40 CFR 86.235-94 - Dynamometer procedure.
Code of Federal Regulations, 2010 CFR
2010-07-01
..., carbon dioxide, and oxides of nitrogen. (b) As long as an emission sample is not taken, practice runs...) Four-wheel drive vehicles will be tested in a two-wheel drive mode of operation. Full-time four-wheel drive vehicles will have one set of drive wheels temporarily disengaged by the vehicle manufacturer...
All-wheel drive and winter-weather safety.
DOT National Transportation Integrated Search
2013-03-01
It is frequently stated that people living in northern states, the so called Snowbelt of the United : States, benefit with respect to safety from driving all-wheel or four-wheel drive vehicles as : opposed to front or rear-wheel drive only. This stud...
Full drive-by-wire dynamic control for four-wheel-steer all-wheel-drive vehicles
NASA Astrophysics Data System (ADS)
Fahimi, Farbod
2013-03-01
Most of the controllers introduced for four-wheel-steer (4WS) vehicles are derived with the assumption that the longitudinal speed of the vehicle is constant. However, in real applications, the longitudinal speed varies, and the longitudinal, lateral, and yaw dynamics are coupled. In this paper, the longitudinal dynamics of the vehicle as well as its lateral and yaw motions are controlled simultaneously. This way, the effect of driving/braking forces of the tires on the lateral and yaw motions of the vehicle are automatically included in the control laws. To address the dynamic parameter uncertainty of the vehicle, a chatter-free variable structure controller is introduced. Elimination of chatter is achieved by introducing a dynamically adaptive boundary layer thickness. It is shown via simulations that the proposed control approach performs more robustly than the controllers developed based on dynamic models, in which longitudinal speed is assumed to be constant, and only lateral speed and yaw rate are used as system states. Furthermore, this approach supports all-wheel-drive vehicles. Front-wheel-drive or rear-wheel-drive vehicles are also supported as special cases of an all-wheel-drive vehicle.
Testing vehicles for emissions and fuel economy has traditionally been conducted with a single-axle chassis dynamometer. The 2006 SAE All Wheel Drive Symposium cited four wheel drive (4WD) and all wheel drive (AWD) sales as climbing from 20% toward 30% of a motor vehicle mar...
36 CFR 7.65 - Assateague Island National Seashore.
Code of Federal Regulations, 2013 CFR
2013-07-01
... yards of any waterfowl hunting blind during waterfowl season. (12) Hunting on seashore lands and waters...-the-road vehicles such as beachbuggies, four-wheel-drive vehicles, pickup trucks, and standard... not meet the following standards: On four-wheel-drive vehicles and trailers towed by any vehicle: Per...
36 CFR 7.65 - Assateague Island National Seashore.
Code of Federal Regulations, 2014 CFR
2014-07-01
... yards of any waterfowl hunting blind during waterfowl season. (12) Hunting on seashore lands and waters...-the-road vehicles such as beachbuggies, four-wheel-drive vehicles, pickup trucks, and standard... not meet the following standards: On four-wheel-drive vehicles and trailers towed by any vehicle: Per...
36 CFR 7.65 - Assateague Island National Seashore.
Code of Federal Regulations, 2012 CFR
2012-07-01
... yards of any waterfowl hunting blind during waterfowl season. (12) Hunting on seashore lands and waters...-the-road vehicles such as beachbuggies, four-wheel-drive vehicles, pickup trucks, and standard... not meet the following standards: On four-wheel-drive vehicles and trailers towed by any vehicle: Per...
Stabilizing Wheels For Rover Vehicle
NASA Technical Reports Server (NTRS)
Collins, Earl R., Jr.
1990-01-01
Proposed articulated, normally-four-wheeled vehicle holds extra pair of wheels in reserve. Deployed to lengthen wheelbase on slopes, thereby making vehicle more stable, and to aid vehicle in negotiating ledge or to right vehicle if turned upside down. Extra wheels are drive wheels mounted on arms so they pivot on axis of forward drive wheels. Both extra wheels and arms driven by chains, hydraulic motors, or electric motors. Concept promises to make remotely controlled vehicles more stable and maneuverable in such applications as firefighting, handling hazardous materials, and carrying out operations in dangerous locations.
In-line drivetrain and four wheel drive work machine using same
Hoff, Brian
2008-08-05
A four wheel drive articulated mine loader is powered by a fuel cell and propelled by a single electric motor. The drivetrain has the first axle, second axle, and motor arranged in series on the work machine chassis. Torque is carried from the electric motor to the back differential via a pinion meshed with the ring gear of the back differential. A second pinion oriented in an opposite direction away from the ring gear is coupled to a drive shaft to transfer torque from the ring gear to the differential of the front axle. Thus, the ring gear of the back differential acts both to receive torque from the motor and to transfer torque to the forward axle. The in-line drive configuration includes a single electric motor and a single reduction gear to power the four wheel drive mine loader.
NASA Astrophysics Data System (ADS)
Wang, Rongrong; Chen, Yan; Feng, Daiwei; Huang, Xiaoyu; Wang, Junmin
This paper presents the development and experimental characterizations of a prototyping pure electric ground vehicle, which is equipped with four independently actuated in-wheel motors (FIAIWM) and is powered by a 72 V 200 Ah LiFeYPO 4 battery pack. Such an electric ground vehicle (EGV) employs four in-wheel (or hub) motors to independently drive/brake the four wheels and is one of the promising vehicle architectures primarily due to its actuation flexibility, energy efficiency, and performance potentials. Experimental data obtained from the EGV chassis dynamometer tests were employed to generate the in-wheel motor torque response and power efficiency maps in both driving and regenerative braking modes. A torque distribution method is proposed to show the potentials of optimizing the FIAIWM EGV operational energy efficiency by utilizing the actuation flexibility and the characterized in-wheel motor efficiency and torque response.
NASA Astrophysics Data System (ADS)
Masaki, Nobuo; Iwano, Haruo; Kamada, Takayoshi; Nagai, Masao
For in-wheel electric motor drive vehicles, a new vehicle dynamics control which is based on the tire force usage rate is proposed. The new controller adopts non-linear optimal control could manage the interference between direct yaw-moment control and the tire force usage rate. The new control is considered total longitudinal and transverse tire force. Therefore the controller can prevent tire force saturation near tire force limit during cornering. Simulations and test runs by the custom made four wheel drive in-wheel motor electric vehicle show that higher driving stability performance compared to the performance of the same vehicle without control.
The CRREL Instrumented Vehicle: Hardware and Software.
1983-01-01
rear axle torque are meas- ured. The vehicle is equipped for front-wheel, rear-wheel or four-wheel drive. A dual brake system allows front-, rear- or...four-wheel braking . A minicomputer- based data acquisition system is installed in the vehicle to control data gather ing and to process the data. The...o..o...o 4 4. Dual brake system control valves . ........ 5 5. Schematic of modified brake system ...... .... st 5 6. Air-shock-absorber regulator
NASA Astrophysics Data System (ADS)
Liu, Guohai; Gong, Wensheng; Chen, Qian; Jian, Linni; Shen, Yue; Zhao, Wenxiang
2012-04-01
In this paper, a novel in-wheel permanent-magnet (PM) motor for four-wheel-driving electrical vehicles is proposed. It adopts an outer-rotor topology, which can help generate a large drive torque, in order to achieve prominent dynamic performance of the vehicle. Moreover, by adopting single-layer concentrated-windings, fault-tolerant teeth, and the optimal combination of slot and pole numbers, the proposed motor inherently offers negligible electromagnetic coupling between different phase windings, hence, it possesses a fault-tolerant characteristic. Meanwhile, the phase back electromotive force waveforms can be designed to be sinusoidal by employing PMs with a trapezoidal shape, eccentric armature teeth, and unequal tooth widths. The electromagnetic performance is comprehensively investigated and the optimal design is conducted by using the finite-element method.
Wheel speed management control system for spacecraft
NASA Technical Reports Server (NTRS)
Goodzeit, Neil E. (Inventor); Linder, David M. (Inventor)
1991-01-01
A spacecraft attitude control system uses at least four reaction wheels. In order to minimize reaction wheel speed and therefore power, a wheel speed management system is provided. The management system monitors the wheel speeds and generates a wheel speed error vector. The error vector is integrated, and the error vector and its integral are combined to form a correction vector. The correction vector is summed with the attitude control torque command signals for driving the reaction wheels.
NASA Astrophysics Data System (ADS)
Xiong, Lu; Yu, Zhuoping; Wang, Yang; Yang, Chen; Meng, Yufeng
2012-06-01
This paper focuses on the vehicle dynamic control system for a four in-wheel motor drive electric vehicle, aiming at improving vehicle stability under critical driving conditions. The vehicle dynamics controller is composed of three modules, i.e. motion following control, control allocation and vehicle state estimation. Considering the strong nonlinearity of the tyres under critical driving conditions, the yaw motion of the vehicle is regulated by gain scheduling control based on the linear quadratic regulator theory. The feed-forward and feedback gains of the controller are updated in real-time by online estimation of the tyre cornering stiffness, so as to ensure the control robustness against environmental disturbances as well as parameter uncertainty. The control allocation module allocates the calculated generalised force requirements to each in-wheel motor based on quadratic programming theory while taking the tyre longitudinal/lateral force coupling characteristic into consideration. Simulations under a variety of driving conditions are carried out to verify the control algorithm. Simulation results indicate that the proposed vehicle stability controller can effectively stabilise the vehicle motion under critical driving conditions.
Power transmission device for four wheel drive vehicle
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iwatsuki, T.; Kawamoto, M.; Kano, T.
This patent describes a power transmission device with an improved differential motion limiting mechanism for a four wheel drive vehicle having automatic transmission means, front wheel differential gear means, differential motion limiting means and transfer unit means including center differential gear means, comprising: a first gear mount casing having a gear adapted to mesh with an output of a transmission; a differential motion limiting device arranged together with a front wheel differential gear in the first gear mount casing. The front wheel differential gear having a first diff-carrier and the differential motion limiting device comprising a hydraulic friction clutch formore » engaging and disengaging the first gear mount casing with the first diff-carrier of the front wheel differential gear; a second gear mount casing disposed coaxially with respect to the first gear mount casing; and a transfer unit including a center differential gear arranged in the second gear mount casing, the center differential gear comprising a second diff-carrier coupled with the first gear mount casing, a first side gear coupled with the first diff-carrier of the front wheel differential gear, and a second side gear coupled with the second gear mount casing for transmitting power to the rear wheels.« less
NASA Astrophysics Data System (ADS)
Li, Boyuan; Du, Haiping; Li, Weihua
2016-05-01
Although electric vehicles with in-wheel motors have been regarded as one of the promising vehicle architectures in recent years, the probability of in-wheel motor fault is still a crucial issue due to the system complexity and large number of control actuators. In this study, a modified sliding mode control (SMC) is applied to achieve fault-tolerant control of electric vehicles with four-wheel-independent-steering (4WIS) and four-wheel-independent-driving (4WID). Unlike in traditional SMC, in this approach the steering geometry is re-arranged according to the location of faulty wheels in the modified SMC. Three SMC control laws for longitudinal velocity control, lateral velocity control and yaw rate control are designed based on specific vehicle motion scenarios. In addition the actuator-grouping SMC method is proposed so that driving actuators are grouped and each group of actuators can be used to achieve the specific control target, which avoids the strong coupling effect between each control target. Simulation results prove that the proposed modified SMC can achieve good vehicle dynamics control performance in normal driving and large steering angle turning scenarios. In addition, the proposed actuator-grouping SMC can solve the coupling effect of different control targets and the control performance is improved.
Chen, Te; Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang
2018-04-20
Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified.
Chen, Long; Xu, Xing; Cai, Yingfeng; Jiang, Haobin; Sun, Xiaoqiang
2018-01-01
Exact estimation of longitudinal force and sideslip angle is important for lateral stability and path-following control of four-wheel independent driven electric vehicle. This paper presents an effective method for longitudinal force and sideslip angle estimation by observer iteration and information fusion for four-wheel independent drive electric vehicles. The electric driving wheel model is introduced into the vehicle modeling process and used for longitudinal force estimation, the longitudinal force reconstruction equation is obtained via model decoupling, the a Luenberger observer and high-order sliding mode observer are united for longitudinal force observer design, and the Kalman filter is applied to restrain the influence of noise. Via the estimated longitudinal force, an estimation strategy is then proposed based on observer iteration and information fusion, in which the Luenberger observer is applied to achieve the transcendental estimation utilizing less sensor measurements, the extended Kalman filter is used for a posteriori estimation with higher accuracy, and a fuzzy weight controller is used to enhance the adaptive ability of observer system. Simulations and experiments are carried out, and the effectiveness of proposed estimation method is verified. PMID:29677124
Federal Register 2010, 2011, 2012, 2013, 2014
2011-10-07
...-steer loaders are four-wheel drive vehicles with the left-side drive wheels independent of the right... exporter can demonstrate that it is sufficiently independent so as to be entitled to a separate rate.\\28... separate rate analysis is not necessary to determine whether it is independent from government control.\\29...
Herman, Josephine; Ameratunga, Shanthi N; Wainiqolo, Iris; Kafoa, Berlin; Robinson, Elizabeth; McCaig, Eddie; Jackson, Rod
2013-08-01
Sleepiness has been shown to be a risk factor for road crashes in high-income countries, but has received little attention in low- and middle-income countries. We examined the prevalence of sleepiness and sleep-related disorders among drivers of four-wheel motor vehicles in Fiji. Using a two-stage cluster sampling roadside survey conducted over 12 months, we recruited a representative sample of people driving four-wheel motor vehicles on the island of Viti Levu, Fiji. A structured interviewer-administered questionnaire sought self-report information on driver characteristics including sleep-related measures. The 752 motor vehicle drivers recruited (84% response rate) were aged 17-75 years, with most driving in Viti Levu undertaken by male subjects (93%), and those identifying with Indian (70%) and Fijian (22%) ethnic groups. Drivers who reported that they were not fully alert accounted for 17% of driving, while a further 1% of driving was undertaken by those who reported having difficulty staying awake or feeling sleepy. A quarter of the driving time among 15-24-year-olds included driving while sleepy or not fully alert, with a similar proportion driving while chronically sleep deprived (ie, with less than five nights of adequate sleep in the previous week=27%). Driving while acutely or chronically sleep deprived was generally more common among Fijians compared with Indians. Driving while not fully alert is relatively common in Fiji. Sleepiness while driving may be an important contributor to road traffic injuries in this and other low- and middle-income countries.
40 CFR 1066.410 - Dynamometer test procedure.
Code of Federal Regulations, 2014 CFR
2014-07-01
... drive mode. (For purposes of this paragraph (g), the term four-wheel drive includes other multiple drive... Dynamometer test procedure. (a) Dynamometer testing may consist of multiple drive cycles with both cold-start...-setting part identifies the driving schedules and the associated sample intervals, soak periods, engine...
Self-locking telescoping manipulator arm
NASA Technical Reports Server (NTRS)
Nesmith, M. F. (Inventor)
1985-01-01
A telescoping manipulator arm and pivotable finger assembly are disclosed. The telescoping arm assembly includes a generally T-shaped arm having three outwardly extending fingers guided on grooved roller guides to compensate for environmental variations. The pivotable finger assembly includes four pivoting fingers. Arcuate teeth are formed on the ends of the fingers. A rack having teeth on four sides meshes with each one of the fingers. One surface of the rack includes teeth along its entire surface which mesh with teeth of one of the fingers. The teeth at the remote end of the rack engage teeth of a gear wheel. The wheel includes a worm which meshes with a worn drive shaft of the drive motor providing a ninety degree self-locking drive for locking the fingers in a desired position. A similar drive provides a self-locking drive for positioning the telescoping arm.
Miniature pipe crawler tractor
McKay, Mark D.; Anderson, Matthew O.; Ferrante, Todd A.; Willis, W. David
2000-01-01
A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantially diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashley, S.
1991-05-01
Ford's new concept car achieves weight, size, and cost savings with an innovative lightweight aluminum space frame composed of simple extrusions that are fitted together like Lego blocks and adhesively bonded. On the outside, the design is a blend of art and technology that is a modern restatement of a large luxury car. The other major focus of the design is the Contour's compact T-drive powertrain configuration (also shared by the Mystique). This consists of a transversely mounted engine stuffed into the front of the chassis with a longitudinally positioned transmission right behind it. The T-drive arrangement shrinks the car'smore » engine bay and overall length while expanding the passenger compartment. In addition, powerplants with from four to eight cylinders as well as front-wheel-, rear-wheel-, and four-wheel-drive transmission systems can all be incorporated into the T-drive. Other technical innovations on the Contour include an unusual ducted cooling system, a compact brake assembly, a lightweight high-efficiency air conditioner, centralized single-source lighting, and simple but effective suspension technology.« less
Miniature pipe crawler tractor
DOE Office of Scientific and Technical Information (OSTI.GOV)
McKay, M.D.; Anderson, M.O.; Ferrante, T.A.
2000-03-14
A pipe crawler tractor may comprise a half tractor assembly having a first base drive wheel, a second base drive wheel, and a top drive wheel. The drive wheels are mounted in spaced-apart relation so that the top drive wheel is positioned between the first and second base drive wheels. The mounting arrangement is also such that the first and second base drive wheels contact the inside surface of the pipe at respective first and second positions and so that the top drive wheel contacts the inside surface of the pipe at a third position, the third position being substantiallymore » diametrically opposed to the first and second positions. A control system connected to the half tractor assembly controls the rotation of the first base wheel, the second base wheel, and the top drive wheel to move the half tractor assembly within the pipe.« less
NASA Astrophysics Data System (ADS)
Liu, Wei; He, Hongwen; Sun, Fengchun; Lv, Jiangyi
2017-05-01
This paper describes an integrated chassis control framework for a novel three-axle electric bus with active rear steering (ARS) axle and four motors at the middle and rear wheels. The proposed integrated framework consists of four parts: (1) an active speed limiting controller is designed for anti-body slip control and rollover prevention; (2) an ARS controller is designed for coordinating the tyre wear between the driving wheels; (3) an inter-axle torque distribution controller is designed for optimal torque distribution between the axles, considering anti-wheel slip and battery power limitations and (4) a data acquisition and estimation module for collecting the measured and estimated vehicle states. To verify the performances, a simulation platform is established in Trucksim software combined with Simulink. Three test cases are particularly designed to show the performances. The proposed algorithm is compared with a simple even control algorithm. The test results show satisfactory lateral stability and rollover prevention performances under severe steering conditions. The desired tyre wear coordinating performance is also realised, and the wheel slip ratios are restricted within stable region during intensive driving and emergency braking with complicated road conditions.
2015-06-09
JPL's RoboSimian drives a four-wheeled vehicle through a slalom course at the DARPA Robotics Challenge Finals in Pomona, California. This image was taken on June 6, 2015. http://photojournal.jpl.nasa.gov/catalog/PIA19325
NASA Astrophysics Data System (ADS)
Zhao, Zhiguo; Lei, Dan; Chen, Jiayi; Li, Hangyu
2018-05-01
When the four-wheel-drive hybrid electric vehicle (HEV) equipped with a dry dual clutch transmission (DCT) is in the mode transition process from pure electrical rear wheel drive to front wheel drive with engine or hybrid drive, the problem of vehicle longitudinal jerk is prominent. A mode transition robust control algorithm which resists external disturbance and model parameter fluctuation has been developed, by taking full advantage of fast and accurate torque (or speed) response of three electrical power sources and getting the clutch of DCT fully involved in the mode transition process. Firstly, models of key components of driveline system have been established, and the model of five-degrees-of-freedom vehicle longitudinal dynamics has been built by using a Uni-Tire model. Next, a multistage optimal control method has been produced to realize the decision of engine torque and clutch-transmitted torque. The sliding-mode control strategy for measurable disturbance has been proposed at the stage of engine speed dragged up. Meanwhile, the double tracking control architecture that integrates the model calculating feedforward control with H∞ robust feedback control has been presented at the stage of speed synchronization. Finally, the results from Matlab/Simulink software and hardware-in-the-loop test both demonstrate that the proposed control strategy for mode transition can not only coordinate the torque among different power sources and clutch while minimizing vehicle longitudinal jerk, but also provide strong robustness to model uncertainties and external disturbance.
NASA Astrophysics Data System (ADS)
Kobayashi, Takao; Katsuyama, Etsuo; Sugiura, Hideki; Ono, Eiichi; Yamamoto, Masaki
2018-05-01
This paper proposes an efficient direct yaw moment control (DYC) capable of minimising tyre slip power loss on contact patches for a four-independent wheel drive vehicle. Simulations identified a significant power loss reduction with a direct yaw moment due to a change in steer characteristics during acceleration or deceleration while turning. Simultaneously, the vehicle motion can be stabilised. As a result, the proposed control method can ensure compatibility between vehicle dynamics performance and energy efficiency. This paper also describes the results of a full-vehicle simulation that was conducted to examine the effectiveness of the proposed DYC.
The effect of competition on heart rate during kart driving: A field study.
Matsumura, Kenta; Yamakoshi, Takehiro; Yamakoshi, Yasuhiro; Rolfe, Peter
2011-09-09
Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min) were significantly higher than those during solo driving (140.9 beats/min) and rest (75.1 beats/min). The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength.
The effect of competition on heart rate during kart driving: A field study
2011-01-01
Background Both the act of competing, which can create a kind of mental stress, and participation in motor sports, which induces physical stress from intense g-forces, are known to increase heart rate dramatically. However, little is known about the specific effect of competition on heart rate during motor sports, particularly during four-wheel car driving. The goal of this preliminary study, therefore, was to investigate whether competition increases heart rate under such situations. Findings The participants drove an entry-level formula kart during two competitive races and during solo driving against the clock while heart rate and g-forces were measured. Analyses showed that heart rate values during the races (168.8 beats/min) were significantly higher than those during solo driving (140.9 beats/min) and rest (75.1 beats/min). Conclusions The results of this preliminary study indicate that competition heightens heart rate during four-wheel car driving. Kart drivers should be concerned about maintaining good health and developing physical strength. PMID:21906298
Electronic 4-wheel drive control device
NASA Technical Reports Server (NTRS)
Hayato, S.; Takanori, S.; Shigeru, H.; Tatsunori, S.
1984-01-01
The internal rotation torque generated during operation of a 4-wheel drive vehicle is reduced using a control device whose clutch is attached to one part of the rear-wheel drive shaft. One torque sensor senses the drive torque associated with the rear wheel drive shaft. A second sensor senses the drive torque associated with the front wheel drive shaft. Revolution count sensors sense the revolutions of each drive shaft. By means of a microcomputer, the engagement of the clutch is changed to insure that the ratio of the torque sensors remains constant.
Engineering analysis of shortfall for new technologies. Analysis memorandum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1981-03-11
The engineering principles that govern the mpg performance of alternative technologies on the EPA test procedure and under in-use conditions are examined. The results can be used to interpret the shortfall of alternative technologies derived from statistical analyses. The analysis examines each of the four technologies in comparison to the conventional technology counterpart. Manual transmissions are compared to automatics, fuel injected S.I. engines to carburetted S.I. engines, front-wheel drive vehicles to rear-wheel drive vehicles and diesel engines to carburetted S.I. engines. The changes in shortfall of the four technologies in comparison to conventional technologies are explained through differences in responsesmore » to the factors.« less
Vehicle handling and stability control by the cooperative control of 4WS and DYC
NASA Astrophysics Data System (ADS)
Shen, Huan; Tan, Yun-Sheng
2017-07-01
This paper proposes an integrated control system that cooperates with the four-wheel steering (4WS) and direct yaw moment control (DYC) to improve the vehicle handling and stability. The design works of the four-wheel steering and DYC control are based on sliding mode control. The integration control system produces the suitable 4WS angle and corrective yaw moment so that the vehicle tracks the desired yaw rate and sideslip angle. Considering the change of the vehicle longitudinal velocity that means the comfort of driving conditions, both the driving torque and braking torque are used to generate the corrective yaw moment. Simulation results show the effectiveness of the proposed control algorithm.
Air actuated clutch for four wheel drive vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clohessy, K.E.
1986-12-09
A control system is described for selectively engaging and disengaging a vehicle wheel and a vehicle drive mechanism comprising; a spindle having inside and outside rotative support surfaces, the spindle adapted to be mounted to a vehicle frame, an axle portion rotatably supported on the inside support surface, and drive means for selectively and rotatively driving the axle portion relative to the spindle; a wheel hub assembly adapted to carry a vehicle wheel, the hub assembly rotatively supported on the outside support surface of the spindle; a sealed expansion chamber defined in part by the spindle, the axle portion, themore » hub assembly and a movable wall carried by the hub assembly, venting means venting the outer side of the movable wall to atmospheric pressure, the clutch ring engaged by the movable wall for movement of the clutch ring with movement of the movable wall as induced by a pressure difference generated within the chamber, and pressurizing means for selectively pressurizing and depressurizing the expansion chamber to thereby selectively shift the clutch ring between the positions of interlocking the axle portion and hub assembly and unlocking the axle portion and hub assembly.« less
Code of Federal Regulations, 2010 CFR
2010-10-01
... per gallon, in the model year specified as applicable: Table I Model year 2-wheel drive light trucks Captive imports Other 4-wheel drive light trucks Captive imports Other Limited product line light trucks... standard Captive imports Others 2-wheel drive light trucks Captive imports Others 4-wheel drive light...
Code of Federal Regulations, 2011 CFR
2011-10-01
... per gallon, in the model year specified as applicable: Table I Model year 2-wheel drive light trucks Captive imports Other 4-wheel drive light trucks Captive imports Other Limited product line light trucks... standard Captive imports Others 2-wheel drive light trucks Captive imports Others 4-wheel drive light...
Code of Federal Regulations, 2012 CFR
2012-10-01
... per gallon, in the model year specified as applicable: Table I Model year 2-wheel drive light trucks Captive imports Other 4-wheel drive light trucks Captive imports Other Limited product line light trucks... standard Captive imports Others 2-wheel drive light trucks Captive imports Others 4-wheel drive light...
Mobility performance analysis of an innovation lunar rover with diameter-variable wheel
NASA Astrophysics Data System (ADS)
Sun, Gang; Gao, Feng; Sun, Peng; Xu, Guoyan
2007-11-01
To achieve excellent mobility performance, a four-wheel, all-wheel drive lunar rover with diameter-variable wheel was presented, the wheel can be contracted and extended by the motor equipped in the wheel hub, accompanied with wheel diameter varying from 200mm to 390mm. The wheel sinkage and drawbar pull force were predicated with terramechanics formulae and lunar regolith mechanic parameters employed, furthermore, the slope traversability was investigated through quasi-static modeling mechanic analysis, also the obstacle resistance and the maximum negotiable obstacle height for different wheel radius were derived from the equations of static equilibrium of the rover. Analysis results show that for the innovation lunar rover presented, it will bring much better slope traveling stability and obstacle climbing capability than rovers with normal wheels, these will improve the rover mobility performance and stabilize the rover's frame, smooth the motion of sensors.
Bidirectional drive and brake mechanism
NASA Technical Reports Server (NTRS)
Swan, Scott A. (Inventor)
1991-01-01
A space transport vehicle is disclosed as including a body which is arranged to be movably mounted on an elongated guide member disposed in outer space and driven therealong. A drive wheel is mounted on a drive shaft and arranged to be positioned in rolling engagement with the elongated guide carrying the vehicle. A brake member is arranged on the drive shaft for movement into and out of engagement with an adjacent surface of the drive wheel. An actuator is mounted on the body to be manually moved back and forth between spaced positions in an arc of movement. A ratchet-and-pawl mechanism is arranged to operate upon movements of the actuator in one direction between first and second positions for coupling the actuator to the drive wheel to incrementally rotate the wheel in one rotational direction and to operate upon movements of the actuator in the opposite direction for uncoupling the actuator from the wheel. The brake member is threadedly coupled to the drive shaft in order that the brake member will be operated only when the actuator is moved on beyond its first and second positions for shifting the brake member along the drive shaft and into frictional engagement with the adjacent surface on the drive wheel.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 2-wheel drive category for compliance purposes. (c) For model years 1980 and 1981, manufacturers of... miles per gallon, in the model year specified as applicable: Table I Model year 2-wheel drive light trucks Captiveimports Other 4-wheel drive light trucks Captiveimports Other Limited product line light...
Impediment to Spirit Drive on Sol 1806
NASA Technical Reports Server (NTRS)
2009-01-01
The hazard avoidance camera on the front of NASA's Mars Exploration Rover Spirit took this image after a drive by Spirit on the 1,806th Martian day, or sol, (January 31, 2009) of Spirit's mission on the surface of Mars. The wheel at the bottom right of the image is Spirit's right-front wheel. Because that wheel no longer turns, Spirit drives backwards dragging that wheel. The drive on Sol 1806 covered about 30 centimeters (1 foot). The rover team had planned a longer drive, but Spirit stopped short, apparently from the right front wheel encountering the partially buried rock visible next to that wheel. The hazard avoidance cameras on the front and back of the rover provide wide-angle views. The hill on the horizon in the right half of this image is Husband Hill. Spirit reached the summit of Husband Hill in 2005.A new energy-efficient control approach for space telescope drive system
NASA Astrophysics Data System (ADS)
Zhou, Wangping; Wang, Yong
Drive control makes the telescope accurately track celestial bodies in spite of external and in-ternal disturbances, and is a key technique to the performance of telescopes. In this paper, we propose a nonlinear adaptive observer based on power reversible approach for high preci-sion position tracking, i.e., space telescopes. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be ev-idently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. A pair of diagonal sections is switched on for speeding up the reaction wheel and the other pair act in reverse. During the period of the wheel slowing down, the armature current of drive motor goes through the two path-wise diodes to discharge the battery. Thusly, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an eval-uation function which is made up of a weighted sum of position errors and energy consumption. The outputs of the controller are amplified to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.
Origami Wheel Transformer: A Variable-Diameter Wheel Drive Robot Using an Origami Structure.
Lee, Dae-Young; Kim, Sa-Reum; Kim, Ji-Suk; Park, Jae-Jun; Cho, Kyu-Jin
2017-06-01
A wheel drive mechanism is simple, stable, and efficient, but its mobility in unstructured terrain is seriously limited. Using a deformable wheel is one of the ways to increase the mobility of a wheel drive robot. By changing the radius of its wheels, the robot becomes able to pass over not only high steps but also narrow gaps. In this article, we propose a novel design for a variable-diameter wheel using an origami-based soft robotics design approach. By simply folding a patterned sheet into a wheel shape, a variable-diameter wheel was built without requiring lots of mechanical parts and a complex assembly process. The wheel's diameter can change from 30 to 68 mm, and it is light in weight at about 9.7 g. Although composed of soft materials (fabrics and films), the wheel can bear more than 400 times its weight. The robot was able to change the wheel's radius in response to terrain conditions, allowing it to pass over a 50-mm gap when the wheel is shrunk and a 50-mm step when the wheel is enlarged.
