member 9 (CARD9). These responses were enhanced by zinc deficiency and attenuated by zinc supplement. Administration of SB203580 to HFD mice or specific siRNA in palmitate-treated cardiomyocytes eliminated the HFD and zinc deficiency activation of p38 MAPK, but did not significantly impact the expression of BCL10 and CARD9. In cultured cardiomyocytes, inhibition of BCL10 expression by siRNA prevented palmitate-induced increased p38 MAPK activation and atrial natriuretic peptide (ANP) expression. In contrast, inhibition of p38 MAPK prevented ANP expression, but did not affect BCL10 expression. Deletion of metallothionein abolished the protective effect of zinc on palmitate-induced up-regulation of BCL10 and phospho-p38 MAPK. HFD and zinc deficiency synergistically induce ORCH by increasing oxidative stress-mediated activation of BCL10/CARD9/p38 MAPK signalling. Zinc supplement ameliorates ORCH through activation of metallothionein to repress oxidative stress-activated BCL10 expression and p38 MAPK activation. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Effect of Variable Doses of Zinc Oxide Nanoparticles on Male Albino Mice Behavior.
Zahra, Javeria; Iqbal, Shahid; Zahra, Kiran; Javed, Zulha; Shad, Muhammad Aslam; Akbar, Atif; Ashiq, Muhammad Naeem; Iqbal, Furhan
2017-02-01
Zinc oxide nanoparticles (ZnO NPs) have diverse utility these days ranging from being part of nanosensors to be ingredient of cosmetics. Present study was designed to report the effect of variable doses of ZnO NPs on selected aspects of male albino mice behavior. Nano particles were synthesized by sol-gel auto-combustion method (Data not shown here). 10 week old male albino mice were divided into four experimental groups; group A, B and C were orally supplemented with 50 (low dose), 300 (medium dose) and 600 mg/ml solvent/kg body weight (high dose) of ZnO NPs for 4 days. Group D (control) orally received 0.2 M sodium phosphate buffer (solvent for ZnO NPs) for the same duration. A series of neurological tests (Rota rod, open field, novel object and light-dark box test) were conducted in all groups and performance was compared between ZnO NPs treated and control group. Muscular functioning during rota rod test was significantly improved in all ZnO NPs treated mice as compared to control group. While no significant differences in open field, novel object and light-dark box test performance were observed when data from studied parameters of specific ZnO NPs treatment were compared with the control group indicating that applied doses of ZnO NPs did not affect the exploratory, anxiolytic behavior and object recognition capability of adult male albino mice.
Kim, Ju Youn; Leader, Andrew; Stoller, Michelle L.; Coen, Donald M.; Wilson, Angus C.
2017-01-01
Infection with herpes simplex virus-1 (HSV-1) brings numerous changes in cellular gene expression. Levels of most host mRNAs are reduced, limiting synthesis of host proteins, especially those involved in antiviral defenses. The impact of HSV-1 on host microRNAs (miRNAs), an extensive network of short non-coding RNAs that regulate mRNA stability/translation, remains largely unexplored. Here we show that transcription of the miR-183 cluster (miR-183, miR-96, and miR-182) is selectively induced by HSV-1 during productive infection of primary fibroblasts and neurons. ICP0, a viral E3 ubiquitin ligase expressed as an immediate-early protein, is both necessary and sufficient for this induction. Nuclear exclusion of ICP0 or removal of the RING (really interesting new gene) finger domain that is required for E3 ligase activity prevents induction. ICP0 promotes the degradation of numerous host proteins and for the most part, the downstream consequences are unknown. Induction of the miR-183 cluster can be mimicked by depletion of host transcriptional repressors zinc finger E-box binding homeobox 1 (ZEB1)/δ-crystallin enhancer binding factor 1 (δEF1) and zinc finger E-box binding homeobox 2 (ZEB2)/Smad-interacting protein 1 (SIP1), which we establish as new substrates for ICP0-mediated degradation. Thus, HSV-1 selectively stimulates expression of the miR-183 cluster by ICP0-mediated degradation of ZEB transcriptional repressors. PMID:28783105
NASA Astrophysics Data System (ADS)
Chen, Ya-Yi; Liu, Yuan; Wu, Zhao-Hui; Wang, Li; Li, Bin; En, Yun-Fei; Chen, Yi-Qiang
2018-04-01
Not Available Supported by the National Natural Science Foundation of China under Grant No 61574048, the Science and Technology Research Project of Guangdong Province under Grant Nos 2015B090912002 and 2015B090901048, and the Pearl River S&T Nova Program of Guangzhou under Grant No 201710010172.
Application of Microgravity to the Assessment of Existing Structures and Structural Foundations.
1988-04-29
UADGU Geophysique Francafse IUSRSU 6c. ADDRESS (City, State. and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) 20, Rue des Pavilions Box 65 92800...r (2.8 - 2.4) 286 AM~TCT f eldo f6 YOUOUVT 4. EXISTING STRUCTURES AND (U) CONPAGNIE DE PROSPECTION GEOPHYSIQUE FRANCAISE RUEIL-MALNAISO J LAKSHNRNRN
eLearning: From Social Presence to Co-Creation in Virtual Education Community
ERIC Educational Resources Information Center
Katernyak, Ihor; Ekman, Sten; Ekman, Annalill; Sheremet, Mariya; Loboda, Viktoriya
2009-01-01
Purpose: The purpose of this paper is to present an example of how the synergy of different competences in students' teams, out-of-the-box thinking style and various motivation factors in a culturally diverse learning environment is the foundation for knowledge construction, driven by the idea generation process and co-creation--the so-called…
Federal Register 2010, 2011, 2012, 2013, 2014
2011-07-13
... monitoring plans; (2) a request for waivers of certain Integrated Licensing Process (ILP) regulations...Hydro Group Ltd., mounted on completely submerged gravity foundations; (2) two 250-meter service cables connected at a subsea junction box or spliced to a 0.5-kilometer subsea transmission cable, connecting to a...
Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook
2008-11-28
FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp -308 to -188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp -65 to -56) and GC-box 2 (bp -18 to -9), the latter of which is also bound by FBI-1. We found that FRE3 (bp -244 to -236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression.
Allender, Matthew C; Dreslik, Michael J; Patel, Bishap; Luber, Elizabeth L; Byrd, John; Phillips, Christopher A; Scott, John W
2015-08-01
The Eastern box turtle (Terrapene carolina carolina) is a primarily terrestrial chelonian distributed across the eastern US. It has been proposed as a biomonitor due to its longevity, small home range, and reliance on the environment to meet its metabolic needs. Plasma samples from 273 free-ranging box turtles from populations in Tennessee and Illinois in 2011 and 2012 were evaluated for presence of heavy metals and to characterize hematologic variables. Lead (Pb), arsenic (As), zinc (Zn), chromium (Cr), selenium (Se), and copper (Cu) were detected, while cadmium (Cd) and silver (Ag) were not. There were no differences in any metal detected among age class or sex. However, Cr and Pb were higher in turtles from Tennessee, while As, Zn, Se, and Cu were higher in turtles from Illinois. Seasonal differences in metal concentrations were observed for Cr, Zn, and As. Health of turtles was assessed using hematologic variables. Packed cell volume was positively correlated with Cu, Se, and Pb in Tennessee. Total solids, a measure of plasma proteins, in Tennessee turtles were positively correlated with Cu and Zn. White blood cell count, a measure of inflammation, in Tennessee turtles was negatively correlated with Cu and As, and positively correlated with Pb. Metals are a threat to human health and the health of an ecosystem, and the Eastern Box Turtle can serve as a monitor of these contaminants. Differences established in this study can serve as baseline for future studies of these or related populations.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-03-11
... supplied by OpenHydro Group Ltd., mounted on completely submerged gravity foundations; (2) two 250-meter service cables connected at a subsea junction box or spliced to a 0.5-kilometer subsea transmission cable... building; (4) a 140-meter long buried cable from the control building to the grid; and (5) appurtenant...
Getting It Right: Revamping Army Talent Management
2015-06-01
starting from foundational up through leadership with the level of difficulty increasing vertically ...............20 Figure 6. In the Nine-box Succession...conflicts has produced an officer population with a wealth of knowledge and experience involving combat, building infrastructure, jump- starting ...rise in importance for internal talent management. Bersin explains that starting in the 1970s, human capital management transitioned from a personnel
NASA Astrophysics Data System (ADS)
Rohrlich, Daniel
Y. Aharonov and A. Shimony both conjectured that two axioms - relativistic causality (``no superluminal signalling'') and nonlocality - so nearly contradict each other that only quantum mechanics reconciles them. Can we indeed derive quantum mechanics, at least in part, from these two axioms? No: ``PR-box'' correlations show that quantum correlations are not the most nonlocal correlations consistent with relativistic causality. Here we replace ``nonlocality'' with ``retrocausality'' and supplement the axioms of relativistic causality and retrocausality with a natural and minimal third axiom: the existence of a classical limit, in which macroscopic observables commute. That is, just as quantum mechanics has a classical limit, so must any generalization of quantum mechanics. In this limit, PR-box correlations violaterelativistic causality. Generalized to all stronger-than-quantum bipartite correlations, this result is a derivation of Tsirelson's bound (a theorem of quantum mechanics) from the three axioms of relativistic causality, retrocausality and the existence of a classical limit. Although the derivation does not assume quantum mechanics, it points to the Hilbert space structure that underlies quantum correlations. I thank the John Templeton Foundation (Project ID 43297) and the Israel Science Foundation (Grant No. 1190/13) for support.
Armas, Pablo; Agüero, Tristán H; Borgognone, Mariana; Aybar, Manuel J; Calcaterra, Nora B
2008-10-17
Cellular nucleic-acid-binding protein (CNBP) plays an essential role in forebrain and craniofacial development by controlling cell proliferation and survival to mediate neural crest expansion. CNBP binds to single-stranded nucleic acids and displays nucleic acid chaperone activity in vitro. The CNBP family shows a conserved modular organization of seven Zn knuckles and an arginine-glycine-glycine (RGG) box between the first and second Zn knuckles. The participation of these structural motifs in CNBP biochemical activities has still not been addressed. Here, we describe the generation of CNBP mutants that dissect the protein into regions with structurally and functionally distinct properties. Mutagenesis approaches were followed to generate: (i) an amino acid replacement that disrupted the fifth Zn knuckle; (ii) N-terminal deletions that removed the first Zn knuckle and the RGG box, or the RGG box alone; and (iii) a C-terminal deletion that eliminated the three last Zn knuckles. Mutant proteins were overexpressed in Escherichia coli, purified, and used to analyze their biochemical features in vitro, or overexpressed in Xenopus laevis embryos to study their function in vivo during neural crest cell development. We found that the Zn knuckles are required, but not individually essential, for CNBP biochemical activities, whereas the RGG box is essential for RNA-protein binding and nucleic acid chaperone activity. Removal of the RGG box allowed CNBP to preserve a weak single-stranded-DNA-binding capability. A mutant mimicking the natural N-terminal proteolytic CNBP form behaved as the RGG-deleted mutant. By gain-of-function and loss-of-function experiments in Xenopus embryos, we confirmed the participation of CNBP in neural crest development, and we demonstrated that the CNBP mutants lacking the N-terminal region or the RGG box alone may act as dominant negatives in vivo. Based on these data, we speculate about the existence of a specific proteolytic mechanism for the regulation of CNBP biochemical activities during neural crest development.
TRF2 and the evolution of the bilateria
Duttke, Sascha H.C.; Doolittle, Russell F.; Wang, Yuan-Liang
2014-01-01
The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as “system factors” that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria. PMID:25274724
Era of faster FDA drug approval has also seen increased black-box warnings and market withdrawals.
Frank, Cassie; Himmelstein, David U; Woolhandler, Steffie; Bor, David H; Wolfe, Sidney M; Heymann, Orlaith; Zallman, Leah; Lasser, Karen E
2014-08-01
After approval, many prescription medications that patients rely on subsequently receive new black-box warnings or are withdrawn from the market because of safety concerns. We examined whether the frequency of these safety problems has increased since 1992, when the Prescription Drug User Fee Act, legislation designed to accelerate the drug approval process at the Food and Drug Administration, was passed. We found that drugs approved after the act's passage were more likely to receive a new black-box warning or be withdrawn than drugs approved before its passage (26.7 per 100.0 drugs versus 21.2 per 100.0 drugs at up to sixteen years of follow-up). We could not establish causality, however. Our findings suggest the need for reforms to reduce patients' exposure to unsafe drugs, such as a statement or symbol in the labeling, medication guides for patients, and marketing materials indicating that a drug was approved only recently. Project HOPE—The People-to-People Health Foundation, Inc.
F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana
Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke
2017-01-01
F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. PMID:28340173
Yan, Long; Li, Yue; Shi, Zixiao; Lu, Xiaoyin; Ma, Jiao; Hu, Baoyang; Jiao, Jianwei; Wang, Hongmei
2017-08-04
The zinc finger E-box-binding transcription factor Zeb1 plays a pivotal role in the epithelial-mesenchymal transition. Numerous studies have focused on the molecular mechanisms by which Zeb1 contributes to this process. However, the functions of Zeb1 beyond the epithelial-mesenchymal transition remain largely elusive. Using a transdifferentiation system to convert mouse embryonic fibroblasts (MEFs) into functional neurons via the neuronal transcription factors achaete-scute family bHLH (basic helix-loop-helix) transcription factor1 ( Ascl1 ), POU class 3 homeobox 2 (POU3F2/ Brn2 ), and neurogenin 2 (Neurog2, Ngn2 ) (ABN), we found that Zeb1 was up-regulated during the early stages of transdifferentiation. Knocking down Zeb1 dramatically attenuated the transdifferentiation efficiency, whereas Zeb1 overexpression obviously increased the efficiency of transdifferentiation from MEFs to neurons. Interestingly, Zeb1 improved the transdifferentiation efficiency induced by even a single transcription factor ( e.g. Asc1 or Ngn2 ). Zeb1 also rapidly promoted the maturation of induced neuron cells to functional neurons and improved the formation of neuronal patterns and electrophysiological characteristics. Induced neuron cells could form functional synapse in vivo after transplantation. Genome-wide RNA arrays showed that Zeb1 overexpression up-regulated the expression of neuron-specific genes and down-regulated the expression of epithelial-specific genes during conversion. Taken together, our results reveal a new role for Zeb1 in the transdifferentiation of MEFs into neurons. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Azamat, Jafar; Sattary, Batoul Shirforush; Khataee, Alireza; Joo, Sang Woo
2015-09-01
A computer simulation was performed to investigate the removal of Zn(2+) as a heavy metal from aqueous solution using the functionalized pore of a graphene nanosheet and boron nitride nanosheet (BNNS). The simulated systems were comprised of a graphene nanosheet or BNNS with a functionalized pore containing an aqueous ionic solution of zinc chloride. In order to remove heavy metal from an aqueous solution using the functionalized pore of a graphene nanosheet and BNNS, an external voltage was applied along the z-axis of the simulated box. For the selective removal of zinc ions, the pores of graphene and BNNS were functionalized by passivating each atom at the pore edge with appropriate atoms. For complete analysis systems, we calculated the potential of the mean force of ions, the radial distribution function of ion-water, the residence time of ions, the hydrogen bond, and the autocorrelation function of the hydrogen bond. Copyright © 2015 Elsevier Inc. All rights reserved.
Zinc exposure for female workers in a galvanizing plant in Northern Italy.
Riccò, Matteo; Cattani, Silvia; Signorelli, Carlo
2018-01-01
Very little is known regarding the toxicokinetics of inhaled zinc, in particular in the case of female workers and for modern, low exposure settings. Our aim is to evaluate the relationship of external zinc levels to those of serum and urine for female workers. Eleven female workers (age: 41.7±8 years old, body mass index (BMI): 23.5±4.2 kg/m2) in a galvanizing plant were investigated. Exposure assessment consisted of personal/environmental air samples, and measurement of zinc in serum (collected at the end of first shift of the working week (T1)) and urine, collected before the first shift of the working week (T0), T1 and at the end of the last shift of the working week (T2). Both environmental and personal air samplings for zinc and zinc compounds were below the recommended by the German Research Foundation (Deutsche Forschungsgemeinschaft - DFG) limit values of 2 mg/m3 (7.34±2.8 μg/m3 and 8.31±2.4 μg/ m3, respectively). Serum (118.6±20.9 μg /dl) and urine zinc levels were within reference values for female Italian subjects: the latter increased from 56.4±33.5 μg/dl at T0, to 59.8±37.0 μg/dl at T1, and ultimately 65.4±34.4 μg/dl at T2, but no significant trend was found. End of shift (Spearman's correlation coefficient p value = 0.027) and differential excretion of urinary zinc (both: T0 vs. T1 and T0 vs. T2) were correlated with airborne zinc concentration (p = 0.002 and 0.006, respectively). In general, our data suggests that urine may be a useful medium also for female in order to assess zinc exposure. Further studies are required in order to evaluate whether differential excretion may be useful for the biomonitoring of zinc exposure in the workplaces also for male workers. Int J Occup Med Environ Health 2018;31(1):113-124. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.
Cheng, Hongtao; Hao, Mengyu; Wang, Wenxiang; Mei, Desheng; Tong, Chaobo; Wang, Hui; Liu, Jia; Fu, Li; Hu, Qiong
2016-09-08
SBP-box genes belong to one of the largest families of transcription factors. Though members of this family have been characterized to be important regulators of diverse biological processes, information of SBP-box genes in the third most important oilseed crop Brassica napus is largely undefined. In the present study, by whole genome bioinformatics analysis and transcriptional profiling, 58 putative members of SBP-box gene family in oilseed rape (Brassica napus L.) were identified and their expression pattern in different tissues as well as possible interaction with miRNAs were analyzed. In addition, B. napus lines with contrasting branch angle were used for investigating the involvement of SBP-box genes in plant architecture regulation. Detailed gene information, including genomic organization, structural feature, conserved domain and phylogenetic relationship of the genes were systematically characterized. By phylogenetic analysis, BnaSBP proteins were classified into eight distinct groups representing the clear orthologous relationships to their family members in Arabidopsis and rice. Expression analysis in twelve tissues including vegetative and reproductive organs showed different expression patterns among the SBP-box genes and a number of the genes exhibit tissue specific expression, indicating their diverse functions involved in the developmental process. Forty-four SBP-box genes were ascertained to contain the putative miR156 binding site, with 30 and 14 of the genes targeted by miR156 at the coding and 3'UTR region, respectively. Relative expression level of miR156 is varied across tissues. Different expression pattern of some BnaSBP genes and the negative correlation of transcription levels between miR156 and its target BnaSBP gene were observed in lines with different branch angle. Taken together, this study represents the first systematic analysis of the SBP-box gene family in Brassica napus. The data presented here provides base foundation for understanding the crucial roles of BnaSBP genes in plant development and other biological processes.
ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. | Office of Cancer Genomics
Increased expression of zinc finger E-box binding homeobox 1 (ZEB1) is associated with tumor grade and metastasis in lung cancer, likely due to its role as a transcription factor in epithelial-to-mesenchymal transition (EMT). Here, we modeled malignant transformation in human bronchial epithelial cells (HBECs) and determined that EMT and ZEB1 expression are early, critical events in lung cancer pathogenesis. Specific oncogenic mutations in TP53 and KRAS were required for HBECs to engage EMT machinery in response to microenvironmental (serum/TGF-β) or oncogenetic (MYC) factors.
NASA Astrophysics Data System (ADS)
Liu, Yu-Rong; Zhao, Gao-Wei; Lai, Pai-To; Yao, Ruo-He
2016-08-01
Si-doped zinc oxide (SZO) thin films are deposited by using a co-sputtering method, and used as the channel active layers of ZnO-based TFTs with single and dual active layer structures. The effects of silicon content on the optical transmittance of the SZO thin film and electrical properties of the SZO TFT are investigated. Moreover, the electrical performances and bias-stress stabilities of the single- and dual-active-layer TFTs are investigated and compared to reveal the effects of the Si doping and dual-active-layer structure. The average transmittances of all the SZO films are about 90% in the visible light region of 400 nm-800 nm, and the optical band gap of the SZO film gradually increases with increasing Si content. The Si-doping can effectively suppress the grain growth of ZnO, revealed by atomic force microscope analysis. Compared with that of the undoped ZnO TFT, the off-state current of the SZO TFT is reduced by more than two orders of magnitude and it is 1.5 × 10-12 A, and thus the on/off current ratio is increased by more than two orders of magnitude. In summary, the SZO/ZnO TFT with dual-active-layer structure exhibits a high on/off current ratio of 4.0 × 106 and superior stability under gate-bias and drain-bias stress. Projected supported by the National Natural Science Foundation of China (Grant Nos. 61076113 and 61274085), the Natural Science Foundation of Guangdong Province (Grant No. 2016A030313474), and the University Development Fund (Nanotechnology Research Institute, Grant No. 00600009) of the University of Hong Kong, China.
Carrier behavior of HgTe under high pressure revealed by Hall effect measurement
NASA Astrophysics Data System (ADS)
Hu, Ting-Jing; Cui, Xiao-Yan; Li, Xue-Fei; Wang, Jing-Shu; Lv, Xiu-Mei; Wang, Ling-Sheng; Yang, Jing-Hai; Gao, Chun-Xiao
2015-11-01
We investigate the carrier behavior of HgTe under high pressures up to 23 GPa using in situ Hall effect measurements. As the phase transitions from zinc blende to cinnabar, then to rock salt, and finally to Cmcm occur, all the parameters change discontinuously. The conductivity variation under compression is described by the carrier parameters. For the zinc blende phase, both the decrease of carrier concentration and the increase of mobility indicate the overlapped valence band and conduction band separates with pressure. Pressure causes an increase in the hole concentration of HgTe in the cinnabar phase, which leads to the carrier-type inversion and the lowest mobility at 5.6 GPa. In the phase transition process from zinc blende to rock salt, Te atoms are the major ones in atomic movements in the pressure regions of 1.0-1.5 GPa and 1.8-3.1 GPa, whereas Hg atoms are the major ones in the pressure regions of 1.5-1.8 GPa and 3.1-7.7 GPa. The polar optical scattering of the rock salt phase decreases with pressure. Project supported by the National Basic Research Program of China (Grant No. 2011CB808204), the National Natural Science Foundation of China (Grant Nos. 11374121, 51441006, and 51479220), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11404137), the Program for the Development of Science and Technology of Jilin province, China (Grant Nos. 201201079 and 201215222), the Twentieth Five-Year Program for Science and Technology of Education Department of Jilin Province, China (Grant No. 0520306), and the Open Project Program of State Key Laboratory of Superhard Materials of China (Grant No. 201208).
Jeon, Bu-Nam; Yoo, Jung-Yoon; Choi, Won-Il; Lee, Choong-Eun; Yoon, Ho-Geun; Hur, Man-Wook
2008-01-01
FBI-1 (also called Pokemon/ZBTB7A) is a BTB/POZ-domain Krüppel-like zinc-finger transcription factor. Recently, FBI-1 was characterized as a proto-oncogenic protein, which represses tumor suppressor ARF gene transcription. The expression of FBI-1 is increased in many cancer tissues. We found that FBI-1 potently represses transcription of the Rb gene, a tumor suppressor gene important in cell cycle arrest. FBI-1 binds to four GC-rich promoter elements (FREs) located at bp –308 to –188 of the Rb promoter region. The Rb promoter also contains two Sp1 binding sites: GC-box 1 (bp –65 to –56) and GC-box 2 (bp –18 to –9), the latter of which is also bound by FBI-1. We found that FRE3 (bp –244 to –236) is also a Sp1 binding element. FBI-1 represses transcription of the Rb gene not only by binding to the FREs, but also by competing with Sp1 at the GC-box 2 and the FRE3. By binding to the FREs and/or the GC-box, FBI-1 represses transcription of the Rb gene through its POZ-domain, which recruits a co-repressor-histone deacetylase complex and deacetylates histones H3 and H4 at the Rb gene promoter. FBI-1 inhibits C2C12 myoblast cell differentiation by repressing Rb gene expression. PMID:18801742
Evans, C E L; Greenwood, D C; Thomas, J D; Cleghorn, C L; Kitchen, M S; Cade, J E
2010-11-01
Government standards are now in place for children's school meals but not for lunches prepared at home. The aim of this trial is to improve the content of children's packed lunches. A cluster randomised controlled trial in 89 primary schools across the UK involving 1291 children, age 8-9 years at baseline. Follow-up was 12 months after baseline. A "SMART" lunch box intervention programme consisted of food boxes, bag and supporting materials. The main outcome measures were weights of foods and proportion of children provided with sandwiches, fruit, vegetables, dairy food, savoury snacks and confectionery in each packed lunch. Levels of nutrients provided including energy, total fat, saturated fat, protein, non-milk extrinsic sugar, sodium, calcium, iron, folate, zinc, vitamin A and vitamin C. Moderately higher weights of fruit, vegetables, dairy and starchy food and lower weights of savoury snacks were provided to children in the intervention group. Children in the intervention group were provided with slightly higher levels of vitamin A and folate. 11% more children were provided with vegetables/salad in their packed lunch, and 13% fewer children were provided with savoury snacks (crisps). Children in the intervention group were more likely to be provided with packed lunches meeting the government school meal standards. The SMART lunch box intervention, targeting parents and children, led to small improvements in the food and nutrient content of children's packed lunches. Further interventions are required to bring packed lunches in line with the new government standards for school meals. Current controlled trials ISRCTN77710993.
NASA Astrophysics Data System (ADS)
Li, Xin; Zhou, Wei-Man; Liu, Wei-Hua; Wang, Xiao-Li
2015-05-01
Field emission properties of zinc oxide (ZnO) nanoparticles (NPs) decorated carbon nanotubes (CNTs) are investigated experimentally and theoretically. CNTs are in situ decorated with ZnO NPs during the growth process by chemical vapor deposition using a carbon source from the iron phthalocyanine pyrolysis. The experimental field emission test shows that the ZnO NP decoration significantly improves the emission current from 50 μA to 275 μA at 550 V and the reduced threshold voltage from 450 V to 350 V. The field emission mechanism of ZnO NPs on CNTs is theoretically studied by the density functional theory (DFT) combined with the Penn-Plummer method. The ZnO NPs reconstruct the ZnO-CNT structure and pull down the surface barrier of the entire emitter system to 0.49 eV so as to reduce the threshold electric field. The simulation results suggest that the presence of ZnO NPs would increase the LDOS near the Fermi level and increase the emission current. The calculation results are consistent with the experiment results. Project supported by the National Natural Science Foundation of China (Grant Nos. 91123018, 61172040, and 61172041) and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2014JM7277).
The Carnegie Quick Deploy Box (QDB) for use with broadband and intermediate period sensors
NASA Astrophysics Data System (ADS)
Wagner, L. S.; Roman, D.; Bartholomew, T.; Golden, S.; Schleigh, B.
2017-12-01
Recent data processing advances have increased the call for dense recordings of teleseismic data. However, traditional broadband field installations typically comprise 1) a sensor vault 2) a field box to hold the recording and power systems, and 3) a solar panel mount. The construction of these installations is time consuming and requires bulky construction materials, limiting the number of stations that can be installed from a single vehicle without repeated trips to a storage facility. Depending on the deployment location, watertight containers for both vault and field box can be difficult to find, resulting in a loss of data due to flooding. Recent technological improvements have made possible the direct burial of sensors (no vault required) and a reduction in the size of the solar panels needed to run a station. With support from the Brinson Foundation, we take advantage of these advances to create a field box/shipping container that will greatly simplify these types of seismic deployments. The goal of the Carnegie Quick Deploy Box (QDB) is to have everything needed for an intermediate period station install (except battery and shovel) contained in a single box for shipment, and to be able to leave everything (except the shovel) in that box when the station is deployed. The box is small enough ( 13"x13"x21") and lightweight enough (< 35 lbs) to be checked as airline luggage. The solar panel mount can be attached securely to the top of the box, but it can also be pole mounted with U-bolts or hose clamps. The sensor can be direct-buried. The sensor cable and solar panel cable plug into watertight bulkhead-fitted plugs on the outside of the box that are in turn plugged into the digitizer and power regulator inside the box. Our prototype boxes (Pelican Cases) have proved watertight when submerged for days. This equipment has been tested in Alaska in winter and Nicaragua in summer without failure due to flooding or power. The cost for parts for a single box (not including sensor cable, sensor, or digitizer) is $500. The setup is simple, and can be completed in a matter of minutes once the sensor is installed. QDBs such as ours will make possible a dramatic increase in the number of stations that can be installed, while also significantly decreasing the cost of deployment per station by reducing vehicle time, fuel, personnel time, and shipping costs.
F-Box Protein FBX92 Affects Leaf Size in Arabidopsis thaliana.
Baute, Joke; Polyn, Stefanie; De Block, Jolien; Blomme, Jonas; Van Lijsebettens, Mieke; Inzé, Dirk
2017-05-01
F-box proteins are part of one of the largest families of regulatory proteins that play important roles in protein degradation. In plants, F-box proteins are functionally very diverse, and only a small subset has been characterized in detail. Here, we identified a novel F-box protein FBX92 as a repressor of leaf growth in Arabidopsis. Overexpression of AtFBX92 resulted in plants with smaller leaves than the wild type, whereas plants with reduced levels of AtFBX92 showed, in contrast, increased leaf growth by stimulating cell proliferation. Detailed cellular analysis suggested that AtFBX92 specifically affects the rate of cell division during early leaf development. This is supported by the increased expression levels of several cell cycle genes in plants with reduced AtFBX92 levels. Surprisingly, overexpression of the maize homologous gene ZmFBX92 in maize had no effect on plant growth, whereas ectopic expression in Arabidopsis increased leaf growth. Expression of a truncated form of AtFBX92 showed that the contrasting effects of ZmFBX92 and AtFBX92 gain of function in Arabidopsis are due to the absence of the F-box-associated domain in the ZmFBX92 gene. Our work reveals an additional player in the complex network that determines leaf size and lays the foundation for identifying putative substrates. © The Author 2017. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists.
1988-03-01
29 Statistical Machine Learning for the Cognitive Selection of Nonlinear Programming Algorithms in Engineering Design Optimization Toward...interpolation and Interpolation by Box Spline Surfaces Charles K. Chui, Harvey Diamond, Louise A. Raphael. 301 Knot Selection for Least Squares...West Virginia University, Morgantown, West Virginia; and Louise Raphael, National Science Foundation, Washington, DC Knot Selection for Least
EAST ELEVATION OF LOWER TRAM TERMINAL, LOOKING NORTHWEST. TRAM CARS ...
EAST ELEVATION OF LOWER TRAM TERMINAL, LOOKING NORTHWEST. TRAM CARS ENTERED AND EXITED FROM RIGHT,AND DUMPED INTO THE ORE BIN SEEN AT LOWER LEFT. BELOW THE ORE BIN IS A JAW CRUSHER FOUNDATION. THE WOODEN BOX AT CENTER IS FILLED WITH ROCKS, PROVIDING THE COUNTERWEIGHT TO THE TRAMWAY CABLE, WHICH KEEPS IT TAUGHT. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
Effects of ZEB1 on regulating osteosarcoma cells via NF-κB/iNOS.
Xu, X-M; Liu, W; Cao, Z-H; Liu, M-X
2017-03-01
Osteosarcoma is one common malignant bone tumors, as it frequently has invasion, metastasis and recurrence, causing unfavorable prognosis of patients. Osteosarcoma has complicated pathogenesis, which has not been elucidated fully. Therefore, the identification of effective molecular target of osteosarcoma onset can help to improve treatment efficacy and prognosis of osteosarcoma. Zinc finger E-box binding homeobox 1 (ZEB1) protein is one member of zinc finger E-box binding protein family, and participates in embryonic genesis and development. A recent study found the participation of ZEB1 in mediating multiple tumor onset and its up-regulation of osteosarcoma. The regulatory mechanism of ZEB1 in osteosarcoma has not been illustrated yet. In vitro cultured osteosarcoma MG-63 cells were transfected with ZEB1 siRNA. Real-time PCR and Western blot were tested for ZEB1 mRNA/protein expression. MTT was used to test MG-63 cell proliferation, whilst cell invasion was used to describe the effect of ZEB1 on MG-63 cells. Caspase-3 activity assay was employed to test MG-63 cell apoptosis. Western blot was employed to detect nuclear factor kappa B (NF-kB) and inducible nitric oxide synthase (iNOS) protein expression. After transfecting with ZEB1 siRNA, MG-63 cell proliferation or invasion was inhibited accompanied with lower ZEB1 mRNA/protein expression. Caspase3 activity was also increased after transfection (p < 0.05), along with down-regulation of NF-kB and iNOS proteins in MG-63 cells (p < 0.05). Inhibition of ZEB1 can facilitate osteosarcoma cell apoptosis and inhibit cell proliferation or invasion via down-regulating NF-kB/iNOS signal pathway.
Effects of the computational domain on the secondary flow in turbulent plane Couette flow
NASA Astrophysics Data System (ADS)
Gai, Jie; Xia, Zhen-Hua; Cai, Qing-Dong
2015-10-01
A series of direct numerical simulations of the fully developed plane Couette flow at a Reynolds number of 6000 (based on the relative wall speed and half the channel height h) with different streamwise and spanwise lengths are conducted to investigate the effects of the computational box sizes on the secondary flow (SF). Our focuses are the number of counter-rotating vortex pairs and its relationship to the statistics of the mean flow and the SF in the small and moderate computational box sizes. Our results show that the number of vortex pairs is sensitive to the computational box size, and so are the slope parameter, the rate of the turbulent kinetic energy contributed by the SF, and the ratio of the kinetic energy of the SF to the total kinetic energy. However, the averaged spanwise width of each counter-rotating vortex pair in the plane Couette flow is found, for the first time, within 4(1 ± 0.25)h despite the domain sizes. Project supported by the National Natural Science Foundation of China (Grant Nos. 11221061, 11272013, and 11302006).
TRF2 and the evolution of the bilateria.
Duttke, Sascha H C; Doolittle, Russell F; Wang, Yuan-Liang; Kadonaga, James T
2014-10-01
The development of a complex body plan requires a diversity of regulatory networks. Here we consider the concept of TATA-box-binding protein (TBP) family proteins as "system factors" that each supports a distinct set of transcriptional programs. For instance, TBP activates TATA-box-dependent core promoters, whereas TBP-related factor 2 (TRF2) activates TATA-less core promoters that are dependent on a TCT or downstream core promoter element (DPE) motif. These findings led us to investigate the evolution of TRF2. TBP occurs in Archaea and eukaryotes, but TRF2 evolved prior to the emergence of the bilateria and subsequent to the evolutionary split between bilaterians and nonbilaterian animals. Unlike TBP, TRF2 does not bind to the TATA box and could thus function as a new system factor that is largely independent of TBP. We postulate that this TRF2-based system served as the foundation for new transcriptional programs, such as those involved in triploblasty and body plan development, that facilitated the evolution of bilateria. © 2014 Duttke et al.; Published by Cold Spring Harbor Laboratory Press.
Historic Tsunami in the Indian Ocean
NASA Astrophysics Data System (ADS)
Dominey-Howes, D.; Cummins, P. R.; Burbidge, D.
2005-12-01
The 2004 Boxing Day Tsunami dramatically highlighted the need for a better understanding of the tsunami hazard in the Indian Ocean. One of the most important foundations on which to base such an assessment is knowledge of tsunami that have affected the region in the historical past. We present a summary of the previously published catalog of Indian Ocean tsunami and the results of a preliminary search of archival material held at the India Records Office at the British Library in London. We demonstrate that in some cases, normal tidal movements and floods associated with tropical cyclones have been erroneously listed as tsunami. We summarise interesting archival material for tsunami that occurred in 1945, 1941, 1881, 1819, 1762 and a tsunami in 1843 not previously identified or reported. We also note the recent discovery, by a Canadian team during a post-tsunami survey following the 2004 Boxing Day Tsunami, of archival evidence that the Great Sumatra Earthquake of 1833 generated a teletsunami. Open ocean wave heights are calculated for some of the historical tsunami and compared with those of the Boxing Day Tsunami.
High rate dry etching of InGaZnO by BCl3/O2 plasma
NASA Astrophysics Data System (ADS)
Park, Wanjae; Whang, Ki-Woong; Gwang Yoon, Young; Hwan Kim, Jeong; Rha, Sang-Ho; Seong Hwang, Cheol
2011-08-01
This paper reports the results of the high-rate dry etching of indium gallium zinc oxide (IGZO) at room temperature using BCl3/O2 plasma. We achieved an etch rate of 250 nm/min. We inferred from the x-ray photoelectron spectroscopy analysis that BOx or BOClx radicals generated from BCl3/O2 plasma cause the etching of the IGZO material. O2 initiates the etching of IGZO, and Ar removes nonvolatile byproducts from the surface during the etching process. Consequently, a smooth etched surface results when these gases are added to the etch gas.
Oncogenes Activate an Autonomous Transcriptional Regulatory Circuit That Drives Glioblastoma.
Singh, Dinesh K; Kollipara, Rahul K; Vemireddy, Vamsidara; Yang, Xiao-Li; Sun, Yuxiao; Regmi, Nanda; Klingler, Stefan; Hatanpaa, Kimmo J; Raisanen, Jack; Cho, Steve K; Sirasanagandla, Shyam; Nannepaga, Suraj; Piccirillo, Sara; Mashimo, Tomoyuki; Wang, Shan; Humphries, Caroline G; Mickey, Bruce; Maher, Elizabeth A; Zheng, Hongwu; Kim, Ryung S; Kittler, Ralf; Bachoo, Robert M
2017-01-24
Efforts to identify and target glioblastoma (GBM) drivers have primarily focused on receptor tyrosine kinases (RTKs). Clinical benefits, however, have been elusive. Here, we identify an SRY-related box 2 (SOX2) transcriptional regulatory network that is independent of upstream RTKs and capable of driving glioma-initiating cells. We identified oligodendrocyte lineage transcription factor 2 (OLIG2) and zinc-finger E-box binding homeobox 1 (ZEB1), which are frequently co-expressed irrespective of driver mutations, as potential SOX2 targets. In murine glioma models, we show that different combinations of tumor suppressor and oncogene mutations can activate Sox2, Olig2, and Zeb1 expression. We demonstrate that ectopic co-expression of the three transcription factors can transform tumor-suppressor-deficient astrocytes into glioma-initiating cells in the absence of an upstream RTK oncogene. Finally, we demonstrate that the transcriptional inhibitor mithramycin downregulates SOX2 and its target genes, resulting in markedly reduced proliferation of GBM cells in vivo. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Clinical and genetic investigation of families with type II Waardenburg syndrome.
Chen, Yong; Yang, Fuwei; Zheng, Hexin; Zhou, Jianda; Zhu, Ganghua; Hu, Peng; Wu, Weijing
2016-03-01
The present study aimed to investigate the molecular pathology of Waardenburg syndrome type II in three families, in order to provide genetic diagnosis and hereditary counseling for family members. Relevant clinical examinations were conducted on the probands of the three pedigrees. Peripheral blood samples of the probands and related family members were collected and genomic DNA was extracted. The coding sequences of paired box 3 (PAX3), microphthalmia‑associated transcription factor (MITF), sex‑determining region Y‑box 10 (SOX10) and snail family zinc finger 2 (SNAI2) were analyzed by polymerase chain reaction and DNA sequencing. The heterozygous mutation, c.649_651delAGA in exon 7 of the MITF gene was detected in the proband and all patients of pedigree 1; however, no pathological mutation of the relevant genes (MITF, SNAI2, SOX10 or PAX3) was detected in pedigrees 2 and 3. The heterozygous mutation c.649_651delAGA in exon 7 of the MITF gene is therefore considered the disease‑causing mutation in pedigree 1. However, there are novel disease‑causing genes in Waardenburg syndrome type II, which require further research.
NASA Astrophysics Data System (ADS)
Millet, Charlyne; Oget, David; Cavallucci, Denis
2017-11-01
Innovation is a key component to the success and longevity of companies. Our research opens the 'black box' of creativity and innovation in R&D teams. We argue that understanding the nature of R&D projects in terms of creativity/innovation, efficiency/inefficiency, is important for designing education policies and improving engineering curriculum. Our research addresses the inventive design process, a lesser known aspect of the innovation process, in 197 R&D departments of industrial sector companies in France. One fundamental issue facing companies is to evaluate processes and results of innovation. Results show that the evaluation of innovation is confined by a lack of methodology of inventive projects. We will be establishing the foundations of a formal ontology for inventive design projects and finally some recommendations for engineering education.
Are Brazilian Behavior Analysts Publishing Outside the Box? A Survey of General Science Media.
Dal Ben, Rodrigo; Calixto, Fernanda Castanho; Ferreira, André Luiz
2017-09-01
Recent studies have stressed the importance of disseminating behavior analysis to a more diverse audience and have provided ways to do so effectively. General science publications offer an attractive venue for communicating with a scientifically educated public. The present study examines behavior analysis research published in Science Today and Research Fapesp , monthly general science publications published by the Brazilian Society for the Advancement of Science and São Paulo Research Foundation, respectively. Behavior analytic terms were searched in issues published from 2003 to 2014, along with psychoanalytic terms as a comparative measure. Only 13 behavior analysis articles were found, while psychoanalytic articles totaled 150. Six of the behavior analysis articles misconstrue fundamental concepts of behavior analysis. The study recommends that behavior analysis researchers extend the dissemination of their findings outside the box.
Hou, Hongmin; Yan, Xiaoxiao; Sha, Ting; Yan, Qin; Wang, Xiping
2017-07-13
Flowering occurs in angiosperms during a major developmental transition from vegetative growth to the reproductive phase. Squamosa promoter binding protein (SBP)-box genes have been found to play critical roles in regulating flower and fruit development, but their roles in grapevine have remained unclear. To better understand the functions of the grape SBP-box genes in both vegetative and reproductive growth phases, a full-length complementary DNA (cDNA) sequence of the putative SBP-box transcription factor gene, VpSBP11 , was obtained from Chinese wild grapevine Vitis pseudoreticulata Wen Tsai Wang (W. T. Wang) clone 'Baihe-35-1'. VpSBP11 encoded a putative polypeptide of 170 amino acids with a highly conserved SBP-domain with two zinc-binding sites of the Cx2C-x3-H-x11-C-x6-H (C2HCH) type and a nuclear localization signal. We confirmed that the VpSBP11 protein was targeted to the nucleus and possessed transcriptional activation activity by subcellular localization and trans -activation assay. Over-expression of VpSBP11 in Arabidopsis thaliana was shown to activate the FUL gene, and subsequently the AP1 and LFY genes, all of which were floral meristem identity genes, and to cause earlier flowering than in wild type (WT) plants. The pattern of vegetative growth was also different between the transgenic and WT plants. For example, in the VpSBP11 over-expressing transgenic plants, the number of rosette leaves was less than that of WT; the petiole was significantly elongated; and the rosette and cauline leaves curled upwards or downwards. These results were consistent with VpSBP11 acting as a transcription factor during the transition from the vegetative stage to the reproductive stage.
Wang, Runze; Ming, Meiling; Li, Jiaming; Shi, Dongqing; Qiao, Xin; Li, Leiting; Zhang, Shaoling; Wu, Jun
2017-01-01
MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear ( Pyrus ), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear.
Li, Jiaming; Shi, Dongqing; Qiao, Xin; Li, Leiting; Zhang, Shaoling
2017-01-01
MADS-box transcription factors play significant roles in plant developmental processes such as floral organ conformation, flowering time, and fruit development. Pear (Pyrus), as the third-most crucial temperate fruit crop, has been fully sequenced. However, there is limited information about the MADS family and its functional divergence in pear. In this study, a total of 95 MADS-box genes were identified in the pear genome, and classified into two types by phylogenetic analysis. Type I MADS-box genes were divided into three subfamilies and type II genes into 14 subfamilies. Synteny analysis suggested that whole-genome duplications have played key roles in the expansion of the MADS family, followed by rearrangement events. Purifying selection was the primary force driving MADS-box gene evolution in pear, and one gene pairs presented three codon sites under positive selection. Full-scale expression information for PbrMADS genes in vegetative and reproductive organs was provided and proved by transcriptional and reverse transcription PCR analysis. Furthermore, the PbrMADS11(12) gene, together with partners PbMYB10 and PbbHLH3 was confirmed to activate the promoters of the structural genes in anthocyanin pathway of red pear through dual luciferase assay. In addition, the PbrMADS11 and PbrMADS12 were deduced involving in the regulation of anthocyanin synthesis response to light and temperature changes. These results provide a solid foundation for future functional analysis of PbrMADS genes in different biological processes, especially of pigmentation in pear. PMID:28924499
Contrafreeloading in grizzly bears: implications for captive foraging enrichment.
McGowan, Ragen T S; Robbins, Charles T; Alldredge, J Richard; Newberry, Ruth C
2010-01-01
Although traditional feeding regimens for captive animals were focused on meeting physiological needs to assure good health, more recently emphasis has also been placed on non-nutritive aspects of feeding. The provision of foraging materials to diversify feeding behavior is a common practice in zoos but selective consumption of foraging enrichment items over more balanced "chow" diets could lead to nutrient imbalance. One alternative is to provide balanced diets in a contrafreeloading paradigm. Contrafreeloading occurs when animals choose resources that require effort to exploit when identical resources are freely available. To investigate contrafreeloading and its potential as a theoretical foundation for foraging enrichment, we conducted two experiments with captive grizzly bears (Ursus arctos horribilis). In Experiment 1, bears were presented with five foraging choices simultaneously: apples, apples in ice, salmon, salmon in ice, and plain ice under two levels of food restriction. Two measures of contrafreeloading were considered: weight of earned food consumed and time spent working for earned food. More free than earned food was eaten, with only two bears consuming food extracted from ice, but all bears spent more time manipulating ice containing salmon or apples than plain ice regardless of level of food restriction. In Experiment 2, food-restricted bears were presented with three foraging choices simultaneously: apples, apples inside a box, and an empty box. Although they ate more free than earned food, five bears consumed food from boxes and all spent more time manipulating boxes containing apples than empty boxes. Our findings support the provision of contrafreeloading opportunities as a foraging enrichment strategy for captive wildlife. (c) 2009 Wiley-Liss, Inc.
Targeting Tumor Associated Phosphatidylserine with New Zinc Dipicolylamine-Based Drug Conjugates.
Liu, Yu-Wei; Shia, Kak-Shan; Wu, Chien-Huang; Liu, Kuan-Liang; Yeh, Yu-Cheng; Lo, Chen-Fu; Chen, Chiung-Tong; Chen, Yun-Yu; Yeh, Teng-Kuang; Chen, Wei-Han; Jan, Jiing-Jyh; Huang, Yu-Chen; Huang, Chen-Lung; Fang, Ming-Yu; Gray, Brian D; Pak, Koon Y; Hsu, Tsu-An; Huang, Kuan-Hsun; Tsou, Lun K
2017-07-19
A series of zinc(II) dipicolylamine (ZnDPA)-based drug conjugates have been synthesized to probe the potential of phosphatidylserine (PS) as a new antigen for small molecule drug conjugate (SMDC) development. Using in vitro cytotoxicity and plasma stability studies, PS-binding assay, in vivo pharmacokinetic studies, and maximum tolerated dose profiles, we provided a roadmap and the key parameters required for the development of the ZnDPA based drug conjugate. In particular, conjugate 24 induced tumor regression in the COLO 205 xenograft model and exhibited a more potent antitumor effect with a 70% reduction of cytotoxic payload compared to that of the marketed irinotecan when dosed at the same regimen. In addition to the validation of PS as an effective pharmacodelivery target for SMDC, our work also provided the foundation that, if applicable, a variety of therapeutic agents could be conjugated in the same manner to treat other PS-associated diseases.
Philosophical Foundations of Zwicky's Morphological Approach in Science
NASA Astrophysics Data System (ADS)
Rudnicki, Konrad
Fritz Zwicky as a conscious Goetheanist. Johann Wolfgang Goethe as a natural philosopher and methodologist. Goetheanist theory of knowledge — a theory essentially different from the theory of Kant, from which the contemporary concept of paradigms has originated. Pre-scientific character of theory of knowledge. The principal thought experiment. The role of thinking in Goetheanism. Fundamental phenomena. Morphological approach. The shape (µo ) of a problem. Morphological box. Individual hypothesis versus classes of hypotheses. Theory and reality.
Thermal Response Of An Aerated Concrete Wall With Micro-Encapsulated Phase Change Material
NASA Astrophysics Data System (ADS)
Halúzová, Dušana
2015-06-01
For many years Phase Change Materials (PCM) have attracted attention due to their ability to store large amounts of thermal energy. This property makes them a candidate for the use of passive heat storage. In many applications, they are used to avoid the overheating of the temperature of an indoor environment. This paper describes the behavior of phase change materials that are inbuilt in aerated concrete blocks. Two building samples of an aerated concrete wall were measured in laboratory equipment called "twin-boxes". The first box consists of a traditional aerated concrete wall; the second one has additional PCM micro-encapsulated in the wall. The heat flux through the wall was measured and compared to simulation results modeled in the ESP-r program. This experimental measurement provides a foundation for a model that can be used to analyze further building constructions.
Role of Forkhead Box Class O proteins in cancer progression and metastasis.
Kim, Chang Geun; Lee, Hyemin; Gupta, Nehal; Ramachandran, Sharavan; Kaushik, Itishree; Srivastava, Sangeeta; Kim, Sung-Hoon; Srivastava, Sanjay K
2018-06-01
It is now widely accepted that several gene alterations including transcription factors are critically involved in cancer progression and metastasis. Forkhead Box Class O proteins (FoxOs) including FoxO1/FKHR, FoxO3/FKHRL1, FoxO4/AFX and FoxO6 transcription factors are known to play key roles in proliferation, apoptosis, metastasis, cell metabolism, aging and cancer biology through their phosphorylation, ubiquitination, acetylation and methylation. Though FoxOs are proved to be mainly regulated by upstream phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3 K)/Akt signaling pathway, the role of FoxOs in cancer progression and metastasis still remains unclear so far. Thus, with previous experimental evidences, the present review discussed the role of FoxOs in association with metastasis related molecules including cannabinoid receptor 1 (CNR1), Cdc25A/Cdk2, Src, serum and glucocorticoid inducible kinases (SGKs), CXCR4, E-cadherin, annexin A8 (ANXA8), Zinc finger E-box-binding homeobox 2 (ZEB2), human epidermal growth factor receptor 2 (HER2) and mRNAs such as miR-182, miR-135b, miR-499-5p, miR-1274a, miR-150, miR-34b/c and miR-622, subsequently analyzed the molecular mechanism of some natural compounds targeting FoxOs and finally suggested future research directions in cancer progression and metastasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Wang, Jiawen; Zhang, Wenyan; Lv, Mingyu; Zuo, Tao; Kong, Wei; Yu, Xianghui
2011-12-01
Various feline APOBEC3 (fA3) proteins exhibit broad antiviral activities against a wide range of viruses, such as feline immunodeficiency virus (FIV), feline foamy virus (FFV), and feline leukemia virus (FeLV), as well as those of other species. This activity can be counteracted by the FIV Vif protein, but the mechanism by which FIV Vif suppresses fA3s is unknown. In the present study, we demonstrated that FIV Vif could act via a proteasome-dependent pathway to overcome fA3s. FIV Vif interacted with feline cellular proteins Cullin5 (Cul5), ElonginB, and ElonginC to form an E3 complex to induce degradation of fA3s. Both the dominant-negative Cul5 mutant and a C-terminal hydrophilic replacement ElonginC mutant potently disrupted the FIV Vif activity against fA3s. Furthermore, we identified a BC-box motif in FIV Vif that was essential for the recruitment of E3 ubiquitin ligase and also required for FIV Vif-mediated degradation of fA3s. Moreover, despite the lack of either a Cul5-box or a HCCH zinc-binding motif, FIV Vif specifically selected Cul5. Therefore, FIV Vif may interact with Cul5 via a novel mechanism. These finding imply that SOCS proteins may possess distinct mechanisms to bind Cul5 during formation of the Elongin-Cullin-SOCS box complex.
Kim, Jin-Soo
2016-09-01
Genome editing harnesses programmable nucleases to cut and paste genetic information in a targeted manner in living cells and organisms. Here, I review the development of programmable nucleases, including zinc finger nucleases (ZFNs), TAL (transcription-activator-like) effector nucleases (TALENs) and CRISPR (cluster of regularly interspaced palindromic repeats)-Cas9 (CRISPR-associated protein 9) RNA-guided endonucleases (RGENs). I specifically highlight the key advances that set the foundation for the rapid and widespread implementation of CRISPR-Cas9 genome editing approaches that has revolutionized the field.
Medical treatment of traumatic anosmia.
Jiang, Rong-San; Twu, Chih-Wen; Liang, Kai-Li
2015-05-01
To study the effects of zinc and steroid in the treatment of traumatic anosmia. A prospective, randomized study. Academic medical center. Patients with a clear history of loss of smell after head injury and whose thresholds were -1 measured by the phenyl ethyl alcohol threshold test were included in this study from January 2010 to May 2013. They were randomly divided into 4 groups. Patients in group 1 were treated with zinc gluconate for a month and high-dose prednisolone with tapering for 2 weeks. Those in group 2 took only zinc gluconate, and those in group 3 took only prednisolone. Patients in group 4 did not take any medicine. All patients were followed up by phenyl ethyl alcohol threshold testing, and magnetic resonance imaging was performed to measure the volume of olfactory bulbs. Thirty-nine patients in group 1, 35 in group 2, 34 in group 3, and 37 in group 4 completed the study. The recovery of olfactory function was observed in 11 patients (28.2%) in group 1, in 9 (25.7%) in group 2, in 4 (11.8%) in group 3, and in 1 (2.7%) in group 4. The recovery rates of olfactory function of groups 1 and 2 were significantly higher than the recovery rate of group 4. The volume of olfactory bulbs was not significantly different between those with and without improved olfactory function. Our results show that zinc gluconate has a promising effect in treating traumatic anosmia. © American Academy of Otolaryngology-Head and Neck Surgery Foundation 2015.
1991-08-01
a suspended man basket. All work, including Government investigations, was done from the man basket and in some instances from a boatswain’s chair...Teale, Somerton , etc.. The Enpasol recordings rely on the same basic principle. The Enpasol is a "black box" monitoring up to 8 drilling parameters...below, Kelly bar is center. Inspector being lowered into access shaft with a man basket. Note liner plates, left. Density test being taken in core
Zhang, Chong; Xiang, Tingxiu; Li, Shuman; Ye, Lin; Feng, Yixiao; Pei, Lijiao; Li, Lili; Wang, Xiangyu; Sun, Ran; Tao, Qian; Ren, Guosheng
2018-05-14
Zinc finger proteins (ZFPs) are the largest transcription factor family in mammals. About one-third of ZFPs are Krüppel-associated box domain (KRAB)-ZFPs and involved in the regulation of cell differentiation/proliferation/apoptosis and neoplastic transformation. We recently identified ZNF382 as a novel KRAB-ZFP epigenetically inactivated in multiple cancers due to frequent promoter CpG methylation. However, its epigenetic alterations, biological functions/mechanism and clinical significance in oesophageal squamous cell carcinoma (ESCC) are still unknown. Here, we demonstrate that ZNF382 expression was suppressed in ESCC due to aberrant promoter methylation, but highly expressed in normal oesophagus tissues. ZNF382 promoter methylation is correlated with ESCC differentiation levels. Restoration of ZNF382 expression in silenced ESCC cells suppressed tumour cell proliferation and metastasis through inducing cell apoptosis. Importantly, ZNF382 suppressed Wnt/β-catenin signalling and downstream target gene expression, likely through binding directly to FZD1 and DVL2 promoters. In summary, our findings demonstrate that ZNF382 functions as a bona fide tumour suppressor inhibiting ESCC pathogenesis through inhibiting the Wnt/β-catenin signalling pathway.
Effect of grit-blasting on substrate roughness and coating adhesion
NASA Astrophysics Data System (ADS)
Varacalle, Dominic J.; Guillen, Donna Post; Deason, Douglas M.; Rhodaberger, William; Sampson, Elliott
2006-09-01
Statistically designed experiments were performed to compare the surface roughness produced by grit blasting A36/1020 steel using different abrasives. Grit blast media, blast pressure, and working distance were varied using a Box-type statistical design of experiment (SDE) approach. The surface textures produced by four metal grits (HG16, HG18, HG25, and HG40) and three conventional grits (copper slag, coal slag, and chilled iron) were compared. Substrate roughness was measured using surface profilometry and correlated with operating parameters. The HG16 grit produced the highest surface roughness of all the grits tested. Aluminum and zinc-aluminum coatings were deposited on the grit-blasted substrates using the twin-wire electric are (TWEA) process. Bond strength of the coatings was measured with a portable adhesion tester in accordance with ASTM standard D 4541. The coatings on substrates roughened with steel grit exhibit superior bond strength to those prepared with conventional grit. For aluminum coatings sprayed onto surfaces prepared with the HG16 grit, the bond strength was most influenced by current, spray distance, and spray gun pressure (in that order). The highest bond strength for the zinc-aluminum coatings was attained on surfaces prepared using the metal grits.
Nishida, Tamotsu; Yamada, Yoshiji
2016-05-13
Parkin-interacting substrate (PARIS), a member of the family of Krüppel-associated box (KRAB)-containing zinc-finger transcription factors, is a substrate of the ubiquitin E3 ligase parkin. PARIS represses the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), although the underlying mechanisms remain largely unknown. In the present study, we demonstrate that PARIS can be SUMOylated, and its SUMOylation plays a role in the repression of PGC-1a promoter activity. Protein inhibitor of activated STAT y (PIASy) was identified as an interacting protein of PARIS and shown to enhance its SUMOylation. PIASy repressed PGC-1a promoter activity, and this effect was attenuated by PARIS in a manner dependent on its SUMOylation status. Co-expression of SUMO-1 with PIASy completely repressed PGC-1a promoter activity independently of PARIS expression. PARIS-mediated PGC-1a promoter repression depended on the activity of histone deacetylases (HDAC), whereas PIASy repressed the PGC-1a promoter in an HDAC-independent manner. Taken together, these results suggest that PARIS and PIASy modulate PGC-1a gene transcription through distinct molecular mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakouzi, Elias; Sultan, Rabih
Pattern formation in two-metal electrochemical deposition has been scarcely explored in the chemical literature. In this paper, we report new experiments on zinc-lead fractal co-deposition. Electrodeposits are grown in special cells at a fixed large value of the zinc ion concentration, while that of the lead ion is increased gradually. A very wide diversity of morphologies are obtained and classified. Most of the deposited domains are almost exclusively Pb or Zn. But certain regions originating at the base cathode, ranging from a short grass alley to dense, grown-up bushes or shrubs, manifest a combined Pb-Zn composition. Composition is determined usingmore » scanning electron microscopy/energy dispersive x ray measurements as well atomic absorption spectroscopy. Pb domains are characterized by shiny leaf-like and dense deposits as well as flowers with round, balloon-like corollas. The Zn zones display a greater variety of morphologies such as thick trunks and thin and fine branching, in addition to minute ''cigar flower'' structures. The various morphologies are analyzed and classified from the viewpoint of fractal nature, characterized by the box-count fractal dimension. Finally, macroscopic spatial alternation between two different characteristic morphologies is observed under certain conditions.« less
Hong, Sang Bum; Lee, Kyung Jin
2016-01-01
Naringin, a flavanone glycoside extracted from various plants, has a wide range of pharmacological effects. In the present study, we investigated naringin’s mechanism of action and its inhibitory effect on lipopolysaccharide-induced tumor necrosis factor-alpha and high-mobility group box 1 expression in macrophages, and on death in a cecal ligation and puncture induced mouse model of sepsis. Naringin increased heme oxygenase 1 expression in peritoneal macrophage cells through the activation of adenosine monophosphate-activated protein kinase, p38, and NF-E2-related factor 2. Inhibition of heme oxygenase 1 abrogated the naringin’s inhibitory effect on high-mobility group box 1 expression and NF-kB activation in lipopolysaccharide-stimulated macrophages. Moreover, mice pretreated with naringin (200 mg/kg) exhibited decreased sepsis-induced mortality and lung injury, and alleviated lung pathological changes. However, the naringin’s protective effects on sepsis-induced lung injury were eliminated by zinc protoporphyrin, a heme oxygenase 1 competitive inhibitor. These results revealed the mechanism underlying naringin’s protective effect in inflammation and may be beneficial for the treatment of sepsis. PMID:27716835
Clinical and genetic investigation of families with type II Waardenburg syndrome
CHEN, YONG; YANG, FUWEI; ZHENG, HEXIN; ZHOU, JIANDA; ZHU, GANGHUA; HU, PENG; WU, WEIJING
2016-01-01
The present study aimed to investigate the molecular pathology of Waardenburg syndrome type II in three families, in order to provide genetic diagnosis and hereditary counseling for family members. Relevant clinical examinations were conducted on the probands of the three pedigrees. Peripheral blood samples of the probands and related family members were collected and genomic DNA was extracted. The coding sequences of paired box 3 (PAX3), microphthalmia-associated transcription factor (MITF), sex-determining region Y-box 10 (SOX10) and snail family zinc finger 2 (SNAI2) were analyzed by polymerase chain reaction and DNA sequencing. The heterozygous mutation, c.649_651delAGA in exon 7 of the MITF gene was detected in the proband and all patients of pedigree 1; however, no pathological mutation of the relevant genes (MITF, SNAI2, SOX10 or PAX3) was detected in pedigrees 2 and 3. The heterozygous mutation c.649_651delAGA in exon 7 of the MITF gene is therefore considered the disease-causing mutation in pedigree 1. However, there are novel disease-causing genes in Waardenburg syndrome type II, which require further research. PMID:26781036
NASA Astrophysics Data System (ADS)
Wong, Pei-Syuan; Lin, Ming-Lang
2016-04-01
According to investigation of recent earthquakes, ground deformation and surface rupture are used to map the influenced range of the active fault. The zones of horizontal and vertical surface displacements and different features of surface rupture are investigated in the field, for example, the Greendale Fault 2010, MW 7.1 Canterbury earthquake. The buildings near the fault rotated and displaced vertically and horizontally due to the ground deformation. Besides, the propagation of fault trace detoured them because of the higher rigidity. Consequently, it's necessary to explore the ground deformation and mechanism of the foundation induced by strike-slip faulting for the safety issue. Based on previous study from scaled analogue model of strike-slip faulting, the ground deformation is controlled by material properties, depth of soil, and boundary condition. On the condition controlled, the model shows the features of ground deformation in the field. This study presents results from shear box experiment on small-scale soft clay models subjected to strike-slip faulting and placed shallow foundations on it in a 1-g environment. The quantifiable data including sequence of surface rupture, topography and the position of foundation are recorded with increasing faulting. From the result of the experiment, first en echelon R shears appeared. The R shears rotated to a more parallel angle to the trace and cracks pulled apart along them with increasing displacements. Then the P shears crossed the basement fault in the opposite direction appears and linked R shears. Lastly the central shear was Y shears. On the other hand, the development of wider zones of rupture, higher rising surface and larger the crack area on surface developed, with deeper depth of soil. With the depth of 1 cm and half-box displacement 1.2 cm, en echelon R shears appeared and the surface above the fault trace elevated to 1.15 mm (Dv), causing a 1.16 cm-wide zone of ground-surface rupture and deformation (W). Compared to the investigation in field, rupture of the Greendale Fault, produced a 30-km-long, 300-m-wide zone of ground-surface rupture and deformation (W), involving 5.29 m maximum horizontal , 1.45 m maximum vertical (Dv, max) and 2.59 m average net displacement. Meanwhile, en echelon R shears and cracks were recorded in some region. Besides, the 400-m depth of deep sedimentation (Ds) in the Christchurch City area. Greendale Fault showed close ratio Dv/Ds and W/Ds compared to the experimental case (in the same order), which indicated the wide zone of ground-surface rupture and deformation may be normalized with the vertical displacement (Dv). The foundation located above the basement-fault trace had obvious horizontal displacements and counter-clockwise rotation with increasing displacement. Horizontal displacements and rotation decreased with deeper depth of soil. The deeper embedded foundation caused more rotation. Besides, the soil near the foundation is confined and pressed when it rotates. Key words: strike-slip fault, shallow foundation, ground deformation
NASA Astrophysics Data System (ADS)
Akyuz, Sevim; Akyuz, Tanil; Emre, Gulder; Gulec, Ahmet; Basaran, Sait
2012-04-01
The samples obtained from nine different places of Ataturk portrait (oil on canvas, 86 cm × 136 cm) by Feyhaman Duran (1886-1970), one of the famous Turkish painters of the 20th century, together with five pigment samples (two different white, two different yellow and blue), obtained as powders from artist's paint box, were analysed by EDXRF, FT-IR and micro-Raman spectroscopic methods, in order to characterise the pigments used by the artist. Informative Raman signals were not obtained from most of the samples of the portrait, due to huge fluorescence caused by the presence of impurities and organic materials in the samples, however the Raman spectrum of the sample from skin coloured part of the portrait and the pigment samples obtained from the paint box of the artist were found to be very informative to shed light on the determination of the pigments used. Analysis revealed the presences of chrome yellow (PbCrO4), strontium yellow (SrCrO4) and Cadmium yellow (CdS) as yellow, chromium oxides (Cr2O3 and Cr2O3·2H2O) as green, natural red ochre as red, brown ochre as brown and ivory black or bone black (C + Ca3(PO4)2) and manganese oxides (Mn2O3 and MnO2) as black pigments, in the composition of the Ataturk portrait. Lead white (2PbCO3·Pb(OH)2), calcite (CaCO3), barite (BaSO4), zinc white (ZnO) and titanium white (TiO2) were used as extenders to lighten the colours and/or as for ground level painting. Powder pigment samples, obtained from the paint box of artist, were found to be mixed pigments rather than pure ones.
Genomic Organization, Phylogenetic and Expression Analysis of the B-BOX Gene Family in Tomato
Chu, Zhuannan; Wang, Xin; Li, Ying; Yu, Huiyang; Li, Jinhua; Lu, Yongen; Li, Hanxia; Ouyang, Bo
2016-01-01
The B-BOX (BBX) proteins encode a class of zinc-finger transcription factors possessing one or two B-BOX domains and in some cases an additional CCT (CO, CO-like and TOC1) motif, which play important roles in regulating plant growth, development and stress response. Nevertheless, no systematic study of BBX genes has undertaken in tomato (Solanum lycopersicum). Here we present the results of a genome-wide analysis of the 29 BBX genes in this important vegetable species. Their structures, conserved domains, phylogenetic relationships, subcellular localizations, and promoter cis-regulatory elements were analyzed; their tissue expression profiles and expression patterns under various hormones and stress treatments were also investigated in detail. Tomato BBX genes can be divided into five subfamilies, and twelve of them were found to be segmentally duplicated. Real-time quantitative PCR analysis showed that most BBX genes exhibited different temporal and spatial expression patterns. The expression of most BBX genes can be induced by drought, polyethylene glycol-6000 or heat stress. Some BBX genes were induced strongly by phytohormones such as abscisic acid, gibberellic acid, or ethephon. The majority of tomato BBX proteins was predicted to be located in nuclei, and the transient expression assay using Arabidopsis mesophyll protoplasts demonstrated that all the seven BBX members tested (SlBBX5, 7, 15, 17, 20, 22, and 24) were localized in nucleus. Our analysis of tomato BBX genes on the genome scale would provide valuable information for future functional characterization of specific genes in this family. PMID:27807440
2003-09-01
sensors – now generating more empirical data annually than existed in the field of astronomy before 1980 – and the ability of researchers to make use of it...9701 cray@hpcmo.hpc.mil David W. Hislop , Ph.D. Program Manager, Software and Knowledge Based Systems U.S. Army Research Office P.O. Box 12211 Research...Triangle Park, NC 27709 (919) 549-4255 FAX: (919) 549-4354 hislop @aro-emh1.army.mil Rodger Johnson Program Manager, Defense Research and Engineering
The water balance of the urban Salt Lake Valley: a multiple-box model validated by observations
NASA Astrophysics Data System (ADS)
Stwertka, C.; Strong, C.
2012-12-01
A main focus of the recently awarded National Science Foundation (NSF) EPSCoR Track-1 research project "innovative Urban Transitions and Arid-region Hydro-sustainability (iUTAH)" is to quantify the primary components of the water balance for the Wasatch region, and to evaluate their sensitivity to climate change and projected urban development. Building on the multiple-box model that we developed and validated for carbon dioxide (Strong et al 2011), mass balance equations for water in the atmosphere and surface are incorporated into the modeling framework. The model is used to determine how surface fluxes, ground-water transport, biological fluxes, and meteorological processes regulate water cycling within and around the urban Salt Lake Valley. The model is used to evaluate the hypotheses that increased water demand associated with urban growth in Salt Lake Valley will (1) elevate sensitivity to projected climate variability and (2) motivate more attentive management of urban water use and evaporative fluxes.
Concentrations of Trace Elements in Hemodialysis Patients: A Prospective Cohort Study.
Tonelli, Marcello; Wiebe, Natasha; Bello, Aminu; Field, Catherine J; Gill, John S; Hemmelgarn, Brenda R; Holmes, Daniel T; Jindal, Kailash; Klarenbach, Scott W; Manns, Braden J; Thadhani, Ravi; Kinniburgh, David
2017-11-01
Low concentrations and excessive concentrations of trace elements have been commonly reported in hemodialysis patients, but available studies have several important limitations. Random sample of patients drawn from a prospective cohort. 198 incident hemodialysis patients treated in 3 Canadian centers. We used mass spectrometry to measure plasma concentrations of the 25 elements at baseline, 6 months, 1 year, and 2 years following enrollment in the cohort. We focused on low concentrations of zinc, selenium, and manganese and excessive concentrations of lead, arsenic, and mercury; low and excessive concentrations of the other 19 trace elements were treated as exploratory analyses. Low and excessive concentrations were based on the 5th and 95th percentile plasma concentrations from healthy reference populations. At all 4 occasions, low zinc, selenium, and manganese concentrations were uncommon in study participants (≤5.1%, ≤1.8%, and ≤0.9% for zinc, selenium, and manganese, respectively) and a substantial proportion of participants had concentrations that exceeded the 95th percentile (≥65.2%, ≥74.2%, and ≥19.7%, respectively). Almost all participants had plasma lead concentrations above the 95th percentile at all time points. The proportion of participants with plasma arsenic concentrations exceeding the 95th percentile was relatively constant over time (9.1%-9.8%); the proportion with plasma mercury concentrations that exceeded the 95th percentile varied between 15.2% and 29.3%. Low arsenic, platinum, tungsten, and beryllium concentrations were common (>50%), as were excessive cobalt, manganese, zinc, vanadium, cadmium, selenium, barium, antimony, nickel, molybdenum, lead, and chromium concentrations. There was no evidence that low zinc, selenium, or manganese concentrations exist in most contemporary Canadian hemodialysis patients. Some patients have excessive plasma arsenic and mercury concentrations, and excessive lead concentrations were common. These findings require further investigation. Copyright © 2017 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.
Multi-element atmospheric deposition in Macedonia studied by the moss biomonitoring technique.
Barandovski, Lambe; Frontasyeva, Marina V; Stafilov, Trajče; Šajn, Robert; Ostrovnaya, Tatyana M
2015-10-01
Moss biomonitoring technique using moss species Homolothecium lutescens (Hedw.) Robins and Hypnum cupressiforme (Hedw.) was applied to air pollution studies in the Republic of Macedonia. The study was performed in the framework of the International Cooperative Programme on Effects of Air Pollution on Natural Vegetation and Crops under the auspices of the United Nations Economic Commission for Europe (UNECE) Convention on Long-Range Transboundary Air Pollution (LRTAP). The presence of 47 elements was determined by instrumental epithermal neutron activation analysis, atomic absorption spectrometry and atomic emission spectrometry with inductively coupled plasma. Normality of the datasets of elements was investigated, and Box-Cox transformation was used in order to achieve normal distributions of the data. Different pollution sources were identified and characterized using principal component analysis (PCA). Distribution maps were prepared to point out the regions most affected by pollution and to relate this to the known sources of contamination. The cities of Veles, Skopje, Tetovo, Radoviš and Kavadarci were determined to experience particular environmental stress. Moreover, three reactivated lead-zinc mines were also shown to contribute to a high content of lead and zinc in the eastern part of the country. However, a comparison with the previous moss survey conducted in 2005 showed a decreasing trend of pollution elements that are usually associated with emission from industrial activities.
Kim, J C; Lee, S H; Cheong, Y H; Yoo, C M; Lee, S I; Chun, H J; Yun, D J; Hong, J C; Lee, S Y; Lim, C O; Cho, M J
2001-02-01
Cold stress on plants induces changes in the transcription of cold response genes. A cDNA clone encoding C2H2-type zinc finger protein, SCOF-1, was isolated from soybean. The transcription of SCOF-1 is specifically induced by low temperature and abscisic acid (ABA) but not by dehydration or high salinity. Constitutive overexpression of SCOF-1 induced cold-regulated (COR) gene expression and enhanced cold tolerance of non-acclimated transgenic Arabidopsis and tobacco plants. SCOF-1 localized to the nucleus but did not bind directly to either C-repeat/dehydration (CRT/DRE) or ABA responsive element (ABRE), cis-acting DNA regulatory elements present in COR gene promoters. However, SCOF-1 greatly enhanced the DNA binding activity of SGBF-1, a soybean G-box binding bZIP transcription factor, to ABRE in vitro. SCOF-1 also interacted with SGBF-1 in a yeast two-hybrid system. The SGBF-1 transactivated the beta-glucuronidase reporter gene driven by the ABRE element in Arabidopsis leaf protoplasts. Furthermore, the SCOF-1 enhanced ABRE-dependent gene expression mediated by SGBF-1. These results suggest that SCOF-1 may function as a positive regulator of COR gene expression mediated by ABRE via protein-protein interaction, which in turn enhances cold tolerance of plants.
Ergonomic Synthesis Suitable for Industrial Production of Silver-Festooned Zinc Oxide Nanorods
NASA Astrophysics Data System (ADS)
Khan, G. R.; Khan, R. A.
2015-07-01
For maximizing productivity, minimizing cost, time-boxing process and optimizing human effort, a single-step, cost-effective, ultra-fast and environmentally benign synthesis suitable for industrial production of nanocrystalline ZnO, and Ag-doped ZnO has been reported in this paper. The synthesis based on microwave-supported aqueous solution method used zinc acetate dehydrate and silver nitrate as precursors for fabrication of nanorods. The synthesized products were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy and UV-Vis-NIR spectroscopy. The undoped and Ag-doped ZnO nanorods crystallized in a hexagonal wurtzite structure having spindle-like morphology. The blue shift occurred at absorption edge of Ag-doped ZnO around 260 nm compared to 365 nm of bulk ZnO. The red shift occurred at Raman peak site of 434 cm-1 compared to characteristic wurtzite phase peak of ZnO (437 cm-1). The bandgap energies were found to be 3.10 eV, 3.11 eV and 3.18 eV for undoped, 1% Ag-doped, and 3% Ag-doped ZnO samples, respectively. The TEM results provided average particle sizes of 17 nm, 15 nm and 13 nm for undoped, and 1% and 3% Ag-doped ZnO samples, respectively.
Fractal analysis as a potential tool for surface morphology of thin films
NASA Astrophysics Data System (ADS)
Soumya, S.; Swapna, M. S.; Raj, Vimal; Mahadevan Pillai, V. P.; Sankararaman, S.
2017-12-01
Fractal geometry developed by Mandelbrot has emerged as a potential tool for analyzing complex systems in the diversified fields of science, social science, and technology. Self-similar objects having the same details in different scales are referred to as fractals and are analyzed using the mathematics of non-Euclidean geometry. The present work is an attempt to correlate fractal dimension for surface characterization by Atomic Force Microscopy (AFM). Taking the AFM images of zinc sulphide (ZnS) thin films prepared by pulsed laser deposition (PLD) technique, under different annealing temperatures, the effect of annealing temperature and surface roughness on fractal dimension is studied. The annealing temperature and surface roughness show a strong correlation with fractal dimension. From the regression equation set, the surface roughness at a given annealing temperature can be calculated from the fractal dimension. The AFM images are processed using Photoshop and fractal dimension is calculated by box-counting method. The fractal dimension decreases from 1.986 to 1.633 while the surface roughness increases from 1.110 to 3.427, for a change of annealing temperature 30 ° C to 600 ° C. The images are also analyzed by power spectrum method to find the fractal dimension. The study reveals that the box-counting method gives better results compared to the power spectrum method.
The scattering analog for infiltration in porous media
NASA Astrophysics Data System (ADS)
Philip, J. R.
1989-11-01
This review takes the form of a set of Chinese boxes. The outermost box gives a brief general account of modem developments in the mathematical physics of unsaturated flow in soils and porous media. This provides the necessary foundations for the second box, which describes the quasi-linear analysis of steady multidimensional unsaturated flow, which is an essential prerequisite to the analog. Only then can we proceed to the innermost box, devoted to our major theme. An exact analog exists between steady quasi-linear flow in unsaturated soils and porous media and the scattering of plane pulses, and the analog carries over to the scattering of plane harmonic waves. Numerous established results, and powerful techniques such as Watson transforms, far-field scattering functions, and optical theorems, become available for the solution and understanding of problems of multidimensional infiltration. These are needed, in particular, to provide the asymptotics of the physically interesting and practically important limit of flows strongly dominated by gravity, with capillary effects weak but nonzero. This is the limit of large s, where s is a characteristic length of the water supply surface normalized with respect to the sorptive length of the soil. These problems are singular in the sense that ignoring capillarity gives a totally incorrect picture of the wetted region. In terms of the optical analog, neglecting capillarity is equivalent to using geometrical optics, with coherent shadows projected to infinity. When exact solutions involve exotic functions, difficulties of both analysis and series summation may be avoided through use of small-s and large-s expansions provided by the analog. Numerous examples are given of solutions obtained through the analog. The scope for extending the application to flows from surface sources, to anisotropic and heterogeneous media, to unsteady flows, and to linear convection-diffusion processes in general is described briefly.
Wang, Hua; Huang, Bin; Li, Bai Mou; Cao, Kai Yuan; Mo, Chen Qiang; Jiang, Shuang Jian; Pan, Jin Cheng; Wang, Zong Ren; Lin, Huan Yi; Wang, Dao Hu; Qiu, Shao Peng
2018-05-12
The zinc finger E-box-binding homeobox 1 (ZEB1) induced the epithelial-mesenchymal transition (EMT) and altered ZEB1 expression could lead to aggressive and cancer stem cell (CSC) phenotypes in various cancers. Tissue specimens from 96 prostate cancer patients were collected for immunohistochemistry and CD34/periodic acid-Schiff double staining. Prostate cancer cells were subjected to ZEB1 knockdown or overexpression and assessment of the effects on vasculogenic mimicry formation in vitro and in vivo. The underlying molecular events of ZEB1-induced vasculogenic mimicry formation in prostate cancer were then explored. The data showed that the presence of VM and high ZEB1 expression was associated with higher Gleason score, TNM stage, and lymph node and distant metastases as well as with the expression of vimentin and CD133 in prostate cancer tissues. Furthermore, ZEB1 was required for VM formation and altered expression of EMT-related and CSC-associated proteins in prostate cancer cells in vitro and in vivo. ZEB1 also facilitated tumour cell migration, invasion and clonogenicity. In addition, the effects of ZEB1 in prostate cancer cells were mediated by Src signalling; that is PP2, a specific inhibitor of the Src signalling, dose dependently reduced the p-Src 527 level but not p-Src 416 level, while ZEB1 knockdown also down-regulated the level of p-Src 527 in PC3 and DU-145 cells. PP2 treatment also significantly reduced the expression of VE-cadherin, vimentin and CD133 in these prostate cancer cells. Src signalling mediated the effects of ZEB1 on VM formation and gene expression. © 2018 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
Quantum thermodynamic cycles and quantum heat engines. II.
Quan, H T
2009-04-01
We study the quantum-mechanical generalization of force or pressure, and then we extend the classical thermodynamic isobaric process to quantum-mechanical systems. Based on these efforts, we are able to study the quantum version of thermodynamic cycles that consist of quantum isobaric processes, such as the quantum Brayton cycle and quantum Diesel cycle. We also consider the implementation of the quantum Brayton cycle and quantum Diesel cycle with some model systems, such as single particle in a one-dimensional box and single-mode radiation field in a cavity. These studies lay the microscopic (quantum-mechanical) foundation for Szilard-Zurek single-molecule engine.
Ab-initio Electronic, Transport and Related Properties of Zinc Blende Boron Arsenide (zb-BAs)
NASA Astrophysics Data System (ADS)
Nwigboji, Ifeanyi H.; Malozovsky, Yuriy; Bagayoko, Diola
We present results from ab-initio, self-consistent density functional theory (DFT) calculations of electronic, transport, and bulk properties of zinc blende boron arsenide (zb-BAs). We utilized a local density approximation (LDA) potential and the linear combination of atomic orbital (LCAO) formalism. Our computational technique follows the Bagayoko, Zhao, and Williams method, as enhanced by Ekuma and Franklin. Our results include electronic energy bands, densities of states, and effective masses. We explain the agreement between these findings, including the indirect band gap, and available, corresponding, experimental ones. This work confirms the capability of DFT to describe accurately properties of materials, provided the computations adhere to the conditions of validity of DFT [AIP Advances, 4, 127104 (2014)]. Acknowledgments: This work was funded in part by the National Science Foundation (NSF) and the Louisiana Board of Regents, through LASiGMA [Award Nos. EPS- 1003897, NSF (2010-15)-RII-SUBR] and NSF HRD-1002541, the US Department of Energy - National, Nuclear Security Administration (NNSA) (Award No. DE- NA0002630), LaSPACE, and LONI-SUBR.
Liu, Zeyu; Su, Zhetong; Yang, Ming; Zou, Wenquan
2010-10-01
To screen the factors that affect indirubin-generated significantly in the process of preparing indigo naturalis, optimize level combination and determine the optimum technology for indirubin-generated. Using concentration of indirubin (mg x g(-1)) that generated by fresh leaf as an index, Plackett-Burman design, Box-Behnken design response surface analysis as the statistical method, we screened the significantly influencing factors and the optimal level combination. The soaking and making indirubin process in preparing indigo naturalis was identified as the wax is not removed before immersion with immersion pH 7, solvent volume-leaf weight (mL: g)15, soaked not avoided light, soaking 48 h, temperature 60 degrees C, ventilation time of 180 min, and added ammonia water to adjust pH to 10.5. The soaking and making indirubin process in preparing indigo naturalis is optimized systematically. It clarify the various factors on the impact of the active ingredient indirubin which controlled by industrialized production become reality in the process of preparing indigo naturalis, at the same time, it lay the foundation for processing principle of indigo naturalis.
Photochemically stable fluorescent heteroditopic ligands for zinc ion.
Zhang, Lu; Zhu, Lei
2008-11-07
Photochemically stable fluorescent heteroditopic ligands (9 and 10) for zinc ion were prepared and studied. Two independent metal coordination-driven photophysical processes, chelation-enhanced fluorescence (CHEF) and internal (or intramolecular) charge transfer (ICT), were designed into our heteroditopic ligand framework. This strategy successfully relates three coordination states of a ligand, non-, mono-, and dicoordinated, to three fluorescence states, fluorescence OFF, ON at one wavelength, and ON at another wavelength. This ligand platform has provided chemical foundation for applications such as the quantification of zinc concentration over broad ranges (Zhang, L.; Clark, R. J.; Zhu, L. Chem.-Eur. J. 2008, 14, 2894-2903) and molecular logic functions (Zhang, L.; Whitfield, W. A.; Zhu, L. Chem. Commun. 2008, 1880-1882). The binding stoichiometries of dipicolylamino and 2,2'-bipyridyl, the two binding sites featured in heteroditopic ligands 7-10, were studied in acetonitrile using both Job's method of continuous variation and isothermal titration calorimetry (ITC). The fluorescence enhancement of 7-10 upon the formation of monozinc complexes (defined as the fluorescence quantum yield ratio of monozinc complex and free ligand) is qualitatively related to the highest occupied molecular orbital (HOMO) energy levels of their fluorophores. This is consistent with our hypothesis on the thermodynamics of the coordination-driven photophysical processes embodied in the designed heteroditopic system, which was supported by cyclic voltammetry studies. In conclusion, compounds 9 and 10 not only possess better photochemical stability but also display a higher degree of fluorescence turn-on upon formation of monozinc complexes than their vinyl counterparts 7 and 8.
Placental IGF-I, IGFBP-1, zinc, and iron, and maternal and infant anthropometry at birth.
Akram, Shahzad K; Carlsson-Skwirut, Christine; Bhutta, Zulfiqar A; Söder, Olle
2011-11-01
To correlate placental protein levels of insulin-like growth factor (IGF)-I and insulin-like growth factor binding protein (IGFBP)-1, with previously determined levels of IGF-I and IGF-II mRNA expression, and the micronutrients zinc and iron, and maternal and newborn anthropometry. Placental samples were collected from rural field sites in Pakistan. Samples were divided into small and large for gestational age groups (SGA and LGA, respectively). IGFBP-1 levels were assessed using Western immunoblotting. IGF-I protein levels were assessed using ELISA techniques. IGF mRNA expression, zinc, and iron, were quantified as previously described and were used for comparative purposes only. Thirty-three subjects were included (SGA, n = 12; LGA n = 21). Higher levels of IGFBP-1 were seen in the SGA group (p < 0.01). IGFBP-1 correlated positively with maternal and infant triceps skin-fold thickness in the LGA and SGA groups, respectively (p < 0.05). Significantly lower IGF-I protein levels were seen in the SGA group. IGF-I levels correlated significantly with maternal and newborn anthropometry. IGFBP-1 correlated significantly with IGF-II mRNA expression (p < 0.05). Placental protein levels of IGF-I and IGFBP-1 appear to be associated with maternal anthropometry. Maternal anthropometry may thus influence IGFBP-1 and IGF-I levels and may possibly be used for screening of pregnancies, with the potential for timely identification of these high-risk pregnancies. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.
Box-and-arrow explanations need not be more abstract than neuroscientific mechanism descriptions.
Datteri, Edoardo; Laudisa, Federico
2014-01-01
The nature of the relationship between box-and-arrow (BA) explanations and neuroscientific mechanism descriptions (NMDs) is a key foundational issue for cognitive science. In this article we attempt to identify the nature of the constraints imposed by BA explanations on the formulation of NMDs. On the basis of a case study about motor control, we argue that BA explanations and NMDs both identify regularities that hold in the system, and that these regularities place constraints on the formulation of NMDs from BA analyses, and vice versa. The regularities identified in the two kinds of explanation play a crucial role in reasoning about the relationship between them, and in justifying the use of neuroscientific experimental techniques for the empirical testing of BA analyses of behavior. In addition, we make claims concerning the similarities and differences between BA analyses and NMDs. First, we argue that both types of explanation describe mechanisms. Second, we propose that they differ in terms of the theoretical vocabulary used to denote the entities and properties involved in the mechanism and engaging in regular, mutual interactions. On the contrary, the notion of abstractness, defined as omission of detail, does not help to distinguish BA analyses from NMDs: there is a sense in which BA analyses are more detailed than NMDs. In relation to this, we also focus on the nature of the extra detail included in NMDs and missing from BA analyses, arguing that such detail does not always concern how the system works. Finally, we propose reasons for doubting that BA analyses, unlike NMDs, may be considered "mechanism sketches." We have developed these views by critically analyzing recent claims in the philosophical literature regarding the foundations of cognitive science.
Han, Yuanji; Wu, Miao; Cao, Liya; Yuan, Wangjun; Dong, Meifang; Wang, Xiaohui; Chen, Weicai; Shang, Fude
2016-07-01
The sweet osmanthus carotenoid cleavage dioxygenase 4 (OfCCD4) cleaves carotenoids such as β-carotene and zeaxanthin to yield β-ionone. OfCCD4 is a member of the CCD gene family, and its promoter contains a W-box palindrome with two reversely oriented TGAC repeats, which are the proposed binding sites of WRKY transcription factors. We isolated three WRKY cDNAs from the petal of Osmanthus fragrans. One of them, OfWRKY3, encodes a protein containing two WRKY domains and two zinc finger motifs. OfWRKY3 and OfCCD4 had nearly identical expression profile in petals of 'Dangui' and 'Yingui' at different flowering stages and showed similar expression patterns in petals treated by salicylic acid, jasmonic acid and abscisic acid. Activation of OfCCD4pro:GUS by OfWRKY3 was detected in coinfiltrated tobacco leaves and very weak GUS activity was detected in control tissues, indicating that OfWRKY3 can interact with the OfCCD4 promoter. Yeast one-hybrid and electrophoretic mobility shift assay showed that OfWRKY3 was able to bind to the W-box palindrome motif present in the OfCCD4 promoter. These results suggest that OfWRKY3 is a positive regulator of the OfCCD4 gene, and might partly account for the biosynthesis of β-ionone in sweet osmanthus.
Hamza-Chaffai, A; Amiard, J C; Cosson, R P
1999-06-01
Cadmium, copper and zinc were determined concomitantly with metallothionein-like proteins (MTLPs) in the subcellular fractions of Ruditapes decussatus digestive gland. This study covered 4 months and aimed to evaluate the effect of metal pollution and other factors such as sex, size and reproductive state on MTLP levels. Copper concentrations did not vary with month, however Cd and Zn concentrations showed high levels during August. Organisms showing low cadmium concentrations presented the highest cadmium percentages in the soluble fraction (SF) containing MTLPs. However for high cadmium concentrations, the insoluble fraction (IF) was implicated in cadmium association. MTLP levels varied according to the month, the sex and the size of the organisms. A non-linear model based on the Box-Cox transformation, was proposed to describe a positive and a significant relationship between MTLPs and the studied metals. A model including sex and size showed that these two factors affected MTLP levels, but were less important than metals. Males of R. decussatus showed higher significant correlations between MTLP levels and cadmium than females. Moreover, the effect of size and reproductive state on MTLP levels was less perceptible in males than in females. As a result, MTLPs in males of R. decussatus could be proposed as suitable biomarker for detecting metal contamination.
Vacuum deposited optical coatings experiment (AO 138-4)
NASA Technical Reports Server (NTRS)
Charlier, Jean
1991-01-01
The aim of this experiment was to test the optical behavior of 20 components and coatings subjected to space exposure. Most of them are commonly used for their reflective or transmittive properties in spaceborne optics. They consist in several kind of metallic and dielectric mirrors designed for the 0.12 to 10 microns spectrum, UV, and NIR bandpass filters, visible, and IR antireflecting coatings, visible/IR dichroic beam splitters, and visible beam splitter. The coatings were deposited on various substrates such as glasses, germanium, magnesium fluoride, quartz, zinc selenide, and kanigened aluminum. Several coating materials were used such as Al, Ag, Au, MgF2, LaF3, ThF3, ThF4, SiO2, TiO2, ZrO2, Al2O3, MgO, Ge, and ZnSe. Five samples of each component were manufactured. Two flight samples were mounted in such a way that one was directly exposed to space and the other looking backwards. The same arrangement was used for the spare samples stored on ground in a box identical to the flight one and they were kept under vacuum during the LDEF mission. Finally, one set of reference components was stocked in a sealed box under a dry nitrogen atmosphere. By comparing the preflight and postflight optical performances of the five samples of each component, it is possible to detect the degradations due to the space exposure.
Aranda, Suzan; Borrok, David M; Wanty, Richard B; Balistrieri, Laurie S
2012-03-15
The pollution of natural waters with metals derived from the oxidation of sulfide minerals like pyrite is a global environmental problem. However, the metal loading pathways and transport mechanisms associated with acid rock drainage reactions are often difficult to characterize using bulk chemical data alone. In this study, we evaluated the use of zinc (Zn) isotopes to complement traditional geochemical tools in the investigation of contaminated waters at the former Waldorf mining site in the Rocky Mountains, Colorado, U.S.A. Geochemical signatures and statistical analysis helped in identifying two primary metal loading pathways at the Waldorf site. The first was characterized by a circumneutral pH, high alkalinity, and high Zn/Cd ratios. The second was characterized by acidic pHs and low Zn/Cd ratios. Zinc isotope signatures in surface water samples collected across the site were remarkably similar (the δ(66)Zn, relative to JMC 3-0749-L, for most samples ranged from 0.20 to 0.30‰±0.09‰ 2σ). This probably suggests that the ultimate source of Zn is consistent across the Waldorf site, regardless of the metal loading pathway. The δ(66)Zn of pore water samples collected within a nearby metal-impacted wetland area, however, were more variable, ranging from 0.20 to 0.80‰±0.09‰ 2σ. Here the Zn isotopes seemed to reflect differences in groundwater flow pathways. However, a host of secondary processes might also have impacted Zn isotopes, including adsorption of Zn onto soil components, complexation of Zn with dissolved organic matter, uptake of Zn into plants, and the precipitation of Zn during the formation of reduced sulfur species. Zinc isotope analysis proved useful in this study; however, the utility of this isotopic tool would improve considerably with the addition of a comprehensive experimental foundation for interpreting the complex isotopic relationships found in soil pore waters. Copyright © 2012 Elsevier B.V. All rights reserved.
Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng; ...
2015-04-02
Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malek, Gary A.; Aytug, Tolga; Liu, Qingfeng
Transparent nanostructured glass coatings, fabricated on glass substrates, with a unique three-dimensional (3D) architecture were utilized as the foundation for the design of plasmonic 3D transparent conductors. Transformation of the non-conducting 3D structure to a conducting 3D network was accomplished through atomic layer deposition of aluminum-doped zinc oxide (AZO). After AZO growth, gold nanoparticles (AuNPs) were deposited by electronbeam evaporation to enhance light trapping and decrease the overall sheet resistance. Field emission scanning electron microscopy and atomic force microcopy images revealed the highly porous, nanostructured morphology of the AZO coated glass surface along with the in-plane dimensions of the depositedmore » AuNPs. Sheet resistance measurements conducted on the coated samples verified that the electrical properties of the 3D network are comparable to that of the untextured two-dimensional AZO coated glass substrates. In addition, transmittance measurements of the glass samples coated with various AZO thicknesses showed preservation of the highly transparent nature of each sample, while the AuNPs demonstrated enhanced light scattering as well as light-trapping capability.« less
NASA Astrophysics Data System (ADS)
Schingler, Robert; Villasenor, J. N.; Ricker, G. R.; Latham, D. W.; Vanderspek, R. K.; Ennico, K. A.; Lewis, B. S.; Bakos, G.; Brown, T. M.; Burgasser, A. J.; Charbonneau, D.; Clampin, M.; Deming, L. D.; Doty, J. P.; Dunham, E. W.; Elliot, J. L.; Holman, M. J.; Ida, S.; Jenkins, J. M.; Jernigan, J. G.; Kawai, N.; Laughlin, G. P.; Lissauer, J. J.; Martel, F.; Sasselov, D. D.; Seager, S.; Torres, G.; Udry, S.; Winn, J. N.; Worden, S. P.
2010-01-01
The Transiting Exoplanet Survey Satellite (TESS) will perform an all-sky survey in a low-inclination, low-Earth orbit. TESS's 144 GB of raw data collected each orbit will be stacked, cleaned, cut, compressed and downloaded. The Community Observer Program is a Science Enhancement Option (SEO) that takes advantage of the low-radiation environment, technology advances in flash memory, and the vast amount of astronomical data collected by TESS. The Community Observer Program requires the addition of a 12 TB "SEO Box” inside the TESS Bus. The hardware can be built using low-cost Commercial Off-The-Shelf (COTS) components and fits within TESS's margins while accommodating GSFC gold rules. The SEO Box collects and stores a duplicate of the TESS camera data at a "raw” stage ( 4.3 GB/orbit, after stacking and cleaning) and makes them available for on-board processing. The sheer amount of onboard storage provided by the SEO Box allows the stacking and storing of several months of data, allowing the investigator to probe deeper in time prior to a given event. Additionally, with computation power and data in standard formats, investigators can utilize data-mining techniques to investigate serendipitous phenomenon, including pulsating stars, eclipsing binaries, supernovae or other transient phenomena. The Community Observer Program enables ad-hoc teams of citizen scientists to propose, test, refine and rank algorithms for on-board analysis to support serendipitous science. Combining "best practices” of online collaboration, with careful moderation and community management, enables this `crowd sourced’ participatory exploration with a minimal risk and impact on the core TESS Team. This system provides a powerful and independent tool opening a wide range of opportunity for science enhancement and secondary science. Support for this work has been provided by NASA, the Kavli Foundation, Google, and the Smithsonian Institution.
miR-200 Regulates Endometrial Development During Early Pregnancy
Mainigi, Monica A.; Word, R. Ann; Kraus, W. Lee; Mendelson, Carole R.
2016-01-01
For successful embryo implantation, endometrial stromal cells must undergo functional and morphological changes, referred to as decidualization. However, the molecular mechanisms that regulate implantation and decidualization are not well defined. Here we demonstrate that the estradiol- and progesterone-regulated microRNA (miR)-200 family was markedly down-regulated in mouse endometrial stromal cells prior to implantation, whereas zinc finger E-box binding homeobox-1 and -2 and other known and predicted targets were up-regulated. Conversely, miR-200 was up-regulated during in vitro decidualization of human endometrial stromal cells. Knockdown of miR-200 negatively affected decidualization and prevented the mesenchymal-epithelial transition-like changes that accompanied decidual differentiation. Notably, superovulation of mice and humans altered miR-200 expression. Our findings suggest that hormonal alterations that accompany superovulation may negatively impact endometrial development and decidualization by causing aberrant miR-200 expression. PMID:27533790
Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP
Imbernon, Monica; Sanchez-Rebordelo, Estrella; Gallego, Rosalia; Gandara, Marina; Lear, Pamela; Lopez, Miguel; Dieguez, Carlos; Nogueiras, Ruben
2014-01-01
Krüppel-like factor 4 (KLF4) is a zinc-finger-type transcription factor expressed in a range of tissues that plays multiple functions. We report that hypothalamic KLF4 represents a new transcription factor specifically modulating agouti-related protein (AgRP) expression in vivo. Hypothalamic KLF4 colocalizes with AgRP neurons and is modulated by nutritional status and leptin. Over-expression of KLF4 in the hypothalamic arcuate nucleus (ARC) induces food intake and increases body weight through the specific stimulation of AgRP, as well as blunting leptin sensitivity in lean rats independent of forkhead box protein 01 (FoxO1). Down-regulation of KLF4 in the ARC inhibits fasting-induced food intake in both lean and diet-induced obese (DIO) rats. Silencing KLF4, however, does not, on its own, enhance peripheral leptin sensitivity in DIO rats. PMID:24944903
Hypothalamic KLF4 mediates leptin's effects on food intake via AgRP.
Imbernon, Monica; Sanchez-Rebordelo, Estrella; Gallego, Rosalia; Gandara, Marina; Lear, Pamela; Lopez, Miguel; Dieguez, Carlos; Nogueiras, Ruben
2014-07-01
Krüppel-like factor 4 (KLF4) is a zinc-finger-type transcription factor expressed in a range of tissues that plays multiple functions. We report that hypothalamic KLF4 represents a new transcription factor specifically modulating agouti-related protein (AgRP) expression in vivo. Hypothalamic KLF4 colocalizes with AgRP neurons and is modulated by nutritional status and leptin. Over-expression of KLF4 in the hypothalamic arcuate nucleus (ARC) induces food intake and increases body weight through the specific stimulation of AgRP, as well as blunting leptin sensitivity in lean rats independent of forkhead box protein 01 (FoxO1). Down-regulation of KLF4 in the ARC inhibits fasting-induced food intake in both lean and diet-induced obese (DIO) rats. Silencing KLF4, however, does not, on its own, enhance peripheral leptin sensitivity in DIO rats.
Realistic terrain visualization based on 3D virtual world technology
NASA Astrophysics Data System (ADS)
Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai
2009-09-01
The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.
Realistic terrain visualization based on 3D virtual world technology
NASA Astrophysics Data System (ADS)
Huang, Fengru; Lin, Hui; Chen, Bin; Xiao, Cai
2010-11-01
The rapid advances in information technologies, e.g., network, graphics processing, and virtual world, have provided challenges and opportunities for new capabilities in information systems, Internet applications, and virtual geographic environments, especially geographic visualization and collaboration. In order to achieve meaningful geographic capabilities, we need to explore and understand how these technologies can be used to construct virtual geographic environments to help to engage geographic research. The generation of three-dimensional (3D) terrain plays an important part in geographical visualization, computer simulation, and virtual geographic environment applications. The paper introduces concepts and technologies of virtual worlds and virtual geographic environments, explores integration of realistic terrain and other geographic objects and phenomena of natural geographic environment based on SL/OpenSim virtual world technologies. Realistic 3D terrain visualization is a foundation of construction of a mirror world or a sand box model of the earth landscape and geographic environment. The capabilities of interaction and collaboration on geographic information are discussed as well. Further virtual geographic applications can be developed based on the foundation work of realistic terrain visualization in virtual environments.
Crystallization of sheared hard spheres at 64.5% volume fraction
NASA Astrophysics Data System (ADS)
Swinney, H. L.; Rietz, F.; Schroeter, M.; Radin, C.
2017-11-01
A classic experiment by G.D. Scott Nature 188, 908, 1960) showed that pouring balls into a rigid container filled the volume to an upper limit of 64% of the container volume, which is well below the 74% volume fraction filled by spheres in a hexagonal close packed (HCP) or face center cubic (FCC) lattice. Subsequent experiments have confirmed a ``random closed packed'' (RCP) fraction of about 64%. However, the physics of the RCP limit has remained a mystery. Our experiment on a cubical box filled with 49400 weakly sheared glass spheres reveals a first order phase transition from a disordered to an ordered state at a volume fraction of 64.5%. The ordered state consists of crystallites of mixed FCC and HCP symmetry that coexist with the amorphous bulk. The transition is initiated by homogeneous nucleation: in the shearing process small crystallites with about ten or fewer spheres dissolve, while larger crystallites grow. A movie illustrates the crystallization process. German Academic Exchange Service (DAAD), German Research Foundation (DFG), NSF DMS, and R.A. Welch Foundation.
NASA Astrophysics Data System (ADS)
Zhao, Fengfan; Meng, Lingyuan
2016-04-01
The April 20, 2013 Ms 7.0, earthquake in Lushan city, Sichuan province of China occurred as the result of east-west oriented reverse-type motion on a north-south striking fault. The source location suggests the event occurred on the Southern part of Longmenshan fault at a depth of 13km. The maximum intensity is up to VIII to IX at Boxing and Lushan city, which are located in the meizoseismal area. In this study, we analyzed the dynamic source process with the source mechanism and empirical relationships, estimated the strong ground motion in the near-fault field based on the Brune's circle model. A dynamical composite source model (DCSM) has been developed to simulate the near-fault strong ground motion with associated fault rupture properties at Boxing and Lushan city, respectively. The results indicate that the frictional undershoot behavior in the dynamic source process of Lushan earthquake, which is actually different from the overshoot activity of the Wenchuan earthquake. Moreover, we discussed the characteristics of the strong ground motion in the near-fault field, that the broadband synthetic seismogram ground motion predictions for Boxing and Lushan city produced larger peak values, shorter durations and higher frequency contents. It indicates that the factors in near-fault strong ground motion was under the influence of higher effect stress drop and asperity slip distributions on the fault plane. This work is financially supported by the Natural Science Foundation of China (Grant No. 41404045) and by Science for Earthquake Resilience of CEA (XH14055Y).
1983-06-01
NUMBER CORE BOXES NASH IS ELEV....ION GROUND WATER 6 DIRECTION OF HOLE 3-.. E VETa DATE OLE 5/30/78 5/31/ 7’ 1,7 UtmATJON o TOP 5 OLE / 7 THICKNESS OF...JUN 83 UNCLASSIFIED F/G 13/13 NL mommmmommm 0 I~lmlIIIImEE mhEgEBhEEBhIEE E Eg //EEE n-EEEElgEl- E .II 1.0 II1 l w20 1111.25 111111’.4 1II1.6 MICROCOPY...Kerr Arkansas River Navigation System. e dam was founded on a thick shale layer of the Atoka Formation. Locally, the shale was gray to black, hard to
On the origin of the marine zinc-silicon correlation
NASA Astrophysics Data System (ADS)
de Souza, Gregory F.; Khatiwala, Samar P.; Hain, Mathis P.; Little, Susan H.; Vance, Derek
2018-06-01
The close linear correlation between the distributions of dissolved zinc (Zn) and silicon (Si) in seawater has puzzled chemical oceanographers since its discovery almost forty years ago, due to the apparent lack of a mechanism for coupling these two nutrient elements. Recent research has shown that such a correlation can be produced in an ocean model without any explicit coupling between Zn and Si, via the export of Zn-rich biogenic particles in the Southern Ocean, consistent with the observation of elevated Zn quotas in Southern Ocean diatoms. Here, we investigate the physical and biological mechanisms by which Southern Ocean uptake and export control the large-scale marine Zn distribution, using suites of sensitivity simulations in an ocean general circulation model (OGCM) and a box-model ensemble. These simulations focus on the sensitivity of the Zn distribution to the stoichiometry of Zn uptake relative to phosphate (PO4), drawing directly on observations in culture. Our analysis reveals that OGCM model variants that produce a well-defined step between relatively constant, high Zn:PO4 uptake ratios in the Southern Ocean and low Zn:PO4 ratios at lower latitudes fare best in reproducing the marine Zn-Si correlation at both the global and the regional Southern Ocean scale, suggesting the presence of distinct Zn-biogeochemical regimes in the high- and low-latitude oceans that may relate to differences in physiology, ecology or (micro-)nutrient status. Furthermore, a study of the systematics of both the box model and the OGCM reveals that regional Southern Ocean Zn uptake exerts control over the global Zn distribution via its modulation of the biogeochemical characteristics of the surface Southern Ocean. Specifically, model variants with elevated Southern Ocean Zn:PO4 uptake ratios produce near-complete Zn depletion in the Si-poor surface Subantarctic Zone, where upper-ocean water masses with key roles in the global oceanic circulation are formed. By setting the main preformed covariation trend within the ocean interior, the subduction of these Zn- and Si-poor water masses produces a close correlation between the Zn and Si distributions that is barely altered by their differential remineralisation during low-latitude cycling. We speculate that analogous processes in the high-latitude oceans may operate for other trace metal micronutrients as well, splitting the ocean into two fundamentally different biogeochemical, and thus biogeographic, regimes.
Qiao, Huan; May, James M.
2011-01-01
The sodium-dependent vitamin C transporter (SVCT) 2 is crucial for ascorbate uptake in metabolically active and specialized tissues. The present study focused on the gene regulation of the SVCT2 exon 1b, which is ubiquitously expressed in human and mouse tissues. Although the human SVCT2 exon 1b promoter doesn’t contain a classical TATA-box, we found that it does contain a functional initiator (Inr) that binds YY1 and interacts with upstream Sp1/Sp3 elements in the proximal promoter region. These elements in turn play a critical role in regulating YY1-mediated transcription of the exon 1b gene. Formation of YY1/Sp complexes on the promoter is required for its optional function. YY1 with Sp1 or Sp3 synergistically enhanced exon 1b promoter activity as well as the endogenous SVCT2 protein expression. Further, in addition to Sp1/Sp3 both EGR-1 and -2 were detected in the protein complexes that bound the three GC boxes bearing overlapping binding sites for EGR/WT1 and Sp1/3. The EGR family factors, WT1 and MAZ were found to differentially regulate exon 1b promoter activity. These results show that differential occupancy of transcription factors on the GC-rich consensus sequences in SVCT2 exon 1b promoter contributes to the regulation of cell and tissue expression of SVCT2. PMID:21335086
Yang, Xiaoli; Li, Hongtao; Zhang, Chengdong; Lin, Zhidi; Zhang, Xinhua; Zhang, Youjie; Yu, Yanbao; Liu, Kun; Li, Muyan; Zhang, Yuening; Lv, Wenxin; Xie, Yuanliang; Lu, Zheng; Wu, Chunlei; Teng, Ruobing; Lu, Shaoming; He, Min; Mo, Zengnan
2015-10-01
Prostatitis is one of the most common urological problems afflicting adult men. The etiology and pathogenesis of nonbacterial prostatitis, which accounts for 90-95% of cases, is largely unknown. As serum proteins often indicate the overall pathologic status of patients, we hypothesized that protein biomarkers of prostatitis might be identified by comparing the serum proteomes of patients with and without nonbacterial prostatitis. All untreated samples were collected from subjects attending the Fangchenggang Area Male Health and Examination Survey (FAMHES). We profiled pooled serum samples from four carefully selected groups of patients (n = 10/group) representing the various categories of nonbacterial prostatitis (IIIa, IIIb, and IV) and matched healthy controls using a mass spectrometry-based 4-plex iTRAQ proteomic approach. More than 160 samples were validated by ELISA. Overall, 69 proteins were identified. Among them, 42, 52, and 37 proteins were identified with differential expression in Category IIIa, IIIb, and IV prostatitis, respectively. The 19 common proteins were related to immunity and defense, ion binding, transport, and proteolysis. Two zinc-binding proteins, superoxide dismutase 3 (SOD3), and carbonic anhydrase I (CA1), were significantly higher in all types of prostatitis than in the control. A receiver operating characteristic curve estimated sensitivities of 50.4 and 68.1% and specificities of 92.1 and 83.8% for CA1 and SOD3, respectively, in detecting nonbacterial prostatitis. The serum CA1 concentration was inversely correlated to the zinc concentration in expressed-prostatic secretions. Our findings suggest that SOD3 and CA1 are potential diagnostic markers of nonbacterial prostatitis, although further large-scale studies are required. The molecular profiles of nonbacterial prostatitis pathogenesis may lay a foundation for discovery of new therapies. © 2015 Wiley Periodicals, Inc.
A bioinformatic survey of RNA-binding proteins in Plasmodium.
Reddy, B P Niranjan; Shrestha, Sony; Hart, Kevin J; Liang, Xiaoying; Kemirembe, Karen; Cui, Liwang; Lindner, Scott E
2015-11-02
The malaria parasites in the genus Plasmodium have a very complicated life cycle involving an invertebrate vector and a vertebrate host. RNA-binding proteins (RBPs) are critical factors involved in every aspect of the development of these parasites. However, very few RBPs have been functionally characterized to date in the human parasite Plasmodium falciparum. Using different bioinformatic methods and tools we searched P. falciparum genome to list and annotate RBPs. A representative 3D models for each of the RBD domain identified in P. falciparum was created using I-TESSAR and SWISS-MODEL. Microarray and RNAseq data analysis pertaining PfRBPs was performed using MeV software. Finally, Cytoscape was used to create protein-protein interaction network for CITH-Dozi and Caf1-CCR4-Not complexes. We report the identification of 189 putative RBP genes belonging to 13 different families in Plasmodium, which comprise 3.5% of all annotated genes. Almost 90% (169/189) of these genes belong to six prominent RBP classes, namely RNA recognition motifs, DEAD/H-box RNA helicases, K homology, Zinc finger, Puf and Alba gene families. Interestingly, almost all of the identified RNA-binding helicases and KH genes have cognate homologs in model species, suggesting their evolutionary conservation. Exploration of the existing P. falciparum blood-stage transcriptomes revealed that most RBPs have peak mRNA expression levels early during the intraerythrocytic development cycle, which taper off in later stages. Nearly 27% of RBPs have elevated expression in gametocytes, while 47 and 24% have elevated mRNA expression in ookinete and asexual stages. Comparative interactome analyses using human and Plasmodium protein-protein interaction datasets suggest extensive conservation of the PfCITH/PfDOZI and PfCaf1-CCR4-NOT complexes. The Plasmodium parasites possess a large number of putative RBPs belonging to most of RBP families identified so far, suggesting the presence of extensive post-transcriptional regulation in these parasites. Taken together, in silico identification of these putative RBPs provides a foundation for future functional studies aimed at defining a unique network of post-transcriptional regulation in P. falciparum.
Zinc doping of large-area MoS2 films via chemical vapor deposition
NASA Astrophysics Data System (ADS)
Xu, Enzhi; Liu, Haoming; Park, Kyungwha; Li, Zhen; Losovyj, Yaroslav; Starr, Matthew; Werbianskyj, Madilynn; Fertig, Herbert; Zhang, Shixiong
Atomically thin molybdenum disulfide (MoS2) has attracted significant attention because of its great potential for electronic and optoelectronic applications. Undoped MoS2 is n-type presumably due to the formation of native defects, and realizing p-type conduction has often turned out to be challenging. In this work, we report on the synthesis and characterizations of large-area Zn-doped MoS2 thin films in which the zinc dopant is demonstrated to be p-type. The films were grown by chemical vapor deposition and are monolayers or bilayers with a lateral dimension on the order of millimeters. The p-type nature of Zn dopants was evidenced by the suppression of n-type conduction and a downward shift of the Fermi level with doping. Density-functional-theory calculations were carried out to demonstrate the stability of the Zn dopants and to determine the impurity states. A p-type gate transfer characteristic was observed after the Zn-MoS2 film was thermally annealed in a sulfur atmosphere. This work is supported by the NSF through Grant Nos. DMR-1506460, DMR-1506263, and DMR-1206354, the San Diego Supercomputer Center (SDSC) Gordon under DMR060009N, and by the US-Israel Binational Science Foundation.
Abdul Latip, Ahmad Faiz; Hussein, Mohd Zobir; Stanslas, Johnson; Wong, Charng Choon; Adnan, Rohana
2013-01-01
Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems.
Zhang, Lei; Liu, Ming; Jiang, Hong; Yu, Ying; Yu, Peng; Tong, Rui; Wu, Jian; Zhang, Shuning; Yao, Kang; Zou, Yunzeng; Ge, Junbo
2016-03-01
Inflammation plays a key role in pressure overload-induced cardiac hypertrophy and heart failure, but the mechanisms have not been fully elucidated. High-mobility group box 1 (HMGB1), which is increased in myocardium under pressure overload, may be involved in pressure overload-induced cardiac injury. The objectives of this study are to determine the role of HMGB1 in cardiac hypertrophy and cardiac dysfunction under pressure overload. Pressure overload was imposed on the heart of male wild-type mice by transverse aortic constriction (TAC), while recombinant HMGB1, HMGB1 box A (a competitive antagonist of HMGB1) or PBS was injected into the LV wall. Moreover, cardiac myocytes were cultured and given sustained mechanical stress. Transthoracic echocardiography was performed after the operation and sections for histological analyses were generated from paraffin-embedded hearts. Relevant proteins and genes were detected. Cardiac HMGB1 expression was increased after TAC, which was accompanied by its translocation from nucleus to both cytoplasm and intercellular space. Exogenous HMGB1 aggravated TAC-induced cardiac hypertrophy and cardiac dysfunction, as demonstrated by echocardiographic analyses, histological analyses and foetal cardiac genes detection. Nevertheless, the aforementioned pathological change induced by TAC could partially be reversed by HMGB1 inhibition. Consistent with the in vivo observations, mechanical stress evoked the release and synthesis of HMGB1 in cultured cardiac myocytes. This study indicates that the activated and up-regulated HMGB1 in myocardium, which might partially be derived from cardiac myocytes under pressure overload, may be of crucial importance in pressure overload-induced cardiac hypertrophy and cardiac dysfunction. © 2015 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.
NASA Astrophysics Data System (ADS)
Qian, Chaojun; Li, Dahua; Zhang, xian; Zhou, Dongqing; Zhang, Baoliang
2017-08-01
Xuan city + 1100 kv search for converter station in Anhui province, in the process of foundation treatment, there is a cloth with a large number of lacustrine soft soil can not reach the need of engineering construction, so we want to cure the soft soil. By combining ratio of blast furnace slag (GGBS), gypsum, exciting agent CaO as a main curing agent for combination of reinforcing soft soil, the indoor unconfined compressive strength test, the influence factors on blast furnace slag, exciting agent and dosage of gypsum as impact factors, response value is 7 d and 28 d unconfined compressive strength of solidified soil, the experimental method is the Box - Behnken. The results show that the 7 d gypsum and the interaction of the blast furnace slag is obvious; 28 d exciting agent and gypsum interaction is obvious. By the analysis plaster, CaO, GGBSIn 7 d optimal proportion is 3.71%, 3.62%, 12.18%, the actual strength of the solidified soil age 1479.33 kPa; 28 d optimal proportion was 4.08%, 4.50%, 11.6%, the actual strength of the solidified soil age 2936.78 kPa. In the soil and the water curing effect of GGBS solidified soil, thereby GGBS this is a kind of new solidification material that can be used as the engineering foundation treatment of soft soil stabilizer has a certain value.
Sediment-Hosted Zinc-Lead Deposits of the World - Database and Grade and Tonnage Models
Singer, Donald A.; Berger, Vladimir I.; Moring, Barry C.
2009-01-01
This report provides information on sediment-hosted zinc-lead mineral deposits based on the geologic settings that are observed on regional geologic maps. The foundation of mineral-deposit models is information about known deposits. The purpose of this publication is to make this kind of information available in digital form for sediment-hosted zinc-lead deposits. Mineral-deposit models are important in exploration planning and quantitative resource assessments: Grades and tonnages among deposit types are significantly different, and many types occur in different geologic settings that can be identified from geologic maps. Mineral-deposit models are the keystone in combining the diverse geoscience information on geology, mineral occurrences, geophysics, and geochemistry used in resource assessments and mineral exploration. Too few thoroughly explored mineral deposits are available in most local areas for reliable identification of the important geoscience variables, or for robust estimation of undiscovered deposits - thus, we need mineral-deposit models. Globally based deposit models allow recognition of important features because the global models demonstrate how common different features are. Well-designed and -constructed deposit models allow geologists to know from observed geologic environments the possible mineral-deposit types that might exist, and allow economists to determine the possible economic viability of these resources in the region. Thus, mineral-deposit models play the central role in transforming geoscience information to a form useful to policy makers. This publication contains a computer file of information on sediment-hosted zinc-lead deposits from around the world. It also presents new grade and tonnage models for nine types of these deposits and a file allowing locations of all deposits to be plotted in Google Earth. The data are presented in FileMaker Pro, Excel and text files to make the information available to as many as possible. The value of this information and any derived analyses depends critically on the consistent manner of data gathering. For this reason, we first discuss the rules applied in this compilation. Next, the fields of the data file are considered. Finally, we provide new grade and tonnage models that are, for the most part, based on a classification of deposits using observable geologic units from regional-scaled maps.
1992-12-01
Orr. 15 dog - 49 - Irr.-, frac. op. hor. 50-7 CD 50.4 50.4- P-3 Irr. frc p o.Ran 10.2 R:C-. 10.2 -T- -intensely fr-ac. Loss 0.0 -HB U.L. 0.0 HIDrill...unwea. f. to milcro xin. med.RO 62.Go to thick bdd. fos. w/ oct. sht Ielaminae, Gry V/ red tint DIP- L./o, orr. C 265. Bdd. Pig. op, 0 dog . C 265...Vert, frac. err. Cot. hid. 63 - dd. Pigs. op. 5-10 dog , 58.6 59 -CD *59.3 59.3 P-10 Box Ren 10.2 6 Rec. 10.0 ldd.Ptg. IL.. 10-13 do%. 4 Loss 0.2 Idd.Ptq
Young people in Bogota, Colombia develop their own strategies to prevent risky sexual behavior.
Saavedra, M
1996-01-01
Although the government of Colombia moved in 1993 to mandate sexuality education in primary and secondary schools, nongovernmental organizations have worked in this area for more than two decades. Notable has been the work of one such organization, the Colombian Human and Social Development Foundation, among youth from a marginal, underserved area of Bogota that houses approximately 27,000 adolescents. The project uses a peer approach to relate the values of responsibility, tolerance, and self-determination to the prevention of risky sexual behaviors. At the onset, 15 youth leaders from the local school identified strategies for raising the topic of sexuality to their peers: suggestion boxes, school radio programs, educational materials such as murals and pamphlets, workshops, board games with sexuality-related themes, and community involvement. Suggestion box submissions revealed that sixth and seventh graders wanted to know about puberty-related events, while older students were interested in the effects of masturbation on health and appearance and the association between premarital sexual activity and one's reputation. In an 18-month period, close to 9000 community residents were reached with program materials and 1798 adolescents participated in group meetings. Among the gains observed have been correction of misinformation, a broader view of sexuality, the capacity for independent thought, and self-pride.
Optical Analogies for Teaching Physics of X-rays and CAT Scans*
NASA Astrophysics Data System (ADS)
Kalita, Spartak; Zollman, D. A.
2006-12-01
Our Modern Miracle Medical Machines project is devoted to improving motivation and performance of pre-med students in their undergraduate Physics classes. Under its framework we designed some non-traditional hands-on lab activities involving optical analogies to teach the application of contemporary physics to medical imaging. On the basis of our previous research (primarily clinical interviews with the target student population) we created activities using semi-transparent Lego blocks as analogs for understanding the image reconstruction process in computerized axial tomography (CAT or CT). Teaching interviews have been conducted with pre-med and other health-related majors using these materials. Students had to determine the shape of an object constructed of Lego blocks and hidden within a closed box. This arrangement imitated an unknown entity within a part of the human body. Using LEDs (light-emitting diodes) and a photo detector the students attempted to learn the contents of the box. They also had access to another similar Lego arrangement which they were free to open. Interviewees successfully transferred knowledge from their science and math classes (as well as from other sources) while completing activities and expressed great interest in this endeavor. Improvements to the activities have been based on the students’ feedback. *Supported by the National Science Foundation under grant 04-2675
Recovery of metals from a mixture of various spent batteries by a hydrometallurgical process.
Tanong, Kulchaya; Coudert, Lucie; Mercier, Guy; Blais, Jean-Francois
2016-10-01
Spent batteries contain hazardous materials, including numerous metals (cadmium, lead, nickel, zinc, etc.) that are present at high concentrations. Therefore, proper treatment of these wastes is necessary to prevent their harmful effects on human health and the environment. Current recycling processes are mainly applied to treat each type of spent battery separately. In this laboratory study, a hydrometallurgical process has been developed to simultaneously and efficiently solubilize metals from spent batteries. Among the various chemical leaching agents tested, sulfuric acid was found to be the most efficient and cheapest reagent. A Box-Behnken design was used to identify the influence of several parameters (acid concentration, solid/liquid ratio, retention time and number of leaching steps) on the removal of metals from spent batteries. According to the results, the solid/liquid ratio and acid concentration seemed to be the main parameters influencing the solubilization of zinc, manganese, nickel, cadmium and cobalt from spent batteries. According to the results, the highest metal leaching removals were obtained under the optimal leaching conditions (pulp density = 180 g/L (w/v), [H2SO4] = 1 M, number of leaching step = 3 and leaching time = 30 min). Under such optimum conditions, the removal yields obtained were estimated to be 65% for Mn, 99.9% for Cd, 100% for Zn, 74% for Co and 68% for Ni. Further studies will be performed to improve the solubilization of Mn and to selectively recover the metals. Copyright © 2016 Elsevier Ltd. All rights reserved.
Molecular changes in obese and depressive patients are similar to neurodegenerative disorders
Habibi, Laleh; Tafakhori, Abbas; Hadiani, Rasoul; Maserat-Mashhadi, Maryam; Kafrash, Zeinab; Torabi, Shahla; Azhdarzadeh, Mohammad; Akrami, Seyed Mohammad; Mahmoudi, Morteza; Dinarvand, Rasoul
2017-01-01
Background: Neurodegenerative disorders (NDs) are categorized as multifactorial conditions with different molecular and environmental causes. Disturbance of important signaling pathways, such as energy metabolism and inflammation induced by environmental agents, is involved in the pathophysiology of NDs. It has been proposed that changes in the lifestyle and nutrition (metabolism) during mid-life could trigger and accumulate cellular and molecular damages resulting in NDs during aging. Methods: In order to test the hypothesis, we investigated the expression level of two energy metabolism-related [forkhead box O1 (FOXO1) and forkhead box O3 (FOXO3A)] and two pro-inflammatory cytokines [interleukin 1β (IL-1β) and IL-6] genes, using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Furthermore, changes in the ionic concentration of three essential heavy metals [iron (Fe), copper (Cu), and zinc (Zn)] by atomic absorption spectroscopy in patients with NDs, depression, obesity, and diabetes type II, were evaluated and compared with the results of normal individuals. Results: More than half of the participants in obesity, depression, and ND groups had significant up-regulation of FOXO1 and FOXO3A, down-regulation of IL-1β and IL-6, and higher levels of Fe and Cu in their blood. This pattern of gene expression was not repeated in diabetic patients. Conclusion: It could be concluded that individuals affected with different levels of obesity and depression have increased the risk of developing NDs later in life, probably through changes in energy metabolism, inflammatory pathways, and ionic concentrations. PMID:29736225
Molecular changes in obese and depressive patients are similar to neurodegenerative disorders.
Habibi, Laleh; Tafakhori, Abbas; Hadiani, Rasoul; Maserat-Mashhadi, Maryam; Kafrash, Zeinab; Torabi, Shahla; Azhdarzadeh, Mohammad; Akrami, Seyed Mohammad; Mahmoudi, Morteza; Dinarvand, Rasoul
2017-10-07
Background: Neurodegenerative disorders (NDs) are categorized as multifactorial conditions with different molecular and environmental causes. Disturbance of important signaling pathways, such as energy metabolism and inflammation induced by environmental agents, is involved in the pathophysiology of NDs. It has been proposed that changes in the lifestyle and nutrition (metabolism) during mid-life could trigger and accumulate cellular and molecular damages resulting in NDs during aging. Methods: In order to test the hypothesis, we investigated the expression level of two energy metabolism-related [forkhead box O1 (FOXO1) and forkhead box O3 (FOXO3A)] and two pro-inflammatory cytokines [interleukin 1β (IL-1β) and IL-6] genes, using quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Furthermore, changes in the ionic concentration of three essential heavy metals [iron (Fe), copper (Cu), and zinc (Zn)] by atomic absorption spectroscopy in patients with NDs, depression, obesity, and diabetes type II, were evaluated and compared with the results of normal individuals. Results: More than half of the participants in obesity, depression, and ND groups had significant up-regulation of FOXO1 and FOXO3A, down-regulation of IL-1β and IL-6, and higher levels of Fe and Cu in their blood. This pattern of gene expression was not repeated in diabetic patients. Conclusion: It could be concluded that individuals affected with different levels of obesity and depression have increased the risk of developing NDs later in life, probably through changes in energy metabolism, inflammatory pathways, and ionic concentrations.
Goossens, Steven; Radaelli, Enrico; Blanchet, Odile; Durinck, Kaat; Van der Meulen, Joni; Peirs, Sofie; Taghon, Tom; Tremblay, Cedric S.; Costa, Magdaline; Ghahremani, Morvarid Farhang; De Medts, Jelle; Bartunkova, Sonia; Haigh, Katharina; Schwab, Claire; Farla, Natalie; Pieters, Tim; Matthijssens, Filip; Van Roy, Nadine; Best, J. Adam; Deswarte, Kim; Bogaert, Pieter; Carmichael, Catherine; Rickard, Adam; Suryani, Santi; Bracken, Lauryn S.; Alserihi, Raed; Canté-Barrett, Kirsten; Haenebalcke, Lieven; Clappier, Emmanuelle; Rondou, Pieter; Slowicka, Karolina; Huylebroeck, Danny; Goldrath, Ananda W.; Janzen, Viktor; McCormack, Matthew P.; Lock, Richard B.; Curtis, David J.; Harrison, Christine; Berx, Geert; Speleman, Frank; Meijerink, Jules P. P.; Soulier, Jean; Van Vlierberghe, Pieter; Haigh, Jody J.