NASA Astrophysics Data System (ADS)
Goodarzi, Avesta; Mohammadi, Masoud
2014-04-01
In this paper, vehicle stability control and fuel economy for a 4-wheel-drive hybrid vehicle are investigated. The integrated controller is designed within three layers. The first layer determines the total yaw moment and total lateral force made by using an optimal controller method to follow the desired dynamic behaviour of a vehicle. The second layer determines optimum tyre force distribution in order to optimise tyre usage and find out how the tyres should share longitudinal and lateral forces to achieve a target vehicle response under the assumption that all four wheels can be independently steered, driven, and braked. In the third layer, the active steering, wheel slip, and electrical motor torque controllers are designed. In the front axle, internal combustion engine (ICE) is coupled to an electric motor (EM). The control strategy has to determine the power distribution between ICE and EM to minimise fuel consumption and allowing the vehicle to be charge sustaining. Finally, simulations performed in MATLAB/SIMULINK environment show that the proposed structure could enhance the vehicle stability and fuel economy in different manoeuvres.
49 CFR 571.126 - Standard No. 126; Electronic stability control systems.
Code of Federal Regulations, 2013 CFR
2013-10-01
... cycle that is designed for low-speed, off-road driving, or (b) the vehicle is in a four-wheel drive configuration selected by the driver on the previous ignition cycle that is designed for operation at higher.... Light outriggers are designed with a maximum weight of 27 kg (59.5 lb) and a maximum roll moment of...
Decoupling control of steering and driving system for in-wheel-motor-drive electric vehicle
NASA Astrophysics Data System (ADS)
Zhang, Han; Zhao, Wanzhong
2018-02-01
To improve the maneuverability and stability of in-wheel-motor-drive electric vehicle, a control strategy based on nonlinear decoupling control method is proposed in this paper, realizing the coordinated control of the steering and driving system. At first, the nonlinear models of the in-wheel-motor-drive electric vehicle and its sub-system are constructed. Then the inverse system decoupling theory is applied to decompose the nonlinear system into several independent subsystems, which makes it possible to realize the coordinated control of each subsystem. Next, the μ-Synthesis theory is applied to eliminate the influence of model uncertainty, improving the stability, robustness and tracking performance of in-wheel-motor-drive electric vehicle. Simulation and experiment results and numerical analyses, based on the electric vehicle actuated by in-wheel-motors, prove that the proposed control method is effective to accomplish the decoupling control of the steering and driving system in both simulation and real practice.
Position and force control of a vehicle with two or more steerable drive wheels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Unseren, M.A.
1992-10-01
When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach tomore » the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.« less
GMT azimuth bogie wheel-rail interface wear study
NASA Astrophysics Data System (ADS)
Teran, Jose; Lindh, Cory; Morgan, Chris; Manuel, Eric; Bigelow, Bruce C.; Burgett, William S.
2016-07-01
Performance of the GMT azimuth drive system is vital for the operation of the telescope and, as such, all components subject to wear at the drive interface merit a high level of scrutiny for achieving a proper balance between capital costs, maintenance costs, and the risk for downtime during planned and unplanned maintenance or replacement procedures. Of particular importance is the interface between the azimuth wheels and rail, as usage frequency is high, the full weight of the enclosure must be transferred through small patches of contact, and replacement of the rail would pose a greater logistical challenge than the replacement of smaller components such as bearings and gearmotors. This study investigates tradeoffs between various wheel-rail and roller-track interfaces, including performance, complexity, and anticipated wear considerations. First, a survey of railway and overhead crane industry literature is performed and general detailing recommendations are made to minimize wear and the risk of rolling contact fatigue. Second, Adams/VI-Rail is used to simulate lifetime wear of four specific configurations under consideration for the GMT azimuth wheel-rail interface; all studied configurations are shown to be viable, and their relative merits are discussed.
NASA Astrophysics Data System (ADS)
Itoh, Masato; Hagimori, Yuki; Nonaka, Kenichiro; Sekiguchi, Kazuma
2016-09-01
In this study, we apply a hierarchical model predictive control to omni-directional mobile vehicle, and improve the tracking performance. We deal with an independent four-wheel driving/steering vehicle (IFWDS) equipped with four coaxial steering mechanisms (CSM). The coaxial steering mechanism is a special one composed of two steering joints on the same axis. In our previous study with respect to IFWDS with ideal steering, we proposed a model predictive tracking control. However, this method did not consider constraints of the coaxial steering mechanism which causes delay of steering. We also proposed a model predictive steering control considering constraints of this mechanism. In this study, we propose a hierarchical system combining above two control methods for IFWDS. An upper controller, which deals with vehicle kinematics, runs a model predictive tracking control, and a lower controller, which considers constraints of coaxial steering mechanism, runs a model predictive steering control which tracks the predicted steering angle optimized an upper controller. We verify the superiority of this method by comparing this method with the previous method.
ERIC Educational Resources Information Center
Nordmark, Staffan
1984-01-01
This report contains a theoretical model for describing the motion of a passenger car. The simulation program based on this model is used in conjunction with an advanced driving simulator and run in real time. The mathematical model is complete in the sense that the dynamics of the engine, transmission and steering system is described in some…
Global Versus Reactive Navigation for Joint UAV-UGV Missions in a Cluttered Environment
2012-06-01
spaces. The vehicle uses a two- wheel 5 differential drive system with a third omnidirectional caster for balance. This uncomplicated system saves... wheels , two differential drive wheels and one omni- directional caster wheel . The vehicle changes the direction of its movement by altering the speed of...Virtual Speed Versus Time..........64 Figure 23: Heading and Yaw Rate Versus Time................64 Figure 24: Individual Wheel Speeds Versus Time
Electronic differential control of 2WD electric vehicle considering steering stability
NASA Astrophysics Data System (ADS)
Hua, Yiding; Jiang, Haobin; Geng, Guoqing
2017-03-01
Aiming at the steering wheel differential steering control technology of rear wheel independent driving electric wheel, considering the assisting effect of electronic differential control on vehicle steering, based on the high speed steering characteristic of electric wheel car, the electronic differential speed of auxiliary wheel steering is also studied. A yaw moment control strategy is applied to the vehicle at high speed. Based on the vehicle stability reference value, yaw rate is used to design the fuzzy controller to distribute the driving wheel torque. The simulation results show that the basic electronic differential speed function is realized based on the yaw moment control strategy, while the vehicle stability control is improved and the driving safety is enhanced. On the other hand, the torque control strategy can also assist steering of vehicle.
Method for controlling a vehicle with two or more independently steered wheels
Reister, D.B.; Unseren, M.A.
1995-03-28
A method is described for independently controlling each steerable drive wheel of a vehicle with two or more such wheels. An instantaneous center of rotation target and a tangential velocity target are inputs to a wheel target system which sends the velocity target and a steering angle target for each drive wheel to a pseudo-velocity target system. The pseudo-velocity target system determines a pseudo-velocity target which is compared to a current pseudo-velocity to determine a pseudo-velocity error. The steering angle targets and the steering angles are inputs to a steering angle control system which outputs to the steering angle encoders, which measure the steering angles. The pseudo-velocity error, the rate of change of the pseudo-velocity error, and the wheel slip between each pair of drive wheels are used to calculate intermediate control variables which, along with the steering angle targets are used to calculate the torque to be applied at each wheel. The current distance traveled for each wheel is then calculated. The current wheel velocities and steering angle targets are used to calculate the cumulative and instantaneous wheel slip and the current pseudo-velocity. 6 figures.
Mid-sized omnidirectional robot with hydraulic drive and steering
NASA Astrophysics Data System (ADS)
Wood, Carl G.; Perry, Trent; Cook, Douglas; Maxfield, Russell; Davidson, Morgan E.
2003-09-01
Through funding from the US Army-Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program, Utah State University's (USU) Center for Self-Organizing and Intelligent Systems (CSOIS) has developed the T-series of omni-directional robots based on the USU omni-directional vehicle (ODV) technology. The ODV provides independent computer control of steering and drive in a single wheel assembly. By putting multiple omni-directional (OD) wheels on a chassis, a vehicle is capable of uncoupled translational and rotational motion. Previous robots in the series, the T1, T2, T3, ODIS, ODIS-T, and ODIS-S have all used OD wheels based on electric motors. The T4 weighs approximately 1400 lbs and features a 4-wheel drive wheel configuration. Each wheel assembly consists of a hydraulic drive motor and a hydraulic steering motor. A gasoline engine is used to power both the hydraulic and electrical systems. The paper presents an overview of the mechanical design of the vehicle as well as potential uses of this technology in fielded systems.
Mechanical Design Engineering Enabler Project wheel and wheel drives
NASA Technical Reports Server (NTRS)
Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.
1992-01-01
Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.
Evaluating Environmental Impacts of Off-Road Vehicles.
ERIC Educational Resources Information Center
Kay, Jeanne; And Others
1981-01-01
Discusses a study undertaken to determine the ecological effects of off-road vehicles, such as four-wheel drive trucks and dirt bikes in the Big Cottonwood Canyon area near Salt Lake City. Applications of the study to other investigations of off-road vehicles are discussed. (DB)
Friction self-oscillation decrease in nonlinear system of locomotive traction drive
NASA Astrophysics Data System (ADS)
Antipin, D. Ya; Vorobiyov, V. I.; Izmerov, O. V.; Shorokhov, S. G.; Bondarenko, D. A.
2017-02-01
The problems of the friction self-oscillation decrease in a nonlinear system of a locomotive traction drive are considered. It is determined that the self-oscillation amplitude decrease in a locomotive wheel pair during boxing in traction drives with an elastic linkage between an armature of a traction electric motor and gearing can be achieved due to drive damping capacity during impact vibro-damping in an axle reduction gear with a hard driven gear. The self-oscillation amplitude reduction in a wheel pair in the designs of locomotive traction drives with the location of elastic elements between a wheel pair and gearing can be obtained owing to the application of drive inertial masses as an anti-vibrator. On the basis of the carried out investigations, a design variant of a self-oscillation shock absorber of a traction electric motor framework on a reduction gear suspension with an absorber located beyond a wheel-motor unit was offered.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Unseren, M.A.
When a vehicle with two or more steerable drive wheels is traveling in a circle, the motion of the wheels is constrained. The wheel translational velocity divided by the radius to the center of rotation must be the same for all wheels. When the drive wheels are controlled independently using position control, the motion of the wheels may violate the constraints and the wheels may slip. Consequently, substantial errors can occur in the orientation of the vehicle. A vehicle with N drive wheels has (N - 1) constraints and one degree of freedom. We have developed a new approach tomore » the control of a vehicle with N steerable drive wheels. The novel aspect of our approach is the use of force control. To control the vehicle, we have one degree of freedom for the position on the circle and (N - 1) forces that can be used to reduce errors. Recently, Kankaanranta and Koivo developed a control architecture that allows the force and position degrees of freedom to be decoupled. In the work of Kankaanranta and Koivo the force is an exogenous input. We have made the force endogenous by defining the force in terms of the errors in satisfying the rigid body kinematic constraints. We have applied the control architecture to the HERMIES-III robot and have measured a dramatic reduction in error (more than a factor of 20) compared to motions without force control.« less
Effects of fatigue on driving performance under different roadway geometries: a simulator study.
Du, Hongji; Zhao, Xiaohua; Zhang, Xingjian; Zhang, Yunlong; Rong, Jian
2015-01-01
This article examines the effects of fatigue on driving performance under different roadway geometries using a driving simulator. Twenty-four participants each completed a driving scenario twice: while alert and while experiencing fatigue. The driving scenario was composed of straight road segments and curves; there were 6 curves with 3 radius values (i.e., 200, 500, and 800 m) and 2 turning directions (i.e., left and right). Analysis was conducted on driving performance measures such as longitudinal speed, steering wheel movements, and lateral position. RESULTS confirmed that decremental changes in driving performance due to fatigue varied among road conditions. On straight segments, drivers' abilities to steer and maintain lane position were impaired, whereas on curves we found decremental changes in the quality of longitudinal speed as well as steering control and keeping the vehicle in the lane. Moreover, the effects of fatigue on driving performance were relative to the radius and direction of the curve. Fatigue impaired drivers' abilities to control the steering wheel, and the impairment proved more obvious on curves. The degree varied significantly as the curve radius changed. Drivers tended to drive closer to the right side due to fatigue, and the impairment in maintaining lane position became more obvious as the right-turn curve radius decreased. Driver fatigue has detrimental effects on driving performance, and the effects differ under different roadway geometries.
Baseline tests of the Kordesh hybrid passenger vehicle
NASA Technical Reports Server (NTRS)
Soltis, R. F.; Bozek, J. M.; Denington, R. J.; Dustin, M. O.
1978-01-01
Performance test results are presented for a four-passenger Austin A40 sedan that was converted to a heat-engine-alternator-and battery-powered hybrid. It is propelled by a conventional, gasoline-fueled, heat-engine-driven alternator and a traction pack powering a series-wound, 10 hp direct-current electric drive motor. The 16 hp gasoline engine drives the 7 kilowatt alternator, which provides electrical power to the drive motor or to the 96 volt traction battery through a rectifier. The propulsion battery consists of eight 12 volt batteries connected in series. The electric motor is coupled to a four-speed standard transmission, which drives the rear wheels. Power to the motor is controlled by a three-step foot throttle, which actuates relays that control armature current and field excitation. Conventional hydraulic brakes are used.
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu
This paper describes a novel straight road driving control scheme of power assisted wheelchair. Power assisted wheelchair which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people. The straight driving can be prevented by the road conditions such as branches, grass and carpets because the right and left wheels drive independently. This paper proposes a straight road driving control system based on the disturbance torque estimation. The proposed system estimates the difference of the driving torque by disturbance torque observer and compensates to one side of the wheels. Some practical driving experiments on various road conditions show the effectiveness of the proposed control system.
NASA Technical Reports Server (NTRS)
2004-01-01
This plot maps the increasing amounts of energy needed to spin Spirit's right front wheel drive, which has been showing signs of age. The wheel has now traveled six times farther than its design life. Since Spirit's 126th day on Mars, this wheel has required additional electric current to run at normal speeds, as indicated with blue diamonds on this graph. Efforts to improve the situation by redistributing the lubricant in the wheel with heat and rest were only mildly successful (pink squares). To cope with the condition, rover planners have come up with a creative solution: they will drive the rover backwards using five of six wheels. The sixth wheel will be activated only when the terrain demands it.NASA Astrophysics Data System (ADS)
Zhang, Chuanwei; Zhang, Dongsheng; Wen, Jianping
2018-02-01
In order to coordinately control the torque distribution of existing two-wheel independent drive electric vehicle, and improve the energy efficiency and control stability of the whole vehicle, the control strategies based on fuzzy control were designed which adopt the direct yaw moment control as the main line. For realizing the torque coordination simulation of the two-wheel independent drive vehicle, the vehicle model, motor model and tire model were built, including the vehicle 7 - DOF dynamics model, motion equation, torque equation. Finally, in the Carsim - Simulink joint simulation platform, the feasibility of the drive control strategy was verified.
Method for surmounting an obstacle by a robot vehicle
NASA Technical Reports Server (NTRS)
Wilcox, Brian H. (Inventor); Ohm, Timothy R. (Inventor)
1994-01-01
Surmounting obstacles in the path of a robot vehicle is accomplished by rotating the wheel forks of the vehicle about their transverse axes with respect to the vehicle body so as to shift most of the vehicle weight onto the rear wheels, and then driving the vehicle forward so as to drive the now lightly-loaded front wheels (only) over the obstacle. Then, after the front wheels have either surmounted or completely passed the obstacle (depending upon the length of the obstacle), the forks are again rotated about their transverse axes so as to shift most of the vehicle weight onto the front wheels. Then the vehicle is again driven forward so as to drive the now lightly-loaded rear wheels over the obstacle. Once the obstacle has been completely cleared and the vehicle is again on relatively level terrain, the forks are again rotated so as to uniformly distribute the vehicle weight between the front and rear wheels.
Opportunity Rolls Free Again (Four Wheels)
NASA Technical Reports Server (NTRS)
2006-01-01
This animated piece illustrates the recent escape of NASA's Mars Exploration Rover Opportunity from dangerous, loose material on the vast plains leading to the rover's next long-term target, 'Victoria Crater.' A series of images from the front and rear hazard-avoidance cameras make up this brief movie chronicling the challenge Opportunity faced to free itself from the ripple dubbed 'Jammerbugt.' Each quadrant shows one of the rover's four corner wheels: left front wheel in upper left, right front wheel in upper right, rear wheels in the lower quadrants. The wheels became partially embedded in the ripple at the end of a drive on Opportunity's 833rd Martian day, or sol (May 28, 2006). The images in this clip were taken on sols 836 through 841 (May 31 through June 5, 2006). Scientists and engineers who had been elated at the meters of progress the rover had been making in earlier drives were happy for even centimeters of advance per sol as they maneuvered their explorer through the slippery material of Jammerbugt. The wheels reached solid footing on a rock outcrop on the final sol of this sequence. The science and engineering teams appropriately chose the ripple's informal from name the name of a bay on the north coast of Denmark. Jammerbugt, or Jammerbugten, loosely translated, means Bay of Lamentation or Bay of Wailing. The shipping route from the North Sea to the Baltic passes Jammerbugt on its way around the northern tip of Jutland. This has always been an important trade route and many ships still pass by the bay. The prevailing wind directions are typically northwest to southwest with the strongest winds and storms tending to blow from the northwest. A northwesterly wind will blow straight into the Jammerbugt, towards shore. Therefore, in the age of sail, many ships sank there during storms. The shore is sandy, but can have strong waves, so running aground was very dangerous even though there are no rocks. Fortunately, Opportunity weathered its 'Jammerbugt' and is again on its way toward Victoria Crater.23. DETAIL VIEW OF THE CLUTCH MECHANISM FOR THE MILL ...
23. DETAIL VIEW OF THE CLUTCH MECHANISM FOR THE MILL POWER DISTRIBUTION SYSTEM FROM LEFT TO RIGHT. TRANSFER WHEEL WITH A BELT THAT CONNECTS TO THE DRIVE WHEEL OF THE MAIN POWER SHAFT. THE CLUTCH MECHANISM, THE DRIVE WHEEL THAT RECEIVED ITS POWER FROM A BELT CONNECTED TO TRANSFER WHEEL IN THE ELECTRIC MOTOR ROOM (BEHIND CAMERA). - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA
Opportunity's First Dip into Victoria Crater
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Mars Exploration Rover Opportunity entered Victoria Crater during the rover's 1,291st Martian day, or sol, (Sept. 11, 2007). The rover team commanded Opportunity to drive just far enough into the crater to get all six wheels onto the inner slope, and then to back out again and assess how much the wheels slipped on the slope. The driving commands for the day included a precaution for the rover to stop driving if the wheels were slipping more than 40 percent. Slippage exceeded that amount on the last step of the drive, so Opportunity stopped with its front pair of wheels still inside the crater. The rover team planned to assess results of the drive, then start Opportunity on an extended exploration inside the crater. This wide-angle view taken by Opportunity's front hazard-identification camera at the end of the day's driving shows the wheel tracks created by the short dip into the crater. The left half of the image looks across an alcove informally named 'Duck Bay' toward a promontory called 'Cape Verde' clockwise around the crater wall. The right half of the image looks across the main body of the crater, which is 800 meters (half a mile) in diameter.A novel dual motor drive system for three wheel electric vehicles
NASA Astrophysics Data System (ADS)
Panmuang, Piyapat; Thongsan, Taweesak; Suwapaet, Nuchida; Laohavanich, Juckamass; Photong, Chonlatee
2018-03-01
This paper presents a novel dual motor drive system used for three wheel electric vehicles that have one free wheel at the front and two wheels with a drive system at the end of the vehicles. A novel dual motor drive system consists of two identical DC motors that are independently controlled by its speed-torque controller. Under light load conditions, only one of the DC motors will operate around it rated whilst under hard load conditions both of the DC motors will operate. With this drive system, the motors will operate only at its high performance at rated or else no operate to retain longer lifetime. The simulated results for the Skylab three wheel electric vehicle prototype with 8kW at full load (high torque, low speed) and around 4kW at light/normal operating loads (regular speed-torque) showed that the proposed system provides better dynamic responses with faster overshoot current/voltage recovery time, has lower investment costs, has longer lifetime of the motors and allows the motors to always operate at their high performance and thus achieve more cost effective system compared to a single motor drive system with 8kW DC motors.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-07-30
... amendments to its evaporative emission test procedures, four-wheel drive dynamometer provisions, and vehicle... manufacturer has certified vehicles using an alternative running loss test procedure, CARB may conduct... manufacturer's approved alternative running loss test procedure; (3) provide manufacturers an option to use an...
Driver behavior following an automatic steering intervention.
Fricke, Nicola; Griesche, Stefan; Schieben, Anna; Hesse, Tobias; Baumann, Martin
2015-10-01
The study investigated driver behavior toward an automatic steering intervention of a collision mitigation system. Forty participants were tested in a driving simulator and confronted with an inevitable collision. They performed a naïve drive and afterwards a repeated exposure in which they were told to hold the steering wheel loosely. In a third drive they experienced a false alarm situation. Data on driving behavior, i.e. steering and braking behavior as well as subjective data was assessed in the scenarios. Results showed that most participants held on to the steering wheel strongly or counter-steered during the system intervention during the first encounter. Moreover, subjective data collected after the first drive showed that the majority of drivers was not aware of the system intervention. Data from the repeated drive in which participants were instructed to hold the steering wheel loosely, led to significantly more participants holding the steering wheel loosely and thus complying with the instruction. This study seems to imply that without knowledge and information of the system about an upcoming intervention, the most prevalent driving behavior is a strong reaction with the steering wheel similar to an automatic steering reflex which decreases the system's effectiveness. Results of the second drive show some potential for countermeasures, such as informing drivers shortly before a system intervention in order to prevent inhibiting reactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
SeaFrame: Innovation Leads to Superior Warfighting Capability. Volume 4, Issue 1, 2008
2008-01-01
U” stands for utility, “K” stands for front wheel drive, and “W” indicates two rear-driving axles .) AMPHIBIOUS FORCE LOGISTIC SUPPORT...using the very latest state-of-the-art instrumentation and analysis techniques,” says Gabor Karafiath, one of the project’s principal investigators. “I...first with standard bladed propulsors with struts and shafting . Then, the model was modified to accom- modate four waterjets, the nozzles of which were
ERIC Educational Resources Information Center
Army Ordnance Center and School, Aberdeen Proving Ground, MD.
This course is one of several subcourses that make up the entire Army correspondence course on wheeled vehicle maintenance. The subcourse is designed to provide the student with information about the operation, malfunction diagnosis, maintenance, and repair of wheeled vehicle drive lines, axles, and suspension systems. It provides the basic…
REAL-TIME MODEL-BASED ELECTRICAL POWERED WHEELCHAIR CONTROL
Wang, Hongwu; Salatin, Benjamin; Grindle, Garrett G.; Ding, Dan; Cooper, Rory A.
2009-01-01
The purpose of this study was to evaluate the effects of three different control methods on driving speed variation and wheel-slip of an electric-powered wheelchair (EPW). A kinematic model as well as 3-D dynamic model was developed to control the velocity and traction of the wheelchair. A smart wheelchair platform was designed and built with a computerized controller and encoders to record wheel speeds and to detect the slip. A model based, a proportional-integral-derivative (PID) and an open-loop controller were applied with the EPW driving on four different surfaces at three specified speeds. The speed errors, variation, rise time, settling time and slip coefficient were calculated and compared for a speed step-response input. Experimental results showed that model based control performed best on all surfaces across the speeds. PMID:19733494
Code of Federal Regulations, 2013 CFR
2013-10-01
... by a manufacturer whose principal place of business is in the United States. 4-wheel drive, general utility vehicle means a 4-wheel drive, general purpose automobile capable of off-highway operation that...
NASA Astrophysics Data System (ADS)
Chen, Te; Xu, Xing; Chen, Long; Jiang, Haobing; Cai, Yingfeng; Li, Yong
2018-02-01
Accurate estimation of longitudinal force, lateral vehicle speed and yaw rate is of great significance to torque allocation and stability control for four-wheel independent driven electric vehicle (4WID-EVs). A fusion method is proposed to estimate the longitudinal force, lateral vehicle speed and yaw rate for 4WID-EVs. The electric driving wheel model (EDWM) is introduced into the longitudinal force estimation, the longitudinal force observer (LFO) is designed firstly based on the adaptive high-order sliding mode observer (HSMO), and the convergence of LFO is analyzed and proved. Based on the estimated longitudinal force, an estimation strategy is then presented in which the strong tracking filter (STF) is used to estimate lateral vehicle speed and yaw rate simultaneously. Finally, co-simulation via Carsim and Matlab/Simulink is carried out to demonstrate the effectiveness of the proposed method. The performance of LFO in practice is verified by the experiment on chassis dynamometer bench.
BLOWER MOTOR & DRIVE WHEEL. Hot Springs National Park, ...
BLOWER MOTOR & DRIVE WHEEL. - Hot Springs National Park, Bathhouse Row, Superior Bathhouse: Mechanical & Piping Systems, State Highway 7, 1 mile north of U.S. Highway 70, Hot Springs, Garland County, AR
Two speed drive system. [mechanical device for changing speed on rotating vehicle wheel
NASA Technical Reports Server (NTRS)
Burch, J. L. (Inventor)
1972-01-01
A two speed drive system for a wheel of a vehicle by which shifting from one speed to the other is accomplished by the inherent mechanism of the wheel is described. A description of the speed shifting operation is provided and diagrams of the mechanism are included. Possible application to lunar roving vehicles is proposed.
NASA Technical Reports Server (NTRS)
Barber, T. A.
1980-01-01
Efforts to achieve a 100 mile urban range, to reduce petroleum usage 40% to 70%, and to commercialize battery technology are discussed with emphasis on an all plastic body, four passenger car that is flywheel assisted and battery powered, and on an all metal body, four passenger car with front wheel drive and front motor. For the near term case, a parallel hybrid in which the electric motor and the internal combustion engine may directly power the drive wheels, is preferred to a series design. A five passenger car in which the electric motor and the gasoline engine both feed into the same transmission is discussed. Upgraded demonstration vehicles were tested using advanced lead acid, nickel zinc, nickel iron, and zinc chloride batteries to determine maximum acceleration, constant speed, and battery behavior. The near term batteries demonstrated significant improvement relative to current lead acid batteries. The increase in range was due to improved energy density, and ampere hour capacity, with relatively 1 small weight and volume differences.
49 CFR 230.114 - Wheel centers.
Code of Federal Regulations, 2013 CFR
2013-10-01
..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2013-10-01 2013-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...
49 CFR 230.114 - Wheel centers.
Code of Federal Regulations, 2014 CFR
2014-10-01
..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2014-10-01 2014-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...
49 CFR 230.105 - Lateral motion.
Code of Federal Regulations, 2014 CFR
2014-10-01
... between the hubs of the wheels and the boxes on any pair of wheels shall not exceed the following limits: Inches Engine truck wheels (with swing centers) 1 Engine truck wheels (with rigid centers) 11/2 Trailing truck wheels 1 Driving wheels 3/4 (b) Limits increased. These limits may be increased on steam...
49 CFR 230.114 - Wheel centers.
Code of Federal Regulations, 2012 CFR
2012-10-01
..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2012-10-01 2012-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...
49 CFR 230.105 - Lateral motion.
Code of Federal Regulations, 2010 CFR
2010-10-01
... between the hubs of the wheels and the boxes on any pair of wheels shall not exceed the following limits: Inches Engine truck wheels (with swing centers) 1 Engine truck wheels (with rigid centers) 11/2 Trailing truck wheels 1 Driving wheels 3/4 (b) Limits increased. These limits may be increased on steam...
49 CFR 230.105 - Lateral motion.
Code of Federal Regulations, 2011 CFR
2011-10-01
... between the hubs of the wheels and the boxes on any pair of wheels shall not exceed the following limits: Inches Engine truck wheels (with swing centers) 1 Engine truck wheels (with rigid centers) 11/2 Trailing truck wheels 1 Driving wheels 3/4 (b) Limits increased. These limits may be increased on steam...
49 CFR 230.114 - Wheel centers.
Code of Federal Regulations, 2011 CFR
2011-10-01
..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2011-10-01 2011-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...
49 CFR 230.114 - Wheel centers.
Code of Federal Regulations, 2010 CFR
2010-10-01
..., following the repair, the crankpin and axle shall remain tight in the wheel. Banding of the hub is permitted... 49 Transportation 4 2010-10-01 2010-10-01 false Wheel centers. 230.114 Section 230.114... Tenders Wheels and Tires § 230.114 Wheel centers. (a) Filling blocks and shims. Driving and trailing wheel...
49 CFR 230.105 - Lateral motion.
Code of Federal Regulations, 2012 CFR
2012-10-01
... between the hubs of the wheels and the boxes on any pair of wheels shall not exceed the following limits: Inches Engine truck wheels (with swing centers) 1 Engine truck wheels (with rigid centers) 11/2 Trailing truck wheels 1 Driving wheels 3/4 (b) Limits increased. These limits may be increased on steam...
49 CFR 230.105 - Lateral motion.
Code of Federal Regulations, 2013 CFR
2013-10-01
... between the hubs of the wheels and the boxes on any pair of wheels shall not exceed the following limits: Inches Engine truck wheels (with swing centers) 1 Engine truck wheels (with rigid centers) 11/2 Trailing truck wheels 1 Driving wheels 3/4 (b) Limits increased. These limits may be increased on steam...
NASA Technical Reports Server (NTRS)
Blumrich, J. F. (Inventor)
1974-01-01
The apparatus consists of a wheel having a hub with radially disposed spokes which are provided with a plurality of circumferential rim segments. These rim segments carry, between the spokes, rim elements which are rigid relative to their outer support surfaces, and defined in their outer contour to form a part of the circle forming the wheel diameter. The rim segments have provided for each of the rim elements an independent drive means selectively operable when the element is in ground contact to rotatably drive the rim element in a direction of movement perpendicularly lateral to the normal plane of rotation and movement of the wheel. This affords the wheel omnidirectional movement.
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Tadakuma, Susumu
This paper describes a novel straight and circular road driving control scheme for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel driving control scheme based on fuzzy algorithm to realize the stable and reliable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity of the wheelchair and the human input torque proportion of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
Friedman, Irving; Denton, E.H.
1976-01-01
A portable helium sniffer has been developed for field use. The instrument is mounted in a four-wheel-drive pickup truck and can detect 50 parts per billion of helium in soil gas. The usefulness of helium sniffing in soil is being investigated as a prospecting tool in gas, oil, uranium, and geothermal prospecting as well as in earthquake prediction.
Use and Testing of the Motorcycle by the US Army April 1917 to February 1977
1977-06-10
the-road capability for most of its other vehicles by converting them to four-wheel drive. According to Major General George A. Lynch, the overweight ...No Norway MAJ Ola Aabakken Yes Yes No Pakistan MAJ Najeeb Ahmed Yes Yes No Peru * MAJ Alberto Arciniega Philippines COL Mariano P. Adalem No
ERIC Educational Resources Information Center
Iarocci, Andrew
2010-01-01
The armed forces of World War II employed unprecedented numbers of mechanical transport vehicles, precipitating a spike in demand for automotive manufactures. Eager to capture a share of the less certain postwar automobile marketplace, defense contractors such as Willys-Overland pursued a diverse range of product development and advertising…
Method for controlling a vehicle with two or more independently steered wheels
Reister, David B.; Unseren, Michael A.