2015-01-01
Early T-cell precursor leukaemia (ETP-ALL) is a high-risk subtype of human leukaemia that is poorly understood at the molecular level. Here we report translocations targeting the zinc finger E-box-binding transcription factor ZEB2 as a recurrent genetic lesion in immature/ETP-ALL. Using a conditional gain-of-function mouse model, we demonstrate that sustained Zeb2 expression initiates T-cell leukaemia. Moreover, Zeb2-driven mouse leukaemia exhibit some features of the human immature/ETP-ALL gene expression signature, as well as an enhanced leukaemia-initiation potential and activated Janus kinase (JAK)/signal transducers and activators of transcription (STAT) signalling through transcriptional activation of IL7R. This study reveals ZEB2 as an oncogene in the biology of immature/ETP-ALL and paves the way towards pre-clinical studies of novel compounds for the treatment of this aggressive subtype of human T-ALL using our Zeb2-driven mouse model. PMID:25565005
Liu, Qing-Lin; Xu, Ke-Dong; Ma, Nan; Zhao, Liang-Jun; Xi, Lin
2014-04-01
Previous studies have shown that the SUP genes play important roles in flower development and plant growth and morphogenesis. In this study, we isolated and characterized a SUPERMAN-like gene DgSZFP from chrysanthemum. DgSZFP contains one conserved Cys2/His2-type zinc finger motifs in the N-terminal region and an EAR-box in C-terminus. Its expression was significantly higher in nodes, flower buds, disc stamens, and petals than in the other tissues. Overexpression of DgSZFP in tobacco resulted in enhanced branching, reduced plant height, increased the width of petal tubes, produced the staminoid petals and petaloid stamens in flowers, and enhanced the seed weight and size. In addition, DgSZFP-overexpression tobacco plants accumulated high concentrations of cytokinin and chlorophyll. These results suggest that DgSZFP may be the candidate gene for regulating branching and floral organ development in chrysanthemum. Crown Copyright © 2014. Published by Elsevier Masson SAS. All rights reserved.
Luna-Zurita, Luis; Stirnimann, Christian U; Glatt, Sebastian; Kaynak, Bogac L; Thomas, Sean; Baudin, Florence; Samee, Md Abul Hassan; He, Daniel; Small, Eric M; Mileikovsky, Maria; Nagy, Andras; Holloway, Alisha K; Pollard, Katherine S; Müller, Christoph W; Bruneau, Benoit G
2016-02-25
Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation. Copyright © 2016 Elsevier Inc. All rights reserved.
Mocellin, J; Mercier, G; Morel, J L; Blais, J F; Simonnot, M O
2015-08-01
In this laboratory study, a process has been developed for selectively leaching zinc and manganese from pyrometallurgical sludge produced in the steel manufacturing industry. In the first part, the yield of Zn extraction was studied using four factors and four levels of the Box-Behnken response surface design. The optimum conditions for the step of Zn leaching were determined to be a sulfuric acid concentration of 0.25 mol/L, a pulp density of 10%, an extraction temperature of 20 °C, and three stages of leaching. Under such conditions, 75% of the Zn should be leached. For Mn leaching, the optimum conditions were determined to be a sulfuric acid concentration of 0.25 mol/L, a Na2S2O5/Mn stoichiometry of 1, a leaching time of 120 min and two leaching steps. In this case, 100% of the Mn should be leached. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mapping and analysis of Caenorhabditis elegans transcription factor sequence specificities
Narasimhan, Kamesh; Lambert, Samuel A; Yang, Ally WH; Riddell, Jeremy; Mnaimneh, Sanie; Zheng, Hong; Albu, Mihai; Najafabadi, Hamed S; Reece-Hoyes, John S; Fuxman Bass, Juan I; Walhout, Albertha JM; Weirauch, Matthew T; Hughes, Timothy R
2015-01-01
Caenorhabditis elegans is a powerful model for studying gene regulation, as it has a compact genome and a wealth of genomic tools. However, identification of regulatory elements has been limited, as DNA-binding motifs are known for only 71 of the estimated 763 sequence-specific transcription factors (TFs). To address this problem, we performed protein binding microarray experiments on representatives of canonical TF families in C. elegans, obtaining motifs for 129 TFs. Additionally, we predict motifs for many TFs that have DNA-binding domains similar to those already characterized, increasing coverage of binding specificities to 292 C. elegans TFs (∼40%). These data highlight the diversification of binding motifs for the nuclear hormone receptor and C2H2 zinc finger families and reveal unexpected diversity of motifs for T-box and DM families. Motif enrichment in promoters of functionally related genes is consistent with known biology and also identifies putative regulatory roles for unstudied TFs. DOI: http://dx.doi.org/10.7554/eLife.06967.001 PMID:25905672
Long-term trends of metal content and water quality in the Belaya River Basin
NASA Astrophysics Data System (ADS)
Fashchevskaia, Tatiana; Motovilov, Yuri
2017-04-01
The aim of this research is to identify the spatiotemporal regularities of iron, copper and zinc contents in the streams of the Belaya River basin. The Belaya River is situated in the South Ural region and it is one of the biggest tributary in the Volga River basin with catchment area of 142 000 km2. More than sixty years the diverse economic activities are carried out in the Belaya River basin, the intensity of this activity is characterized by high temporal variability. The leading industries in the region are metallurgy, oil production, petroleum processing, chemistry and petro chemistry, mechanical engineering, power industry. The dynamics of human activities in the catchment and intra and inter-annual changes in the water quality were analyzed for the period 1969-2007 years. Inter-annual dynamics of the metal content in the river waters was identified on the basis of the long-term hydrological monitoring statistics at the 32 sites. It was found that the dynamics of intensity of economic activities in the Belaya River basin was the cause statistically significant changes in the metal content of the river network. Statistically homogeneous time intervals have been set for each monitoring site. Within these time intervals there were obtained averaged reliable quantitative estimations of water quality. Calculations showed that the content of iron, copper and zinc did not change during the analyzed period at the sites, located in the mountain and foothill parts of the basin. At other sites, located on the plains areas of the Belaya River Basin and in the areas of functioning of large industrial facilities, metal content varies. A period of increased concentrations of metals is since the second half of 1970 until the end of the 1990s. From the end of 1990 to 2007 the average metal content for a long-term period in the river waters is reduced in comparison with the previous period: iron - to 7.4 times, copper - to 6.7 times, zinc - to 15 times. As a result, by the end of the test period the average long-term metal content in the river waters is: iron 0.07-1.21 mg/l, copper 0.9-7.0 μg/l, zinc 2,0-12.5 μg/l. Empirical probability distributions of iron, copper and zinc concentrations for various phases of the water regime in all investigated monitoring sites were approximated by Pearson type III curves and the average of the concentration values, the coefficient of variation and asymmetry, as well as the values of the concentrations of metal in the range of 1-95% of frequency were estimated. It was found that by the end of the test period, the average long-term concentrations for iron and copper exceed MAC for fishery use, for zinc become smaller MAC in many streams of Belaya River basin. The probability of exceeding the iron and copper content of MAC level increases during floods, the zinc content of MAC level increases during the winter low. Acknowledgements. The work was financially supported by the Russian Foundation for Basic Research (Grant 15-05-09022)
Holland, Tai C; Killilea, David W; Shenvi, Swapna V; King, Janet C
2015-12-01
A coordinated network of zinc transporters and binding proteins tightly regulate cellular zinc levels. Canonical responses to zinc availability are thought to be mediated by changes in gene expression of key zinc transporters. We investigated the temporal relationships of actual zinc uptake with patterns of gene expression in membrane-bound zinc transporters in the human immortalized T lymphocyte Jurkat cell line. Cellular zinc levels were elevated or reduced with exogenous zinc sulfate or N,N,N',N-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN), respectively. Excess zinc resulted in a rapid 44 % decrease in the rate of zinc uptake within 10 min. After 120 min, the expression of metallothionein (positive control) increased, as well as the zinc exporter, ZnT1; however, the expression of zinc importers did not change during this time period. Zinc chelation with TPEN resulted in a rapid twofold increase in the rate of zinc uptake within 10 min. After 120 min, the expression of ZnT1 decreased, while again the expression of zinc importers did not change. Overall, zinc transporter gene expression kinetics did not match actual changes in cellular zinc uptake with exogenous zinc or TPEN treatments. This suggests zinc transporter regulation may be the initial response to changes in zinc within Jurkat cells.
Maternal Zinc Intakes and Homeostatic Adjustments during Pregnancy and Lactation
Donangelo, Carmen Marino; King, Janet C.
2012-01-01
Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating effects, systematic reviews and meta-analysis of the effect of maternal zinc supplementation on pregnancy outcomes have consistently shown a limited benefit. We hypothesize, therefore, that zinc homeostatic adjustments during pregnancy and lactation improve zinc utilization sufficiently to provide the increased zinc needs in these stages and, therefore, mitigate immediate detrimental effects due to a low zinc intake. The specific questions addressed are the following: How is zinc utilization altered during pregnancy and lactation? Are those homeostatic adjustments influenced by maternal zinc status, dietary zinc, or zinc supplementation? These questions are addressed by critically reviewing results from published human studies on zinc homeostasis during pregnancy and lactation carried out in different populations worldwide. PMID:22852063
Biomarkers of Nutrition for Development (BOND)—Zinc Review12345
King, Janet C; Brown, Kenneth H; Gibson, Rosalind S; Krebs, Nancy F; Lowe, Nicola M; Siekmann, Jonathan H; Raiten, Daniel J
2016-01-01
Zinc is required for multiple metabolic processes as a structural, regulatory, or catalytic ion. Cellular, tissue, and whole-body zinc homeostasis is tightly controlled to sustain metabolic functions over a wide range of zinc intakes, making it difficult to assess zinc insufficiency or excess. The BOND (Biomarkers of Nutrition for Development) Zinc Expert Panel recommends 3 measurements for estimating zinc status: dietary zinc intake, plasma zinc concentration (PZC), and height-for-age of growing infants and children. The amount of dietary zinc potentially available for absorption, which requires an estimate of dietary zinc and phytate, can be used to identify individuals and populations at risk of zinc deficiency. PZCs respond to severe dietary zinc restriction and to zinc supplementation; they also change with shifts in whole-body zinc balance and clinical signs of zinc deficiency. PZC cutoffs are available to identify individuals and populations at risk of zinc deficiency. However, there are limitations in using the PZC to assess zinc status. PZCs respond less to additional zinc provided in food than to a supplement administered between meals, there is considerable interindividual variability in PZCs with changes in dietary zinc, and PZCs are influenced by recent meal consumption, the time of day, inflammation, and certain drugs and hormones. Insufficient data are available on hair, urinary, nail, and blood cell zinc responses to changes in dietary zinc to recommend these biomarkers for assessing zinc status. Of the potential functional indicators of zinc, growth is the only one that is recommended. Because pharmacologic zinc doses are unlikely to enhance growth, a growth response to supplemental zinc is interpreted as indicating pre-existing zinc deficiency. Other functional indicators reviewed but not recommended for assessing zinc nutrition in clinical or field settings because of insufficient information are the activity or amounts of zinc-dependent enzymes and proteins and biomarkers of oxidative stress, inflammation, or DNA damage. PMID:26962190
Interferometric Computation Beyond Quantum Theory
NASA Astrophysics Data System (ADS)
Garner, Andrew J. P.
2018-03-01
There are quantum solutions for computational problems that make use of interference at some stage in the algorithm. These stages can be mapped into the physical setting of a single particle travelling through a many-armed interferometer. There has been recent foundational interest in theories beyond quantum theory. Here, we present a generalized formulation of computation in the context of a many-armed interferometer, and explore how theories can differ from quantum theory and still perform distributed calculations in this set-up. We shall see that quaternionic quantum theory proves a suitable candidate, whereas box-world does not. We also find that a classical hidden variable model first presented by Spekkens (Phys Rev A 75(3): 32100, 2007) can also be used for this type of computation due to the epistemic restriction placed on the hidden variable.
Toward eliminating HLA class I expression to generate universal cells from allogeneic donors
Torikai, Hiroki; Reik, Andreas; Soldner, Frank; Warren, Edus H.; Yuen, Carrie; Zhou, Yuanyue; Crossland, Denise L.; Huls, Helen; Littman, Nicholas; Zhang, Ziying; Tykodi, Scott S.; Kebriaei, Partow; Lee, Dean A.; Miller, Jeffrey C.; Rebar, Edward J.; Holmes, Michael C.; Jaenisch, Rudolf; Champlin, Richard E.; Gregory, Philip D.
2013-01-01
Long-term engraftment of allogeneic cells necessitates eluding immune-mediated rejection, which is currently achieved by matching for human leukocyte antigen (HLA) expression, immunosuppression, and/or delivery of donor-derived cells to sanctuary sites. Genetic engineering provides an alternative approach to avoid clearance of cells that are recognized as “non-self” by the recipient. To this end, we developed designer zinc finger nucleases and employed a “hit-and-run” approach to genetic editing for selective elimination of HLA expression. Electro-transfer of mRNA species coding for these engineered nucleases completely disrupted expression of HLA-A on human T cells, including CD19-specific T cells. The HLA-Aneg T-cell pools can be enriched and evade lysis by HLA-restricted cytotoxic T-cell clones. Recognition by natural killer cells of cells that had lost HLA expression was circumvented by enforced expression of nonclassical HLA molecules. Furthermore, we demonstrate that zinc finger nucleases can eliminate HLA-A expression from embryonic stem cells, which broadens the applicability of this strategy beyond infusing HLA-disparate immune cells. These findings establish that clinically appealing cell types derived from donors with disparate HLA expression can be genetically edited to evade an immune response and provide a foundation whereby cells from a single donor can be administered to multiple recipients. PMID:23741009
NASA Astrophysics Data System (ADS)
Ferguson, Sarah; Niedbalski, Peter; Parish, Christopher; Kiswandhi, Andhika; Kovacs, Zoltan; Lumata, Lloyd
Gadolinium (Gd) complexes are widely used relaxation-based clinical contrast agents in magnetic resonance imaging (MRI). Gd-based MRI contrast agents with open-chain ligand such as Gd-DTPA, commercially known as magnevist, are less stable compared to Gd complexes with macrocyclic ligands such as GdDOTA (Dotarem). The dissociation of Gd-DPTA into Gd ion and DTPA ligand under certain biological conditions such as high zinc levels can potentially cause kidney damage. Since Gd is paramagnetic, direct NMR detection of the Gd-DTPA dissociation is quite challenging due to ultra-short relaxation times. In this work, we have investigated Y-DTPA as a model for Gd-DPTA dissociation under high zinc content solutions. Using dissolution dynamic nuclear polarization (DNP), the 89Y NMR signal is amplified by several thousand-fold. Due to the the relatively long T1 relaxation time of 89Y which translates to hyperpolarization lifetime of several minutes, the dissociation of Y-DTPA can be tracked in real-time by hyperpolarized 89Y NMR spectroscopy. Dissociation kinetic rates and implications on the degradation of open-chain Gd3+ MRI contrast agents will be discussed. This work was supported by the U.S. Department of Defense Award Number W81XWH-14-1-0048 and by the Robert A. Welch Foundation research Grant Number AT-1877.
2013-01-01
Background Layered hydroxides salts (LHS), a layered inorganic compound is gaining attention in a wide range of applications, particularly due to its unique anion exchange properties. In this work, layered zinc hydroxide nitrate (LZH), a family member of LHS was intercalated with anionic ciprofloxacin (CFX), a broad spectrum antibiotic via ion exchange in a mixture solution of water:ethanol. Results Powder x-ray diffraction (XRD), Fourier transform infrared (FTIR) and thermogravimetric analysis (TGA) confirmed the drug anions were successfully intercalated in the interlayer space of LZH. Specific surface area of the obtained compound was increased compared to that of the host due to the different pore textures between the two materials. CFX anions were slowly released over 80 hours in phosphate-buffered saline (PBS) solution due to strong interactions that occurred between the intercalated anions and the host lattices. The intercalation compound demonstrated enhanced antiproliferative effects towards A549 cancer cells compared to the toxicity of CFX alone. Conclusions Strong host-guest interactions between the LZH lattice and the CFX anion give rise to a new intercalation compound that demonstrates sustained release mode and enhanced toxicity effects towards A549 cell lines. These findings should serve as foundations towards further developments of the brucite-like host material in drug delivery systems. PMID:23849189
Zinc starvation induces autophagy in yeast
Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori
2017-01-01
Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. PMID:28264932
A dynamic model for predicting growth in zinc-deficient stunted infants given supplemental zinc.
Wastney, Meryl E; McDonald, Christine M; King, Janet C
2018-05-01
Zinc deficiency limits infant growth and increases susceptibility to infections, which further compromises growth. Zinc supplementation improves the growth of zinc-deficient stunted infants, but the amount, frequency, and duration of zinc supplementation required to restore growth in an individual child is unknown. A dynamic model of zinc metabolism that predicts changes in weight and length of zinc-deficient, stunted infants with dietary zinc would be useful to define effective zinc supplementation regimens. The aims of this study were to develop a dynamic model for zinc metabolism in stunted, zinc-deficient infants and to use that model to predict the growth response when those infants are given zinc supplements. A model of zinc metabolism was developed using data on zinc kinetics, tissue zinc, and growth requirements for healthy 9-mo-old infants. The kinetic model was converted to a dynamic model by replacing the rate constants for zinc absorption and excretion with functions for these processes that change with zinc intake. Predictions of the dynamic model, parameterized for zinc-deficient, stunted infants, were compared with the results of 5 published zinc intervention trials. The model was then used to predict the results for zinc supplementation regimes that varied in the amount, frequency, and duration of zinc dosing. Model predictions agreed with published changes in plasma zinc after zinc supplementation. Predictions of weight and length agreed with 2 studies, but overpredicted values from a third study in which other nutrient deficiencies may have been growth limiting; the model predicted that zinc absorption was impaired in that study. The model suggests that frequent, smaller doses (5-10 mg Zn/d) are more effective for increasing growth in stunted, zinc-deficient 9-mo-old infants than are larger, less-frequent doses. The dose amount affects the duration of dosing necessary to restore and maintain plasma zinc concentration and growth.
Zyba, Sarah J; Killilea, David W; Holland, Tai C; Kim, Elijah; Moy, Adrian; Sutherland, Barbara; Shigenaga, Mark K
2017-01-01
Background: Food fortification has been recommended to improve a population’s micronutrient status. Biofortification techniques modestly elevate the zinc content of cereals, but few studies have reported a positive impact on functional indicators of zinc status. Objective: We determined the impact of a modest increase in dietary zinc that was similar to that provided by biofortification programs on whole-body and cellular indicators of zinc status. Design: Eighteen men participated in a 6-wk controlled consumption study of a low-zinc, rice-based diet. The diet contained 6 mg Zn/d for 2 wk and was followed by 10 mg Zn/d for 4 wk. To reduce zinc absorption, phytate was added to the diet during the initial period. Indicators of zinc homeostasis, including total absorbed zinc (TAZ), the exchangeable zinc pool (EZP), plasma and cellular zinc concentrations, zinc transporter gene expression, and other metabolic indicators (i.e., DNA damage, inflammation, and oxidative stress), were measured before and after each dietary-zinc period. Results: TAZ increased with increased dietary zinc, but plasma zinc concentrations and EZP size were unchanged. Erythrocyte and leukocyte zinc concentrations and zinc transporter expressions were not altered. However, leukocyte DNA strand breaks decreased with increased dietary zinc, and the level of proteins involved in DNA repair and antioxidant and immune functions were restored after the dietary-zinc increase. Conclusions: A moderate 4-mg/d increase in dietary zinc, similar to that which would be expected from zinc-biofortified crops, improves zinc absorption but does not alter plasma zinc. The repair of DNA strand breaks improves, as do serum protein concentrations that are associated with the DNA repair process. This trial was registered at clinicaltrials.gov as NCT02861352. PMID:28003206
Crystal structure of human lysyl oxidase-like 2 (hLOXL2) in a precursor state.
Zhang, Xi; Wang, Qifan; Wu, Jianping; Wang, Jiawei; Shi, Yigong; Liu, Minhao
2018-04-10
Lysyl oxidases (LOXs), a type of copper- and lysyl tyrosylquinone (LTQ) -dependent amine oxidase, catalyze the oxidative deamination of lysine residues of extracellular matrix (ECM) proteins such as elastins and collagens and generate aldehyde groups. The oxidative deamination of lysine represents the foundational step for the cross-linking of elastin and collagen and thus is crucial for ECM modeling. Despite their physiological significance, the structure of this important family of enzymes remains elusive. Here we report the crystal structure of human lysyl oxidase-like 2 (hLOXL2) at 2.4-Å resolution. Unexpectedly, the copper-binding site of hLOXL2 is occupied by zinc, which blocks LTQ generation and the enzymatic activity of hLOXL2 in our in vitro assay. Biochemical analysis confirms that copper loading robustly activates hLOXL2 and supports LTQ formation. Furthermore, the LTQ precursor residues in the structure are distanced by 16.6 Å, corroborating the notion that the present structure may represent a precursor state and that pronounced conformational rearrangements would be required for protein activation. The structure presented here establishes an important foundation for understanding the structure-function relationship of LOX proteins and will facilitate LOX-targeting drug discovery. Copyright © 2018 the Author(s). Published by PNAS.
Zinc as a Gatekeeper of Immune Function
Wessels, Inga; Maywald, Martina; Rink, Lothar
2017-01-01
After the discovery of zinc deficiency in the 1960s, it soon became clear that zinc is essential for the function of the immune system. Zinc ions are involved in regulating intracellular signaling pathways in innate and adaptive immune cells. Zinc homeostasis is largely controlled via the expression and action of zinc “importers” (ZIP 1–14), zinc “exporters” (ZnT 1–10), and zinc-binding proteins. Anti-inflammatory and anti-oxidant properties of zinc have long been documented, however, underlying mechanisms are still not entirely clear. Here, we report molecular mechanisms underlying the development of a pro-inflammatory phenotype during zinc deficiency. Furthermore, we describe links between altered zinc homeostasis and disease development. Consequently, the benefits of zinc supplementation for a malfunctioning immune system become clear. This article will focus on underlying mechanisms responsible for the regulation of cellular signaling by alterations in zinc homeostasis. Effects of fast zinc flux, intermediate “zinc waves”, and late homeostatic zinc signals will be discriminated. Description of zinc homeostasis-related effects on the activation of key signaling molecules, as well as on epigenetic modifications, are included to emphasize the role of zinc as a gatekeeper of immune function. PMID:29186856
Zinc starvation induces autophagy in yeast.
Kawamata, Tomoko; Horie, Tetsuro; Matsunami, Miou; Sasaki, Michiko; Ohsumi, Yoshinori
2017-05-19
Zinc is an essential nutrient for all forms of life. Within cells, most zinc is bound to protein. Because zinc serves as a catalytic or structural cofactor for many proteins, cells must maintain zinc homeostasis under severely zinc-deficient conditions. In yeast, the transcription factor Zap1 controls the expression of genes required for uptake and mobilization of zinc, but to date the fate of existing zinc-binding proteins under zinc starvation remains poorly understood. Autophagy is an evolutionarily conserved cellular degradation/recycling process in which cytoplasmic proteins and organelles are sequestered for degradation in the vacuole/lysosome. In this study, we investigated how autophagy functions under zinc starvation. Zinc depletion induced non-selective autophagy, which is important for zinc-limited growth. Induction of autophagy by zinc starvation was not directly related to transcriptional activation of Zap1. Instead, TORC1 inactivation directed zinc starvation-induced autophagy. Abundant zinc proteins, such as Adh1, Fba1, and ribosomal protein Rpl37, were degraded in an autophagy-dependent manner. But the targets of autophagy were not restricted to zinc-binding proteins. When cellular zinc is severely depleted, this non-selective autophagy plays a role in releasing zinc from the degraded proteins and recycling zinc for other essential purposes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Intracellular zinc distribution in mitochondria, ER and the Golgi apparatus
Lu, Qiping; Haragopal, Hariprakash; Slepchenko, Kira G; Stork, Christian; Li, Yang V
2016-01-01
Zinc (Zn2+) is required for numerous cellular functions. As such, the homeostasis and distribution of intracellular zinc can influence cellular metabolism and signaling. However, the exact distribution of free zinc within live cells remains elusive. Previously we showed the release of zinc from thapsigargin/IP3-sensitive endoplasmic reticulum (ER) storage in cortical neurons. In the present study, we investigated if other cellular organelles also contain free chelatable zinc and function as organelle storage for zinc. To identify free zinc within the organelles, live cells were co-stained with Zinpyr-1, a zinc fluorescent dye, and organelle-specific fluorescent dyes (MitoFluor Red 589: mitochondria; ER Tracker Red: endoplasmic reticulum; BODIPY TR ceramide: Golgi apparatus; Syto Red 64: nucleus). We examined organelles that represent potential storing sites for intracellular zinc. We showed that zinc fluorescence staining was co-localized with MitoFluor Red 589, ER Tracker Red, and BODIPY TR ceramide respectively, suggesting the presence of free zinc in mitochondria, endoplasmic reticulum, and the Golgi apparatus. On the other hand, cytosol and nucleus had nearly no detectable zinc fluorescence. It is known that nucleus contains high amount of zinc binding proteins that have high zinc binding affinity. The absence of zinc fluorescence suggests that there is little free zinc in these two regions. It also indicates that the zinc fluorescence detected in mitochondria, ER and Golgi apparatus represents free chelatable zinc. Taken together, our results support that these organelles are potential zinc storing organelles during cellular zinc homeostasis. PMID:27186321
Wegmüller, Rita; Tay, Fabian; Zeder, Christophe; Brnić, Marica; Hurrell, Richard F.
2014-01-01
The water-soluble zinc salts gluconate, sulfate, and acetate are commonly used as supplements in tablet or syrup form to prevent zinc deficiency and to treat diarrhea in children in combination with oral rehydration. Zinc citrate is an alternative compound with high zinc content, slightly soluble in water, which has better sensory properties in syrups but no absorption data in humans. We used the double-isotope tracer method with 67Zn and 70Zn to measure zinc absorption from zinc citrate given as supplements containing 10 mg of zinc to 15 healthy adults without food and compared absorption with that from zinc gluconate and zinc oxide (insoluble in water) using a randomized, double-masked, 3-way crossover design. Median (IQR) fractional absorption of zinc from zinc citrate was 61.3% (56.6–71.0) and was not different from that from zinc gluconate with 60.9% (50.6–71.7). Absorption from zinc oxide at 49.9% (40.9–57.7) was significantly lower than from both other supplements (P < 0.01). Three participants had little or no absorption from zinc oxide. We conclude that zinc citrate, given as a supplement without food, is as well absorbed by healthy adults as zinc gluconate and may thus be a useful alternative for preventing zinc deficiency and treating diarrhea. The more insoluble zinc oxide is less well absorbed when given as a supplement without food and may be minimally absorbed by some individuals. This trial was registered at clinicaltrials.gov as NCT01576627. PMID:24259556
Strength in Numbers: Using Big Data to Simplify Sentiment Classification.
Filippas, Apostolos; Lappas, Theodoros
2017-09-01
Sentiment classification, the task of assigning a positive or negative label to a text segment, is a key component of mainstream applications such as reputation monitoring, sentiment summarization, and item recommendation. Even though the performance of sentiment classification methods has steadily improved over time, their ever-increasing complexity renders them comprehensible by only a shrinking minority of expert practitioners. For all others, such highly complex methods are black-box predictors that are hard to tune and even harder to justify to decision makers. Motivated by these shortcomings, we introduce BigCounter: a new algorithm for sentiment classification that substitutes algorithmic complexity with Big Data. Our algorithm combines standard data structures with statistical testing to deliver accurate and interpretable predictions. It is also parameter free and suitable for use virtually "out of the box," which makes it appealing for organizations wanting to leverage their troves of unstructured data without incurring the significant expense of creating in-house teams of data scientists. Finally, BigCounter's efficient and parallelizable design makes it applicable to very large data sets. We apply our method on such data sets toward a study on the limits of Big Data for sentiment classification. Our study finds that, after a certain point, predictive performance tends to converge and additional data have little benefit. Our algorithmic design and findings provide the foundations for future research on the data-over-computation paradigm for classification problems.
Ivahnenko, T.; Szabo, Z.; Gibs, J.
2001-01-01
Ground-water sampling techniques were modified to reduce random low-level contamination during collection of filtered water samples for determination of trace-element concentrations. The modified sampling techniques were first used in New Jersey by the US Geological Survey in 1994 along with inductively coupled plasma-mass spectrometry (ICP-MS) analysis to determine the concentrations of 18 trace elements at the one microgram-per-liter (μg/L) level in the oxic water of the unconfined sand and gravel Kirkwood-Cohansey aquifer system. The revised technique tested included a combination of the following: collection of samples (1) with flow rates of about 2L per minute, (2) through acid-washed single-use disposable tubing and (3) a single-use disposable 0.45-μm pore size capsule filter, (4) contained within portable glove boxes, (5) in a dedicated clean sampling van, (6) only after turbidity stabilized at values less than 2 nephelometric turbidity units (NTU), when possible. Quality-assurance data, obtained from equipment blanks and split samples, indicated that trace element concentrations, with the exception of iron, chromium, aluminum, and zinc, measured in the samples collected in 1994 were not subject to random contamination at 1μg/L.Results from samples collected in 1994 were compared to those from samples collected in 1991 from the same 12 PVC-cased observation wells using the available sampling and analytical techniques at that time. Concentrations of copper, lead, manganese and zinc were statistically significantly lower in samples collected in 1994 than in 1991. Sampling techniques used in 1994 likely provided trace-element data that represented concentrations in the aquifer with less bias than data from 1991 when samples were collected without the same degree of attention to sample handling.
Interactions of natural resins and pigments in works of art.
Poli, Tommaso; Piccirillo, Anna; Nervo, Marco; Chiantore, Oscar
2017-10-01
The degradation process involving the formation of metal soaps in drying oils is a well-known problem due to cations from pigments reacting with free fatty acids from the oil. The aggregation of these carboxylates in semi-crystalline structures can lead to eruptions through the paint layers and 'blooming' on the surface. In this work, the metal soaps formation in presence of natural resins has been assessed and studied by means of Fourier transform infrared spectroscopy with experiments concerning the ageing of drying oil and different natural resins (shellac, dammar and colophony) in the presence of common historic pigments (smalt, ochre, umber, azurite, lead white, zinc white and titanium white). Mixtures of resins and pigments have been exposed to photo-ageing in solar box up to 1000h, thermal ageing at 50°C up to 1100h and 6month of room conditions exposure as reference. The decrease in the intensity of the carbonyl band in the spectra, as well as the contemporary increase of the metal carboxylates (in the range from 1500 to 1650cm -1 ) absorption bands, were used as the main indicators of metal soap formation. It has been observed that some pigments, particularly zinc white and smalt, present a 'catalytic' effect favouring the simultaneous formation of associated oxalates. The formation of oxalates and different degradation products from natural resins in the presence of pigments is particularly important, as it deeply affects the removability of varnishes and, more generally, the cleaning processes. Moreover, it permanently modifies the interface between painting and varnish layers as well as the aesthetic aspects of the painted surfaces. The influence of natural resins reactivity with pigments and their role in the oxalate formation is an issue still unexplored. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Min, K. E.; Dube, W. P.; Washenfelder, R. A.; Langford, A. O.; Brown, S. S.; Broch, S.; Fuchs, H.; Gomm, S.; Hofzumahaus, A.; Holland, F.; Hu, M.; Huey, L. G.; Kubik, K.; Li, X.; Liu, X.; Lu, K.; Rohrer, F.; Shao, M.; Sjostedt, S. J.; Tan, Z.; Zhu, T.; Wahner, A.; Wang, B.; Wang, M.; Wang, Y.; Zeng, L.; Zhang, Y.
2014-12-01
The Northern China Plain has experienced visibility degradation and detrimental health impacts due to aerosol and photochemical pollution. To examine these air quality issues, CAREBEIJING-NCP2014 (Care Beijing - Northern China Plain 2014) was held in WangDu, Hebei province, China from 6 June to 15 July 2014. We deployed our newly developed instrument, ACES (Airborne Cavity Enhanced Spectrometer), for high time resolution in-situ measurement of glyoxal (CHOCHO), nitrous acid (HONO) and other trace gases (NO2, H2O) to investigate mechanisms of oxidation processes and secondary organic aerosol (SOA) formation. The in situ measurements of CHOCHO provide observational constraints on secondary organic aerosol formation and oxidation processes, since this molecule has been proposed to play a crucial role in forming aerosol due to its high water solubility, isomerization, and abundant production from the oxidation of many different volatile organic compounds (VOCs). A box model analysis incorporating secondary glyoxal sources from VOC oxidation and sinks to OH reaction, photolysis and heterogeneous uptake will be used to determine a budget and potential for SOA formation. This work was supported by the National Natural Science Foundation of China (21190052), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB05010500) and the U.S. National Science Foundation Atmospheric (AGS-1405805).
Slepchenko, Kira G; Li, Yang V
2012-01-01
Zinc (Zn(2+)) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30-60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells.
Plasma zinc's alter ego is a low-molecular-weight humoral factor.
Ou, Ou; Allen-Redpath, Keith; Urgast, Dagmar; Gordon, Margaret-Jane; Campbell, Gill; Feldmann, Jörg; Nixon, Graeme F; Mayer, Claus-Dieter; Kwun, In-Sook; Beattie, John H
2013-09-01
Mild dietary zinc deprivation in humans and rodents has little effect on blood plasma zinc levels, and yet cellular consequences of zinc depletion can be detected in vascular and other tissues. We proposed that a zinc-regulated humoral factor might mediate the effects of zinc deprivation. Using a novel approach, primary rat vascular smooth muscle cells (VSMCs) were treated with plasma from zinc-deficient (<1 mg Zn/kg) or zinc-adequate (35 mg Zn/kg, pair-fed) adult male rats, and zinc levels were manipulated to distinguish direct and indirect effects of plasma zinc. Gene expression changes were analyzed by microarray and qPCR, and incubation of VSMCs with blood plasma from zinc-deficient rats strongly changed the expression of >2500 genes, compared to incubation of cells with zinc-adequate rat plasma. We demonstrated that this effect was caused by a low-molecular-weight (∼2-kDa) zinc-regulated humoral factor but that changes in gene expression were mostly reversed by adding zinc back to zinc-deficient plasma. Strongly regulated genes were overrepresented in pathways associated with immune function and development. We conclude that zinc deficiency induces the production of a low-molecular-weight humoral factor whose influence on VSMC gene expression is blocked by plasma zinc. This factor is therefore under dual control by zinc.
Uptake and partitioning of zinc in Lemnaceae.
Lahive, Elma; O'Callaghan, Michael J A; Jansen, Marcel A K; O'Halloran, John
2011-11-01
Macrophytes provide food and shelter for aquatic invertebrates and fish, while also acting as reservoirs for nutrients and trace elements. Zinc accumulation has been reported for various Lemnaceae species. However, comparative accumulation across species and the link between zinc accumulation and toxicity are poorly understood. Morphological distribution and cellular storage, in either bound or soluble form, are important for zinc tolerance. This study shows differences in the uptake and accumulation of zinc by three duckweed species. Landoltia punctata and Lemna minor generally accumulated more zinc than Lemna gibba. L. minor, but not L. gibba or L. punctata, accumulated greater concentrations of zinc in roots compared to fronds when exposed to high levels of zinc. The proportion of zinc stored in the bound form relative to the soluble-form was higher in L. minor. L. punctata accumulated greater concentrations of zinc in fronds compared to roots and increased the proportion of zinc it stored in the soluble form, when exposed to high zinc levels. L. gibba is the only species that significantly accumulated zinc at low concentrations, and was zinc-sensitive. Overall, internal zinc concentrations showed no consistent correlation with toxic effect. We conclude that relationships between zinc toxicity and uptake and accumulation are species specific reflecting, among others, zinc distribution and storage. Differences in zinc distribution and storage are also likely to have implications for zinc bioavailability and trophic mobility.
Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc.
Anderson, Charles T; Radford, Robert J; Zastrow, Melissa L; Zhang, Daniel Y; Apfel, Ulf-Peter; Lippard, Stephen J; Tzounopoulos, Thanos
2015-05-19
Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling.
Modulation of extrasynaptic NMDA receptors by synaptic and tonic zinc
Anderson, Charles T.; Radford, Robert J.; Zastrow, Melissa L.; Zhang, Daniel Y.; Apfel, Ulf-Peter; Lippard, Stephen J.; Tzounopoulos, Thanos
2015-01-01
Many excitatory synapses contain high levels of mobile zinc within glutamatergic vesicles. Although synaptic zinc and glutamate are coreleased, it is controversial whether zinc diffuses away from the release site or whether it remains bound to presynaptic membranes or proteins after its release. To study zinc transmission and quantify zinc levels, we required a high-affinity rapid zinc chelator as well as an extracellular ratiometric fluorescent zinc sensor. We demonstrate that tricine, considered a preferred chelator for studying the role of synaptic zinc, is unable to efficiently prevent zinc from binding low-nanomolar zinc-binding sites, such as the high-affinity zinc-binding site found in NMDA receptors (NMDARs). Here, we used ZX1, which has a 1 nM zinc dissociation constant and second-order rate constant for binding zinc that is 200-fold higher than those for tricine and CaEDTA. We find that synaptic zinc is phasically released during action potentials. In response to short trains of presynaptic stimulation, synaptic zinc diffuses beyond the synaptic cleft where it inhibits extrasynaptic NMDARs. During higher rates of presynaptic stimulation, released glutamate activates additional extrasynaptic NMDARs that are not reached by synaptically released zinc, but which are inhibited by ambient, tonic levels of nonsynaptic zinc. By performing a ratiometric evaluation of extracellular zinc levels in the dorsal cochlear nucleus, we determined the tonic zinc levels to be low nanomolar. These results demonstrate a physiological role for endogenous synaptic as well as tonic zinc in inhibiting extrasynaptic NMDARs and thereby fine tuning neuronal excitability and signaling. PMID:25947151
Zinc: an essential but elusive nutrient123
King, Janet C
2011-01-01
Zinc is essential for multiple aspects of metabolism. Physiologic signs of zinc depletion are linked with diverse biochemical functions rather than with a specific function, which makes it difficult to identify biomarkers of zinc nutrition. Nutrients, such as zinc, that are required for general metabolism are called type 2 nutrients. Protein and magnesium are examples of other type 2 nutrients. Type 1 nutrients are required for one or more specific functions: examples include iron, vitamin A, iodine, folate, and copper. When dietary zinc is insufficient, a marked reduction in endogenous zinc loss occurs immediately to conserve the nutrient. If zinc balance is not reestablished, other metabolic adjustments occur to mobilize zinc from small body pools. The location of those pools is not known, but all cells probably have a small zinc reserve that includes zinc bound to metallothionein or zinc stored in the Golgi or in other organelles. Plasma zinc is also part of this small zinc pool that is vulnerable to insufficient intakes. Plasma zinc concentrations decline rapidly with severe deficiencies and more moderately with marginal depletion. Unfortunately, plasma zinc concentrations also decrease with a number of conditions (eg, infection, trauma, stress, steroid use, after a meal) due to a metabolic redistribution of zinc from the plasma to the tissues. This redistribution confounds the interpretation of low plasma zinc concentrations. Biomarkers of metabolic zinc redistribution are needed to determine whether this redistribution is the cause of a low plasma zinc rather than poor nutrition. Measures of metallothionein or cellular zinc transporters may fulfill that role. PMID:21715515
Spatial and temporal variations of metal content and water quality in the Belaya River Basin
NASA Astrophysics Data System (ADS)
Fashchevskaia, T. B.; Motovilov, Y.
2016-12-01
The aim of this research is to identify the spatiotemporal regularities of iron, copper and zinc contents dynamics in the streams of the Belaya River basin. The Belaya River is situated in the South Ural region and is one of the biggest tributary in the Volga River basin with catchment area of 142 000 km2. More than sixty years the diverse economic activities are carried out in the Belaya River basin, the intensity of this activity is characterized by high temporal variability. The leading industries in the region are oil, mining, petroleum processing, chemistry and petro chemistry, mechanical engineering, metallurgy, power industry. The dynamics of human activities in the catchment and intra and inter-annual changes in the water quality are analyzed for the period 1969-2007 years. Inter-annual dynamics of the metal content in the river waters was identified on the basis of the long-term hydrological monitoring statistics at the 32 sites. It was found that the dynamics of intensity of economic activities in the Belaya River basin is the cause statistically significant changes in the metal content of the river network. Statistically homogeneous time intervals have been set for each monitoring site. Within these time intervals there were obtained averaged reliable quantitative estimations of water quality. Empirical probability distributions of iron, copper and zinc concentrations for various phases of the water regime in all investigated monitoring sites were approximated by Pearson type III curves and the averages of the concentration values, the coefficient of variation and asymmetry, as well as the values of the concentrations of metal in the range of 1-95% of frequency were estimated. It was found that by the end of the test period, the average long-term concentrations for iron and copper exceed MAC for fishery use, for zinc become smaller MAC in many streams of Belaya River basin. Acknowledgements. The work was financially supported by the Russian Foundation for Basic Research (Grant 15-05-09022)
Cantoral, Alejandra; Téllez-Rojo, Martha; Shamah-Levy, Teresa; Schnaas, Lourdes; Hernández-Ávila, Mauricio; Peterson, Karen; Ettinger, Adrienne
2017-01-01
Background The 2006 Mexican National Health and Nutrition Survey documented a prevalence of zinc deficiency of almost 30% in children aged one to two years old. Objective We sought to validate a Food Frequency Questionnaire (FFQ) for quantifying dietary bioavailable zinc intake in two-year old Mexican children accounting for phytic acid intake and using serum zinc as a reference. Methods This cross-sectional study was nested within a longitudinal birth cohort of 333 young children in Mexico City. Non-fasting serum zinc concentration was measured and dietary zinc intake was calculated on the basis of a semi-quantitative FFQ administered to their mothers. The relationship between dietary zinc intake and serum zinc was assessed using linear regression, adjusting for phytic acid intake, and analyzed according to two distinct international criteria to estimate bioavailable zinc. Models were stratified by zinc deficiency status. Results Dietary zinc, adjusted for phytic acid intake, explained the greatest proportion of the variance of serum zinc. For each mg of dietary zinc intake, serum zinc increased on average by 0.95 μg/dL (0.15 μmol/L) (p=0.06). When stratified by zinc status, this increase was 0.74 μg/dL (p=0.12) for each milligram of zinc consumed among children with adequate serum zinc (N=276) whereas among those children with zinc deficiency (N=57), serum zinc increased by only 0.11 μg/dL (p=0.82). Conclusion A semi-quantitative FFQ can be used for predicting serum zinc in relation to dietary intake in young children, particularly among those who are zinc-replete, and when phytic acid/phytate intake is considered. Future studies should be conducted accounting for both zinc status and dietary zinc inhibitors to further elucidate and validate these findings. PMID:26121697
Zhou, Ying; Carpenter, Zachary W.; Brennan, Gregory
2009-01-01
Drosophila Morgue is a unique ubiquitination protein that facilitates programmed cell death and associates with DIAP1, a critical cell death inhibitor with E3 ubiquitin ligase activity. Morgue possesses a unique combination of functional domains typically associated with distinct types of ubiquitination enzymes. This includes an F box characteristic of the substrate-binding subunit in Skp, Cullin, and F box (SCF)-type ubiquitin E3 ligase complexes and a variant ubiquitin E2 conjugase domain where the active site cysteine is replaced by a glycine. Morgue also contains a single C4-type zinc finger motif. This architecture suggests potentially novel ubiquitination activities for Morgue. In this study, we address the evolutionary origins of this distinctive protein utilizing a combination of bioinformatics and molecular biology approaches. We find that Morgue exhibits widespread but restricted phylogenetic distribution among metazoans. Morgue proteins were identified in a wide range of Protostome phyla, including Arthropoda, Annelida, Mollusca, Nematoda, and Platyhelminthes. However, with one potential exception, Morgue was not detected in Deuterostomes, including Chordates, Hemichordates, or Echinoderms. Morgue was also not found in Ctenophora, Cnidaria, Placozoa, or Porifera. Characterization of Morgue sequences within specific animal lineages suggests that gene deletion or acquisition has occurred during divergence of nematodes and that at least one arachnid expresses an atypical form of Morgue consisting only of the variant E2 conjugase domain. Analysis of the organization of several morgue genes suggests that exon-shuffling events have contributed to the evolution of the Morgue protein. These results suggest that Morgue mediates conserved and distinctive ubiquitination functions in specific cell death pathways. PMID:19602541
Roh, Hyun Cheol; Collier, Sara; Deshmukh, Krupa; Guthrie, James; Robertson, J. David; Kornfeld, Kerry
2013-01-01
Zinc is an essential metal involved in a wide range of biological processes, and aberrant zinc metabolism is implicated in human diseases. The gastrointestinal tract of animals is a critical site of zinc metabolism that is responsible for dietary zinc uptake and distribution to the body. However, the role of the gastrointestinal tract in zinc excretion remains unclear. Zinc transporters are key regulators of zinc metabolism that mediate the movement of zinc ions across membranes. Here, we identified a comprehensive list of 14 predicted Cation Diffusion Facilitator (CDF) family zinc transporters in Caenorhabditis elegans and demonstrated that zinc is excreted from intestinal cells by one of these CDF proteins, TTM-1B. The ttm-1 locus encodes two transcripts, ttm-1a and ttm-1b, that use different transcription start sites. ttm-1b expression was induced by high levels of zinc specifically in intestinal cells, whereas ttm-1a was not induced by zinc. TTM-1B was localized to the apical plasma membrane of intestinal cells, and analyses of loss-of-function mutant animals indicated that TTM-1B promotes zinc excretion into the intestinal lumen. Zinc excretion mediated by TTM-1B contributes to zinc detoxification. These observations indicate that ttm-1 is a component of a negative feedback circuit, since high levels of cytoplasmic zinc increase ttm-1b transcript levels and TTM-1B protein functions to reduce the level of cytoplasmic zinc. We showed that TTM-1 isoforms function in tandem with CDF-2, which is also induced by high levels of cytoplasmic zinc and reduces cytoplasmic zinc levels by sequestering zinc in lysosome-related organelles. These findings define a parallel negative feedback circuit that promotes zinc homeostasis and advance the understanding of the physiological roles of the gastrointestinal tract in zinc metabolism in animals. PMID:23717214
Growth and characteristics of p-type doped GaAs nanowire
NASA Astrophysics Data System (ADS)
Li, Bang; Yan, Xin; Zhang, Xia; Ren, Xiaomin
2018-05-01
The growth of p-type GaAs nanowires (NWs) on GaAs (111) B substrates by metal-organic chemical vapor deposition (MOCVD) has been systematically investigated as a function of diethyl zinc (DEZn) flow. The growth rate of GaAs NWs was slightly improved by Zn-doping and kink is observed under high DEZn flow. In addition, the I–V curves of GaAs NWs has been measured and the p-type dope concentration under the II/III ratio of 0.013 and 0.038 approximated to 1019–1020 cm‑3. Project supported by the National Natural Science Foundation of China (Nos. 61376019, 61504010, 61774021) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications), China (Nos. IPOC2017ZT02, IPOC2017ZZ01).
Brown, Kenneth H; Baker, Shawn K
2009-03-01
This paper summarizes the results of the foregoing reviews of the impact of different intervention strategies designed to enhance zinc nutrition, including supplementation, fortification, and dietary diversification or modification. Current evidence indicates a beneficial impact of such interventions on zinc status and zinc-related functional outcomes. Preventive zinc supplementation reduces the incidence of diarrhea and acute lower respiratory tract infection among young children, decreases mortality of children over 12 months of age, and increases growth velocity. Therapeutic zinc supplementation during episodes of diarrhea reduces the duration and severity of illness. Zinc fortification increases zinc intake and total absorbed zinc, and recent studies are beginning to confirm a positive impact of zinc fortification on indicators of population zinc status. To assist with the development of zinc intervention programs, more information is needed on the prevalence of zinc deficiency in different countries, and rigorous evaluations of the effectiveness of large-scale zinc intervention programs should be planned. Recommended steps for scaling up zinc intervention programs, with or without other micronutrients, are described. In summary, there is now clear evidence of the benefit of selected interventions to reduce the risk of zinc deficiency, and a global commitment is urgently needed to conduct systematic assessments of population zinc status and to develop interventions to control zinc deficiency in the context of existing public health and nutrition programs.
Slepchenko, Kira G.; Li, Yang V.
2012-01-01
Zinc (Zn2+) appears to be intimately involved in insulin metabolism since insulin secretion is correlated with zinc secretion in response to glucose stimulation, but little is known about the regulation of zinc homeostasis in pancreatic beta-cells. This study set out to identify the intracellular zinc transient by imaging free cytosolic zinc in HIT-T15 beta-cells with fluorescent zinc indicators. We observed that membrane depolarization by KCl (30–60 mM) was able to induce a rapid increase in cytosolic concentration of zinc. Multiple zinc transients of similar magnitude were elicited during repeated stimulations. The amplitude of zinc responses was not affected by the removal of extracellular calcium or zinc. However, the half-time of the rising slope was significantly slower after removing extracellular zinc with zinc chelator CaEDTA, suggesting that extracellular zinc affect the initial rising phase of zinc response. Glucose (10 mM) induced substantial and progressive increases in intracellular zinc concentration in a similar way as KCl, with variation in the onset and the duration of zinc mobilization. It is known that the depolarization of beta-cell membrane is coupled with the secretion of insulin. Rising intracellular zinc concentration may act as a critical signaling factor in insulin metabolism of pancreatic beta-cells. PMID:22536213
[Improvement in zinc nutrition due to zinc transporter-targeting strategy].
Kambe, Taiho
2016-07-01
Adequate intake of zinc from the daily diet is indispensable to maintain health. However, the dietary zinc content often fails to fulfill the recommended daily intake, leading to zinc deficiency and also increases the risk of developing chronic diseases, particularly in elderly individuals. Therefore, increased attention is required to overcome zinc deficiency and it is important to improve zinc nutrition in daily life. In the small intestine, the zinc transporter, ZIP4, functions as a component that is essential for zinc absorption. In this manuscript, we present a brief overview regarding zinc deficiency. Moreover, we review a novel strategy, called "ZIP4-targeting", which has the potential to enable efficient zinc absorption from the diet. ZIP4-targeting strategy is possibly a major step in preventing zinc deficiency and improving human health.
Zinc Regulation of Aminopeptidase B Involved in Neuropeptide Production
Hwang, Shin-Rong; Hook, Vivian
2009-01-01
Aminopeptidase B (AP-B) is a metallopeptidase that removes basic residues from the N-termini of neuropeptide substrates in secretory vesicles. This study assessed zinc regulation of AP-B activity, since secretory vesicles contain endogenous zinc. AP-B was inhibited by zinc at concentrations typically present in secretory vesicles. Zinc effects were dependent on concentration, incubation time, and the molar ratio of zinc to enzyme. AP-B activity was recovered upon removal of zinc. AP-B with zinc became susceptible to degradation by trypsin, suggesting that zinc alters enzyme conformation. Zinc regulation demonstrates the metallopeptidase property of AP-B. PMID:18571504
The Electronic View Box: a software tool for radiation therapy treatment verification.
Bosch, W R; Low, D A; Gerber, R L; Michalski, J M; Graham, M V; Perez, C A; Harms, W B; Purdy, J A
1995-01-01
We have developed a software tool for interactively verifying treatment plan implementation. The Electronic View Box (EVB) tool copies the paradigm of current practice but does so electronically. A portal image (online portal image or digitized port film) is displayed side by side with a prescription image (digitized simulator film or digitally reconstructed radiograph). The user can measure distances between features in prescription and portal images and "write" on the display, either to approve the image or to indicate required corrective actions. The EVB tool also provides several features not available in conventional verification practice using a light box. The EVB tool has been written in ANSI C using the X window system. The tool makes use of the Virtual Machine Platform and Foundation Library specifications of the NCI-sponsored Radiation Therapy Planning Tools Collaborative Working Group for portability into an arbitrary treatment planning system that conforms to these specifications. The present EVB tool is based on an earlier Verification Image Review tool, but with a substantial redesign of the user interface. A graphical user interface prototyping system was used in iteratively refining the tool layout to allow rapid modifications of the interface in response to user comments. Features of the EVB tool include 1) hierarchical selection of digital portal images based on physician name, patient name, and field identifier; 2) side-by-side presentation of prescription and portal images at equal magnification and orientation, and with independent grayscale controls; 3) "trace" facility for outlining anatomical structures; 4) "ruler" facility for measuring distances; 5) zoomed display of corresponding regions in both images; 6) image contrast enhancement; and 7) communication of portal image evaluation results (approval, block modification, repeat image acquisition, etc.). The EVB tool facilitates the rapid comparison of prescription and portal images and permits electronic communication of corrections in port shape and positioning.
NASA Astrophysics Data System (ADS)
Pingel, N.; Liang, Y.; Bindra, A.
2016-12-01
More than 1 million Californians live and work in the floodplains of the Sacramento-San Joaquin Valley where flood risks are among the highest in the nation. In response to this threat to people, property and the environment, the Department of Water Resources (DWR) has been called to action to improve flood risk management. This has transpired through significant advances in development of flood information and tools, analysis, and planning. Senate Bill 5 directed DWR to prepare the Central Valley Flood Protection Plan (CVFPP) and update it every 5 years. A key component of this aggressive planning approach is answering the question: What is the current flood risk, and how would proposed improvements change flood risk throughout the system? Answering this question is a substantial challenge due to the size and complexity of the watershed and flood control system. The watershed is roughly 42,000 sq mi, and flows are controlled by numerous reservoirs, bypasses, and levees. To overcome this challenge, the State invested in development of a comprehensive analysis "tool box" through various DWR programs. Development of the tool box included: collection of hydro-meteorological, topographic, geotechnical, and economic data; development of rainfall-runoff, reservoir operation, hydraulic routing, and flood risk analysis models; and development of specialized applications and computing schemes to accelerate the analysis. With this toolbox, DWR is analyzing flood hazard, flood control system performance, exposure and vulnerability of people and property to flooding, consequence of flooding for specific events, and finally flood risk for a range of CVFPP alternatives. Based on the results, DWR will put forward a State Recommended Plan in the 2017 CVFPP. Further, the value of the analysis tool box extends beyond the CVFPP. It will serve as a foundation for other flood studies for years to come and has already been successfully applied for inundation mapping to support emergency response, reservoir operation analysis, and others.
Optimal hydraulic design of new-type shaft tubular pumping system
NASA Astrophysics Data System (ADS)
Zhu, H. G.; Zhang, R. T.; Zhou, J. R.
2012-11-01
Based on the characteristics of large flow rate, low-head, short annual operation time and high reliability of city flood-control pumping stations, a new-type shaft tubular pumping system featuring shaft suction box, siphon-type discharge passage with vacuum breaker as cutoff device was put forward, which possesses such advantages as simpler structure, reliable cutoff and higher energy performance. According to the design parameters of a city flood control pumping station, a numerical computation model was set up including shaft-type suction box, siphon-type discharge passage, pump impeller and guide vanes. By using commercial CFD software Fluent, RNG κ-epsilon turbulence model was adopted to close the three-dimensional time-averaged incompressible N-S equations. After completing optimal hydraulic design of shaft-type suction box, and keeping the parameters of total length, maximum width and outlet section unchanged, siphon-type discharge passages of three hump locations and three hump heights were designed and numerical analysis on the 9 hydraulic design schemes of pumping system were proceeded. The computational results show that the changing of hump locations and hump heights directly affects the internal flow patterns of discharge passages and hydraulic performances of the system, and when hump is located 3.66D from the inlet section and hump height is about 0.65D (D is the diameter of pump impeller), the new-type shaft tubular pumping system achieves better energy performances. A pumping system model test of the optimal designed scheme was carried out. The result shows that the highest pumping system efficiency reaches 75.96%, and when at design head of 1.15m the flow rate and system efficiency were 0.304m3/s and 63.10%, respectively. Thus, the validity of optimal design method was verified by the model test, and a solid foundation was laid for the application and extension of the new-type shaft tubular pumping system.
2013-01-01
Background Zinc is key to the function of many proteins, but the process of dietary zinc absorption is not well clarified. Current knowledge about dietary zinc absorption is fragmented, and mostly derives from incomplete mammalian studies. To gain a comprehensive picture of this process, we systematically characterized all zinc transporters (that is, the Zip and ZnT family members) for their possible roles in dietary zinc absorption in a genetically amenable model organism, Drosophila melanogaster. Results A set of plasma membrane-resident zinc transporters was identified to be responsible for absorbing zinc from the lumen into the enterocyte and the subsequent exit of zinc to the circulation. dZip1 and dZip2, two functionally overlapping zinc importers, are responsible for absorbing zinc from the lumen into the enterocyte. Exit of zinc to the circulation is mediated through another two functionally overlapping zinc exporters, dZnT1, and its homolog CG5130 (dZnT77C). Somewhat surprisingly, it appears that the array of intracellular ZnT proteins, including the Golgi-resident dZnT7, is not directly involved in dietary zinc absorption. By modulating zinc status in different parts of the body, we found that regulation of dietary zinc absorption, in contrast to that of iron, is unresponsive to bodily needs or zinc status outside the gut. The zinc transporters that are involved in dietary zinc absorption, including the importers dZip1 and dZip2, and the exporter dZnT1, are respectively regulated at the RNA and protein levels by zinc in the enterocyte. Conclusions Our study using the model organism Drosophila thus starts to reveal a comprehensive sketch of dietary zinc absorption and its regulatory control, a process that is still incompletely understood in mammalian organisms. The knowledge gained will act as a reference for future mammalian studies, and also enable an appreciation of this important process from an evolutionary perspective. PMID:24063361
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Xi; Zhou, Xixi; Du, Libo
2014-01-15
Inhibition of DNA repair is a recognized mechanism for arsenic enhancement of ultraviolet radiation-induced DNA damage and carcinogenesis. Poly(ADP-ribose) polymerase-1 (PARP-1), a zinc finger DNA repair protein, has been identified as a sensitive molecular target for arsenic. The zinc finger domains of PARP-1 protein function as a critical structure in DNA recognition and binding. Since cellular poly(ADP-ribosyl)ation capacity has been positively correlated with zinc status in cells, we hypothesize that arsenite binding-induced zinc loss from PARP-1 is equivalent to zinc deficiency in reducing PARP-1 activity, leading to inhibition of DNA repair. To test this hypothesis, we compared the effects ofmore » arsenite exposure with zinc deficiency, created by using the membrane-permeable zinc chelator TPEN, on 8-OHdG formation, PARP-1 activity and zinc binding to PARP-1 in HaCat cells. Our results show that arsenite exposure and zinc deficiency had similar effects on PARP-1 protein, whereas supplemental zinc reversed these effects. To investigate the molecular mechanism of zinc loss induced by arsenite, ICP-AES, near UV spectroscopy, fluorescence, and circular dichroism spectroscopy were utilized to examine arsenite binding and occupation of a peptide representing the first zinc finger of PARP-1. We found that arsenite binding as well as zinc loss altered the conformation of zinc finger structure which functionally leads to PARP-1 inhibition. These findings suggest that arsenite binding to PARP-1 protein created similar adverse biological effects as zinc deficiency, which establishes the molecular mechanism for zinc supplementation as a potentially effective treatment to reverse the detrimental outcomes of arsenic exposure. - Highlights: • Arsenite binding is equivalent to zinc deficiency in reducing PARP-1 function. • Zinc reverses arsenic inhibition of PARP-1 activity and enhancement of DNA damage. • Arsenite binding and zinc loss alter the conformation of zinc finger structure.« less
Malasarn, Davin; Kropat, Janette; Hsieh, Scott I.; Finazzi, Giovanni; Casero, David; Loo, Joseph A.; Pellegrini, Matteo; Wollman, Francis-André; Merchant, Sabeeha S.
2013-01-01
Zinc is an essential nutrient because of its role in catalysis and in protein stabilization, but excess zinc is deleterious. We distinguished four nutritional zinc states in the alga Chlamydomonas reinhardtii: toxic, replete, deficient, and limited. Growth is inhibited in zinc-limited and zinc-toxic cells relative to zinc-replete cells, whereas zinc deficiency is visually asymptomatic but distinguished by the accumulation of transcripts encoding ZIP family transporters. To identify targets of zinc deficiency and mechanisms of zinc acclimation, we used RNA-seq to probe zinc nutrition-responsive changes in gene expression. We identified genes encoding zinc-handling components, including ZIP family transporters and candidate chaperones. Additionally, we noted an impact on two other regulatory pathways, the carbon-concentrating mechanism (CCM) and the nutritional copper regulon. Targets of transcription factor Ccm1 and various CAH genes are up-regulated in zinc deficiency, probably due to reduced carbonic anhydrase activity, validated by quantitative proteomics and immunoblot analysis of Cah1, Cah3, and Cah4. Chlamydomonas is therefore not able to grow photoautotrophically in zinc-limiting conditions, but supplementation with 1% CO2 restores growth to wild-type rates, suggesting that the inability to maintain CCM is a major consequence of zinc limitation. The Crr1 regulon responds to copper limitation and is turned on in zinc deficiency, and Crr1 is required for growth in zinc-limiting conditions. Zinc-deficient cells are functionally copper-deficient, although they hyperaccumulate copper up to 50-fold over normal levels. We suggest that zinc-deficient cells sequester copper in a biounavailable form, perhaps to prevent mismetallation of critical zinc sites. PMID:23439652
Ryu, Moon-Suhn; Langkamp-Henken, Bobbi; Chang, Shou-Mei; Shankar, Meena N; Cousins, Robert J
2011-12-27
Implementation of zinc interventions for subjects suspected of being zinc-deficient is a global need, but is limited due to the absence of reliable biomarkers. To discover molecular signatures of human zinc deficiency, a combination of transcriptome, cytokine, and microRNA analyses was applied to a dietary zinc depletion/repletion protocol with young male human subjects. Concomitant with a decrease in serum zinc concentration, changes in buccal and blood gene transcripts related to zinc homeostasis occurred with zinc depletion. Microarray analyses of whole blood RNA revealed zinc-responsive genes, particularly, those associated with cell cycle regulation and immunity. Responses of potential signature genes of dietary zinc depletion were further assessed by quantitative real-time PCR. The diagnostic properties of specific serum microRNAs for dietary zinc deficiency were identified by acute responses to zinc depletion, which were reversible by subsequent zinc repletion. Depression of immune-stimulated TNFα secretion by blood cells was observed after low zinc consumption and may serve as a functional biomarker. Our findings introduce numerous novel candidate biomarkers for dietary zinc status assessment using a variety of contemporary technologies and which identify changes that occur prior to or with greater sensitivity than the serum zinc concentration which represents the current zinc status assessment marker. In addition, the results of gene network analysis reveal potential clinical outcomes attributable to suboptimal zinc intake including immune function defects and predisposition to cancer. These demonstrate through a controlled depletion/repletion dietary protocol that the illusive zinc biomarker(s) can be identified and applied to assessment and intervention strategies.
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2011 CFR
2011-04-01
.... Manganese phosphate (dibasic). Manganese sulfate. Manganous oxide. Zinc Zinc acetate. Zinc carbonate. Zinc chloride. Zinc oxide. Zinc sulfate. ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper...
21 CFR 582.80 - Trace minerals added to animal feeds.
Code of Federal Regulations, 2010 CFR
2010-04-01
.... Manganese phosphate (dibasic). Manganese sulfate. Manganous oxide. Zinc Zinc acetate. Zinc carbonate. Zinc chloride. Zinc oxide. Zinc sulfate. ... Cobalt Cobalt acetate. Cobalt carbonate. Cobalt chloride. Cobalt oxide. Cobalt sulfate. Copper Copper...
Jayalakshmi, S; Platel, Kalpana
2016-05-18
Negative interactions between minerals interfering with each other's absorption are of concern when iron and calcium supplements are given to pregnant women and children. We have previously reported that supplemental levels of iron and calcium inhibit the bioaccessibility of zinc, and compromise zinc status in rats fed diets with high levels of these two minerals. The present study examined the effect of supplemental levels of iron and calcium on the recovery of zinc status during a zinc repletion period in rats rendered zinc-deficient. Iron and calcium, both individually and in combination, significantly interfered with the recovery of zinc status in zinc deficient rats during repletion with normal levels of zinc in the diet. Rats maintained on diets containing supplemental levels of these two minerals had significantly lower body weight, and the concentration of zinc in serum and organs was significantly lower than in zinc-deficient rats not receiving the supplements. Iron and calcium supplementation also significantly inhibited the activity of zinc-containing enzymes in the serum as well as liver. Both iron and calcium independently exerted this negative effect on zinc status, while their combination seemed to have a more prominent effect, especially on the activities of zinc containing enzymes. This investigation is probably the first systematic study on the effect of these two minerals on the zinc status of zinc deficient animals and their recovery during repletion with normal amounts of zinc.
Zinc Biochemistry: From a Single Zinc Enzyme to a Key Element of Life12
Maret, Wolfgang
2013-01-01
The nutritional essentiality of zinc for the growth of living organisms had been recognized long before zinc biochemistry began with the discovery of zinc in carbonic anhydrase in 1939. Painstaking analytical work then demonstrated the presence of zinc as a catalytic and structural cofactor in a few hundred enzymes. In the 1980s, the field again gained momentum with the new principle of “zinc finger” proteins, in which zinc has structural functions in domains that interact with other biomolecules. Advances in structural biology and a rapid increase in the availability of gene/protein databases now made it possible to predict zinc-binding sites from metal-binding motifs detected in sequences. This procedure resulted in the definition of zinc proteomes and the remarkable estimate that the human genome encodes ∼3000 zinc proteins. More recent developments focus on the regulatory functions of zinc(II) ions in intra- and intercellular information transfer and have tantalizing implications for yet additional functions of zinc in signal transduction and cellular control. At least three dozen proteins homeostatically control the vesicular storage and subcellular distribution of zinc and the concentrations of zinc(II) ions. Novel principles emerge from quantitative investigations on how strongly zinc interacts with proteins and how it is buffered to control the remarkably low cellular and subcellular concentrations of free zinc(II) ions. It is fair to conclude that the impact of zinc for health and disease will be at least as far-reaching as that of iron. PMID:23319127
NASA Astrophysics Data System (ADS)
Schmid, M.; Willert-Porada, M.
2017-05-01
Silica coatings on zinc particles as anode material for alkaline zinc air batteries are expected to reduce early formation of irreversible ZnO passivation layers during discharge by controlling zinc dissolution and precipitation of supersaturated zincates, Zn(OH)42-. Zinc particles were coated with SiO2 (thickness: 15 nm) by chemical solution deposition and with Zn2SiO4 (thickness: 20 nm) by chemical vapor deposition. These coatings formed a Si(OH)4 gel in aqueous KOH and retarded hydrogen evolution by 40%. By treatment in aqueous KOH and drying afterwards, the silica coatings were changed into ZnO-K2O·SiO2 layers. In this work, the electrochemical performance of such coated zinc particles is investigated by different electrochemical methods in order to gain a deeper understanding of the mechanisms of the coatings, which reduce zinc passivation. In particular, zinc utilization and changes in internal resistance are investigated. Moreover, methods for determination of diffusion coefficients, charge carrier numbers and activation energies for electrochemical oxidation are determined. SiO2-coated zinc particles show improved discharge capacity (CVD-coated zinc: 69% zinc utilization, CSD-coated zinc: 62% zinc utilization) as compared to as-received zinc (57% zinc utilization) at C/20 rate, by reducing supersaturation of zincates. Additionally, KOH-modified SiO2-coated zinc particles enhance rechargeability after 100% depth-of-discharge.
Cooper, J.F.
1996-11-26
Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries. 6 figs.
Cooper, John F.
1996-01-01
Uniform zinc pellets are formed for use in batteries having a stationary or moving slurry zinc particle electrode. The process involves the cathodic deposition of zinc in a finely divided morphology from battery reaction product onto a non-adhering electrode substrate. The mossy zinc is removed from the electrode substrate by the action of gravity, entrainment in a flowing electrolyte, or by mechanical action. The finely divided zinc particles are collected and pressed into pellets by a mechanical device such as an extruder, a roller and chopper, or a punch and die. The pure zinc pellets are returned to the zinc battery in a pumped slurry and have uniform size, density and reactivity. Applications include zinc-air fuel batteries, zinc-ferricyanide storage batteries, and zinc-nickel-oxide secondary batteries.
On the analysis of activation energy of PS 35000 in various solvents
NASA Astrophysics Data System (ADS)
Padmanaban, R.; Venkatramanan, K.
2015-08-01
Polymer is a macromolecule, composed of many repeated subunits. Polystyrene is a polymer of styrene. Polystyrene has very low impact strength. Polystyrene generally leads to lower tensile strength, crystal grades being stiff and brittle. It is used to construct clamshell packs, cookie trays, cups, forks, spoons, cushioning materials for packaging, disposable medical devices, egg cartons, fast food containers, lids, lunch boxes, meat trays and also used in civil construction (concrete form-work or weight reduction on foundations). In the present study an attempt has been made to compute the viscosity of Polystyrene (PS 35000) in toluene and benzene in different concentrations (0.5%, 1.0%, 1.5%, 2.0% & 2.5%) at different temperatures (303 K, 308 K, 313 K & 318 K). From these experimental data the activation energy is calculated and the effect of solvent is analysed.
Castillo-Cagigal, Manuel; Matallanas, Eduardo; Gutiérrez, Alvaro; Monasterio-Huelin, Félix; Caamaño-Martín, Estefaná; Masa-Bote, Daniel; Jiménez-Leube, Javier
2011-01-01
In this paper we present a heterogeneous collaborative sensor network for electrical management in the residential sector. Improving demand-side management is very important in distributed energy generation applications. Sensing and control are the foundations of the "Smart Grid" which is the future of large-scale energy management. The system presented in this paper has been developed on a self-sufficient solar house called "MagicBox" equipped with grid connection, PV generation, lead-acid batteries, controllable appliances and smart metering. Therefore, there is a large number of energy variables to be monitored that allow us to precisely manage the energy performance of the house by means of collaborative sensors. The experimental results, performed on a real house, demonstrate the feasibility of the proposed collaborative system to reduce the consumption of electrical power and to increase energy efficiency.
ERIC Educational Resources Information Center
Costello, Judith
2005-01-01
Students get excited when they realize that they can transform a flat sheet of paper into a box. By using different sizes of paper, they can make different sizes of boxes and put a box inside a box, inside a box. These magical boxes within boxes can contain unwanted emotions or special treasures. The project described in this article incorporates…
Method for the regeneration of spent molten zinc chloride
Zielke, Clyde W.; Rosenhoover, William A.
1981-01-01
In a process for regenerating spent molten zinc chloride which has been used in the hydrocracking of coal or ash-containing polynuclear aromatic hydrocarbonaceous materials derived therefrom and which contains zinc chloride, zinc oxide, zinc oxide complexes and ash-containing carbonaceous residue, by incinerating the spent molten zinc chloride to vaporize the zinc chloride for subsequent condensation to produce a purified molten zinc chloride: an improvement comprising the use of clay in the incineration zone to suppress the vaporization of metals other than zinc. Optionally water is used in conjunction with the clay to further suppress the vaporization of metals other than zinc.
Udechukwu, M Chinonye; Downey, Brianna; Udenigwe, Chibuike C
2018-02-01
Gastrointestinal stability of zinc-peptide complexes is essential for zinc delivery. As peptide surface charge can influence their metal complex stability, we evaluated the zinc-chelating capacity and stability of zinc complexes of whey protein hydrolysates (WPH), produced with Everlase (WPH-Ever; ζ-potential, -39mV) and papain (WPH-Pap; ζ-potential, -7mV), during simulated digestion. WPH-Ever had lower amount of zinc-binding amino acids but showed higher zinc-chelating capacity than WPH-Pap. This is attributable to the highly anionic surface charge of WPH-Ever for electrostatic interaction with zinc. Release of zinc during peptic digestion was lower for WPH-Ever-zinc, and over 50% of zinc remained bound in both peptide complexes after peptic-pancreatic digestion. Fourier transform infrared spectroscopy suggests the involvement of carboxylate ion, and sidechain carbon-oxygen of aspartate/glutamate and serine/threonine in zinc-peptide complexation. The findings indicate that strong zinc chelation can promote gastric stability and impede intestinal release, for peptides intended for use as dietary zinc carriers. Copyright © 2017 Elsevier Ltd. All rights reserved.
The significance of the source of zinc and its anti-VSC effect.
Rölla, G; Jonski, G; Young, A
2002-06-01
The anti-VSC (volatile sulphur compounds) effect of zinc is known to be associated with free zinc ions. To examine whether zinc salts with low stability constants were more suitable as sources of zinc in zinc lozenges than zinc salts with high stability constants. The former provide free zinc ions upon dissolution in water, whereas the latter provide few such ions. Identical lozenges were produced which contained either zinc acetate, zinc gluconate (low stability constants), zinc citrate or amino-acid chelated zinc (extremely high stability constants). All the lozenges contained 0.1 per cent of zinc. A test panel of 10 volunteers used the different lozenges randomly. VSC were measured by GC. The lozenge with the highest stability constant was as effective as those with very low stability constants. The anti-VSC effect was thus not related to this constant. These findings may be explained by the possibility that alternative ligands with stronger affinity for zinc than the original ligands in the lozenges may be present in the oral cavity. An in vitro experiment indicated that the sulphide ion (S2-) may be such a ligand.
Rosado, Jorge L.; Díaz, Margarita; Muñoz, Elsa; Westcott, Jamie L.; González, Karla E.; Krebs, Nancy F.; Caamaño, María C.; Hambidge, Michael
2013-01-01
Background Corn tortilla is the staple food of Mexico and its fortification with zinc, iron, and other micronutrients is intended to reduce micronutrient deficiencies. However, no studies have been performed to determine the relative amount of zinc absorbed from the fortified product and whether zinc absorption is affected by the simultaneous addition of iron. Objective To compare zinc absorption from corn tortilla fortified with zinc oxide versus zinc sulfate and to determine the effect of simultaneous addition of two doses of iron on zinc bioavailability. Methods A randomized, double-blind, crossover design was carried out in two phases. In the first phase, 10 adult women received corn tortillas with either 20 mg/kg of zinc oxide added, 20 mg/kg of zinc sulfate added, or no zinc added. In the second phase, 10 adult women received corn tortilla with 20 mg/kg of zinc oxide added and either with no iron added or with iron added at one of two different levels. Zinc absorption was measured by the stable isotope method. Results The mean (± SEM) fractional zinc absorption from unfortified tortilla, tortilla fortified with zinc oxide, and tortilla fortified with zinc sulfate did not differ among treatments: 0.35 ± 0.07, 0.36 ± 0.05, and 0.37 ± 0.07, respectively. The three treatment groups with 0, 30, and 60 mg/kg of added iron had similar fractional zinc absorption (0.32 ± 0.04, 0.33 ± 0.02, and 0.32 ± 0.05, respectively) and similar amounts of zinc absorbed (4.8 ± 0.7, 4.5 ± 0.3, and 4.8 ± 0.7 mg/day, respectively). Conclusions Since zinc oxide is more stable and less expensive and was absorbed equally as well as zinc sulfate, we suggest its use for corn tortilla fortification. Simultaneous addition of zinc and iron to corn tortilla does not modify zinc bioavailability at iron doses of 30 and 60 mg/kg of corn flour. PMID:23424892
Lavoie, Nathalie; Peralta, Modesto R; Chiasson, Marilou; Lafortune, Kathleen; Pellegrini, Luca; Seress, László; Tóth, Katalin
2007-01-01
In the nervous system, zinc can influence synaptic responses and at extreme concentrations contributes to epileptic and ischaemic neuronal injury. Zinc can originate from synaptic vesicles, the extracellular space and from intracellular stores. In this study, we aimed to determine which of these zinc pools is responsible for the increased hippocampal excitability observed in zinc-depleted animals or following zinc chelation. Also, we investigated the source of intracellularly accumulating zinc in vulnerable neurons. Our data show that membrane-permeable and membrane-impermeable zinc chelators had little or no effect on seizure activity in the CA3 region. Furthermore, extracellular zinc chelation could not prevent the accumulation of lethal concentrations of zinc in dying neurons following epileptic seizures. At the electron microscopic level, zinc staining significantly increased at the presynaptic membrane of mossy fibre terminals in kainic acid-treated animals. These data indicate that intracellular but not extracellular zinc chelators could influence neuronal excitability and seizure-induced zinc accumulation observed in the cytosol of vulnerable neurons. PMID:17095563
Triboulet, Sarah; Aude-Garcia, Catherine; Armand, Lucie; Gerdil, Adèle; Diemer, Hélène; Proamer, Fabienne; Collin-Faure, Véronique; Habert, Aurélie; Strub, Jean-Marc; Hanau, Daniel; Herlin, Nathalie; Carrière, Marie; Van Dorsselaer, Alain; Rabilloud, Thierry
2014-06-07
Two different zinc oxide nanoparticles, as well as zinc ions, are used to study the cellular responses of the RAW 264 macrophage cell line. A proteomic screen is used to provide a wide view of the molecular effects of zinc, and the most prominent results are cross-validated by targeted studies. Furthermore, the alteration of important macrophage functions (e.g. phagocytosis) by zinc is also investigated. The intracellular dissolution/uptake of zinc is also studied to further characterize zinc toxicity. Zinc oxide nanoparticles dissolve readily in the cells, leading to high intracellular zinc concentrations, mostly as protein-bound zinc. The proteomic screen reveals a rather weak response in the oxidative stress response pathway, but a strong response both in the central metabolism and in the proteasomal protein degradation pathway. Targeted experiments confirm that carbohydrate catabolism and proteasome are critical determinants of sensitivity to zinc, which also induces DNA damage. Conversely, glutathione levels and phagocytosis appear unaffected at moderately toxic zinc concentrations.
ERIC Educational Resources Information Center
Bertini, I.; And Others
1985-01-01
Discusses the role of zinc in various enzymes concerned with hydration, hydrolysis, and redox reactions. The binding of zinc to protein residues, properties of noncatalytic zinc(II) and catalytic zinc, and the reactions catalyzed by zinc are among the topics considered. (JN)
Maywald, Martina; Wessels, Inga; Rink, Lothar
2017-10-24
Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as "zinc waves", and late homeostatic zinc signals regarding prolonged changes in intracellular zinc.
Hemilä, Harri
2017-05-01
To compare the efficacy of zinc acetate lozenges with zinc gluconate lozenges in common cold treatment and to examine the dose-dependency of the effect. Meta-analysis. Placebo-controlled zinc lozenge trials, in which the zinc dose was > 75 mg/day. The pooled effect of zinc lozenges on common cold duration was calculated by using inverse-variance random-effects method. Seven randomised trials with 575 participants with naturally acquired common colds. Duration of the common cold. The mean common cold duration was 33% (95% CI 21% to 45%) shorter for the zinc groups of the seven included trials. Three trials that used lozenges composed of zinc acetate found that colds were shortened by 40% and four trials that used zinc gluconate by 28%. The difference between the two salts was not significant: 12 percentage points (95% CI: -12 to + 36). Five trials used zinc doses of 80-92 mg/day, common cold duration was reduced by 33%, and two trials used zinc doses of 192-207 mg/day and found an effect of 35%. The difference between the high-dose and low-dose zinc trials was not significant: 2 percentage points (95% CI: -29 to + 32). Properly composed zinc gluconate lozenges may be as effective as zinc acetate lozenges. There is no evidence that zinc doses over 100 mg/day might lead to greater efficacy in the treatment of the common cold. Common cold patients may be encouraged to try zinc lozenges for treating their colds. The optimal lozenge composition and dosage scheme need to be investigated further.
Multiple Mechanisms of Zinc-Mediated Inhibition for the Apoptotic Caspases-3, -6, -7, and -8.
Eron, Scott J; MacPherson, Derek J; Dagbay, Kevin B; Hardy, Jeanne A
2018-05-18
Zinc is emerging as a widely used and important biological regulatory signal. Cellular zinc levels are tightly regulated by a complex array of zinc importers and exporters to control processes such as apoptotic cell death. While caspase inhibition by zinc has been reported previously, the reported inhibition constants were too weak to suggest a critical biological role for zinc-mediated inhibition. In this work, we have adopted a method of assessing available zinc. This allowed assessment of accurate inhibition constants for apoptotic caspases, caspase-3, -6, -7, and -8. Each of these caspases are inhibited by zinc at intracellular levels but with widely differing inhibition constants and different zinc binding stoichiometries. Caspase-3, -6, and -8 appear to be constitutively inhibited by typical zinc levels, and this inhibition must be lifted to allow activation. The inhibition constant for caspase-7 (76 nM) is much weaker than for the other apoptotic caspases (2.6-6.9 nM) suggesting that caspase-7 is not inactivated by normal zinc concentrations but can be inhibited under conditions of zinc stress. Caspase-3, -7, and -8 were found to bind three, one, and two zincs, respectively. In each of these caspases, zinc was present in the active site, in contrast to caspase-6, which binds one zinc allosterically. The most notable new mechanism to emerge from this work is for zinc-mediated inhibition of caspase-8. Zinc binds caspase-8 directly at the active site and at a second site. Zinc binding inhibits formation of the caspase-8 dimer, the activated form of the enzyme. Together these findings suggest that zinc plays a critical role in regulation of apoptosis by direct inactivation of caspases, in a manner that is unique for each caspase.
Fong, Louise Y.Y.; Jiang, Yubao; Riley, Maurisa; Liu, Xianglan; Smalley, Karl J.; Guttridge, Denis C.; Farber, John L.
2009-01-01
Zinc deficiency in humans is associated with an increased risk of upper aerodigestive tract (UADT) cancer. In rodents, zinc deficiency predisposes to carcinogenesis by causing proliferation and alterations in gene expression. We examined whether in zinc-deficient rodents, targeted disruption of the cyclooxygenase (COX)-2 pathway by the COX-2 selective inhibitor celecoxib or by genetic deletion prevent UADT carcinogenesis. Tongue cancer prevention studies were conducted in zinc-deficient rats previously exposed to a tongue carcinogen by celecoxib treatment with or without zinc replenishment, or by zinc replenishment alone. The ability of genetic COX-2 deletion to protect against chemically-induced for-estomach tumorigenesis was examined in mice on zinc-deficient versus zinc-sufficient diet. The expression of 3 predictive bio-markers COX-2, nuclear factor (NF)-κ B p65 and leukotriene A4 hydrolase (LTA4H) was examined by immunohistochemistry. In zinc-deficient rats, celecoxib without zinc replenishment reduced lingual tumor multiplicity but not progression to malignancy. Celecoxib with zinc replenishment or zinc replenishment alone significantly lowered lingual squamous cell carcinoma incidence, as well as tumor multiplicity. Celecoxib alone reduced overexpression of the 3 biomarkers in tumors slightly, compared with intervention with zinc replenishment. Instead of being protected, zinc-deficient COX-2 null mice developed significantly greater tumor multiplicity and forestomach carcinoma incidence than wild-type controls. Additionally, zinc-deficient COX-2−/− forestomachs displayed strong LTA4H immunostaining, indicating activation of an alter-native pathway under zinc deficiency when the COX-2 pathway is blocked. Thus, targeting only the COX-2 pathway in zinc-deficient animals did not prevent UADT carcinogenesis. Our data suggest zinc supplementation should be more thoroughly explored in human prevention clinical trials for UADT cancer. PMID:17985342
Zinc in Early Life: A Key Element in the Fetus and Preterm Neonate
Terrin, Gianluca; Berni Canani, Roberto; Di Chiara, Maria; Pietravalle, Andrea; Aleandri, Vincenzo; Conte, Francesca; De Curtis, Mario
2015-01-01
Zinc is a key element for growth and development. In this narrative review, we focus on the role of dietary zinc in early life (including embryo, fetus and preterm neonate), analyzing consequences of zinc deficiency and adequacy of current recommendations on dietary zinc. We performed a systematic search of articles on the role of zinc in early life. We selected and analyzed 81 studies. Results of this analysis showed that preservation of zinc balance is of critical importance for the avoidance of possible consequences of low zinc levels on pre- and post-natal life. Insufficient quantities of zinc during embryogenesis may influence the final phenotype of all organs. Maternal zinc restriction during pregnancy influences fetal growth, while adequate zinc supplementation during pregnancy may result in a reduction of the risk of preterm birth. Preterm neonates are at particular risk to develop zinc deficiency due to a combination of different factors: (i) low body stores due to reduced time for placental transfer of zinc; (ii) increased endogenous losses; and (iii) marginal intake. Early diagnosis of zinc deficiency, through the measurement of serum zinc concentrations, may be essential to avoid severe prenatal and postnatal consequences in these patients. Typical clinical manifestations of zinc deficiency are growth impairment and dermatitis. Increasing data suggest that moderate zinc deficiency may have significant subclinical effects, increasing the risk of several complications typical of preterm neonates (i.e., necrotizing enterocolitis, chronic lung disease, and retinopathy), and that current recommended intakes should be revised to meet zinc requirements of extremely preterm neonates. Future studies evaluating the adequacy of current recommendations are advocated. PMID:26690476
Zinc pharmacokinetic parameters in the determination of body zinc status in children.
Vale, S H L; Leite, L D; Alves, C X; Dantas, M M G; Costa, J B S; Marchini, J S; França, M C; Brandão-Neto, J
2014-02-01
Serum or tissue zinc concentrations are often used to assess body zinc status. However, all of these methods are relatively inaccurate. Thus, we investigated three different kinetic methods for the determination of zinc clearance to establish which of these could detect small changes in the body zinc status of children. Forty apparently healthy children were studied. Renal handling of zinc was investigated during intravenous zinc administration (0.06537 mg Zn/kg of body weight), both before and after oral zinc supplementation (5 mg Zn/day for 3 months). Three kinetic methods were used to determine zinc clearance: CZn-Formula A and CZn-Formula B were both used to calculate systemic clearance; the first is a general formula and the second is used for the specific analysis of a single-compartment model; CZn-Formula C is widely used in medical practices to analyze kinetic routine. Basal serum zinc values, which were within the reference range for healthy children, increased significantly after oral zinc supplementation. The three formulas used gave different results for zinc clearance both before and after oral zinc supplementation. CZn-Formula B showed a positive correlation with basal serum zinc concentration after oral supplementation (R2=0.1172, P=0.0306). In addition, CZn-Formula B (P=0.0002) was more effective than CZn-Formula A (P=0.6028) and CZn-Formula C (P=0.0732) in detecting small variations in body zinc status. All three of the formulas used are suitable for studying zinc kinetics; however, CZn-Formula B is particularly effective at detecting small changes in body zinc status in healthy children.
Method of capturing or trapping zinc using zinc getter materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunyadi Murph, Simona E.; Korinko, Paul S.
2017-07-11
A method of trapping or capturing zinc is disclosed. In particular, the method comprises a step of contacting a zinc vapor with a zinc getter material. The zinc getter material comprises nanoparticles and a metal substrate.
Zinc Levels Modulate Lifespan through Multiple Longevity Pathways in Caenorhabditis elegans
Kumar, Jitendra; Barhydt, Tracy; Awasthi, Anjali; Lithgow, Gordon J.; Killilea, David W.; Kapahi, Pankaj
2016-01-01
Zinc is an essential trace metal that has integral roles in numerous biological processes, including enzymatic function, protein structure, and cell signaling pathways. Both excess and deficiency of zinc can lead to detrimental effects on development and metabolism, resulting in abnormalities and disease. We altered the zinc balance within Caenorhabditis elegans to examine how changes in zinc burden affect longevity and healthspan in an invertebrate animal model. We found that increasing zinc levels in vivo with excess dietary zinc supplementation decreased the mean and maximum lifespan, whereas reducing zinc levels in vivo with a zinc-selective chelator increased the mean and maximum lifespan in C. elegans. We determined that the lifespan shortening effects of excess zinc required expression of DAF-16, HSF-1 and SKN-1 proteins, whereas the lifespan lengthening effects of the reduced zinc may be partially dependent upon this set of proteins. Furthermore, reducing zinc levels led to greater nuclear localization of DAF-16 and enhanced dauer formation compared to controls, suggesting that the lifespan effects of zinc are mediated in part by the insulin/IGF-1 pathway. Additionally, zinc status correlated with several markers of healthspan in worms, including proteostasis, locomotion and thermotolerance, with reduced zinc levels always associated with improvements in function. Taken together, these data support a role for zinc in regulating both development and lifespan in C. elegans, and that suggest that regulation of zinc homeostasis in the worm may be an example of antagonistic pleiotropy. PMID:27078872
Serum thymulin in human zinc deficiency.
Prasad, A S; Meftah, S; Abdallah, J; Kaplan, J; Brewer, G J; Bach, J F; Dardenne, M
1988-01-01
The activity of thymulin (a thymic hormone) is dependent on the presence of zinc in the molecule. We assayed serum thymulin activity in three models of mildly zinc-deficient (ZD) human subjects before and after zinc supplementation: (a) two human volunteers in whom a specific and mild zinc deficiency was induced by dietary means; (b) six mildly ZD adult sickle cell anemia (SCA) subjects; and (c) six mildly ZD adult non-SCA subjects. Their plasma zinc levels were normal and they showed no overt clinical manifestations of zinc deficiency. The diagnosis of mild zinc deficiency was based on the assay of zinc in lymphocytes, granulocytes, and platelets. Serum thymulin activity was decreased as a result of mild zinc deficiency and was corrected by in vivo and in vitro zinc supplementation, suggesting that this parameter was a sensitive indicator of zinc deficiency in humans. An increase in T101-, sIg-cells, decrease in T4+/T8+ ratio, and decreased IL 2 activity were observed in the experimental human model during the zinc depletion phase, all of which were corrected after repletion with zinc. Similar changes in lymphocyte subpopulation, correctable with zinc supplementation, were also observed in mildly ZD SCA subjects. Inasmuch as thymulin is known to induce intra- and extrathymic T cell differentiation, our studies provide a possible mechanism for the role of zinc on T cell functions. Images PMID:3262625
Zinc and its importance for human health: An integrative review
Roohani, Nazanin; Hurrell, Richard; Kelishadi, Roya; Schulin, Rainer
2013-01-01
Since its first discovery in an Iranian male in 1961, zinc deficiency in humans is now known to be an important malnutrition problem world-wide. It is more prevalent in areas of high cereal and low animal food consumption. The diet may not necessarily be low in zinc, but its bio-availability plays a major role in its absorption. Phytic acid is the main known inhibitor of zinc. Compared to adults, infants, children, adolescents, pregnant, and lactating women have increased requirements for zinc and thus, are at increased risk of zinc depletion. Zinc deficiency during growth periods results in growth failure. Epidermal, gastrointestinal, central nervous, immune, skeletal, and reproductive systems are the organs most affected clinically by zinc deficiency. Clinical diagnosis of marginal Zn deficiency in humans remains problematic. So far, blood plasma/serum zinc concentration, dietary intake, and stunting prevalence are the best known indicators of zinc deficiency. Four main intervention strategies for combating zinc deficiency include dietary modification/diversification, supplementation, fortification, and bio-fortification. The choice of each method depends on the availability of resources, technical feasibility, target group, and social acceptance. In this paper, we provide a review on zinc biochemical and physiological functions, metabolism including, absorption, excretion, and homeostasis, zinc bio-availability (inhibitors and enhancers), human requirement, groups at high-risk, consequences and causes of zinc deficiency, evaluation of zinc status, and prevention strategies of zinc deficiency. PMID:23914218
Thussagunpanit, Jutiporn; Nagai, Yuko; Nagae, Miyu; Mashiguchi, Kiyoshi; Mitsuda, Nobutaka; Ohme-Takagi, Masaru; Nakano, Takeshi; Nakamura, Hidemitsu; Asami, Tadao
2017-02-01
Strigolactones (SLs) and karrikins (KARs) regulate photomorphogenesis. GR24, a synthetic SL and KAR 1 , a KAR, inhibit the hypocotyl elongation of Arabidopsis thaliana in a weak light. GR24 and KAR 1 up-regulate the expression of STH7, encoding a transcription factor belonging to the double B-box zinc finger subfamily. In this study, we used STH7-overexpressing (STH7ox) lines and functionally defective STH7 (STH7-SRDX) mutants to investigate roles of SLs and KARs in photomorphogenesis of Arabidopsis. Hypocotyl elongation of STH7-SRDX mutants was less sensitive to both GR24 and KAR 1 treatment than that of wild-type Arabidopsis under weak light conditions. Furthermore, the chlorophyll and anthocyanin content was increased in STH7ox lines when de-etiolated with light and GR24-treated plants had enhanced anthocyanin production. GR24 and KAR 1 treatment significantly increased the expression level of photosynthesis-related genes LHCB1 and rbcS. The results strongly suggest that SL and KAR induce photomorphogenesis of Arabidopsis in an STH7-dependent manner.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seaver, L.H.; Grimes, J.; Erickson, R.P.
1994-05-15
46,XX female pseudohermaphrodites have been previously described with nearly complete masculinization of the external genitalia and no apparent source of testosterone. Multiple malformations of internal genital, urinary, and gastrointestinal tracts are associated. We have evaluated four such infants with female pseudohermaphroditism and multiple caudal anomalies. Three cases had apparently normal chromosome (46,XX); one had a 46,XX,del(10)(q25.3{yields}qter) chromosome constitution. The chromosome breakpoint is in the region of PAX2, a developmentally important paired box gene which is expressed in urogenital tissue. Using the polymerase chain reaction, we screened for the presence of multiple Y specific sequences, including SRY (sex determining region, Ymore » chromosome), that could explain masculinization of the external genitalia. All were negative for Y centromeric sequences, ZFY (Zinc finger Y), and SRY. Furthermore, there was no evidence for adrenal or other sources of testosterone. We suggest that the masculinization in these cases is the result of abnormal expression of genes which would normally be regulated by testosterone. 32 refs., 1 fig., 2 tabs.« less
Geiser, Jim; De Lisle, Robert C.; Andrews, Glen K.
2013-01-01
Background ZIP5 localizes to the baso-lateral membranes of intestinal enterocytes and pancreatic acinar cells and is internalized and degraded coordinately in these cell-types during periods of dietary zinc deficiency. These cell-types are thought to control zinc excretion from the body. The baso-lateral localization and zinc-regulation of ZIP5 in these cells are unique among the 14 members of the Slc39a family and suggest that ZIP5 plays a role in zinc excretion. Methods/Principal Findings We created mice with floxed Zip5 genes and deleted this gene in the entire mouse or specifically in enterocytes or acinar cells and then examined the effects on zinc homeostasis. We found that ZIP5 is not essential for growth and viability but total knockout of ZIP5 led to increased zinc in the liver in mice fed a zinc-adequate (ZnA) diet but impaired accumulation of pancreatic zinc in mice fed a zinc-excess (ZnE) diet. Loss-of-function of enterocyte ZIP5, in contrast, led to increased pancreatic zinc in mice fed a ZnA diet and increased abundance of intestinal Zip4 mRNA. Finally, loss-of-function of acinar cell ZIP5 modestly reduced pancreatic zinc in mice fed a ZnA diet but did not impair zinc uptake as measured by the rapid accumulation of 67zinc. Retention of pancreatic 67zinc was impaired in these mice but the absence of pancreatic ZIP5 sensitized them to zinc-induced pancreatitis and exacerbated the formation of large cytoplasmic vacuoles containing secretory protein in acinar cells. Conclusions These studies demonstrate that ZIP5 participates in the control of zinc excretion in mice. Specifically, they reveal a paramount function of intestinal ZIP5 in zinc excretion but suggest a role for pancreatic ZIP5 in zinc accumulation/retention in acinar cells. ZIP5 functions in acinar cells to protect against zinc-induced acute pancreatitis and attenuate the process of zymophagy. This suggests that it may play a role in autophagy. PMID:24303081
Medical and Safety Reforms in Boxing
Jordan, Barry D.
1988-01-01
The continued existence of boxing as an accepted sport in civilized society has been long debated. The position of the American Medical Association (AMA) has evolved from promoting increased safety and medical reform to recommending total abolition of both amateur and professional boxing. In response to the AMA opposition to boxing, the boxing community has attempted to increase the safeguards in amateur and professional boxing. The United States of America Amateur Boxing Federation, which is the national regulatory agency for all amateur boxing in the United States, has taken several actions to prevent the occurrence of acute brain injury and is currently conducting epidemiologic studies to assess the long-term neuropsychologic consequences of amateur boxing. In professional boxing, state regulatory agencies such as the New York State Athletic Commission have introduced several medical interventions to prevent and reduce neurologic injury. The lack of a national regulatory agency to govern professional boxing has stimulated the formation of the Association of Boxing Commissions and potential legislation for the federal regulation of professional boxing by a federally chartered organization called the United States Boxing Commission. The AMA's opposition to boxing and the medical and safety reforms implemented by the proponents of boxing are discussed. PMID:3385788
Sul, Jee-Won; Kim, Tae-Youn; Yoo, Hyun Ju; Kim, Jean; Suh, Young-Ah; Hwang, Jung Jin; Koh, Jae-Young
2016-08-01
Intracellular accumulation of free zinc contributes to neuronal death in brain injuries such as ischemia and epilepsy. Pyruvate, a glucose metabolite, has been shown to block zinc neurotoxicity. However, it is largely unknown how pyruvate shows such a selective and remarkable protective effect. In this study, we sought to find a plausible mechanism of pyruvate protection against zinc toxicity. Pyruvate almost completely blocked cortical neuronal death induced by zinc, yet showed no protective effects against death induced by calcium (ionomycin, NMDA) or ferrous iron. Of the TCA cycle intermediates, citrate, isocitrate, and to a lesser extent oxaloacetate, protected against zinc toxicity. We then noted with LC-MS/MS assay that exposure to pyruvate, and to a lesser degree oxaloacetate, increased levels of citrate and isocitrate, which are known zinc chelators. While pyruvate added only during zinc exposure did not reduce zinc toxicity, citrate and isocitrate added only during zinc exposure, as did extracellular zinc chelator CaEDTA, completely blocked it. Furthermore, addition of pyruvate after zinc exposure substantially reduced intracellular zinc levels. Our results suggest that the remarkable protective effect of pyruvate against zinc cytotoxicity may be mediated indirectly by the accumulation of intracellular citrate and isocitrate, which act as intracellular zinc chelators.
Zinc and Regulation of Inflammatory Cytokines: Implications for Cardiometabolic Disease
Foster, Meika; Samman, Samir
2012-01-01
In atherosclerosis and diabetes mellitus, the concomitant presence of low-grade systemic inflammation and mild zinc deficiency highlights a role for zinc nutrition in the management of chronic disease. This review aims to evaluate the literature that reports on the interactions of zinc and cytokines. In humans, inflammatory cytokines have been shown both to up- and down-regulate the expression of specific cellular zinc transporters in response to an increased demand for zinc in inflammatory conditions. The acute phase response includes a rapid decline in the plasma zinc concentration as a result of the redistribution of zinc into cellular compartments. Zinc deficiency influences the generation of cytokines, including IL-1β, IL-2, IL-6, and TNF-α, and in response to zinc supplementation plasma cytokines exhibit a dose-dependent response. The mechanism of action may reflect the ability of zinc to either induce or inhibit the activation of NF-κB. Confounders in understanding the zinc-cytokine relationship on the basis of in vitro experimentation include methodological issues such as the cell type and the means of activating cells in culture. Impaired zinc homeostasis and chronic inflammation feature prominently in a number of cardiometabolic diseases. Given the high prevalence of zinc deficiency and chronic disease globally, the interplay of zinc and inflammation warrants further examination. PMID:22852057
Morphology control of zinc regeneration for zinc-air fuel cell and battery
NASA Astrophysics Data System (ADS)
Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong
2014-12-01
Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.
SIMS depth profiling of rubber-tyre cord bonding layers prepared using 64Zn depleted ZnO
NASA Astrophysics Data System (ADS)
Fulton, W. S.; Sykes, D. E.; Smith, G. C.
2006-07-01
Zinc oxide and copper/zinc sulphide layers are formed during vulcanisation and moulding of rubber to brass-coated steel tyre reinforcing cords. Previous studies have described how zinc diffuses through the rubber-brass interface to form zinc sulphide, and combines with oxygen to create zinc oxide during dezincification. The zinc is usually assumed to originate in the brass of the tyre cord, however, zinc oxide is also present in the rubber formulation. We reveal how zinc from these sources is distributed within the interfacial bonding layers, before and after heat and humidity ageing. Zinc oxide produced using 64Zn-isotope depleted zinc was mixed in the rubber formulation in place of the natural ZnO and the zinc isotope ratios within the interfacial layers were followed by secondary ion mass spectroscopy (SIMS) depth profiling. Variations in the relative ratios of the zinc isotopes during depth profiling were measured for unaged, heat-aged and humidity-aged wire samples and in each case a relatively large proportion of the zinc incorporated into the interfacial layer as zinc sulphide was shown to have originated from ZnO in the rubber compound.
History of Zinc in Agriculture12
Nielsen, Forrest H.
2012-01-01
Zinc was established as essential for green plants in 1926 and for mammals in 1934. However, >20 y would pass before the first descriptions of zinc deficiencies in farm animals appeared. In 1955, it was reported that zinc supplementation would cure parakeratosis in swine. In 1958, it was reported that zinc deficiency induced poor growth, leg abnormalities, poor feathering, and parakeratosis in chicks. In the 1960s, zinc supplementation was found to alleviate parakeratosis in grazing cattle and sheep. Within 35 y, it was established that nearly one half of the soils in the world may be zinc deficient, causing decreased plant zinc content and production that can be prevented by zinc fertilization. In many of these areas, zinc deficiency is prevented in grazing livestock by zinc fertilization of pastures or by providing salt licks. For livestock under more defined conditions, such as poultry, swine, and dairy and finishing cattle, feeds are easily supplemented with zinc salts to prevent deficiency. Today, the causes and consequences of zinc deficiency and methods and effects of overcoming the deficiency are well established for agriculture. The history of zinc in agriculture is an outstanding demonstration of the translation of research into practical application. PMID:23153732
Critical Role of Zinc as Either an Antioxidant or a Prooxidant in Cellular Systems
2018-01-01
Zinc is recognized as an essential trace metal required for human health; its deficiency is strongly associated with neuronal and immune system defects. Although zinc is a redox-inert metal, it functions as an antioxidant through the catalytic action of copper/zinc-superoxide dismutase, stabilization of membrane structure, protection of the protein sulfhydryl groups, and upregulation of the expression of metallothionein, which possesses a metal-binding capacity and also exhibits antioxidant functions. In addition, zinc suppresses anti-inflammatory responses that would otherwise augment oxidative stress. The actions of zinc are not straightforward owing to its numerous roles in biological systems. It has been shown that zinc deficiency and zinc excess cause cellular oxidative stress. To gain insights into the dual action of zinc, as either an antioxidant or a prooxidant, and the conditions under which each role is performed, the oxidative stresses that occur in zinc deficiency and zinc overload in conjunction with the intracellular regulation of free zinc are summarized. Additionally, the regulatory role of zinc in mitochondrial homeostasis and its impact on oxidative stress are briefly addressed. PMID:29743987
Hemimorphite Ores: A Review of Processing Technologies for Zinc Extraction
NASA Astrophysics Data System (ADS)
Chen, Ailiang; Li, Mengchun; Qian, Zhen; Ma, Yutian; Che, Jianyong; Ma, Yalin
2016-10-01
With the gradual depletion of zinc sulfide ores, exploration of zinc oxide ores is becoming more and more important. Hemimorphite is a major zinc oxide ore, attracting much attention in the field of zinc metallurgy although it is not the major zinc mineral. This paper presents a critical review of the treatment for extraction of zinc with emphasis on flotation, pyrometallurgical and hydrometallurgical methods based on the properties of hemimorphite. The three-dimensional framework structure of hemimorphite with complex linkage of its structural units lead to difficult desilicification before extracting zinc in the many metallurgical technologies. It is found that the flotation method is generally effective in enriching zinc minerals from hemimorphite ores into a high-grade concentrate for recovery of zinc. Pure zinc can be produced from hemimorphite or/and willemite with a reducing reagent, like methane or carbon. Leaching reagents, such as acid and alkali, can break the complex structure of hemimorphite to release zinc in the leached solution without generation of silica gel in the hydrometallurgical process. For optimal zinc extraction, combing flotation with pyrometallurgical or hydrometallurgical methods may be required.
Enhancement of hippocampal mossy fiber activity in zinc deficiency and its influence on behavior.
Takeda, Atsushi; Itoh, Hiromasa; Yamada, Kohei; Tamano, Haruna; Oku, Naoto
2008-10-01
The extracellular concentration of glutamate in the hippocampus is increased by hippocampal perfusion with CaEDTA, a membrane-impermeable zinc chelator, suggesting that the activity of glutamatergic neurons in the hippocampus are influenced by the extracellular concentrations of zinc. In the present study, the relationship between the extracellular concentrations of zinc and mossy fiber activity in the hippocampus was examined in mice and rats fed a zinc-deficient diet for 4 weeks. Timm's stain, by which histochemically reactive zinc in the presynaptic vesicles is detected, was attenuated in the hippocampus in zinc deficiency. The extracellular signal of ZnAF-2, a membrane-impermeable zinc indicator, was also lower in the hippocampal CA3, suggesting that the basal extracellular concentrations of zinc are lower maintained in zinc deficiency. To check mossy fiber activity after 4-week zinc deprivation, the decrease in the signal of FM4-64, an indicator of presynaptic activity (exocytosis), at mossy fiber synapses was measured under the condition of spontaneous depolarization. The decrease was significantly facilitated by zinc deficiency, suggesting that the basal exocytosis at mossy fiber synapses is enhanced by zinc deficiency. On the other hand, the increase in anxiety-like behavior was observed in the open-field test after 4-week zinc deprivation. The present study demonstrates that the decrease in the basal extracellular concentrations of zinc may be linked to the enhancement of the basal mossy fiber activity in zinc deficiency. This decrease seems to be also involved in neuropsychological behavior in zinc deficiency.
Beaver, Laura M; Nkrumah-Elie, Yasmeen M; Truong, Lisa; Barton, Carrie L; Knecht, Andrea L; Gonnerman, Greg D; Wong, Carmen P; Tanguay, Robert L; Ho, Emily
2017-05-01
The high prevalence of zinc deficiency is a global public health concern, and suboptimal maternal zinc consumption has been associated with adverse effects ranging from impaired glucose tolerance to low birthweights. The mechanisms that contribute to altered development and poor health in zinc deficient offspring are not completely understood. To address this gap, we utilized the Danio rerio model and investigated the impact of dietary zinc deficiency on adults and their developing progeny. Zinc deficient adult fish were significantly smaller in size, and had decreases in learning and fitness. We hypothesized that parental zinc deficiency would have an impact on their offspring's mineral homeostasis and embryonic development. Results from mineral analysis showed that parental zinc deficiency caused their progeny to be zinc deficient. Furthermore, parental dietary zinc deficiency had adverse consequences for their offspring including a significant increase in mortality and decreased physical activity. Zinc deficient embryos had altered expression of genes that regulate metal homeostasis including several zinc transporters (ZnT8, ZnT9) and the metal-regulatory transcription factor 1 (MTF-1). Zinc deficiency was also associated with decreased expression of genes related to diabetes and pancreatic development in the embryo (Insa, Pax4, Pdx1). Decreased expression of DNA methyltransferases (Dnmt4, Dnmt6) was also found in zinc deficient offspring, which suggests that zinc deficiency in parents may cause altered epigenetic profiles for their progeny. These data should inform future studies regarding zinc deficiency and pregnancy and suggest that supplementation of zinc deficient mothers prior to pregnancy may be beneficial. Published by Elsevier Inc.
Kc, Chandra B; Lim, Gary N; D'Souza, Francis
2015-04-21
A broadband capturing, charge stabilizing, photosynthetic antenna-reaction center model compound has been newly synthesized and characterized. The model compound is comprised of a zinc porphyrin covalently linked to three units of triphenylamine entities and a zinc phthalocyanine entity. The absorption and fluorescence spectra of zinc porphyrin complemented that of zinc phthalocyanine offering broadband coverage. Stepwise energy transfer from singlet excited triphenylamine to zinc porphyrin, and singlet excited zinc porphyrin to zinc phthalocyanine (kENT ∼ 10(11) s(-1)) was established from spectroscopic and time-resolved transient absorption techniques. Next, an electron acceptor, fullerene was introduced via metal-ligand axial coordination to both zinc porphyrin and zinc phthalocyanine centers, and they were characterized by spectroscopic and electrochemical techniques. An association constant of 4.9 × 10(4) M(-1) for phenylimidazole functionalized fullerene binding to zinc porphyrin, and 5.1 × 10(4) M(-1) for it binding to zinc phthalocyanine was obtained. An energy level diagram for the occurrence of different photochemical events within the multi-modular donor-acceptor conjugate was established from spectral and electrochemical data. Unlike the previous zinc porphyrin-zinc phthalocyanine-fullerene conjugates, the newly assembled donor-acceptor conjugate has been shown to undergo the much anticipated initial charge separation from singlet excited zinc porphyrin to the coordinated fullerene followed by a hole shift process to zinc phthalocyanine resulting in a long-lived charge separated state as revealed by femto- and nanosecond transient absorption spectroscopic techniques. The lifetime of the final charge separated state was about 100 ns.
Beaver, Laura M.; Nkrumah-Elie, Yasmeen M.; Truong, Lisa; Barton, Carrie L.; Knecht, Andrea L.; Gonnerman, Greg D.; Wong, Carmen P.; Tanguay, Robert L.; Ho, Emily
2017-01-01
The high prevalence of zinc deficiency is a global public health concern, and suboptimal maternal zinc consumption has been associated with adverse effects ranging from impaired glucose tolerance to low birthweights. The mechanisms that contribute to altered development and poor health in zinc deficient offspring are not completely understood. To address this gap, we utilized the Danio rerio model and investigated the impact of dietary zinc deficiency on adults and their developing progeny. Zinc deficient adult fish were significantly smaller in size, and had decreases in learning and fitness. We hypothesized that parental zinc deficiency would have an impact on their offspring’s mineral homeostasis and embryonic development. Results from mineral analysis showed that parental zinc deficiency caused their progeny to be zinc deficient. Furthermore, parental dietary zinc deficiency had adverse consequences for their offspring including a significant increase in mortality and decreased physical activity. Zinc deficient embryos had altered expression of genes that regulate metal homeostasis including several zinc transporters (ZnT8, ZnT9) and the metal-regulatory transcription factor 1 (MTF-1). Zinc deficiency was also associated with decreased expression of genes related to diabetes and pancreatic development in the embryo (Insa, Pax4, Pdx1). Decreased expression of DNA methyltransferases (Dnmt4, Dnmt6) was also found in zinc deficient offspring, which suggests that zinc deficiency in parents may cause altered epigenetic profiles for their progeny. These data should inform future studies regarding zinc deficiency and pregnancy and suggest that supplementation of zinc deficient mothers prior to pregnancy may be beneficial. PMID:28268202
A question mark on zinc deficiency in 185 million people in Pakistan--possible way out.
Khalid, Nauman; Ahmed, Anwaar; Bhatti, Muhammad Shahbaz; Randhawa, Muhammad Atif; Ahmad, Asif; Rafaqat, Rabab
2014-01-01
This paper reviews research published in recent years concerning the effects of zinc deficiency, its consequences, and possible solutions. Zinc is an essential trace element necessary for over 300 zinc metalloenzymes and required for normal nucleic acid, protein, and membrane metabolism. Zinc deficiency is one of the ten biggest factors contributing to burden of disease in developing countries. Populations in South Asia, South East Asia, and sub-Saharan Africa are at greatest risk of zinc deficiency. Zinc intakes are inadequate for about a third of the population and stunting affects 40% of preschool children. In Pakistan, zinc deficiency is an emerging health problem as about 20.6% children are found in the levels of zinc, below 60 μg/dL. Signs and symptoms caused by zinc deficiency are poor appetite, weight loss, and poor growth in childhood, delayed healing of wounds, taste abnormalities, and mental lethargy. As body stores of zinc decline, these symptoms worsen and are accompanied by diarrhea, recurrent infection, and dermatitis. Daily zinc requirements for an adult are 12-16 mg/day. Iron, calcium and phytates inhibit the absorption of zinc therefore simultaneous administration should not be prescribed. Zinc deficiency and its effects are well known but the ways it can help in treatment of different diseases is yet to be discovered. Improving zinc intakes through dietary improvements is a complex task that requires considerable time and effort. The use of zinc supplements, dietary modification, and fortifying foods with zinc are the best techniques to combat its deficiency.
Interaction of zinc with dental mineral.
Ingram, G S; Horay, C P; Stead, W J
1992-01-01
As some currently available toothpastes contain zinc compounds, the reaction of zinc with dental mineral and its effect on crystal growth rates were studied using three synthetic calcium-deficient hydroxyapatites (HAP) as being representative of dental mineral. Zinc was readily acquired by all HAP samples in the absence of added calcium, the amount adsorbed being proportional to the HAP surface area; about 9 mumol Zn/m2 was adsorbed at high zinc concentrations. As zinc was acquired, calcium was released, consistent with 1:1 Ca:Zn exchange. Soluble calcium reduced zinc uptake and similarly, calcium post-treatment released zinc. Pretreatment of HAP with 0.5 mM zinc reduced its subsequent ability to undergo seeded crystal growth, as did extracts of a toothpaste containing 0.5% zinc citrate, even in the presence of saliva. The reverse reaction, i.e. displacement of adsorbed zinc by salivary levels of calcium, however, indicates the mechanism by which zinc can reduce calculus formation in vivo by inhibiting plaque mineralisation without adversely affecting the anti-caries effects of fluoride.
Zhang, Daniel Y; Azrad, Maria; Demark-Wahnefried, Wendy; Frederickson, Christopher J; Lippard, Stephen J; Radford, Robert J
2015-02-20
Small-molecule fluorescent sensors are versatile agents for detecting mobile zinc in biology. Capitalizing on the abundance of validated mobile zinc probes, we devised a strategy for repurposing existing intensity-based sensors for quantitative applications. Using solid-phase peptide synthesis, we conjugated a zinc-sensitive Zinpyr-1 derivative and a zinc-insensitive 7-hydroxycoumarin derivative onto opposite ends of a rigid P9K peptide scaffold to create HcZ9, a ratiometric fluorescent probe for mobile zinc. A plate reader-based assay using HcZ9 was developed, the accuracy of which is comparable to that of atomic absorption spectroscopy. We investigated zinc accumulation in prostatic cells and zinc levels in human seminal fluid. When normal and tumorigenic cells are bathed in zinc-enriched media, cellular mobile zinc is buffered and changes slightly, but total zinc levels increase significantly. Quantification of mobile and total zinc levels in human seminal plasma revealed that the two are positively correlated with a Pearson's coefficient of 0.73.
Wang, X X; Zhang, M J; Li, X B
2018-01-20
Zinc is one of the essential trace elements in human body, which plays an important role in regulating acute inflammatory response, glucose metabolism, anti-oxidation, immune and gastrointestinal function of patients with severe burns. Patients with severe burns may suffer from zinc deficiency because of insufficient amount of zinc intake from the diet and a large amount of zinc lose through wounds and urine. Zinc deficiency may affect their wound healing process and prognosis. This article reviews the characteristics of zinc metabolism in patients with severe burns through dynamic monitoring the plasma and urinary concentration of zinc. An adequate dosage of zinc supplemented to patients with severe burns by an appropriate method can increase the level of zinc in plasma and skin tissue and improve wound healing, as well as reduce the infection rates and mortality. At the same time, it is important to observe the symptoms and signs of nausea, dizziness, leukopenia and arrhythmia in patients with severe burns after supplementing excessive zinc.
Maywald, Martina; Wessels, Inga; Rink, Lothar
2017-01-01
Zinc homeostasis is crucial for an adequate function of the immune system. Zinc deficiency as well as zinc excess result in severe disturbances in immune cell numbers and activities, which can result in increased susceptibility to infections and development of especially inflammatory diseases. This review focuses on the role of zinc in regulating intracellular signaling pathways in innate as well as adaptive immune cells. Main underlying molecular mechanisms and targets affected by altered zinc homeostasis, including kinases, caspases, phosphatases, and phosphodiesterases, will be highlighted in this article. In addition, the interplay of zinc homeostasis and the redox metabolism in affecting intracellular signaling will be emphasized. Key signaling pathways will be described in detail for the different cell types of the immune system. In this, effects of fast zinc flux, taking place within a few seconds to minutes will be distinguish from slower types of zinc signals, also designated as “zinc waves”, and late homeostatic zinc signals regarding prolonged changes in intracellular zinc. PMID:29064429
USDA-ARS?s Scientific Manuscript database
To evaluate the influence of resveratrol on cellular zinc status, normal human prostate epithelial (NHPrE) cells were treated with 6 levels of resveratrol (0, 0.5, 1, 2.5, 5 and 10 microM) and 4 levels of zinc [0, 4, 16, and 32 microM for zinc-deficient (ZD), zinc-normal (ZN), zinc-adequate (ZA), an...
Sun, Xinguo; Song, Zhenyuan; McClain, Craig J.; Zhou, Zhanxiang
2013-01-01
Clinical studies have demonstrated that alcoholics have a lower dietary zinc intake compared to health controls. The present study was undertaken to determine the interaction between dietary zinc deficiency and ethanol consumption in the pathogenesis of alcoholic liver disease. C57BL/6N mice were subjected to 8-week feeding of 4 experimental liquid diets: (1) zinc adequate diet, (2) zinc adequate diet plus ethanol, (3) zinc deficient diet, and (4) zinc deficient diet plus ethanol. Ethanol exposure with adequate dietary zinc resulted in liver damage as indicated by elevated plasma alanine aminotransferase level and increased hepatic lipid accumulation and inflammatory cell infiltration. Dietary zinc deficiency alone increased hepatic lipid contents, but did not induce hepatic inflammation. Dietary zinc deficiency showed synergistic effects on ethanol-induced liver damage. Dietary zinc deficiency exaggerated ethanol effects on hepatic genes related to lipid metabolism and inflammatory response. Dietary zinc deficiency worsened ethanol-induced imbalance between hepatic pro-oxidant and antioxidant enzymes and hepatic expression of cell death receptors. Dietary zinc deficiency exaggerated ethanol-induced reduction of plasma leptin, although it did not affect ethanol-induced reduction of white adipose tissue mass. Dietary zinc deficiency also deteriorated ethanol-induced gut permeability increase and plasma endotoxin elevation. These results demonstrate, for the first time, that dietary zinc deficiency is a risk factor in alcoholic liver disease, and multiple intrahepatic and extrahepatic factors may mediate the detrimental effects of zinc deficiency. PMID:24155903
Wilson, Rebecca L.; Grieger, Jessica A.; Bianco-Miotto, Tina; Roberts, Claire T.
2016-01-01
Adequate zinc stores in the body are extremely important during periods of accelerated growth. However, zinc deficiency is common in developing countries and low maternal circulating zinc concentrations have previously been associated with pregnancy complications. We reviewed current literature assessing circulating zinc and dietary zinc intake during pregnancy and the associations with preeclampsia (PE); spontaneous preterm birth (sPTB); low birthweight (LBW); and gestational diabetes (GDM). Searches of MEDLINE; CINAHL and Scopus databases identified 639 articles and 64 studies were reviewed. In 10 out of 16 studies a difference was reported with respect to circulating zinc between women who gave birth to a LBW infant (≤2500 g) and those who gave birth to an infant of adequate weight (>2500 g), particularly in populations where inadequate zinc intake is prevalent. In 16 of our 33 studies an association was found between hypertensive disorders of pregnancy and circulating zinc; particularly in women with severe PE (blood pressure ≥160/110 mmHg). No association between maternal zinc status and sPTB or GDM was seen; however; direct comparisons between the studies was difficult. Furthermore; only a small number of studies were based on women from populations where there is a high risk of zinc deficiency. Therefore; the link between maternal zinc status and pregnancy success in these populations cannot be established. Future studies should focus on those vulnerable to zinc deficiency and include dietary zinc intake as a measure of zinc status. PMID:27754451
Hou, Zhuang; Lin, Bin; Bao, Yu; Yan, Hai-Ning; Zhang, Miao; Chang, Xiao-Wei; Zhang, Xin-Xin; Wang, Zi-Jie; Wei, Gao-Fei; Cheng, Mao-Sheng; Liu, Yang; Guo, Chun
2017-05-26
Dual-tail approach was employed to design novel Carbonic Anhydrase (CA) IX inhibitors by simultaneously matching the hydrophobic and hydrophilic halves of the active site, which also contains a zinc ion as part of the catalytic center. The classic sulfanilamide moiety was used as the zinc binding group. An amino glucosamine fragment was chosen as the hydrophilic part and a cinnamamide fragment as the hydrophobic part in order to draw favorable interactions with the corresponding halves of the active site. In comparison with sulfanilamide which is largely devoid of the hydrophilic and hydrophobic interactions with the two halves of the active site, the compounds so designed and synthesized in this study showed 1000-fold improvement in binding affinity. Most of the compounds inhibited the CA effectively with IC 50 values in the range of 7-152 nM. Compound 14e (IC 50 : 7 nM) was more effective than the reference drug acetazolamide (IC 50 : 30 nM). The results proved that the dual-tail approach to simultaneously matching the hydrophobic and hydrophilic halves of the active site by linking hydrophobic and hydrophilic fragments was useful for designing novel CA inhibitors. The effectiveness of those compounds was elucidated by both the experimental data and molecular docking simulations. This work laid a solid foundation for further development of novel CA IX inhibitors for cancer treatment. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Solomons, Noel W
2013-01-01
Zinc has become a prominent nutrient of clinical and public health interest in the new millennium. Functions and actions for zinc emerge as increasingly ubiquitous in mammalian anatomy, physiology and metabolism. There is undoubtedly an underpinning in fundamental biology for all of the aspects of zinc in human health (clinical and epidemiological) in pediatric and public health practice. Unfortunately, basic science research may not have achieved a full understanding as yet. As a complement to the applied themes in the companion articles, a selection of recent advances in the domains homeostatic regulation and transport of zinc is presented; they are integrated, in turn, with findings on genetic expression, intracellular signaling, immunity and host defense, and bone growth. The elements include ionic zinc, zinc transporters, metallothioneins, zinc metalloenzymes and zinc finger proteins. In emerging basic research, we find some plausible mechanistic explanations for delayed linear growth with zinc deficiency and increased infectious disease resistance with zinc supplementation. Copyright © 2013 S. Karger AG, Basel.
Zinc electrode and rechargeable zinc-air battery
Ross, Jr., Philip N.
1989-01-01
An improved zinc electrode is disclosed for a rechargeable zinc-air battery comprising an outer frame and a porous foam electrode support within the frame which is treated prior to the deposition of zinc thereon to inhibit the formation of zinc dendrites on the external surface thereof. The outer frame is provided with passageways for circulating an alkaline electrolyte through the treated zinc-coated porous foam. A novel rechargeable zinc-air battery system is also disclosed which utilizes the improved zinc electrode and further includes an alkaline electrolyte within said battery circulating through the passageways in the zinc electrode and an external electrolyte circulation means which has an electrolyte reservoir external to the battery case including filter means to filter solids out of the electrolyte as it circulates to the external reservoir and pump means for recirculating electrolyte from the external reservoir to the zinc electrode.
7 CFR 51.1527 - Standard pack.
Code of Federal Regulations, 2011 CFR
2011-01-01
... peach boxes, lug boxes and small consumer packages. In layer-packed California peach boxes or lug boxes... package. The number of plums or prunes in California peach boxes or lug boxes shall not vary more than 4... container. (ii) Face and fill packs in cartons and lug boxes. In face and fill packs in cartons and lug...
7 CFR 51.1527 - Standard pack.
Code of Federal Regulations, 2012 CFR
2012-01-01
... peach boxes, lug boxes and small consumer packages. In layer-packed California peach boxes or lug boxes... package. The number of plums or prunes in California peach boxes or lug boxes shall not vary more than 4... container. (ii) Face and fill packs in cartons and lug boxes. In face and fill packs in cartons and lug...
Kessels, Jana Elena; Wessels, Inga; Haase, Hajo; Rink, Lothar; Uciechowski, Peter
2016-09-01
The distribution of intracellular zinc, predominantly regulated through zinc transporters and zinc binding proteins, is required to support an efficient immune response. Epigenetic mechanisms such as DNA methylation are involved in the expression of these genes. In demethylation experiments using 5-Aza-2'-deoxycytidine (AZA) increased intracellular (after 24 and 48h) and total cellular zinc levels (after 48h) were observed in the myeloid cell line HL-60. To uncover the mechanisms that cause the disturbed zinc homeostasis after DNA demethylation, the expression of human zinc transporters and zinc binding proteins were investigated. Real time PCR analyses of 14 ZIP (solute-linked carrier (SLC) SLC39A; Zrt/IRT-like protein), and 9 ZnT (SLC30A) zinc transporters revealed significantly enhanced mRNA expression of the zinc importer ZIP1 after AZA treatment. Because ZIP1 protein was also enhanced after AZA treatment, ZIP1 up-regulation might be the mediator of enhanced intracellular zinc levels. The mRNA expression of ZIP14 was decreased, whereas zinc exporter ZnT3 mRNA was also significantly increased; which might be a cellular reaction to compensate elevated zinc levels. An enhanced but not significant chromatin accessibility of ZIP1 promoter region I was detected by chromatin accessibility by real-time PCR (CHART) assays after demethylation. Additionally, DNA demethylation resulted in increased mRNA accumulation of zinc binding proteins metallothionein (MT) and S100A8/S100A9 after 48h. MT mRNA was significantly enhanced after 24h of AZA treatment also suggesting a reaction of the cell to restore zinc homeostasis. These data indicate that DNA methylation is an important epigenetic mechanism affecting zinc binding proteins and transporters, and, therefore, regulating zinc homeostasis in myeloid cells. Copyright © 2016 Elsevier GmbH. All rights reserved.
Kasana, Shakhenabat; Din, Jamila; Maret, Wolfgang
2015-01-01
Discovering genetic causes of zinc deficiency has been a remarkable scientific journey. It started with the description of a rare skin disease, its treatment with various agents, the successful therapy with zinc, and the identification of mutations in a zinc transporter causing the disease. The journey continues with defining the molecular and cellular pathways that lead to the symptoms caused by zinc deficiency. Remarkably, at least two zinc transporters from separate protein families are now known to be involved in the genetics of zinc deficiency. One is ZIP4, which is involved in intestinal zinc uptake. Its mutations can cause acrodermatitis enteropathica (AE) with autosomal recessive inheritance. The other one is ZnT2, the transporter responsible for supplying human milk with zinc. Mutations in this transporter cause transient neonatal zinc deficiency (TNZD) with symptoms similar to AE but with autosomal dominant inheritance. The two diseases can be distinguished in affected infants. AE is fatal if zinc is not supplied to the infant after weaning, whereas TNZD is a genetic defect of the mother limiting the supply of zinc in the milk, and therefore the infant usually will obtain enough zinc once weaned. Although these diseases are relatively rare, the full functional consequences of the numerous mutations in ZIP4 and ZnT2 and their interactions with dietary zinc are not known. In particular, it remains unexplored whether some mutations cause milder disease phenotypes or increase the risk for other diseases if dietary zinc requirements are not met or exceeded. Thus, it is not known whether widespread zinc deficiency in human populations is based primarily on a nutritional deficiency or determined by genetic factors as well. This consideration becomes even more significant with regard to mutations in the other 22 human zinc transporters, where associations with a range of diseases, including diabetes, heart disease, and mental illnesses have been observed. Therefore, clinical tests for genetic disorders of zinc metabolism need to be developed.
Zinc and Wound Healing: A Review of Zinc Physiology and Clinical Applications.
Kogan, Samuel; Sood, Aditya; Garnick, Mark S
2017-04-01
Our understanding of the role of zinc in normal human physiology is constantly expanding, yet there are major gaps in our knowledge with regard to the function of zinc in wound healing. This review aims to provide the clinician with sufficient understanding of zinc biology and an up-to-date perspective on the role of zinc in wound healing. Zinc is an essential ion that is crucial for maintenance of normal physiology, and zinc deficiency has many manifestations ranging from delayed wound healing to immune dysfunction and impairment of multiple sensory systems. While consensus has been reached regarding the detrimental effects of zinc deficiency on wound healing, there is considerable discord in the literature on the optimal methods and true benefits of zinc supplementation.
Zinc at glutamatergic synapses.