1995-01-01
A method (10) for independently controlling each steerable drive wheel (W.sub.i) of a vehicle with two or more such wheels (W.sub.i). An instantaneous center of rotation target (ICR) and a tangential velocity target (v.sup.G) are inputs to a wheel target system (30) which sends the velocity target (v.sub.i.sup.G) and a steering angle target (.theta..sub.i.sup.G) for each drive wheel (W.sub.i) to a pseudovelocity target system (32). The pseudovelocity target system (32) determines a pseudovelocity target (v.sub.P.sup.G) which is compared to a current pseudovelocity (v.sub.P.sup.m) to determine a pseudovelocity error (.epsilon.). The steering angle targets (.theta..sup.G) and the steering angles (.theta..sup.m) are inputs to a steering angle control system (34) which outputs to the steering angle encoders (36), which measure the steering angles (.theta..sup.m). The pseudovelocity error (.epsilon.), the rate of change of the pseudovelocity error ( ), and the wheel slip between each pair of drive wheels (W.sub.i) are used to calculate intermediate control variables which, along with the steering angle targets (.theta..sup.G) are used to calculate the torque to be applied at each wheel (W.sub.i). The current distance traveled for each wheel (W.sub.i) is then calculated. The current wheel velocities (v.sup.m) and steering angle targets (.theta..sup.G) are used to calculate the cumulative and instantaneous wheel slip (e, ) and the current pseudovelocity (v.sub.P.sup.m).
A novel integrated chassis controller for full drive-by-wire vehicles
NASA Astrophysics Data System (ADS)
Song, Pan; Tomizuka, Masayoshi; Zong, Changfu
2015-02-01
In this paper, a systematic design with multiple hierarchical layers is adopted in the integrated chassis controller for full drive-by-wire vehicles. A reference model and the optimal preview acceleration driver model are utilised in the driver control layer to describe and realise the driver's anticipation of the vehicle's handling characteristics, respectively. Both the sliding mode control and terminal sliding mode control techniques are employed in the vehicle motion control (MC) layer to determine the MC efforts such that better tracking performance can be attained. In the tyre force allocation layer, a polygonal simplification method is proposed to deal with the constraints of the tyre adhesive limits efficiently and effectively, whereby the load transfer due to both roll and pitch is also taken into account which directly affects the constraints. By calculating the motor torque and steering angle of each wheel in the executive layer, the total workload of four wheels is minimised during normal driving, whereas the MC efforts are maximised in extreme handling conditions. The proposed controller is validated through simulation to improve vehicle stability and handling performance in both open- and closed-loop manoeuvres.
Persson, P B
2018-06-16
Four-wheel drive means being stuck in an even more remote place. It is so difficult to push or pull in any direction, sweat drips by the liter, yet the wheel moves by the μm, just to slide back into stuck position. The same can happen to journals. Something may not work as intended, or the scientific environment changes and strategic decisions must be made to reestablish past glory. Acta Physiologica experienced hard times, as Scandinavian authors no longer took for granted publishing in their small, but beautiful, society owned journal. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Driver dependent factors and the risk of causing a collision for two wheeled motor vehicles
Lardelli-Claret, P; Jimenez-Moleon, J; de Dios, Luna-del-... J; Garcia-Martin, M; Bueno-Cavanillas, A; Galvez-Vargas, R
2005-01-01
Objective: To assess the effect of driver dependent factors on the risk of causing a collision for two wheeled motor vehicles (TWMVs). Design: Case control study. Setting: Spain, from 1993 to 2002. Subjects: All drivers of TWMVs involved in the 181 551 collisions between two vehicles recorded in the Spanish registry which did not involve pedestrians, and in which at least one of the vehicles was a TWMV and only one driver had committed a driving infraction. The infractor and non-infractor drivers constituted the case and control groups, respectively. Main outcome measures: Logistic regression analyses were used to obtain crude and adjusted odds ratio estimates for each of the driver related factors recorded in the registry (age, sex, nationality, psychophysical factors, and speeding infractions, among others). Results: Inappropriate speed was the variable with the greatest influence on the risk of causing a collision, followed by excessive speed and driving under the influence of alcohol. Younger and older drivers, foreign drivers, and driving without a valid license were also associated with a higher risk of causing a collision. In contrast, helmet use, female sex, and longer time in possession of a driving license were associated with a lower risk. Conclusions: Although the main driver dependent factors related to the risk of causing a collision for a TWMV were similar to those documented for four wheeled vehicles, several differences in the pattern of associations support the need to study moped and motorcycle crashes separately from crashes involving other types of vehicles. PMID:16081752
48. MAIN WAREHOUSE THIRD LEVEL Elevator drive mechanism is ...
48. MAIN WAREHOUSE - THIRD LEVEL Elevator drive mechanism is seen to the right, while drive wheels, belt wheels and chain drives are visible in the wooden wall framing. The horizontal metal conveyor (at the top of the wall Just under the inverted 'V' brace) is part of the empty can supply system connected to the external can conveyor. See Photo No. 28. - Hovden Cannery, 886 Cannery Row, Monterey, Monterey County, CA
Interaction of In-wheel permanent magnet synchronous motor with tire dynamics
NASA Astrophysics Data System (ADS)
Song, Ziyou; Li, Jianqiu; Wei, Yintao; Xu, Liangfei; Ouyang, Minggao
2015-05-01
Drive wheel systems combined with the in-wheel permanent magnet synchronous motor (I-PMSM) and the tire are highly electromechanical-coupled. However, the deformation dynamics of this system, which may influence the system performance, is neglected in most existing literatures. For this reason, a deformable tire and a detailed I-PMSM are modeled using Matlab/Simulink. Furthermore, the influence of tire/road contact interface is accurately described by the non-linear relaxation length-based model and magic formula pragmatic model. The drive wheel model used in this paper is closer to that of a real tire in contrast to the rigid tire model which is widely used. Based on the near-precise model mentioned above, the sensitivity of the dynamic tire and I-PMSM parameters to the relative error of slip ratio estimation is analyzed. Additionally, the torsional and longitudinal vibrations of the drive wheel are presented both in time and frequency domains when a quarter vehicle is started under conditions of a specific torque curve, which includes an abrupt torque change from 30 N · m to 200 N · m. The parameters sensitivity on drive wheel vibrations is also studied, and the parameters include the mass distribution ratio of tire, the tire torsional stiffness, the tire damping coefficient, and the hysteresis band of the PMSM current control algorithm. Finally, different target torque curves are compared in the simulation, which shows that the estimation error of the slip ratio gets violent, and the longitudinal force includes more fluctuation components with the increasing change rate of the torque. This paper analyzes the influence of the drive wheel deformation on the vehicle dynamic control, and provides useful information regarding the electric vehicle traction control.
Improved infrared-sensing running wheel systems with an effective exercise activity indicator.
Chen, Chi-Chun; Chang, Ming-Wen; Chang, Ching-Ping; Chang, Wen-Ying; Chang, Shin-Chieh; Lin, Mao-Tsun; Yang, Chin-Lung
2015-01-01
This paper describes an infrared-sensing running wheel (ISRW) system for the quantitative measurement of effective exercise activity in rats. The ISRW system provides superior exercise training compared with commercially available traditional animal running platforms. Four infrared (IR) light-emitting diode/detector pairs embedded around the rim of the wheel detect the rat's real-time position; the acrylic wheel has a diameter of 55 cm and a thickness of 15 cm, that is, it is larger and thicker than traditional exercise wheels, and it is equipped with a rubber track. The acrylic wheel hangs virtually frictionless, and a DC motor with an axially mounted rubber wheel, which has a diameter of 10 cm, drives the acrylic wheel from the outer edge. The system can automatically train rats to run persistently. The proposed system can determine effective exercise activity (EEA), with the IR sensors (which are connected to a conventional PC) recording the rat exercise behavior. A prototype of the system was verified by a hospital research group performing ischemic stroke experiments on rats by considering middle cerebral artery occlusion. The experimental data demonstrated that the proposed system provides greater neuroprotection in an animal stroke model compared with a conventional treadmill and a motorized running wheel for a given exercise intensity. The quantitative exercise effectiveness indicator showed a 92% correlation between an increase in the EEA and a decrease in the infarct volume. This indicator can be used as a noninvasive and objective reference in clinical animal exercise experiments.
Preliminary Design and Investigation of Integrated Compressor with Composite Material Wheel
NASA Astrophysics Data System (ADS)
Wang, Jifeng; Müller, Norbert
2012-06-01
An integrated water vapor compressor with composite material wheel is developed and strength analysis using FEM is presented. The design of wound composite material allows for integrating all rotating parts of the drive that may simply reduce to only the rotor of the electrical motor, since no drive shaft is required anymore. This design can reduce the number of parts and mass, which is convenient for engineers to maintain the compressor. The electrical motors are brushless DC motors operating through a frequency drive and apply a torque on the wheels through the materials bonded in the wheel shrouds. This system allows a large amount of compression to be produced in a multi-stage compression setup. To determine the stress and vibration characteristics of this integrated compressor, numerical analysis is carried out using FEM. The simulation result shows that the integrated compressor with composite material wheel can be used in a chiller system where water as a refrigerant.
Break in Raised Tread on Curiosity Wheel
2017-03-21
Two of the raised treads, called grousers, on the left middle wheel of NASA's Curiosity Mars rover broke during the first quarter of 2017, including the one seen partially detached at the top of the wheel in this image from the Mars Hand Lens Imager (MAHLI) camera on the rover's arm. This image was taken on March 19, 2017, as part of a set used by rover team members to inspect the condition of the rover's six wheels during the 1,641st Martian day, or sol, of Curiosity's work on Mars. Holes and tears in the wheels worsened significantly during 2013 as Curiosity was crossing terrain studded with sharp rocks on the route from near its 2012 landing site to the base of Mount Sharp. Team members have used MAHLI systematically since then to watch for when any of the zig-zag shaped grousers begin to break. The last prior set of wheel-inspection images from before Sol 1641 was taken on Jan. 27, 2017, (Sol 1591) and revealed no broken grousers. Longevity testing with identical aluminum wheels on Earth indicates that when three grousers on a given wheel have broken, that wheel has reached about 60 percent of its useful life. Curiosity has driven well over 60 percent of the amount needed for reaching all the geological layers planned as the mission's science destinations, so the start of seeing broken grousers is not expected to affect the mission's operations. Curiosity's six aluminum wheels are about 20 inches (50 centimeters) in diameter and 16 inches (40 centimeters) wide. Each of the six wheels has its own drive motor, and the four corner wheels also have steering motors. http://photojournal.jpl.nasa.gov/catalog/PIA21486
Toddler run-overs--a persistent problem.
Byard, Roger W; Jensen, Lisbeth L
2009-05-01
Trauma accounts for a high percentage of unexpected deaths in toddlers and young children, mostly due to vehicle accidents, drowning and fires. Given recent efforts to publicise the dangers of toddler run-overs a study was undertaken to determine how significant this problem remains in South Australia. Review of coronial files over 7 years from 2000 to 2006 revealed 50 cases of sudden and unexpected death in children aged between 1 and 3 years of which 12 of 28 accidents involved motor vehicles (6 run-overs and 6 passengers). The 6 children who were killed by vehicle run-overs were aged from 12 months to 22 months (ave=16.8 months) with a male to female ratio of 1:1. Four deaths occurred with reversing vehicles in home driveways and one at a community centre. The remaining death involved a child being run over at the beach by a forward moving vehicle. Vehicles included sedans in four cases and a four-wheel drive in one case (one vehicle was not described), and were driven by the victim's parent in four cases, a friend of the family in one, and an unrelated person in the final case. Deaths were all due to blunt cranial trauma. Despite initiatives to prevent these deaths, toddler run-overs in South Australia approximate the number of sudden deaths due to homicides, drownings and natural diseases, respectively, for the same age group; deaths are also occurring in places other than home driveways, and sedans were more often involved than four-wheel drive vehicles.
Electric propulsion system for wheeled vehicles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramos, J.A.
1981-11-03
An electric propulsion system for a wheeled vehicle has a generator and motor connected to a drive shaft and an electrical system for charging a battery during all conditions of power transfer from the wheels of the vehicle to the generator to minimize energy required for propulsion. A variable speed power coupling unit connecting the motor to the drive shaft has sprockets revolving about a belt connected sun sprocket with speed control effected by varying the rate of satellite sprocket rotation.
Warning system against locomotive driving wheel flaccidity
NASA Astrophysics Data System (ADS)
Luo, Peng
2014-09-01
Causes of locomotive relaxation are discussed. Alarm system against locomotive driving wheel flaccidity is designed by means of techniques of infrared temperature measurement and Hall sensor measurement. The design scheme of the system, the principle of detecting locomotive driving wheel flaccidity with temperature and Hall sensor is introduced, threshold temperature of infrared alarm is determined. The circuit system is designed by microcontroller technology and the software is designed with the assembly language. The experiment of measuring the flaccid displacement with Hall sensor measurement is simulated. The results show that the system runs well with high reliability and low cost, which has a wide prospect of application and popularization.
Use and user patterns among Michigan licensed off-highway vehicles ownership types
Joel A. Lynch; Charles M. Nelson
2002-01-01
Conventional off-highway vehicles (OHVs) range from small personal vehicles, such as motorcycles and all terrain vehicles to full-size passenger vehicles such as four-wheel drive trucks. The market and general recreational use of OHVs has changed markedly over the past thirty years. While many studies of OHV enthusiasts generalize to all OHV types, little research has...
Low-Cost MEMS Sensors and Vision System for Motion and Position Estimation of a Scooter
Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio
2013-01-01
The possibility to identify with significant accuracy the position of a vehicle in a mapping reference frame for driving directions and best-route analysis is a topic which is attracting a lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate position, orientation and velocity of the system with high measurement rates. In this work we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems (MEMS) technology, coupled with information derived from a video camera placed on a two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of a two-wheel vehicle feature a higher level of complexity given that more degrees of freedom must be taken into account. For example a motorcycle can twist sideways; thus generating a roll angle. A slight pitch angle has to be considered as well; since wheel suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a “Vespa” scooter; which can be used as alternative to the “classical” approach based on GPS/INS sensor integration. Position and orientation of the scooter are obtained by integrating MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a Bayesian particle filter. PMID:23348036
Low-Cost MEMS sensors and vision system for motion and position estimation of a scooter.
Guarnieri, Alberto; Pirotti, Francesco; Vettore, Antonio
2013-01-24
The possibility to identify with significant accuracy the position of a vehicle in a mapping reference frame for driving directions and best-route analysis is a topic which is attracting a lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate position, orientation and velocity of the system with high measurement rates. In this work we test a system which uses low-cost sensors, based on Micro Electro-Mechanical Systems (MEMS) technology, coupled with information derived from a video camera placed on a two-wheel motor vehicle (scooter). In comparison to a four-wheel vehicle; the dynamics of a two-wheel vehicle feature a higher level of complexity given that more degrees of freedom must be taken into account. For example a motorcycle can twist sideways; thus generating a roll angle. A slight pitch angle has to be considered as well; since wheel suspensions have a higher degree of motion compared to four-wheel motor vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a "Vespa" scooter; which can be used as alternative to the "classical" approach based on GPS/INS sensor integration. Position and orientation of the scooter are obtained by integrating MEMS-based orientation sensor data with digital images through a cascade of a Kalman filter and a Bayesian particle filter.
NASA Technical Reports Server (NTRS)
Borroni-Bird, Christopher E. (Inventor); Lapp, Anthony Joseph (Inventor); Vitale, Robert L. (Inventor); Lee, Chunhao J. (Inventor); Bluethmann, William J. (Inventor); Ridley, Justin S. (Inventor); Junkin, Lucien Q. (Inventor); Ambrose, Robert O. (Inventor); Lutz, Jonathan J. (Inventor); Guo, Raymond (Inventor)
2015-01-01
A modular robotic vehicle includes a chassis, driver input devices, an energy storage system (ESS), a power electronics module (PEM), modular electronic assemblies (eModules) connected to the ESS via the PEM, one or more master controllers, and various embedded controllers. Each eModule includes a drive wheel containing a propulsion-braking module, and a housing containing propulsion and braking control assemblies with respective embedded propulsion and brake controllers, and a mounting bracket covering a steering control assembly with embedded steering controllers. The master controller, which is in communication with each eModule and with the driver input devices, communicates with and independently controls each eModule, by-wire, via the embedded controllers to establish a desired operating mode. Modes may include a two-wheel, four-wheel, diamond, and omni-directional steering modes as well as a park mode. A bumper may enable docking with another vehicle, with shared control over the eModules of the vehicles.
NASA Astrophysics Data System (ADS)
Joa, Eunhyek; Park, Kwanwoo; Koh, Youngil; Yi, Kyongsu; Kim, Kilsoo
2018-04-01
This paper presents a tyre slip-based integrated chassis control of front/rear traction distribution and four-wheel braking for enhanced performance from moderate driving to limit handling. The proposed algorithm adopted hierarchical structure: supervisor - desired motion tracking controller - optimisation-based control allocation. In the supervisor, by considering transient cornering characteristics, desired vehicle motion is calculated. In the desired motion tracking controller, in order to track desired vehicle motion, virtual control input is determined in the manner of sliding mode control. In the control allocation, virtual control input is allocated to minimise cost function. The cost function consists of two major parts. First part is a slip-based tyre friction utilisation quantification, which does not need a tyre force estimation. Second part is an allocation guideline, which guides optimally allocated inputs to predefined solution. The proposed algorithm has been investigated via simulation from moderate driving to limit handling scenario. Compared to Base and direct yaw moment control system, the proposed algorithm can effectively reduce tyre dissipation energy in the moderate driving situation. Moreover, the proposed algorithm enhances limit handling performance compared to Base and direct yaw moment control system. In addition to comparison with Base and direct yaw moment control, comparison the proposed algorithm with the control algorithm based on the known tyre force information has been conducted. The results show that the performance of the proposed algorithm is similar with that of the control algorithm with the known tyre force information.
After a Spirit Drive West of Home Plate
2009-04-20
NASA's Mars Exploration Rover Spirit drove 6.98 meters (22.9 feet) southeastward on the 1,871st Martian day, or sol, of the rover's mission on Mars (April 8, 2009). As usual since losing the use of its right-front wheel in 2006, Spirit drove backward, dragging the immobile wheel. The rover used its front hazard-avoidance camera after the drive to capture this view looking back at the ground covered. For scale, the distance between the parallel wheel tracks is about 1 meter (40 inches). The drive added to progress in trekking counterclockwise around a low plateau called "Home Plate." Spirit is driving through a valley on the west side of the plateau. Home Plate is not within this image. The hill on the horizon in the upper right is Husband Hill, the summit of which is about 750 meters (nearly half a mile) to the north of Spirit's position. Following this drive, Spirit experienced difficulties that prevented driving during the subsequent week. http://photojournal.jpl.nasa.gov/catalog/PIA11990
49 CFR 570.59 - Service brake system.
Code of Federal Regulations, 2014 CFR
2014-10-01
... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...
49 CFR 570.59 - Service brake system.
Code of Federal Regulations, 2010 CFR
2010-10-01
... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...
49 CFR 570.59 - Service brake system.
Code of Federal Regulations, 2011 CFR
2011-10-01
... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...
49 CFR 570.59 - Service brake system.
Code of Federal Regulations, 2013 CFR
2013-10-01
... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...
49 CFR 570.59 - Service brake system.
Code of Federal Regulations, 2012 CFR
2012-10-01
... the following tests. (1) Roller-type or drive-on platform tests. The force applied by the brake on a front wheel or a rear wheel shall not differ by more than 25 percent from the force applied by the brake on the other front wheel or the other rear wheel respectively. (i) Inspection procedure. The vehicle...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoolboom, G.J.; Szabados, B.
The advantages/disadvantages of energy storage devices, which can provide nonpolluting automobile systems are discussed. Four types of storage devices are identified: electrochemical (batteries); hydrogen; electromechanical (flywheels); and molten salt heat storage. A high-speed flywheel with a small permanent magnet motor/generator has more advantages than any of the other systems and might become a real competitor to the internal combustion engine. A flywheel/motor/generator system for automobiles now becomes practical, because of the technological advances in materials, bearings and solid state control circuits. The motor of choice is the squirrel cage induction motor, specially designed for automobile applications. The preferred controller formore » the induction motor is a forced commutated cycloconverter, which transforms a variable voltage/variable frequency source into a controlled variable-voltage/variable-frequency supply. A modulation strategy of the cycloconverter elements is selected to maintain a unity input displacement factor (power factor) under all conditions of loads voltages and frequencies. The system is similar to that of the existing automobile, if only one motor is used: master controller-controller-motor-gears (fixed)-differential-wheels. In the case of two motors, the mechanical differential is replaced by an electric one: master controller-controller-motor-gears (fixed)-wheel. A four-wheel drive vehicle is obtained when four motors with their own controllers are used. 24 refs.« less
Influence of tire dynamics on slip ratio estimation of independent driving wheel system
NASA Astrophysics Data System (ADS)
Li, Jianqiu; Song, Ziyou; Wei, Yintao; Ouyang, Minggao
2014-11-01
The independent driving wheel system, which is composed of in-wheel permanent magnet synchronous motor(I-PMSM) and tire, is more convenient to estimate the slip ratio because the rotary speed of the rotor can be accurately measured. However, the ring speed of the tire ring doesn't equal to the rotor speed considering the tire deformation. For this reason, a deformable tire and a detailed I-PMSM are modeled by using Matlab/Simulink. Moreover, the tire/road contact interface(a slippery road) is accurately described by the non-linear relaxation length-based model and the Magic Formula pragmatic model. Based on the relatively accurate model, the error of slip ratio estimated by the rotor rotary speed is analyzed in both time and frequency domains when a quarter car is started by the I-PMSM with a definite target torque input curve. In addition, the natural frequencies(NFs) of the driving wheel system with variable parameters are illustrated to present the relationship between the slip ratio estimation error and the NF. According to this relationship, a low-pass filter, whose cut-off frequency corresponds to the NF, is proposed to eliminate the error in the estimated slip ratio. The analysis, concerning the effect of the driving wheel parameters and road conditions on slip ratio estimation, shows that the peak estimation error can be reduced up to 75% when the LPF is adopted. The robustness and effectiveness of the LPF are therefore validated. This paper builds up the deformable tire model and the detailed I-PMSM models, and analyzes the effect of the driving wheel parameters and road conditions on slip ratio estimation.
New Record Five-Wheel Drive, Spirit's Sol 1856
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,856th Martian day, or sol, of Spirit's surface mission (March 23, 2009). The center of the view is toward the west-southwest. The rover had driven 25.82 meters (84.7 feet) west-northwestward earlier on Sol 1856. This is the longest drive on Mars so far by a rover using only five wheels. Spirit lost the use of its right-front wheel in March 2006. Before Sol 1856, the farthest Spirit had covered in a single sol's five-wheel drive was 24.83 meters (81.5 feet), on Sol 1363 (Nov. 3, 2007). The Sol 1856 drive made progress on a route planned for taking Spirit around the western side of the low plateau called 'Home Plate.' A portion of the northwestern edge of Home Plate is prominent in the left quarter of this image, toward the south. This view is presented as a cylindrical projection with geometric seam correction.Impact of Mass and Weight Distribution on Manual Wheelchair Propulsion Torque.
Sprigle, Stephen; Huang, Morris
2015-01-01
Propulsion effort of manual wheelchairs, a major determinant of user mobility, is a function of human biomechanics and mechanical design. Human studies that investigate both variables simultaneously have resulted in largely inconsistent outcomes, motivating the implementation of a robotic propulsion system that characterizes the inherent mechanical performance of wheelchairs. This study investigates the impacts of mass and mass distribution on manual wheelchair propulsion by configuring an ultra-lightweight chair to two weights (12-kg and 17.6-kg) and two load distributions (70% and 55% on drive wheels). The propulsion torques of these four configurations were measured for a straight maneuver and a fixed-wheel turn, on both tile and carpet. Results indicated that increasing mass to 17.6-kg had the largest effect on straight acceleration, requiring 7.4% and 5.8% more torque on tile and carpet, respectively. Reducing the drive wheel load to 55% had the largest effect on steady-state straight motion and on both turning acceleration and steady-state turning; for tile and carpet, propulsion torque increased by 13.5% and 11.8%, 16.5% and 4.1%, 73% and 5.1%, respectively. These results demonstrate the robot's high sensitivity, and support the clinical importance of evaluating effects of wheelchair mass and axle position on propulsion effort across maneuvers and surfaces.
NASA Astrophysics Data System (ADS)
Zhao, Z.-G.; Zhou, L.-J.; Zhang, J.-T.; Zhu, Q.; Hedrick, J.-K.
2017-05-01
Considering the controllability and observability of the braking torques of the hub motor, Integrated Starter Generator (ISG), and hydraulic brake for four-wheel drive (4WD) hybrid electric cars, a distributed and self-adaptive vehicle speed estimation algorithm for different braking situations has been proposed by fully utilising the Electronic Stability Program (ESP) sensor signals and multiple powersource signals. Firstly, the simulation platform of a 4WD hybrid electric car was established, which integrates an electronic-hydraulic composited braking system model and its control strategy, a nonlinear seven degrees-of-freedom vehicle dynamics model, and the Burckhardt tyre model. Secondly, combining the braking torque signals with the ESP signals, self-adaptive unscented Kalman sub-filter and main-filter adaptable to the observation noise were, respectively, designed. Thirdly, the fusion rules for the sub-filters and master filter were proposed herein, and the estimation results were compared with the simulated value of a real vehicle speed. Finally, based on the hardware in-the-loop platform and by picking up the regenerative motor torque signals and wheel cylinder pressure signals, the proposed speed estimation algorithm was tested under the case of moderate braking on the highly adhesive road, and the case of Antilock Braking System (ABS) action on the slippery road, as well as the case of ABS action on the icy road. Test results show that the presented vehicle speed estimation algorithm has not only a high precision but also a strong adaptability in the composite braking case.
Car Builder: Design, Construct and Test Your Own Cars. School Version with Lesson Plans. [CD-ROM].
ERIC Educational Resources Information Center
Highsmith, Joni Bitman
Car Builder is a scientific CD-ROM-based simulation program that lets students design, construct, modify, test, and compare their own cars. Students can design sedans, four-wheel-drive vehicles, vans, sport cars, and hot rods. They may select for aerodynamics, power, and racing ability, or economic and fuel efficiency. It is a program that teaches…
A drive system to add standing mobility to a manual standing wheelchair.
Nickel, Eric; Hansen, Andrew; Pearlman, Jonathan; Goldish, Gary
2016-05-16
Current manual standing wheelchairs are not mobile in the standing position. The addition of standing mobility may lead to improved health and function for the user and may increase utilization of standing wheelchairs. In this project, a chain drive system was fitted to a manual standing wheelchair, adding mobility in the standing position. The hand rims are accessible from both seated and standing positions. The prototype uses 16-inch drive wheels in front with casters in the rear. Additional anterior casters are elevated when seated for navigating obstacles and then descend when standing to create a six-wheeled base with extended anterior support. Stability testing shows the center of pressure remains within the base of support when leaning to the sides or front in both seated and standing positions. Four veterans with spinal cord injury provided feedback on the design and reported that mobility during standing was very important or extremely important to them. The veterans liked the perceived stability and mobility of the prototype and provided feedback for future refinements. For example, reducing the overall width (width from hand rim to hand rim) and weight could make this system more functional for users.
NASA Astrophysics Data System (ADS)
Janczur, R.
2016-09-01
The results of road tests of car VW Passat equipped with tires of size 195/65 R15, on the influence of the unbalancing front wheel on vibration of the parts of steering system, steering wheel and the body of the vehicle have been presented in this paper. Unbalances wheels made using weights of different masses, placed close to the outer edge of the steel rim and checked on the machine Hunter GSP 9700 for balancing wheels. The recorded waveforms vibration steering components and car body, at different constant driving speeds, subjected to spectral analysis to determine the possibility of isolating vibration caused by unbalanced wheel in various states and coming from good quality asphalt road surface. The results were discussed in terms of the possibility of identifying the state of unbalancing wheels and possible changes in radial stiffness of the tire vibration transmitted through the system driving wheel on the steering wheel. Vibration analysis steering components and car body, also in the longitudinal direction, including information from the CAN bus of the state of motion of the car, can be used to monitor the development of the state of unbalance wheel, tire damage or errors shape of brake discs or brake drums, causing pulsations braking forces.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-09
... assembly, are assembled in the U.S. The primary subassemblies include the wheel assembly; the leg leveler.../shaft; the drive pulley/crank hub; the idler-arm assembly; the alternator- pulley assembly; the rear.... Pressing flange bearing into wheel using arbor press; (wheel assembly) 2. Securing insert to wheel and...
ILC TARGET WHEEL RIM FRAGMENT/GUARD PLATE IMPACT ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hagler, L
2008-07-17
A positron source component is needed for the International Linear Collider Project. The leading design concept for this source is a rotating titanium alloy wheel whose spokes rotate through an intense localized magnetic field. The system is composed of an electric motor, flexible motor/drive-shaft coupling, stainless steel drive-shaft, two Plumber's Block tapered roller bearings, a titanium alloy target wheel, and electromagnet. Surrounding the target wheel and magnet is a steel frame with steel guarding plates intended to contain shrapnel in case of catastrophic wheel failure. Figure 1 is a layout of this system (guard plates not shown for clarity). Thismore » report documents the FEA analyses that were performed at LLNL to help determine, on a preliminary basis, the required guard plate thickness for three potential plate steels.« less
After Opportunity's First Drive in Six Weeks
NASA Technical Reports Server (NTRS)
2007-01-01
NASA's Mars Exploration Rover Opportunity used its front hazard-identification camera to obtain this image at the end of a drive on the rover's 1,271st sol, or Martian day (Aug. 21, 2007). Due to sun-obscuring dust storms limiting the rover's supply of solar energy, Opportunity had not driven since sol 1,232 (July 12, 2007). On sol 1,271, after the sky above Opportunity had been gradually clearing for more than two weeks, the rover rolled 13.38 meters (44 feet). Wheel tracks are visible in front of the rover because the drive ended with a short test of driving backwards. Opportunity's turret of four tools at the end of the robotic arm fills the center of the image. Victoria Crater, site of the rover's next science targets, lies ahead.Factors affecting minimum push and pull forces of manual carts.
Al-Eisawi, K W; Kerk, C J; Congleton, J J; Amendola, A A; Jenkins, O C; Gaines, W
1999-06-01
The minimum forces needed to manually push or pull a 4-wheel cart of differing weights with similar wheel sizes from a stationary state were measured on four floor materials under different conditions of wheel width, diameter, and orientation. Cart load was increased from 0 to 181.4 kg in increments of 36.3 kg. The floor materials were smooth concrete, tile, asphalt, and industrial carpet. Two wheel widths were tested: 25 and 38 mm. Wheel diameters were 51, 102, and 153 mm. Wheel orientation was tested at four levels: F0R0 (all four wheels aligned in the forward direction), F0R90 (the two front wheels, the wheels furthest from the cart handle, aligned in the forward direction and the two rear wheels, the wheels closest to the cart handle, aligned at 90 degrees to the forward direction), F90R0 (the two front wheels aligned at 90 degrees to the forward direction and the two rear wheels aligned in the forward direction), and F90R90 (all four wheels aligned at 90 degrees to the forward direction). Wheel width did not have a significant effect on the minimum push/pull forces. The minimum push/pull forces were linearly proportional to cart weight, and inversely proportional to wheel diameter. The coefficients of rolling friction were estimated as 2.2, 2.4, 3.3, and 4.5 mm for hard rubber wheels rolling on smooth concrete, tile, asphalt, and industrial carpet floors, respectively. The effect of wheel orientation was not consistent over the tested conditions, but, in general, the smallest minimum push/pull forces were measured with all four wheels aligned in the forward direction, whereas the largest minimum push/pull forces were measured when all four wheels were aligned at 90 degrees to the forward direction. There was no significant difference between the push and pull forces when all four wheels were aligned in the forward direction.