Paoletti, P; Vergnano, A M; Barbour, B; Casado, M
2009-01-12
It has long been known that the mammalian forebrain contains a subset of glutamatergic neurons that sequester zinc in their synaptic vesicles. This zinc may be released into the synaptic cleft upon neuronal activity. Extracellular zinc has the potential to interact with and modulate many different synaptic targets, including glutamate receptors and transporters. Among these targets, NMDA receptors appear particularly interesting because certain NMDA receptor subtypes (those containing the NR2A subunit) contain allosteric sites exquisitely sensitive to extracellular zinc. The existence of these high-affinity zinc binding sites raises the possibility that zinc may act both in a phasic and tonic mode. Changes in zinc concentration and subcellular zinc distribution have also been described in several pathological conditions linked to glutamatergic transmission dysfunctions. However, despite intense investigation, the functional significance of vesicular zinc remains largely a mystery. In this review, we present the anatomy and the physiology of the glutamatergic zinc-containing synapse. Particular emphasis is put on the molecular and cellular mechanisms underlying the putative roles of zinc as a messenger involved in excitatory synaptic transmission and plasticity. We also highlight the many controversial issues and unanswered questions. Finally, we present and compare two widely used zinc chelators, CaEDTA and tricine, and show why tricine should be preferred to CaEDTA when studying fast transient zinc elevations as may occur during synaptic activity.
Arnold, L E; Pinkham, S M; Votolato, N
2000-01-01
Zinc is an important co-factor for metabolism relevant to neurotransmitters, fatty acids, prostaglandins, and melatonin, and indirectly affects dopamine metabolism, believed intimately involved in attention-deficit/hyperactivity disorder (ADHD). To explore the relationship of zinc nutrition to essential fatty acid supplement and stimulant effects in treatment of ADHD, we re-analyzed data from an 18-subject double-blind, placebo-controlled crossover treatment comparison of d-amphetamine and Efamol (evening primrose oil, rich in gamma-linolenic acid). Subjects were categorized as zinc-adequate (n = 5), borderline zinc (n = 5), and zinc-deficient (n = 8) by hair, red cell, and urine zinc levels; for each category, placebo-active difference means were calculated on teachers' ratings. Placebo-controlled d-amphetamine response appeared linear with zinc nutrition, but the relationship of Efamol response to zinc appeared U-shaped; Efamol benefit was evident only with borderline zinc. Placebo-controlled effect size (Cohen's d) for both treatments ranged up to 1.5 for borderline zinc and dropped to 0.3-0.7 with mild zinc deficiency. If upheld by prospective research, this post-hoc exploration suggests that zinc nutrition may be important for treatment of ADHD even by pharmacotherapy, and if Efamol benefits ADHD, it likely does so by improving or compensating for borderline zinc nutrition.
Zinc-mediated Allosteric Inhibition of Caspase-6*
Velázquez-Delgado, Elih M.; Hardy, Jeanne A.
2012-01-01
Zinc and caspase-6 have independently been implicated in several neurodegenerative disorders. Depletion of zinc intracellularly leads to apoptosis by an unknown mechanism. Zinc inhibits cysteine proteases, including the apoptotic caspases, leading to the hypothesis that zinc-mediated inhibition of caspase-6 might contribute to its regulation in a neurodegenerative context. Using inductively coupled plasma optical emission spectroscopy, we observed that caspase-6 binds one zinc per monomer, under the same conditions where the zinc leads to complete loss of enzymatic activity. To understand the molecular details of zinc binding and inhibition, we performed an anomalous diffraction experiment above the zinc edge. The anomalous difference maps showed strong 5σ peaks, indicating the presence of one zinc/monomer bound at an exosite distal from the active site. Zinc was not observed bound to the active site. The zinc in the exosite was liganded by Lys-36, Glu-244, and His-287 with a water molecule serving as the fourth ligand, forming a distorted tetrahedral ligation sphere. This exosite appears to be unique to caspase-6, as the residues involved in zinc binding were not conserved across the caspase family. Our data suggest that binding of zinc at the exosite is the primary route of inhibition, potentially locking caspase-6 into the inactive helical conformation. PMID:22891250
Sandusky-Beltran, Leslie A; Manchester, Bryce L; McNay, Ewan C
2017-08-30
Zinc and copper are essential trace elements. Dyshomeostasis in these two metals has been observed in Alzheimer's disease, which causes profound cognitive impairment. Insulin therapy has been shown to enhance cognitive performance; however, recent data suggest that this effect may be at least in part due to the inclusion of zinc in the insulin formulation used. Zinc plays a key role in regulation of neuronal glutamate signaling, suggesting a possible link between zinc and memory processes. Consistent with this, zinc deficiency causes cognitive impairments in children. The effect of zinc supplementation on short- and long-term recognition memory, and on spatial working memory, was explored in young and adult male Sprague Dawley rats. After behavioral testing, hippocampal and plasma zinc and copper were measured. Age increased hippocampal zinc and copper, as well as plasma copper, and decreased plasma zinc. An interaction between age and treatment affecting plasma copper was also found, with zinc supplementation reversing elevated plasma copper concentration in adult rats. Zinc supplementation enhanced cognitive performance across tasks. These data support zinc as a plausible therapeutic intervention to ameliorate cognitive impairment in disorders characterized by alterations in zinc and copper, such as Alzheimer's disease. Copyright © 2017 Elsevier B.V. All rights reserved.
Hashimoto, Ayako; Nakagawa, Miki; Tsujimura, Natsuki; Miyazaki, Shiho; Kizu, Kumiko; Goto, Tomoko; Komatsu, Yusuke; Matsunaga, Ayu; Shirakawa, Hitoshi; Narita, Hiroshi; Kambe, Taiho; Komai, Michio
2016-03-01
Systemic and cellular zinc homeostasis is elaborately controlled by ZIP and ZnT zinc transporters. Therefore, detailed characterization of their expression properties is of importance. Of these transporter proteins, Zip4 functions as the primarily important transporter to control systemic zinc homeostasis because of its indispensable function of zinc absorption in the small intestine. In this study, we closely investigated Zip4 protein accumulation in the rat small intestine in response to zinc status using an anti-Zip4 monoclonal antibody that we generated and contrasted this with the zinc-responsive activity of the membrane-bound alkaline phosphatase (ALP). We found that Zip4 accumulation is more rapid in response to zinc deficiency than previously thought. Accumulation increased in the jejunum as early as 1 day following a zinc-deficient diet. In the small intestine, Zip4 protein expression was higher in the jejunum than in the duodenum and was accompanied by reduction of ALP activity, suggesting that the jejunum can become zinc deficient more easily. Furthermore, by monitoring Zip4 accumulation levels and ALP activity in the duodenum and jejunum, we reasserted that zinc deficiency during lactation may transiently alter plasma glucose levels in the offspring in a sex-specific manner, without affecting homeostatic control of zinc metabolism. This confirms that zinc nutrition during lactation is extremely important for the health of the offspring. These results reveal that rapid Zip4 accumulation provides a significant conceptual advance in understanding the molecular basis of systemic zinc homeostatic control, and that properties of Zip4 protein accumulation are useful to evaluate zinc status closely. Copyright © 2016 the American Physiological Society.
Finger millet (Eleucine coracana) flour as a vehicle for fortification with zinc.
Tripathi, Bhumika; Platel, Kalpana
2010-01-01
Millets, being less expensive compared to cereals and the staple for the poorer sections of population, could be the choice for fortification with micronutrients such as zinc. In view of this, finger millet, widely grown and commonly consumed in southern India, was explored as a vehicle for fortification with zinc in this investigation. Finger millet flour fortified with either zinc oxide or zinc stearate so as to provide 50mg zinc per kg flour, was specifically examined for the bioaccessibility of the fortified mineral, as measured by in vitro simulated gastrointestinal digestion procedure and storage stability. Addition of the zinc salts increased the bioaccessible zinc content by 1.5-3 times that of the unfortified flour. Inclusion of EDTA along with the fortified salt significantly enhanced the bioaccessibility of zinc from the fortified flours, the increase being three-fold. Inclusion of citric acid along with the zinc salt and EDTA during fortification did not have any additional beneficial effect on zinc bioaccessiblity. Moisture and free fatty acid contents of the stored fortified flours indicated the keeping quality of the same, up to 60 days. Both zinc oxide and zinc stearate were equally effective as fortificants, when used in combination with EDTA as a co-fortificant. The preparation of either roti or dumpling from the fortified flours stored up to 60 days did not result in any significant compromise in the bioaccessible zinc content. Thus, the present study has revealed that finger millet flour can effectively be used as a vehicle for zinc fortification to derive additional amounts of bioaccessible zinc, with reasonably good storage stability, to combat zinc deficiency. Copyright 2009 Elsevier GmbH. All rights reserved.
Serum alkaline phosphatase activity during zinc deficiency and long-term inflammatory stress.
Naber, T H; Baadenhuysen, H; Jansen, J B; van den Hamer, C J; van den Broek, W
1996-05-30
A decrease in serum zinc can be caused by a real zinc deficiency but can also be caused by an apparent zinc deficiency, e.g. in inflammatory stress. The aim of this study was to evaluate the diagnostic power of serum alkaline phosphatase (AP) activity in the discrimination between pathophysiologic states of "real" and "apparent" zinc deficiency. A decrease in serum zinc was induced in growing and adult rats, by providing a diet low in zinc and by causing inflammatory stress. AP activity was determined using reagents low or enriched in zinc. Serum AP was decreased in zinc-deficient adult rats (P < 0.01). In zinc-deficient growing rats AP activity was not different from normal rats but AP activity decreased rapidly. In the same growing rats a significant difference was found in AP activities determined using buffers low and enriched in zinc (P < 0.001) between both groups of rats. After inducing inflammatory stress a decrease in AP activity (P < 0.01) and serum zinc (P < 0.001) was seen during the first few days. After the initial phase of inflammation AP activity normalized, serum zinc showed a rise which after correction for the decrease in serum albumin reached the level of the control rats. A difference in AP activity in buffers low and enriched in zinc was observed only during the first few days after induction of inflammatory stress (P < 0.001). Probably the method of measurement of the difference in enzyme activity, using buffers low and enriched in zinc, can be used as an indication for zinc deficiency in situations with changing AP enzyme concentrations. AP activity is decreased during the initial phase of inflammatory stress due to a decrease in serum zinc.
Guo, Liang; Lichten, Louis A.; Ryu, Moon-Suhn; Liuzzi, Juan P.; Wang, Fudi; Cousins, Robert J.
2010-01-01
The exocrine pancreas plays an important role in endogenous zinc loss by regulating excretion into the intestinal tract and hence influences the dietary zinc requirement. The present experiments show that the zinc transporter ZnT2 (Slc30a2) is localized to the zymogen granules and that dietary zinc restriction in mice decreased the zinc concentration of zymogen granules and ZnT2 expression. Excess zinc given orally increased ZnT2 expression and was associated with increased pancreatic zinc accumulation. Rat AR42J acinar cells when induced into a secretory phenotype, using the glucocorticoid analog dexamethasone (DEX), exhibited increased ZnT2 expression and labile zinc as measured with a fluorophore. DEX administrated to mice also induced ZnT2 expression that accompanied a reduction of the pancreatic zinc content. ZnT2 promoter analyses identified elements required for responsiveness to zinc and DEX. Zinc regulation was traced to a MRE located downstream from the ZnT2 transcription start site. Responsiveness to DEX is produced by two upstream STAT5 binding sites that require the glucocorticoid receptor for activation. ZnT2 knockdown in the AR42J cells using siRNA resulted in increased cytoplasmic zinc and decreased zymogen granule zinc that further demonstrated that ZnT2 may mediate the sequestration of zinc into zymogen granules. We conclude, based upon experiments with intact mice and pancreatic acinar cells in culture, that ZnT2 participates in zinc transport into pancreatic zymogen granules through a glucocorticoid pathway requiring glucocorticoid receptor and STAT5, and zinc-regulated signaling pathways requiring MTF-1. The ZnT2 transporter appears to function in a physiologically responsive manner involving entero-pancreatic zinc trafficking. PMID:20133611
Reed, Spenser; Qin, Xia; Ran-Ressler, Rinat; Brenna, James Thomas; Glahn, Raymond P.; Tako, Elad
2014-01-01
Zinc is a vital micronutrient used for over 300 enzymatic reactions and multiple biochemical and structural processes in the body. To date, sensitive and specific biological markers of zinc status are still needed. The aim of this study was to evaluate Gallus gallus as an in vivo model in the context of assessing the sensitivity of a previously unexplored potential zinc biomarker, the erythrocyte linoleic acid: dihomo-γ-linolenic acid (LA:DGLA) ratio. Diets identical in composition were formulated and two groups of birds (n = 12) were randomly separated upon hatching into two diets, Zn(+) (zinc adequate control, 42.3 μg/g zinc), and Zn(−) (zinc deficient, 2.5 μg/g zinc). Dietary zinc intake, body weight, serum zinc, and the erythrocyte fatty acid profile were measured weekly. At the conclusion of the study, tissues were collected for gene expression analysis. Body weight, feed consumption, zinc intake, and serum zinc were higher in the Zn(+) control versus Zn(−) group (p < 0.05). Hepatic TNF-α, IL-1β, and IL-6 gene expression were higher in the Zn(+) control group (p < 0.05), and hepatic Δ6 desaturase was significantly higher in the Zn(+) group (p < 0.001). The LA:DGLA ratio was significantly elevated in the Zn(−) group compared to the Zn(+) group (22.6 ± 0.5 and 18.5 ± 0.5, % w/w, respectively, p < 0.001). This study suggests erythrocyte LA:DGLA is able to differentiate zinc status between zinc adequate and zinc deficient birds, and may be a sensitive biomarker to assess dietary zinc manipulation. PMID:24658588
Decrease of non-point zinc runoff using porous concrete.
Harada, Shigeki; Komuro, Yoshinori
2010-01-01
The use of porous concrete columns to decrease the amount of zinc in stormwater runoff is examined. The concentration of zinc in a simulated stormwater fluid (zinc acetate solution), fed through concrete columns (slashed circle10x10cm) decreased by 50-81%, suggesting physical adsorption of zinc by the porous concrete. We propose the use of porous concrete columns (slashed circle50x10cm) as the base of sewage traps. Longer-term, high-zinc concentration monitoring revealed that porous concrete blocks adsorb 38.6mgcm(-3) of zinc. A period of no significant zinc runoff (with an acceptable concentration of zinc in runoff of 0.03mgL(-1), a zinc concentration equal to the Japanese Environmental Standard) is estimated for 41years using a 1-ha catchment area with 20 porous concrete sewage traps. Scanning electron microscopy of the porous concrete used in this study indicates that the needle-like particles formed by hydration action significantly increase zinc adsorption. Evidence suggests that the hydrant is ettringite and has an important role in zinc adsorption, the resulting immobilization of zinc and the subsequent effects on groundwater quality. Copyright 2009 Elsevier Ltd. All rights reserved.
Moran, Victoria Hall; Stammers, Anna-Louise; Medina, Marisol Warthon; Patel, Sujata; Dykes, Fiona; Souverein, Olga W.; Dullemeijer, Carla; Pérez-Rodrigo, Carmen; Serra-Majem, Lluis; Nissensohn, Mariela; Lowe, Nicola M.
2012-01-01
Recommendations for zinc intake during childhood vary widely across Europe. The EURRECA project attempts to consolidate the basis for the definition of micronutrient requirements, taking into account relationships among intake, status and health outcomes, in order to harmonise these recommendations. Data on zinc intake and biomarkers of zinc status reported in randomised controlled trials (RCTs) can provide estimates of dose-response relationships which may be used for underpinning zinc reference values. This systematic review included all RCTs of apparently healthy children aged 1–17 years published by February 2010 which provided data on zinc intake and biomarkers of zinc status. An intake-status regression coefficient () was calculated for each individual study and calculated the overall pooled and SE () using random effects meta-analysis on a double log scale. The pooled dose-response relationship between zinc intake and zinc status indicated that a doubling of the zinc intake increased the serum/plasma zinc status by 9%. This evidence can be utilised, together with currently used balance studies and repletion/depletion studies, when setting zinc recommendations as a basis for nutrition policies. PMID:23016120
The biological inorganic chemistry of zinc ions.
Krężel, Artur; Maret, Wolfgang
2016-12-01
The solution and complexation chemistry of zinc ions is the basis for zinc biology. In living organisms, zinc is redox-inert and has only one valence state: Zn(II). Its coordination environment in proteins is limited by oxygen, nitrogen, and sulfur donors from the side chains of a few amino acids. In an estimated 10% of all human proteins, zinc has a catalytic or structural function and remains bound during the lifetime of the protein. However, in other proteins zinc ions bind reversibly with dissociation and association rates commensurate with the requirements in regulation, transport, transfer, sensing, signalling, and storage. In contrast to the extensive knowledge about zinc proteins, the coordination chemistry of the "mobile" zinc ions in these processes, i.e. when not bound to proteins, is virtually unexplored and the mechanisms of ligand exchange are poorly understood. Knowledge of the biological inorganic chemistry of zinc ions is essential for understanding its cellular biology and for designing complexes that deliver zinc to proteins and chelating agents that remove zinc from proteins, for detecting zinc ion species by qualitative and quantitative analysis, and for proper planning and execution of experiments involving zinc ions and nanoparticles such as zinc oxide (ZnO). In most investigations, reference is made to zinc or Zn 2+ without full appreciation of how biological zinc ions are buffered and how the d-block cation Zn 2+ differs from s-block cations such as Ca 2+ with regard to significantly higher affinity for ligands, preference for the donor atoms of ligands, and coordination dynamics. Zinc needs to be tightly controlled. The interaction with low molecular weight ligands such as water and inorganic and organic anions is highly relevant to its biology but in contrast to its coordination in proteins has not been discussed in the biochemical literature. From the discussion in this article, it is becoming evident that zinc ion speciation is important in zinc biochemistry and for biological recognition as a variety of low molecular weight zinc complexes have already been implicated in biological processes, e.g. with ATP, glutathione, citrate, ethylenediaminedisuccinic acid, nicotianamine, or bacillithiol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Tracing of Zinc Nanocrystals in the Anterior Pituitary of Zinc-Deficient Wistar Rats.
Kuldeep, Anjana; Nair, Neena; Bedwal, Ranveer Singh
2017-06-01
The aim of this study was to trace zinc nanocrystals in the anterior pituitary of zinc-deficient Wistar rats by using autometallographic technique. Male Wistar rats (30-40 days of age, pre-pubertal period) of 40-50 g body weight were divided into the following: the ZC (zinc control) group-fed with 100 ppm zinc in diet, the ZD (zinc-deficient) group-fed with zinc-deficient (1.00 ppm) diet and the PF (pair-fed) group-received 100 ppm zinc in diet. The experiments were set for 2 and 4 weeks. Pituitary was removed and processed for the autometallographic technique. The control and pair-fed groups retained their normal morphological features. However, male Wistar rats fed on zinc-deficient diet for 2 and 4 weeks displayed a wide range of symptoms such as significant (P < 0.05) decrease in diet consumption, body weight and pituitary weight and decrease in gradation of intensity of zinc nanocrystals in the nuclei. The present findings suggest that the dietary zinc deficiency causes decreased intensity of zinc nanocrystals localization and their distribution in the pituitary thereby contributing to the dysfunction of the pituitary of the male Wistar rats. The severity of zinc deficiency symptoms progressed after the second week of the experiment. Decreased intensity of zinc nanocrystals attenuates the pituitary function which would exert its affect on other endocrine organs impairing their functions indicating that the metabolic regulation of pituitary is mediated to a certain extent by zinc and/or hypothalamus-hypophysial system which also reflects its essentiality during the period of growth.
Repletion of Zinc and Iron Deficiencies Improves Cognition of Premenopausal Women.
1997-10-01
to our earlier observations in premenopausal women (1, 13) and are consistent with the fact that many premenopausal women select diets that are low...women: associations of diet with serum ferritin and plasma zinc disappearance, and of serum ferritin with plasma zinc and plasma zinc disappearance...women: Associations of diet with serum ferritin and plasma zinc disappearance and of serum ferritin with plasma zinc and plasma zinc disappearance. J
High Gloss Corrosion-Resistant Coatings
1991-08-27
removal and parts by weight of a zinc salt of a substituted benioic certainly saves on manpower that would generally be acid , and 4 to 27 pans by...system consisting essentially of zinc molybdate, zinc salt of benzoic acids , and zinc phosphate in specific ratio’s. The coating exhibits good...polymeric binder and 18 to 70 percent by weight of a pigment system consisting essen- tially of zinc molybdate. zinc salt of benzoic acids , and zinc
Zinc and its transporters, pancreatic beta cells, and insulin metabolism
USDA-ARS?s Scientific Manuscript database
Zinc is an essential trace metal for life. Two families of zinc transporters, SLC30A (ZnT) and SLC39A (ZIP) are required for maintaining cellular zinc homeostasis. ZnTs function to decrease cytoplasmic zinc concentrations whereas ZIPs do the opposite. Expression of zinc transporters can be tissue/ce...
Reduction of zinc emissions from buildings; the policy of Amsterdam.
Gouman, E
2004-01-01
In Amsterdam zinc coming from the roofs and gutters of the buildings accounts for about 50% of the zinc emissions into the surface water (i.e. canals and rivers). This causes water and sediment pollution. Dumping strongly polluted sediment costs ten times more then dumping less polluted mud. Therefore the City of Amsterdam has developed a policy for reducing the zinc emissions from buildings based on the current environmental legislation and the current national targets for surface water quality. Zinc roofs on new and renovated buildings are not permitted. Run off water from zinc roofs of existing buildings is allowed to contain a maximum of 200 microg/l zinc. For the zinc gutters of houses, Amsterdam will promote measures to reduce zinc emissions. To investigate the feasibility of measures, research has been carried out on the zinc emissions of gutters and the effect of covering gutters with an impermeable foil. This research shows clearly that covering zinc gutters with EPDM foil reduces the zinc emissions by 90% from 8.5 to 0.88 gram per square metre per year including the atmospheric deposition.
Performance of Inductors Attached to a Galvanizing Bath
NASA Astrophysics Data System (ADS)
Zhou, Xinping; Yuan, Shuo; Liu, Chi; Yang, Peng; Qian, Chaoqun; Song, Bao
2013-12-01
By taking a galvanizing bath with inductors from an Iron and Steel Co., Ltd as an example, the distributions of Lorentz force and generated heat in the inductor are simulated. As a result, the zinc flow and the temperature distribution driven by the Lorentz force and the generated heat in the inductor of a galvanizing bath are simulated numerically, and their characteristics are analyzed. The relationship of the surface-weighted average velocity at the outlet and the temperature difference between the inlet and the outlet and the effective power for the inductor is studied. Results show that with an increase in effective power for the inductor, the surface-weighted average velocity at the outlet and the temperature difference between the inlet and the outlet increase gradually. We envisage this work to lay a foundation for the study of the performance of the galvanizing bath in future.
NASA Astrophysics Data System (ADS)
Zhang, Lei
Transparent conducting oxide (TCO) thin films of In2O3, SnO2, ZnO, and their mixtures have been extensively used in optoelectronic applications such as transparent electrodes in solar photovoltaic devices. In this project I deposited amorphous indium-zinc oxide (IZO) thin films by radio frequency (RF) magnetron sputtering from a In2O3-10 wt.% ZnO sintered ceramic target to optimize the RF power, argon gas flowing rate, and the thickness of film to reach the maximum conductivity and transparency in visible spectrum. The results indicated optimized conductivity and transparency of IZO thin film is closer to ITO's conductivity and transparency, and is even better when the film was deposited with one specific tilted angle. National Science Foundation (NSF) MRSEC program at University of Nebraska Lincoln, and was hosted by Professor Jeff Shields lab.
NASA Astrophysics Data System (ADS)
Zhou, Tian-Yu; Liu, Xue-Chao; Huang, Wei; Dai, Chong-Chong; Zheng, Yan-Qing; Shi, Er-Wei
2015-04-01
Al-doped ZnO thin film (AZO) is used as a subcontact layer in 6H-SiC photoconductive semiconductor switches (PCSSs) to reduce the on-state resistance and optimize the device structure. Our photoconductive test shows that the on-state resistance of lateral PCSS with an n+-AZO subcontact layer is 14.7% lower than that of PCSS without an n+-AZO subcontact layer. This occurs because a heavy-doped AZO thin film can improve Ohmic contact properties, reduce contact resistance, and alleviate Joule heating. Combined with the high transparance characteristic at 532 nm of AZO film, vertical structural PCSS devices are designed and their structural superiority is discussed. This paper provides a feasible route for fabricating high performance SiC PCSS by using conductive and transparent ZnO-based materials. Project supported by the Innovation Program of the Shanghai Institute of Ceramics (Grant No. Y39ZC1110G), the Innovation Program of the Chinese Academy of Sciences (Grant No. KJCX2-EW-W10), the Industry-Academic Joint Technological Innovations Fund Project of Jiangsu Province, China (Grant No. BY2011119), the Natural Science Foundation of Shanghai (Grant No. 14ZR1419000), the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61404146), and the National High-tech R & D Program of China (Grant Nos. 2013AA031603 and 2014AA032602).
Wood, James; Freeman, Mary C.
2017-01-01
Podostemum ceratophyllum, commonly called Hornleaf Riverweed, occurs in mid-order montane and piedmont rivers of eastern North America, where the plant grows submerged and attached to rocks and stable substrates in swift, aerated water. Multiple studies, mostly conducted in the southern portions of the plant’s range, have shown that Podostemum can variously influence benthic communities in flowing waters. However, a synthetic review of the biology and ecology of the plant is needed to inform conservation, particularly because P. ceratophyllum is reported to be in decline in much of its range, for mostly unknown reasons. We have thus summarized the literature showing that Podostemum provides substantial habitat for invertebrates and fish, may be consumed by invertebrates, turtles, and other vertebrates, removes and sequesters dissolved elements (i.e., nitrogen, phosphorus, calcium, zinc, etc.) from the water column, and contributes organic matter to the detrital pool. Podostemum may be tolerant to some forms of pollution but appears vulnerable to sedimentation, epiphytic over-growth, and hydrologic changes that result in desiccation, and possibly increased herbivory pressure. Much remains unknown about Podostemum, including aspects of morphological variation, seed dispersal, and tolerance to changes in temperature and water chemistry. Nonetheless, Podostemum may be considered a foundation species, whose loss from eastern North American rivers is likely to affect higher trophic levels and ecosystem processes.
Improved zinc electrode and rechargeable zinc-air battery
Ross, P.N. Jr.
1988-06-21
The invention comprises an improved rechargeable zinc-air cell/battery having recirculating alkaline electrolyte and a zinc electrode comprising a porous foam support material which carries the active zinc electrode material. 5 figs.
Downey, Anne Marie; Hales, Barbara F.; Robaire, Bernard
2016-01-01
Adequate zinc levels are required for proper cellular functions and for male germ cell development. Zinc transport is accomplished by two families of zinc transporters, the ZIPs and the ZnTs, that increase and decrease cytosolic zinc levels, respectively. However, very little is known about zinc transport in the testis. Furthermore, whether cytotoxic agents such as cyclophosphamide (CPA), a known male germ cell toxicant, can affect zinc transport and homeostasis is unknown. We examined zinc transporter expression and zinc transport in pachytene spermatocytes (PS) and round spermatids (RS) in a normal state and after exposure to CPA. We observed differences in the expression of members of the ZnT and ZIP families in purified populations of PS and RS. We also observed that RS accumulate more zinc over time than PS. The expression of many zinc binding genes was altered after CPA treatment. Interestingly, we found that the expression levels of ZIP5 and ZIP14 were increased in PS from animals treated daily with 6 mg/kg CPA for 4 wk but not in RS. This up-regulation led to an increase in zinc uptake in PS but not in RS from treated animals compared to controls. These data suggest that CPA treatment may alter zinc homeostasis in male germ cells leading to an increased need for zinc. Altered zinc homeostasis may disrupt proper germ cell development and contribute to infertility and effects on progeny. PMID:27281708
SEP-class genes in Prunus mume and their likely role in floral organ development.
Zhou, Yuzhen; Xu, Zongda; Yong, Xue; Ahmad, Sagheer; Yang, Weiru; Cheng, Tangren; Wang, Jia; Zhang, Qixiang
2017-01-13
Flower phylogenetics and genetically controlled development have been revolutionised during the last two decades. However, some of these evolutionary aspects are still debatable. MADS-box genes are known to play essential role in specifying the floral organogenesis and differentiation in numerous model plants like Petunia hybrida, Arabidopsis thaliana and Antirrhinum majus. SEPALLATA (SEP) genes, belonging to the MADS-box gene family, are members of the ABCDE and quartet models of floral organ development and play a vital role in flower development. However, few studies of the genes in Prunus mume have yet been conducted. In this study, we cloned four PmSEPs and investigated their phylogenetic relationship with other species. Expression pattern analyses and yeast two-hybrid assays of these four genes indicated their involvement in the floral organogenesis with PmSEP4 specifically related to specification of the prolificated flowers in P. mume. It was observed that the flower meristem was specified by PmSEP1 and PmSEP4, the sepal by PmSEP1 and PmSEP4, petals by PmSEP2 and PmSEP3, stamens by PmSEP2 and PmSEP3 and pistils by PmSEP2 and PmSEP3. With the above in mind, flower development in P. mume might be due to an expression of SEP genes. Our findings can provide a foundation for further investigations of the transcriptional factors governing flower development, their molecular mechanisms and genetic basis.
Lee, Jungeun; Noh, Eun Kyeung; Choi, Hyung-Seok; Shin, Seung Chul; Park, Hyun; Lee, Hyoungseok
2013-03-01
Antarctic hairgrass (Deschampsia antarctica Desv.) is the only natural grass species in the maritime Antarctic. It has been studied as an extremophile that has successfully adapted to marginal land with the harshest environment for terrestrial plants. However, limited genetic research has focused on this species due to the lack of genomic resources. Here, we present the first de novo assembly of its transcriptome by massive parallel sequencing and its expression profile using D. antarctica grown under various stress conditions. Total sequence reads generated by pyrosequencing were assembled into 60,765 unigenes (28,177 contigs and 32,588 singletons). A total of 29,173 unique protein-coding genes were identified based on sequence similarities to known proteins. The combined results from all three stress conditions indicated differential expression of 3,110 genes. Quantitative reverse transcription polymerase chain reaction showed that several well-known stress-responsive genes encoding late embryogenesis abundant protein, dehydrin 1, and ice recrystallization inhibition protein were induced dramatically and that genes encoding U-box-domain-containing protein, electron transfer flavoprotein-ubiquinone, and F-box-containing protein were induced by abiotic stressors in a manner conserved with other plant species. We identified more than 2,000 simple sequence repeats that can be developed as functional molecular markers. This dataset is the most comprehensive transcriptome resource currently available for D. antarctica and is therefore expected to be an important foundation for future genetic studies of grasses and extremophiles.
Williams, Justin S; Der, Joshua P; dePamphilis, Claude W; Kao, Teh-Hui
2014-07-01
Petunia possesses self-incompatibility, by which pistils reject self-pollen but accept non-self-pollen for fertilization. Self-/non-self-recognition between pollen and pistil is regulated by the pistil-specific S-RNase gene and by multiple pollen-specific S-locus F-box (SLF) genes. To date, 10 SLF genes have been identified by various methods, and seven have been shown to be involved in pollen specificity. For a given S-haplotype, each SLF interacts with a subset of its non-self S-RNases, and an as yet unknown number of SLFs are thought to collectively mediate ubiquitination and degradation of all non-self S-RNases to allow cross-compatible pollination. To identify a complete suite of SLF genes of P. inflata, we used a de novo RNA-seq approach to analyze the pollen transcriptomes of S2-haplotype and S3-haplotype, as well as the leaf transcriptome of the S3S3 genotype. We searched for genes that fit several criteria established from the properties of the known SLF genes and identified the same seven new SLF genes in S2-haplotype and S3-haplotype, suggesting that a total of 17 SLF genes constitute pollen specificity in each S-haplotype. This finding lays the foundation for understanding how multiple SLF genes evolved and the biochemical basis for differential interactions between SLF proteins and S-RNases. © 2014 American Society of Plant Biologists. All rights reserved.
Griffiths, Stephen R; Rowland, Jessica A; Briscoe, Natalie J; Lentini, Pia E; Handasyde, Kathrine A; Lumsden, Linda F; Robert, Kylie A
2017-01-01
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons.
Surface reflectance drives nest box temperature profiles and thermal suitability for target wildlife
Rowland, Jessica A.; Briscoe, Natalie J.; Lentini, Pia E.; Handasyde, Kathrine A.; Lumsden, Linda F.; Robert, Kylie A.
2017-01-01
Thermal properties of tree hollows play a major role in survival and reproduction of hollow-dependent fauna. Artificial hollows (nest boxes) are increasingly being used to supplement the loss of natural hollows; however, the factors that drive nest box thermal profiles have received surprisingly little attention. We investigated how differences in surface reflectance influenced temperature profiles of nest boxes painted three different colors (dark-green, light-green, and white: total solar reflectance 5.9%, 64.4%, and 90.3% respectively) using boxes designed for three groups of mammals: insectivorous bats, marsupial gliders and brushtail possums. Across the three different box designs, dark-green (low reflectance) boxes experienced the highest average and maximum daytime temperatures, had the greatest magnitude of variation in daytime temperatures within the box, and were consistently substantially warmer than light-green boxes (medium reflectance), white boxes (high reflectance), and ambient air temperatures. Results from biophysical model simulations demonstrated that variation in diurnal temperature profiles generated by painting boxes either high or low reflectance colors could have significant ecophysiological consequences for animals occupying boxes, with animals in dark-green boxes at high risk of acute heat-stress and dehydration during extreme heat events. Conversely in cold weather, our modelling indicated that there are higher cumulative energy costs for mammals, particularly smaller animals, occupying light-green boxes. Given their widespread use as a conservation tool, we suggest that before boxes are installed, consideration should be given to the effect of color on nest box temperature profiles, and the resultant thermal suitability of boxes for wildlife, particularly during extremes in weather. Managers of nest box programs should consider using several different colors and installing boxes across a range of both orientations and shade profiles (i.e., levels of canopy cover), to ensure target animals have access to artificial hollows with a broad range of thermal profiles, and can therefore choose boxes with optimal thermal conditions across different seasons. PMID:28472147
Wessells, K. Ryan; Singh, Gitanjali M.; Brown, Kenneth H.
2012-01-01
Background The prevalence of inadequate zinc intake in a population can be estimated by comparing the zinc content of the food supply with the population’s theoretical requirement for zinc. However, assumptions regarding the nutrient composition of foods, zinc requirements, and zinc absorption may affect prevalence estimates. These analyses were conducted to: (1) evaluate the effect of varying methodological assumptions on country-specific estimates of the prevalence of dietary zinc inadequacy and (2) generate a model considered to provide the best estimates. Methodology and Principal Findings National food balance data were obtained from the Food and Agriculture Organization of the United Nations. Zinc and phytate contents of these foods were estimated from three nutrient composition databases. Zinc absorption was predicted using a mathematical model (Miller equation). Theoretical mean daily per capita physiological and dietary requirements for zinc were calculated using recommendations from the Food and Nutrition Board of the Institute of Medicine and the International Zinc Nutrition Consultative Group. The estimated global prevalence of inadequate zinc intake varied between 12–66%, depending on which methodological assumptions were applied. However, country-specific rank order of the estimated prevalence of inadequate intake was conserved across all models (r = 0.57–0.99, P<0.01). A “best-estimate” model, comprised of zinc and phytate data from a composite nutrient database and IZiNCG physiological requirements for absorbed zinc, estimated the global prevalence of inadequate zinc intake to be 17.3%. Conclusions and Significance Given the multiple sources of uncertainty in this method, caution must be taken in the interpretation of the estimated prevalence figures. However, the results of all models indicate that inadequate zinc intake may be fairly common globally. Inferences regarding the relative likelihood of zinc deficiency as a public health problem in different countries can be drawn based on the country-specific rank order of estimated prevalence of inadequate zinc intake. PMID:23209781
Role of nutritional zinc in the prevention of osteoporosis.
Yamaguchi, Masayoshi
2010-05-01
Zinc is known as an essential nutritional factor in the growth of the human and animals. Bone growth retardation is a common finding in various conditions associated with dietary zinc deficiency. Bone zinc content has been shown to decrease in aging, skeletal unloading, and postmenopausal conditions, suggesting its role in bone disorder. Zinc has been demonstrated to have a stimulatory effect on osteoblastic bone formation and mineralization; the metal directly activates aminoacyl-tRNA synthetase, a rate-limiting enzyme at translational process of protein synthesis, in the cells, and it stimulates cellular protein synthesis. Zinc has been shown to stimulate gene expression of the transcription factors runt-related transcription factor 2 (Runx2) that is related to differentiation into osteoblastic cells. Moreover, zinc has been shown to inhibit osteoclastic bone resorption due to inhibiting osteoclast-like cell formation from bone marrow cells and stimulating apoptotic cell death of mature osteoclasts. Zinc has a suppressive effect on the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-induced osteoclastogenesis. Zinc transporter has been shown to express in osteoblastic and osteoclastic cells. Zinc protein is involved in transcription. The intake of dietary zinc causes an increase in bone mass. beta-Alanyl-L: -histidinato zinc (AHZ) is a zinc compound, in which zinc is chelated to beta-alanyl-L: -histidine. The stimulatory effect of AHZ on bone formation is more intensive than that of zinc sulfate. Zinc acexamate has also been shown to have a potent-anabolic effect on bone. The oral administration of AHZ or zinc acexamate has the restorative effect on bone loss under various pathophysiologic conditions including aging, skeletal unloading, aluminum bone toxicity, calcium- and vitamin D-deficiency, adjuvant arthritis, estrogen deficiency, diabetes, and fracture healing. Zinc compounds may be designed as new supplementation factor in the prevention and therapy of osteoporosis.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-03
.... Ownership Structure of BOX Exchange, BOX Holdings, and BOX Market BOX Exchange will issue Economic Units, as well as Voting Units, to each of its owners, or Members.\\53\\ Economic Units, comprising all interests... BOX Exchange or other economic value in BOX Exchange.\\55\\ The total number of Voting Units will be...
Lin, Shu-fei; Wei, Hua; Maeder, Dennis; Franklin, Renty B.; Feng, Pei
2010-01-01
We have demonstrated that zinc exposure induces apoptosis in human prostate cancer cells (PC-3) and benign hyperplasia cells (BPH), but not in normal prostate cells (HPR-1). However, the mechanisms underlying the effects of zinc on prostate cancer cell growth and zinc homeostasis remain unclear. To explore the zinc effect on gene expression profiles in normal (HPR-1) and malignant prostate cells (PC-3), we conducted a time course study of Zn treatment with microarray analysis. Microarray data were evaluated and profiled using computational approach for the primary and secondary data analyses. Final analyses were focused on the genes: 1. highly sensitive to zinc, 2. associated with zinc homeostasis, i.e. metallothioneins (MTs), solute zinc carriers (ZIPs) and zinc exporters (ZnTs), 3. relevant to several oncogenic pathways. Zinc-mediated mRNA levels of MT isotypes were further validated by semi-quantitative RT-PCR. Results showed that zinc effect on genome-wide expression patterns was cell type specific, and zinc appeared to have mainly down-regulatory effects on thousands of genes (1,953 in HPR-1; 3,534 in PC-3) with a threshold of ±2.5-fold, while fewer genes were up-regulated (872 in HPR-1; 571 in PC-3). The patterns of zinc effect on functional MT genes’ expression provided evidence for the cell-type dependent zinc accumulation and zinc-induced apoptosis in prostate cells. In PC-3 cells, zinc significantly up-regulated the expression of MT-1 isotypes -J and -M, denoted previously as “non-functional” MT genes, and now a depictive molecular structure of MT-1J was proposed. Examination of genes involved in oncogenic pathways indicated that certain genes, e.g. Fos, Akt1, Jak3 and PI3K were highly regulated by zinc with cell type specificity. This work provided an extensive database on zinc related prostate cancer research. The strategy of data analysis was devoted to find genes highly sensitive to Zn, and the genes associated with zinc accumulation and zinc-induced apoptosis. The results indicate that zinc regulation of gene expression is cell-type specific, and MT genes play important roles in prostate malignancy. PMID:19071009
DOE Office of Scientific and Technical Information (OSTI.GOV)
Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.
2014-12-15
Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each ofmore » which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes« less
Que, Emily L; Bleher, Reiner; Duncan, Francesca E; Kong, Betty Y; Gleber, Sophie C; Vogt, Stefan; Chen, Si; Garwin, Seth A; Bayer, Amanda R; Dravid, Vinayak P; Woodruff, Teresa K; O'Halloran, Thomas V
2015-02-01
Fertilization of a mammalian egg initiates a series of 'zinc sparks' that are necessary to induce the egg-to-embryo transition. Despite the importance of these zinc-efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches that resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy-dispersive spectroscopy, X-ray fluorescence microscopy and three-dimensional elemental tomography for high-resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 10(6) zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.
Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; Kong, Betty Y.; Gleber, Sophie C.; Vogt, Stefan; Chen, Si; Garwin, Seth A.; Bayer, Amanda R.; Dravid, Vinayak; Woodruff, Teresa K.; O’Halloran, Thomas V.
2015-01-01
Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. We show that the zinc spark arises from a system of thousands of zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. The discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes. PMID:25615666
Chu, Anna; Foster, Meika; Hancock, Dale; Petocz, Peter; Samman, Samir
2017-04-01
The involvement of zinc in multiple physiological systems requires tight control of cellular zinc concentration. This study aims to explore the relationships among selected mediators of cellular zinc homeostasis in an apparently healthy (AH) population and a cohort with type 2 diabetes mellitus (T2DM). Baseline data of three trials forming two cohorts, AH (n = 70) and T2DM (n = 42), were used for multivariate analyses to identify groupings within ten zinc transporter and metallothionein (MT) gene expressions, stratified by health status. Multiple regression models were used to explore relationships among zinc transporter/MT groupings and plasma zinc. Gene expression of zinc transporters and MTs, with the exception of ZnT6, were significantly lower in the T2DM cohort (p < 0.01). Cluster analysis showed that the groupings of zinc transporters and MTs were largely similar between the two cohorts, with the exception for ZnT1 and ZIP7. Zinc transporters and MTs were significant determinants of plasma zinc (r 2 = 0.48, p = 0.001) in the AH cohort, but not in the T2DM cohort. The current study suggests altered cellular zinc homeostasis in T2DM and supports the use of multiple zinc transporters and MTs groupings to further understand zinc homeostasis in health and T2DM. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fitzgerald, S L; Gibson, R S; Quan de Serrano, J; Portocarrero, L; Vasquez, A; de Zepeda, E; Lopez-Palacios, C Y; Thompson, L U; Stephen, A M; Solomons, N W
1993-02-01
Repeated 24-h recalls (9-14/subject) were conducted on 52 periurban Guatemalan pregnant women aged 25 +/- 5 y (means +/- SD). Intakes of energy, protein, calcium, zinc, copper, manganese, nonstarch polysaccharide (NSP), phytate, and millimolar ratios of phytate to zinc and (calcium x phytate) to zinc were calculated from food-composition values on the basis of chemical analysis and the literature. Mean (+/- SD) daily intakes were as follows: energy 8694 +/- 1674 kJ, protein 63.0 +/- 13.3 g, calcium 727 +/- 163, zinc 11.3 +/- 2.7, copper 1.3 +/- 0.3, manganese 2.8 +/- 0.6, phytate 2254 +/- 773 mg/d, NSP 26.6 +/- 6.9 g, phytate/zinc 18.8 +/- 4.2, (calcium x phytate)/zinc 706 +/- 21 mmol/MJ. Ninety-four percent had zinc intakes below the recommendations (15 mg) of WHO and the US recommended dietary allowances, assuming 20% absorption. Tortillas were a major source of zinc (46%), copper (20%), manganese (23%), calcium (39%), phytate (68%), and NSP (50%); 19% zinc from flesh foods. Thirty-eight percent had phytate-zinc ratios > 20; 94% had millimolar ratios of (calcium x phytate) to zinc per MJ > or = 22. The high prevalence of millimolar ratios of phytate to zinc and (calcium x phytate) to zinc per MJ above 20 and 22, respectively, may compromise zinc nutriture.
Bjorklund, Nicole L.; Sadagoparamanujam, V.M.; Taglialatela, Giulio
2011-01-01
Aberrant central nervous system zinc homeostasis has been reported in Alzheimer’s disease (AD). However, there are conflicting reports describing zinc concentration either increased or decreased in the brain of AD patients. Such discrepancies may be due to differences in the brain area examined, zinc detection method, and/or tissue composition. Furthermore, detection and measurement of the releasable zinc pool in autopsy tissue is difficult and usually unreliable. Obtaining an adequate assessment of this releasable zinc pool is of particular significance in AD research in that zinc can coordinate with and stabilize toxic amyloid beta oligomers, which are believed to play a key role in AD neuropathology. In addition, zinc released into the synaptic cleft can interact with the postsynaptic neurons causing altered signaling and synaptic dysfunction, which is a well established event in AD. The method presented here combines two approaches, biochemical fractionation and atomic absorption spectrophotometry, to allow, in addition to extracellular zinc concentration, the reliable and quantitative measurement of zinc specifically localized in synaptic vesicles, which contain the majority of the neuronal releasable zinc. Using this methodology, we found that synaptic vesicle zinc concentrations were increased in AD hippocampi compared to age-matched controls and that this increase in releasable zinc matched increased concentration of zinc in the extracellular space. PMID:21945000
Analysis of S-box in Image Encryption Using Root Mean Square Error Method
NASA Astrophysics Data System (ADS)
Hussain, Iqtadar; Shah, Tariq; Gondal, Muhammad Asif; Mahmood, Hasan
2012-07-01
The use of substitution boxes (S-boxes) in encryption applications has proven to be an effective nonlinear component in creating confusion and randomness. The S-box is evolving and many variants appear in literature, which include advanced encryption standard (AES) S-box, affine power affine (APA) S-box, Skipjack S-box, Gray S-box, Lui J S-box, residue prime number S-box, Xyi S-box, and S8 S-box. These S-boxes have algebraic and statistical properties which distinguish them from each other in terms of encryption strength. In some circumstances, the parameters from algebraic and statistical analysis yield results which do not provide clear evidence in distinguishing an S-box for an application to a particular set of data. In image encryption applications, the use of S-boxes needs special care because the visual analysis and perception of a viewer can sometimes identify artifacts embedded in the image. In addition to existing algebraic and statistical analysis already used for image encryption applications, we propose an application of root mean square error technique, which further elaborates the results and enables the analyst to vividly distinguish between the performances of various S-boxes. While the use of the root mean square error analysis in statistics has proven to be effective in determining the difference in original data and the processed data, its use in image encryption has shown promising results in estimating the strength of the encryption method. In this paper, we show the application of the root mean square error analysis to S-box image encryption. The parameters from this analysis are used in determining the strength of S-boxes
Zinc finger proteins in cancer progression.
Jen, Jayu; Wang, Yi-Ching
2016-07-13
Zinc finger proteins are the largest transcription factor family in human genome. The diverse combinations and functions of zinc finger motifs make zinc finger proteins versatile in biological processes, including development, differentiation, metabolism and autophagy. Over the last few decades, increasing evidence reveals the potential roles of zinc finger proteins in cancer progression. However, the underlying mechanisms of zinc finger proteins in cancer progression vary in different cancer types and even in the same cancer type under different types of stress. Here, we discuss general mechanisms of zinc finger proteins in transcription regulation and summarize recent studies on zinc finger proteins in cancer progression. In this review, we also emphasize the importance of further investigations in elucidating the underlying mechanisms of zinc finger proteins in cancer progression.
Grim, Kyle P; San Francisco, Brian; Radin, Jana N; Brazel, Erin B; Kelliher, Jessica L; Párraga Solórzano, Paola K; Kim, Philip C; McDevitt, Christopher A; Kehl-Fie, Thomas E
2017-10-31
During infection, the host sequesters essential nutrients, such as zinc, to combat invading microbes. Despite the ability of the immune effector protein calprotectin to bind zinc with subpicomolar affinity, Staphylococcus aureus is able to successfully compete with the host for zinc. However, the zinc importers expressed by S. aureus remain unknown. Our investigations have revealed that S. aureus possesses two importers, AdcABC and CntABCDF, which are induced in response to zinc limitation. While AdcABC is similar to known zinc importers in other bacteria, CntABCDF has not previously been associated with zinc acquisition. Concurrent loss of the two systems severely impairs the ability of S. aureus to obtain zinc and grow in zinc-limited environments. Further investigations revealed that the Cnt system is responsible for the ability of S. aureus to compete with calprotectin for zinc in culture and contributes to acquisition of zinc during infection. The cnt locus also enables S. aureus to produce the broad-spectrum metallophore staphylopine. Similarly to the Cnt transporter, loss of staphylopine severely impairs the ability of S. aureus to resist host-imposed zinc starvation, both in culture and during infection. Further investigations revealed that together staphylopine and the Cnt importer function analogously to siderophore-based iron acquisition systems in order to facilitate zinc acquisition by S. aureus Analogous systems are found in a broad range of Gram-positive and Gram-negative bacterial pathogens, suggesting that this new type of zinc importer broadly contributes to the ability of bacteria to cause infection. IMPORTANCE A critical host defense against infection is the restriction of zinc availability. Despite the subpicomolar affinity of the immune effector calprotectin for zinc, Staphylococcus aureus can successfully compete for this essential metal. Here, we describe two zinc importers, AdcABC and CntABCDF, possessed by S. aureus , the latter of which has not previously been associated with zinc acquisition. The ability of S. aureus to compete with the host for zinc is dependent on CntABCDF and the metallophore staphylopine, both in culture and during infection. These results expand the mechanisms utilized by bacteria to obtain zinc, beyond Adc-like systems, and demonstrate that pathogens utilize strategies similar to siderophore-based iron acquisition to obtain other essential metals during infection. The staphylopine synthesis machinery is present in a diverse collection of bacteria, suggesting that this new family of zinc importers broadly contributes to the ability of numerous pathogens to cause infection. Copyright © 2017 Grim et al.
Hemilä, Harri; Chalker, Elizabeth
2015-02-25
A previous meta-analysis found that high dose zinc acetate lozenges reduced the duration of common colds by 42%, whereas low zinc doses had no effect. Lozenges are dissolved in the pharyngeal region, thus there might be some difference in the effect of zinc lozenges on the duration of respiratory symptoms in the pharyngeal region compared with the nasal region. The objective of this study was to determine whether zinc acetate lozenges have different effects on the duration of common cold symptoms originating from different anatomical regions. We analyzed three randomized trials on zinc acetate lozenges for the common cold administering zinc in doses of 80-92 mg/day. All three trials reported the effect of zinc on seven respiratory symptoms, and three systemic symptoms. We pooled the effects of zinc lozenges for each symptom and calculated point estimates and 95% confidence intervals (95% CI). Zinc acetate lozenges shortened the duration of nasal discharge by 34% (95% CI: 17% to 51%), nasal congestion by 37% (15% to 58%), sneezing by 22% (-1% to 45%), scratchy throat by 33% (8% to 59%), sore throat by 18% (-10% to 46%), hoarseness by 43% (3% to 83%), and cough by 46% (28% to 64%). Zinc lozenges shortened the duration of muscle ache by 54% (18% to 89%), but there was no difference in the duration of headache and fever. The effect of zinc acetate lozenges on cold symptoms may be associated with the local availability of zinc from the lozenges, with the levels being highest in the pharyngeal region. However our findings indicate that the effects of zinc ions are not limited to the pharyngeal region. There is no indication that the effect of zinc lozenges on nasal symptoms is less than the effect on the symptoms of the pharyngeal region, which is more exposed to released zinc ions. Given that the adverse effects of zinc in the three trials were minor, zinc acetate lozenges releasing zinc ions at doses of about 80 mg/day may be a useful treatment for the common cold, started within 24 hours, for a time period of less than two weeks.
Galetti, Valeria; Kujinga, Prosper; Mitchikpè, Comlan Evariste S; Zeder, Christophe; Tay, Fabian; Tossou, Félicien; Hounhouigan, Joseph D; Zimmermann, Michael B; Moretti, Diego
2015-11-01
Zinc deficiency and contaminated water are major contributors to diarrhea in developing countries. Food fortification with zinc has not shown clear benefits, possibly because of low zinc absorption from inhibitory food matrices. We used a novel point-of-use water ultrafiltration device configured with glass zinc plates to produce zinc-fortified, potable water. The objective was to determine zinc bioavailability from filtered water and the efficacy of zinc-fortified water in improving zinc status. In a crossover balanced study, we measured fractional zinc absorption (FAZ) from the zinc-fortified water in 18 healthy Swiss adults using zinc stable isotopes and compared it with zinc-fortified maize porridge. We conducted a 20-wk double-blind randomized controlled trial (RCT) in 277 Beninese school children from rural settings who were randomly assigned to receive a daily portion of zinc-fortified filtered water delivering 2.8 mg Zn (Zn+filter), nonfortified filtered water (Filter), or nonfortified nonfiltered water (Pump) from the local improved supply, acting as the control group. The main outcome was plasma zinc concentration (PZn), and the 3 groups were compared by using mixed-effects models. Secondary outcomes were prevalence of zinc deficiency, diarrhea prevalence, and growth. Geometric mean (-SD, +SD) FAZ was 7-fold higher from fortified water (65.9%; 42.2, 102.4) than from fortified maize (9.1%; 6.0, 13.7; P < 0.001). In the RCT, a significant time-by-treatment effect on PZn (P = 0.026) and on zinc deficiency (P = 0.032) was found; PZn in the Zn+filter group was significantly higher than in the Filter (P = 0.006) and Pump (P = 0.025) groups. We detected no effect on diarrhea or growth, but our study did not have the duration and power to detect such effects. Consumption of filtered water fortified with a low dose of highly bioavailable zinc is an effective intervention in children from rural African settings. Large community-based trials are needed to assess the effectiveness of zinc-fortified filtered water on diarrhea and growth. These trials were registered at clinicaltrials.gov as NCT01636583 and NCT01790321. © 2015 American Society for Nutrition.
Contribution of Zinc Solubilizing Bacteria in Growth Promotion and Zinc Content of Wheat.
Kamran, Sana; Shahid, Izzah; Baig, Deeba N; Rizwan, Muhammad; Malik, Kauser A; Mehnaz, Samina
2017-01-01
Zinc is an imperative micronutrient required for optimum plant growth. Zinc solubilizing bacteria are potential alternatives for zinc supplementation and convert applied inorganic zinc to available forms. This study was conducted to screen zinc solubilizing rhizobacteria isolated from wheat and sugarcane, and to analyze their effect on wheat growth and development. Fourteen exo-polysaccharides producing bacterial isolates of wheat were identified and characterized biochemically as well as on the basis of 16S rRNA gene sequences. Along these, 10 identified sugarcane isolates were also screened for zinc solubilizing ability on five different insoluble zinc sources. Out of 24, five strains, i.e., EPS 1 ( Pseudomonas fragi) , EPS 6 ( Pantoea dispersa) , EPS 13 ( Pantoea agglomerans) , PBS 2 ( E. cloacae) and LHRW1 ( Rhizobium sp.) were selected (based on their zinc solubilizing and PGP activities) for pot scale plant experiments. ZnCO 3 was used as zinc source and wheat seedlings were inoculated with these five strains, individually, to assess their effect on plant growth and development. The effect on plants was analyzed based on growth parameters and quantifying zinc content of shoot, root and grains using atomic absorption spectroscopy. Plant experiment was performed in two sets. For first set of plant experiments (harvested after 1 month), maximum shoot and root dry weights and shoot lengths were noted for the plants inoculated with Rhizobium sp. (LHRW1) while E. cloacae (PBS 2) increased both shoot and root lengths. Highest zinc content was found in shoots of E. cloacae (PBS 2) and in roots of P. agglomerans (EPS 13) followed by zinc supplemented control. For second set of plant experiment, when plants were harvested after three months, Pantoea dispersa (EPS 6), P. agglomerans (EPS 13) and E. cloacae (PBS 2) significantly increased shoot dry weights. However, significant increase in root dry weights and maximum zinc content was recorded for Pseudomonas fragi (EPS 1) inoculated plants, isolated from wheat rhizosphere. While maximum zinc content for roots was quantified in the control plants indicating the plant's inability to transport zinc to grains, supporting accelerated bioavailability of zinc to plant grains with zinc solubilizing rhizobacteria.
Shen, Huiyun; Oesterling, Elizabeth; Stromberg, Arnold; Toborek, Michal; MacDonald, Ruth; Hennig, Bernhard
2008-10-01
Marginal intake of dietary zinc can be associated with increased risk of cardiovascular diseases. In the current study we hypothesized that vascular dysfunction and associated inflammatory events are activated during a zinc deficient state. We tested this hypothesis using both vascular endothelial cells and mice lacking the functional LDL-receptor gene. Zinc deficiency increased oxidative stress and NF-kappaB DNA binding activity, and induced COX-2 and E-selectin gene expression, as well as monocyte adhesion in cultured endothelial cells. The NF-kappaB inhibitor CAPE significantly reduced the zinc deficiency-induced COX-2 expression, suggesting regulation through NF-kappaB signaling. PPAR can inhibit NF-kappaB signaling, and our previous data have shown that PPAR transactivation activity requires adequate zinc. Zinc deficiency down-regulated PPARalpha expression in cultured endothelial cells. Furthermore, the PPARgamma agonist rosiglitazone was unable to inhibit the adhesion of monocytes to endothelial cells during zinc deficiency, an event which could be reversed by zinc supplementation. Our in vivo data support the importance of PPAR dysregulation during zinc deficiency. For example, rosiglitazone induced inflammatory genes (e.g., MCP-1) only during zinc deficiency, and adequate zinc was required for rosiglitazone to down-regulate pro-inflammatory markers such as iNOS. In addition, rosiglitazone increased IkappaBalpha protein expression only in zinc adequate mice. Finally, plasma data from LDL-R-deficient mice suggest an overall pro-inflammatory environment during zinc deficiency and support the concept that zinc is required for proper anti-inflammatory or protective functions of PPAR. These studies suggest that zinc nutrition can markedly modulate mechanisms of the pathology of inflammatory diseases such as atherosclerosis.
Augustyniak, Maria; Babczyńska, Agnieszka; Augustyniak, Michał
2011-09-01
The responses of glutathione, glutathione S-transferases (GSTs), and catalase (CAT) were determined in 1-day-old larvae of Chorthippus brunneus Thunberg, 1815, a grasshopper exposed to zinc during diapause, from unpolluted (Pilica) or polluted (Olkusz, Szopienice) sites. The aim of the work was to search for differences among populations of the insects as a result of various multistress pressures in their habitats. The question of zinc toxicity in the context of energy allocation was also considered. Zinc caused a decrease in glutathione concentration in the body of zinc-treated larvae. Significant differences between control and zinc-treated groups were confirmed for young females' progeny from Pilica and Olkusz as well as old females' progeny from Olkusz. GSTs activity was generally not influenced by zinc. It is possible that GSTs were not the most important target of zinc action. On the contrary, the influence of zinc on CAT activity was found. The increase in CAT activity after zinc treatment was similar for all studied populations. An increase in CAT activity after zinc exposure seems to be the most universal reaction. CAT activity in zinc-treated grasshoppers may explain the mechanism of zinc toxicity based on reactive oxygen forms generation. Copyright © 2011 Elsevier Inc. All rights reserved.
Heat transfer capability of solar radiation in colored roof and influence on room thermal comfort
NASA Astrophysics Data System (ADS)
Syuhada, Ahmad; Maulana, Muhammad Ilham
2018-02-01
Colored zinc is the most widely used by people in Indonesia as the roof of the building. Each color has different heat absorption capability, the higher the absorption capacity of a roof will cause high room temperature. A high temperature in the room will cause the room is not thermally comfortable for activity. Lack of public knowledge about the ability of each color to absorb heat can cause errors in choosing the color of the roof of the building so that it becomes uncomfortable regarding thermal comfort. This study examined how big the ability of each color in influencing the heat absorption on the roof of the zinc. The purpose of this study is to examine which colors are the lowest to absorb radiation heat. This research used theexperimental method. Data collected by measuring the temperature of the environment above and below the colored tin roof, starting at 11:00 am until 15:00 pm. The zinc roofs tested in this study are zinc black, red zinc, green zinc, blue zinc, brown zinc, maroon zinc, orange zinc, zinc gray, zinc color chrome and zinc white color. The study results show that black and blackish colors will absorb more heat than other colors. While the color white or close to whitish color will absorb a slight heat.
The interactive roles of zinc and calcium in mitochondrial dysfunction and neurodegeneration.
Pivovarova, Natalia B; Stanika, Ruslan I; Kazanina, Galina; Villanueva, Idalis; Andrews, S Brian
2014-02-01
Zinc has been implicated in neurodegeneration following ischemia. In analogy with calcium, zinc has been proposed to induce toxicity via mitochondrial dysfunction, but the relative role of each cation in mitochondrial damage remains unclear. Here, we report that under conditions mimicking ischemia in hippocampal neurons - normal (2 mM) calcium plus elevated (> 100 μM) exogenous zinc - mitochondrial dysfunction evoked by glutamate, kainate or direct depolarization is, despite significant zinc uptake, primarily governed by calcium. Thus, robust mitochondrial ion accumulation, swelling, depolarization, and reactive oxygen species generation were only observed after toxic stimulation in calcium-containing media. This contrasts with the lack of any mitochondrial response in zinc-containing but calcium-free medium, even though zinc uptake and toxicity were strong under these conditions. Indeed, abnormally high, ionophore-induced zinc uptake was necessary to elicit any mitochondrial depolarization. In calcium- and zinc-containing media, depolarization-induced zinc uptake facilitated cell death and enhanced accumulation of mitochondrial calcium, which localized to characteristic matrix precipitates. Some of these contained detectable amounts of zinc. Together these data indicate that zinc uptake is generally insufficient to trigger mitochondrial dysfunction, so that mechanism(s) of zinc toxicity must be different from that of calcium. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.
Tran, Cuong D.; Gopalsamy, Geetha L.; Mortimer, Elissa K.; Young, Graeme P.
2015-01-01
It is well recognised that zinc deficiency is a major global public health issue, particularly in young children in low-income countries with diarrhoea and environmental enteropathy. Zinc supplementation is regarded as a powerful tool to correct zinc deficiency as well as to treat a variety of physiologic and pathologic conditions. However, the dose and frequency of its use as well as the choice of zinc salt are not clearly defined regardless of whether it is used to treat a disease or correct a nutritional deficiency. We discuss the application of zinc stable isotope tracer techniques to assess zinc physiology, metabolism and homeostasis and how these can address knowledge gaps in zinc supplementation pharmacokinetics. This may help to resolve optimal dose, frequency, length of administration, timing of delivery to food intake and choice of zinc compound. It appears that long-term preventive supplementation can be administered much less frequently than daily but more research needs to be undertaken to better understand how best to intervene with zinc in children at risk of zinc deficiency. Stable isotope techniques, linked with saturation response and compartmental modelling, also have the potential to assist in the continued search for simple markers of zinc status in health, malnutrition and disease. PMID:26035248
Crosstalk between Zinc Status and Giardia Infection: A New Approach
Astiazarán-García, Humberto; Iñigo-Figueroa, Gemma; Quihui-Cota, Luis; Anduro-Corona, Iván
2015-01-01
Zinc supplementation has been shown to reduce the incidence and prevalence of diarrhea; however, its anti-diarrheal effect remains only partially understood. There is now growing evidence that zinc can have pathogen-specific protective effects. Giardiasis is a common yet neglected cause of acute-chronic diarrheal illness worldwide which causes disturbances in zinc metabolism of infected children, representing a risk factor for zinc deficiency. How zinc metabolism is compromised by Giardia is not well understood; zinc status could be altered by intestinal malabsorption, organ redistribution or host-pathogen competition. The potential metal-binding properties of Giardia suggest unusual ways that the parasite may interact with its host. Zinc supplementation was recently found to reduce the rate of diarrhea caused by Giardia in children and to upregulate humoral immune response in Giardia-infected mice; in vitro and in vivo, zinc-salts enhanced the activity of bacitracin in a zinc-dose-dependent way, and this was not due to zinc toxicity. These findings reflect biological effect of zinc that may impact significantly public health in endemic areas of infection. In this paper, we shall explore one direction of this complex interaction, discussing recent information regarding zinc status and its possible contribution to the outcome of the encounter between the host and Giardia. PMID:26046395
Zinc activates damage-sensing TRPA1 ion channels.
Hu, Hongzhen; Bandell, Michael; Petrus, Matt J; Zhu, Michael X; Patapoutian, Ardem
2009-03-01
Zinc is an essential biological trace element. It is required for the structure or function of over 300 proteins, and it is increasingly recognized for its role in cell signaling. However, high concentrations of zinc have cytotoxic effects, and overexposure to zinc can cause pain and inflammation through unknown mechanisms. Here we show that zinc excites nociceptive somatosensory neurons and causes nociception in mice through TRPA1, a cation channel previously shown to mediate the pungency of wasabi and cinnamon through cysteine modification. Zinc activates TRPA1 through a unique mechanism that requires zinc influx through TRPA1 channels and subsequent activation via specific intracellular cysteine and histidine residues. TRPA1 is highly sensitive to intracellular zinc, as low nanomolar concentrations activate TRPA1 and modulate its sensitivity. These findings identify TRPA1 as an important target for the sensory effects of zinc and support an emerging role for zinc as a signaling molecule that can modulate sensory transmission.
Zinc in Cellular Regulation: The Nature and Significance of "Zinc Signals".
Maret, Wolfgang
2017-10-31
In the last decade, we witnessed discoveries that established Zn 2+ as a second major signalling metal ion in the transmission of information within cells and in communication between cells. Together with Ca 2+ and Mg 2+ , Zn 2+ covers biological regulation with redox-inert metal ions over many orders of magnitude in concentrations. The regulatory functions of zinc ions, together with their functions as a cofactor in about three thousand zinc metalloproteins, impact virtually all aspects of cell biology. This article attempts to define the regulatory functions of zinc ions, and focuses on the nature of zinc signals and zinc signalling in pathways where zinc ions are either extracellular stimuli or intracellular messengers. These pathways interact with Ca 2+ , redox, and phosphorylation signalling. The regulatory functions of zinc require a complex system of precise homeostatic control for transients, subcellular distribution and traffic, organellar homeostasis, and vesicular storage and exocytosis of zinc ions.
Zinc in innate and adaptive tumor immunity
2010-01-01
Zinc is important. It is the second most abundant trace metal with 2-4 grams in humans. It is an essential trace element, critical for cell growth, development and differentiation, DNA synthesis, RNA transcription, cell division, and cell activation. Zinc deficiency has adverse consequences during embryogenesis and early childhood development, particularly on immune functioning. It is essential in members of all enzyme classes, including over 300 signaling molecules and transcription factors. Free zinc in immune and tumor cells is regulated by 14 distinct zinc importers (ZIP) and transporters (ZNT1-8). Zinc depletion induces cell death via apoptosis (or necrosis if apoptotic pathways are blocked) while sufficient zinc levels allows maintenance of autophagy. Cancer cells have upregulated zinc importers, and frequently increased zinc levels, which allow them to survive. Based on this novel synthesis, approaches which locally regulate zinc levels to promote survival of immune cells and/or induce tumor apoptosis are in order. PMID:21087493
Design of housing file box of fire academy based on RFID
NASA Astrophysics Data System (ADS)
Li, Huaiyi
2018-04-01
This paper presents a design scheme of intelligent file box based on RFID. The advantages of RFID file box and traditional file box are compared and analyzed, and the feasibility of RFID file box design is analyzed based on the actual situation of our university. After introducing the shape and structure design of the intelligent file box, the paper discusses the working process of the file box, and explains in detail the internal communication principle of the RFID file box and the realization of the control system. The application of the RFID based file box will greatly improve the efficiency of our school's archives management.
Association of Mood Disorders with Serum Zinc Concentrations in Adolescent Female Students.
Tahmasebi, Kobra; Amani, Reza; Nazari, Zahra; Ahmadi, Kambiz; Moazzen, Sara; Mostafavi, Seyed-Ali
2017-08-01
Among various factors influencing mood disorders, the impact of micronutrient deficiencies has attracted a great attention. Zinc deficiency is considered to play a crucial role in the onset and progression of mood disorders in different stages of life. The main objective of this study was to assess the correlation between serum zinc levels and mood disorders in high school female students. This cross-sectional study was conducted on a random sample of 100 representative high school female students. The participants completed 24-h food recall questionnaires to assess the daily zinc intakes. Serum zinc status was assessed using flame atomic absorption spectrometry, and zinc deficiency was defined accordingly. Mood disorders were estimated by calculating the sum of two test scores including Beck's depression inventory (BDI) and hospital anxiety depression scale (HADS) tests. General linear model (GLM) and Pearson's regression test were applied to show the correlation of serum zinc levels and mood disorder scores and the correlation between zinc serum levels and BDI scores, respectively. Dietary zinc intake was higher in subjects with normal zinc concentrations than that of zinc-deficient group (p = 0.001). Serum zinc levels were inversely correlated with BDI and HADS scores (p < 0.05). Each 10 μg/dL increment in serum zinc levels led to 0.3 and 0.01 decrease in depression and anxiety scores, respectively (p < 0.05). Serum zinc levels were inversely correlated with mood disorders including depression and anxiety in adolescent female students. Increasing serum levels of zinc in female students could improve their mood disorders.
Hyperaccumulation of zinc by zinc-depleted Candida utilis grown in chemostat culture.
Lawford, H G; Pik, J R; Lawford, G R; Williams, T; Kligerman, A
1980-01-01
The steady-state levels of zinc in Candida utilis yeast grown in continuous culture under conditions of zinc limitations are <1nmol Zn2+/mg dry weight of cells. Unlike carbon-limited cells, zinc-depleted cells from a zinc-limited chemostat possess the capacity to accumulate and store zinc at levels far in excess of the steady-state level of 4 nmol/mg dry biomass observed in carbon-limited chemostat cultures. Zinc uptake is energy-dependent and apparently undirectional since accumulated 65Zn neither exists from preloaded cells nor exchanges with cold Zn2+. The transport system exhibits a high affinity for Zn2+ (Km =.36micrM) with a Vmaxof 2.2 nmol per minute per milligram dry weight of cells. Growth during the period of the uptake assay is responsible for the apparent plateau level of 35 nmol Zn2+/mg dry weight of cells achieved after 20-30 min in the presence of 65Zn at pH 4.5 and 30 degrees C. Inhibition of growth during the uptake assay by cycloheximide results in a biphasic linear pattern of zinc accumulation where the cellular zinc is about 60 nmol/mg dry weight after 1 h. The enhanced level of accumulated zinc is not inhibtory to growth. Zinc-depleted C. utilis contains elevated amounts of polyphosphate and this anionic evidence does not allow discrimination between possible regulation of zinc homestasis either by inhibitions of zinc efflux through control of the membrane carrier or by control of the synthesis of a cytoplasmic zinc-sequestering macromolecule.
GPCRdb: an information system for G protein-coupled receptors
Isberg, Vignir; Mordalski, Stefan; Munk, Christian; Rataj, Krzysztof; Harpsøe, Kasper; Hauser, Alexander S.; Vroling, Bas; Bojarski, Andrzej J.; Vriend, Gert; Gloriam, David E.
2016-01-01
Recent developments in G protein-coupled receptor (GPCR) structural biology and pharmacology have greatly enhanced our knowledge of receptor structure-function relations, and have helped improve the scientific foundation for drug design studies. The GPCR database, GPCRdb, serves a dual role in disseminating and enabling new scientific developments by providing reference data, analysis tools and interactive diagrams. This paper highlights new features in the fifth major GPCRdb release: (i) GPCR crystal structure browsing, superposition and display of ligand interactions; (ii) direct deposition by users of point mutations and their effects on ligand binding; (iii) refined snake and helix box residue diagram looks; and (iii) phylogenetic trees with receptor classification colour schemes. Under the hood, the entire GPCRdb front- and back-ends have been re-coded within one infrastructure, ensuring a smooth browsing experience and development. GPCRdb is available at http://www.gpcrdb.org/ and it's open source code at https://bitbucket.org/gpcr/protwis. PMID:26582914
NASA Astrophysics Data System (ADS)
Eckhardt, Matt
2014-03-01
Tunneling spectroscopy is an important technique used to measure the superconducting energy gap, a feature that is at the heart of the nature of superconductivity in various materials. In this presentation, we report the progress and results in developing high-resolution tunneling spectroscopy experimental platforms in a helium three cryostat, a 3 Kelvin cryocooler and a helium dip-tester. The experimental team working in a liberal arts university is a multi-disciplinary group consisting of one physics major, chemisty majors and a biology major. Students including non-physics majors learned and implemented current-voltage measurement techniques, vacuum system engineering, built electronic boxes and amplifier circuits from scratch, built custom multi-conductor cables for thermometry and current-voltage measurements, and performed conductance measurements. We report preliminary results. Acknowledgments: We acknowledge support from National Science Foundation Grant # DMR-1206561.
Building and Testing a Superconductivity Measurement Platform for a Helium Cryostat
NASA Astrophysics Data System (ADS)
Rose, Heath; Ostrander, Joshua; Wu, Jim; Ramos, Roberto
2013-03-01
Superconductivity experiments using Josephson junctions are an excellent environment to study quantum mechanics and materials science. A standard electrical transport technique uses filtered four wire measurement of these superconducting devices. We report our experience as undergraduates in a liberal arts college in building and testing an experimental platform anchored on the cold-finger of a helium cryostat and designed for performing differential conductance measurements in Josephson junctions. To filter out RF, we design, build and test cryogenic filters using ceramic capacitors and inductors and thermocoax cables. We also use fixed attenuators for thermal anchoring and use miniature connectors to connect wires and coax to a sample box. We report on progress in our diagnostic measurements as well as low-temperature tunneling experiments to probe the structure of the energy gap in both single- and multi-gapped superconductors. We acknowledge the support of the National Science Foundation through NSF Grant DMR-1206561.
Finding the way forward for forensic science in the US-A commentary on the PCAST report.
Evett, I W; Berger, C E H; Buckleton, J S; Champod, C; Jackson, G
2017-09-01
A recent report by the US President's Council of Advisors on Science and Technology (PCAST), (2016) has made a number of recommendations for the future development of forensic science. Whereas we all agree that there is much need for change, we find that the PCAST report recommendations are founded on serious misunderstandings. We explain the traditional forensic paradigms of match and identification and the more recent foundation of the logical approach to evidence evaluation. This forms the groundwork for exposing many sources of confusion in the PCAST report. We explain how the notion of treating the scientist as a black box and the assignment of evidential weight through error rates is overly restrictive and misconceived. Our own view sees inferential logic, the development of calibrated knowledge and understanding of scientists as the core of the advance of the profession. Copyright © 2017 Elsevier B.V. All rights reserved.
Speciation And Bioavailability Of Zinc In Amended Sediments
The speciation and bioavailability of zinc (Zn) in smelter-contaminated sediments was investigated as a function of phosphate (apatite) and organic amendment loading rate. Zinc species identified in preamendment sediment were zinc hydroxide-like phases, sphalerite, and zinc sorbe...
40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the zinc... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate. ...
40 CFR 415.630 - Applicability; description of the zinc sulfate production subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 28 2010-07-01 2010-07-01 true Applicability; description of the zinc... CATEGORY Zinc Sulfate Production Subcategory § 415.630 Applicability; description of the zinc sulfate... production of zinc sulfate. ...
USDA-ARS?s Scientific Manuscript database
Background: Zinc is essential for the regulation of immune response. T cell function declines with age. Zinc supplementation has the potential to improve serum zinc concentrations and immunity of nursing home elderly with low serum zinc concentration. Objective: We aimed to determine the effect of ...
Zinc uptake and regulation by the sublittoral prawn Pandalus montagui (Crustacea: Decapoda)
NASA Astrophysics Data System (ADS)
Nugegoda, D.; Rainbow, P. S.
1988-06-01
The sublittoral decapod crustacean Pandalus montagui Leach in artificial seawater at 10°C regulates the total body zinc concentration to a constant level in dissolved zinc concentrations up to ca. 22 μg Zn l -1, beyond which there is net accumulation of body zinc. This threshold of zinc regulation breakdown is lower than that in the littoral decapods Palaemon elegans (ca. 93 μg Zn l -1) and Palaemonetes varians (ca. 190 μg Zn l -1) under the same physico-chemical conditions. Correspondingly, zinc uptake rates of the three species of decapods decrease in the order P. montagui > P. elegans > P. varians. It is concluded that regulation of total body zinc concentration is more efficient in decapods adapted to the fluctuating environments of littoral habitats, possibly as a result of changes in permeability of uptake surfaces in combination with improved zinc excretion systems. The moult cycle is important in determining the ability of an individual prawn to regulate zinc. Body zinc in Pandalus montagui consists of at least two pools of zinc exchanging at different rates which the environment. Zinc and copper are not evenly distributed in the tissues of P. montagui.
Studies on the bioavailability of zinc in humans: intestinal interaction of tin and zinc.
Solomons, N W; Marchini, J S; Duarte-Favaro, R M; Vannuchi, H; Dutra de Oliveira, J E
1983-04-01
Mineral/mineral interactions at the intestinal level are important in animal nutrition and toxicology, but only limited understanding of their extent or importance in humans has been developed. An inhibitory interaction of dietary tin on zinc retention has been recently described from human metabolic studies. We have explored the tin/zinc interaction using the change-in-plasma-zinc-concentration method with a standard dosage of 12.5 mg of zinc as zinc sulfate in 100 ml of Coca-Cola. Sn/Zn ratios of 2:1, 4:1, and 8:1, constituted by addition of 25, 50, and 100 mg of tin as stannous chloride, had no significant overall effect on zinc uptake. The 100-mg dose of tin produced noxious gastrointestinal symptoms. Addition of iron as ferrous sulfate to form ratios of Sn/Fe/Zn of 1:1:1 and 2:2:1 with the standard zinc solution and the appropriate doses of tin produced a reduction of zinc absorption not dissimilar from that seen previously with zinc and iron alone, and addition of picolinic acid did not influence the uptake of zinc from the solution with the 2:2:1 Sn/Fe/Zn ratio.
Overbeck, Silke; Rink, Lothar; Haase, Hajo
2008-01-01
Zinc is required for multiple cellular tasks, and especially the immune system depends on a sufficient availability of this essential trace element. During the last decades, many studies attempted to affect the outcome of various diseases by zinc supplementation. These efforts either aimed at supporting immunity by zinc administration or at correcting a loss of zinc secondary to the disease to restore the zinc-dependent functions of the immune system. This review aims to summarize the respective findings and to discuss possible molecular mechanisms by which zinc could influence viral, bacterial, and parasitic infections, autoimmune diseases, and the response to vaccination. Zinc supplementation in diseases such as diarrhea, chronic hepatitis C, shigellosis, leprosy, tuberculosis, pneumonia, acute lower respiratory infection, and leishmaniasis seems beneficial. In contrast, the results for the common cold and malaria are still not conclusive, and zinc was ineffective in most vaccination and rheumatoid arthritis studies. For AIDS and type 1 diabetes, zinc supplementation may even be a risk factor for increased mortality or deterioration of the glucose metabolism, respectively. In these cases, zinc supplementation should be used with care and limited to clearly zinc-deficient individuals.
Recent advances in knowledge of zinc nutrition and human health.
Hess, Sonja Y; Lönnerdal, Bo; Hotz, Christine; Rivera, Juan A; Brown, Kenneth H
2009-03-01
Zinc deficiency increases the risk and severity of a variety of infections, restricts physical growth, and affects specific outcomes of pregnancy. Global recognition of the importance of zinc nutrition in public health has expanded dramatically in recent years, and more experience has accumulated on the design and implementation of zinc intervention programs. Therefore, the Steering Committee of the International Zinc Nutrition Consultative Group (IZiNCG) completed a second IZiNCG technical document that reexamines the latest information on the intervention strategies that have been developed to enhance zinc nutrition and control zinc deficiency. In particular, the document reviews the current evidence regarding preventive zinc supplementation and the role of zinc as adjunctive therapy for selected infections, zinc fortification, and dietary diversification or modification strategies, including the promotion and protection of breastfeeding and biofortification. The purposes of this introductory paper are to summarize new guidelines on the assessment of population zinc status, as recommended by the World Health Organization (WHO), the United Nations Children's Fund (UNICEF), the International Atomic Energy Agency (IAEA), and IZiNCG, and to provide an overview on several new advances in zinc metabolism. The following papers will then review the intervention strategies individually.
7 CFR 51.1527 - Standard pack.
Code of Federal Regulations, 2013 CFR
2013-01-01
... size, 45 size, 50 size, 55 size, etc.). (i) California peach boxes, lug boxes and small consumer packages. In layer-packed California peach boxes or lug boxes, and in small layer packed consumer packages... California peach boxes or lug boxes shall not vary more than 4 from the number indicated on the package...
7 CFR 51.1527 - Standard pack.
Code of Federal Regulations, 2014 CFR
2014-01-01
... size, 45 size, 50 size, 55 size, etc.). (i) California peach boxes, lug boxes and small consumer packages. In layer-packed California peach boxes or lug boxes, and in small layer packed consumer packages... California peach boxes or lug boxes shall not vary more than 4 from the number indicated on the package...
High-Density Terminal Box for Testing Wire Harness
NASA Technical Reports Server (NTRS)
Pierce, W. B.; Collins, W. G.
1982-01-01
Compact terminal box provides access to complex wiring harnesses for testing. Box accommodates more than twice as many wires as previous boxes. Box takes in wires via cable connectors and distributes them to contacts on box face. Instead of separate insulated jacks in metal face panel, box uses pairs of small military-standard metal sockets in precision-drilled plastic panel. Shorting plug provides continuity for wires when not being tested.
Factors influencing zinc status of apparently healthy indians.
Agte, Vaishali V; Chiplonkar, Shashi A; Tarwadi, Kirtan V
2005-10-01
To identify dietary, environmental and socio-economic factors associated with mild zinc deficiency, three zinc status indices; erythrocyte membrane zinc (RBCMZn), plasma zinc and super oxide dismutase (SOD) were assessed in free living and apparently healthy Indian population. Dietary patterns of 232 men and 223 women (20-65 yr) from rural, industrial and urban regions of Western India were evaluated by food frequency questionnaire. RBCMZn was estimated using atomic absorption spectrometry, hemoglobin and serum ceruloplasmin by spectrophotometer. On a sub sample (48 men and 51 women) plasma zinc and SOD were also assessed. Mean RBCMZn was 0.5 +/- 0.1 micromols/g protein with 46% individuals showing zinc deficiency. Mean plasma zinc was 0.98 +/- 0.12 microg/mL with 25% men and 2.5% women having values below normal range. Mean SOD was 0.97 +/- 0.1 (u/mL cells). A significant positive correlation was observed between intakes of green leafy vegetables, other vegetables and milk products with RBCMZn status (p < 0.05). But these were not correlated with plasma zinc (p > 0.2). Cereal and legume intakes were negatively correlated with RBCMZn (p < 0.05) but positively correlated with plasma zinc (p < 0.05) and not correlated with SOD (p > 0.2). Fruit and other vegetable intake were positively correlated with SOD (p < 0.05) alone. Logistic regression analyses revealed that RBCMZn was positively associated with intakes of beta-carotene, zinc and environmental conditions and negatively associated with family size (p < 0.05). Plasma zinc indicated positive association with zinc, thiamin and riboflavin intakes (p < 0.05) and SOD showed negative association with iron and family size. RBCMZn was a more sensitive indicator of long-term zinc status than plasma zinc and SOD. Prominent determinants of zinc status were intakes of beta-carotene and zinc along with environmental conditions and family size.
Skalny, Andrey A; Tinkov, Alexey A; Medvedeva, Yulia S; Alchinova, Irina B; Karganov, Mikhail Y; Skalny, Anatoly V; Nikonorov, Alexandr A
2015-01-01
A significant association between Zn and Se homeostasis exists. At the same time, data on the influence of zinc supplementation on selenium distribution in organs and tissues seem to be absent. Therefore, the primary objective of the current study is to investigate the influence of zinc asparaginate supplementation on zinc and selenium distribution and serum superoxide dismutase (SOD) and glutathione peroxidase (GPx) activity in Wistar rats. 36 rats were used in the experiment. The duration of the experiment was 7 and 14 days in the first and second series, respectively. The rats in Group I were used as the control ones. Animals in Groups II and III daily obtained zinc asparaginate (ZnA) in the doses of 5 and 15 mg/kg weight, respectively. Zinc and selenium content in liver, kidneys, heart, muscle, serum and hair was assessed using inductively coupled plasma mass spectrometry. Serum SOD and GPx activity was analysed spectrophotometrically using Randox kits. Intragastric administration of zinc asparaginate significantly increased liver, kidney, and serum zinc content without affecting skeletal and cardiac muscle levels. Zinc supplementation also stimulated selenium retention in the rats' organs. Moreover, a significant positive correlation between zinc and selenium content was observed. Finally, zinc asparaginate treatment has been shown to modulate serum GPx but not SOD activity. The obtained data indicate that zinc-induced increase in GPx activity may be mediated through modulation of selenium status. However, future studies are required to estimate the exact mechanisms of zinc and selenium interplay.
Mining Genomes of Marine Cyanobacteria for Elements of Zinc Homeostasis
Barnett, James P.; Millard, Andrew; Ksibe, Amira Z.; Scanlan, David J.; Schmid, Ralf; Blindauer, Claudia Andrea
2012-01-01
Zinc is a recognized essential element for the majority of organisms, and is indispensable for the correct function of hundreds of enzymes and thousands of regulatory proteins. In aquatic photoautotrophs including cyanobacteria, zinc is thought to be required for carbonic anhydrase and alkaline phosphatase, although there is evidence that at least some carbonic anhydrases can be cambialistic, i.e., are able to acquire in vivo and function with different metal cofactors such as Co2+ and Cd2+. Given the global importance of marine phytoplankton, zinc availability in the oceans is likely to have an impact on both carbon and phosphorus cycles. Zinc concentrations in seawater vary over several orders of magnitude, and in the open oceans adopt a nutrient-like profile. Most studies on zinc handling by cyanobacteria have focused on freshwater strains and zinc toxicity; much less information is available on marine strains and zinc limitation. Several systems for zinc homeostasis have been characterized in the freshwater species Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803, but little is known about zinc requirements or zinc handling by marine species. Comparative metallo-genomics has begun to explore not only the putative zinc proteome, but also specific protein families predicted to have an involvement in zinc homeostasis, including sensors for excess and limitation (SmtB and its homologs as well as Zur), uptake systems (ZnuABC), putative intracellular zinc chaperones (COG0523) and metallothioneins (BmtA), and efflux pumps (ZiaA and its homologs). PMID:22514551
Discovery of Human Zinc Deficiency: Its Impact on Human Health and Disease123
Prasad, Ananda S.
2013-01-01
The essentiality of zinc in humans was established in 1963. During the past 50 y, tremendous advances in both clinical and basic sciences of zinc metabolism in humans have been observed. The major factor contributing to zinc deficiency is high phytate-containing cereal protein intake in the developing world, and nearly 2 billion subjects may be zinc deficient. Conditioned deficiency of zinc has been observed in patients with malabsorption syndrome, liver disease, chronic renal disease, sickle cell disease, and other chronic illnesses. Major clinical problems resulting from zinc deficiency in humans include growth retardation; cell-mediated immune dysfunction, and cognitive impairment. In the Middle East, zinc-deficient dwarfs did not live beyond the age of 25 y, and they died because of intercurrent infections. In 1963, we knew of only 3 enzymes that required zinc for their activities, but now we know of >300 enzymes and >1000 transcription factors that are known to require zinc for their activities. Zinc is a second messenger of immune cells, and intracellular free zinc in these cells participate in signaling events. Zinc has been very successfully used as a therapeutic modality for the management of acute diarrhea in children, Wilson’s disease, the common cold and for the prevention of blindness in patients with age-related dry type of macular degeneration and is very effective in decreasing the incidence of infection in the elderly. Zinc not only modulates cell-mediated immunity but is also an antioxidant and anti-inflammatory agent. PMID:23493534
Properties of ice-cream fortified with zinc and Lactobacillus casei.
Gheisari, Hamid R; Ahadi, Leila; Khezli, Sanaz; Dehnavi, Tayebeh
2016-01-01
In this study, the possible effects of zinc on physicochemical properties of ice cream and the survival of Lactobacillus casei during a 90 days storage at -18°C was investigated. Samples were divided into four experimental groups as follows: control, zinc fortified ice cream, probiotic ice cream, zinc fortified and probiotic ice cream. The physicochemical, texture, organoleptic properties and the survival of probiotics, were investigated. Results showed that the addition of zinc did not affect the textural properties of ice creams. Viscosity and pH were independently decreased in all groups in the presence of zinc. A significant increase in the lipid oxidation rate especially in the zinc fortified group was also observed. The probiotic counts were maintained above the least advised quantities (106 cfu/g) which were subsequently reduced following the three months of storage. In the zinc fortified samples, the counts were higher compared to the other groups with no zinc addition. The addition of probiotics and zinc had no significant effect on the sensory properties of ice cream. As a final conclusion, the commercial production of zinc fortified ice cream is recommended.
Zinc: health effects and research priorities for the 1990s.
Walsh, C T; Sandstead, H H; Prasad, A S; Newberne, P M; Fraker, P J
1994-01-01
This review critically summarizes the literature on the spectrum of health effects of zinc status, ranging from symptoms of zinc deficiency to excess exposure. Studies on zinc intake are reviewed in relation to optimum requirements as a function of age and sex. Current knowledge on the biochemical properties of zinc which are critical to the essential role of this metal in biological systems is summarized. Dietary and physiological factors influencing the bioavailability and utilization of zinc are considered with special attention to interactions with iron and copper status. The effects of zinc deficiency and toxicity are reviewed with respect to specific organs, immunological and reproductive function, and genotoxicity and carcinogenicity. Finally, key questions are identified where research is needed, such as the risks to human health of altered environmental distribution of zinc, assessment of zinc status in humans, effects of zinc status in relation to other essential metals on immune function, reproduction, neurological function, and the cardiovascular system, and mechanistic studies to further elucidate the biological effects of zinc at the molecular level. PMID:7925188
Que, Emily L.; Bleher, Reiner; Duncan, Francesca E.; ...
2014-12-15
Fertilization of a mammalian egg induces a series of ‘zinc sparks’ that are necessary for inducing the egg-to-embryo transition. Despite the importance of these zinc efflux events little is known about their origin. To understand the molecular mechanism of the zinc spark we combined four physical approaches to resolve zinc distributions in single cells: a chemical probe for dynamic live-cell fluorescence imaging and a combination of scanning transmission electron microscopy with energy dispersive spectroscopy, X-ray fluorescence microscopy, and 3D elemental tomography for high resolution elemental mapping. Here we show that the zinc spark arises from a system of thousands ofmore » zinc-loaded vesicles, each of which contains, on average, 106 zinc atoms. These vesicles undergo dynamic movement during oocyte maturation and exocytosis at the time of fertilization. We conclude that the discovery of these vesicles and the demonstration that zinc sparks originate from them provides a quantitative framework for understanding how zinc fluxes regulate cellular processes.« less
Interaction Between Yeasts and Zinc
NASA Astrophysics Data System (ADS)
Nicola, Raffaele De; Walker, Graeme
Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses
Dragu, Adrian; Unglaub, Frank; Radomirovic, Sinisa; Schnürer, Stefan; Wagner, Walter; Horch, Raymund E; Hell, Berthold
2010-12-01
Boxing injuries are well known in hobby boxing as well as in professional boxing. Especially in professional boxing it is of great importance to implement and follow prevention-, diagnosis- and therapy-standards in order to prevent or at least to minimize injuries of the athlete. The utmost aim would be to establish international prevention-, diagnosis- and therapy-standards for boxing injuries in professional boxing. However, this aim is on a short run unrealistic, as there are too many different professional boxing organisations with different regulations. A realistic short term aim would be to develop a national standard in order to unify the management and medical treatment of boxing injuries in professional boxing. We present the management and interdisciplinary treatment of a professional boxer with a bilateral open fracture of the mandible during a middle weight IBF World Championship Fight. On the basis of this case we want to present and discuss the possibilities of an interdisciplinary and successful medical treatment. In order to prevent or minimize boxing injuries of professional boxers, annual MRI-Scans of the head and neck have to be performed as prevention standard. Furthermore, neurocognitive tests must be performed on a regular basis. Boxing injuries in professional boxing need an interdisciplinary, unbiased and complex analysis directly at the boxing ring. The treatment of the injuries should be only performed in medical centres and thus under constant parameters. The needed qualifications must be learned in mandatory national licence courses of boxing physicians, referees and promoters.
49 CFR 178.515 - Standards for reconstituted wood boxes.
Code of Federal Regulations, 2010 CFR
2010-10-01
... 49 Transportation 2 2010-10-01 2010-10-01 false Standards for reconstituted wood boxes. 178.515... wood boxes. (a) The identification code for a reconstituted wood box is 4F. (b) Construction requirements for reconstituted wood boxes are as follows: (1) The walls of boxes must be made of water...
Yamaoka, J; Kume, T; Akaike, A; Miyachi, Y
2000-05-01
Zinc, an essential metal, is a critical component of zinc binding proteins such as zinc fingers, zinc enzymes and metallothioneins. Recently, evidence for its anti-inflammatory property in skin has been accumulating, as shown in the treatment of acne, alopecia and zinc deficiency. In cutaneous inflammations, a large amount of nitric oxide (NO) is produced through induction of inducible nitric oxide synthase (iNOS) under the influence of proinflammatory cytokines, resulting in tissue damages in skin, as clarified in other organs. Therefore, we asked if the effect of zinc on NO production and/or on iNOS expression in keratinocytes may explain the anti-inflammatory property of zinc in skin. Accordingly, we sought to determine in this study whether zinc ion may have effect on IFN-gamma or TNF-alpha induced NO production and iNOS expression in cultured murine keratinocytes. Ten microM of zinc ion remarkably suppressed cytokine-induced NO production in keratinocytes. Furthermore, zinc ion also suppressed cytokine-induced iNOS expression in the protein level as well as in the messenger RNA level. These results suggest the possibility that the suppressive effect of zinc ion on cytokine-induced NO production in keratinocytes may be in part implicated in the anti-inflammatory property of zinc in some of skin disorders.
Sheng, Ji-Ping; Shen, Lin; Ru, Bing-Gen
2009-03-01
Metallothioneins (MTs) are a family of low molecular weight, cysteine-rich and metal-binding functional proteins. Transgenic MT mushroom can be used as functional food additives, but its zinc-enriching ability has not been studied systemically until now. The zinc contents in mycelia of transgenic MT mushroom (Pleurotus ostreatus) and wild type mushroom mycelia cultivated in different zinc concentration media were analyzed by ICP-OES. The growth status, zinc-enriching ability and degree of zinc in organic form (DZOF) were also analyzed. Results showed that MT mushroom mycelia grew rapidly, but the growth was inhibited when the zinc content in solid media was higher than 1.6 mmol x L(-1). MT mushroom mycelia could enrich more zinc than that of wild type, and the zinc content in MT mushroom mycelia could be 2.56-27.49 mg x kg(-1) when it was cultivated in a liquid media with 0.6-1.2 mmol x L(-1) zinc. DZOF of MT mushroom mycelia in a liquid media with 0.6 mmol x L(-1) zinc at 7 d was significantly higher (88.7%) than that in the wild type (82.1%, alpha = 0.05), but there was no significant difference in DZOF when the MT mushroom mycelia was cultivated in a liquid media with different zinc content at 7 d.
Lahive, E; O'Halloran, J; Jansen, M A K
2015-01-01
Macrophytes contribute significantly to the cycling of metals in aquatic systems, through accumulation during growth and release during herbivory or decomposition. Accumulation of high levels of metals has been extensively documented in Lemnaceae (duckweeds). However, the degree of trophic transfer of metals from Lemnaceae to secondary consumers remains poorly understood. This study demonstrates that zinc accumulated in Lemna minor is bioavailable to the herbivore consumer Gammarus pulex. Overall, the higher the zinc content of L. minor, the more zinc accumulated in G. pulex. Accumulation in G. pulex was such that mortality occurred when they were fed high zinc-containing L. minor. Yet, the percentage of consumed zinc retained by G. pulex actually decreased with higher zinc concentrations in L. minor. We hypothesise that this decrease reflects internal zinc metabolism, including a shift from soluble to covalently bound zinc in high zinc-containing L. minor. Consistently, relatively more zinc is lost through depuration when G. pulex is fed L. minor with high zinc content. The developed Lemna-Gammarus system is simple, easily manipulated, and sensitive enough for changes in plant zinc metabolism to be reflected in metal accumulation by the herbivore, and therefore suitable to study ecologically relevant metal cycling in aquatic ecosystems. © 2014 German Botanical Society and The Royal Botanical Society of the Netherlands.
Zinc halogen battery electrolyte composition with lead additive
Henriksen, Gary L.
1981-01-01
This disclosure relates to a zinc halogen battery electrolyte composition containing an additive providing improved zinc-on-zinc recyclability. The improved electrolyte composition involves the use of a lead additive to inhibit undesirable irregular plating and reduce nodular or dendritic growth on the electrode surface. The lead-containing electrolyte composition of the present invention appears to influence not only the morphology of the base plate zinc, but also the morphology of the zinc-on-zinc replate. In addition, such lead-containing electrolyte compositions appear to reduce hydrogen formation.
46 CFR 111.81-1 - Outlet boxes and junction boxes; general.
Code of Federal Regulations, 2010 CFR
2010-10-01
... fixture, wiring device, or similar item, including each separately installed connection and junction box... used. (d) As appropriate, each outlet-box or junction-box installation must meet the following...
Alterations in protein kinase C activity and processing during zinc-deficiency-induced cell death.
Chou, Susan S; Clegg, Michael S; Momma, Tony Y; Niles, Brad J; Duffy, Jodie Y; Daston, George P; Keen, Carl L
2004-10-01
Protein kinases C (PKCs) are a family of serine/threonine kinases that are critical for signal transduction pathways involved in growth, differentiation and cell death. All PKC isoforms have four conserved domains, C1-C4. The C1 domain contains cysteine-rich finger-like motifs, which bind two zinc atoms. The zinc-finger motifs modulate diacylglycerol binding; thus, intracellular zinc concentrations could influence the activity and localization of PKC family members. 3T3 cells were cultured in zinc-deficient or zinc-supplemented medium for up to 32 h. Cells cultured in zinc-deficient medium had decreased zinc content, lowered cytosolic classical PKC activity, increased caspase-3 processing and activity, and reduced cell number. Zinc-deficient cytosols had decreased activity and expression levels of PKC-alpha, whereas PKC-alpha phosphorylation was not altered. Inhibition of PKC-alpha with Gö6976 had no effect on cell number in the zinc-deficient group. Proteolysis of the novel PKC family member, PKC-delta, to its 40-kDa catalytic fragment occurred in cells cultured in the zinc-deficient medium. Occurrence of the PKC-delta fragment in mitochondria was co-incident with caspase-3 activation. Addition of the PKC-delta inhibitor, rottlerin, or zinc to deficient medium reduced or eliminated proteolysis of PKC-delta, activated caspase-3 and restored cell number. Inhibition of caspase-3 processing by Z-DQMD-FMK (Z-Asp-Gln-Met-Asp-fluoromethylketone) did not restore cell number in the zinc-deficient group, but resulted in processing of full-length PKC-delta to a 56-kDa fragment. These results support the concept that intracellular zinc concentrations influence PKC activity and processing, and that zinc-deficiency-induced apoptosis occurs in part through PKC-dependent pathways.
Dietary catechins and procyanidins modulate zinc homeostasis in human HepG2 cells.
Quesada, Isabel M; Bustos, Mario; Blay, Mayte; Pujadas, Gerard; Ardèvol, Anna; Salvadó, M Josepa; Bladé, Cinta; Arola, Lluís; Fernández-Larrea, Juan
2011-02-01
Catechins and their polymers procyanidins are health-promoting flavonoids found in edible vegetables and fruits. They act as antioxidants by scavenging reactive oxygen species and by chelating the redox-active metals iron and copper. They also behave as signaling molecules, modulating multiple cell signalling pathways and gene expression, including that of antioxidant enzymes. This study aimed at determining whether catechins and procyanidins interact with the redox-inactive metal zinc and at assessing their effect on cellular zinc homeostasis. We found that a grape-seed procyanidin extract (GSPE) and the green tea flavonoid (-)-epigallocatechin-3-gallate (EGCG) bind zinc cations in solution with higher affinity than the zinc-specific chelator Zinquin, and dose-dependently prevent zinc-induced toxicity in the human hepatocarcinoma cell line HepG2, evaluated by the lactate dehydrogenase test. GSPE and EGCG hinder intracellular accumulation of total zinc, measured by atomic flame absorption spectrometry, concomitantly increasing the level of cytoplasmic labile zinc detectable by Zinquin fluorescence. Concurrently, GSPE and EGCG inhibit the expression, evaluated at the mRNA level by quantitative reverse transcriptase-polymerase chain reaction, of zinc-binding metallothioneins and of plasma membrane zinc exporter ZnT1 (SLC30A1), while enhancing the expression of cellular zinc importers ZIP1 (SLC39A1) and ZIP4 (SLC39A4). GSPE and EGCG also produce all these effects when HepG2 cells are stimulated to import zinc by treatment with supplemental zinc or the proinflammatory cytokine interleukin-6. We suggest that extracellular complexation of zinc cations and the elevation of cytoplasmic labile zinc may be relevant mechanisms underlying the modulation of diverse cell signaling and metabolic pathways by catechins and procyanidins. Copyright © 2011 Elsevier Inc. All rights reserved.
Suliburska, Joanna; Skrypnik, Katarzyna; Szulińska, Monika; Kupsz, Justyna; Bogdański, Paweł
2018-05-01
Hypotensive therapy leads to a number of trace elements metabolism disturbances. Zinc balance is frequently affected by antihypertensive treatment. To evaluate the effect of a hypotensive treatment, modified diet and zinc supplementation on mineral status and selected biochemical parameters in newly diagnosed hypertensive patients on monotherapy. In the first stage, arterial hypertension in ninety-eight human subjects was diagnosed. In the second stage, antihypertensive monopharmacotherapy was implemented. In the third stage, patients were randomized into three groups and continued antihypertensive monotherapy: group D received an optimal-mineral-content diet, group S received zinc supplementation, and group C had no changes in diet or zinc supplementation. Iron, zinc, and copper concentrations in serum, erythrocytes, urine, and hair were determined. Lipids, glucose, ceruloplasmin, ferritin, albumin, C-reactive protein (CRP), tumor necrosis factor α (TNF-α), nitric oxide (NO), superoxide dismutase (SOD) and catalase (CAT) were assayed in serum. Antihypertensive monotherapy decreased zinc concentration in serum and erythrocytes and increased the level of zinc in urine, decreased CAT and SOD activity, TNF-α concentration in serum, and increased the level of NO in the serum. Zinc supply led to an increase in zinc concentration in serum, erythrocytes, and hair (in group S only). In the groups with higher zinc intake, decreased glucose concentration in the serum was observed. Significant correlation was seen between the zinc and glucose serum concentrations. Hypotensive drugs disturb zinc status in newly diagnosed hypertensive patients. Antihypertensive monotherapy combined with increased zinc supply in the diet or supplementation favorably modify zinc homeostasis and regulate glucose status without blood pressure affecting in patients with hypertension. Copyright © 2018 Elsevier GmbH. All rights reserved.
Neupane, Durga P; Avalos, Dante; Fullam, Stephanie; Roychowdhury, Hridindu; Yukl, Erik T
2017-10-20
Bacteria can acquire the essential metal zinc from extremely zinc-limited environments by using ATP-binding cassette (ABC) transporters. These transporters are critical virulence factors, relying on specific and high-affinity binding of zinc by a periplasmic solute-binding protein (SBP). As such, the mechanisms of zinc binding and release among bacterial SBPs are of considerable interest as antibacterial drug targets. Zinc SBPs are characterized by a flexible loop near the high-affinity zinc-binding site. The function of this structure is not always clear, and its flexibility has thus far prevented structural characterization by X-ray crystallography. Here, we present intact structures for the zinc-specific SBP AztC from the bacterium Paracoccus denitrificans in the zinc-bound and apo-states. A comparison of these structures revealed that zinc loss prompts significant structural rearrangements, mediated by the formation of a sodium-binding site in the apo-structure. We further show that the AztC flexible loop has no impact on zinc-binding affinity, stoichiometry, or protein structure, yet is essential for zinc transfer from the metallochaperone AztD. We also found that 3 His residues in the loop appear to temporarily coordinate zinc and then convey it to the high-affinity binding site. Thus, mutation of any of these residues to Ala abrogated zinc transfer from AztD. Our structural and mechanistic findings conclusively identify a role for the AztC flexible loop in zinc acquisition from the metallochaperone AztD, yielding critical insights into metal binding by AztC from both solution and AztD. These proteins are highly conserved in human pathogens, making this work potentially useful for the development of novel antibiotics. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Sun, Qian; Zhong, Wei; Zhang, Wenliang; Li, Qiong; Sun, Xiuhua; Tan, Xiaobing; Sun, Xinguo; Dong, Daoyin
2015-01-01
Hepatic zinc deficiency has been well documented in alcoholic patients, but the mechanisms by which zinc deficiency mediates cell death have not been well defined. The objectives of this study were to determine whether alcohol perturbs subcellular zinc homeostasis and how organelle zinc depletion may link with cell death pathways. Wistar rats were pair-fed with the Lieber-DeCarli control or ethanol diet for 5 mo. Chronic alcohol exposure significantly reduced zinc level in isolated hepatic endoplasmic reticulum (ER) and mitochondria. Among the detected zinc transporters, ER Zrt/Irt-like protein (ZIP)13 and mitochondrial ZIP8, which transport zinc from ER and mitochondria to cytosol, were significantly increased. Mitochondrial zinc transporter (ZnT) 4, which transports zinc from cytosol to mitochondria, was also increased. ER phosphorylated eukaryotic initiation factor 2α, activating transcription factor 4, and C/EBP homologous protein were significantly upregulated, and mitochondrial cytochrome c release and Bax insertion were detected in association with caspase-3 activation and apoptotic cell death. To define the role of zinc deficiency in ER and mitochondrial stress, H4IIEC3 cells were treated with 3 μM N,N,N′,N′-tetrakis (2-pyridylmethyl) ethylenediamine for 6 h with or without supplementation with zinc or N-acetylcysteine (NAC). The results demonstrated that zinc deprivation induced caspase-3 activation and apoptosis in association with ER and mitochondria dysfunction, which were inhibited by zinc as low as 10 μM but not by 2 mM NAC. These results suggest that chronic ethanol exposure induced in ER and mitochondrial zinc deficiency might activate intrinsic cell death signaling pathway, which could not be effectively rescued by antioxidant treatment. PMID:25767260
Yang, Fan; Li, Bing; Dong, Xiaoming; Cui, Wenpeng; Luo, Ping
2017-07-01
Diabetes mellitus is a chronic multi-factorial metabolic disorder resulting from impaired glucose homeostasis. Zinc is a key co-factor for the correct functioning of anti-oxidant enzymes. Zinc deficiency therefore, impairs their synthesis, leading to increased oxidative stress within cells. Zinc deficiency occurs commonly in diabetic patients. The aim of this study is to investigate the effects of varying concentrations of zinc on diabetic nephropathy (DN) and the underlying mechanisms involved. FVB male mice aged 8 weeks were injected intraperitoneally with multiple low-dose streptozotocin at a concentration of 50mg/kg body weight daily for 5 days. Diabetic and age-matched control mice were treated with special diets supplemented with zinc at varying concentrations (0.85mg/kg, 30mg/kg, 150mg/kg) for 3 months. The mice were fed with zinc diets to mimic the process of oral administration of zinc in human. Zinc deficiency to some extent aggravated the damage of diabetic kidney. Feeding with normal (30mg/kg zinc/kg diet) and especially high (150mg/kg zinc/kg diet) concentration zinc could protect the kidney against diabetes-induced damage. The beneficial effects of zinc on DN are achieved most likely due to the upregulation of Nrf2 and its downstream factors NQO1, SOD1, SOD2. Zinc upregulated the expression of Akt phosphorylation and GSK-3β phosphorylation, resulting in a reduction in Fyn nuclear translocation and export of Nrf2 to the cytosol. Thus, regular monitoring and maintaining of adequate levels of zinc are recommended in diabetic individuals in order to delay the development of DN. Copyright © 2017 Elsevier GmbH. All rights reserved.
Combinatorial effects of zinc deficiency and arsenic exposure on zebrafish (Danio rerio) development
Truong, Lisa; Barton, Carrie L.; Chase, Tyler T.; Gonnerman, Greg D.; Wong, Carmen P.; Tanguay, Robert L.; Ho, Emily
2017-01-01
Zinc deficiency and chronic low level exposures to inorganic arsenic in drinking water are both significant public health concerns that affect millions of people including pregnant women. These two conditions can co-exist in the human population but little is known about their interaction, and in particular, whether zinc deficiency sensitizes individuals to arsenic exposure and toxicity, especially during critical windows of development. To address this, we utilized the Danio rerio (zebrafish) model to test the hypothesis that parental zinc deficiency sensitizes the developing embryo to low-concentration arsenic toxicity, leading to altered developmental outcomes. Adult zebrafish were fed defined zinc deficient and zinc adequate diets and were spawned resulting in zinc adequate and zinc deficient embryos. The embryos were treated with environmentally relevant concentrations of 0, 50, and 500 ppb arsenic. Arsenic exposure significantly reduced the amount of zinc in the developing embryo by ~7%. The combination of zinc deficiency and low-level arsenic exposures did not sensitize the developing embryo to increased developmental malformations or mortality. The combination did cause a 40% decline in physical activity of the embryos, and this decline was significantly greater than what was observed with zinc deficiency or arsenic exposure alone. Significant changes in RNA expression of genes that regulate zinc homeostasis, response to oxidative stress and insulin production (including zip1, znt7, nrf2, ogg1, pax4, and insa) were found in zinc deficient, or zinc deficiency and arsenic exposed embryos. Overall, the data suggests that the combination of zinc deficiency and arsenic exposure has harmful effects on the developing embryo and may increase the risk for developing chronic diseases like diabetes. PMID:28837703
Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter
2014-01-01
Background and Aims MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. Methods The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Key Results Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11–14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14–16 Type II MADS-box genes. Conclusions The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is the first that provides a comprehensive overview of MADS-box genes in conifers and thus will provide a framework for future work on MADS-box genes in seed plants. PMID:24854168
NASA Astrophysics Data System (ADS)
Luque, P. A.; Gómez-Gutiérrez, Claudia M.; Lastra, G.; Carrillo-Castillo, A.; Quevedo-López, M. A.; Olivas, A.
2014-11-01
Zinc sulfide (ZnS) thin films have been grown by chemical bath deposition (CBD) using different zinc sources on a silicon nitride (Si3N4) substrate in an alkaline solution. The zinc precursors used were zinc acetate, zinc nitrate, and zinc sulfate. The structural and optical characteristics of the ZnS thin films obtained were analyzed. The morphology of the surface showed that the films were compact and uniform, with some pinholes in the surface depending on the zinc source. The most homogeneous and compact surfaces were those obtained using zinc nitrate as the zinc source with a root-mean-square (RMS) value of 3 nm. The transmission spectra indicated average transmittance of 80% to 85% in the spectral range from 300 nm to 800 nm, and the optical bandgap calculated for the films was around 3.71 eV to 3.74 eV.
Zinc in human health: effect of zinc on immune cells.
Prasad, Ananda S
2008-01-01
Although the essentiality of zinc for plants and animals has been known for many decades, the essentiality of zinc for humans was recognized only 40 years ago in the Middle East. The zinc-deficient patients had severe immune dysfunctions, inasmuch as they died of intercurrent infections by the time they were 25 years of age. In our studies in an experimental human model of zinc deficiency, we documented decreased serum testosterone level, oligospermia, severe immune dysfunctions mainly affecting T helper cells, hyperammonemia, neurosensory disorders, and decreased lean body mass. It appears that zinc deficiency is prevalent in the developing world and as many as two billion subjects may be growth retarded due to zinc deficiency. Besides growth retardation and immune dysfunctions, cognitive impairment due to zinc deficiency also has been reported recently. Our studies in the cell culture models showed that the activation of many zinc-dependent enzymes and transcription factors were adversely affected due to zinc deficiency. In HUT-78 (T helper 0 [Th(0)] cell line), we showed that a decrease in gene expression of interleukin-2 (IL-2) and IL-2 receptor alpha(IL-2Ralpha) were due to decreased activation of nuclear factor-kappaB (NF-kappaB) in zinc deficient cells. Decreased NF-kappaB activation in HUT-78 due to zinc deficiency was due to decreased binding of NF-kappaB to DNA, decreased level of NF-kappaB p105 (the precursor of NF-kappaB p50) mRNA, decreased kappaB inhibitory protein (IkappaB) phosphorylation, and decreased Ikappa kappa. These effects of zinc were cell specific. Zinc also is an antioxidant and has anti-inflammatory actions. The therapeutic roles of zinc in acute infantile diarrhea, acrodermatitis enteropathica, prevention of blindness in patients with age-related macular degeneration, and treatment of common cold with zinc have been reported. In HL-60 cells (promyelocytic leukemia cell line), zinc enhances the up-regulation of A20 mRNA, which, via TRAF pathway, decreases NF-kappaB activation, leading to decreased gene expression and generation of tumor necrosis factor-alpha (TNF-alpha), IL-1beta, and IL-8. We have reported recently that in both young adults and elderly subjects, zinc supplementation decreased oxidative stress markers and generation of inflammatory cytokines.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dolan, Cheryl E.
The research described in this dissertation consists of four major areas: (1) sequence analysis of protamine 2 from Muroid rodents to identify potential zinc-binding domain(s) of protamine 2; (2) structural studies of the protamine 2-zinc complex from Syrian Gold hamster sperm and spermatids to elucidate the role of zinc during spermiogenesis; (3) structural studies of an unique protamine 2-zinc complex from chinchilla sperm; and (4) Nuclear Magnetic Resonance (NMR) studies of soluble complexes of hairpin oligonucleotides with synthetic arginine-rich peptides or protamine 1 isolated from bull sperm. First, zinc was quantitated in spermatids and sperm by Proton-Induced X-ray Emission (PIXE)more » to determine whether zinc is present in the early stages of spermiogenesis. The PIXE results revealed the zinc content varies proportionately with the amount of protamine 2 in both spermatid and sperm nuclei. An exception was chinchilla sperm containing twice the amount of protamine 2 than zinc. Further analyses by PIXE and X-ray Absorption Spectroscopy (XAS) of zinc bound to protamines isolated from hamster sperm confirmed the majority of the zinc is bound to protamine and identified the zinc ligands of protamine 2 in hamster spermatids and sperm in vivo. These studies established that zinc is bound to the protamine 2 precursor in hamster spermatids and the coordination of zinc by protamine 2 changes during spermiogenesis. Finally, the sequence analysis combined with the XAS results suggest that the zinc-binding domain in protamine 2 resides in the amino-terminus. Similar analyses of chinchilla sperm by XAS were performed to clarify the unusual PIXE results and revealed that chinchilla has an atypical protamine 2-zinc structure. Two protamine 2 molecules coordinate one zinc atom, forming homodimers that facilitate the binding of protamine 2 to DNA and provide an organizational scheme that would accommodate the observed species-specific protamine stoichiometry in mammalian sperm. Based on these results, we propose the binding of zinc to protamine 2 molecules stabilizes a dimerization domain in other mammalian sperm. Future experiments will use the knowledge we gained of the interactions between protamine 1 and DNA from the NMR studies to obtain structural data for the DNA-protamine 2-zinc complex.« less
Selective electrodiffusion of zinc ions in a Zrt-, Irt-like protein, ZIPB
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, W.; Fu, D.; Chai, J.
2010-12-10
All living cells need zinc ions to support cell growth. Zrt-, Irt-like proteins (ZIPs) represent a major route for entry of zinc ions into cells, but how ZIPs promote zinc uptake has been unclear. Here we report the molecular characterization of ZIPB from Bordetella bronchiseptica, the first ZIP homolog to be purified and functionally reconstituted into proteoliposomes. Zinc flux through ZIPB was found to be nonsaturable and electrogenic, yielding membrane potentials as predicted by the Nernst equation. Conversely, membrane potentials drove zinc fluxes with a linear voltage-flux relationship. Direct measurements of metal uptake by inductively coupled plasma mass spectroscopy demonstratedmore » that ZIPB is selective for two group 12 transition metal ions, Zn{sup 2+} and Cd{sup 2+}, whereas rejecting transition metal ions in groups 7 through 11. Our results provide the molecular basis for cellular zinc acquisition by a zinc-selective channel that exploits in vivo zinc concentration gradients to move zinc ions into the cytoplasm.« less
Zinc release contributes to hypoglycemia-induced neuronal death.
Suh, Sang Won; Garnier, Philippe; Aoyama, Koji; Chen, Yongmei; Swanson, Raymond A
2004-08-01
Neurons exposed to zinc exhibit activation of poly(ADP-ribose) polymerase-1 (PARP-1), an enzyme that normally participates in DNA repair but promotes cell death when extensively activated. Endogenous, vesicular zinc in brain is released to the extracellular space under conditions causing neuronal depolarization. Here, we used a rat model of insulin-induced hypoglycemia to assess the role of zinc release in PARP-1 activation and neuronal death after severe hypoglycemia. Zinc staining with N-(6-methoxy-8-quinolyl)-para-toluenesulfonamide (TSQ) showed depletion of presynaptic vesicular zinc from hippocampal mossy fiber terminals and accumulation of weakly bound zinc in hippocampal CA1 cell bodies after severe hypoglycemia. Intracerebroventricular injection of the zinc chelator calcium ethylene-diamine tetraacetic acid (CaEDTA) blocked the zinc accumulation and significantly reduced hypoglycemia-induced neuronal death. CaEDTA also attenuated the accumulation of poly(ADP-ribose), the enzymatic product of PARP-1, in hippocampal neurons. These results suggest that zinc translocation is an intermediary step linking hypoglycemia to PARP-1 activation and neuronal death.
Zinc and Chlamydia trachomatis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sugarman, B.; Epps, L.R.
1985-07-01
Zinc was noted to have significant effects upon the infection of McCoy cells by each of two strains of Chlamydia trachomatis. With a high or low Chlamydia inoculant, the number of infected cells increased up to 200% utilizing supplemental zinc (up to 1 x 10/sup -4/ M) in the inoculation media compared with standard Chlamydia cultivation media (8 x 10/sup -6/ M zinc). Ferric chloride and calcium chloride did not effect any such changes. Higher concentrations of zinc, after 2 hr of incubation with Chlamydia, significantly decreased the number of inclusions. This direct effect of zinc on the Chlamydia remainedmore » constant after further repassage of the Chlamydia without supplemental zinc, suggesting a lethal effect of the zinc. Supplemental zinc (up to 10/sup -4/ M) may prove to be a useful addition to inoculation media to increase the yield of culturing for Chlamydia trachomatis. Similarly, topical or oral zinc preparations used by people may alter their susceptibility to Chamydia trachomatis infections.« less
Zinc is an Antioxidant and Anti-Inflammatory Agent: Its Role in Human Health
Prasad, Ananda S.
2014-01-01
Zinc supplementation trials in the elderly showed that the incidence of infections was decreased by approximately 66% in the zinc group. Zinc supplementation also decreased oxidative stress biomarkers and decreased inflammatory cytokines in the elderly. In our studies in the experimental model of zinc deficiency in humans, we showed that zinc deficiency per se increased the generation of IL-1β and its mRNA in human mononuclear cells following LPS stimulation. Zinc supplementation upregulated A20, a zinc transcription factor, which inhibited the activation of NF-κB, resulting in decreased generation of inflammatory cytokines. Oxidative stress and chronic inflammation are important contributing factors for several chronic diseases attributed to aging, such as atherosclerosis and related cardiac disorders, cancer, neurodegeneration, immunologic disorders and the aging process itself. Zinc is very effective in decreasing reactive oxygen species (ROS). In this review, the mechanism of zinc actions on oxidative stress and generation of inflammatory cytokines and its impact on health in humans will be presented. PMID:25988117
Effects of Zinc on Particulate Methane Monooxygenase Activity and Structure*
Sirajuddin, Sarah; Barupala, Dulmini; Helling, Stefan; Marcus, Katrin; Stemmler, Timothy L.; Rosenzweig, Amy C.
2014-01-01
Particulate methane monooxygenase (pMMO) is a membrane-bound metalloenzyme that oxidizes methane to methanol in methanotrophic bacteria. Zinc is a known inhibitor of pMMO, but the details of zinc binding and the mechanism of inhibition are not understood. Metal binding and activity assays on membrane-bound pMMO from Methylococcus capsulatus (Bath) reveal that zinc inhibits pMMO at two sites that are distinct from the copper active site. The 2.6 Å resolution crystal structure of Methylocystis species strain Rockwell pMMO reveals two previously undetected bound lipids, and metal soaking experiments identify likely locations for the two zinc inhibition sites. The first is the crystallographic zinc site in the pmoC subunit, and zinc binding here leads to the ordering of 10 previously unobserved residues. A second zinc site is present on the cytoplasmic side of the pmoC subunit. Parallels between these results and zinc inhibition studies of several respiratory complexes suggest that zinc might inhibit proton transfer in pMMO. PMID:24942740
Mineral resource of the month: zinc
Tolcin, Amy C.
2009-01-01
The article provides information on zinc, the fourth most-widely consumed metal. It traces the first use of zinc with the Romans' production of brass. It describes the presence of zinc in Earth's crust and the importance of sphalerite as a source of zinc and other some minor metal production. The production and consumption of zinc as well as the commercial and industrial uses of this metal are also discussed.
Elseweidy, Mohamed M; Ali, Abdel-Moniem A; Elabidine, Nabila Zein; Mursey, Nada M
2017-11-01
The relationship between zinc homeostasis and pancreatic function had been established. In this study we aimed firstly to configure the inflammatory pattern and hyperglycemia in zinc deficient diabetic rats. Secondly to illustrate the effect of two selected agents namely Zinc gluconate and sage oil (Salvia Officinalis, family Lamiaceae). Rats were fed on Zinc deficient diet, deionized water for 28days along with Zinc level check up at intervals to achieve zinc deficient state then rats were rendered diabetic through receiving one dose of alloxan monohydrate (120mg/kg) body weight, classified later into 5 subgroups. Treatment with sage oil (0.042mg/kg IP) and Zinc gluconate orally (150mg/kg) body weight daily for 8 weeks significantly reduced serum glucose, C-reactive protein (CRP), Tumor necrosis factor alpha (TNF- α), interleukins-6 1 β, inflammatory8 (IFN ȣ), pancreatic 1L1-β along with an increase in serum Zinc and pancreatic Zinc transporter 8 (ZNT8). Histopathological results of pancreatic tissues showed a good correlation with the biochemical findings. Both sage oil and zinc gluconate induced an improvement in the glycemic and inflammatory states. This may be of value like the therapeutic agent for diabetes. Copyright © 2017 Elsevier Masson SAS. All rights reserved.
Comparative studies on acid leaching of zinc waste materials
NASA Astrophysics Data System (ADS)
Rudnik, Ewa; Włoch, Grzegorz; Szatan, Leszek
2017-11-01
Three industrial waste materials were characterized in terms of their elemental and phase compositions, leaching behaviour in 10% sulfuric acid solution as well as leaching thermal effects. Slag from melting of mixed metallic scrap contained about 50% Zn and 10% Pb. It consisted mainly of various oxides and oxy-chlorides of metals. Zinc spray metallizing dust contained about 77% Zn in form of zinc and/or zinc-iron oxides, zinc metal and Zn-Fe intermetallic. Zinc ash from hot dip galvanizing was a mixture of zinc oxide, metallic zinc and zinc hydroxide chloride and contained about 80% Zn. Dissolution efficiency of zinc from the first material was 80% (independently on the solid to liquid ratio, 50-150 kg/m3), while decrease of the efficacy from 80% to 60% with increased solid to liquid ratio for the two remaining materials was observed. Both increase in the temperature (20 °C to 35 °C) and agitation rate (300 rpm to 900 rpm) did not improve seriously the leaching results. In all cases, transfer of zinc ions to the leachate was accompanied by different levels of solution contamination, depending on the type of the waste. Leaching of the materials was exothermic with the similar reaction heats for two high oxide-type products (slag, zinc ash) and higher values for the spray metallizing dust.
Artesani, Alessia; Gherardi, Francesca; Nevin, Austin; Valentini, Gianluca; Comelli, Daniela
2017-01-01
It is known that oil paintings containing zinc white are subject to rapid degradation. This is caused by the interaction between the active groups of binder and the metal ions of the pigment, which gives rise to the formation of new zinc complexes (metal soaps). Ongoing studies on zinc white paints have been limited to the chemical mechanisms that lead to the formation of zinc complexes. On the contrary, little is known of the photo-physical changes induced in the zinc oxide crystal structure following this interaction. Time-resolved photoluminescence spectroscopy has been applied to follow modifications in the luminescent zinc white pigment when mixed with binder. Significant changes in trap state photoluminescence emissions have been detected: the enhancement of a blue emission combined with a change of the decay kinetic of the well-known green emission. Complementary data from molecular analysis of paints using Fourier transform infrared spectroscopy confirms the formation of zinc carboxylates and corroborates the mechanism for zinc complexes formation. We support the hypothesis that zinc ions migrate into binder creating novel vacancies, affecting the photoluminescence intensity and lifetime properties of zinc oxide. Here, we further demonstrate the advantages of a time-resolved photoluminescence approach for studying defects in semiconductor pigments. PMID:28772700
Saito, Hitomi; Cherasse, Yoan; Suzuki, Rina; Mitarai, Makoto; Ueda, Fumitaka; Urade, Yoshihiro
2017-05-01
Zinc is an essential mineral that plays an important role in the body. We previously reported that orally feeding zinc-enriched yeast to mice induces nonrapid-eye-movement sleep. In addition, astaxanthin, an antioxidant abundant in seafood such as salmon and krill, is able to chelate minerals and may promote zinc absorption, which in return may also improve sleep. The purpose of our study was to examine the effect of zinc-rich and astaxanthin-containing food on sleep in humans. We conducted a randomized, double-blinded, placebo-controlled parallel group trial of 120 healthy subjects and recorded their night activity by actigraphy for 12 weeks. These subjects were divided into four groups: placebo, zinc-rich food, zinc-, and astaxanthin-rich food, and placebo supplemented with zinc-enriched yeast and astaxanthin oil. Compared with the placebo group, the zinc-rich food group efficiently decreased the time necessary to fall asleep and improved sleep efficiency, whereas the group that ingested zinc-enriched yeast and astaxanthin oil significantly improved the sleep onset latency. Actigraphic sleep monitoring demonstrated that eating zinc-rich food improved sleep onset latency as well as improved the sleep efficiency in healthy individuals. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, M Q; Guo, Y; Powell, C A; Doud, M S; Yang, C Y; Zhou, H; Duan, Y P
2016-06-01
Huanglongbing (HLB)-affected citrus often display zinc deficiency symptoms. In this study, supplemental zinc was applied to citrus to determine its effect on Candidatus Liberibacter asiaticus (Las) titre, HLB symptoms, and leaf microbiome. HLB-affected citrus were treated with various amounts of zinc. The treatments promoted Las growth and affected microbiomes in citrus leaves. Phylochip(™) -based results indicated that 5475 of over 50 000 known Operational Taxonomic Units (OTUs) in 52 phyla were detected in the midribs of HLB-affected citrus, of which Proteobacteria was the most abundant, followed by Firmicutes and Actinobacteria. In comparison, the microbiomes of zinc-treated diseased plants had overall more OTUs with higher amounts of Proteobacteria, but decreased percentages of Firmicutes and Actinobacteria. In addition, more OTUs of siderophore-producing bacteria were present. Only zinc-sensitive Staphylococcaceae had higher OTU's in the diseased plants without zinc treatments. Although HLB-affected citrus appear zinc deficient, zinc amendments increased the pathogen levels and shifted the microbiome. HLB is currently the most devastating disease of citrus worldwide. Zinc is often applied to HLB-affected citrus due to zinc deficiency symptoms. This study provided new insights into the potential effects of zinc on HLB and the microbial ecology of citrus. © 2016 The Society for Applied Microbiology.
Zinc induces long-term upregulation of T-type calcium current in hippocampal neurons in vivo.