Benefit of "Push-pull" Locomotion for Planetary Rover Mobility
NASA Technical Reports Server (NTRS)
Creager, Colin M.; Moreland, Scott Jared; Skonieczny, K.; Johnson, K.; Asnani, V.; Gilligan, R.
2011-01-01
As NASAs exploration missions on planetary terrains become more aggressive, a focus on alternative modes of locomotion for rovers is necessary. In addition to climbing steep slopes, the terrain in these extreme environments is often unknown and can be extremely hard to traverse, increasing the likelihood of a vehicle or robot becoming damaged or immobilized. The conventional driving mode in which all wheels are either driven or free-rolling is very efficient on flat hard ground, but does not always provide enough traction to propel the vehicle through soft or steep terrain. This paper presents an alternative mode of travel and investigates the fundamental differences between these locomotion modes. The methods of push-pull locomotion discussed can be used with articulated wheeled vehicles and are identified as walking or inchinginch-worming. In both cases, the braked non-rolling wheels provide increased thrust. An in-depth study of how soil reacts under a rolling wheel vs. a braked wheel was performed by visually observing the motion of particles beneath the surface. This novel technique consists of driving or dragging a wheel in a soil bin against a transparent wall while high resolution, high-rate photographs are taken. Optical flow software was then used to determine shearing patterns in the soil. Different failure modes were observed for the rolling and braked wheel cases. A quantitative comparison of inching vs. conventional driving was also performed on a full-scale vehicle through a series of drawbar pull tests in the Lunar terrain strength simulant, GRC-1. The effect of tire stiffness was also compared; typically compliant tires provide better traction when driving in soft soil, however its been observed that rigid wheels may provide better thrust when non-rolling. Initial tests indicate up to a possible 40 increase in pull force capability at high slip when inching vs. rolling.
40 CFR 86.1111-87 - Test procedures for PCA testing.
Code of Federal Regulations, 2011 CFR
2011-07-01
... in paragraph (a) of § 86.133. (v) The manufacturer may substitute slave tires for the drive wheel... same size as the drive wheel tires. (vi) The cold start exhaust emission test described in § 86.137... well as the likelihood that similar settings will occur on in-use heavy-duty engines or light-duty...
Wheel drives for large telescopes: save the cost and keep the performance over hydrostatic bearings
NASA Astrophysics Data System (ADS)
Campbell, Marvin F.
2014-07-01
The use of steel wheels on steel tracks has been around since steel was invented, and before that it was iron wheels on iron tracks. Not to be made obsolete by the passage of time, this approach for moving large objects is still valid, even optimal, but the detailed techniques for achieving high performance and long life have been much improved. The use of wheel-and-track designs has been very popular in radio astronomy for the largest of the large radio telescopes (RT), including such notables as the 305m Arecibo RT, the 100m telescopes at Effelsberg, Germany (at 3600 tonnes) and the Robert C. Byrd, Greenbank Telescope (GBT, 7600 tonnes) at Greenbank, West Virginia. Of course, the 76m Lovell Telescope at Jodrell Bank is the grandfather of all large aperture radio telescopes that use wheel drives. Smaller sizes include NRAO's Very Long Baseline Array (VLBA) telescopes at 25m and others. Wheel drives have also been used on large radars of significance such as the 410 tonne Ground Based Radar-Prototype (GBR-P) and the 150 foot (45.7m) Altair Radar, and the 2130 tonne Sea Based X-Band Radar (SBX). There are also many examples of wheel driven communications antennas of 18 meters and larger. All of these instruments have one thing in common: they all use steel wheels that run in a circle on one or more flat, level, steel tracks. This paper covers issues related to designing for wheel driven systems. The intent is for managing motion to sub arc-second levels, and for this purpose it is primary for the designer to manage measurement and alignment errors, and to establish repeatability through dimensional control, structural and drive stiffness management, adjustability and error management. In a practical sense, there are very few, if any, fabricators that can machine structural and drive components to sufficiently small decimal places to matter. In fact, coming within 2-3 orders of magnitude of the precision needed is about the best that can be expected. Further, it is incumbent on the design team to develop the servo control system features, correction algorithms and structural features in concert with each other. Telescope designers are generally adept at many of these practices, so the scope of this paper is not that, but is limited to those items that pertain to a precision wheel driven system.
NASA Astrophysics Data System (ADS)
Murakami, Hiroki; Seki, Hirokazu; Minakata, Hideaki; Tadakuma, Susumu
This paper describes a novel operationality improvement control for electric power assisted wheelchairs. “Electric power assisted wheelchair” which assists the driving force by electric motors is expected to be widely used as a mobility support system for elderly people and disabled people, however, the performance of the straight and circular road driving must be further improved because the two wheels drive independently. This paper proposes a novel operationality improvement control by fuzzy algorithm to realize the stable driving on straight and circular roads. The suitable assisted torque of the right and left wheels is determined by fuzzy algorithm based on the posture angular velocity, the posture angle of the wheelchair, the human input torque proportion and the total human torque of the right and left wheels. Some experiments on the practical roads show the effectiveness of the proposed control system.
Control of a Wheeled Transport Robot with Two Steerable Wheels
NASA Astrophysics Data System (ADS)
Larin, V. B.
2017-09-01
The control of a system with one actuator failed is studied. The problem of control of a wheeled transport robot with two steerable wheels of which the rear one is stuck (its drive has failed) is solved. An algorithm for controlling the system in this situation is proposed. The effectiveness of the algorithm is demonstrated by way of an example.
Baseline tests of the C. H. Waterman Renault 5 electric passenger vehicle
NASA Technical Reports Server (NTRS)
Sargent, N. B.; Mcbrien, E. F.; Slavick, R. J.
1977-01-01
The Waterman vehicle, a four passenger Renault 5 GTL, performance test results are presented and characterized the state-of-the-art of electric vehicles. It was powered by sixteen 6-volt traction batteries through a two-step contactor controller actuated by a foot throttle to change the voltage applied to the 6.7 -kilowatt motor. The motor output shaft was connected to a front-wheel-drive transaxle that contains a four-speed manual transmission and clutch. The braking system was a conventional hydraulic braking system.
Bioulac, Stéphanie; Franchi, Jean-Arthur Micoulaud; Arnaud, Mickael; Sagaspe, Patricia; Moore, Nicholas; Salvo, Francesco; Philip, Pierre
2017-10-01
Sleepiness at the wheel is widely believed to be a cause of motor vehicle accidents. Nevertheless, a systematic review of studies investigating this relationship has not yet been published. The objective of this study was to quantify the relationship between sleepiness at the wheel and motor vehicle accidents. A systematic review was performed using Medline, Scopus, and ISI Web of Science. The outcome measure of interest was motor vehicle accident defined as involving four- or two-wheeled vehicles in road traffic, professional and nonprofessional drivers, with or without objective consequences. The exposure was sleepiness at the wheel defined as self-reported sleepiness at the wheel. Studies were included if they provided adjusted risk estimates of motor vehicle accidents related to sleepiness at the wheel. Risk estimates and 95% confidence intervals (95% CIs) were extracted and pooled as odds ratios (ORs) using a random-effect model. Heterogeneity was quantified using Q statistics and the I2 index. The potential causes of heterogeneity were investigated using meta-regressions. Ten cross-sectional studies (51,520 participants), six case-control studies (4904 participants), and one cohort study (13,674 participants) were included. Sleepiness at the wheel was associated with an increased risk of motor vehicle accidents (pooled OR 2.51 [95% CI 1.87; 3.39]). A significant heterogeneity was found between the individual risk estimates (Q = 93.21; I2 = 83%). Sleepiness at the wheel increases the risk of motor vehicle accidents and should be considered when investigating fitness to drive. Further studies are required to explore the nature of this relationship. PROSPERO 2015 CRD42015024805. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.
Sales Training for Army Recruiter Success: Interviews with Excellent Recruiters
1987-11-01
can, you know, jeez, how many milking today, you know. What you milking, what kind of cows you got? Are they aJerseys or Holsteins or what, you know...and I got cow shit all over, that’s just the way it was, right. I had a pair of cowboy boots and I had a cowboy hat and I drove a four- wheel drive pick
Automation of Armored Four Wheel Counter Steer Vehicles
2015-08-28
designed and implemented with an operator ease-of-use approach, allowing the simple transition between manual control and autonomous operation. Automation...Public Release The U.S. Army’s efforts in vehicle auto- mation are designed in part to protect soldiers in the field as they traverse poten- tially...System (AMAS) convoy autonomy, sensor, and drive-by-wire kits, to ground-up autonomous vehicle designs , such as TARDEC’s Autonomous Platform
Coordinated Control of Slip Ratio for Wheeled Mobile Robots Climbing Loose Sloped Terrain
Li, Zhengcai; Wang, Yang
2014-01-01
A challenging problem faced by wheeled mobile robots (WMRs) such as planetary rovers traversing loose sloped terrain is the inevitable longitudinal slip suffered by the wheels, which often leads to their deviation from the predetermined trajectory, reduced drive efficiency, and possible failures. This study investigates this problem using terramechanics analysis of the wheel-soil interaction. First, a slope-based wheel-soil interaction terramechanics model is built, and an online slip coordinated algorithm is designed based on the goal of optimal drive efficiency. An equation of state is established using the coordinated slip as the desired input and the actual slip as a state variable. To improve the robustness and adaptability of the control system, an adaptive neural network is designed. Analytical results and those of a simulation using Vortex demonstrate the significantly improved mobile performance of the WMR using the proposed control system. PMID:25276849
Coordinated control of slip ratio for wheeled mobile robots climbing loose sloped terrain.
Li, Zhengcai; Wang, Yang
2014-01-01
A challenging problem faced by wheeled mobile robots (WMRs) such as planetary rovers traversing loose sloped terrain is the inevitable longitudinal slip suffered by the wheels, which often leads to their deviation from the predetermined trajectory, reduced drive efficiency, and possible failures. This study investigates this problem using terramechanics analysis of the wheel-soil interaction. First, a slope-based wheel-soil interaction terramechanics model is built, and an online slip coordinated algorithm is designed based on the goal of optimal drive efficiency. An equation of state is established using the coordinated slip as the desired input and the actual slip as a state variable. To improve the robustness and adaptability of the control system, an adaptive neural network is designed. Analytical results and those of a simulation using Vortex demonstrate the significantly improved mobile performance of the WMR using the proposed control system.
Herman, Josephine; Kafoa, Berlin; Wainiqolo, Iris; Robinson, Elizabeth; McCaig, Eddie; Connor, Jennie; Jackson, Rod; Ameratunga, Shanthi
2014-03-01
Published studies investigating the role of driver sleepiness in road crashes in low and middle-income countries have largely focused on heavy vehicles. We investigated the contribution of driver sleepiness to four-wheel motor vehicle crashes in Fiji, a middle-income Pacific Island country. The population-based case control study included 131 motor vehicles involved in crashes where at least one person died or was hospitalised (cases) and 752 motor vehicles identified in roadside surveys (controls). An interviewer-administered questionnaire completed by drivers or proxies collected information on potential risks for crashes including sleepiness while driving, and factors that may influence the quantity or quality of sleep. Following adjustment for confounders, there was an almost six-fold increase in the odds of injury-involved crashes for vehicles driven by people who were not fully alert or sleepy (OR 5.7, 95%CI: 2.7, 12.3), or those who reported less than 6 h of sleep during the previous 24 h (OR 5.9, 95%CI: 1.7, 20.9). The population attributable risk for crashes associated with driving while not fully alert or sleepy was 34%, and driving after less than 6 h sleep in the previous 24 h was 9%. Driving by people reporting symptoms suggestive of obstructive sleep apnoea was not significantly associated with crash risk. Driver sleepiness is an important contributor to injury-involved four-wheel motor vehicle crashes in Fiji, highlighting the need for evidence-based strategies to address this poorly characterised risk factor for car crashes in less resourced settings. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
A Study of a Handrim-Activated Power-Assist Wheelchair Based on a Non-Contact Torque Sensor
Nam, Ki-Tae; Jang, Dae-Jin; Kim, Yong Chol; Heo, Yoon; Hong, Eung-Pyo
2016-01-01
Demand for wheelchairs is increasing with growing numbers of aged and disabled persons. Manual wheelchairs are the most commonly used assistive device for mobility because they are convenient to transport. Manual wheelchairs have several advantages but are not easy to use for the elderly or those who lack muscular strength. Therefore, handrim-activated power-assist wheelchairs (HAPAW) that can aid driving power with a motor by detecting user driving intentions through the handrim are being researched. This research will be on HAPAW that judge user driving intentions by using non-contact torque sensors. To deliver the desired motion, which is sensed from handrim rotation relative to a fixed controller, a new driving wheel mechanism is designed by applying a non-contact torque sensor, and corresponding torques are simulated. Torques are measured by a driving wheel prototype and compared with simulation results. The HAPAW prototype was developed using the wheels and a driving control algorithm that uses left and right input torques and time differences are used to check if the non-contact torque sensor can distinguish users’ driving intentions. Through this procedure, it was confirmed that the proposed sensor can be used effectively in HAPAW. PMID:27509508
A new energy-efficient control approach for astronomical telescope drive system
NASA Astrophysics Data System (ADS)
Zhou, W.; Wang, Y.
2012-12-01
Drive control makes the astronomical telescope accurately tracking celestial bodies in spite of external and internal disturbances, which is a key technique to the performance of telescopes. In this paper, we propose a nonlinear ad, aptive observer based on power reversible approach for high precision telescope position tracking. The nonlinear adaptive observer automatically estimates the disturbances in drive system, and the observed value is applied to compensate for the real disturbances. With greatly reduced disturbances, the control precision can be evidently improved. In conventional drive control, the brake device is often used to slow down the reaction wheel and may waste enormous energy. To avoid those disadvantages, an H-bridge is put forward for wheel speed regulation. Such H-bridge has four independent sections, and each section mainly consists of a power electronic switch and an anti-parallel diode. During the period of the mount slowing down, the armature current of drive motor goes through the two path-wise diodes to charge the battery. Thus, energy waste is avoided. Based on the disturbance compensation, an optimal controller is designed to minimize an evaluation function which is made up of a weighted sum of position errors and energy consumption.The outputs of the controller are applied to control the H-bridge. Simulations are performed in MATLAB language. The results show that high precision control can be obtained by the proposed approach. And the energy consumption will be remarkably reduced.
NASA Astrophysics Data System (ADS)
Weiskircher, Thomas; Müller, Steffen
2012-01-01
This article presents a motion controller for a road vehicle equipped with a steer-by-wire system and four independent electric rim-mounted drives. The motion controller separates the control law from the specific actuator setup by the usage of virtual global control variables acting on the vehicle centre of gravity. A control allocation algorithm distributes the virtual control variables to the available actuators. An approximation of the real actuator dynamics is used to analyse the performance of different motion controller types in the linear and nonlinear driving regions. In addition, a vehicle state observer consisting of a traction force observer and an unscented Kalman filter is discussed to analyse the control behaviour in the case of a real sensor setup.
Four-wheel dual braking for automobiles
NASA Technical Reports Server (NTRS)
Edwards, H. B.
1981-01-01
Each master cylinder applies braking power to all four wheels unlike conventional systems where cylinder operates only two wheels. If one master system fails because of fluid loss, other stops car by braking all four wheels although at half force.
Research on Performance of Wire-controlled Hydraulic Steering System Based on Four-wheel Steering
NASA Astrophysics Data System (ADS)
Tao, P.; Jin, X. H.
2018-05-01
In this paper, the steering stability and control strategy of forklift are put forward. Drive based on yawing moment distribution of rotary torque coordination control method, through analyzing the linear two degree of freedom model of forklift truck, forklift yawing angular velocity and mass center side-slip Angle of expectations, as the control target parameters system, using fuzzy controller output driving forklift steering the yawing moment, to drive rotary torque distribution, make the forklift truck to drive horizontal pendulum angular velocity and side-slip Angle tracking reference model very well. In this paper, the lateral stability control system were designed, the joint simulation in MATLAB/Simulink, the simulation results show that under the different partial load, the control system can effectively to control side forklift lateral stability, enhanced the forklift driving safety, for the side forklift steering stability study provides a theoretical basis.
Long-Term Performance Evaluation of Asphalt Surface Treatments: Product Placement
2010-02-01
20 Wheeler-Sack Army Airfield, Fort Drum , New York ...............................................................28 4...Grip Tester underside view ................................................................................ 6 Figure 3. Rotating disc of Dynamic...measures pavement friction using the braked -wheel, fixed-slip principle. Two wheels support the Grip Tester on a drive axle, while a measuring wheel with
Techno-economic comparison of series hybrid, plug-in hybrid, fuel cell and regular cars
NASA Astrophysics Data System (ADS)
van Vliet, Oscar P. R.; Kruithof, Thomas; Turkenburg, Wim C.; Faaij, André P. C.
We examine the competitiveness of series hybrid compared to fuel cell, parallel hybrid, and regular cars. We use public domain data to determine efficiency, fuel consumption, total costs of ownership and greenhouse gas emissions resulting from drivetrain choices. The series hybrid drivetrain can be seen both as an alternative to petrol, diesel and parallel hybrid cars, as well as an intermediate stage towards fully electric or fuel cell cars. We calculate the fuel consumption and costs of four diesel-fuelled series hybrid, four plug-in hybrid and four fuel cell car configurations, and compared these to three reference cars. We find that series hybrid cars may reduce fuel consumption by 34-47%, but cost €5000-12,000 more. Well-to-wheel greenhouse gas emissions may be reduced to 89-103 g CO 2 km -1 compared to reference petrol (163 g km -1) and diesel cars (156 g km -1). Series hybrid cars with wheel motors have lower weight and 7-21% lower fuel consumption than those with central electric motors. The fuel cell car remains uncompetitive even if production costs of fuel cells come down by 90%. Plug-in hybrid cars are competitive when driving large distances on electricity, and/or if cost of batteries come down substantially. Well-to-wheel greenhouse gas emissions may be reduced to 60-69 g CO 2 km -1.
Hitching a ride: Seed accrual rates on different types of vehicles.
Rew, Lisa J; Brummer, Tyler J; Pollnac, Fredric W; Larson, Christian D; Taylor, Kimberley T; Taper, Mark L; Fleming, Joseph D; Balbach, Harold E
2018-01-15
Human activities, from resource extraction to recreation, are increasing global connectivity, especially to less-disturbed and previously inaccessible places. Such activities necessitate road networks and vehicles. Vehicles can transport reproductive plant propagules long distances, thereby increasing the risk of invasive plant species transport and dispersal. Subsequent invasions by less desirable species have significant implications for the future of threatened species and habitats. The goal of this study was to understand vehicle seed accrual by different vehicle types and under different driving conditions, and to evaluate different mitigation strategies. Using studies and experiments at four sites in the western USA we addressed three questions: How many seeds and species accumulate and are transported on vehicles? Does this differ with vehicle type, driving surface, surface conditions, and season? What is our ability to mitigate seed dispersal risk by cleaning vehicles? Our results demonstrated that vehicles accrue plant propagules, and driving surface, surface conditions, and season affect the rate of accrual: on- and off-trail summer seed accrual on all-terrain vehicles was 13 and 3508 seeds km -1 , respectively, and was higher in the fall than in the summer. Early season seed accrual on 4-wheel drive vehicles averaged 7 and 36 seeds km -1 on paved and unpaved roads respectively, under dry conditions. Furthermore, seed accrual on unpaved roads differed by vehicle type, with tracked vehicles accruing more than small and large 4-wheel drives; and small 4-wheel drives more than large. Rates were dramatically increased under wet surface conditions. Vehicles indiscriminately accrue a wide diversity of seeds (different life histories, forms and seed lengths); total richness, richness of annuals, biennials, forbs and shrubs, and seed length didn't differ among vehicle types, or additional seed bank samples. Our evaluation of portable vehicle wash units showed that approximately 80% of soil and seed was removed from dirty vehicles. This suggests that interception programs to reduce vehicular seed transportation risk are feasible and should be developed for areas of high conservation value, or where the spread of invasive species is of special concern. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Four-Wheel Vehicle Suspension System
NASA Technical Reports Server (NTRS)
Bickler, Donald B.
1990-01-01
Four-wheel suspension system uses simple system of levers with no compliant components to provide three-point suspension of chassis of vehicle while maintaining four-point contact with uneven terrain. Provides stability against tipping of four-point rectangular base, without rocking contact to which rigid four-wheel frame susceptible. Similar to six-wheel suspension system described in "Articulated Suspension Without Springs" (NPO-17354).
16 CFR 1420.3 - Requirements for four-wheel ATVs.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Requirements for four-wheel ATVs. 1420.3... REGULATIONS REQUIREMENTS FOR ALL TERRAIN VEHICLES § 1420.3 Requirements for four-wheel ATVs. (a) Each ATV shall comply with all applicable provisions of the American National Standard for Four Wheel All-Terrain...
Road accidents caused by sleepy drivers: Update of a Norwegian survey.
Phillips, Ross Owen; Sagberg, Fridulv
2013-01-01
The current study tests, updates and expands a model of factors associated with sleepy driving, originally based on a 1997 survey of accident-involved Norwegian drivers (Sagberg, F., 1999. Road accidents caused by drivers falling asleep. Accident Analysis & Prevention 31, 639-649). The aim is to establish a robust model to inform measures to tackle sleepy driving. The original questions on (i) tiredness-related accidents and (ii) incidents of sleep behind the wheel in the last 12 months were again posed in 2003 and 2008, in independent surveys of Norwegian drivers involved in accidents reported to a large insurance company. According to those drivers at-fault for the accident, tiredness or sleepiness behind the wheel contributed to between 1.9 and 3.9 per cent of all types of accident reported to the insurance company across these years. Accident-involved drivers not at fault for the accident reported a reduction in the incidence of sleep behind the wheel for the preceding year, decreasing from 8.3 per cent in 1997 to 2.9 per cent in 2008. The reasons for this are not clear. According to logistic regression analysis of survey responses, the following factors were robustly associated with road accidents involving sleepy driving: driving off the road; good road conditions; longer distance driven since the start of the trip; and fewer years with a driving licence. The following factors are consistently associated with reports of sleep behind the wheel, whether or not it leads to an accident: being male; driving further per year; being younger; and having sleep-related health problems. Taken together these findings suggest that young, inexperienced male drivers who drive long distances may be a suitable target for road safety campaigns aimed at tackling sleepy driving. Copyright © 2012 Elsevier Ltd. All rights reserved.
Wheel Diameter and Speedometer Reading
NASA Astrophysics Data System (ADS)
Murray, Clifton
2010-09-01
Most introductory physics students have seen vehicles with nonstandard wheel diameters; some may themselves drive "low-rider" cars or "big-wheel" pickup trucks. But how does changing wheel diameter affect speedometer readout for a given speed? Deriving the answer can be followed readily by students who have been introduced to rotation, and it makes a good illustration of how reasoning in physics can lead to a result that is useful outside the classroom.
Nangana, Luzitu Severin; Monga, Ben; Ngatu, Nlandu Roger; Mbelambela, Etongola Papy; Mbutshu, Lukuke Hendrick; Malonga, Kaj Francoise
2016-09-01
Road traffic accident (RTA)-related trauma remains a public health issue. The aim of this study was to determine the frequency, causes and human impact of motor vehicle-related RTA in Lubumbashi, Democratic Republic of Congo. A prospective cross-sectional study was conducted in the first semester of the year 2015 in which 288 drivers (144 RTA-causing drivers and 144 control drivers who have been declared not guilty by road safety agents) involved in 144 motor vehicle-related RTA were interviewed, and only data on all RTA involving two motor vehicles with at least four wheels were recorded and analyzed. Results showed a total of 144 RTA that involved two motor vehicles with four wheels occurring during the study period which affected 104 people, including 93 injury and 11 fatality cases. The mean age of RTA-causing drivers was 33.8 ± 7.4, whereas it was 35 ± 8.8 for control drivers. The majority of RTA-causing drivers (53.4 %) did not attend a driving school. Over speeding (32 %), distracted driving (22 %), overtaking (16 %) and careless driving/risky maneuver (15 %) and driving under the influence of alcohol (9 %) were the main causes of RTA occurrence. In addition, the absence of a valid driving license [aOR = 12.74 (±2.71); 95 % CI 3.877-41.916; p = 0.015], unfastened seat belt for the RTA-causing driver [aOR = 1.85 (±0.62); 95 % CI 1.306-6.661; p = 0.048] and presence of damages on RTA-causing vehicle [aOR = 33.56 (24.01); 95 % CI 1.429-78.352; p = 0.029] were associated with the occurrence of RTA-related fatality. This study showed a relatively high frequency of RTA occurring in Lubumbashi and suggests the necessity to reinforce road traffic regulation.
NASA Astrophysics Data System (ADS)
Chen, Long; Bian, Mingyuan; Luo, Yugong; Qin, Zhaobo; Li, Keqiang
2016-01-01
In this paper, a resonance frequency-based tire-road friction coefficient (TRFC) estimation method is proposed by considering the dynamics performance of the in-wheel motor drive system under small slip ratio conditions. A frequency response function (FRF) is deduced for the drive system that is composed of a dynamic tire model and a simplified motor model. A linear relationship between the squared system resonance frequency and the TFRC is described with the FRF. Furthermore, the resonance frequency is identified by the Auto-Regressive eXogenous model using the information of the motor torque and the wheel speed, and the TRFC is estimated thereafter by a recursive least squares filter with the identified resonance frequency. Finally, the effectiveness of the proposed approach is demonstrated through simulations and experimental tests on different road surfaces.
Multiple-degree-of-freedom vehicle
Borenstein, Johann
1995-01-01
A multi-degree-of-freedom vehicle employs a compliant linkage to accommodate the need for a variation in the distance between drive wheels or drive systems which are independently steerable and drivable. The subject vehicle is provided with rotary encodes to provide signals representative of the orientation of the steering pivot associated with each such drive wheel or system, and a linear encoder which issues a signal representative of the fluctuations in the distance between the drive elements. The wheels of the vehicle are steered and driven in response to the linear encoder signal, there being provided a controller system for minimizing the fluctuations in the distance. The controller system is a software implementation of a plurality of controllers, operating at the chassis level and at the vehicle level. A trajectory interpolator receives x-displacement, y-displacement, and .theta.-displacement signals and produces to the vehicle level controller trajectory signals corresponding to interpolated control signals. The x-displacement, y-displacement, and .theta.-displacement signals are received from a human operator, via a manipulable joy stick.
Compliant-linkage kinematic design for multi-degree-of-freedom mobile robots
NASA Astrophysics Data System (ADS)
Borenstein, Johann
1993-05-01
Multi-degree-of-freedom (MDOF) vehicles have many potential advantages over conventional (i.e., 2-DOF) vehicles. For example, MDOF vehicles can travel sideways and they can negotiate tight turns more easily. In addition, some MDOF designs provide better payload capability, better traction, and improved static and dynamic stability. However, MDOF vehicles with more than three degrees-of-freedom are difficult to control because of their overconstrained nature. These difficulties translate into severe wheel slippage or jerky motion under certain driving conditions. In the past, these problems limited the use of MDOF vehicles to applications where the vehicle would follow a guide-wire, which would correct wheel slippage and control errors. By contrast, autonomous or semi-autonomous mobile robots usually rely on dead-reckoning between periodic absolute position updates and their performance is diminished by excessive wheel slippage. This paper introduces a new concept in the kinematic design of MDOF vehicles. This concept is based on the provision of a compliant linkage between drive wheels or drive axles. Simulation results indicate that compliant linkage allows to overcome the control problems found in conventional MDOF vehicles and reduces the amount of wheel slippage to the same level (or less) than the amount of slippage found on a comparable 2-DOF vehicle.
Rover Wheel-Actuated Tool Interface
NASA Technical Reports Server (NTRS)
Matthews, Janet; Ahmad, Norman; Wilcox, Brian
2007-01-01
A report describes an interface for utilizing some of the mobility features of a mobile robot for general-purpose manipulation of tools and other objects. The robot in question, now undergoing conceptual development for use on the Moon, is the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE) rover, which is designed to roll over gentle terrain or walk over rough or steep terrain. Each leg of the robot is a six-degree-of-freedom general purpose manipulator tipped by a wheel with a motor drive. The tool interface includes a square cross-section peg, equivalent to a conventional socket-wrench drive, that rotates with the wheel. The tool interface also includes a clamp that holds a tool on the peg, and a pair of fold-out cameras that provides close-up stereoscopic images of the tool and its vicinity. The field of view of the imagers is actuated by the clamp mechanism and is specific to each tool. The motor drive can power any of a variety of tools, including rotating tools for helical fasteners, drills, and such clamping tools as pliers. With the addition of a flexible coupling, it could also power another tool or remote manipulator at a short distance. The socket drive can provide very high torque and power because it is driven by the wheel motor.
Kurosawa, Kanji; Koga, Bunichiro; Ito, Hideki; Kiriyama, Shigeru; Higuchi, Shizuo
2003-05-20
A transport system includes a traveling rail (1) which constitutes a transport route and a transport body (3) which is capable of traveling on the traveling rail in the longitudinal direction of the traveling rail. Flexible drive tubes (5) are arranged on the traveling rail in the longitudinal direction of the traveling rail. The transport body includes a traveling wheel (4) which is capable of rolling on the traveling rail and drive wheels (2) which are capable of rolling on the drive tubes upon receiving the rotational drive power generated by pressure of a pressure medium supplied to the drive tubes while depressing the drive tubes. The traveling rail includes a plurality of transport sections and the transport body is capable of receiving a rotational drive force from the drive tubes at every transport sections. If necessary, a transport route changeover switch which changes over the transport route can be provided between the transport sections.
NASA Astrophysics Data System (ADS)
Osaka, Motohisa; Murata, Hiroshige; Tateoka, Katsuhiko; Katoh, Takao
2007-07-01
Some cases of traffic accidents are assumed to be due to the occurrences of cardiac events during driving, which are thought to be induced by imbalance of autonomic nervous activities. These can be measured by analyzing heart rate variability. Therefore, we developed a new system of steering-wheel electrocardiogram with a soft-ware to remove noises. We compared the trends of sympathetic and parasympathetic nerve activities measured from the steering-wheel electrocardiograms with those recorded simultaneously from chest leads. For each parameter of instantaneous heart rate, low- or high-frequency component of heart rate variability in all the cases, the trend from the steering-wheel electrocardiogram resembled that from the chest-lead electrocardiogram. In 3 of 7 subjects, the trend of LF/HF showed a strong relationship between the steering-wheel electrocardiogram and the chest-lead electrocardiogram. Our system will open doors to a new strategy to keep a driver out of a risk by notifying it while driving.
i3Drive, a 3D interactive driving simulator.
Ambroz, Miha; Prebil, Ivan
2010-01-01
i3Drive, a wheeled-vehicle simulator, can accurately simulate vehicles of various configurations with up to eight wheels in real time on a desktop PC. It presents the vehicle dynamics as an interactive animation in a virtual 3D environment. The application is fully GUI-controlled, giving users an easy overview of the simulation parameters and letting them adjust those parameters interactively. It models all relevant vehicle systems, including the mechanical models of the suspension, power train, and braking and steering systems. The simulation results generally correspond well with actual measurements, making the system useful for studying vehicle performance in various driving scenarios. i3Drive is thus a worthy complement to other, more complex tools for vehicle-dynamics simulation and analysis.
Direct yaw moment control and power consumption of in-wheel motor vehicle in steady-state turning
NASA Astrophysics Data System (ADS)
Kobayashi, Takao; Katsuyama, Etsuo; Sugiura, Hideki; Ono, Eiichi; Yamamoto, Masaki
2017-01-01
Driving force distribution control is one of the characteristic performance aspects of in-wheel motor vehicles and various methods have been developed to control direct yaw moment while turning. However, while these controls significantly enhance vehicle dynamic performance, the additional power required to control vehicle motion still remains to be clarified. This paper constructed new formulae of the mechanism by which direct yaw moment alters the cornering resistance and mechanical power of all wheels based on a simple bicycle model, including the electric loss of the motors and the inverters. These formulation results were validated by an actual test vehicle equipped with in-wheel motors in steady-state turning. The validated theory was also applied to a comparison of several different driving force distribution mechanisms from the standpoint of innate mechanical power.
Four-wheeled walker related injuries in older adults in the Netherlands.
van Riel, K M M; Hartholt, K A; Panneman, M J M; Patka, P; van Beeck, E F; van der Cammen, T J M
2014-02-01
With ageing populations worldwide, mobility devices are used more than ever. In the current literature there is no consensus whether the available mobility devices safely improve the mobility of their users. Also, evidence is lacking concerning the risks and types of injuries sustained while using a four-wheeled walker. To assess injury risks and injury patterns in older adults (≥65 years) who presented at Emergency Departments (ED) in the Netherlands with an injury due to using a four-wheeled walker. In this study, the Dutch Injury Surveillance System was used to obtain a national representative sample of annual ED visits in the Netherlands in the adult population (≥65 years) sustaining an injury while using a four-wheeled walker. The numbers of four-wheeled walker users in the Netherlands were obtained from the national insurance board. The numbers of ED visits were divided by the numbers of four-wheeled walker users to calculate age- and sex-specific injury risks. Annually 1869 older adults visited an ED after sustaining an injury while using a four-wheeled walker. Falls were the main cause of injury (96%). The injury risk was 3.1 per 100 users of four-wheeled walkers. Women (3.5 per 100 users) had a higher risk than men (2.0 per 100 users). Injury risk was the highest in women aged 85 years and older (6.2 per 100 users). The majority of injuries were fractures (60%) with hip fracture (25%) being the most common injury. Nearly half of all four-wheeled walker related injuries required hospitalisation, mostly due to hip fractures. Healthcare costs per injury were approximately €12 000. This study presents evidence that older adults experiencing a fall while using a four-wheeled walker are at high risk to suffer severe injuries.
Driving Anger and Driving Behavior in Adults with ADHD
ERIC Educational Resources Information Center
Richards, Tracy L.; Deffenbacher, Jerry L.; Rosen, Lee A.; Barkley, Russell A.; Rodricks, Trisha
2006-01-01
Objective: This study assesses whether anger in the context of driving is associated with the negative driving outcomes experienced by individuals with ADHD. Method: ADHD adults (n = 56) complete measures of driving anger, driving anger expression, angry thoughts behind the wheel, and aggressive, risky, and crash-related behavior. Results are…
NASA Technical Reports Server (NTRS)
Wilson, Andrew (Inventor); Punnoose, Andrew (Inventor); Strausser, Katherine (Inventor); Parikh, Neil (Inventor)
2011-01-01
A mobile robotic unit features a main body, a plurality of legs for supporting the main body on and moving the main body in forward and reverse directions about a base surface, and a drive assembly. According to an exemplary embodiment each leg includes a respective pivotal hip joint, a pivotal knee joint, and a wheeled foot adapted to roll along the base surface. Also according to an exemplary embodiments the drive assembly includes a motor operatively associated with the hip and knee joints and the wheeled foot for independently driving pivotal movement of the hip joint and the knee joint and rolling motion of the wheeled foot. The hip joint may include a ball-and-socket-type joint interconnecting top portion of the leg to the main body, such that the hip joint is adapted to pivot said leg in a direction transverse to a forward-and-reverse direction.
A fuzzy logic sliding mode controlled electronic differential for a direct wheel drive EV
NASA Astrophysics Data System (ADS)
Ozkop, Emre; Altas, Ismail H.; Okumus, H. Ibrahim; Sharaf, Adel M.
2015-11-01
In this study, a direct wheel drive electric vehicle based on an electronic differential system with a fuzzy logic sliding mode controller (FLSMC) is studied. The conventional sliding surface is modified using a fuzzy rule base to obtain fuzzy dynamic sliding surfaces by changing its slopes using the global error and its derivative in a fuzzy logic inference system. The controller is compared with proportional-integral-derivative (PID) and sliding mode controllers (SMCs), which are usually preferred to be used in industry. The proposed controller provides robustness and flexibility to direct wheel drive electric vehicles. The fuzzy logic sliding mode controller, electronic differential system and the overall electrical vehicle mechanism are modelled and digitally simulated by using the Matlab software. Simulation results show that the system with FLSMC has better efficiency and performance compared to those of PID and SMCs.
Traction drive automatic transmission for gas turbine engine driveline
Carriere, Donald L.
1984-01-01
A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.
Personnel emergency carrier vehicle
NASA Technical Reports Server (NTRS)
Owens, Lester J. (Inventor); Fedor, Otto H. (Inventor)
1987-01-01
A personnel emergency carrier vehicle is disclosed which includes a vehicle frame supported on steerable front wheels and driven rear wheels. A supply of breathing air is connected to quick connect face mask coupling and umbilical cord couplings for supplying breathing air to an injured worker or attendant either with or without a self-contained atmospheric protection suit for protection against hazardous gases at an accident site. A non-sparking hydraulic motion is utilized to drive the vehicle and suitable direction and throttling controls are provided for controlling the delivery of a hydraulic driving fluid from a pressurized hydraulic fluid accumulator. A steering axis is steerable through a handle to steer the front wheels through a linkage assembly.
77 FR 5302 - Ford Motor Company, Receipt of Petition for Decision of Inconsequential Noncompliance
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-02
... plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving position and which is located on the... face plane of the steering wheel hub, the identifier must meet Table 2 requirements for the horn...
Opportunity's View After Drive on Sol 1806 (Polar)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction. The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008). This view is presented as a polar projection with geometric seam correction.Opportunity's View After Drive on Sol 1806 (Vertical)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction. The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008). This view is presented as a vertical projection with geometric seam correction.Opportunity's View After Drive on Sol 1806
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction. The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008). This view is presented as a cylindrical projection with geometric seam correction.Philip, Pierre; Micoulaud-Franchi, Jean-Arthur; Lagarde, Emmanuel; Taillard, Jacques; Canel, Annick; Sagaspe, Patricia; Bioulac, Stéphanie
2015-01-01
Background Attention Deficit Hyperactivity Disorder (ADHD) is a frequent neurodevelopmental disorder that increases accidental risk. Recent studies show that some patients with ADHD can also suffer from excessive daytime sleepiness but there are no data assessing the role of sleepiness in road safety in patients with ADHD. We conducted an epidemiological study to explore sleep complaints, inattention and driving risks among automobile drivers. Methods and Findings From August to September 2014, 491186 regular highway users were invited to participate in an Internet survey on driving habits. 36140 drivers answered a questionnaire exploring driving risks, sleep complaints, sleepiness at the wheel, ADHD symptoms (Adult ADHD Self-Report Scale) and distraction at the wheel. 1.7% of all drivers reported inattention-related driving accidents and 0.3% sleep-related driving accidents in the previous year. 1543 drivers (4.3%) reported ADHD symptoms and were more likely to report accidents than drivers without ADHD symptoms (adjusted OR = 1.24, [1.03–1.51], p < .021). 14.2% of drivers with ADHD symptoms reported severe excessive daytime sleepiness (Epworth Sleepiness Scale >15) versus 3.2% of drivers without ADHD symptoms and 20.5% reported severe sleepiness at the wheel versus 7.3%. Drivers with ADHD symptoms reported significantly more sleep-related (adjusted OR = 1.4, [1.21–1.60], p < .0001) and inattention-related (adjusted OR = 1.9, [1.71–2.14], p<0001) near misses than drivers without ADHD symptoms. The fraction of near-misses attributable to severe sleepiness at the wheel was 4.24% for drivers without ADHD symptoms versus 10,35% for drivers with ADHD symptoms. Conclusion Our study shows that drivers with ADHD symptoms have more accidents and a higher level of sleepiness at the wheel than drivers without ADHD symptoms. Drivers with ADHD symptoms report more sleep-related and inattention-related near misses, thus confirming the clinical importance of exploring both attentional deficits and sleepiness at the wheel in these drivers. Road safety campaigns should be improved to better inform drivers of these accidental risks. PMID:26376078
Philip, Pierre; Micoulaud-Franchi, Jean-Arthur; Lagarde, Emmanuel; Taillard, Jacques; Canel, Annick; Sagaspe, Patricia; Bioulac, Stéphanie
2015-01-01
Attention Deficit Hyperactivity Disorder (ADHD) is a frequent neurodevelopmental disorder that increases accidental risk. Recent studies show that some patients with ADHD can also suffer from excessive daytime sleepiness but there are no data assessing the role of sleepiness in road safety in patients with ADHD. We conducted an epidemiological study to explore sleep complaints, inattention and driving risks among automobile drivers. From August to September 2014, 491186 regular highway users were invited to participate in an Internet survey on driving habits. 36140 drivers answered a questionnaire exploring driving risks, sleep complaints, sleepiness at the wheel, ADHD symptoms (Adult ADHD Self-Report Scale) and distraction at the wheel. 1.7% of all drivers reported inattention-related driving accidents and 0.3% sleep-related driving accidents in the previous year. 1543 drivers (4.3%) reported ADHD symptoms and were more likely to report accidents than drivers without ADHD symptoms (adjusted OR = 1.24, [1.03-1.51], p < .021). 14.2% of drivers with ADHD symptoms reported severe excessive daytime sleepiness (Epworth Sleepiness Scale >15) versus 3.2% of drivers without ADHD symptoms and 20.5% reported severe sleepiness at the wheel versus 7.3%. Drivers with ADHD symptoms reported significantly more sleep-related (adjusted OR = 1.4, [1.21-1.60], p < .0001) and inattention-related (adjusted OR = 1.9, [1.71-2.14], p<0001) near misses than drivers without ADHD symptoms. The fraction of near-misses attributable to severe sleepiness at the wheel was 4.24% for drivers without ADHD symptoms versus 10,35% for drivers with ADHD symptoms. Our study shows that drivers with ADHD symptoms have more accidents and a higher level of sleepiness at the wheel than drivers without ADHD symptoms. Drivers with ADHD symptoms report more sleep-related and inattention-related near misses, thus confirming the clinical importance of exploring both attentional deficits and sleepiness at the wheel in these drivers. Road safety campaigns should be improved to better inform drivers of these accidental risks.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 20.6 °C and 22.2 °C (69 °F to 72 °F). S16.2.9 Steering wheel adjustment. S16.2.9.1 Adjust a tiltable steering wheel, if possible, so that the steering wheel hub is at the geometric center of its full range of driving positions. S16.2.9.2 If there is no setting detent at the mid-position, lower the steering wheel...
NASA Astrophysics Data System (ADS)
Guarnieri, A.; Milan, N.; Pirotti, F.; Vettore, A.
2011-12-01
In the automotive sector, especially in these last decade, a growing number of investigations have taken into account electronic systems to check and correct the behavior of drivers, increasing road safety. The possibility to identify with high accuracy the vehicle position in a mapping reference frame for driving directions and best-route analysis is also another topic which attracts lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate time by time the position, orientation and velocity of the system. To this aim low cost GPS and MEMS (sensors can be used. In comparison to a four wheel vehicle, the dynamics of a two wheel vehicle (e.g. a scooter) feature a higher level of complexity. Indeed more degrees of freedom must be taken into account to describe the motion of the latter. For example a scooter can twist sideways, thus generating a roll angle. A slight pitch angle has to be considered as well, since wheel suspensions have a higher degree of motion with respect to four wheel vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a motorcycle ("Vespa" scooter), which can be used as alternative to the "classical" approach based on the integration of GPS and INS sensors. Position and orientation of the scooter are derived from MEMS data and images acquired by on-board digital camera. A Bayesian filter provides the means for integrating the data from MEMS-based orientation sensor and the GPS receiver.
1971-01-01
The Lunar Roving Vehicle (LRV) was designed to transport astronauts and materials on the Moon. It was a collapsible open-space vehicle about 10 feet long with large mesh wheels, anterna, appendages, tool caddies, and cameras. Powered by two 36-volt batteries, it has four 1/4-hp drive motors, one for each wheel. The vehicle was designed to travel in forward or reverse, negotiate obstacles about 1 foot high, cross crevasses about 2 feet wide, and climb or descend moderate slopes. Its speed limit was about 9 miles (14 kilometers) per hour. An LRV was used on each of the last three Apollo missions (Apollo 15, Apollo 16, and Apollo 17) and permitted the crew to travel several miles from the Lunar Module. The LRV was designed, developed, and tested by the Marshall Space Flight Center, and built by the Boeing Plant in Kent, Washington.
1971-01-01
The Lunar Roving Vehicle (LRV) was designed to transport astronauts and materials on the Moon. It was a collapsible open-space vehicle about 10 feet long with large mesh wheels, anterna, appendages, tool caddies, and cameras. Powered by two 36-volt batteries, it has four 1/4-hp drive motors, one for each wheel. The vehicle was designed to travel in forward or reverse, negotiate obstacles about 1 foot high, cross crevasses about 2 feet wide, and climb or descend moderate slopes. Its speed limit was about 9 miles (14 kilometers) per hour. An LRV was used on each of the last three Apollo missions (Apollo 15, Apollo 16, and Apollo 17) and permitted the crews to travel several miles from the Lunar Module. The LRV was designed, developed, and tested by the Marshall Space Flight Center, and built by the Boeing Plant in Kent, Washington.
Rotations by Spirit Right-Front Wheel, Sol 2117
2009-12-21
This frame taken from a three-frame animation aids evaluation of performance of the right-front wheel on NASA Mars Exploration Rover Spirit during a drive on the rover 2,117th Martian day, or sol Dec. 16, 2009.
Brusque, Corinne; Alauzet, Aline
2008-01-01
In France, as in many other countries, phoning while driving is legally restricted because of its negative impact on driving performance which increases accident risk. Nevertheless, it is still a frequently observed practice and one which has not been analyzed in detail. This study attempts to identify the profiles of those who use mobile phones while at the wheel and determine the forms taken by this use. A representative sample of 1973 French people was interviewed by phone on their driving practices and mobile phone use in everyday life and their mobile phone use while driving. Logistics regressions have been conducted to highlight the explanatory factors of phoning while driving. Strong differences between males and females have been shown. For the male population, age is the main explanatory factor of phoning while driving, followed by phone use for work-related reasons and extensive mobile phone use in everyday life. For females, high mileage and intensive use of mobile phone are the only two explanatory factors. We defined the intensive phone use at the wheel group as drivers who receive or send at least five or more calls per day while driving. There is no socio-demographic variable related to this practice. Car and phone uses in everyday life are the only explanatory factors for this intensive mobile use of the phone at the wheel.
Evaluation of Lands for Off-Road Recreational Four-Wheel Drive Vehicle Use
1981-10-01
21. Hoover, Bob, "Off-Road Vehicle Problem on Public Lands," Proceedings of the 40th Annual Meeting of the Association of Midwest Fish and Wildlife...Trailbike Recreation (U.S. Department of the Interior, Heritage Chonservation and RecreatiýFService, 1978). Planting and Establishment of Trees, Shrubs ...Ground Covers and Vines , TM 5-E3U-4 (DA, 15 June 1976). Pleuther, R. L., A Critique on the Performance of Off-Road Vehicles: Full Scale Test Results
Identifying cognitive distraction using steering wheel reversal rates.
Kountouriotis, Georgios K; Spyridakos, Panagiotis; Carsten, Oliver M J; Merat, Natasha
2016-11-01
The influence of driver distraction on driving performance is not yet well understood, but it can have detrimental effects on road safety. In this study, we examined the effects of visual and non-visual distractions during driving, using a high-fidelity driving simulator. The visual task was presented either at an offset angle on an in-vehicle screen, or on the back of a moving lead vehicle. Similar to results from previous studies in this area, non-visual (cognitive) distraction resulted in improved lane keeping performance and increased gaze concentration towards the centre of the road, compared to baseline driving, and further examination of the steering control metrics indicated an increase in steering wheel reversal rates, steering wheel acceleration, and steering entropy. We show, for the first time, that when the visual task is presented centrally, drivers' lane deviation reduces (similar to non-visual distraction), whilst measures of steering control, overall, indicated more steering activity, compared to baseline. When using a visual task that required the diversion of gaze to an in-vehicle display, but without a manual element, lane keeping performance was similar to baseline driving. Steering wheel reversal rates were found to adequately tease apart the effects of non-visual distraction (increase of 0.5° reversals) and visual distraction with offset gaze direction (increase of 2.5° reversals). These findings are discussed in terms of steering control during different types of in-vehicle distraction, and the possible role of manual interference by distracting secondary tasks. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sleepiness at the wheel across Europe: a survey of 19 countries.
Gonçalves, Marta; Amici, Roberto; Lucas, Raquel; Åkerstedt, Torbjörn; Cirignotta, Fabio; Horne, Jim; Léger, Damien; McNicholas, Walter T; Partinen, Markku; Téran-Santos, Joaquín; Peigneux, Philippe; Grote, Ludger
2015-06-01
The European Sleep Research Society aimed to estimate the prevalence, determinants and consequences of falling asleep at the wheel. In total, 12 434 questionnaires were obtained from 19 countries using an anonymous online questionnaire that collected demographic and sleep-related data, driving behaviour, history of drowsy driving and accidents. Associations were quantified using multivariate logistic regression. The average prevalence of falling asleep at the wheel in the previous 2 years was 17%. Among respondents who fell asleep, the median prevalence of sleep-related accidents was 7.0% (13.2% involved hospital care and 3.6% caused fatalities). The most frequently perceived reasons for falling asleep at the wheel were poor sleep in the previous night (42.5%) and poor sleeping habits in general (34.1%). Falling asleep was more frequent in the Netherlands [odds ratio = 3.55 (95% confidence interval: 1.97; 6.39)] and Austria [2.34 (1.75; 3.13)], followed by Belgium [1.52 (1.28; 1.81)], Portugal [1.34 (1.13, 1.58)], Poland [1.22 (1.06; 1.40)] and France [1.20 (1.05; 1.38)]. Lower odds were found in Croatia [0.36 (0.21; 0.61)], Slovenia [0.62 (0.43; 0.89)] and Italy [0.65 (0.53; 0.79)]. Individual determinants of falling asleep were younger age; male gender [1.79 (1.61; 2.00)]; driving ≥20 000 km year [2.02 (1.74; 2.35)]; higher daytime sleepiness [7.49 (6.26; 8.95)] and high risk of obstructive sleep apnea syndrome [3.48 (2.78; 4.36) in men]. This Pan European survey demonstrates that drowsy driving is a major safety hazard throughout Europe. It emphasizes the importance of joint research and policy efforts to reduce the burden of sleepiness at the wheel for European drivers.
Design features that affect the maneuverability of wheelchairs and scooters.
Koontz, Alicia M; Brindle, Eric D; Kankipati, Padmaja; Feathers, David; Cooper, Rory A
2010-05-01
To determine the minimum space required for wheeled mobility device users to perform 4 maneuverability tasks and to investigate the impact of selected design attributes on space. Case series. University laboratory, Veterans Affairs research facility, vocational training center, and a national wheelchair sport event. The sample of convenience included manual wheelchair (MWC; n=109), power wheelchair (PWC; n=100), and scooter users (n=14). A mock environment was constructed to create passageways to form an L-turn, 360 degrees -turn in place, and a U-turn with and without a barrier. Passageway openings were increased in 5-cm increments until the user could successfully perform each task without hitting the walls. Structural dimensions of the device and user were collected using an electromechanical probe. Mobility devices were grouped into categories based on design features and compared using 1-way analysis of variance and post hoc pairwise Bonferroni-corrected tests. Minimum passageway widths for the 4 maneuverability tasks. Ultralight MWCs with rear axles posterior to the shoulder had the shortest lengths and required the least amount of space compared with all other types of MWCs (P<.05). Mid-wheel-drive PWCs required the least space for the 360 degrees -turn in place compared with front-wheel-drive and rear-wheel-drive PWCs (P<.01) but performed equally as well as front-wheel-drive models on all other turning tasks. PWCs with seat functions required more space to perform the tasks. Between 10% and 100% of users would not be able to maneuver in spaces that meet current Accessibility Guidelines for Buildings and Facilities specifications. This study provides data that can be used to support wheelchair prescription and home modifications and to update standards to improve the accessibility of public areas.
Three dimensional modeling and dynamic analysis of four-wheel-steering vehicles
NASA Astrophysics Data System (ADS)
Hu, Haiyan; Han, Qiang
2003-02-01
The paper presents a nonlinear dynamic model of 9 degrees of freedom for four-wheel-steering vehicles. Compared with those in previous studies, this model includes the pitch and roll of the vehicle body, the motion of 4 wheels in the accelerating or braking process, the nonlinear coupling of vehicle body and unsprung part, as well as the air drag and wind effect. As a result, the model can be used for the analysis of various maneuvers of the four-wheel-steering vehicles. In addition, the previous models can be considered as a special case of this model. The paper gives some case studies for the dynamic performance of a four-wheel-steering vehicle under step input and saw-tooth input of steering angle applied on the front wheels, respectively.
Driving in Parkinson's disease: mobility, accidents, and sudden onset of sleep at the wheel.
Meindorfner, Charlotte; Körner, Yvonne; Möller, Jens Carsten; Stiasny-Kolster, Karin; Oertel, Wolfgang Hermann; Krüger, Hans-Peter
2005-07-01
Only few studies have addressed driving ability in Parkinson's disease (PD) to date. However, studies investigating accident proneness of PD patients are urgently needed in the light of motor disability in PD and--particularly--the report of "sleep attacks" at the wheel. We sent a questionnaire about sudden onset of sleep (SOS) and driving behavior to 12,000 PD patients. Subsequently, of 6,620 complete data sets, 361 patients were interviewed by phone. A total of 82% of those 6,620 patients held a driving license, and 60% of them still participated in traffic. Of the patients holding a driving license, 15% had been involved in and 11% had caused at least one accident during the past 5 years. The risk of causing accidents was significantly increased for patients who felt moderately impaired by PD, had an increased Epworth Sleepiness Scale (ESS) score, and had experienced SOS while driving. Sleep attacks at the wheel usually occurred in easy driving situations and resulted in typical fatigue-related accidents. Those having retired from driving had a more advanced (subjective) disease severity, higher age, more frequently female gender, an increased ESS score, and a longer disease duration. The study revealed SOS and daytime sleepiness as critical factors for traffic safety in addition to motor disabilities of PD patients. The results suggest that real sleep attacks without any prior sleepiness are rare. However, our data underline the importance of mobility for patients and the need for further studies addressing the ability to drive in PD. Copyright 2005 Movement Disorder Society.
NASA Astrophysics Data System (ADS)
Quanli, Wang; Hui, Pan; Qingmei, Liu
Automobile axle housing is the basic element to install the main reducing gear, differential mechanism, semi-axis, wheel hub and suspension. The main function of automobile axle housing is to support the automobile quality with driven axle, fix the driving wheel relative axial position and bear the driving wheel transmission force during the automobile running. Axle housing steel with the thickness of not less than 12mm is produced by the thermal forming method, which is to heat the plate to 830 degree and hold some time, then thermal forming, and cool to room temperature. The steel plate should maintain the original strength and good ductility and toughness requirements with thermal forming process.
In-wheel hub SRM simulation and analysis
NASA Astrophysics Data System (ADS)
Sager, Milton W., III
Is it feasible to replace the conventional gasoline engine and subsequent drive system in a motorcycle with an electric switched reluctance motor (SRM) by placing the SRM inside the rear wheel, thereby removing the need for things such as a clutch, chain, transmission, gears and sprockets? The goal of this thesis is to study the theoretical aspect of prototyping and analyzing an in-wheel electric hub motor to replace the standard gasoline engine traditionally found on motorcycles. With the recent push for clean energy, electric vehicles are becoming more common. All currently produced electric motorcycles use conventional, prefabricated electric motors connected to the traditional sprocket and chain design. This greatly restricts the efficiency and range of these motorcycles. My design stands apart by turning the rear wheel into a SRM which uses electromagnets around a non-magnetic core to convert electrical energy into mechanical force driving the rear wheel. To my knowledge, there is currently no motorcycle designed with an in-wheel hub SRM. A three-phase SRM and a five-phase SRM will be simulated and analyzed using MATLAB with Simulink. Factors such as friction, weight, power, etc. will be taken into account in order to create a realistic simulation as if it were inside the rear wheel of a motorcycle. Since time and finances will not allow for a full scale build, a scaled model three-phase SRM will be attempted for demonstration purposes.
Close Look at Curiosity First Drive
2010-07-29
A test operator in clean-room garb observes rolling of the wheels during the first drive test of NASA Curiosity rover, on July 23, 2010. Technicians and engineers conducted the drive test at the Jet Propulsion Laboratory in Pasadena, Calif.
Pin, F.G.; Killough, S.M.
1994-12-20
A wheel assembly includes a support, a cage rotatably mounted on the support and having a longitudinal rotation axis, a first ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis of the cage, and a second ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis or the cage and to the rotation axis of the first ball wheel. A control circuit includes a photodetector signal which indicates ground contact for each ball wheel, and a tachometer which indicates actual drive shaft velocity. 6 figures.
Pin, Francois G.; Killough, Stephen M.
1994-01-01
A wheel assembly includes a support, a cage rotatably mounted on the support and having a longitudinal rotation axis, a first ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis of the cage, and a second ball wheel rotatably mounted in the cage and having a rotation axis orthogonal to the rotation axis or the cage and to the rotation axis of the first ball wheel. A control circuit includes a photodetector signal which indicates ground contact for each ball wheel, and a tachometer which indicates actual drive shaft velocity.
Bright Soil Churned by Spirit's Sol 1861 Drive
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Spirit drove 22.7 meters (74 feet) toward the southwest on the 1,861st Martian day, or sol, of Spirit's mission on Mars (March 28, 2009). After the drive, the rover took this image with its front hazard-avoidance camera, looking back at the tracks from the drive. As usual since losing the use of its right-front wheel in 2006, Spirit drove backwards. The immobile right-front wheel churned up a long stripe of bright soil during this drive. Where Spirit has found such bright soil in the past, subsequent analysis of the composition found concentrations of sulfur or silica that testified to past action of water at the site. When members of the rover team saw the large quantity of bright soil exposed by the Sol 1861 drive, they quickly laid plans to investigate the composition with Spirit's alpha particle X-ray spectrometer. The Sol 1861 drive took the rover past the northwest corner of the low plateau called 'Home Plate,' making progress on a route around the western side of Home Plate. The edge of Home Plate forms the horizon on the right side of this image. Husband Hill is on the horizon on the left side. For scale, the parallel rover wheel tracks are about 1 meter (40 inches) apart. The rover's hazard-avoidance cameras take 'fisheye' wide-angle images.Exercise tricycle for paraplegics.
Gföhler, M; Loicht, M; Lugner, P
1998-01-01
The work describes a tricycle that can be used by paraplegics without assistance. Paraplegics can get on and off the tricycle independently, using hydraulic adjustment of the saddle height. The two rear wheels can be swivelled with adjustable hydraulic damping, which avoids the stability problems of a standard tricycle when riding around bends. The principal driving power is assumed to be provided by functional electrical stimulation of the femoral muscles. A hub motor is integrated in the front wheel to increase the radius of action, as additional drive for cycling up gradients and in case muscle force is not sufficient. The desired drive power is adjusted by a throttle grip on the handlebar. The percentage of motor power can also be adjusted. The force applied to the pedal, the absolute angular position of the crank, and the angular velocity of the front wheel are continuously measured by a force measurement pedal and a goniometer. Based on this information, the motor and the functional electrical stimulation of the legs are controlled.
Assessment of driving-related skills for older drivers : traffic tech.
DOT National Transportation Integrated Search
2010-04-01
Relating behind-the-wheel driving performance to performance : on office-based screening tools is challenging. It is : important to use tools that are predictive of poor driving : performance (sensitivity), but also to find tools that do not : have h...
Friction drive position transducer
NASA Astrophysics Data System (ADS)
Waclawik, Ronald E.; Cayer, James L.; Lapointe, Kenneth M.
1991-10-01
A spring force loaded contact wheel mounted in a stationary position relative to a reciprocating shaft is disclosed. The apparatus of the present invention includes a tensioning assembly for maintaining absolute contact between the contact wheel and the reciprocating shaft wherein the tensioning assembly urges the contact wheel against the shaft to maintain contact therebetween so that the wheel turns as the shaft is linearly displaced. A rotary encoding device is coupled to the wheel for translating the angular and rotational movement thereof into an electronic signal for providing linear displacement information and derivative data with respect to displacement of the shaft. Absolute friction contact and cooperative interaction between the shaft and the contact wheel is further enhanced in the preferred embodiment by advantageously selecting the types of surface finish and the amount of surface area of the contact wheel relative to the surface condition of the shaft as well as by reducing the moment of inertia of the contact wheel.
Friction drive position transducer
NASA Astrophysics Data System (ADS)
Waclawik, Ronald E.; Cayer, James L.; Lapointe, Kenneth M.
1993-06-01
A spring force loaded contact wheel mounted in a stationary position relative to a reciprocating shaft is disclosed. The apparatus of the present invention includes a tensioning assembly for maintaining absolute contact between the contact wheel and the reciprocating shaft wherein the tensioning assembly urges the contact wheel against the shaft to maintain contact there between so that the wheel turn as the shaft is linearly displaced. A rotary encoding device is coupled to the wheel for translating the angular and rotational movement thereof into an electronic signal for providing linear displacement information and derivative data with respect to displacement of the shaft. Absolute friction contact and cooperative interaction between the shaft and the contact wheel is further enhanced in the preferred embodiment by advantageously selecting the type of surface finish and the amount of surface area of the contact wheel relative to the surface condition of the shaft as well as by reducing the moment of inertia of the contact wheel.
McIntosh, James; O'Brien, Tommy; McKeganey, Neil
2008-06-01
This paper reports on a qualitative study of the attitudes and risk management strategies of a sample of problem drug users in relation to driving while under the influence of drugs. Interviews were conducted with 26 individuals (21 men and 5 women) all of whom had been addicted to heroin and had admitted to driving while under the influence of illegal drugs. The drug users reported four main strategies for managing the risks associated with drug driving: attempting to limit their drug intake to their tolerance level; delaying driving after taking a drug until they felt safe; stopping driving if they felt unsafe while behind the wheel; and avoiding driving altogether under the influence of certain drugs. However, the interviewees' accounts of their drug driving behaviour suggest that these strategies are not only far from reliable, they may also act to encourage drug driving by creating a false sense of security. The reassurance they provide may also undermine any educational messages targeting drug driving. There was little in the problem users' accounts to suggest that media campaigns or a more effective method of detection would have much influence upon their behaviour. The paper concludes that the most realistic approach to the problem may be to incorporate drug driving interventions within drug treatment programmes.