Ekstein, Dana; Benninger, Felix; Daninos, Moshe; Pitsch, Julika; van Loo, Karen M J; Becker, Albert J; Yaari, Yoel
2012-11-15
Extracellular zinc can induce numerous acute and persistent physiological and toxic effects in neurons by acting at their plasma membrane or intracellularly following permeation or uptake into them. Zinc acutely and reversibly blocks T-type voltage-gated calcium current (I(CaT)), but the long-term effect of zinc on this current has not been studied. Because chemically induced status epilepticus (SE) results in the release of zinc into the extracellular space, as well as in a long-lasting increase in I(CaT) in CA1 pyramidal cells, we hypothesized that zinc may play a causative role in I(CaT) upregulation. We tested this hypothesis by monitoring for 18 days the effects of zinc and ibotenic acid (a neurotoxic agent serving as control for zinc), injected into the right lateral ventricle, on I(CaT) in rat CA1 pyramidal cells. Both zinc and ibotenic acid caused marked hippocampal lesions on the side of injection, but only minor damage to contralateral hippocampi. Zinc, but not ibotenic acid, caused upregulation of a nickel-sensitive I(CaT) in a subset of contralateral CA1 pyramidal cells, appearing 2 days after injection and lasting for about 2 weeks thereafter. In contrast, acute application of zinc to CA1 pyramidal cells promptly blocked I(CaT). These data indicate that extracellular zinc has a dual effect on I(CaT), blocking it acutely while causing its long-term upregulation. Through the latter effect, zinc may regulate the intrinsic excitability of principal neurons, particularly in pathological conditions associated with enhanced release of zinc, such as SE.
Cho, Minsu; Hu, Guanggan; Caza, Mélissa; Horianopoulos, Linda C; Kronstad, James W; Jung, Won Hee
2018-01-01
Zinc is an important transition metal in all living organisms and is required for numerous biological processes. However, excess zinc can also be toxic to cells and cause cellular stress. In the model fungus Saccharomyces cerevisiae, a vacuolar zinc transporter, Zrc1, plays important roles in the storage and detoxification of excess intracellular zinc to protect the cell. In this study, we identified an ortholog of the S. cerevisiae ZRC1 gene in the human fungal pathogen Cryptococcus neoformans. Zrc1 was localized in the vacuolar membrane in C. neoformans, and a mutant lacking ZRC1 showed significant growth defects under high-zinc conditions. These results suggested a role for Zrc1 in zinc detoxification. However, contrary to our expectation, the expression of Zrc1 was induced in cells grown in zinc-limited conditions and decreased upon the addition of zinc. These expression patterns were similar to those of Zip1, the high-affinity zinc transporter in the plasma membrane of C. neoformans. Furthermore, we used the zrc1 mutant in a murine model of cryptococcosis to examine whether a mammalian host could inhibit the survival of C. neoformans using zinc toxicity. We found that the mutant showed no difference in virulence compared with the wildtype strain. This result suggests that Zrc1-mediated zinc detoxification is not required for the virulence of C. neoformans, and imply that zinc toxicity may not be an important aspect of the host immune response to the fungus.
Bruggraber, Sylvaine F. A.; Gerrard, Stephen E.; Kendall, Richard A.; Tuleu, Catherine; Slater, Nigel K. H.
2017-01-01
Zinc delivery from a nipple shield delivery system (NSDS), a novel platform for administering medicines to infants during breastfeeding, was characterised using a breastfeeding simulation apparatus. In this study, human milk at flow rates and pressures physiologically representative of breastfeeding passed through the NSDS loaded with zinc-containing rapidly disintegrating tablets, resulting in release of zinc into the milk. Inductively coupled plasma optical emission spectrometry was used to detect the zinc released, using a method that does not require prior digestion of the samples and that could be applied in other zinc analysis studies in breast milk. Four different types of zinc-containing tablets with equal zinc load but varying excipient compositions were tested in the NSDS in vitro. Zinc release measured over 20 minutes ranged from 32–51% of the loaded dose. Total zinc release for sets tablets of the same composition but differing hardness were not significantly different from one another with P = 0.3598 and P = 0.1270 for two tested pairs using unpaired t tests with Welch’s correction. By the same test total zinc release from two sets of tablets having similar hardness but differing composition were also not significantly significant with P = 0.2634. Future zinc tablet composition and formulation optimisation could lead to zinc supplements and therapeutics with faster drug release, which could be administered with the NSDS during breastfeeding. The use of the NSDS to deliver zinc could then lead to treatment and prevention of some of the leading causes of child mortality, including diarrheal disease and pneumonia. PMID:28158283
Scheuerle, Rebekah L; Bruggraber, Sylvaine F A; Gerrard, Stephen E; Kendall, Richard A; Tuleu, Catherine; Slater, Nigel K H
2017-01-01
Zinc delivery from a nipple shield delivery system (NSDS), a novel platform for administering medicines to infants during breastfeeding, was characterised using a breastfeeding simulation apparatus. In this study, human milk at flow rates and pressures physiologically representative of breastfeeding passed through the NSDS loaded with zinc-containing rapidly disintegrating tablets, resulting in release of zinc into the milk. Inductively coupled plasma optical emission spectrometry was used to detect the zinc released, using a method that does not require prior digestion of the samples and that could be applied in other zinc analysis studies in breast milk. Four different types of zinc-containing tablets with equal zinc load but varying excipient compositions were tested in the NSDS in vitro. Zinc release measured over 20 minutes ranged from 32-51% of the loaded dose. Total zinc release for sets tablets of the same composition but differing hardness were not significantly different from one another with P = 0.3598 and P = 0.1270 for two tested pairs using unpaired t tests with Welch's correction. By the same test total zinc release from two sets of tablets having similar hardness but differing composition were also not significantly significant with P = 0.2634. Future zinc tablet composition and formulation optimisation could lead to zinc supplements and therapeutics with faster drug release, which could be administered with the NSDS during breastfeeding. The use of the NSDS to deliver zinc could then lead to treatment and prevention of some of the leading causes of child mortality, including diarrheal disease and pneumonia.
Krebs, Nancy F; Westcott, Jamie E; Culbertson, Diana L; Sian, Lei; Miller, Leland V; Hambidge, K Michael
2012-01-01
Background: The low zinc intake from human milk at ∼6 mo of age predicts the dependence on complementary foods (CF) to meet the zinc requirements of older breastfed-only infants. Objective: The objective of this study was to compare major variables of zinc homeostasis and zinc status in 9-mo-old breastfed infants who were randomly assigned to different complementary food regimens. Design: Forty-five exclusively breastfed 5-mo-old infants were randomly assigned to receive commercially available pureed meats, iron-and-zinc–fortified infant cereal (IZFC), or whole-grain, iron-only–fortified infant cereal (IFC) as the first and primary CF until completion of zinc metabolic studies between 9 and 10 mo of age. A zinc stable-isotope methodology was used to measure the fractional absorption of zinc (FAZ) in human milk and CF by dual-isotope ratios in urine. Calculated variables included the dietary intake from duplicate diets and 4-d test weighing, the total absorbed zinc (TAZ) from FAZ × diet zinc, and the exchangeable zinc pool size (EZP) from isotope enrichment in urine. Results: Mean daily zinc intakes were significantly greater for the meat and IZFC groups than for the IFC group (P < 0.001); only intakes in meat and IZFC groups met estimated average requirements. Mean (±SEM) TAZ amounts were 0.80 ± 0.08, 0.71 ± 0.09, and 0.52 ± 0.05 mg/d for the meat, IZFC, and IFC groups, respectively (P = 0.027). Zinc from human milk contributed <25% of TAZ for all groups. The EZP correlated with both zinc intake (r = 0.43, P < 0.01) and TAZ (r = 0.54, P < 0.001). Conclusion: Zinc requirements for older breastfed-only infants are unlikely to be met without the regular consumption of either meats or zinc-fortified foods. PMID:22648720
Total Zinc Intake May Modify the Glucose-Raising Effect of a Zinc Transporter (SLC30A8) Variant
Kanoni, Stavroula; Nettleton, Jennifer A.; Hivert, Marie-France; Ye, Zheng; van Rooij, Frank J.A.; Shungin, Dmitry; Sonestedt, Emily; Ngwa, Julius S.; Wojczynski, Mary K.; Lemaitre, Rozenn N.; Gustafsson, Stefan; Anderson, Jennifer S.; Tanaka, Toshiko; Hindy, George; Saylor, Georgia; Renstrom, Frida; Bennett, Amanda J.; van Duijn, Cornelia M.; Florez, Jose C.; Fox, Caroline S.; Hofman, Albert; Hoogeveen, Ron C.; Houston, Denise K.; Hu, Frank B.; Jacques, Paul F.; Johansson, Ingegerd; Lind, Lars; Liu, Yongmei; McKeown, Nicola; Ordovas, Jose; Pankow, James S.; Sijbrands, Eric J.G.; Syvänen, Ann-Christine; Uitterlinden, André G.; Yannakoulia, Mary; Zillikens, M. Carola; Wareham, Nick J.; Prokopenko, Inga; Bandinelli, Stefania; Forouhi, Nita G.; Cupples, L. Adrienne; Loos, Ruth J.; Hallmans, Goran; Dupuis, Josée; Langenberg, Claudia; Ferrucci, Luigi; Kritchevsky, Stephen B.; McCarthy, Mark I.; Ingelsson, Erik; Borecki, Ingrid B.; Witteman, Jacqueline C.M.; Orho-Melander, Marju; Siscovick, David S.; Meigs, James B.; Franks, Paul W.; Dedoussis, George V.
2011-01-01
OBJECTIVE Many genetic variants have been associated with glucose homeostasis and type 2 diabetes in genome-wide association studies. Zinc is an essential micronutrient that is important for β-cell function and glucose homeostasis. We tested the hypothesis that zinc intake could influence the glucose-raising effect of specific variants. RESEARCH DESIGN AND METHODS We conducted a 14-cohort meta-analysis to assess the interaction of 20 genetic variants known to be related to glycemic traits and zinc metabolism with dietary zinc intake (food sources) and a 5-cohort meta-analysis to assess the interaction with total zinc intake (food sources and supplements) on fasting glucose levels among individuals of European ancestry without diabetes. RESULTS We observed a significant association of total zinc intake with lower fasting glucose levels (β-coefficient ± SE per 1 mg/day of zinc intake: −0.0012 ± 0.0003 mmol/L, summary P value = 0.0003), while the association of dietary zinc intake was not significant. We identified a nominally significant interaction between total zinc intake and the SLC30A8 rs11558471 variant on fasting glucose levels (β-coefficient ± SE per A allele for 1 mg/day of greater total zinc intake: −0.0017 ± 0.0006 mmol/L, summary interaction P value = 0.005); this result suggests a stronger inverse association between total zinc intake and fasting glucose in individuals carrying the glucose-raising A allele compared with individuals who do not carry it. None of the other interaction tests were statistically significant. CONCLUSIONS Our results suggest that higher total zinc intake may attenuate the glucose-raising effect of the rs11558471 SLC30A8 (zinc transporter) variant. Our findings also support evidence for the association of higher total zinc intake with lower fasting glucose levels. PMID:21810599
Young, Graeme P; Mortimer, Elissa K; Gopalsamy, Geetha L; Alpers, David H; Binder, Henry J; Manary, Mark J; Ramakrishna, Balakrishnan S; Brown, Ian L; Brewer, Thomas G
2014-01-01
Zinc deficiency is a major cause of childhood morbidity and mortality. The WHO/UNICEF strategy for zinc supplementation as adjunctive therapy for diarrhea is poorly implemented. A conference of experts in zinc nutrition and gastrointestinal disorders was convened to consider approaches that might complement the current recommendation and what research was needed to develop these approaches. Several key points were identified. The design of novel zinc interventions would be facilitated by a better understanding of how disturbed gut function, such as environmental (or tropical) enteropathy, affects zinc absorption, losses, and homeostasis. Because only 10% of zinc stores are able to be rapidly turned over, and appear to be rapidly depleted by acute intestinal illness, they are probably best maintained by complementary regular supplementation in a primary prevention strategy rather than secondary prevention triggered by acute diarrhea. The assessment of zinc status is challenging and complex without simple, validated measures to facilitate field testing of novel interventions. Zinc bioavailability may be a crucial factor in the success of primary prevention strategies, and a range of options, all still inadequately explored, might be valuable in improving zinc nutrition. Some therapeutic actions of zinc on diarrhea seem attributable to pharmacologic effects, whereas others are related to the reversal of deficiency (ie, nutritional). The distinction between these 2 mechanisms cannot be clarified given the insensitivity of serum zinc to identify subclinical deficiency states. Why zinc seems to be less effective than expected at all ages, and ineffective for secondary prevention of diarrhea in children <12 mo of age, remains unclear. It was concluded that a reframing of the current recommendation is warranted with consideration of how to better optimize and deliver zinc and whether to provide a complementary public health primary prevention zinc strategy. This requires careful consideration of the zinc product to be used as well as strategies for its delivery. PMID:25240082
Measuring zinc in biological nanovesicles by multiple analytical approaches.
Piacenza, Francesco; Biesemeier, Antje; Farina, Marco; Piva, Francesco; Jin, Xin; Pavoni, Eleonora; Nisi, Lorenzo; Cardelli, Maurizio; Costarelli, Laura; Giacconi, Robertina; Basso, Andrea; Pierpaoli, Elisa; Provinciali, Mauro; Hwang, James C M; Morini, Antonio; di Donato, Andrea; Malavolta, Marco
2018-07-01
Exosomes are nanovesicles known to mediate intercellular communication. Although it is established that zinc ions can act as intracellular signaling factors, the measurement of zinc in circulating nanovesicles has not yet been attempted. Providing evidence of the existence of this zinc fraction and methods for its measurement might be important to advance our knowledge of zinc status and its relevance in diseases. Exosomes from 0.5 ml of either fresh or frozen human plasma were isolated by differential centrifugation. A morphological and dimensional evaluation at the nanoscale level was performed by atomic force microscopy (AFM) and Transmission Electron Microscopy (TEM). Energy Dispersive X-Ray Microanalysis (EDX) revealed the elemental composition of exosomes and their respective total Zinc content on a quantitative basis. The zinc mole fraction (in at%) was correlated to the phosphorous mole fraction, which is indicative for exosomal membrane material. Both fresh (Zn/P 0.09 ± 0.01) and frozen exosomes (Zn/P 0.08 ± 0.02) had a significant zinc content, which increased up to 1.09 ± 0.12 for frozen exosomes when treated with increasing amounts of zinc (100-500 μM; each p < 0.05). Interestingly, after zinc addition, the Calcium mole fractions decreased accordingly suggesting a possible exchange by zinc. In order to estimate the intra-exosomal labile zinc content, an Imaging Flow Cytometry approach was developed by using the specific membrane permeable zinc-probe Fluozin-3AM. A labile zinc content of 0.59 ± 0.27 nM was calculated but it is likely that the measurement may be affected by purification and isolation conditions. This study suggests that circulating nano-vesicular-zinc can represent a newly discovered zinc fraction in the blood plasma whose functional and biological properties will have to be further investigated in future studies. Copyright © 2018 Elsevier GmbH. All rights reserved.
Dietary and non-dietary factors associated with serum zinc in Indian women.
Herbst, Catherine A; Menon, Kavitha C; Ferguson, Elaine L; Thomson, Christine D; Bailey, Karl; Gray, Andrew R; Zodpey, Sanjay; Saraf, Abhay; Das, Prabir Kumar; Skeaff, Sheila A
2014-10-01
Women in low-income settings, common in India, are at risk of inadequate zinc intake due to poor diet quality and low consumption of flesh foods rich in zinc. The aims of this study were to assess the prevalence of zinc status of non-pregnant rural and tribal women living in central India and to identify dietary and non-dietary factors associated with the biochemical zinc status of these women. Rural and tribal non-pregnant women 18-30 years of age were selected using proportion to population sampling near Nagpur, Maharashtra, India. Sociodemographic, biochemical (serum zinc), clinical, and dietary data (1-day interactive 24-h recall) were collected. The mean age of women (n = 109; rural = 52; tribal = 56) was 23.2 years and mean BMI was 17.9 kg/m(2). The majority of the participants identified as being non-vegetarian (72 %). The mean ± SD serum zinc concentration was 10.8 ± 1.6 μmol/L, and 52 % of participants had a low serum zinc concentration according to the International Zinc Nutrition Consultative Group (IZiNCG). The median (first and third quartile) energy, zinc intake, and phytate/zinc molar ratio was 5.4 (4.2, 6.7) MJ/day, 5.3 (3.8, 7.0) mg/day, and 26 (22, 28), respectively. Zinc intakes were well below IZiNCG recommendations for dietary zinc of 9 mg/day for non-pregnant women aged 14-18 years and 7 mg/day for non-pregnant women aged ≥ 19 years. Using linear regression analysis to identify non-dietary and dietary factors associated with serum zinc, a significant association was only found for current lactation (p = 0.012) and energy intake (p < 0.001). Diets low in energy with poor bioavailability of dietary zinc are likely to be the primary cause of the high proportion of Indian women with zinc deficiency.
Zinc Deficiency Is associated With Depressive Symptoms-Results From the Berlin Aging Study II.
Jung, Alissa; Spira, Dominik; Steinhagen-Thiessen, Elisabeth; Demuth, Ilja; Norman, Kristina
2017-08-01
Zinc plays an important role for behavioral and mental function, maintaining the correct functions of intracellular signal transduction, cellular and trans-membrane transport, protein synthesis, and antioxidant system. We investigated both dietary zinc intake and plasma zinc levels and the correlation with depressive symptoms in a large sample of community-dwelling old. One thousand five hundred fourteen older people (aged 60-84 years, 772 women) from the Berlin Aging Study II were included. Zinc intake was assessed by the EPIC Food Frequency Questionnaire. Plasma zinc levels were assessed with atomic-absorption spectrophotometry. Depressive symptoms were assessed with the "Center for Epidemiological Studies Depression Scale" and the "Geriatric Depression Scale." Zinc deficiency in blood plasma was found in 18.7% of participants, and depressive symptoms in 15.7%. Participants with depressive symptoms had lower energy-adjusted zinc intake (median 11.1 vs 11.6 µmol/L; p = .048) and lower plasma zinc levels (median 12.2 vs12.3 mg/dL; p = .037). Even after adjustment for known predictors of depression, plasma zinc deficiency remained significantly associated with depressive symptoms (odds ratio: 1.490, 95% confidence interval: 1.027-2.164; p = .036). In the multiple logistic regression model stratified by sex, we found that plasma zinc deficiency was strongly associated with a higher risk for depressive symptoms in women (odds ratio: 1.739, 95% confidence interval: 1.068-2.833; p = .026). Plasma zinc deficiency was common in our old study population. An increase in dietary zinc and higher plasma zinc levels may reduce the risk of depressive symptoms. A screening for reduced dietary zinc intake or plasma zinc deficiency might be beneficial in older people at risk of depressive symptoms. © The Author 2016. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Iñigo-Figueroa, Gemma; Méndez-Estrada, Rosa O.; Quihui-Cota, Luis; Velásquez-Contreras, Carlos A.; Garibay-Escobar, Adriana; Canett-Romero, Rafael; Astiazarán-García, Humberto
2013-01-01
Associations between Giardia lamblia infection and low serum concentrations of zinc have been reported in young children. Interestingly, relatively few studies have examined the effects of different dietary zinc levels on the parasite-infected host. The aims of this study were to compare the growth performance and zinc status in response to varying levels of dietary zinc and to measure the antibody-mediated response of mice during G. lamblia infection. Male CD-1 mice were fed using 1 of 4 experimental diets: adequate-zinc (ZnA), low-zinc (ZnL), high-zinc (ZnH) and supplemented-zinc (ZnS) diet containing 30, 10, 223 and 1383 mg Zn/kg respectively. After a 10 days feeding period, mice were inoculated orally with 5 × 106 G. lamblia trophozoites and were maintained on the assigned diet during the course of infection (30 days). Giardia-free mice fed ZnL diets were able to attain normal growth and antibody-mediated response. Giardia-infected mice fed ZnL and ZnA diets presented a significant growth retardation compared to non-infected controls. Zinc supplementation avoided this weight loss during G. lamblia infection and up-regulated the host’s humoral immune response by improving the production of specific antibodies. Clinical outcomes of zinc supplementation during giardiasis included significant weight gain, higher anti-G. lamblia IgG antibodies and improved serum zinc levels despite the ongoing infection. A maximum growth rate and antibody-mediated response were attained in mice fed ZnH diet. No further increases in body weight, zinc status and humoral immune capacity were noted by feeding higher zinc levels (ZnS) than the ZnH diet. These findings probably reflect biological effect of zinc that could be of public health importance in endemic areas of infection. PMID:24002196
Code of Federal Regulations, 2010 CFR
2010-07-01
... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Zinc Smelters § 60.171 Definitions... and in subpart A of this part. (a) Primary zinc smelter means any installation engaged in the production, or any intermediate process in the production, of zinc or zinc oxide from zinc sulfide ore...
40 CFR 421.80 - Applicability: Description of the primary zinc subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... primary zinc subcategory. 421.80 Section 421.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Zinc Subcategory § 421.80 Applicability: Description of the primary zinc subcategory. The provisions of this subpart are applicable to discharges resulting from the production of primary zinc by either...
40 CFR 421.80 - Applicability: Description of the primary zinc subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... primary zinc subcategory. 421.80 Section 421.80 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Zinc Subcategory § 421.80 Applicability: Description of the primary zinc subcategory. The provisions of this subpart are applicable to discharges resulting from the production of primary zinc by either...
Code of Federal Regulations, 2011 CFR
2011-07-01
... and in subpart A of this part. (a) Primary zinc smelter means any installation engaged in the production, or any intermediate process in the production, of zinc or zinc oxide from zinc sulfide ore... PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Primary Zinc Smelters § 60.171 Definitions...
A Calculus for Boxes and Traits in a Java-Like Setting
NASA Astrophysics Data System (ADS)
Bettini, Lorenzo; Damiani, Ferruccio; de Luca, Marco; Geilmann, Kathrin; Schäfer, Jan
The box model is a component model for the object-oriented paradigm, that defines components (the boxes) with clear encapsulation boundaries. Having well-defined boundaries is crucial in component-based software development, because it enables to argue about the interference and interaction between a component and its context. In general, boxes contain several objects and inner boxes, of which some are local to the box and cannot be accessed from other boxes and some can be accessible by other boxes. A trait is a set of methods divorced from any class hierarchy. Traits can be composed together to form classes or other traits. We present a calculus for boxes and traits. Traits are units of fine-grained reuse, whereas boxes can be seen as units of coarse-grained reuse. The calculus is equipped with an ownership type system and allows us to combine coarse- and fine-grained reuse of code by maintaining encapsulation of components.
Can the design of glove dispensing boxes influence glove contamination?
Assadian, O; Leaper, D J; Kramer, A; Ousey, K J
2016-11-01
Few studies have explored the microbial contamination of glove boxes in clinical settings. The objective of this observational study was to investigate whether a new glove packaging system in which single gloves are dispensed vertically, cuff end first, has lower levels of contamination on the gloves and on the surface around the box aperture compared with conventional glove boxes. Seven participating sites were provided with vertical glove dispensing systems (modified boxes) and conventional boxes. Before opening glove boxes, the surface around the aperture was sampled microbiologically to establish baseline levels of superficial contamination. Once the glove boxes were opened, the first pair of gloves in each box was sampled for viable bacteria. Thereafter, testing sites were visited on a weekly basis over a period of six weeks and the same microbiological assessments were made. The surface near the aperture of the modified boxes became significantly less contaminated over time compared with the conventional boxes (P<0.001), with an average of 46.7% less contamination around the aperture. Overall, gloves from modified boxes showed significantly less colony-forming unit contamination than gloves from conventional boxes (P<0.001). Comparing all sites over the entire six-week period, gloves from modified boxes had 88.9% less bacterial contamination. This simple improvement to glove box design reduces contamination of unused gloves. Such modifications could decrease the risk of microbial cross-transmission in settings that use gloves. However, such advantages do not substitute for strict hand hygiene compliance and appropriate use of non-sterile, single-use gloves. Copyright © 2016 The Healthcare Infection Society. All rights reserved.
40 CFR 471.80 - Applicability; description of the zinc forming subcategory.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Applicability; description of the zinc... CATEGORY Zinc Forming Subcategory § 471.80 Applicability; description of the zinc forming subcategory. This... pollutants into publicly owned treatment works from the process operations of the zinc forming subcategory. ...
40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?
Code of Federal Regulations, 2011 CFR
2011-07-01
... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...
40 CFR 63.11164 - What General Provisions apply to primary zinc production facilities?
Code of Federal Regulations, 2010 CFR
2010-07-01
... primary zinc production facilities? 63.11164 Section 63.11164 Protection of Environment ENVIRONMENTAL... Primary Nonferrous Metals Area Sources-Zinc, Cadmium, and Beryllium Primary Zinc Production Facilities § 63.11164 What General Provisions apply to primary zinc production facilities? (a) If you own or...
21 CFR 522.2690 - Zinc gluconate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 6 2011-04-01 2011-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...
40 CFR 415.670 - Applicability; description of the zinc chloride production subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 29 2011-07-01 2009-07-01 true Applicability; description of the zinc... CATEGORY Zinc Chloride Production Subcategory § 415.670 Applicability; description of the zinc chloride... of pollutants into treatment works which are publicly owned resulting from the production of zinc...
21 CFR 172.399 - Zinc methionine sulfate.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 3 2011-04-01 2011-04-01 false Zinc methionine sulfate. 172.399 Section 172.399... CONSUMPTION Special Dietary and Nutritional Additives § 172.399 Zinc methionine sulfate. Zinc methionine... conditions: (a) The additive is the product of the reaction between equimolar amounts of zinc sulfate and DL...
40 CFR 471.80 - Applicability; description of the zinc forming subcategory.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Applicability; description of the zinc... CATEGORY Zinc Forming Subcategory § 471.80 Applicability; description of the zinc forming subcategory. This... pollutants into publicly owned treatment works from the process operations of the zinc forming subcategory. ...
21 CFR 522.2690 - Zinc gluconate.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Zinc gluconate. 522.2690 Section 522.2690 Food and..., FEEDS, AND RELATED PRODUCTS IMPLANTATION OR INJECTABLE DOSAGE FORM NEW ANIMAL DRUGS § 522.2690 Zinc gluconate. (a) Specifications. Each milliliter of solution contains 13.1 milligrams zinc as zinc gluconate...
40 CFR 63.11167 - What definitions apply to this subpart?
Code of Federal Regulations, 2011 CFR
2011-07-01
... melt cadmium or produce cadmium oxide from the cadmium recovered in the zinc production process... engaged in the production, or any intermediate process in the production, of zinc or zinc oxide from zinc... Sources-Zinc, Cadmium, and Beryllium Other Requirements and Information § 63.11167 What definitions apply...
Excessive zinc ingestion: A reversible cause of sideroblastic anemia and bone marrow depression
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broun, E.R.; Greist, A.; Tricot, G.
1990-09-19
Two patients with sideroblastic anemia secondary to zinc-induced copper deficiency absorbed excess zinc secondary to oral ingestion. The source of excess zinc was a zinc supplement in one case; in the other, ingested coins. In each case, the sideroblastic anemia was corrected promptly after removal of the source of excess zinc. These two cases emphasize the importance of recognizing this clinical entity, since the myelodysplastic features are completely reversible.
Regeneration of zinc halide catalyst used in the hydrocracking of polynuclear hydrocarbons
Gorin, Everett
1978-01-01
Improved recovery of spent molten zinc halide hydro-cracking catalyst is achieved in the oxidative vapor phase regeneration thereof by selective treatment of the zinc oxide carried over by the effluent vapors from the regeneration zone with hydrogen halide gas under conditions favoring the reaction of the zinc oxide with the hydrogen halide, whereby regenerated zinc halide is recovered in a solids-free state with little loss of zinc values.
The effect of polymers onto the size of zinc layered hydroxide salt and its calcined product
NASA Astrophysics Data System (ADS)
Hussein, Mohd Zobir bin; Ghotbi, Mohammad Yeganeh; Yahaya, Asmah Hj; Abd Rahman, Mohd Zaki
2009-02-01
Zinc hydroxide nitrate, a brucite-like layered material was synthesized using pH control method. Poly(vinyl alcohol) and poly(ethylene glycol) were used at various percentages as size decreasing agents during the synthesis of zinc hydroxide nitrate. SEM and PXRD showed the decrease of size and thickness of the resultant zinc hydroxide nitrates. TG and surface area data confirmed the decrease of the particle sizes, too. When zinc hydroxide nitrates were heat treated at 500 °C, the physical properties of nano zinc oxides obtained depended on the parent material, zinc hydroxide nitrate.
Zinc Therapy in Dermatology: A Review
Mahajan, Vikram K.; Mehta, Karaninder S.; Chauhan, Pushpinder S.
2014-01-01
Zinc, both in elemental or in its salt forms, has been used as a therapeutic modality for centuries. Topical preparations like zinc oxide, calamine, or zinc pyrithione have been in use as photoprotecting, soothing agents or as active ingredient of antidandruff shampoos. Its use has expanded manifold over the years for a number of dermatological conditions including infections (leishmaniasis, warts), inflammatory dermatoses (acne vulgaris, rosacea), pigmentary disorders (melasma), and neoplasias (basal cell carcinoma). Although the role of oral zinc is well-established in human zinc deficiency syndromes including acrodermatitis enteropathica, it is only in recent years that importance of zinc as a micronutrient essential for infant growth and development has been recognized. The paper reviews various dermatological uses of zinc. PMID:25120566
Determination of zinc availability in foods by the extrinsic label technique.
Evans, G W; Johnson, P E
1977-06-01
The absorption of intrinsic 65Zn and extrinsic 65Zn from corn and liver was measured in rats. No significant difference between the absorption of intrinsic- and extrinsic-label was observed. These results indicate that endogenous zinc and exogenous 65Zn enter a common pool prior to being absorbed from the intestine. Since extrinsic 65Zn enters a common pool with intrinsic zinc, whole-body absorption of extrinsic 65Zn can be used to obtain an accurate estimate of the availability of zinc in food. The availability of zinc in human breast milk, in cow's milk, in infant formulas, and in reconstituted dry milk was analyzed by use of the extrinsic label. The zinc in human breast milk was most available (59%) while the zinc in the infant formulas was the least available (26 to 37%). Zinc from both raw and cooked corn was more available than zinc from either cooked or uncooked rat liver.
Maternal and fetal plasma zinc in pre-eclampsia.
Bassiouni, B A; Foda, A I; Rafei, A A
1979-04-01
Zinc is important for fetal growth and is involved in several important enzyme systems. Maternal and umbilical plasma zinc concentrations were determined in 52 parturient women with mild and severe pre-eclampsia, and were compared with those obtained from 20 women in labor whose pregnancies had progressed normally. A decrease in maternal as well as umbilical plasma zinc concentrations was observed in pre-eclamptic women, and this decrease was statistically significant in severe pre-eclampsia. The causes of these changes in plasma zinc concentrations in pre-eclampsia were discussed, and the possible adverse effects of zinc deficiency on the mother and fetus were mentioned. Low plasma zinc concentrations in pre-eclampsia may be a sign of zinc deficiency, implying possible risks to the mother and her fetus. It is recommended that maintenance of adequate dietary zinc nutrition during pregnancy, and particularly in pre-eclampsia, is important.
Liuzzi, Juan P.; Guo, Liang; Yoo, Changwon; Stewart, Tiffanie S
2014-01-01
Autophagy is a highly conserved degradative process through which cells overcome stressful conditions. Inasmuch as faulty autophagy has been associated with aging, neuronal degeneration disorders, diabetes, and fatty liver, autophagy is regarded as a potential therapeutic target. This review summarizes the present state of knowledge concerning the role of zinc in the regulation of autophagy, the role of autophagy in zinc metabolism, and the potential role of autophagy as a mediator of the protective effects of zinc. Data from in vitro studies consistently support the notion that zinc is critical for early and late autophagy. Studies have shown inhibition of early and late autophagy in cells cultured in medium treated with zinc chelators. Conversely, excess zinc added to the medium has shown to potentiate the stimulation of autophagy by tamoxifen, H2O2, ethanol and dopamine. The potential role of autophagy in zinc homeostasis has just begun to be investigated.Increasing evidence indicates that autophagy dysregulation causes significant changes in cellular zinc homeostasis. Autophagy may mediate the protective effect of zinc against lipid accumulation, apoptosis and inflammation by promoting degradation of lipid droplets, inflammasomes, p62/SQSTM1 and damaged mitochondria.Studies with humans and animal models are necessary to determine whether autophagy is influenced by zinc intake. PMID:25012760
Hess, F M; King, J C; Margen, S
1977-12-01
In a previous paper we reported that serum, urine and fecal zinc levels fell markedly in women taking a combination oral contraceptive agent (+OCA) and in women with normal menstrual cycles (-OCA) when they consumed a low-zinc diet (less than 0.2 mg/day) for 35 days. We evaluated other biochemical and clinical data in order to determine if depletion of accessible body zinc and/or physiologic adjustment to conserve body zinc stores had occurred. Neither low zinc intake nor oral contraceptive use appeared to influence nitrogen balance or body weight. Use of contraceptive drugs appeared to influence the response of blood parameters to zinc depletion. Serum transferrin and cholesterol declined significantly in the -OCA group, whereas alkaline phosphatase and gamma-globulin changed significantly in both groups. Clinical problems developed in all the subjects with serum zinc levels below 50 microgram/dl during the study; three of the six with serum zinc levels above 50 microgram/dl also complained of clinical symptoms. The results suggest that zinc deficiency through depletion of accessible body zinc stores developed during the 35-day study.
Baltaci, Abdulkerim Kasım; Mogulkoc, Rasim
2017-06-01
Since zinc mediates the effects of many hormones or is found in the structure of numerous hormone receptors, zinc deficiency leads to various functional impairments in the hormone balance. And also thyroid hormones have important activity on metabolism and feeding. NPY and leptin are affective on food intake and regulation of appetite. The present study is conducted to determine how zinc supplementation and deficiency affect thyroid hormones (free and total T3 and T4), melatonin, leptin, and NPY levels in thyroid dysfunction in rats. The experiment groups in the study were formed as follows: Control (C); Hypothyroidism (PTU); Hypothyroidism+Zinc (PTU+Zn); Hypothyroidism+Zinc deficient; Hyperthyroidism (H); Hyperthyroidism+Zinc (H+Zn); and Hyperthyroidism+Zinc deficient. Thyroid hormone parameters (FT 3 , FT 4 , TT 3 , and TT 4 ) were found to be reduced in hypothyroidism groups and elevated in the hyperthyroidism groups. Melatonin values increased in hyperthyroidism and decreased in hypothyroidism. Leptin and NPY levels both increased in hypo- and hyperthyroidism. Zinc levels, on the other hand, decreased in hypothyroidism and increased in hyperthyroidism. Zinc supplementation, particularly when thyroid function is impaired, has been demonstrated to markedly prevent these changes.
Niles, Brad J; Clegg, Michael S; Hanna, Lynn A; Chou, Susan S; Momma, Tony Y; Hong, Heeok; Keen, Carl L
2008-02-22
One consequence of zinc deficiency is an elevation in cell and tissue iron concentrations. To examine the mechanism(s) underlying this phenomenon, Swiss 3T3 cells were cultured in zinc-deficient (D, 0.5 microM zinc), zinc-supplemented (S, 50 microM zinc), or control (C, 4 microM zinc) media. After 24 h of culture, cells in the D group were characterized by a 50% decrease in intracellular zinc and a 35% increase in intracellular iron relative to cells in the S and C groups. The increase in cellular iron was associated with increased transferrin receptor 1 protein and mRNA levels and increased ferritin light chain expression. The divalent metal transporter 1(+)iron-responsive element isoform mRNA was decreased during zinc deficiency-induced iron accumulation. Examination of zinc-deficient cells revealed increased binding of iron regulatory protein 2 (IRP2) and decreased binding of IRP1 to a consensus iron-responsive element. The increased IRP2-binding activity in zinc-deficient cells coincided with an increased level of IRP2 protein. The accumulation of IRP2 protein was independent of zinc deficiency-induced intracellular nitric oxide production but was attenuated by the addition of the antioxidant N-acetylcysteine or ascorbate to the D medium. These data support the concept that zinc deficiency can result in alterations in iron transporter, storage, and regulatory proteins, which facilitate iron accumulation.
Hambidge, K Michael; Miller, Leland V; Tran, Cuong D; Krebs, Nancy F
2005-11-01
The focus of this paper is on the application of measurements of zinc absorption in human research, especially studies designed to assess the efficacy of intervention strategies to prevent and manage zinc deficiency in populations. Emphasis is given to the measurement of quantities of zinc absorbed rather than restricting investigations to measurements of fractional absorption of zinc. This is especially important when determining absorption of zinc from the diet, whether it be the habitual diet or an intervention diet under evaluation. Moreover, measurements should encompass all meals for a minimum of one day with the exception of some pilot studies. Zinc absorption is primarily via an active saturable transport process into the enterocytes of the proximal small intestine. The relationship between quantity of zinc absorbed and the quantity ingested is best characterized by saturable binding models. When applied to human studies that have sufficient data to examine dose-response relationships, efficiency of absorption is high until approximately 50-60% maximal absorption is achieved, even with moderate phytate intakes. This also coincides approximately with the quantity of absorbed zinc necessary to meet physiologic requirements. Efficiency of absorption with intakes that exceed this level is low or very low. These observations have important practical implications for the design and interpretation of intervention studies to prevent zinc deficiency. They also suggest the potential utility of measurements of the quantity of zinc absorbed when evaluating the zinc status of populations.
Zinc Status Biomarkers and Cardiometabolic Risk Factors in Metabolic Syndrome: A Case Control Study
Freitas, Erika P. S.; Cunha, Aline T. O.; Aquino, Sephora L. S.; Pedrosa, Lucia F. C.; Lima, Severina C. V. C.; Lima, Josivan G.; Almeida, Maria G.; Sena-Evangelista, Karine C. M.
2017-01-01
Metabolic syndrome (MS) involves pathophysiological alterations that might compromise zinc status. The aim of this study was to evaluate zinc status biomarkers and their associations with cardiometabolic factors in patients with MS. Our case control study included 88 patients with MS and 37 controls. We performed clinical and anthropometric assessments and obtained lipid, glycemic, and inflammatory profiles. We also evaluated zinc intake, plasma zinc, erythrocyte zinc, and 24-h urinary zinc excretion. The average zinc intake was significantly lower in the MS group (p < 0.001). Regression models indicated no significant differences in plasma zinc concentration (all p > 0.05) between the two groups. We found significantly higher erythrocyte zinc concentration in the MS group (p < 0.001) independent from co-variable adjustments. Twenty-four hour urinary zinc excretion was significantly higher in the MS group (p = 0.008), and adjustments for age and sex explained 21% of the difference (R2 = 0.21, p < 0.001). There were significant associations between zincuria and fasting blood glucose concentration (r = 0.479), waist circumference (r = 0.253), triglyceride concentration (r = 0.360), glycated hemoglobin concentration (r = 0.250), homeostatic model assessment—insulin resistance (r = 0.223), and high-sensitivity C-reactive protein concentration (r = 0.427) (all p < 0.05) in the MS group. Patients with MS had alterations in zinc metabolism mainly characterized by an increase in erythrocyte zinc and higher zincuria. PMID:28241426
Effect of dietary proteins on zinc bioavailability in pregnant rats.
Uenishi, K; Horio, H; Manabe, S; Sakamoto, S
1993-12-01
In order to clarify the effects of dietary proteins on zinc bioavailability during pregnancy, two experiments were carried out. In Experiment 1, changes in zinc retention due to pregnancy (difference in retention between pregnant and nonpregnant animals) during early-mid and late pregnancy were examined in rats fed 10 and 20% egg white diets. Total amounts of retained zinc due to pregnancy were about 1000 micrograms or slightly more, equal to the zinc content in the products of conception at term. However, extra zinc retention during late pregnancy ranged between only 20 to 40% of overall retention, suggesting that almost all zinc retained during early-mid pregnancy moved from the mothers to the fetuses near term. Zinc retention in early-mid and late periods of pregnancy was higher in pregnant than nonpregnant rats, due mainly to increases in intake and bioavailability. In Experiment 2, to examine the effects of quality and quantity of dietary proteins, pregnant rats were fed either 10 or 20% egg white (EW), whole egg (WE), casein (C) and soy protein isolate with or without methionine (SM and S, respectively) diets. Total zinc retention during pregnancy was affected by both zinc and nitrogen intakes, though the former effect was greater than the latter. Because rats fed the EW diets retained dietary zinc efficiently, a relationship between zinc retention (Y, microgram/100 g BW/21 d.) and zinc intake (X, microgram/100 g BW/21 d.) was also examined in the non-EW protein groups, resulting in the following regression equation: Y = 0.471X-1790 (n: 51, r = 0.81, p < 0.001). Dietary protein quality affected the food intake resulting in different zinc intake and retention during pregnancy. Zinc from EW diets was more available than from the other four protein diets, because similar plots for rats fed the 10 and 20% EW diets fell above this line. Reasons for efficient bioavailability of zinc in EW were discussed in connection with the forms of zinc in diets and the pancreatic or intestinal responses to ingested EW.
Utilization of Boxes for Pesticide Storage in Sri Lanka.
Pieris, Ravi; Weerasinghe, Manjula; Abeywickrama, Tharaka; Manuweera, Gamini; Eddleston, Michael; Dawson, Andrew; Konradsen, Flemming
2017-01-01
Pesticide self-poisoning is now considered one of the two most common methods of suicide worldwide. Encouraging safe storage of pesticides is one particular approach aimed at reducing pesticide self-poisoning. CropLife Sri Lanka (the local association of pesticide manufacturers), with the aid of the Department of Agriculture, distributed lockable in-house pesticide storage boxes free of charge to a farming community in a rural district of Sri Lanka. Padlocks were not provided with the boxes. These storage boxes were distributed to the farmers without prior education. The authors carried out a cross-sectional follow-up survey to assess the usage of boxes at 7 months after distribution. In an inspection of a sample of 239 box recipients' households, 142 households stored pesticides in the provided box at the time of survey. Among them, only 42 (42/142, 29.65%) households had locked the box; the remaining households (100/142, 70.4%) had not locked the box. A simple hand over of in-house pesticide storage boxes without awareness/education results in poor use of boxes. Additionally, providing in-house storage boxes may encourage farmers to store pesticides in and around houses and, if they are not locked, may lead to unplanned adverse effects.
Genome-wide identification and characterization of the SBP-box gene family in Petunia.
Zhou, Qin; Zhang, Sisi; Chen, Feng; Liu, Baojun; Wu, Lan; Li, Fei; Zhang, Jiaqi; Bao, Manzhu; Liu, Guofeng
2018-03-12
SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box genes encode a family of plant-specific transcription factors (TFs) that play important roles in many growth and development processes including phase transition, leaf initiation, shoot and inflorescence branching, fruit development and ripening etc. The SBP-box gene family has been identified and characterized in many species, but has not been well studied in Petunia, an important ornamental genus. We identified 21 putative SPL genes of Petunia axillaris and P. inflata from the reference genome of P. axillaris N and P. inflata S6, respectively, which were supported by the transcriptome data. For further confirmation, all the 21 genes were also cloned from P. hybrida line W115 (Mitchel diploid). Phylogenetic analysis based on the highly conserved SBP domains arranged PhSPLs in eight groups, analogous to those from Arabidopsis and tomato. Furthermore, the Petunia SPL genes had similar exon-intron structure and the deduced proteins contained very similar conserved motifs within the same subgroup. Out of 21 PhSPL genes, fourteen were predicted to be potential targets of PhmiR156/157, and the putative miR156/157 response elements (MREs) were located in the coding region of group IV, V, VII and VIII genes, but in the 3'-UTR regions of group VI genes. SPL genes were also identified from another two wild Petunia species, P. integrifolia and P. exserta, based on their transcriptome databases to investigate the origin of PhSPLs. Phylogenetic analysis and multiple alignments of the coding sequences of PhSPLs and their orthologs from wild species indicated that PhSPLs were originated mainly from P. axillaris. qRT-PCR analysis demonstrated differential spatiotemperal expression patterns of PhSPL genes in petunia and many were expressed predominantly in the axillary buds and/or inflorescences. In addition, overexpression of PhSPL9a and PhSPL9b in Arabidopsis suggested that these genes play a conserved role in promoting the vegetative-to-reproductive phase transition. Petunia genome contains at least 21 SPL genes, and most of the genes are expressed in different tissues. The PhSPL genes may play conserved and diverse roles in plant growth and development, including flowering regulation, leaf initiation, axillary bud and inflorescence development. This work provides a comprehensive understanding of the SBP-box gene family in Petunia and lays a significant foundation for future studies on the function and evolution of SPL genes in petunia.
Wang, Yun; Jia, Xiao-Fang; Zhang, Bing; Wang, Zhi-Hong; Zhang, Ji-Guo; Huang, Fei-Fei; Su, Chang; Ouyang, Yi-Fei; Zhao, Jian; Du, Wen-Wen; Li, Li; Jiang, Hong-Ru; Zhang, Ji; Wang, Hui-Jun
2018-05-08
The dietary zinc consumed in Chinese households has decreased over the past decade. However, the national dietary zinc intake in the last five years has seldom been investigated. Using data from 12,028 participants 18 to 64 years old (52.9% male) in the China Nutritional Transition Cohort Survey (CNTCS) 2015, we describe the intake of dietary zinc and the contributions of major foods and we examine the relationship between the level of dietary zinc intake and metabolic syndrome indicators, including blood pressure, fasting glucose, and triglycerides (TG), in Chinese adults. We assessed dietary zinc intake using 24 h recalls on three consecutive days. The mean daily dietary zinc intake for all participants was 10.2 milligrams per day (males 11.2 mg/day, females 9.4 mg/day, p < 0.001). The mean daily dietary zinc density for all participants was 5.2 mg/day per 1000 kilocalories. Among all participants, 31.0% were at risk of zinc deficiency, with dietary zinc intakes of less than the Estimated Average Requirement (EAR) (males 49.2%, females 14.8%, p < 0.050), and 49.9% had adequate dietary zinc intakes, equal to or greater than the recommended nutrient intake (RNI) (males 30.7%, females 67.0%, p < 0.050). We found substantial gender differences in dietary zinc intake and zinc deficiency, with nearly half of the men at risk of zinc deficiency. Males of younger age, with higher education and incomes, and who consumed higher levels of meat, had higher zinc intakes, higher zinc intake densities, and higher rates of meeting the EAR. Among all participants, grains, livestock meat, fresh vegetables, legumes, and seafood were the top five food sources of zinc, and their contributions to total dietary zinc intake were 39.5%, 17.3%, 8.9%, 6.4%, and 4.8%, respectively. The groups with relatively better dietary zinc intakes consumed lower proportions of grains and higher proportions of livestock meat. For males with adequate dietary zinc intake (≥RNI), TG levels increased by 0.219 millimoles per liter (mmol/L) compared with males with deficient dietary zinc intake (
Litter box preference in domestic cats: covered versus uncovered.
Grigg, Emma K; Pick, Lindsay; Nibblett, Belle
2013-04-01
Feline inappropriate elimination (periuria and/or perichezia) remains a very common behavioral complaint of cat owners. Treatment recommendations often include improving the attractiveness of the litter boxes available to the cat. One frequent recommendation is to avoid covered litter boxes, although this has not previously been tested experimentally. The goal of this study was to assess whether, all else being equal, cats preferentially used uncovered litter boxes over covered litter boxes. Twenty-eight cats were enrolled in the study and offered the choice of a covered or uncovered box. Waste was scooped daily from each box, and the weight of waste in the different box styles was compared and evaluated using paired t-tests and χ(2) analyses. Overall, there was no significant difference between use of the two box styles. Eight individual cats did exhibit a preference (four for covered, four for uncovered), but individual preference results are not evenly distributed, with more cats than expected showing no preference between litter box types. We postulate that, if boxes are kept sufficiently clean (ie, once daily minimum cleaning), most cats will not show a preference for either box type. The observation that a minority of cats in the study exhibited a preference supports the recommendation of providing individual cats with a 'cafeteria' of litter box styles, including a covered box, to determine whether such a preference exists. These findings add to existing literature on the topic of feline inappropriate elimination and provide additional information for clinicians recommending treatment options for cats exhibiting this behavior.
Salazar, G; Huang, J; Feresin, R G; Zhao, Y; Griendling, K K
2017-07-01
The role of oxidative stress and inflammation in the development and progression of cardiovascular diseases (CVD) is well established. Increases in oxidative stress can further exacerbate the inflammatory response and lead to cellular senescence. We previously reported that angiotensin II (Ang II) and zinc increase reactive oxygen species (ROS) and cause senescence of vascular smooth muscle cells (VSMCs) and that senescence induced by Ang II is a zinc-dependent process. Zinc stimulated NADPH oxidase (Nox) activity; however, the role of Nox isoforms in zinc effects was not determined. Here, we show that downregulation of Nox1, but not Nox4, by siRNA prevented both Ang II- and zinc-induced senescence in VSMCs. On the other hand, overexpression of Nox1 induced senescence, which was associated with reduced proliferation, reduced expression of telomerase and increased DNA damage. Zinc increased Nox1 protein expression, which was inhibited by chelation of zinc with TPEN and by overexpression of the zinc exporters ZnT3 and ZnT10. These transporters work to reduce cytosolic zinc, suggesting that increased cytosolic zinc mediates Nox1 upregulation. Other metals including copper, iron, cobalt and manganese failed to upregulate Nox1, suggesting that this pathway is zinc specific. Nox1 upregulation was inhibited by actinomycin D (ACD), an inhibitor of transcription, by inhibition of NF-κB, a known Nox1 transcriptional regulator and by N-acetyl cysteine (NAC) and MitoTEMPO, suggesting that NF-κB and mitochondrial ROS mediate zinc effects. Supporting this idea, we found that zinc increased NF-κB activation in the cytosol, stimulated the translocation of the p65 subunit to the nucleus, and that zinc accumulated in mitochondria increasing mitochondrial ROS, measured using MitoSox. Further, zinc-induced senescence was reduced by inhibition of NF-κB or reduction of mitochondrial ROS with MitoTEMPO. NF-κB activity was also reduced by MitoTEMPO, suggesting that mitochondrial ROS is upstream of NF-κB. Our data demonstrate that altered zinc distribution leading to accumulation of zinc in the mitochondria increases mitochondrial ROS production causing NF-κB activation which in turn upregulates Nox1 expression inducing senescence of VSMCs. Copyright © 2017 Elsevier Inc. All rights reserved.
Zinc deficiency in the pediatric age group is common but underevaluated.
Vuralli, Dogus; Tumer, Leyla; Hasanoglu, Alev
2017-08-01
Subclinical micronutrient deficiencies have been gradually becoming more important as a public health problem and drawing attention of the health authorities. Today it has been known that detecting and treating people having deficiency symptoms alone is no longer sufficient. It is important to detect and prevent any deficiency before it displays clinical manifestations. Zinc deficiency is one of the most widespread micronutrient deficiencies. In this study, we aimed to evaluate the zinc status and the associated factors in healthy school-age children. The study was carried out in schools in Altindag, the district of Ankara. A total of 1063 healthy children, 585 girls and 478 boys, aged 5-16 years were included in the study. Serum zinc, high-sensitivity C-reactive protein levels and white blood cell count were measured. A serum zinc level <65 μg/dL was considered as subclinical zinc deficiency for children <10 years of age. For children ≥10 years of age the cutoffs for serum zinc concentration were set at 66 μg/dL for females and 70 μg/dL for males. A questionnaire was developed to collect socioeconomic and demographic information of the participants. The prevalence of subclinical zinc deficiency in children attending the study was detected to be 27.8%. This high ratio showed zinc deficiency was an important health problem in the Altindag district of Ankara, Turkey. Evaluating the indicators of zinc deficiency such as serum zinc concentration, dietary zinc intake and stunting prevalence, this study is the most comprehensive epidemiological study performed in children in Turkey. This study reveals the high prevalence of subclinical zinc deficiency and indicates that zinc deficiency is a public health concern for the study population.
Gramzow, Lydia; Weilandt, Lisa; Theißen, Günter
2014-11-01
MADS-box genes comprise a gene family coding for transcription factors. This gene family expanded greatly during land plant evolution such that the number of MADS-box genes ranges from one or two in green algae to around 100 in angiosperms. Given the crucial functions of MADS-box genes for nearly all aspects of plant development, the expansion of this gene family probably contributed to the increasing complexity of plants. However, the expansion of MADS-box genes during one important step of land plant evolution, namely the origin of seed plants, remains poorly understood due to the previous lack of whole-genome data for gymnosperms. The newly available genome sequences of Picea abies, Picea glauca and Pinus taeda were used to identify the complete set of MADS-box genes in these conifers. In addition, MADS-box genes were identified in the growing number of transcriptomes available for gymnosperms. With these datasets, phylogenies were constructed to determine the ancestral set of MADS-box genes of seed plants and to infer the ancestral functions of these genes. Type I MADS-box genes are under-represented in gymnosperms and only a minimum of two Type I MADS-box genes have been present in the most recent common ancestor (MRCA) of seed plants. In contrast, a large number of Type II MADS-box genes were found in gymnosperms. The MRCA of extant seed plants probably possessed at least 11-14 Type II MADS-box genes. In gymnosperms two duplications of Type II MADS-box genes were found, such that the MRCA of extant gymnosperms had at least 14-16 Type II MADS-box genes. The implied ancestral set of MADS-box genes for seed plants shows simplicity for Type I MADS-box genes and remarkable complexity for Type II MADS-box genes in terms of phylogeny and putative functions. The analysis of transcriptome data reveals that gymnosperm MADS-box genes are expressed in a great variety of tissues, indicating diverse roles of MADS-box genes for the development of gymnosperms. This study is the first that provides a comprehensive overview of MADS-box genes in conifers and thus will provide a framework for future work on MADS-box genes in seed plants. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Dietary phytate, zinc and hidden zinc deficiency.
Sandstead, Harold H; Freeland-Graves, Jeanne H
2014-10-01
Epidemiological data suggest at least one in five humans are at risk of zinc deficiency. This is in large part because the phytate in cereals and legumes has not been removed during food preparation. Phytate, a potent indigestible ligand for zinc prevents it's absorption. Without knowledge of the frequency of consumption of foods rich in phytate, and foods rich in bioavailable zinc, the recognition of zinc deficiency early in the illness may be difficult. Plasma zinc is insensitive to early zinc deficiency. Serum ferritin concentration≤20μg/L is a potential indirect biomarker. Early effects of zinc deficiency are chemical, functional and may be "hidden". The clinical problem is illustrated by 2 studies that involved US Mexican-American children, and US premenopausal women. The children were consuming home diets that included traditional foods high in phytate. The premenopausal women were not eating red meat on a regular basis, and their consumption of phytate was mainly from bran breakfast cereals. In both studies the presence of zinc deficiency was proven by functional responses to controlled zinc treatment. In the children lean-mass, reasoning, and immunity were significantly affected. In the women memory, reasoning, and eye-hand coordination were significantly affected. A screening self-administered food frequency questionnaire for office might help caregiver's identify patients at risk of zinc deficiency. Copyright © 2014 Elsevier GmbH. All rights reserved.
Relationship between zinc and the growth and development of young children.
Gao, S; Tu, D N; Li, H; Cao, X; Jiang, J X; Shi, Y; Zhou, X Q; You, J B
2015-08-19
The purpose of this study was to evaluate the relationship between zinc and the growth and development of young children. The parents of 8102 young children were surveyed in person by a trained surveyor using structured questionnaires. The hair zinc concentration of the children was determined using an atomic absorption spectrophotometer. The height, weight, sitting height, and head circumference of the children were measured at follow-up visits. There was a positive correlation between hair zinc concentration and adaptive developmental quotient (ADQ; r = 0.3164, P = 0.0272) while no correlation was found between hair zinc concentration and body measurement Z scores or intelligence quotient (IQ). There was a strong positive correlation between hair zinc concentration and weight-for-age Z scores (r = 0.3618, P = 0.0416) and ADQ (r = 0.2761, P = 0.0387) in boys; there was no correlation between hair zinc concentration and body measurement Z scores, IQ, and ADQ in girls. In boys with normal hair zinc levels, ADQ was 9.58 (P = 0.0392), higher than in boys who had zinc-deficient hair. In girls with normal hair zinc levels, ADQ was 2.52 (P = 0.0296), lower than in girls with zinc-deficient hair. In conclusion, there is no significant correlation between hair zinc levels and IQ or Z scores for all body measurements in young children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopez, A.L.; Kohrs, M.B.; Horwitz, D.L.
To determine the effect of glucose loading on serum zinc concentrations, 34 elderly subjects aged 60-86 y were studied. Anthropometric data, medical and dietary histories were obtained. Serum zinc and glucose concentrations were obtained fasting and 1/2, 1, 1 1/2, 2 and 3 h after 75 g oral glucose load; glycohemoglobin and fasting serum lipids were also determined. For comparison, the subjects were categorized as: normal or low serum zinc concentrations; normal or high body mass index BMI; normal or high sum of skinfolds and normal or high serum cholesterol. Results showed that low serum zinc concentrations increased significantly overmore » baseline values after the glucose load and did not return to fasting levels. On the other hand, mean serum zinc concentrations significantly declined without recovery for those with normal zinc values. For the total group, no significant differences were noted between fasting values and subsequent time periods. No correlations were noted between fasting serum zinc and area under the curve for zinc except in the high BMI group (positive correlation observed). For the high BMI group, fasting serum zinc differed significantly from the succeeding measurements except for 30 min. For the group as a whole, mean serum zinc concentration was within normal limits (76.9 +/- 2.8 mcg/ml): mean zinc intake was less than 2/3rds the RDA. They conclude that glucose ingestion may alter serum zinc and should be considered in interpreting these levels.« less
Wang, Yan-hong; Zhao, Wen-jie; Zheng, Wei-juan; Mao, Li; Lian, Hong-zhen; Hu, Xin; Hua, Zi-chun
2016-03-01
Intracellular metal elements exist in mammalian cells with the concentration range from picomoles per litre to micromoles per litre and play a considerable role in various biological procedures. Element provided by different species can influence the availability and distribution of the element in a cell and could lead to different biological effects on the cell's growth and function. Zinc as an abundant and widely distributed essential trace element, is involved in numerous and relevant physiological functions. Zinc homeostasis in cells, which is regulated by metallothioneins, zinc transporter/SLC30A, Zrt-/Irt-like proteins/SLC39A and metal-response element-binding transcription factor-1 (MTF-1), is crucial for normal cellular functioning. In this study, we investigated the influences of different zinc species, zinc sulphate, zinc gluconate and bacitracin zinc, which represented inorganic, organic and biological zinc species, respectively, on cell cycle, viability and apoptosis in MDAMB231 cells. It was found that the responses of cell cycle, apoptosis and death to different zinc species in MDAMB231 cells are different. Western blot analysis of the expression of several key proteins in regulating zinc-related transcription, cell cycle, apoptosis, including MTF-1, cyclin B1, cyclin D1, caspase-8 and caspase-9 in treated cells further confirmed the observed results on cell level.
... Using toothpastes containing zinc, with or without an antibacterial agent, appears to prevent plaque and gingivitis. Some ... is some evidence that zinc has some antiviral activity against the herpes virus. Low zinc levels can ...
Regeneration of zinc chloride hydrocracking catalyst
Zielke, Clyde W.
1979-01-01
Improved rate of recovery of zinc values from the solids which are carried over by the effluent vapors from the oxidative vapor phase regeneration of spent zinc chloride catalyst is achieved by treatment of the solids with both hydrogen chloride and calcium chloride to selectively and rapidly recover the zinc values as zinc chloride.
High mobility and high stability glassy metal-oxynitride materials and devices
NASA Astrophysics Data System (ADS)
Lee, Eunha; Kim, Taeho; Benayad, Anass; Hur, Jihyun; Park, Gyeong-Su; Jeon, Sanghun
2016-04-01
In thin film technology, future semiconductor and display products with high performance, high density, large area, and ultra high definition with three-dimensional functionalities require high performance thin film transistors (TFTs) with high stability. Zinc oxynitride, a composite of zinc oxide and zinc nitride, has been conceded as a strong substitute to conventional semiconductor film such as silicon and indium gallium zinc oxide due to high mobility value. However, zinc oxynitride has been suffered from poor reproducibility due to relatively low binding energy of nitrogen with zinc, resulting in the instability of composition and its device performance. Here we performed post argon plasma process on zinc oxynitride film, forming nano-crystalline structure in stable amorphous matrix which hampers the reaction of oxygen with zinc. Therefore, material properties and device performance of zinc oxynitride are greatly enhanced, exhibiting robust compositional stability even exposure to air, uniform phase, high electron mobility, negligible fast transient charging and low noise characteristics. Furthermore, We expect high mobility and high stability zinc oxynitride customized by plasma process to be applicable to a broad range of semiconductor and display devices.
Behavioral impairments in animal models for zinc deficiency
Hagmeyer, Simone; Haderspeck, Jasmin Carmen; Grabrucker, Andreas Martin
2015-01-01
Apart from teratogenic and pathological effects of zinc deficiency such as the occurrence of skin lesions, anorexia, growth retardation, depressed wound healing, altered immune function, impaired night vision, and alterations in taste and smell acuity, characteristic behavioral changes in animal models and human patients suffering from zinc deficiency have been observed. Given that it is estimated that about 17% of the worldwide population are at risk for zinc deficiency and that zinc deficiency is associated with a variety of brain disorders and disease states in humans, it is of major interest to investigate, how these behavioral changes will affect the individual and a putative course of a disease. Thus, here, we provide a state of the art overview about the behavioral phenotypes observed in various models of zinc deficiency, among them environmentally produced zinc deficient animals as well as animal models based on a genetic alteration of a particular zinc homeostasis gene. Finally, we compare the behavioral phenotypes to the human condition of mild to severe zinc deficiency and provide a model, how zinc deficiency that is associated with many neurodegenerative and neuropsychological disorders might modify the disease pathologies. PMID:25610379
Research and develop locking design for NJDOT junction boxes : final report, April 2009.
DOT National Transportation Integrated Search
2009-04-01
The report outlines the guidelines for securing electrical junction box covers to the junction box to prevent vandalism. The report provides details drawings that show various methods for securing the junction box cover to the junction box.
Zinc-based electrolyte compositions, and related electrochemical processes and articles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kniajanski, Sergei; Soloveichik, Grigorii Lev
An aqueous electrolyte composition is described, including a zinc salt based on zinc acetate or zinc glocolate. The saturation concentration of zinc in the electrolyte composition is in the range of about 2.5M to about 3.5M. The composition also contains at least one salt of a monovalent cation. The molar ratio of zinc to the monovalent cation is about 1:2. An aqueous zinc electroplating bath, containing the aqueous electrolyte composition, is also disclosed, along with a method for the electrochemical deposition of zinc onto a substrate surface, using the electroplating bath. Related flow batteries are also described, including a catholyte,more » as well as an anolyte based on the aqueous electrolyte composition, with a membrane between the catholyte and the anolyte.« less
Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration
Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo; Takechi, Kensuke; Cui, Yi
2016-01-01
Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel–zinc batteries with good power rate (20 mA cm−2, 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits. PMID:27263471
Negi, K; Kumar, R; Sharma, L; Datta, S P; Choudhury, M; Kumar, P
2018-04-01
Data about the effect of zinc supplementation with gluten-free diet on normalisation of plasma zinc, copper and iron in patients with coeliac disease are scanty. We evaluated the effect of zinc supplementation on serum zinc, copper and iron levels in patients with coeliac disease, by randomising 71 children newly diagnosed with coeliac disease into two groups: Group A = gluten-free diet (GFD); and Group B = gluten-free diet with zinc supplements (GFD +Zn). The rise in iron and zinc was significantly higher in the latter, but the mean rise of copper levels was slightly higher in the former, but the difference was not significant.