1971-01-01
This artist's concept illustrates the deployment sequence of the Lunar Roving Vehicle (LRV) on the Moon. The LRV was designed to transport astronauts and materials on the Moon. It was a collapsible open-space vehicle about 10 feet long with large mesh wheels, anterna, appendages, tool caddies, and cameras. Powered by two 36-volt batteries, it has four 1/4-hp drive motors, one for each wheel. The vehicle was designed to travel in forward or reverse, negotiate obstacles about 1 foot high, cross crevasses about 2 feet wide, and climb or descend moderate slopes. Its speed limit was about 9 miles (14 kilometers) per hour. An LRV was used on each of the last three Apollo missions (Apollo 15, Apollo 16, and Apollo 17) and permitted the crew to travel several miles from the Lunar Module. The LRV was designed, developed, and tested by the Marshall Space Flight Center, and built by the Boeing Plant in Kent, Washington.
A Traction Control Strategy with an Efficiency Model in a Distributed Driving Electric Vehicle
Lin, Cheng
2014-01-01
Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention. PMID:25197697
A traction control strategy with an efficiency model in a distributed driving electric vehicle.
Lin, Cheng; Cheng, Xingqun
2014-01-01
Both active safety and fuel economy are important issues for vehicles. This paper focuses on a traction control strategy with an efficiency model in a distributed driving electric vehicle. In emergency situation, a sliding mode control algorithm was employed to achieve antislip control through keeping the wheels' slip ratios below 20%. For general longitudinal driving cases, an efficiency model aiming at improving the fuel economy was built through an offline optimization stream within the two-dimensional design space composed of the acceleration pedal signal and the vehicle speed. The sliding mode control strategy for the joint roads and the efficiency model for the typical drive cycles were simulated. Simulation results show that the proposed driving control approach has the potential to apply to different road surfaces. It keeps the wheels' slip ratios within the stable zone and improves the fuel economy on the premise of tracking the driver's intention.
Steering redundancy for self-driving vehicles using differential braking
NASA Astrophysics Data System (ADS)
Jonasson, M.; Thor, M.
2018-05-01
This paper describes how differential braking can be used to turn a vehicle in the context of providing fail-operational control for self-driving vehicles. Two vehicle models are developed with differential input. The models are used to explain the bounds of curvature that differential braking provides and they are then validated with measurements in a test vehicle. Particular focus is paid on wheel suspension effects that significantly influence the obtained curvature. The vehicle behaviour and its limitations due to wheel suspension effects are, owing to the vehicle models, defined and explained. Finally, a model-based controller is developed to control the vehicle curvature during a fault by differential braking. The controller is designed to compensate for wheel angle disturbance that is likely to occur during the control event.
GOAT (goes over all terrain) vehicle: a scaleable robotic vehicle
NASA Astrophysics Data System (ADS)
Dodson, Michael G.; Owsley, Stanley L.; Moorehead, Stewart J.
2003-09-01
Many of the potential applications of mobile robots require a small to medium sized vehicle that is capable of traversing large obstacles and rugged terrain. Search and rescue operations require a robot small enough to drive through doorways, yet capable enough to surmount rubble piles and stairs. This paper presents the GOAT (Goes Over All Terrain) vehicle, a medium scale robot which incorporates a novel configuration which puts the drive wheels on the ends of actuated arms. This allows GOAT to adjust body height and posture and combines the benefits of legged locomotion with the ease of wheeled driving. The paper presents the design of the GOAT and the results of prototype construction and initial testing.
Experience with Geared Propeller Drives for Aviation Engines
NASA Technical Reports Server (NTRS)
Kutzbach, K
1920-01-01
I. The development of the gear wheels: (a) bending stresses; (b) compressive stresses; (c) heating; (d) precision of manufacture. II. General arrangement of the gearing. III. Vibration in the shaft transmission. An overview is given of experience with geared propeller drives for aviation engines. The development of gear wheels is discussed with emphasis upon bending stresses, compressive stresses, heating, and precision in manufacturing. With respect to the general arrangement of gear drives for airplanes, some principal rules of mechanical engineering that apply with special force are noted. The primary vibrations in the shaft transmission are discussed. With respect to vibration, various methods for computing vibration frequency and the influence of elastic couplings are discussed.
Experimental Evaluation of the Scale Model Method to Simulate Lunar Vehicle Dynamics
NASA Technical Reports Server (NTRS)
Johnson, Kyle; Asnani, Vivake; Polack, Jeff; Plant, Mark
2016-01-01
As compared to driving on Earth, the presence of lower gravity and uneven terrain on planetary bodies makes high speed driving difficult. In order to maintain ground contact and control vehicles need to be designed with special attention to dynamic response. The challenge of maintaining control on the Moon was evident during high speed operations of the Lunar Roving Vehicle (LRV) on Apollo 16, as at one point all four tires were off the ground; this event has been referred to as the Lunar Grand Prix. Ultimately, computer simulation should be used to examine these phenomena during the vehicle design process; however, experimental techniques are required for the validation and elucidation of key issues. The objectives of this study were to evaluate the methodology for developing a scale model of a lunar vehicle using similitude relationships and to test how vehicle configuration, six or eight wheel pods, and local tire compliance, soft or stiff, affect the vehicles dynamic performance. A wheel pod consists of a drive and steering transmission and wheel. The Lunar Electric Rover (LER), a human driven vehicle with a pressurized cabin, was selected as an example for which a scale model was built. The scaled vehicle was driven over an obstacle and the dynamic response was observed and then scaled to represent the full-size vehicle in lunar gravity. Loss of ground contact, in terms of vehicle travel distance with tires off the ground, was examined. As expected, local tire compliance allowed ground contact to be maintained over a greater distance. However, switching from a six-tire configuration to an eight-tire configuration with reduced suspension stiffness had a negative effect on ground contact. It is hypothesized that this was due to the increased number or frequency of impacts. The development and testing of this scale model provided practical lessons for future low-gravity vehicle development.
18. William E. Barrett, Photographer, August 1975. EXPOSED VIEW OF ...
18. William E. Barrett, Photographer, August 1975. EXPOSED VIEW OF LOWER PULLEYS OF LEFT-HAND MILL. LOWER LEFT IS BAND SAW PULLEY. UPPER LEFT IS TENSION WHEEL. LARGE PULLEY ON RIGHT IS DRIVE WHEEL FROM POWER SOURCE. - Meadow River Lumber Company, Highway 60, Rainelle, Greenbrier County, WV
18. Detail view of central pivot pier, drive gear rack, ...
18. Detail view of central pivot pier, drive gear rack, and stabilizing wheel, looking southwest - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI
Cable and Line Inspection Mechanism
NASA Technical Reports Server (NTRS)
Ross, Terence J. (Inventor)
2003-01-01
An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.
Cable and line inspection mechanism
NASA Technical Reports Server (NTRS)
Ross, Terence J. (Inventor)
2003-01-01
An automated cable and line inspection mechanism visually scans the entire surface of a cable as the mechanism travels along the cable=s length. The mechanism includes a drive system, a video camera, a mirror assembly for providing the camera with a 360 degree view of the cable, and a laser micrometer for measuring the cable=s diameter. The drive system includes an electric motor and a plurality of drive wheels and tension wheels for engaging the cable or line to be inspected, and driving the mechanism along the cable. The mirror assembly includes mirrors that are positioned to project multiple images of the cable on the camera lens, each of which is of a different portion of the cable. A data transceiver and a video transmitter are preferably employed for transmission of video images, data and commands between the mechanism and a remote control station.
Effect of sleep deprivation on driving safety in housestaff.
Marcus, C L; Loughlin, G M
1996-12-01
Sleep deprivation is known to affect driving safety. Housestaff (HS) are routinely sleep-deprived when on call. We hypothesized that this would affect their driving. We therefore administered questionnaires regarding driving to 70 pediatric HS, who were on call every fourth night, and to 85 faculty members (FAC), who were rarely disturbed at night. HS were questioned about events during their residency, and FAC were questioned about events during the preceding three years. There was an 87% response rate for each group. HS slept 2.7 +/- 0.9 (SD) hours when on call vs 7.2 +/- 0.8 hours when not on call (p < 0.001). 44% of HS had fallen asleep when stopped at a light, vs 12.5% FAC (p < 0.001). 23% of HS had fallen asleep while driving vs. 8% FAC (ns). A total of 49% of HS had fallen asleep at the wheel; 90% of these events occurred post-call. In contrast, only 13% of FAC had fallen asleep at the wheel (p < 0.001). HS had received a total of 25 traffic citations for moving violations vs. 15 for FAC and were involved in 20 motor vehicle accidents vs. 11 for FAC. One traffic citation clearly resulted from HS falling asleep at the wheel vs. none for FAC. We conclude that HS frequently fall asleep when driving post-call. We speculate that current HS work schedules may place some HS at risk for injury to themselves and others. Further study, using prospectively objective measures is indicated.
NASA Astrophysics Data System (ADS)
Griffin, J. W.; Popov, A. A.
2018-07-01
It is now possible, through electrical, hydraulic or mechanical means, to power the front wheel of a motorcycle. The aim of this is often to improve performance in limit-handling scenarios including off-road low-traction conditions and on-road high-speed cornering. Following on from research into active torque distribution in 4-wheeled vehicles, the possibility exists for efficiency improvements to be realised by reducing the total amount of energy dissipated as slip at the wheel-road contact. This paper presents the results of an investigation into the effect that varying the torque distribution ratio has on the energy consumption of the two-wheeled vehicle. A 13-degree of freedom multibody model was created, which includes the effects of suspension, aerodynamics and gyroscopic bodies. SimMechanics, from the MathWorks?, is used for automatic generation of equations of motion and time-domain simulation, in conjunction with MATLAB and Simulink. A simple driver model is used to control the speed and yaw rate of the motorcycle. The handling characteristics of the motorcycle are quantitatively analysed, and the impact of torque distribution on energy consumption is considered during straight line and cornering situations. The investigation has shown that only a small improvement in efficiency can be made by transferring a portion of the drive torque to the front wheel. Tyre longevity could be improved by reduced slip energy dissipation.
New Record Five-Wheel Drive, Spirit's Sol 1856 (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11962 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11962 NASA's Mars Exploration Rover Spirit used its navigation camera to take the images that have been combined into this stereo, 180-degree view of the rover's surroundings during the 1,856th Martian day, or sol, of Spirit's surface mission (March 23, 2009). The center of the view is toward the west-southwest. This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. The rover had driven 25.82 meters (84.7 feet) west-northwestward earlier on Sol 1856. This is the longest drive on Mars so far by a rover using only five wheels. Spirit lost the use of its right-front wheel in March 2006. Before Sol 1856, the farthest Spirit had covered in a single sol's five-wheel drive was 24.83 meters (81.5 feet), on Sol 1363 (Nov. 3, 2007). The Sol 1856 drive made progress on a route planned for taking Spirit around the western side of the low plateau called 'Home Plate.' A portion of the northwestern edge of Home Plate is prominent in the left quarter of this image, toward the south. This view is presented as a cylindrical-perspective projection with geometric seam correction.Mechanism for Deploying a Long, Thin-Film Antenna from a Rover
NASA Technical Reports Server (NTRS)
Lazio, Joseph; Matthews, B.; Nesnas, Issa A.; Zarzhitsky, Dimitri
2013-01-01
Observations with radio telescopes address key problems in cosmology, astrobiology, heliophysics, and planetary science including the first light in the Universe (Cosmic Dawn), magnetic fields of extrasolar planets, particle acceleration mechanisms, and the lunar ionosphere. The Moon is a unique science platform because it allows access to radio frequencies that do not penetrate the Earth's ionosphere and because its far side is shielded from intense terrestrial emissions. A radio antenna can be realized by using polyimide film as a substrate, with a conducting substance deposited on it. Such an antenna can be rolled into a small volume for transport, then deployed by unrolling, and a robotic rover offers a natural means of unrolling a polyimide film-based antenna. An antenna deployment mechanism was developed that allows a thin film to be deposited onto a ground surface, in a controlled manner, using a minimally actuated rover. The deployment mechanism consists of two rollers, one driven and one passive. The antenna film is wrapped around the driven roller. The passive roller is mounted on linear bearings that allow it to move radially with respect to the driven roller. Springs preload the passive roller against the driven roller, and prevent the tightly wrapped film from unspooling or "bird's nesting" on the driven spool. The antenna deployment mechanism is integrated on the minimally-actuated Axel rover. Axel is a two-wheeled rover platform with a trailing boom that is capable of traversing undulated terrain and overcoming obstacles of a wheel radius in height. It is operated by four motors: one that drives each wheel; a third that controls the rotation of the boom, which orients the body mounted sensors; and a fourth that controls the rover's spool to drive the antenna roller. This low-mass axle-like rover houses its control and communication avionics inside its cylindrical body. The Axel rover teleoperation software has an auto-spooling mode that allows a user to automatically deploy the thin-film antenna at a rate proportional to the wheel speed as it drives the rover along its trajectory. The software allows Axel to deposit the film onto the ground to prevent or minimize relative motion between the film and the terrain to avoid the risk of scraping and antenna with the terrain.
Assistive devices alter gait patterns in Parkinson disease: advantages of the four-wheeled walker.
Kegelmeyer, Deb A; Parthasarathy, Sowmya; Kostyk, Sandra K; White, Susan E; Kloos, Anne D
2013-05-01
Gait abnormalities are a hallmark of Parkinson's disease (PD) and contribute to fall risk. Therapy and exercise are often encouraged to increase mobility and decrease falls. As disease symptoms progress, assistive devices are often prescribed. There are no guidelines for choosing appropriate ambulatory devices. This unique study systematically examined the impact of a broad range of assistive devices on gait measures during walking in both a straight path and around obstacles in individuals with PD. Quantitative gait measures, including velocity, stride length, percent swing and double support time, and coefficients of variation were assessed in 27 individuals with PD with or without one of six different devices including canes, standard and wheeled walkers (two, four or U-Step). Data were collected using the GAITRite and on a figure-of-eight course. All devices, with the exception of four-wheeled and U-Step walkers significantly decreased gait velocity. The four-wheeled walker resulted in less variability in gait measures and had less impact on spontaneous unassisted gait patterns. The U-Step walker exhibited the highest variability across all parameters followed by the two-wheeled and standard walkers. Higher variability has been correlated with increased falls. Though subjects performed better on a figure-of-eight course using either the four-wheeled or the U-Step walker, the four-wheeled walker resulted in the most consistent improvement in overall gait variables. Laser light use on a U-Step walker did not improve gait measures or safety in figure-of-eight compared to other devices. Of the devices tested, the four-wheeled-walker offered the most consistent advantages for improving mobility and safety. Copyright © 2012 Elsevier B.V. All rights reserved.
Design of a robotic vehicle with self-contained intelligent wheels
NASA Astrophysics Data System (ADS)
Poulson, Eric A.; Jacob, John S.; Gunderson, Robert W.; Abbott, Ben A.
1998-08-01
The Center for Intelligent Systems has developed a small robotic vehicle named the Advanced Rover Chassis 3 (ARC 3) with six identical intelligent wheel units attached to a payload via a passive linkage suspension system. All wheels are steerable, so the ARC 3 can move in any direction while rotating at any rate allowed by the terrain and motors. Each intelligent wheel unit contains a drive motor, steering motor, batteries, and computer. All wheel units are identical, so manufacturing, programing, and spare replacement are greatly simplified. The intelligent wheel concept would allow the number and placement of wheels on the vehicle to be changed with no changes to the control system, except to list the position of all the wheels relative to the vehicle center. The task of controlling the ARC 3 is distributed between one master computer and the wheel computers. Tasks such as controlling the steering motors and calculating the speed of each wheel relative to the vehicle speed in a corner are dependent on the location of a wheel relative to the vehicle center and ar processed by the wheel computers. Conflicts between the wheels are eliminated by computing the vehicle velocity control in the master computer. Various approaches to this distributed control problem, and various low level control methods, have been explored.
A Mode Matched Triaxial Vibratory Wheel Gyroscope with Fully Decoupled Structure
Xia, Dunzhu; Kong, Lun; Gao, Haiyu
2015-01-01
To avoid the oscillation of four unequal masses seen in previous triaxial linear gyroscopes, a modified silicon triaxial gyroscope with a rotary wheel is presented in this paper. To maintain a large sensitivity and suppress the coupling of different modes, this novel gyroscope structure is designed be perfectly symmetrical with a relatively large size of about 9.8 mm × 9.8 mm. It is available for differentially detecting three-axis angular rates simultaneously. To overcome the coupling between drive and sense modes, numerous necessary frames, beams, and anchors are delicately figured out and properly arranged. Besides, some frequency tuning and feedback mechanisms are addressed in the case of post processing after fabrication. To facilitate mode matched function, a new artificial fish swarm algorithm (AFSA) performed faster than particle swarm optimization (PSO) with a frequency split of 108 Hz. Then, by entrusting the post adjustment of the springs dimensions to the finite element method (FEM) software ANSYS, the final frequency splits can be below 3 Hz. The simulation results demonstrate that the modal frequencies in drive and different sense modes are respectively 8001.1, 8002.6, 8002.8 and 8003.3 Hz. Subsequently, different axis cross coupling effects and scale factors are also analyzed. The simulation results effectively validate the feasibility of the design and relevant theoretical calculation. PMID:26593916
Sliding GAIT Algorithm for the All-Terrain Hex-Limbed Extra-Terrestrial Explorer (ATHLETE)
NASA Technical Reports Server (NTRS)
Townsend, Julie; Biesiadecki, Jeffrey
2012-01-01
The design of a surface robotic system typically involves a trade between the traverse speed of a wheeled rover and the terrain-negotiating capabilities of a multi-legged walker. The ATHLETE mobility system, with both articulated limbs and wheels, is uniquely capable of both driving and walking, and has the flexibility to employ additional hybrid mobility modes. This paper introduces the Sliding Gait, an intermediate mobility algorithm faster than walking with better terrain-handling capabilities than wheeled mobility.
Vehicle for carrying an object of interest
Zollinger, W.T.; Ferrante, T.A.
1998-10-13
A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface. 8 figs.
Vehicle for carrying an object of interest
Zollinger, W. Thor; Ferrante, Todd A.
1998-01-01
A vehicle for carrying an object of interest across a supporting surface including a frame having opposite first and second ends; a first pair of wheels fixedly mounted on the first end of the frame; a second pair of wheels pivotally mounted on the second end of the frame; and a pair of motors borne by the frame, each motor disposed in driving relation relative to one of the pairs of wheels, the motors propelling the vehicle across the supporting surface.
14 CFR 33.7 - Engine ratings and operating limitations.
Code of Federal Regulations, 2010 CFR
2010-01-01
... turbine wheel inlet gas. (5) Pressure of— (i) Fuel at the fuel inlet; and (ii) Oil at the main oil gallery. (6) Accessory drive torque and overhang moment. (7) Component life. (8) Turbosupercharger turbine wheel r.p.m. (c) For turbine engines, ratings and operating limitations are established relating to the...
49 CFR 571.101 - Standard No. 101; Controls and displays.
Code of Federal Regulations, 2013 CFR
2013-10-01
... accessibility, visibility and recognition of motor vehicle controls, telltales and indicators, and to facilitate... pressing on the center of the face plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving...
49 CFR 571.101 - Standard No. 101; Controls and displays.
Code of Federal Regulations, 2010 CFR
2010-10-01
... accessibility, visibility and recognition of motor vehicle controls, telltales and indicators, and to facilitate... pressing on the center of the face plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving...
49 CFR 571.101 - Standard No. 101; Controls and displays.
Code of Federal Regulations, 2014 CFR
2014-10-01
... accessibility, visibility and recognition of motor vehicle controls, telltales and indicators, and to facilitate... pressing on the center of the face plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving...
49 CFR 571.101 - Standard No. 101; Controls and displays.
Code of Federal Regulations, 2012 CFR
2012-10-01
... accessibility, visibility and recognition of motor vehicle controls, telltales and indicators, and to facilitate... pressing on the center of the face plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving...
49 CFR 571.101 - Standard No. 101; Controls and displays.
Code of Federal Regulations, 2011 CFR
2011-10-01
... accessibility, visibility and recognition of motor vehicle controls, telltales and indicators, and to facilitate... pressing on the center of the face plane of the steering wheel hub; or for a turn signal control that is operated in a plane essentially parallel to the face plane of the steering wheel in its normal driving...
Side slope stability of articulated-frame logging tractors
H.G. Gibson; K.C. Elliott; S.P.E. Persson
1971-01-01
Many log or pulpwood transporting machines have hinged or articulated frames for steering. The articulated frame offers advantages for these machines, but the design introduces some problems in stability. We formulated and analyzed a mathematical model simulating stability of a 4-wheel-drive, articulated frame logging tractor (wheeled skidder) at static or low constant...
NASA Astrophysics Data System (ADS)
Grzegożek, W.; Dobaj, K.; Kot, A.
2016-09-01
The paper includes the analysis of the rubber V-belt cooperation with the CVT transmission pulleys. The analysis of the forces and torques acting in the CVT transmission was conducted basing on calculated characteristics of the centrifugal regulator and the torque regulator. The accurate estimation of the regulator surface curvature allowed for calculation of the relation between the driving wheel axial force, the engine rotational speed and the gear ratio of the CVT transmission. Simplified analytical models of the rubber V-belt- pulley cooperation are based on three basic approaches. The Dittrich model assumes two contact regions on the driven and driving wheel. The Kim-Kim model considers, in addition to the previous model, also the radial friction. The radial friction results in the lack of the developed friction area on the driving pulley. The third approach, formulated in the Cammalleri model, assumes variable sliding angle along the wrap arch and describes it as a result the belt longitudinal and cross flexibility. Theoretical torque on the driven and driving wheel was calculated on the basis of the known regulators characteristics. The calculated torque was compared to the measured loading torque. The best accordance, referring to the centrifugal regulator range of work, was obtained for the Kim-Kim model.
Pipe weld crown removal device
Sword, Charles K.; Sette, Primo J.
1992-01-01
A device is provided for grinding down the crown of a pipe weld joining aligned pipe sections so that the weld is substantially flush with the pipe sections joined by the weld. The device includes a cage assembly comprising a pair of spaced cage rings adapted to be mounted for rotation on the respective pipe sections on opposite sides of the weld, a plurality of grinding wheels, supported by the cage assembly for grinding down the crown of the weld, and a plurality of support shafts, each extending longitudinally along the joined pipe sections, parallel thereto, for individually mounting respective grinding wheels. Each end of the support shafts is mounted for rotation in a bearing assembly housed within a radially directed opening in a corresponding one of the cage rings so as to provide radial movement of the associated shaft, and thus of the associated grinding wheel, towards and away from the weld. A first drive sprocket provides rotation of the cage assembly around the pipe sections while a second drive unit, driven by a common motor, provides rotation of the grinding wheels.
Quera-Salva, M A; Sauvagnac-Quera, R; Sagaspe, P; Taillard, J; Contrand, B; Micoulaud, J A; Lagarde, E; Barbot, F; Philip, P
2016-01-01
Objective To investigate the evolution over 15 years of sleep schedules, sleepiness at the wheel and driving risk among highway drivers. Methods Comparative survey including questions on usual sleep schedules and before the trip, sleepiness at the wheel, the Epworth sleepiness scale, Basic Nordic Sleep Questionnaire (BNSQ) and a travel questionnaire. Results 80% of drivers stopped by the highway patrol agreed to participate in both studies with a total of 3545 drivers in 2011 and 2196 drivers in 1996 interviewed. After standardisation based on sex, age and mean annual driving distance, drivers in 2011 reported shorter sleep time on week days (p<0.0001), and week-ends (p<0.0001) and shorter optimal sleep time (p<0.0001) compared to 1996 drivers. There were more drivers sleepy at the wheel in 2011 than in 1996 (p<0.0001) and 2.5 times more drivers in 2011 than in 1996 had an Epworth sleepiness score >15 indicating severe sleepiness. Conclusions Even if drivers in 2011 reported good sleep hygiene prior to a highway journey, drivers have reduced their mean weekly sleep duration over 15 years and have a higher risk of sleepiness at the wheel. Sleep hygiene for automobile drivers remains an important concept to address. PMID:28003284
Looking southwest at the motor, drive shaft, and stokers for ...
Looking southwest at the motor, drive shaft, and stokers for boilers numbers 1 through 6. - Wheeling-Pittsburgh Steel Corporation, Allenport Works, Boiler House, Route 88 on West bank of Monongahela River, Allenport, Washington County, PA
Multi-functional Electric Module for a Vehicle
NASA Technical Reports Server (NTRS)
Waligora, Thomas M. (Inventor); Fraser-Chanpong, Nathan (Inventor); Figuered, Joshua M. (Inventor); Reed, Ryan (Inventor); Akinyode, Akinjide Akinniyi (Inventor); Spain, Ivan (Inventor); Dawson, Andrew D. (Inventor); Herrera, Eduardo (Inventor); Markee, Mason M. (Inventor); Bluethmann, William J. (Inventor)
2015-01-01
A multi-functional electric module (eModule) is provided for a vehicle having a chassis, a master controller, and a drive wheel having a propulsion-braking module. The eModule includes a steering control assembly, mounting bracket, propulsion control assembly, brake controller, housing, and control arm. The steering control assembly includes a steering motor controlled by steering controllers in response to control signals from the master controller. A mounting feature of the bracket connects to the chassis. The propulsion control assembly and brake controller are in communication with the propulsion-braking module. The control arm connects to the lower portion and contains elements of a suspension system, with the control arm being connectable to the drive wheel via a wheel input/output block. The controllers are responsive to the master controller to control a respective steering, propulsion, and braking function. The steering motor may have a dual-wound stator with windings controlled via the respective steering controllers.
NASA Astrophysics Data System (ADS)
Varnhagen, Scott; Same, Adam; Remillard, Jesse; Park, Jae Wan
2011-03-01
Series plug-in hybrid electric vehicles of varying engine configuration and battery capacity are modeled using Advanced Vehicle Simulator (ADVISOR). The performance of these vehicles is analyzed on the bases of energy consumption and greenhouse gas emissions on the tank-to-wheel and well-to-wheel paths. Both city and highway driving conditions are considered during the simulation. When simulated on the well-to-wheel path, it is shown that the range extender with a Wankel rotary engine consumes less energy and emits fewer greenhouse gases compared to the other systems with reciprocating engines during many driving cycles. The rotary engine has a higher power-to-weight ratio and lower noise, vibration and harshness compared to conventional reciprocating engines, although performs less efficiently. The benefits of a Wankel engine make it an attractive option for use as a range extender in a plug-in hybrid electric vehicle.
Characterization of the powertrain components for a hybrid quadricycle
NASA Astrophysics Data System (ADS)
De Santis, M.; Agnelli, S.; Silvestri, L.; Di Ilio, G.; Giannini, O.
2016-06-01
This paper presents the experimental characterization of a prototyping hybrid electric quadricycle, which is equipped with two independently actuated hub (in-wheel) motors and powered by a 51 V 132 Ah LiFeYPO4 battery pack. Such a vehicle employs two hub motors located in the rear axles in order to independently drive/brake the rear wheels; such architecture allows to implement a torque vectoring system to improve the vehicle dynamics. Due to its actuation flexibility, energy efficiency and performance potentials, this architecture is one of the promising powertrain design for electric quadricycle. Experimental data obtained from measurements on the vehicle powertrain components going from the battery pack to the inverter and to the in-wheel motor were employed to generate the hub motor torque response and power efficiency maps in both driving and regenerative braking modes. Furthermore, the vehicle is equipped with a gasoline internal combustion engine as range extender whose efficiency was also characterized.
Teens and distracted driving : texting, talking and other uses of the cell phone behind the wheel
DOT National Transportation Integrated Search
2009-11-16
This study investigated cell phone use and texting while driving, by teenage drivers, in the United States. It found that one third of 16-17 year old teenagers who text do so while driving. 50% of 16-17 year old teenagers have spoken on cell phones w...
Influence of wheelchair front caster wheel on reverse directional stability.
Guo, Songfeng; Cooper, Rory A; Corfman, Tom; Ding, Dan; Grindle, Garrett
2003-01-01
The purpose of this research was to study directional stability during reversing of rear-wheel drive, electric powered wheelchairs (EPW) under different initial front caster orientations. Specifically, the weight distribution differences caused by certain initial caster orientations were examined as a possible mechanism for causing directional instability that could lead to accidents. Directional stability was quantified by measuring the drive direction error of the EPW by a motion analysis system. The ground reaction forces were collected to determine the load on the front casters, as well as back-emf data to attain the speed of the motors. The drive direction error was found to be different for various initial caster orientations. Drive direction error was greatest when both casters were oriented 90 degrees to the left or right, and least when both casters were oriented forward. The results show that drive direction error corresponds to the loading difference on the casters. The data indicates that loading differences may cause asymmetric drag on the casters, which in turn causes unbalanced torque load on the motors. This leads to a difference in motor speed and drive direction error.
Special Feature: Automotive Technology.
ERIC Educational Resources Information Center
Wagner, Margaret; And Others
1993-01-01
Includes "National Trouble Shooting Contest--Training Technicians, Not Mechanics" (Wagner); "Front Wheel Drive on a Small Scale" (Waggoner); "Air Bags in Hit and Run on Rack and Pinion Technicians" (Collard); and "Future Technology--A Blind Spot Detector for Highway Driving" (Zoghi, Bellubi). (JOW)
NASA Technical Reports Server (NTRS)
Brus, Michael R.; Haleblain, Ray; Hernandez, Tomas L.; Jensen, Paul E.; Kraynick, Ronald L.; Langley, Stan J.; Shuman, Alan G.
1988-01-01
The design of a two wheel bulk material transport vehicle is described in detail. The design consists of a modified cylindrical bowl, two independently controlled direct drive motors, and two deformable wheels. The bowl has a carrying capacity of 2.8 m (100 ft) and is constructed of aluminum. The low speed, high HP motors are directly connected to the wheels, thus yielding only two moving parts. The wheels, specifically designed for lunar applications, utilize the chevron tread pattern for optimum traction. The vehicle is maneuvered by varying the relative angular velocities of the wheels. The bulk material being transported is unloaded by utilizing the motors to oscillate the bowl back and forth to a height at which dumping is achieved. The analytical models were tested using a scaled prototype of the lunar transport vehicle. The experimental data correlated well with theoretical predictions. Thus, the design established provides a feasible alternative for the handling of bulk material on the moon.
Implications of driving patterns on well-to-wheel performance of plug-in hybrid electric vehicles.
Raykin, Leon; MacLean, Heather L; Roorda, Matthew J
2012-06-05
This study examines how driving patterns (distance and conditions) and the electricity generation supply interact to impact well-to-wheel (WTW) energy use and greenhouse gas (GHG) emissions of plug-in hybrid electric vehicles (PHEVs). The WTW performance of a PHEV is compared with that of a similar (nonplug-in) gasoline hybrid electric vehicle and internal combustion engine vehicle (ICEV). Driving PHEVs for short distances between recharging generally results in lower WTW total and fossil energy use and GHG emissions per kilometer compared to driving long distances, but the extent of the reductions depends on the electricity supply. For example, the shortest driving pattern in this study with hydroelectricity uses 81% less fossil energy than the longest driving pattern. However, the shortest driving pattern with coal-based electricity uses only 28% less fossil energy. Similar trends are observed in reductions relative to the nonplug-in vehicles. Irrespective of the electricity supply, PHEVs result in greater reductions in WTW energy use and GHG emissions relative to ICEVs for city than highway driving conditions. PHEVs charging from coal facilities only reduce WTW energy use and GHG emissions relative to ICEVs for certain favorable driving conditions. The study results have implications for environmentally beneficial PHEV adoption and usage patterns.
NASA Astrophysics Data System (ADS)
Visayataksin, Noppharat; Sooklamai, Manon
2018-01-01
The bogie is the part that connects and transfers all the load from the vehicle body onto the railway track; interestingly the interaction between wheels and rails is the critical point for derailment of the rail vehicles. However, observing or experimenting with real bogies on rail vehicles is impossible due to the operational rules and safety concerns. Therefore, this research aimed to develop a vibration analysis set for a four-wheel railway bogie by constructing a four-wheel bogie with scale of 1:4.5. The bogie structures, including wheels and axles, were made from an aluminium alloy, equipped with springs and dampers. The bogie was driven by an electric motor using 4 round wheels instead of 2 straight rails, with linear velocity between 0 to 11.22 m/s. The data collected from the vibration analysis set was compared to the mathematical simulation model to investigate the vibration behavior of the bogie, especially the hunting motion. The results showed that vibration behavior from a scaled four-wheel railway bogie set significantly agreed with the mathematical simulation model in terms of displacement and hunting frequency. The critical speed of the wheelset was found by executing the mathematical simulation model at 13 m/s.
Vehicle wheel drag coefficient in relation to travelling velocity - CFD analysis
NASA Astrophysics Data System (ADS)
Leśniewicz, P.; Kulak, M.; Karczewski, M.
2016-10-01
In order to understand the aerodynamic losses associated with a rotating automobile wheel, a detailed characteristics of the drag coefficient in relation to the applied velocity are necessary. Single drag coefficient value is most often reported for the commercially available vehicles, much less is revealed about the influence of particular car components on the energy consumption in various driving cycles. However, detailed flow potential losses determination is desired for performance estimation. To address these needs, the numerical investigation of an isolated wheel is proposed herein.
Monte Carlo Simulation of Seismic Location Errors for Moving Vehicles
2001-10-04
Smart Weapons Test Range 9/14/200 Four wheel Drive; File 14, Aberdeen, MD, Site 1 June 11, 1996, 10c runs, Piston Tank ; 10:18 34:42 53:55 58:64...72:79 92:97 105:118 % file vector Ft. Greely, AK, Site 1 1/27/1997, , Piston Tank ; 34:42 53:64 % file vector Ft. Greely, AK, Site 2...Dec 11, 1997 ; File 56, , Piston Tank Aberdeen, MD, Site 2 10/28/97 File84; File 56 200 400 600 800 1000 1200 -160 -150 -140 -130 -120 fL fH
Study on Drive System of Hybrid Tree Harvester.
Rong-Feng, Shen; Xiaozhen, Zhang; Chengjun, Zhou
2017-01-01
Hybrid tree harvester with a 60 kW diesel engine combined with a battery pile could be a "green" forest harvesting and transportation system. With the new design, the diesel engine maintains a constant engine speed, keeping fuel consumption low while charging the batteries that drive the forwarder. As an additional energy saving method, the electric motors work as generators to charge the battery pile when the vehicle moves downhill. The vehicle is equipped with six large wheels providing high clearance over uneven terrain while reducing ground pressure. Each wheel is driven via a hub gear by its own alternating current motor, and each of the three wheel pairs can be steered independently. The combination of the diesel engine and six electric motors provides plenty of power for heavy lifting and pulling. The main component parameters of the drive system are calculated and optimized with a set of dynamics and simulated with AVL Cruise software. The results provide practical insights for the fuel tree harvester and are helpful to reduce the structure and size of the tree harvester. Advantage Environment provides information about existing and future products designed to reduce environmental impacts.
Kinematic evaluation of mobile robotic platforms for overground gait neurorehabilitation
NASA Astrophysics Data System (ADS)
Alias, N. Akmal; Huq, M. Saiful; Ibrahim, B. S. K. K.; Omar, Rosli
2017-09-01
Gait assistive devices offer a great solution to the walking re-education which reduce patients theoretical limit by aiding the anatomical joints to be in line with the rehabilitation session. Overground gait training, which is differs significantly from body-weight supported treadmill training in many aspects, essentially consists of a mobile robotic base to support the subject securely (usually with overhead harness) while its motion and orientation is controlled seamlessly to facilitate subjects free movement. In this study, efforts have been made for evaluation of both holonomic and nonholonomic drives, the outcome of which may constitute the primarily results to the effective approach in designing a robotic platform for the mobile rehabilitation robot. The sets of kinematic equations are derived using typical geometries of two different drives. The results indicate that omnidirectional mecanum wheel platform is capable for more sophisticated discipline. Although the differential drive platform happens to be more simple and easy to construct, but it is less desirable as it has limited number of motions applicable to the system. The omnidirectional robot consisting of mecanum wheels, which is classified as holonomic is potentially the best solution in terms of its capability to move in arbitrary direction without concerning the changing of wheel's direction.
Jeon, Namju; Lee, Hyeongcheol
2016-12-12
An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed.
Online Detection of Driver Fatigue Using Steering Wheel Angles for Real Driving Conditions
Li, Zuojin; Li, Shengbo Eben; Li, Renjie; Cheng, Bo; Shi, Jinliang
2017-01-01
This paper presents a drowsiness on-line detection system for monitoring driver fatigue level under real driving conditions, based on the data of steering wheel angles (SWA) collected from sensors mounted on the steering lever. The proposed system firstly extracts approximate entropy (ApEn) features from fixed sliding windows on real-time steering wheel angles time series. After that, this system linearizes the ApEn features series through an adaptive piecewise linear fitting using a given deviation. Then, the detection system calculates the warping distance between the linear features series of the sample data. Finally, this system uses the warping distance to determine the drowsiness state of the driver according to a designed binary decision classifier. The experimental data were collected from 14.68 h driving under real road conditions, including two fatigue levels: “wake” and “drowsy”. The results show that the proposed system is capable of working online with an average 78.01% accuracy, 29.35% false detections of the “awake” state, and 15.15% false detections of the “drowsy” state. The results also confirm that the proposed method based on SWA signal is valuable for applications in preventing traffic accidents caused by driver fatigue. PMID:28257094
Study on Drive System of Hybrid Tree Harvester
Xiaozhen, Zhang; Chengjun, Zhou
2017-01-01
Hybrid tree harvester with a 60 kW diesel engine combined with a battery pile could be a “green” forest harvesting and transportation system. With the new design, the diesel engine maintains a constant engine speed, keeping fuel consumption low while charging the batteries that drive the forwarder. As an additional energy saving method, the electric motors work as generators to charge the battery pile when the vehicle moves downhill. The vehicle is equipped with six large wheels providing high clearance over uneven terrain while reducing ground pressure. Each wheel is driven via a hub gear by its own alternating current motor, and each of the three wheel pairs can be steered independently. The combination of the diesel engine and six electric motors provides plenty of power for heavy lifting and pulling. The main component parameters of the drive system are calculated and optimized with a set of dynamics and simulated with AVL Cruise software. The results provide practical insights for the fuel tree harvester and are helpful to reduce the structure and size of the tree harvester. Advantage Environment provides information about existing and future products designed to reduce environmental impacts. PMID:28634596
A new formulation of the understeer coefficient to relate yaw torque and vehicle handling
NASA Astrophysics Data System (ADS)
Bucchi, F.; Frendo, F.
2016-06-01
The handling behaviour of vehicles is an important property for its relation to performance and safety. In 1970s, Pacejka did the groundwork for an objective analysis introducing the handling diagram and the understeer coefficient. In more recent years, the understeer concept is still mentioned but the handling is actively managed by direct yaw control (DYC). In this paper an accurate analysis of the vehicle handling is carried out, considering also the effect of drive forces. This analysis brings to a new formulation of the understeer coefficient, which is almost equivalent to the classical one, but it can be obtained by quasi-steady-state manoeuvres. In addition, it relates the vehicle yaw torque to the understeer coefficient, filling up the gap between the classical handling approach and DYC. A multibody model of a Formula SAE car is then used to perform quasi-steady-state simulations in order to verify the effectiveness of the new formulation. Some vehicle set-ups and wheel drive arrangements are simulated and the results are discussed. In particular, the handling behaviours of the rear wheel drive (RWD) and the front wheel drive (FWD) architectures are compared, finding an apparently surprising result: for the analysed vehicle the FWD is less understeering than for RWD. The relation between the yaw torque and the understeer coefficient allows to understand this behaviour and opens-up the possibility for different yaw control strategies.
Paleg, Ginny; Huang, Morris; Vasquez Gabela, Stephanie C; Sprigle, Stephen; Livingstone, Roslyn
2016-01-01
The purpose of this study was to evaluate the inertial properties and forces required to initiate movement on two different surfaces in a sample of three commonly prescribed gait trainers. Tests were conducted in a laboratory setting to compare the Prime Engineering KidWalk, Rifton Pacer, and Snug Seat Mustang with and without a weighted anthropometric test dummy configured to the weight and proportions of a 4-year-old child. The Pacer was the lightest and the KidWalk the heaviest while footprints of the three gait trainers were similar. Weight was borne fairly evenly on the four casters of the Pacer and Mustang while 85% of the weight was borne on the large wheels of the mid-wheel drive KidWalk. These differences in frame style, wheel, and caster style and overall mass impact inertial properties and forces required to initiate movement. Test results suggest that initiation forces on tile were equivalent for the Pacer and KidWalk while the Mustang had the highest initiation force. Initiation forces on carpet were lowest for the KidWalk and highest for the Mustang. This initial study of inertia and movement initiation forces may provide added information for clinicians to consider when selecting a gait trainer for their clients.
Coxon, Kristy; Keay, Lisa
2015-12-09
Safe-transport is important to well-being in later life but balancing safety and independence for older drivers can be challenging. While self-regulation is a promising tool to promote road safety, more research is required to optimise programs. Qualitative research was used to inform the choice and adaptation of a safe-transport education program for older drivers. Three focus groups were conducted with older drivers living in northwest Sydney to explore four key areas related to driving in later life including aged-based licensing, stopping or limiting driving, barriers to driving cessation and alternative modes of transportation. Data were analysed using content analysis. Four categories emerged from the data; bad press for older drivers, COMPETENCE not age, call for fairness in licensing regulations, and hanging up the keys: It's complicated! Two key issues being (1) older drivers wanted to drive for as long as possible but (2) were not prepared for driving cessation; guided the choice and adaption of the Knowledge Enhances Your Safety (KEYS) program. This program was adapted for the Australian context and focus group findings raised the need for practical solutions, including transport alternatives, to be added. Targeted messages were developed from the data using the Precaution Adoption Process Model (PAPM), allowing the education to be tailored to the individual's stage of behaviour change. Adapting our program based on insights gained from community consultation should ensure the program is sensitive to the needs, skills and preferences of older drivers.
DETAIL TOP VIEW OF AERIAL TRAMWAY DRIVE MECHANISM, LOOKING NORTHEAST. ...
DETAIL TOP VIEW OF AERIAL TRAMWAY DRIVE MECHANISM, LOOKING NORTHEAST. THE FRICTION BRAKING SYSTEM CAN BE SEEN IN SHADOW ABOVE THE LARGE CABLE WHEEL BELOW. - Keane Wonder Mine, Park Route 4 (Daylight Pass Cutoff), Death Valley Junction, Inyo County, CA
Asleep at the Wheel-The Road to Addressing Drowsy Driving
DOT National Transportation Integrated Search
2017-01-25
Drowsy driving is a dangerous behavior that leads to thousands of deaths and injuries each year. It is also a controllable factor for drivers. Drivers are capable of modifying this behavior if given sufficient information and motivation. Our goal is ...
7. Detail of Flywheels and Drive Assembly, Looking West, Showing ...
7. Detail of Flywheels and Drive Assembly, Looking West, Showing (Left to Right): Brake, Pulley Wheel, and Flywheel - Heckert Oil Pumping Jack, 0.6 mile North of Connoquenessing Creek, 0.15 mile East of Powder Mill Creek, Renfrew, Butler County, PA
Detecting lane departures from steering wheel signal.
Sandström, Max; Lampsijärvi, Eetu; Holmström, Axi; Maconi, Göran; Ahmadzai, Shabana; Meriläinen, Antti; Hæggström, Edward; Forsman, Pia
2017-02-01
Current lane departure warning systems are video-based and lose data when road- and weather conditions are bad. This study sought to develop a lane departure warning algorithm based on the signal drawn from the steering wheel. The rationale is that a car-based lane departure warning system should be robust regardless of road- and weather conditions. N=34 professional driver students drove in a high-fidelity driving simulator at 80km/h for 55min every third hour during 36h of sustained wakefulness. During each driving session we logged the steering wheel- and lane position signals at 60Hz. To derive the lane position signal, we quantified the transfer function of the simulated vehicle and used it to derive the absolute lane position signal from the steering wheel signal. The Pearson correlation between the derived- and actual lane position signals was r=0.48 (based on 12,000km). Next we designed an algorithm that alerted, up to three seconds before they occurred, about upcoming lane deviations that exceeded 0.2m. The sensitivity of the algorithm was 47% and the specificity was 71%. To our knowledge this exceeds the performance of the current video-based systems. Copyright © 2016 Elsevier Ltd. All rights reserved.
A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System.
Yuan, Xianfeng; Song, Mumin; Zhou, Fengyu; Chen, Zhumin; Li, Yan
2015-01-01
The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods.
A Novel Mittag-Leffler Kernel Based Hybrid Fault Diagnosis Method for Wheeled Robot Driving System
Yuan, Xianfeng; Song, Mumin; Chen, Zhumin; Li, Yan
2015-01-01
The wheeled robots have been successfully applied in many aspects, such as industrial handling vehicles, and wheeled service robots. To improve the safety and reliability of wheeled robots, this paper presents a novel hybrid fault diagnosis framework based on Mittag-Leffler kernel (ML-kernel) support vector machine (SVM) and Dempster-Shafer (D-S) fusion. Using sensor data sampled under different running conditions, the proposed approach initially establishes multiple principal component analysis (PCA) models for fault feature extraction. The fault feature vectors are then applied to train the probabilistic SVM (PSVM) classifiers that arrive at a preliminary fault diagnosis. To improve the accuracy of preliminary results, a novel ML-kernel based PSVM classifier is proposed in this paper, and the positive definiteness of the ML-kernel is proved as well. The basic probability assignments (BPAs) are defined based on the preliminary fault diagnosis results and their confidence values. Eventually, the final fault diagnosis result is archived by the fusion of the BPAs. Experimental results show that the proposed framework not only is capable of detecting and identifying the faults in the robot driving system, but also has better performance in stability and diagnosis accuracy compared with the traditional methods. PMID:26229526
Modeling of traction-coupling properties of wheel propulsor
NASA Astrophysics Data System (ADS)
Sakhapov, R. L.; Nikolaeva, R. V.; Gatiyatullin, M. H.; Makhmutov, M. M.
2017-12-01
In conditions of operation of aggregates on soils with low bearing capacity, the main performance indicators of their operation are determined by the properties of retaining the functional qualities of the propulsor. Therefore, the parameters of the anti-skid device can not be calculated by only one criterion. The equipment of propellers with anti-skid devices, which allow to reduce the compaction effect of the propulsion device on the soil, seems to be a rational solution to the problem of increasing traction and coupling properties of the driving wheels. The mathematical model is based on the study of the interaction of the driving wheel with anti-skid devices and a deformable bearing surface, which takes into account the wheel diameter, skid coefficient, the parameters of the anti-skid device, the physical and mechanical properties of the soil. As a basic mathematical model that determines the dependence of the coupling properties on the wheel parameters, the model obtained as a result of integration and reflecting the process of soil deformation from the shear stress is adopted. The total value of the resistance forces will determine the force of the hitch pressure on the horizontal soil layers, and the value of its deformation is the degree of wheel slippage. When the anti-skid devices interact with the soil, the traction capacity of the wheel is composed of shear forces, soil shear and soil deformation forces with detachable hooks. As a result of the interaction of the hook with the soil, the latter presses against the walls of the hook with the force equal to the sum of the hook load and the resistance to movement. During operation, the linear dimensions of the hook will decrease, which is not taken into account by the safety factor. Abrasive wear of the thickness of the hook is approximately proportional to the work of friction caused by the movement of the hook when inserted into the soil and slipping the wheel.
The Four-Ball Gyro and Motorcycle Countersteering
NASA Astrophysics Data System (ADS)
Galli, J. Ronald; Carroll, Bradley W.
2017-04-01
Most two-wheel motorcycle riders know that, at highway speeds, if you want to turn left you push on the left handlebar and pull on the right handlebar. This is called countersteering. Countersteering is counterintuitive since pushing left and pulling right when the front wheel is not spinning would turn the wheel to the right. All good motorcycle instructors teach countersteering but few understand the physics of why it works, even though there is considerable discussion about it among motorcycle riders. This paper gives a simplified explanation of gyroscopic precession and then applies this to the front wheel of a motorcycle using two steps: 1) explaining how the wheel's lean is initiated, and 2) explaining how the lean will cause the wheel to turn. To assist with this discussion and to demonstrate the conclusions, a "wheel" was constructed using copper pipe, a bicycle wheel hub, and one pound of lead in each of four "balls" at the end of the spokes (see Fig. 1).
Modelling of a mecanum wheel taking into account the geometry of road rollers
NASA Astrophysics Data System (ADS)
Hryniewicz, P.; Gwiazda, A.; Banaś, W.; Sękala, A.; Foit, K.
2017-08-01
During the process planning in a company one of the basic factors associated with the production costs is the operation time for particular technological jobs. The operation time consists of time units associated with the machining tasks of a workpiece as well as the time associated with loading and unloading and the transport operations of this workpiece between machining stands. Full automation of manufacturing in industry companies tends to a maximal reduction in machine downtimes, thereby the fixed costs simultaneously decreasing. The new construction of wheeled vehicles, using Mecanum wheels, reduces the transport time of materials and workpieces between machining stands. These vehicles have the ability to simultaneously move in two axes and thus more rapid positioning of the vehicle relative to the machining stand. The Mecanum wheel construction implies placing, around the wheel free rollers that are mounted at an angle 450, which allow the movement of the vehicle not only in its axis but also perpendicular thereto. The improper selection of the rollers can cause unwanted vertical movement of the vehicle, which may cause difficulty in positioning of the vehicle in relation to the machining stand and the need for stabilisation. Hence the proper design of the free rollers is essential in designing the whole Mecanum wheel construction. It allows avoiding the disadvantageous and unwanted vertical vibrations of a whole vehicle with these wheels. In the article the process of modelling the free rollers, in order to obtain the desired shape of unchanging, horizontal trajectory of the vehicle is presented. This shape depends on the desired diameter of the whole Mecanum wheel, together with the road rollers, and the width of the drive wheel. Another factor related with the curvature of the trajectory shape is the length of the road roller and its diameter decreases depending on the position with respect to its centre. The additional factor, limiting construction of the road rollers, is their bearings. Depending on the load, carried by the vehicle and the rotational speed of the drive wheel, the bearings themselves can greatly affect the diameter of the rollers and the whole Mecanum wheels. The solution of this problem is presented in the paper. It is illustrated with virtual models elaborated in advanced program of the CAE class.
Reduction of extinction and reinstatement of cocaine seeking by wheel running in female rats.
Zlebnik, Natalie E; Anker, Justin J; Gliddon, Luke A; Carroll, Marilyn E
2010-03-01
Previous work has shown that wheel running reduced the maintenance of cocaine self-administration in rats. In the present study, the effect of wheel running on extinction and reinstatement of cocaine seeking was examined. Female rats were trained to run in a wheel during 6-h sessions, and they were then catheterized and placed in an operant conditioning chamber where they did not have access to the wheel but were allowed to self-administer iv cocaine. Subsequently, rats were divided into four groups and were tested on the extinction and reinstatement of cocaine seeking while they had varying access to a wheel in an adjoining compartment. The four groups were assigned to the following wheel access conditions: (1) wheel running during extinction and reinstatement (WER), (2) wheel running during extinction and a locked wheel during reinstatement (WE), (3) locked wheel during extinction and wheel running during reinstatement (WR), and (4) locked wheel during extinction and reinstatement (WL). WE and WR were retested later to examine the effect of one session of wheel access on cocaine-primed reinstatement. There were no group differences in wheel revolutions, in rate of acquisition of cocaine self-administration, or in responding during maintenance when there was no wheel access. However, during extinction, WE and WER responded less than WR and WL. WR and WER had lower cocaine-primed reinstatement than WE and WL. One session of wheel exposure in WE also suppressed cocaine-primed reinstatement. Wheel running immediately and effectively reduced cocaine-seeking behavior, but concurrent access to running was necessary. Thus, exercise is a useful and self-sustaining intervention to reduce cocaine-seeking behavior.
a Simplified Method to Design Suspended Cabs for Counterbalance Trucks
NASA Astrophysics Data System (ADS)
LEMERLE, P.; BOULANGER, P.; POIROT, R.
2002-05-01
A “low-frequency” suspension system, placed between the driving cab and chassis of an existing fork lift truck was designed. The aim of this project was to develop a design procedure which is easy to implement and suitable for all types of fork lift trucks. It was also to show how the use of numerical simulation could be helpful to optimize the efficiency of such suspension systems. The cab specifications were: (1) to achieve a vertical vibration attenuation of at least 50% when this truck is tested under severe but realistic conditions, (2) to operate with no specific adjustment for drivers weighing between 60 and 100 kg, (3) to be efficient with a reasonable dynamic stroke (about 3 cm maximum). The suspended cab was modelled using ADAMS software. In the simplified method, the input acceleration signals (at the four fixing points of the cab) were not computed from a vehicle model (chassis and wheels) but directly measured under various driving conditions (passage of two or four wheels over an obstacle with a loaded or unloaded fork lift truck). This model allowed evaluation of the theoretical attenuation, obtained below the driver's seat along the three axes, in comparison with an infinitely rigid suspension. The attenuation ratio was calculated for several values of the characteristics of the suspension components (stiffness and damping). Similarly, for every design value tested, the design constraints were evaluated and at the end of this parametrical study, optimal suspension components were found. Finally, the suspended cab was built according to the results of the parametrical study and measurements subsequently confirmed that the attenuation of vertical accelerations was more than 50%.
NASA Technical Reports Server (NTRS)
1970-01-01
A developmental test plan for the wheel and wheel drive assembly of the dual-mode (manned/automated) lunar surface roving vehicle is presented. The tests cover performance, as well as critical environmental characteristics. Insofar as practical, the environmental conditions imposed will be in the sequence expected during the hardware's life from storage through the lunar mission. Test procedures are described for static load deflection and endurance tests. Soft soil tests to determine mobility characteristics including drawbar-pull and thrust vs slip, and motion resistance for various wheel loads are also discussed. Test designs for both ambient and thermal vacuum conditions are described. Facility, transducer, and instrumentation requirements are outlined.
Aerodynamic analysis of an isolated vehicle wheel
NASA Astrophysics Data System (ADS)
Leśniewicz, P.; Kulak, M.; Karczewski, M.
2014-08-01
Increasing fuel prices force the manufacturers to look into all aspects of car aerodynamics including wheels, tyres and rims in order to minimize their drag. By diminishing the aerodynamic drag of vehicle the fuel consumption will decrease, while driving safety and comfort will improve. In order to properly illustrate the impact of a rotating wheel aerodynamics on the car body, precise analysis of an isolated wheel should be performed beforehand. In order to represent wheel rotation in contact with the ground, presented CFD simulations included Moving Wall boundary as well as Multiple Reference Frame should be performed. Sliding mesh approach is favoured but too costly at the moment. Global and local flow quantities obtained during simulations were compared to an experiment in order to assess the validity of the numerical model. Results of investigation illustrates dependency between type of simulation and coefficients (drag and lift). MRF approach proved to be a better solution giving result closer to experiment. Investigation of the model with contact area between the wheel and the ground helps to illustrate the impact of rotating wheel aerodynamics on the car body.
DOT National Transportation Integrated Search
1976-05-01
This report presents an experimental design for a project to evaluate four techniques for reducing wheel-rail noise on urban rail transit systems: (a) resilient wheels, (b) damped wheels, (c) wheel truing, and (d) rail griding. The design presents th...
Diamond machine tool face lapping machine
Yetter, H.H.
1985-05-06
An apparatus for shaping, sharpening and polishing diamond-tipped single-point machine tools. The isolation of a rotating grinding wheel from its driving apparatus using an air bearing and causing the tool to be shaped, polished or sharpened to be moved across the surface of the grinding wheel so that it does not remain at one radius for more than a single rotation of the grinding wheel has been found to readily result in machine tools of a quality which can only be obtained by the most tedious and costly processing procedures, and previously unattainable by simple lapping techniques.
ERIC Educational Resources Information Center
Ritz, John M.
2005-01-01
Automotive wheels and tires require knowledge to understand their specifications and use. While the durability and useful life of tires have increased substantially over the last several decades, in all probability consumers will purchase a number of vehicle tires over their lifetime. Knowing how they are made and what the numbers mean will assist…
32 CFR 636.28 - Special rules for motorcycles/mopeds.
Code of Federal Regulations, 2014 CFR
2014-07-01
... earphones while driving is prohibited. (h) Military personnel, civilian employees, and family member drivers of a privately or government-owned motorcycle/moped (two or three wheeled motor driven vehicles) are required to attend and complete an approved Motorcycle Defense Driving Course (MDDC) prior to operation of...
32 CFR 636.28 - Special rules for motorcycles/mopeds.
Code of Federal Regulations, 2012 CFR
2012-07-01
... earphones while driving is prohibited. (h) Military personnel, civilian employees, and family member drivers of a privately or government-owned motorcycle/moped (two or three wheeled motor driven vehicles) are required to attend and complete an approved Motorcycle Defense Driving Course (MDDC) prior to operation of...
Forces on wheels and fuel consumption in cars
NASA Astrophysics Data System (ADS)
Güémez, J.; Fiolhais, M.
2013-07-01
Motivated by real classroom discussions, we analyze the forces acting on moving vehicles, specifically friction on their wheels. In typical front-wheel-drive cars when the car accelerates these forces are in the forward direction in the front wheels, but they are in the opposite direction in the rear wheels. The situation may be intriguing for students, but it may also be helpful and stimulating to clarify the role of friction forces on rolling objects. In this paper we also study the thermodynamical aspects of an accelerating car, relating the distance traveled to the amount of fuel consumed. The fuel consumption is explicitly shown to be Galilean invariant and we identify the Gibbs free energy as the relevant quantity that enters into the thermodynamical description of the accelerating car. The more realistic case of the car's motion with the dragging forces taken into account is also discussed.
NASA Astrophysics Data System (ADS)
Deng, H.; Chen, G. Y.; Zhou, C.; Zhou, X. C.; He, J.; Zhang, Y.
2014-09-01
A series of theoretical analyses and experimental investigations were performed to examine a pulsed fiber-laser tangential profiling and radial sharpening technique for bronze-bonded diamond grinding wheels. The mechanisms for the pulsed laser tangential profiling and radial sharpening of grinding wheels were theoretically analyzed, and the four key processing parameters that determine the quality, accuracy, and efficiency of pulsed laser dressing, namely, the laser power density, laser spot overlap ratio, laser scanning track line overlap ratio, and number of laser scanning cycles, were proposed. Further, by utilizing cylindrical bronze wheels (without diamond grains) and bronze-bonded diamond grinding wheels as the experimental subjects, the effects of these four processing parameters on the removal efficiency and the surface smoothness of the bond material after pulsed laser ablation, as well as the effects on the contour accuracy of the grinding wheels, the protrusion height of the diamond grains, the sharpness of the grain cutting edges, and the graphitization degree of the diamond grains after pulsed laser dressing, were explored. The optimal values of the four key processing parameters were identified.
Piezoelectric step-motion actuator
Mentesana,; Charles, P [Leawood, KS
2006-10-10
A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.
NASA Astrophysics Data System (ADS)
Lindvai-Soos, Daniel; Horn, Martin
2018-07-01
In this article a novel vehicle dynamics control concept is designed for a vehicle equipped with wheel individual electric traction machines, electronically controlled brakes and semi-active suspensions. The suspension's cross-couplings between traction forces and vertical forces via anti-dive and anti-squat geometry is utilised in the control concept to improve driving comfort and driving stability. The control concept is divided into one main and two cascaded branches. The main controller consists of a multivariable vehicle dynamics controller and a control allocation scheme to improve the vehicle's driving comfort. The cascaded feedback loops maintain the vehicle's stability according to wheel slip and vehicle sideslip. The performance of the combined vehicle dynamics controller is compared to a standard approach in simulation. It can be stated that the controller piloting semi-active suspensions together with brake and traction devices enables a superior performance regarding comfort and stability.
NASA Astrophysics Data System (ADS)
Campanari, Stefano; Manzolini, Giampaolo; Garcia de la Iglesia, Fernando
This work presents a study of the energy and environmental balances for electric vehicles using batteries or fuel cells, through the methodology of the well to wheel (WTW) analysis, applied to ECE-EUDC driving cycle simulations. Well to wheel balances are carried out considering different scenarios for the primary energy supply. The fuel cell electric vehicles (FCEV) are based on the polymer electrolyte membrane (PEM) technology, and it is discussed the possibility to feed the fuel cell with (i) hydrogen directly stored onboard and generated separately by water hydrolysis (using renewable energy sources) or by conversion processes using coal or natural gas as primary energy source (through gasification or reforming), (ii) hydrogen generated onboard with a fuel processor fed by natural gas, ethanol, methanol or gasoline. The battery electric vehicles (BEV) are based on Li-ion batteries charged with electricity generated by central power stations, either based on renewable energy, coal, natural gas or reflecting the average EU power generation feedstock. A further alternative is considered: the integration of a small battery to FCEV, exploiting a hybrid solution that allows recovering energy during decelerations and substantially improves the system energy efficiency. After a preliminary WTW analysis carried out under nominal operating conditions, the work discusses the simulation of the vehicles energy consumption when following standardized ECE-EUDC driving cycle. The analysis is carried out considering different hypothesis about the vehicle driving range, the maximum speed requirements and the possibility to sustain more aggressive driving cycles. The analysis shows interesting conclusions, with best results achieved by BEVs only for very limited driving range requirements, while the fuel cell solutions yield best performances for more extended driving ranges where the battery weight becomes too high. Results are finally compared to those of conventional internal combustion engine vehicles, showing the potential advantages of the different solutions considered in the paper and indicating the possibility to reach the target of zero-emission vehicles (ZEV).
NASA Technical Reports Server (NTRS)
Contreras, Michael T.; Trease, Brian P.; Bojanowski, Cezary; Kulakx, Ronald F.