Process for preparing zinc oxide-based sorbents
Gangwal, Santosh Kumar [Cary, NC; Turk, Brian Scott [Durham, NC; Gupta, Raghubir Prasad [Durham, NC
2011-06-07
The disclosure relates to zinc oxide-based sorbents, and processes for preparing and using them. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
Avoiding short circuits from zinc metal dendrites in anode by backside-plating configuration
NASA Astrophysics Data System (ADS)
Higashi, Shougo; Lee, Seok Woo; Lee, Jang Soo; Takechi, Kensuke; Cui, Yi
2016-06-01
Portable power sources and grid-scale storage both require batteries combining high energy density and low cost. Zinc metal battery systems are attractive due to the low cost of zinc and its high charge-storage capacity. However, under repeated plating and stripping, zinc metal anodes undergo a well-known problem, zinc dendrite formation, causing internal shorting. Here we show a backside-plating configuration that enables long-term cycling of zinc metal batteries without shorting. We demonstrate 800 stable cycles of nickel-zinc batteries with good power rate (20 mA cm-2, 20 C rate for our anodes). Such a backside-plating method can be applied to not only zinc metal systems but also other metal-based electrodes suffering from internal short circuits.
Preparation of ionic membranes for zinc/bromine storage batteries
NASA Astrophysics Data System (ADS)
Assink, R. A.; Arnold, C., Jr.
Zinc/bromine flow batteries are being developed for vehicular and utility load leveling applications. During charge, an aqueous zinc bromide salt is electrolyzed to zinc metal and molecular bromine. During discharge, the zinc and bromine react to again form the zinc bromide salt. One serious disadvantage of the microporous separators presently used in the zinc/bromine battery is that modest amounts of bromine and negatively charged bromine moieties permeate through these materials and react with the zinc anode. This results in partial self-discharge of the battery and low coulombic efficiencies. Our approach to this problem is to impregnate the microporous separators with a soluble cationic polyelectrolyte. In laboratory screening tests a sulfonated polysulfone resin and fully fluorinated sulfonic acid polymer substantially reduced bromine permeation with only modest increases in the area resistance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ohashi, Kazuya, E-mail: asuno10k@yahoo.co.jp; Nagata, Yosuke, E-mail: cynagata@mail.ecc.u-tokyo.ac.jp; Wada, Eiji, E-mail: gacchu1@yahoo.co.jp
2015-05-01
Skeletal muscle stem cells named muscle satellite cells are normally quiescent but are activated in response to various stimuli, such as injury and overload. Activated satellite cells enter the cell cycle and proliferate to produce a large number of myogenic progenitor cells, and these cells then differentiate and fuse to form myofibers. Zinc is one of the essential elements in the human body, and has multiple roles, including cell growth and DNA synthesis. However, the role of zinc in myogenic cells is not well understood, and is the focus of this study. We first examined the effects of zinc onmore » differentiation of murine C2C12 myoblasts and found that zinc promoted proliferation, with an increased number of cells incorporating EdU, but inhibited differentiation with reduced myogenin expression and myotube formation. Furthermore, we used the C2C12 reserve cell model of myogenic quiescence to investigate the role of zinc on activation of myogenic cells. The number of reserve cells incorporating BrdU was increased by zinc in a dose dependent manner, with the number dramatically further increased using a combination of zinc and insulin. Akt and extracellular signal-regulated kinase (ERK) are downstream of insulin signaling, and both were phosphorylated after zinc treatment. The zinc/insulin combination-induced activation involved the phosphoinositide 3-kinase (PI3K)/Akt and ERK cascade. We conclude that zinc promotes activation and proliferation of myogenic cells, and this activation requires phosphorylation of PI3K/Akt and ERK as part of the signaling cascade. - Highlights: • Zinc has roles for promoting proliferation and inhibition differentiation of C2C12. • Zinc promotes activation of reserve cells. • Insulin and zinc synergize activation of reserve cells. • PI3K/Akt and ERK cascade affect zinc/insulin-mediated activation of reserve cells.« less
Feikin, Daniel R; Bigogo, Godfrey; Audi, Allan; Pals, Sherri L; Aol, George; Mbakaya, Charles; Williamson, John; Breiman, Robert F; Larson, Charles P
2014-01-01
Zinc treatment shortens diarrhea episodes and can prevent future episodes. In rural Africa, most children with diarrhea are not brought to health facilities. In a village-randomized trial in rural Kenya, we assessed if zinc treatment might have a community-level preventive effect on diarrhea incidence if available at home versus only at health facilities. We randomized 16 Kenyan villages (1,903 eligible children) to receive a 10-day course of zinc and two oral rehydration solution (ORS) sachets every two months at home and 17 villages (2,241 eligible children) to receive ORS at home, but zinc at the health-facility only. Children's caretakers were educated in zinc/ORS use by village workers, both unblinded to intervention arm. We evaluated whether incidence of diarrhea and acute lower respiratory illness (ALRI) reported at biweekly home visits and presenting to clinic were lower in zinc villages, using poisson regression adjusting for baseline disease rates, distance to clinic, and children's age. There were no differences between village groups in diarrhea incidence either reported at the home or presenting to clinic. In zinc villages (1,440 children analyzed), 61.2% of diarrheal episodes were treated with zinc, compared to 5.4% in comparison villages (1,584 children analyzed, p<0.0001). There were no differences in ORS use between zinc (59.6%) and comparison villages (58.8%). Among children with fever or cough without diarrhea, zinc use was low (<0.5%). There was a lower incidence of reported ALRI in zinc villages (adjusted RR 0.68, 95% CI 0.46-0.99), but not presenting at clinic. In this study, home zinc use to treat diarrhea did not decrease disease rates in the community. However, with proper training, availability of zinc at home could lead to more episodes of pediatric diarrhea being treated with zinc in parts of rural Africa where healthcare utilization is low. ClinicalTrials.gov NCT00530829.
Joshi, Sangeeta; Nair, Neena; Bedwal, R S
2014-10-01
Zinc deficiency has become a global problem affecting the developed and developing countries due to inhibitors in the diet which prevents its absorption or due to a very low concentration of bioavailable zinc in the diet. Being present in high concentration in the prostate and having diverse biological function, we investigated the effects of dietary zinc deficiency for 2 and 4 weeks on dorso-lateral and ventral prostate. Sixty prepubertal rats were divided into three groups: zinc control (ZC), pair fed (PF) and zinc deficient (ZD) and fed on 100 μg/g (zinc control and pair fed groups) and 1 μg/g (zinc deficient) diet. Zinc deficiency was associated with degenerative changes in dorso-lateral and ventral prostate as made evident by karyolysis, karyorhexis, cytoplasmolysis, loss of cellularisation, decreased intraluminar secretion and degeneration of fibromuscular stroma. In response, protein carbonyl, nitric oxide, acid phosphatase, 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase increased, exhibiting variable level of significance. Total protein and total zinc concentration in dorso-lateral and ventral prostate as well as in serum decreased (P < 0.001). Decrease (P < 0.001) was recorded in serum FSH and testosterone after 2 and 4 weeks of zinc deficiency. The changes were more prominent after 4 weeks of synthetic zinc deficient diet. The results indicate that zinc deficiency during prepubertal period affects the prostate structure, total protein concentration, enhanced protein carbonyl concentration, nitric oxide as well as acid phosphatase activities and impaired hydroxysteroid dehydrogenase activities. Evidently these changes could be attributed to dysfunction of dorso-lateral and ventral prostate after dietary zinc deficiency as well as impairment of metabolic and secretory activity, reduced gonadotropin levels by hypothalamus -hypophysial system which is indicative of a critical role of zinc in maintaining the prostate integrity.
Improved synthesis of fine zinc borate particles using seed crystals
NASA Astrophysics Data System (ADS)
Gürhan, Deniz; Çakal, Gaye Ö.; Eroğlu, İnci; Özkar, Saim
2009-03-01
Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical compositions and structures. In this study, the production of zinc borate having the molecular formula of 2ZnO·3B 2O 3·3.5H 2O was reexamined by studying the effects of reaction parameters on the properties of product as well as the reaction kinetics. Production of zinc borate from the reaction of boric acid and zinc oxide in the presence of seed crystals was performed in a continuously stirred, temperature-controlled batch reactor having a volume of 1.5 L. Samples taken in regular time intervals during the experiments were analyzed for the concentration of zinc oxide and boron oxide in the solid as well as for the conversion of zinc oxide to zinc borate versus time. The zinc borate production reaction was fit to the logistic model. The reaction rate, reaction completion time, composition and particle size distribution of zinc borate product were determined by varying the following parameters: the boric acid to zinc oxide ratio (H 3BO 3:ZnO=3:1, 3.5:1, 5:1 and 7:1), the particle size of zinc oxide (10 and 25 μm), stirring rate (275, 400, 800 and 1600 rpm), temperature (75, 85 and 95 °C) and the size of seed crystals (10 and 2 μm). The products were also analyzed for particle size distribution. The experimental results showed that the reaction rate increases with the increase in H 3BO 3:ZnO ratio, particle size of zinc oxide, stirring rate and temperature. Concomitantly, the reaction completion time is decreased by increasing the H 3BO 3:ZnO ratio, stirring rate and temperature. The average particle sizes of the zinc borate products are in the range 4.3-16.6 μm (wet dispersion analysis).
Influence of zinc on the calcium carbonate biomineralization of Halomonas halophila
2012-01-01
Background The salt tolerance of halophilic bacteria make them promising candidates for technical applications, like isolation of salt tolerant enzymes or remediation of contaminated saline soils and waters. Furthermore, some halophilic bacteria synthesize inorganic solids resulting in organic–inorganic hybrids. This process is known as biomineralization, which is induced and/or controlled by the organism. The adaption of the soft and eco-friendly reaction conditions of this formation process to technical syntheses of inorganic nano materials is desirable. In addition, environmental contaminations can be entrapped in biomineralization products which facilitate the subsequent removal from waste waters. The moderately halophilic bacteria Halomonas halophila mineralize calcium carbonate in the calcite polymorph. The biomineralization process was investigated in the presence of zinc ions as a toxic model contaminant. In particular, the time course of the mineralization process and the influence of zinc on the mineralized inorganic materials have been focused in this study. Results H. halophila can adapt to zinc contaminated medium, maintaining the ability for biomineralization of calcium carbonate. Adapted cultures show only a low influence of zinc on the growth rate. In the time course of cultivation, zinc ions accumulated on the bacterial surface while the medium depleted in the zinc contamination. Intracellular zinc concentrations were below the detection limit, suggesting that zinc was mainly bound extracellular. Zinc ions influence the biomineralization process. In the presence of zinc, the polymorphs monohydrocalcite and vaterite were mineralized, instead of calcite which is synthesized in zinc-free medium. Conclusions We have demonstrated that the bacterial mineralization process can be influenced by zinc ions resulting in the modification of the synthesized calcium carbonate polymorph. In addition, the shape of the mineralized inorganic material is chancing through the presence of zinc ions. Furthermore, the moderately halophilic bacterium H. halophila can be applied for the decontamination of zinc from aqueous solutions. PMID:23198844
Zinc supplementation in public health.
Penny, Mary Edith
2013-01-01
Zinc is necessary for physiological processes including defense against infections. Zinc deficiency is responsible for 4% of global child morbidity and mortality. Zinc supplements given for 10-14 days together with low-osmolarity oral rehydration solution (Lo-ORS) are recommended for the treatment of childhood diarrhea. In children aged ≥ 6 months, daily zinc supplements reduce the duration of acute diarrhea episodes by 12 h and persistent diarrhea by 17 h. Zinc supplements could reduce diarrhea mortality in children aged 12-59 months by an estimated 23%; they are very safe but are associated with an increase in vomiting especially with the first dose. Heterogeneity between the results of trials is not understood but may be related to dose and the etiology of the diarrhea infection. Integration of zinc and Lo-ORS into national programs is underway but slowly, procurement problems are being overcome and the greatest challenge is changing health provider and caregiver attitudes to diarrhea management. Fewer trials have been conducted of zinc adjunct therapy in severe respiratory tract infections and there is as yet insufficient evidence to recommend addition of zinc to antibiotic therapy. Daily zinc supplements for all children >12 months of age in zinc deficient populations are estimated to reduce diarrhea incidence by 11-23%. The greatest impact is in reducing multiple episodes of diarrhea. The effect on duration of diarrheal episodes is less clear, but there may be up to 9% reduction. Zinc is also efficacious in reducing dysentery and persistent diarrhea. Zinc supplements may also prevent pneumonia by about 19%, but heterogeneity across studies has not yet been explained. When analyses are restricted to better quality studies using CHERG (Child Health Epidemiology Reference Group) methodology, zinc supplements are estimated to reduce diarrheal deaths by 13% and pneumonia deaths by 20%. National-level programs to combat childhood zinc deficiency should be accelerated. Copyright © 2013 S. Karger AG, Basel.
Effects of serum zinc level on tinnitus.
Berkiten, Güler; Kumral, Tolgar Lütfi; Yıldırım, Güven; Salturk, Ziya; Uyar, Yavuz; Atar, Yavuz
2015-01-01
The aim of this study was to assess zinc levels in tinnitus patients, and to evaluate the effects of zinc deficiency on tinnitus and hearing loss. One-hundred patients, who presented to an outpatient clinic with tinnitus between June 2009 and 2014, were included in the study. Patients were divided into three groups according to age: Group I (patients between 18 and 30years of age); Group II (patients between 31 and 60years of age); and Group III (patients between 61 and 78years of age). Following a complete ear, nose and throat examination, serum zinc levels were measured and the severity of tinnitus was quantified using the Tinnitus Severity Index Questionnaire (TSIQ). Patients were subsequently asked to provide a subjective judgment regarding the loudness of their tinnitus. The hearing status of patients was evaluated by audiometry and high-frequency audiometry. An average hearing sensitivity was calculated as the mean value of hearing thresholds between 250 and 20,000Hz. Serum zinc levels between 70 and 120μg/dl were considered normal. The severity and loudness of tinnitus, and the hearing thresholds of the normal zinc level and zinc-deficient groups, were compared. Twelve of 100 (12%) patients exhibited low zinc levels. The mean age of the zinc-deficient group was 65.41±12.77years. Serum zinc levels were significantly lower in group III (p<0.01). The severity and loudness of tinnitus were greater in zinc-deficient patients (p=0.011 and p=0.015, respectively). Moreover, the mean thresholds of air conduction were significantly higher in zinc-deficient patients (p=0.000). We observed that zinc levels decrease as age increases. In addition, there was a significant correlation between zinc level and the severity and loudness of tinnitus. Zinc deficiency was also associated with impairments in hearing thresholds. Copyright © 2015 Elsevier Inc. All rights reserved.
Endogenous Zinc in Neurological Diseases
2005-01-01
The use of zinc in medicinal skin cream was mentioned in Egyptian papyri from 2000 BC (for example, the Smith Papyrus), and zinc has apparently been used fairly steadily throughout Roman and modern times (for example, as the American lotion named for its zinc ore, 'Calamine'). It is, therefore, somewhat ironic that zinc is a relatively late addition to the pantheon of signal ions in biology and medicine. However, the number of biological functions, health implications and pharmacological targets that are emerging for zinc indicate that it might turn out to be 'the calcium of the twenty-first century'. Here neurobiological roles of endogenous zinc is summarized. PMID:20396459
Effects of Zinc Chelators on Aflatoxin Production in Aspergillus parasiticus
Wee, Josephine; Day, Devin M.; Linz, John E.
2016-01-01
Zinc concentrations strongly influence aflatoxin accumulation in laboratory media and in food and feed crops. The presence of zinc stimulates aflatoxin production, and the absence of zinc impedes toxin production. Initial studies that suggested a link between zinc and aflatoxin biosynthesis were presented in the 1970s. In the present study, we utilized two zinc chelators, N,N,N′,N′-tetrakis (2-pyridylmethyl) ethane-1,2-diamine (TPEN) and 2,3-dimercapto-1-propanesulfonic acid (DMPS) to explore the effect of zinc limitation on aflatoxin synthesis in Aspergillus parasiticus. TPEN but not DMPS decreased aflatoxin biosynthesis up to six-fold depending on whether A. parasiticus was grown on rich or minimal medium. Although we observed significant inhibition of aflatoxin production by TPEN, no detectable changes were observed in expression levels of the aflatoxin pathway gene ver-1 and the zinc binuclear cluster transcription factor, AflR. Treatment of growing A. parasiticus solid culture with a fluorescent zinc probe demonstrated an increase in intracellular zinc levels assessed by increases in fluorescent intensity of cultures treated with TPEN compared to controls. These data suggest that TPEN binds to cytoplasmic zinc therefore limiting fungal access to zinc. To investigate the efficacy of TPEN on food and feed crops, we found that TPEN effectively decreases aflatoxin accumulation on peanut medium but not in a sunflower seeds-derived medium. From an application perspective, these data provide the basis for biological differences that exist in the efficacy of different zinc chelators in various food and feed crops frequently contaminated by aflatoxin. PMID:27271668
Mburu, A S W; Thurnham, D I; Mwaniki, D L; Muniu, E M; Alumasa, F M
2010-05-01
Plasma zinc is an important biomarker of zinc status, but the concentration is depressed by inflammation. Apparently healthy adults, who tested positive twice for human immunodeficiency virus (HIV) but who had not reached stage IV or clinical AIDS, were randomly allocated to receive a food supplement (n=17 and 21) or the food plus a micronutrient capsule (MN; n=10 men and n=33 women) containing 15 mg zinc/day. We used the inflammation biomarkers, C-reactive protein (CRP) and alpha1-acid glycoprotein (AGP), to identify subjects with and without inflammation and determine the effect of inflammation on the response of plasma zinc concentrations to the MN and food supplements. There were no differences between men and women either in plasma zinc or in the responses to the supplements and their data were combined. Plasma zinc was lower in those with inflammation than without. Repeated measures analysis of variance (ANOVA) showed that inflammation blocked increases in plasma zinc, and there was an approximate 10% increase in plasma zinc concentration in response to the MN supplement (P=0.023) in those without inflammation. Subgroup analysis showed mean changes in plasma zinc of 0.95 and -0.83 micromol/l (P=0.031) in response to the MN and food treatments, respectively, in those without inflammation at both time points. Inflammation seems to block any increase in plasma zinc after MN supplement and it is important to identify those without inflammation to determine the effectiveness of a zinc supplementation program.
Sindreu, Carlos Balet; Varoqui, Hélène; Erickson, Jeffrey D; Pérez-Clausell, Jeús
2003-08-01
Cortical regions of the brain stand out for their high content in synaptic zinc, which may thus be involved in synaptic function. The relative number, chemical nature and transmitter receptor profile of synapses that sequester vesicular zinc are largely unknown. To address this, we combined pre-embedding zinc histochemistry and post-embedding immunogold electron microscopy in rat hippocampus. All giant mossy fibre (MF) terminals in the CA3 region and approximately 45% of boutons making axospinous synapses in stratum radiatum in CA1 contained synaptic vesicles that stained for zinc. Both types of zinc-positive boutons selectively expressed the vesicular zinc transporter ZnT-3. Zinc-positive boutons further immunoreacted to the vesicular glutamate transporter VGLUT-1, but not to the transmitter gamma-aminobutyric acid. Most dendritic spines in CA1 immunoreacted to alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptor (AMPAR) subunits GluR1-3 (approximately 80%) and to N-methyl-D-aspartate receptor (NMDAR) subunits NR1 + NR2A/B (approximately 90%). Synapses made by zinc-positive boutons contained 40% less AMPAR particles than those made by zinc-negative boutons, whereas NMDAR counts were similar. Further analysis indicated that this was due to the reduced synaptic expression of both GluR1 and GluR2 subunits. Hence, the levels of postsynaptic AMPARs may vary according to the presence of vesicular zinc in excitatory afferents to CA1. Zinc-positive and zinc-negative synapses may represent two glutamatergic subpopulations with distinct synaptic signalling.
San Diego field operational test of smart call boxes : technical aspects
DOT National Transportation Integrated Search
1997-01-01
Smart call boxes are devices similar to those used as emergency call boxes in California. The basic call box consists of a microprocessor, a cellular transceiver, and a solar power source. The smart call box system also includes data-collection devic...
Improved colorimetric determination of serum zinc.
Johnson, D J; Djuh, Y Y; Bruton, J; Williams, H L
1977-07-01
We show how zinc may easily be quantified in serum by first using an optimum concentration of guanidine hydrochloride to cause release of zinc from proteins, followed by complexation of released metals with cyanide. The cyanide complex of zinc is preferentially demasked with chloral hydrate, followed by a colorimetric reaction between zinc and 4-(2-pyridylazo)resorcinol. This is a sensitive water-soluble ligand; its complex with zinc has an absorption maximum at 497 nm. Values found by this technique compare favorably with those obtained by atomic absorption spectroscopy.
Rechargeable zinc cell with alkaline electrolyte which inhibits shape change in zinc electrode
Adler, Thomas C.; McLarnon, Frank R.; Cairns, Elton J.
1994-01-01
An improved rechargeable zinc cell is described comprising a zinc electrode and another electrode such as, for example, a nickel-containing electrode, and having an electrolyte containing KOH and a combination of KF and K.sub.2 CO.sub.3 salts which inhibits shape change in the zinc electrode, i.e., the zinc electrode exhibits low shape change, resulting in an improved capacity retention of the cell over an number of charge-discharge cycles, while still maintaining high discharge rate characteristics.
Miller, Leland V.; Krebs, Nancy F.; Hambidge, K. Michael
2013-01-01
A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption. PMID:22617116
Miller, Leland V; Krebs, Nancy F; Hambidge, K Michael
2013-02-28
A previously described mathematical model of Zn absorption as a function of total daily dietary Zn and phytate was fitted to data from studies in which dietary Ca, Fe and protein were also measured. An analysis of regression residuals indicated statistically significant positive relationships between the residuals and Ca, Fe and protein, suggesting that the presence of any of these dietary components enhances Zn absorption. Based on the hypotheses that (1) Ca and Fe both promote Zn absorption by binding with phytate and thereby making it unavailable for binding Zn and (2) protein enhances the availability of Zn for transporter binding, the model was modified to incorporate these effects. The new model of Zn absorption as a function of dietary Zn, phytate, Ca, Fe and protein was then fitted to the data. The proportion of variation in absorbed Zn explained by the new model was 0·88, an increase from 0·82 with the original model. A reduced version of the model without Fe produced an equally good fit to the data and an improved value for the model selection criterion, demonstrating that when dietary Ca and protein are controlled for, there is no evidence that dietary Fe influences Zn absorption. Regression residuals and testing with additional data supported the validity of the new model. It was concluded that dietary Ca and protein modestly enhanced Zn absorption and Fe had no statistically discernable effect. Furthermore, the model provides a meaningful foundation for efforts to model nutrient interactions in mineral absorption.
Response of hippocampal mossy fiber zinc to excessive glutamate release.
Takeda, Atsushi; Minami, Akira; Sakurada, Naomi; Nakajima, Satoko; Oku, Naoto
2007-01-01
The response of hippocampal mossy fiber zinc to excessive glutamate release was examined to understand the role of the zinc in excessive excitation in the hippocampus. Extracellular zinc and glutamate concentrations during excessive stimulation with high K(+) were compared between the hippocampal CA3 and CA1 by the in vivo microdialysis. Zinc concentration in the CA3 was more increased than that in the CA1, while glutamate concentration in the CA3 was less increased than that in the CA1. It is likely that more increase in extracellular zinc is linked with less increase in extracellular glutamate in the CA3. To see zinc action in mossy fiber synapses during excessive excitation, furthermore, 1mM glutamate was regionally delivered to the stratum lucidum in the presence of zinc or CaEDTA, a membrane-impermeable zinc chelator, and intracellular calcium signal was measured in the CA3 pyramidal cell layer. The persistent increase in calcium signal during stimulation with glutamate was significantly attenuated in the presence of 100 microM zinc, while significantly enhanced in the presence of 1mM CaEDTA. These results suggest that zinc released from mossy fibers attenuates the increase in intracellular calcium signal in mossy fiber synapses and postsynaptic CA3 neurons after excessive inputs to dentate granular cells.
Zhao, X Q; Xue, C; Ge, X M; Yuan, W J; Wang, J Y; Bai, F W
2009-01-01
The effects of zinc supplementation were investigated in the continuous ethanol fermentation using self-flocculating yeast. Zinc sulfate was added at the concentrations of 0.01, 0.05 and 0.1 g l(-1), respectively. Reduced average floc sizes were observed in all the zinc-supplemented cultures. Both the ethanol tolerance and thermal tolerance were significantly improved by zinc supplements, which correlated well with the increased ergosterol and trehalose contents in the yeast flocs. The highest ethanol concentration by 0.05 g l(-1) zinc sulfate supplementation attained 114.5 g l(-1), in contrast to 104.1 g l(-1) in the control culture. Glycerol production was decreased by zinc supplementations, with the lowest level 3.21 g l(-1), about 58% of the control. Zinc content in yeast cells was about 1.4 microMol g(-1) dry cell weight, about sixfold higher than that of control in all the zinc-supplemented cultures, and close correlation of zinc content in yeast cells with the cell viability against ethanol and heat shock treatment was observed. These studies suggest that exogenous zinc addition led to a reprogramming of cellular metabolic network, resulting in enhanced ethanol tolerance and ethanol production.
Moulin, Pauline; Patron, Kévin; Cano, Camille; Zorgani, Mohamed Amine; Camiade, Emilie; Borezée-Durant, Elise; Rosenau, Agnès; Mereghetti, Laurent
2016-01-01
ABSTRACT The Lmb protein of Streptococcus agalactiae is described as an adhesin that binds laminin, a component of the human extracellular matrix. In this study, we revealed a new role for this protein in zinc uptake. We also identified two Lmb homologs, AdcA and AdcAII, redundant binding proteins that combine with the AdcCB translocon to form a zinc-ABC transporter. Expression of this transporter is controlled by the zinc concentration in the medium through the zinc-dependent regulator AdcR. Triple deletion of lmb, adcA, and adcAII, or that of the adcCB genes, impaired growth and cell separation in a zinc-restricted environment. Moreover, we found that this Adc zinc-ABC transporter promotes S. agalactiae growth and survival in some human biological fluids, suggesting that it contributes to the infection process. These results indicated that zinc has biologically vital functions in S. agalactiae and that, under the conditions tested, the Adc/Lmb transporter constitutes the main zinc acquisition system of the bacterium. IMPORTANCE A zinc transporter, composed of three redundant binding proteins (Lmb, AdcA, and AdcAII), was characterized in Streptococcus agalactiae. This system was shown to be essential for bacterial growth and morphology in zinc-restricted environments, including human biological fluids. PMID:27672194
Ravikumar, Sambandam; Yoo, Ik-keun; Lee, Sang Yup; Hong, Soon Ho
2011-11-01
Zinc ion plays essential roles in biological chemistry. Bacteria acquire Zn(2+) from the environment, and cellular concentration levels are controlled by zinc homeostasis systems. In comparison with other homeostatic systems, the ZraSR two-component system was found to be more efficient in responding to exogenous zinc concentrations. To understand the dynamic response of the bacterium ZraSR two-component system with respect to exogenous zinc concentrations, the genetic circuit of the ZraSR system was integrated with a reporter protein. This study was helpful in the construction of an E. coli system that can display selective metal binding peptides on the surface of the cell in response to exogenous zinc. The engineered bacterial system for monitoring exogenous zinc was successfully employed to detect levels of zinc as low as 0.001 mM, which directly activates the expression of chimeric ompC(t)--zinc binding peptide gene to remove zinc by adsorbing a maximum of 163.6 μmol of zinc per gram of dry cell weight. These results indicate that the engineered bacterial strain developed in the present study can sense the specific heavy metal and activates a cell surface display system that acts to remove the metal.
Foster, Meika; Samman, Samir
2010-11-15
Cellular signal transduction pathways are influenced by the zinc and redox status of the cell. Numerous chronic diseases, including cardiovascular disease (CVD) and diabetes mellitus (DM), have been associated with impaired zinc utilization and increased oxidative stress. In humans, mutations in the MT-1A and ZnT8 genes, both of which are involved in the maintenance of zinc homeostasis, have been linked with DM development. Changes in levels of intracellular free zinc may exacerbate oxidative stress in CVD and DM by impacting glutathione homeostasis, nitric oxide signaling, and nuclear factor-kappa B-dependent cellular processes. Zinc ions have been shown to influence insulin and leptin signaling via the phosphoinositide 3′-kinase/Akt pathway, potentially linking an imbalance of zinc at the cellular level to insulin resistance and dyslipidemia. The oxidative modification of cysteine residues in zinc coordination sites in proteins has been implicated in cellular signaling and regulatory pathways. Despite the many interactions between zinc and cellular stress responses, studies investigating the potential therapeutic benefit of zinc supplementation in the prevention and treatment of oxidative stress-related chronic disease in humans are few and inconsistent. Further well-designed randomized controlled trials are needed to determine the effects of zinc supplementation in populations at various stages of CVD and DM progression.
Costello, Leslie C.; Franklin, Renty B.
2016-01-01
The human prostate gland contains extremely high zinc levels; which is due to the specialized zinc-accumulating acinar epithelial of the peripheral zone. These cells evolved for their unique capability to produce and secrete extremely levels of citrate, which is achieved by the high cellular zinc level effects on the cell metabolism. This review highlights the specific functional and metabolic alterations that result from the accumulation of the high zinc levels, especially its effects on mitochondrial citrate metabolism and terminal oxidation. The implications of zinc in the development and progression of prostate cancer are described, which is the most consistent hallmark characteristic of prostate cancer. The requirement for decreased zinc resulting from down regulation of ZIP1 to prevent zinc cytotoxicity in the malignant cells is described as an essential early event in prostate oncogenesis. This provides the basis for the concept that an agent (such as the zinc ionophore, clioquinol) that facilitates zinc uptake and accumulation in ZIP1-deficient prostate tumors cells will markedly inhibit tumor growth. In the current absence of an efficacious chemotherapy for advanced prostate cancer, and for prevention of early development of malignancy; a zinc treatment regimen is a plausible approach that should be pursued. PMID:27132038
Zinc and the modulation of redox homeostasis
Oteiza, Patricia I.
2012-01-01
Zinc, a redox inactive metal, has been long viewed as a component of the antioxidant network, and growing evidence points to its involvement in redox-regulated signaling. These actions are exerted through several mechanisms based on the unique chemical and functional properties of zinc. Overall, zinc contributes to maintain the cell redox balance through different mechanisms including: i) the regulation of oxidant production and metal-induced oxidative damage; ii) the dynamic association of zinc with sulfur in protein cysteine clusters, from which the metal can be released by nitric oxide, peroxides, oxidized glutathione and other thiol oxidant species; iii) zinc-mediated induction of the zinc-binding protein metallothionein, which releases the metal under oxidative conditions and act per se scavenging oxidants; iv) the involvement of zinc in the regulation of glutathione metabolism and of the overall protein thiol redox status; and v) a direct or indirect regulation of redox signaling. Findings of oxidative stress, altered redox signaling, and associated cell/tissue disfunction in cell and animal models of zinc deficiency, stress the relevant role of zinc in the preservation of cell redox homeostasis. However, while the participation of zinc in antioxidant protection, redox sensing, and redox-regulated signaling is accepted, the involved molecules, targets and mechanisms are still partially known and the subject of active research. PMID:22960578
Blood zinc levels in nursing women from different regions of the West Bank of Palestine.
Shawahna, Ramzi; Zyoud, Ahed; Jallad, Donia; Hadwan, Labebah; Ihssan, Neeran; Hilal, Hikmat
2017-07-06
Pregnant and nursing women are at higher risk of zinc deficiency which can have detrimental consequences on health. We assessed blood zinc levels in 72 nursing women from the West Bank of Palestine and investigated the association between sociodemographic variables and blood zinc levels. Blood samples were analyzed for their zinc contents using graphite furnace atomic absorption spectrophotometry. Blood and data collection were performed between July and December 2016. The median blood zinc level was 4.53 mg/L (interquartile range of 0.38 mg/L). In unadjusted analyses, blood zinc levels were higher in nursing women who lived in cities (p-value <.001), had higher household income (p-value <.001), whose husbands had a white collar job (p-value <.05), were nonsmokers (p-value <.05), did not use hair dyes (p-value <.05), and consumed energy beverages (p-value <.001). Multiple linear analysis showed that living in cities and consuming energy beverages remained significantly associated with higher blood zinc levels (p-value <.05). Blood zinc levels were in the range previously reported for similar non-malnourished populations. Nursing women living in cities and those consuming energy beverages tended to have higher blood zinc levels. Urbanized lifestyle might have enhanced blood zinc levels in nursing women.
40 CFR 98.330 - Definition of the source category.
Code of Federal Regulations, 2010 CFR
2010-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Zinc Production § 98.330 Definition of the source category. The zinc production source category consists of zinc smelters and secondary zinc recycling facilities. ...
40 CFR 98.330 - Definition of the source category.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (CONTINUED) MANDATORY GREENHOUSE GAS REPORTING Zinc Production § 98.330 Definition of the source category. The zinc production source category consists of zinc smelters and secondary zinc recycling facilities. ...
Thyroid hormone upregulates zinc-α2-glycoprotein production in the liver but not in adipose tissue.
Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M
2014-01-01
Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight loss in hyperthyroidism.
Potential ecological risk assessment and predicting zinc accumulation in soils.
Baran, Agnieszka; Wieczorek, Jerzy; Mazurek, Ryszard; Urbański, Krzysztof; Klimkowicz-Pawlas, Agnieszka
2018-02-01
The aims of this study were to investigate zinc content in the studied soils; evaluate the efficiency of geostatistics in presenting spatial variability of zinc in the soils; assess bioavailable forms of zinc in the soils and to assess soil-zinc binding ability; and to estimate the potential ecological risk of zinc in soils. The study was conducted in southern Poland, in the Malopolska Province. This area is characterized by a great diversity of geological structures and types of land use and intensity of industrial development. The zinc content was affected by soil factors, and the type of land use (arable lands, grasslands, forests, wastelands). A total of 320 soil samples were characterized in terms of physicochemical properties (texture, pH, organic C content, total and available Zn content). Based on the obtained data, assessment of the ecological risk of zinc was conducted using two methods: potential ecological risk index and hazard quotient. Total Zn content in the soils ranged from 8.27 to 7221 mg kg -1 d.m. Based on the surface semivariograms, the highest variability of zinc in the soils was observed from northwest to southeast. The point sources of Zn contamination were located in the northwestern part of the area, near the mining-metallurgical activity involving processing of zinc and lead ores. These findings were confirmed by the arrangement of semivariogram surfaces and bivariate Moran's correlation coefficients. The content of bioavailable forms of zinc was between 0.05 and 46.19 mg kg -1 d.m. (0.01 mol dm -3 CaCl 2 ), and between 0.03 and 71.54 mg kg -1 d.m. (1 mol dm -3 NH 4 NO 3 ). Forest soils had the highest zinc solubility, followed by arable land, grassland and wasteland. PCA showed that organic C was the key factor to control bioavailability of zinc in the soils. The extreme, very high and medium zinc accumulation was found in 69% of studied soils. There is no ecological risk of zinc to living organisms in the study area, and in 90% of the soils there were no potentially negative effects of zinc to ecological receptors.
Thyroid Hormone Upregulates Zinc-α2-glycoprotein Production in the Liver but Not in Adipose Tissue
Simó, Rafael; Hernández, Cristina; Sáez-López, Cristina; Soldevila, Berta; Puig-Domingo, Manel; Selva, David M.
2014-01-01
Overproduction of zinc-α2-glycoprotein by adipose tissue is crucial in accounting for the lipolysis occurring in cancer cachexia of certain malignant tumors. The main aim of this study was to explore whether thyroid hormone could enhance zinc-α2-glycoprotein production in adipose tissue. In addition, the regulation of zinc-α2-glycoprotein by thyroid hormone in the liver was investigated. We performed in vitro (HepG2 cells and primary human adipocytes) and in vivo (C57BL6/mice) experiments addressed to examine the effect of thyroid hormone on zinc-α2-glycoprotein production (mRNA and protein levels) in liver and visceral adipose tissue. We also measured the zinc-α2-glycoprotein serum levels in a cohort of patients before and after controlling their hyperthyroidism. Our results showed that thyroid hormone up-regulates zinc-α2-glycoprotein production in HepG2 cells in a dose-dependent manner. In addition, the zinc-α2-glycoprotein proximal promoter contains functional thyroid hormone receptor binding sites that respond to thyroid hormone treatment in luciferase reporter gene assays in HepG2 cells. Furthermore, zinc-α2-glycoprotein induced lipolysis in HepG2 in a dose-dependent manner. Our in vivo experiments in mice confirmed the up-regulation of zinc-α2-glycoprotein induced by thyroid hormone in the liver, thus leading to a significant increase in zinc-α2-glycoprotein circulating levels. However, thyroid hormone did not regulate zinc-α2-glycoprotein production in either human or mouse adipocytes. Finally, in patients with hyperthyroidism a significant reduction of zinc-α2-glycoprotein serum levels was detected after treatment but was unrelated to body weight changes. We conclude that thyroid hormone up-regulates the production of zinc-α2-glycoprotein in the liver but not in the adipose tissue. The neutral effect of thyroid hormones on zinc-α2-glycoprotein expression in adipose tissue could be the reason why zinc-α2-glycoprotein is not related to weight loss in hyperthyroidism. PMID:24465683
Evolution of the F-Box Gene Family in Euarchontoglires: Gene Number Variation and Selection Patterns
Wang, Ailan; Fu, Mingchuan; Jiang, Xiaoqian; Mao, Yuanhui; Li, Xiangchen; Tao, Shiheng
2014-01-01
F-box proteins are substrate adaptors used by the SKP1–CUL1–F-box protein (SCF) complex, a type of E3 ubiquitin ligase complex in the ubiquitin proteasome system (UPS). SCF-mediated ubiquitylation regulates proteolysis of hundreds of cellular proteins involved in key signaling and disease systems. However, our knowledge of the evolution of the F-box gene family in Euarchontoglires is limited. In the present study, 559 F-box genes and nine related pseudogenes were identified in eight genomes. Lineage-specific gene gain and loss events occurred during the evolution of Euarchontoglires, resulting in varying F-box gene numbers ranging from 66 to 81 among the eight species. Both tandem duplication and retrotransposition were found to have contributed to the increase of F-box gene number, whereas mutation in the F-box domain was the main mechanism responsible for reduction in the number of F-box genes, resulting in a balance of expansion and contraction in the F-box gene family. Thus, the Euarchontoglire F-box gene family evolved under a birth-and-death model. Signatures of positive selection were detected in substrate-recognizing domains of multiple F-box proteins, and adaptive changes played a role in evolution of the Euarchontoglire F-box gene family. In addition, single nucleotide polymorphism (SNP) distributions were found to be highly non-random among different regions of F-box genes in 1092 human individuals, with domain regions having a significantly lower number of non-synonymous SNPs. PMID:24727786
Is There a Relationship between Zinc and the Peculiar Comorbidities of Down Syndrome?
ERIC Educational Resources Information Center
Romano, Corrado; Pettinato, Rosa; Ragusa, Letizia; Barone, Concetta; Alberti, Antonino; Failla, Pinella
2002-01-01
A comparison was made between a range of clinical and biochemical variables and zinc levels in 120 individuals with Down syndrome. No significant differences were found between the normal-zinc and low-zinc groups, except for IgG4 which was, unexpectedly, significantly decreased in the group with normal zinc levels. (Contains references.)…
Pan, Enhui; Zhang, Xiao-an; Huang, Zhen; Krezel, Artur; Zhao, Min; Tin-berg, Christine E.; Lippard, Stephen J.; McNamara, James O.
2011-01-01
The presence of zinc in glutamatergic synaptic vesicles of excitatory neurons of mammalian cerebral cortex suggests that zinc might regulate plasticity of synapses formed by these neurons. Long term potentiation (LTP) is a form of synaptic plasticity that may underlie learning and memory. We tested the hypothesis that zinc within vesicles of mossy fibers (mf) contributes to mf-LTP, a classical form of presynaptic LTP. We synthesized an extracellular zinc chelator with selectivity and kinetic properties suitable for study of the large transient of zinc in the synaptic cleft induced by mf stimulation. We found that vesicular zinc is required for presynaptic mf-LTP. Unexpectedly, vesicular zinc also inhibits a novel form of postsynaptic mf-LTP. Because the mf-CA3 synapse provides a major source of excitatory input to the hippocampus, regulating its efficacy by these dual actions of vesicular zinc is critical to proper function of hippocampal circuitry in health and disease. PMID:21943607
Metallic Zinc Exhibits Optimal Biocompatibility for Bioabsorbable Endovascular Stents
Bowen, Patrick K.; Guillory, Roger J.; Shearier, Emily R.; Seitz, Jan-Marten; Drelich, Jaroslaw; Bocks, Martin; Zhao, Feng; Goldman, Jeremy
2015-01-01
Although corrosion resistant bare metal stents are considered generally effective, their permanent presence in a diseased artery is an increasingly recognized limitation due to the potential for long-term complications. We previously reported that metallic zinc exhibited an ideal biocorrosion rate within murine aortas, thus raising the possibility of zinc as a candidate base material for endovascular stenting applications. This study was undertaken to further assess the arterial biocompatibility of metallic zinc. Metallic zinc wires were punctured and advanced into the rat abdominal aorta lumen for up to 6.5 months. This study demonstrated that metallic zinc did not provoke responses that often contribute to restenosis. Low cell densities and neointimal tissue thickness, along with tissue regeneration within the corroding implant, point to optimal biocompatibility of corroding zinc. Furthermore, the lack of progression in neointimal tissue thickness over 6.5 months or the presence of smooth muscle cells near the zinc implant suggest that the products of zinc corrosion may suppress the activities of inflammatory and smooth muscle cells. PMID:26249616
Zhou, Xixi; Cooper, Karen L.; Sun, Xi; Liu, Ke J.; Hudson, Laurie G.
2015-01-01
Cysteine oxidation induced by reactive oxygen species (ROS) on redox-sensitive targets such as zinc finger proteins plays a critical role in redox signaling and subsequent biological outcomes. We found that arsenic exposure led to oxidation of certain zinc finger proteins based on arsenic interaction with zinc finger motifs. Analysis of zinc finger proteins isolated from arsenic-exposed cells and zinc finger peptides by mass spectrometry demonstrated preferential oxidation of C3H1 and C4 zinc finger configurations. C2H2 zinc finger proteins that do not bind arsenic were not oxidized by arsenic-generated ROS in the cellular environment. The findings suggest that selectivity in arsenic binding to zinc fingers with three or more cysteines defines the target proteins for oxidation by ROS. This represents a novel mechanism of selective protein oxidation and demonstrates how an environmental factor may sensitize certain target proteins for oxidation, thus altering the oxidation profile and redox regulation. PMID:26063799
Ong, Cheryl-Lynn Y; Berking, Olga; Walker, Mark J; McEwan, Alastair G
2018-06-01
Zinc plays an important role in host innate immune function. However, the innate immune system also utilizes zinc starvation ("nutritional immunity") to combat infections. Here, we investigate the role of zinc import and export in the protection of Streptococcus pyogenes (group A Streptococcus ; GAS), a Gram-positive bacterial pathogen responsible for a wide spectrum of human diseases, against challenge from host innate immune defense. In order to determine the role of GAS zinc import and export during infection, we utilized zinc import (Δ adcA Δ adcAII ) and export (Δ czcD ) deletion mutants in competition with the wild type in both in vitro and in vivo virulence models. We demonstrate that nutritional immunity is deployed extracellularly, while zinc toxicity is utilized upon phagocytosis of GAS by neutrophils. We also show that lysosomes and azurophilic granules in neutrophils contain zinc stores for use against intracellular pathogens. Copyright © 2018 American Society for Microbiology.
Zhang, Ziran; Zhou, Feibai; Liu, Xiaoling; Zhao, Mouming
2018-08-30
An oyster protein hydrolysates-zinc complex (OPH-Zn) was prepared and investigated to improve zinc bioaccessibility. Zinc ions chelating with oyster protein hydrolysates (OPH) cause intramolecular and intermolecular folding and aggregation, homogeneously forming the OPH-Zn complex as nanoclusters with a Z-average at 89.28 nm (PDI: 0.16 ± 0.02). The primary sites of zinc-binding in OPH were carboxyl groups, carbonyl groups, and amino groups, and they were related to the high number of charged amino acid residues. Furthermore, formation of the OPH-Zn complex could significantly enhance zinc solubility both under specific pH conditions as well as during simulated gastrointestinal digestion, compared to the commonly used ZnSO 4 . Additionally, after digestion, either preserved or enhanced antioxidant activity of OPH was found when chelated with zinc. These results indicated that the OPH-Zn complex could be a potential functional ingredient with improved antioxidant bioactivity and zinc bioaccessibility. Copyright © 2018. Published by Elsevier Ltd.
Wan, Fang; Zhang, Linlin; Dai, Xi; Wang, Xinyu; Niu, Zhiqiang; Chen, Jun
2018-04-25
Rechargeable aqueous zinc-ion batteries are promising energy storage devices due to their high safety and low cost. However, they remain in their infancy because of the limited choice of positive electrodes with high capacity and satisfactory cycling performance. Furthermore, their energy storage mechanisms are not well established yet. Here we report a highly reversible zinc/sodium vanadate system, where sodium vanadate hydrate nanobelts serve as positive electrode and zinc sulfate aqueous solution with sodium sulfate additive is used as electrolyte. Different from conventional energy release/storage in zinc-ion batteries with only zinc-ion insertion/extraction, zinc/sodium vanadate hydrate batteries possess a simultaneous proton, and zinc-ion insertion/extraction process that is mainly responsible for their excellent performance, such as a high reversible capacity of 380 mAh g -1 and capacity retention of 82% over 1000 cycles. Moreover, the quasi-solid-state zinc/sodium vanadate hydrate battery is also a good candidate for flexible energy storage device.
The zinc spark is an inorganic signature of human egg activation.
Duncan, Francesca E; Que, Emily L; Zhang, Nan; Feinberg, Eve C; O'Halloran, Thomas V; Woodruff, Teresa K
2016-04-26
Egg activation refers to events required for transition of a gamete into an embryo, including establishment of the polyspermy block, completion of meiosis, entry into mitosis, selective recruitment and degradation of maternal mRNA, and pronuclear development. Here we show that zinc fluxes accompany human egg activation. We monitored calcium and zinc dynamics in individual human eggs using selective fluorophores following activation with calcium-ionomycin, ionomycin, or hPLCζ cRNA microinjection. These egg activation methods, as expected, induced rises in intracellular calcium levels and also triggered the coordinated release of zinc into the extracellular space in a prominent "zinc spark." The ability of the gamete to mount a zinc spark response was meiotic-stage dependent. Moreover, chelation of intracellular zinc alone was sufficient to induce cell cycle resumption and transition of a meiotic cell into a mitotic one. Together, these results demonstrate critical functions for zinc dynamics and establish the zinc spark as an extracellular marker of early human development.
The Zinc-Schiff Base-Novicidin Complex as a Potential Prostate Cancer Therapy
Milosavljevic, Vedran; Haddad, Yazan; Merlos Rodrigo, Miguel Angel; Moulick, Amitava; Polanska, Hana; Hynek, David; Heger, Zbynek; Kopel, Pavel; Adam, Vojtech
2016-01-01
Prostate cancer cells control energy metabolism by chelating intracellular zinc. Thus, zinc delivery has been a popular therapeutic approach for prostate cancer. Here, we propose the use of the membrane-penetrating peptide Novicidin connected to zinc-Schiff base as a carrier vehicle for the delivery of zinc to prostate cells. Mass spectrometry, electrochemistry and spectrophotometry confirmed the formation/stability of this complex and provided insight regarding the availability of zinc for complex interactions. This delivery system showed minor toxicity in normal PNT1A cells and high potency towards PC3 tumor cells. The complex preferentially penetrated PC3 tumor cells in contrast to confinement to the membranes of PNT1A. Furthermore, zinc uptake was confirmed in both cell lines. Molecular analysis was used to confirm the activation of zinc stress (e.g., ZnT-1) and apoptosis (e.g., CASP-1). Our results strongly suggest that the zinc-Schiff base-Novicidin complex has great potential as a novel anticancer drug. PMID:27727290
The zinc spark is an inorganic signature of human egg activation
Duncan, Francesca E.; Que, Emily L.; Zhang, Nan; Feinberg, Eve C.; O’Halloran, Thomas V.; Woodruff, Teresa K.
2016-01-01
Egg activation refers to events required for transition of a gamete into an embryo, including establishment of the polyspermy block, completion of meiosis, entry into mitosis, selective recruitment and degradation of maternal mRNA, and pronuclear development. Here we show that zinc fluxes accompany human egg activation. We monitored calcium and zinc dynamics in individual human eggs using selective fluorophores following activation with calcium-ionomycin, ionomycin, or hPLCζ cRNA microinjection. These egg activation methods, as expected, induced rises in intracellular calcium levels and also triggered the coordinated release of zinc into the extracellular space in a prominent “zinc spark.” The ability of the gamete to mount a zinc spark response was meiotic-stage dependent. Moreover, chelation of intracellular zinc alone was sufficient to induce cell cycle resumption and transition of a meiotic cell into a mitotic one. Together, these results demonstrate critical functions for zinc dynamics and establish the zinc spark as an extracellular marker of early human development. PMID:27113677
Brown, Kenneth H.; Engle-Stone, Reina; Krebs, Nancy F.; Peerson, Janet M.
2017-01-01
Breastmilk is the only dietary source of zinc for exclusively breastfed young infants, and it remains a potentially important source of zinc for older infants and young children who continue breastfeeding beyond early infancy. Therefore, we examined available information on breastmilk zinc concentration and total milk consumption to develop estimates of the amount of zinc transferred in breastmilk to children of different ages. Breastmilk zinc concentration declines rapidly during the first few months postpartum and more slowly thereafter. Breastmilk supplies all of the theoretical zinc needs for at least the first several months of life, although the period during which breastmilk alone remains sufficient is uncertain. Breastmilk continues to provide more than half of children’s estimated zinc requirements after the introduction of complementary foods, even into the second year of life. Public health programs to promote and support breastfeeding should be included among the strategies to ensure adequate zinc status of young children. PMID:19472605
Modulation of neuronal signal transduction and memory formation by synaptic zinc.
Sindreu, Carlos; Storm, Daniel R
2011-01-01
The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling.
Modulation of Neuronal Signal Transduction and Memory Formation by Synaptic Zinc
Sindreu, Carlos; Storm, Daniel R.
2011-01-01
The physiological role of synaptic zinc has remained largely enigmatic since its initial detection in hippocampal mossy fibers over 50 years ago. The past few years have witnessed a number of studies highlighting the ability of zinc ions to regulate ion channels and intracellular signaling pathways implicated in neuroplasticity, and others that shed some light on the elusive role of synaptic zinc in learning and memory. Recent behavioral studies using knock-out mice for the synapse-specific zinc transporter ZnT-3 indicate that vesicular zinc is required for the formation of memories dependent on the hippocampus and the amygdala, two brain centers that are prominently innervated by zinc-rich fibers. A common theme emerging from this research is the activity-dependent regulation of the Erk1/2 mitogen-activated-protein kinase pathway by synaptic zinc through diverse mechanisms in neurons. Here we discuss current knowledge on how synaptic zinc may play a role in cognition through its impact on neuronal signaling. PMID:22084630
Transcriptome sequencing and analysis of zinc-uptake-related genes in Trichophyton mentagrophytes.
Zhang, Xinke; Dai, Pengxiu; Gao, Yongping; Gong, Xiaowen; Cui, Hao; Jin, Yipeng; Zhang, Yihua
2017-11-21
Trichophyton mentagrophytes is an important zoonotic dermatophytic (ringworm) pathogen; causing severe skin infection in humans and other animals worldwide. Fortunately, commonly used fungal skin disease prevention and treatment measures are relatively simple. However, T. mentagrophytes is primarily studied at the epidemiology and drug efficacy research levels, yet current study has been unable to meet the needs of clinical medicine. Zinc is a crucial trace element for the growth and reproduction of fungi and other microorganisms. The metal ions coordinate within a variety of proteins to form zinc finger proteins, which perform many vital biological functions. Zinc transport regulatory networks have not been resolved in T. mentagrophytes. The T. mentagrophytes transcriptome will allow us to discover new genes, particularly those genes involved in zinc uptake. We found T. mentagrophytes growth to be restricted by zinc deficiency; natural T. mentagrophytes growth requires zinc ions. T. Mentagrophytes must acquire zinc ions for growth and development. The transcriptome of T. mentagrophytes was sequenced by using Illumina HiSeq™ 2000 technology and the de novo assembly of the transcriptome was performed by using the Trinity method, and functional annotation was analyzed. We got 10,751 unigenes. The growth of T. mentagrophytes is severely inhibited and there were many genes showing significant up regulation and down regulation respectively in T. mentagrophytes when zinc deficiency. Zinc deficiency can affect the expression of multiple genes of T. mentagrophytes. The effect of the zinc deficiency could be recovered in the normal medium. And we finally found the zinc-responsive activating factor (ZafA) and speculated that 4 unigenes are zinc transporters. We knocked ZafA gene by ATMT transformation in T. mentagrophytes, the result showed that ZafA gene is very important for the growth and the generation of conidia in T. mentagrophytes. The expression of 4 zinc transporter genes is potentially regulated by the zinc-responsive activating factor. The data of this study is also sufficient to be used as a support to study T. mentagrophytes. We reported the first large transcriptome study carried out in T. mentagrophytes where we have compared physiological and transcriptional responses to zinc deficiency, and analyzed the expression of genes involved in zinc uptake. The study also produced high-resolution digital profiles of global genes expression relating to T. mentagrophytes growth.
ICOADS: A Foundational Database with a new Release
NASA Astrophysics Data System (ADS)
Angel, W.; Freeman, E.; Woodruff, S. D.; Worley, S. J.; Brohan, P.; Dumenil-Gates, L.; Kent, E. C.; Smith, S. R.
2016-02-01
The International Comprehensive Ocean-Atmosphere Data Set (ICOADS) offers surface marine data spanning the past three centuries and is the world's largest collection of marine surface in situ observations with approximately 300 million unique records from 1662 to the present in a common International Maritime Meteorological Archive (IMMA) format. Simple gridded monthly summary products (including netCDF) for 2° latitude x 2° longitude boxes back to 1800 and 1° x 1° boxes since 1960 are computed for each month. ICOADS observations made available in the IMMA format are taken primarily from ships (merchant, ocean research, fishing, navy, etc.) and moored and drifting buoys. Each report contains individual observations of meteorological and oceanographic variables, such as sea surface and air temperatures, winds, pressure, humidity, wet bulb, dew point, ocean waves and cloudiness. A monthly summary for an area box includes ten statistics (e.g. mean, median, standard deviation, etc.) for 22 observed and computed variables (e.g. sea surface and air temperature, wind, pressure, humidity, cloudiness, etc.). ICOADS is the most complete and heterogeneous collection of surface marine data in existence. A major new historical update, Release 3.0 (R3.0), now in production (with availability anticipated in mid-2016) will contain a variety of important updates. These updates will include unique IDs (UIDs), new IMMA attachments, ICOADS Value-Added Database (IVAD), and numerous new or improved historical and contemporary data sources. UIDs are assigned to each individual marine report, which will greatly facilitate interaction between users and data developers, and affords record traceability. A new Near-Surface Oceanographic (Nocn) attachment has been developed to include oceanographic profile elements, such as sea surface salinity, sea surface temperatures, and their associated measurement depths. Additionally, IVAD allows a feedback mechanism of data adjustments which can be stored within each IMMA report. R3.0 includes near-surface ocean profile measurements from sources such as the World Ocean Database (WOD), Shipboard Automated Meteorological and Oceanographic System (SAMOS), as well as many others. An in-depth look at the improvements and the data inputs planned for R3.0 will be further discussed.
Zinc-The key to preventing corrosion
Kropschot, S.J.; Doebrich, Jeff L.
2011-01-01
Centuries before it was identified as an element, zinc was used to make brass (an alloy of zinc and copper) and for medicinal purposes. Metallic zinc and zinc oxide were produced in India sometime between the 11th and 14th centuries and in China in the 17th century, although the discovery of pure metallic zinc is credited to the German chemist Andreas Marggraf, who isolated the element in 1746. Refined zinc metal is bluish-white when freshly cast; it is hard and brittle at most temperatures and has relatively low melting and boiling points. Zinc alloys readily with other metals and is chemically active. On exposure to air, it develops a thin gray oxide film (patina), which inhibits deeper oxidation (corrosion) of the metal. The metal's resistance to corrosion is an important characteristic in its use.
Effect of pulsed electric fields upon accumulation of zinc in Saccharomyces cerevisiae.
Pankiewicz, Urszula; Jamroz, Jerzy
2011-06-01
Cultures of Saccharomyces cerevisiae were treated with pulsed electric fields to improve accumulation of zinc in the biomass. Under optimized conditions, that is, on 15 min exposure of the 20 h grown culture to PEFs of 1500 V and 10 microns pulse width, accumulation of zinc in the yeast biomass reached a maximum of 15.57 mg/g d.m. Under optimum zinc concentration (100 microgram/ml nutrient medium), its accumulation in the cells was higher by 63% in comparison with the control (without PEFs). That accumulation significantly correlated against zinc concentration in the medium. Neither multiple exposure of the cultures to PEFs nor intermittent supplementation of the cultures with zinc increased the zinc accumulation. The intermittent supplementation of the cultures with zinc and multiple exposures on PEFs could even reduce the accumulation efficiency, respectively, by 57% and 47%.
Dos Santos, Francine Melise; Piffer, Alícia Corbellini; Schneider, Rafael de Oliveira; Ribeiro, Nicole Sartori; Garcia, Ane Wichine Acosta; Schrank, Augusto; Kmetzsch, Lívia; Vainstein, Marilene Henning; Staats, Charley Christian
2017-05-01
To evaluate alterations of zinc homeostasis in macrophages exposed to Cryptococcus neoformans. Materials & methods: Using a fluorescent zinc probe-based flow cytometry and atomic absorption spectrometry, zinc levels were evaluated in J774.A1 cell lines exposed to C. neoformans H99 cells. The transcription profile of macrophage zinc related homeostasis genes - metallothioneins and zinc transporters (ZnTs) of the SLC30 and SLC39 (Zrt-Irt-protein) families - was analyzed by quantitative PCR. Macrophage intracellular labile zinc levels decreased following exposure to C. neoformans. A significant decrease in transcription levels was detected in specific ZnTs from both the Zrt-Irt-protein and ZnT families, especially 24 h after infection. These findings suggest that macrophages may exhibit zinc depletion in response to C. neoformans infection.
Zinc oxide-based sorbents and processes for preparing and using same
Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasad
2005-10-04
Zinc oxide-based sorbents, and processes for preparing and using them are provided, wherein the sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents contain an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2 O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, containing a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
Zinc-oxide-based sorbents and processes for preparing and using same
Gangwal, Santosh Kumar; Turk, Brian Scott; Gupta, Raghubir Prasael
2010-03-23
Zinc oxide-based sorbents, and processes for preparing and using them are provided. The sorbents are preferably used to remove one or more reduced sulfur species from gas streams. The sorbents comprise an active zinc component, optionally in combination with one or more promoter components and/or one or more substantially inert components. The active zinc component is a two phase material, consisting essentially of a zinc oxide (ZnO) phase and a zinc aluminate (ZnAl.sub.2O.sub.4) phase. Each of the two phases is characterized by a relatively small crystallite size of typically less than about 500 Angstroms. Preferably the sorbents are prepared by converting a precursor mixture, comprising a precipitated zinc oxide precursor and a precipitated aluminum oxide precursor, to the two-phase, active zinc oxide containing component.
Gender Dependent Evaluation of Autism like Behavior in Mice Exposed to Prenatal Zinc Deficiency
Grabrucker, Stefanie; Boeckers, Tobias M.; Grabrucker, Andreas M.
2016-01-01
Zinc deficiency has recently been linked to the etiology of autism spectrum disorders (ASD) as environmental risk factor. With an estimated 17% of the world population being at risk of zinc deficiency, especially zinc deficiency during pregnancy might be a common occurrence, also in industrialized nations. On molecular level, zinc deficiency has been shown to affect a signaling pathway at glutamatergic synapses that has previously been identified through genetic mutations in ASD patients, the Neurexin-Neuroligin-Shank pathway, via altering zinc binding Shank family members. In particular, prenatal zinc deficient but not acute zinc deficient animals have been reported to display autism like behavior in some behavioral tests. However, a full behavioral analysis of a possible autism like behavior has been lacking so far. Here, we performed an extensive behavioral phenotyping of mice born from mothers with mild zinc deficiency during all trimesters of pregnancy. Prenatal zinc deficient animals were investigated as adults and gender differences were assessed. Our results show that prenatal zinc deficient mice display increased anxiety, deficits in nest building and various social interaction paradigm, as well as mild alterations in ultrasonic vocalizations. A gender specific analysis revealed only few sex specific differences. Taken together, given that similar behavioral abnormalities as reported here are frequently observed in ASD mouse models, we conclude that prenatal zinc deficient animals even without specific genetic susceptibility for ASD, already show some features of ASD like behavior. PMID:26973485
Zinc triggers microglial activation.
Kauppinen, Tiina M; Higashi, Youichirou; Suh, Sang Won; Escartin, Carole; Nagasawa, Kazuki; Swanson, Raymond A
2008-05-28
Microglia are resident immune cells of the CNS. When stimulated by infection, tissue injury, or other signals, microglia assume an activated, "ameboid" morphology and release matrix metalloproteinases, reactive oxygen species, and other proinflammatory factors. This innate immune response augments host defenses, but it can also contribute to neuronal death. Zinc is released by neurons under several conditions in which microglial activation occurs, and zinc chelators can reduce neuronal death in animal models of cerebral ischemia and neurodegenerative disorders. Here, we show that zinc directly triggers microglial activation. Microglia transfected with a nuclear factor-kappaB (NF-kappaB) reporter gene showed a severalfold increase in NF-kappaB activity in response to 30 microm zinc. Cultured mouse microglia exposed to 15-30 microm zinc increased nitric oxide production, increased F4/80 expression, altered cytokine expression, and assumed the activated morphology. Zinc-induced microglial activation was blocked by inhibiting NADPH oxidase, poly(ADP-ribose) polymerase-1 (PARP-1), or NF-kappaB activation. Zinc injected directly into mouse brain induced microglial activation in wild-type mice, but not in mice genetically lacking PARP-1 or NADPH oxidase activity. Endogenous zinc release, induced by cerebral ischemia-reperfusion, likewise induced a robust microglial reaction, and this reaction was suppressed by the zinc chelator CaEDTA. Together, these results suggest that extracellular zinc triggers microglial activation through the sequential activation of NADPH oxidase, PARP-1, and NF-kappaB. These findings identify a novel trigger for microglial activation and a previously unrecognized mechanism by which zinc may contribute to neurological disorders.
Blanco-Alvarez, Victor Manuel; Lopez-Moreno, Patricia; Soto-Rodriguez, Guadalupe; Martinez-Fong, Daniel; Rubio, Hector; Gonzalez-Barrios, Juan Antonio; Piña-Leyva, Celia; Torres-Soto, Maricela; Gomez-Villalobos, María de Jesus; Hernandez-Baltazar, Daniel; Eguibar, José Ramon; Ugarte, Araceli; Cebada, Jorge
2013-01-01
Zinc or L-NAME administration has been shown to be protector agents, decreasing oxidative stress and cell death. However, the treatment with zinc and L-NAME by intraperitoneal injection has not been studied. The aim of our work was to study the effect of zinc and L-NAME administration on nitrosative stress and cell death. Male Wistar rats were treated with ZnCl2 (2.5 mg/kg each 24 h, for 4 days) and N-ω-nitro-L-arginine-methyl ester (L-NAME, 10 mg/kg) on the day 5 (1 hour before a common carotid-artery occlusion (CCAO)). The temporoparietal cortex and hippocampus were dissected, and zinc, nitrites, and lipoperoxidation were assayed at different times. Cell death was assayed by histopathology using hematoxylin-eosin staining and caspase-3 active by immunostaining. The subacute administration of zinc before CCAO decreases the levels of zinc, nitrites, lipoperoxidation, and cell death in the late phase of the ischemia. L-NAME administration in the rats treated with zinc showed an increase of zinc levels in the early phase and increase of zinc, nitrites, and lipoperoxidation levels, cell death by necrosis, and the apoptosis in the late phase. These results suggest that the use of these two therapeutic strategies increased the injury caused by the CCAO, unlike the alone administration of zinc. PMID:23997853