2013-01-01
A wheel experiencing sinkage and slippage events poses a high risk to planetary rover missions as evidenced by the mobility challenges endured by the Mars Exploration Rover (MER) project. Current wheel design practice utilizes loads derived from a series of events in the life cycle of the rover which do not include (1) failure metrics related to wheel sinkage and slippage and (2) performance trade-offs based on grouser placement/orientation. Wheel designs are rigorously tested experimentally through a variety of drive scenarios and simulated soil environments; however, a robust simulation capability is still in development due to myriad of complex interaction phenomena that contribute to wheel sinkage and slippage conditions such as soil composition, large deformation soil behavior, wheel geometry, nonlinear contact forces, terrain irregularity, etc. For the purposes of modeling wheel sinkage and slippage at an engineering scale, meshfree nite element approaches enable simulations that capture su cient detail of wheel-soil interaction while remaining computationally feasible. This study implements the JPL wheel-soil benchmark problem in the commercial code environment utilizing the large deformation modeling capability of Smooth Particle Hydrodynamics (SPH) meshfree methods. The nominal, benchmark wheel-soil interaction model that produces numerically stable and physically realistic results is presented and simulations are shown for both wheel traverse and wheel sinkage cases. A sensitivity analysis developing the capability and framework for future ight applications is conducted to illustrate the importance of perturbations to critical material properties and parameters. Implementation of the proposed soil-wheel interaction simulation capability and associated sensitivity framework has the potential to reduce experimentation cost and improve the early stage wheel design proce
Human machine interface to manually drive rhombic like vehicles such as transport casks in ITER
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopes, Pedro; Vale, Alberto; Ventura, Rodrigo
2015-07-01
The Cask and Plug Remote Handling System (CPRHS) and the respective Cask Transfer System (CTS) are designed to transport activated components between the reactor and the hot cell buildings of ITER during maintenance operations. In nominal operation, the CPRHS/CTS shall operate autonomously under human supervision. However, in some unexpected situations, the automatic mode must be overridden and the vehicle must be remotely guided by a human operator due to the harsh conditions of the environment. The CPRHS/CTS is a rhombic-like vehicle with two independent steerable and drivable wheels along its longitudinal axis, giving it omni-directional capabilities. During manual guidance, themore » human operator has to deal with four degrees of freedom, namely the orientations and speeds of two wheels. This work proposes a Human Machine Interface (HMI) to manage the degrees of freedom and to remotely guide the CPRHS/CTS in ITER taking the most advantages of rhombic like capabilities. Previous work was done to drive each wheel independently, i.e., control the orientation and speed of each wheel independently. The results have shown that the proposed solution is inefficient. The attention of the human operator becomes focused in a single wheel. In addition, the proposed solution cannot assure that the commands accomplish the physical constrains of the vehicle, resulting in slippage or even in clashes. This work proposes a solution that consists in the control of the vehicle looking at the position of its center of mass and its heading in the world frame. The solution is implemented using a rotational disk to control the vehicle heading and a common analogue joystick to control the vector speed of the center of the mass of the vehicle. The number of degrees of freedom reduces to three, i.e., two angles (vehicle heading and the orientation of the vector speed) and a scalar (the magnitude of the speed vector). This is possible using a kinematic model based on the vehicle Instantaneous Center of Rotation (ICR): a geometric approach where, at each time instant, the vehicle describes a circumference (either with a finite or infinite radius). The inverse of the kinematic model transforms the three input parameters of the center of mass into the four parameters for the wheels, preserving the omni-directional capabilities. The solution is implemented and tested using a HMI with a control disk and an analog joystick with two axis. The control disk was specially designed for this solution and implemented using a programmable micro-controller. In the first set of experiments, the HMI communicates with a computer running a simulator of the CPRHS/CTS, with the vehicle kinematics and dynamics, moving in a map of the ITER buildings. In the second set of experiments, the HMI communicates with a scaled prototype of the CPRHS running in a mock-up scenario to obtain more realistic results. Several type of tests were performed to evaluate the usability of the HMI. Different human operators without knowledge neither experience with this interface were invited to test the HMI. The operators had to drive the vehicle from an initial place to a final destination under the following conditions: with a pre-computed path to help guidance, without any path, with the information of the closest obstacles and without any help. The performance was evaluated using the time duration of the operation, the energy required to perform the described path, the risk of collision and, in case of a pre-computed path, the comparison between paths. In addition, each operator tested the HMI several times to evaluate the performance along consecutive trials. (authors)« less
Enhancing vehicle cornering limit through sideslip and yaw rate control
NASA Astrophysics Data System (ADS)
Lu, Qian; Gentile, Pierangelo; Tota, Antonio; Sorniotti, Aldo; Gruber, Patrick; Costamagna, Fabio; De Smet, Jasper
2016-06-01
Fully electric vehicles with individually controlled drivetrains can provide a high degree of drivability and vehicle safety, all while increasing the cornering limit and the 'fun-to-drive' aspect. This paper investigates a new approach on how sideslip control can be integrated into a continuously active yaw rate controller to extend the limit of stable vehicle cornering and to allow sustained high values of sideslip angle. The controllability-related limitations of integrated yaw rate and sideslip control, together with its potential benefits, are discussed through the tools of multi-variable feedback control theory and non-linear phase-plane analysis. Two examples of integrated yaw rate and sideslip control systems are presented and their effectiveness is experimentally evaluated and demonstrated on a four-wheel-drive fully electric vehicle prototype. Results show that the integrated control system allows safe operation at the vehicle cornering limit at a specified sideslip angle independent of the tire-road friction conditions.
Quera-Salva, M A; Hartley, S; Sauvagnac-Quera, R; Sagaspe, P; Taillard, J; Contrand, B; Micoulaud, J A; Lagarde, E; Barbot, F; Philip, P
2016-12-21
To investigate the evolution over 15 years of sleep schedules, sleepiness at the wheel and driving risk among highway drivers. Comparative survey including questions on usual sleep schedules and before the trip, sleepiness at the wheel, the Epworth sleepiness scale, Basic Nordic Sleep Questionnaire (BNSQ) and a travel questionnaire. 80% of drivers stopped by the highway patrol agreed to participate in both studies with a total of 3545 drivers in 2011 and 2196 drivers in 1996 interviewed. After standardisation based on sex, age and mean annual driving distance, drivers in 2011 reported shorter sleep time on week days (p<0.0001), and week-ends (p<0.0001) and shorter optimal sleep time (p<0.0001) compared to 1996 drivers. There were more drivers sleepy at the wheel in 2011 than in 1996 (p<0.0001) and 2.5 times more drivers in 2011 than in 1996 had an Epworth sleepiness score >15 indicating severe sleepiness. Even if drivers in 2011 reported good sleep hygiene prior to a highway journey, drivers have reduced their mean weekly sleep duration over 15 years and have a higher risk of sleepiness at the wheel. Sleep hygiene for automobile drivers remains an important concept to address. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Nesting behavior of house mice (Mus domesticus) selected for increased wheel-running activity.
Carter, P A; Swallow, J G; Davis, S J; Garland, T
2000-03-01
Nest building was measured in "active" (housed with access to running wheels) and "sedentary" (without wheel access) mice (Mus domesticus) from four replicate lines selected for 10 generations for high voluntary wheel-running behavior, and from four randombred control lines. Based on previous studies of mice bidirectionally selected for thermoregulatory nest building, it was hypothesized that nest building would show a negative correlated response to selection on wheel-running. Such a response could constrain the evolution of high voluntary activity because nesting has also been shown to be positively genetically correlated with successful production of weaned pups. With wheel access, selected mice of both sexes built significantly smaller nests than did control mice. Without wheel access, selected females also built significantly smaller nests than did control females, but only when body mass was excluded from the statistical model, suggesting that body mass mediated this correlated response to selection. Total distance run and mean running speed on wheels was significantly higher in selected mice than in controls, but no differences in amount of time spent running were measured, indicating a complex cause of the response of nesting to selection for voluntary wheel running.
Jeon, Namju; Lee, Hyeongcheol
2016-01-01
An integrated fault-diagnosis algorithm for a motor sensor of in-wheel independent drive electric vehicles is presented. This paper proposes a method that integrates the high- and low-level fault diagnoses to improve the robustness and performance of the system. For the high-level fault diagnosis of vehicle dynamics, a planar two-track non-linear model is first selected, and the longitudinal and lateral forces are calculated. To ensure redundancy of the system, correlation between the sensor and residual in the vehicle dynamics is analyzed to detect and separate the fault of the drive motor system of each wheel. To diagnose the motor system for low-level faults, the state equation of an interior permanent magnet synchronous motor is developed, and a parity equation is used to diagnose the fault of the electric current and position sensors. The validity of the high-level fault-diagnosis algorithm is verified using Carsim and Matlab/Simulink co-simulation. The low-level fault diagnosis is verified through Matlab/Simulink simulation and experiments. Finally, according to the residuals of the high- and low-level fault diagnoses, fault-detection flags are defined. On the basis of this information, an integrated fault-diagnosis strategy is proposed. PMID:27973431
Public provision of four-wheeled walkers: contingent valuation study of economic benefit.
Haines, Terry; Brown, Cassandra; Morrison, Jan
2008-09-01
To quantify the economic value of publicly provided four-wheeled walkers as judged by recipients in Queensland, Australia. Contingent valuation study using willingness-to-pay approach. A sample of 49 Australian older adults who received a publicly funded four-wheeled walker in the past 3 months completed the survey via telephone. A discrete choice bidding response format with a randomly selected starting bid was employed to glean valuations. This approach yielded only one non-response, and one zero dollar response. The mean (standard deviation) valuation provided was $ A 290 ($ A 167), which was $ A 84 in excess of the price paid by the public provider agency to purchase the equipment. Starting bid was significantly associated with values provided. The current public provision program of four-wheeled walkers is likely to generate net societal benefit. These findings coupled with arguments based on equity build a moderate case for the continuation of this program.
Conversion and control of an all-terrain vehicle for use as an autonomous mobile robot
NASA Astrophysics Data System (ADS)
Jacob, John S.; Gunderson, Robert W.; Fullmer, R. R.
1998-08-01
A systematic approach to ground vehicle automation is presented, combining low-level controls, trajectory generation and closed-loop path correction in an integrated system. Development of cooperative robotics for precision agriculture at Utah State University required the automation of a full-scale motorized vehicle. The Triton Predator 8- wheeled skid-steering all-terrain vehicle was selected for the project based on its ability to maneuver precisely and the simplicity of controlling the hydrostatic drivetrain. Low-level control was achieved by fitting an actuator on the engine throttle, actuators for the left and right drive controls, encoders on the left and right drive shafts to measure wheel speeds, and a signal pick-off on the alternator for measuring engine speed. Closed loop control maintains a desired engine speed and tracks left and right wheel speeds commands. A trajectory generator produces the wheel speed commands needed to steer the vehicle through a predetermined set of map coordinates. A planar trajectory through the points is computed by fitting a 2D cubic spline over each path segment while enforcing initial and final orientation constraints at segment endpoints. Acceleration and velocity profiles are computed for each trajectory segment, with the velocity over each segment dependent on turning radius. Left and right wheel speed setpoints are obtained by combining velocity and path curvature for each low-level timestep. The path correction algorithm uses GPS position and compass orientation information to adjust the wheel speed setpoints according to the 'crosstrack' and 'downtrack' errors and heading error. Nonlinear models of the engine and the skid-steering vehicle/ground interaction were developed for testing the integrated system in simulation. These test lead to several key design improvements which assisted final implementation on the vehicle.
Maximum Torque and Momentum Envelopes for Reaction Wheel Arrays
NASA Technical Reports Server (NTRS)
Markley, F. Landis; Reynolds, Reid G.; Liu, Frank X.; Lebsock, Kenneth L.
2009-01-01
Spacecraft reaction wheel maneuvers are limited by the maximum torque and/or angular momentum that the wheels can provide. For an n-wheel configuration, the torque or momentum envelope can be obtained by projecting the n-dimensional hypercube, representing the domain boundary of individual wheel torques or momenta, into three dimensional space via the 3xn matrix of wheel axes. In this paper, the properties of the projected hypercube are discussed, and algorithms are proposed for determining this maximal torque or momentum envelope for general wheel configurations. Practical strategies for distributing a prescribed torque or momentum among the n wheels are presented, with special emphasis on configurations of four, five, and six wheels.
Army Synthetic Validity Project Report of Phase 2 Results. Volume 3. Research Instruments
1990-10-01
Areas 7. The type of secondary arms room lock shown at A in the diagram below requires rotation A. monthly B. quarterly C. semiannually D. annually E...building concrete, stone, or other structures (for example, roads, fortifications , buildings, etc.). 16. Operate wheeled vehicles - drive wheeled...for cover and concealment and to place weapons, fortifications , mines, and detectors. 64. Translate foreign languages - translate written or spoken
Cross-coupled control for all-terrain rovers.
Reina, Giulio
2013-01-08
Mobile robots are increasingly being used in challenging outdoor environments for applications that include construction, mining, agriculture, military and planetary exploration. In order to accomplish the planned task, it is critical that the motion control system ensure accuracy and robustness. The achievement of high performance on rough terrain is tightly connected with the minimization of vehicle-terrain dynamics effects such as slipping and skidding. This paper presents a cross-coupled controller for a 4-wheel-drive/4-wheel-steer robot, which optimizes the wheel motors' control algorithm to reduce synchronization errors that would otherwise result in wheel slip with conventional controllers. Experimental results, obtained with an all-terrain rover operating on agricultural terrain, are presented to validate the system. It is shown that the proposed approach is effective in reducing slippage and vehicle posture errors.
6. FLOOR 1; LOOKING WEST; SHOWS UNDERDRIFT SYSTEM, FOUR POSTS ...
6. FLOOR 1; LOOKING WEST; SHOWS UNDERDRIFT SYSTEM, FOUR POSTS SUPPORT BRIDGE BEAM FOR FOOT BEARING OF UPRIGHT SHAFT, SPUR PINION STONE NUTS SLIDE DOWN STONE SPINDLE TO ENGAGE, CENTRIFUGAL GOVERNOR IS MOUNTED ON A SEPARATE SPINDLE DRIVEN BY A BELT FROM THE STONE SPINDLE; ALSO SHOWN ARE THE GREAT SPUR WHEEL AND A LAYSHAFT RUNNING OFF A CROWN WHEEL JUST ABOVE THE GREAT SPUR WHEEL - Gardiner Windmill, East Hampton, Suffolk County, NY
Opportunity's View After Drive on Sol 1806 (Stereo)
NASA Technical Reports Server (NTRS)
2009-01-01
[figure removed for brevity, see original site] Left-eye view of a color stereo pair for PIA11816 [figure removed for brevity, see original site] Right-eye view of a color stereo pair for PIA11816 NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this stereo, full-circle view of the rover's surroundings just after driving 60.86 meters (200 feet) on the 1,806th Martian day, or sol, of Opportunity's surface mission (Feb. 21, 2009). North is at the center; south at both ends. This view combines images from the left-eye and right-eye sides of the navigation camera. It appears three-dimensional when viewed through red-blue glasses with the red lens on the left. Tracks from the drive extend northward across dark-toned sand ripples and light-toned patches of exposed bedrock in the Meridiani Planum region of Mars. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). Engineers designed the Sol 1806 drive to be driven backwards as a strategy to redistribute lubricant in the rovers wheels. The right-front wheel had been showing signs of increased friction. The rover's position after the Sol 1806 drive was about 2 kilometer (1.2 miles) south southwest of Victoria Crater. Cumulative odometry was 14.74 kilometers (9.16 miles) since landing in January 2004, including 2.96 kilometers (1.84 miles) since climbing out of Victoria Crater on the west side of the crater on Sol 1634 (August 28, 2008). This view is presented as a cylindrical-perspective projection with geometric seam correction.Evaluation of four steering wheels to determine driver hand placement in a static environment.
Mossey, Mary E; Xi, Yubin; McConomy, Shayne K; Brooks, Johnell O; Rosopa, Patrick J; Venhovens, Paul J
2014-07-01
While much research exists on occupant packaging both proprietary and in the literature, more detailed research regarding user preferences for subjective ratings of steering wheel designs is sparse in published literature. This study aimed to explore the driver interactions with production steering wheels in four vehicles by using anthropometric data, driver hand placement, and driver grip design preferences for Generation-Y and Baby Boomers. In this study, participants selected their preferred grip diameter, responded to a series of questions about the steering wheel grip as they sat in four vehicles, and rank ordered their preferred grip design. Thirty-two male participants (16 Baby Boomers between ages 47 and 65 and 16 Generation-Y between ages 18 and 29) participated in the study. Drivers demonstrated different gripping behavior between vehicles and between groups. Recommendations for future work in steering wheel grip design and naturalistic driver hand positioning are discussed. Copyright © 2014. Published by Elsevier Ltd.
The effects of taboo-related distraction on driving performance.
Chan, Michelle; Madan, Christopher R; Singhal, Anthony
2016-07-01
Roadside billboards containing negative and positive emotional content have been shown to influence driving performance, however, the impact of highly arousing taboo information is unknown. Taboo information more reliably evokes emotional arousal and can lead to greater attentional capture due to its inherent 'shock value.' The objective of the present study was to examine driver distraction associated with four types of information presented on roadside billboards: highly arousing taboo words, moderately arousing positive and negative words, and non-arousing neutral words. Participants viewed blocks of taboo, positive, negative and neutral words presented on roadside billboards while operating a driving simulator. They also responded to target (household-related) words by pressing a button on the steering wheel. At the end of the session, a surprise recall task was completed for all the words they saw while driving. Results showed that taboo words captured the most attention as revealed by better memory recall compared to all the other word types. Interestingly, taboo words were associated with better lane control compared to the other word types. We suggest that taboo-related arousal can enhance attentional focus during a complex task like simulated driving. That is, in a highly arousing situation, attention is selectively narrowed to the road ahead, resulting in better lane control. Copyright © 2016 Elsevier B.V. All rights reserved.
A Feasability Study of the Wheel Electrostatic Spectrometer
NASA Technical Reports Server (NTRS)
Johansen, Michael Ryan; Phillips, James Ralph; Kelley, Joshua David; Mackey, Paul J.; Holbert, Eirik; Clements, Gregory R.; Calle, Carlos I.
2014-01-01
Mars rover missions rely on time-consuming, power-exhausting processes to analyze the Martian regolith. A low power electrostatic sensor in the wheels of a future Mars rover could be used to quickly determine when the rover is driving over a different type of regolith. The Electrostatics and Surface Physics Laboratory at NASA's Kennedy Space Center developed the Wheel Electrostatic Spectrometer as a feasibility study to investigate this option. In this paper, we discuss recent advances in this technology to increase the repeatability of the tribocharging experiments, along with supporting data. In addition, we discuss the development of a static elimination tool optimized for Martian conditions.
Single wheel hub motor failures and their impact on vehicle and driver behaviour
NASA Astrophysics Data System (ADS)
Wanner, Daniel; Kreußlein, Maria; Augusto, Bruno; Drugge, Lars; Stensson Trigell, Annika
2016-10-01
This research work studies the impact of single wheel hub motor failures on the dynamic behaviour of electric vehicles and the corresponding driver reactions. An experimental study in a moving-base driving simulator is conducted to analyse the influence of single wheel hub motor failures for motorway speeds. Driver reaction times are derived from the measured data and discussed in their experimental context. The failure is rated objectively on the dynamic behaviour of the vehicle and compared to the subjective evaluation. Findings indicate that critical traffic situations impairing traffic safety can occur for motorway speeds. Clear counteractions by the drivers had to be taken.
NASA Astrophysics Data System (ADS)
Josan, A.; Pinca Bretotean, C.
2015-06-01
The paper presents the possibility of using special additions to the execution of moulding mixtures for steel castings, drive wheel type. Critical analysis of moulding technology leads to the idea that most defects appear due to using improper moulding mixture. Using a improper moulding mixture leads to penetration of steel in moulding mixture, resulting in the formation of adherences, due to inadequate refractarity of the mould and core mixtures. Using only the unique mixture to the moulding leads to increasing consumption of new sand, respectively to the increase of price of piece. Acording to the dates registered in the industrial practice is necessary to use the special additions to obtain the moulding mixtures, carbonaceous materials respectively.
Power Product Equipment Technician: Equipment Systems. Teacher Edition. Student Edition.
ERIC Educational Resources Information Center
Hilley, Robert
This packet contains teacher and student editions on the topic of equipment systems, intended for the preparation of power product equipment technicians. This publication contains seven units: (1) principles of power transmission; (2) mechanical drive systems; (3) principles of fluid power; (4) hydraulic and pneumatic drive systems; (5) wheel and…
40 CFR 86.535-90 - Dynamometer procedure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... run consists of two tests, a “cold” start test and a “hot” start test following the “cold” start by 10... Administrator. (d) Practice runs over the prescribed driving schedule may be performed at test points, provided... the proper speed-time relationship, or to permit sampling system adjustments. (e) The drive wheel...
Steering Dynamics of Tilting Narrow Track Vehicle with Passive Front Wheel Design
NASA Astrophysics Data System (ADS)
TAN, Jeffrey Too Chuan; ARAKAWA, Hiroki; SUDA, Yoshihiro
2016-09-01
In recent years, narrow track vehicle has been emerged as a potential candidate for the next generation of urban transportation system, which is greener and space effective. Vehicle body tilting has been a symbolic characteristic of such vehicle, with the purpose to maintain its stability with the narrow track body. However, the coordination between active steering and vehicle tilting requires considerable driving skill in order to achieve effective stability. In this work, we propose an alternative steering method with a passive front wheel that mechanically follows the vehicle body tilting. The objective of this paper is to investigate the steering dynamics of the vehicle under various design parameters of the passive front wheel. Modeling of a three-wheel tilting narrow track vehicle and multibody dynamics simulations were conducted to study the effects of two important front wheel design parameters, i.e. caster angle and trail toward the vehicle steering dynamics in steering response time, turning radius, steering stability and resiliency towards external disturbance. From the results of the simulation studies, we have verified the relationships of these two front wheel design parameters toward the vehicle steering dynamics.
Bennett, A.E.; Geisow, J.C.H.
1956-04-17
The timing device comprises an escapement wheel and pallet, a spring drive to rotate the escapement wheel to a zero position, means to wind the pretensioned spring proportional to the desired signal time, and a cam mechanism to control an electrical signal switch by energizing the switch when the spring has been wound to the desired position, and deenergizing it when it reaches the zero position. This device produces an accurately timed signal variably witain the control of the operator.
1984-05-01
hybrid transmission used in the VPR vehicle. From these comparisons made with HMMWV Developmental Test data, confidence can be placed in the validity of...I ............ ........ . ... .... ......... I................ l........ igr 3-2 Drwa pul .1 - hg rne 4004 .. d 3000 \\. PR VEIcLE 2000...Engine: GMC, V-8 diesel, 6.2 L. Transmission: Model THM 475/400 ( hybrid ). Transfer: New process 218, full time 4-wheel drive. Differential: Gleasman
Reach Capability of Men and Women: A Three-Dimensional Analysis
1978-07-01
anthropometric dimensions are provided. Measurements were taken in a simplified automobile driving compartment without a steering wheel and restraint belts...the opposite hand grasping an aircraft control wheel . Subjects were not permitted to slide from beneath the harness. Reach capability for the right and...experience reaching difficulties. The author’s analysis of her data indicated that "some modifications to the aircraft or to its installations need to be
77 FR 12197 - Standard for All-Terrain Vehicles
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-29
... National Standard for Four-Wheel All-Terrain Vehicles Equipment Configuration, and Performance Requirements... product safety standard the American National Standard for Four Wheel All-Terrain Vehicles Equipment... shall not have a foldable, removable, or retractable structure in the ATV foot environment; (6...
Cross-Coupled Control for All-Terrain Rovers
Reina, Giulio
2013-01-01
Mobile robots are increasingly being used in challenging outdoor environments for applications that include construction, mining, agriculture, military and planetary exploration. In order to accomplish the planned task, it is critical that the motion control system ensure accuracy and robustness. The achievement of high performance on rough terrain is tightly connected with the minimization of vehicle-terrain dynamics effects such as slipping and skidding. This paper presents a cross-coupled controller for a 4-wheel-drive/4-wheel-steer robot, which optimizes the wheel motors' control algorithm to reduce synchronization errors that would otherwise result in wheel slip with conventional controllers. Experimental results, obtained with an all-terrain rover operating on agricultural terrain, are presented to validate the system. It is shown that the proposed approach is effective in reducing slippage and vehicle posture errors. PMID:23299625
Prototype color field sequential television lens assembly
NASA Technical Reports Server (NTRS)
1974-01-01
The design, development, and evaluation of a prototype modular lens assembly with a self-contained field sequential color wheel is presented. The design of a color wheel of maximum efficiency, the selection of spectral filters, and the design of a quiet, efficient wheel drive system are included. Design tradeoffs considered for each aspect of the modular assembly are discussed. Emphasis is placed on achieving a design which can be attached directly to an unmodified camera, thus permitting use of the assembly in evaluating various candidate camera and sensor designs. A technique is described which permits maintaining high optical efficiency with an unmodified camera. A motor synchronization system is developed which requires only the vertical synchronization signal as a reference frequency input. Equations and tradeoff curves are developed to permit optimizing the filter wheel aperture shapes for a variety of different design conditions.
NASA Technical Reports Server (NTRS)
1978-01-01
The results of study to determine the applicability of the Remote Mobile Emplacement Package (RMEP) design concept as a mobility aid for the proposed post-'84 Mars missions are presented. The RMEP wheel and mobility subsystem parameters: wheel tire size, weight, stowed volume, and environmental effects; obstacle negotiation; reliability and wear; motor and drive train; and electrical power demand were reviewed. Results indicated that: (1) the basic RMEP wheel design would be satisfactory, with additional attention to heating, side loading, tread wear and ultraviolet radiation protection; (2) motor and drive train power requirements on Mars would be less than on Earth; and (3) the mobility electrical power requirements would be small enough to offer the option of operating the Mars mini rover untethered. Payload power required for certain sampling functions would preclude the use of battery power for these missions. Hazard avoidance and reverse direction maneuvers are discussed. Limited examination of vehicle payload integration and thermal design was made, pending establishment of a baseline vehicle/payload design.
NASA Astrophysics Data System (ADS)
Setterfield, T.
The rocker-bogie mobility system is a six-wheeled mobility system with the ability to equilibrate ground pressure amongst its wheels and traverse obstacles up to one wheel diameter in height; it has been used previously on NASA's Sojourner, Spirit, Opportunity and Curiosity rovers. This paper presents the mechanical design of an instrumented rocker-bogie mobility system for Kapvik, a 30 kg planetary micro-rover prototype developed for the Canadian Space Agency. The design of the wheel drive system is presented, including: motor selection, gear train selection, and performance limits. The design of a differential mechanism, which minimizes the pitch angle of the rover body, is provided. Design considerations for the integration of single-axis force sensors above the wheel hubs are presented. Structural analysis of the rocker and bogie links is outlined. The cross-hill and uphill-downhill static stability of Kapvik is investigated. Load cell and joint position data from testing during obstacle negotiation and uphill operation are presented.
Drowsy Driving: Asleep at the Wheel
... Emergency Preparedness & Response Environmental Health Healthy Living Injury, Violence & Safety Life Stages & Populations Travelers’ Health Workplace Safety & Health Features Media Sign up for Features Get Email Updates To ...
A compact magnetic bearing for gimballed momentum wheel
NASA Technical Reports Server (NTRS)
Yabu-Uchi, K.; Inoue, M.; Akishita, S.; Murakami, C.; Okamoto, O.
1983-01-01
A three axis controlled magnetic bearing and its application to a momentum wheel are described. The four divided stators provide a momentum wheel with high reliability, low weight, large angular momentum storage capacity, and gimbal control. Those characteristics are desirable for spacecraft attitude control.
Careau, Vincent; Bininda-Emonds, Olaf R P; Ordonez, Genesis; Garland, Theodore
2012-09-01
Voluntary wheel running and open-field behavior are probably the two most widely used measures of locomotion in laboratory rodents. We tested whether these two behaviors are correlated in mice using two approaches: the phylogenetic comparative method using inbred strains of mice and an ongoing artificial selection experiment on voluntary wheel running. After taking into account the measurement error and phylogenetic relationships among inbred strains, we obtained a significant positive correlation between distance run on wheels and distance moved in the open-field for both sexes. Thigmotaxis was negatively correlated with distance run on wheels in females but not in males. By contrast, mice from four replicate lines bred for high wheel running did not differ in either distance covered or thigmotaxis in the open field as compared with mice from four non-selected control lines. Overall, results obtained in the selection experiment were generally opposite to those observed among inbred strains. Possible reasons for this discrepancy are discussed.
Group traction drive as means to increase energy efficiency of lokomotives of open-pit transport
NASA Astrophysics Data System (ADS)
Antipin, D. Ya; Izmerov, O. V.; Bishutin, S. G.; Kobishchanov, V. V.
2017-10-01
Questions of possible use of a group drive for locomotives of an open-pit transport are considered. The possibility of a significant reduction of traction costs in the case of a combination of a group traction drive with devices for the non-inertial regulation of the coefficient of friction between the wheel and the rail has been shown, and new patentable solutions have been proposed.
Modelling and Simulation in the Design Process of Armored Vehicles
2003-03-01
trackway conditions is a demanding optimization task. Basically, a high level of ride comfort requires soft suspension tuning, whereas driving safety relies...The maximum off-road speed is generally limited by traction, input torque, driving safety and ride comfort. When obstacles are to be negotiated, the...wheel travel was defined during the mobility simulation runs. Figure 14: Ramp 1.5m at 40 kph; virtual and physical prototype Driving safety and ride
NASA Technical Reports Server (NTRS)
Hur-Diaz, Sun; Wirzburger, John; Smith, Dan
2008-01-01
The Hubble Space Telescope (HST) is renowned for its superb pointing accuracy of less than 10 milli-arcseconds absolute pointing error. To accomplish this, the HST relies on its complement of four reaction wheel assemblies (RWAs) for attitude control and four magnetic torquer bars (MTBs) for momentum management. As with most satellites with reaction wheel control, the fourth RWA provides for fault tolerance to maintain three-axis pointing capability should a failure occur and a wheel is lost from operations. If an additional failure is encountered, the ability to maintain three-axis pointing is jeopardized. In order to prepare for this potential situation, HST Pointing Control Subsystem (PCS) Team developed a Two Reaction Wheel Science (TRS) control mode. This mode utilizes two RWAs and four magnetic torquer bars to achieve three-axis stabilization and pointing accuracy necessary for a continued science observing program. This paper presents the design of the TRS mode and operational considerations necessary to protect the spacecraft while allowing for a substantial science program.
Flexible Manufacturing System Handbook. Volume II. Description of the Technology
1983-02-01
hubs, or wheels with considerable 4 FM5 Handbook, Volume II milling, drilling and/or tapping, are usually candidates for inclusion in a prismatic...0.06 inch) to transfer pallets to a machine or unload station. Wheel encoders can be used as less precise feedback for the drive system and its...must be used to control pallet transfer. The Cincinnati Milacron Variable Mission System uses this type of MHS, specifically the Eaton-Kenway Robo
Slow Progress in Dune (Left Rear Wheel)
NASA Technical Reports Server (NTRS)
2005-01-01
The left rear wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's rear hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.Slow Progress in Dune (Left Front Wheel)
NASA Technical Reports Server (NTRS)
2005-01-01
The left front wheel of NASA's Mars Exploration Rover Opportunity makes slow but steady progress through soft dune material in this movie clip of frames taken by the rover's front hazard identification camera over a period of several days. The sequence starts on Opportunity's 460th martian day, or sol (May 10, 2005) and ends 11 days later. In eight drives during that period, Opportunity advanced a total of 26 centimeters (10 inches) while spinning its wheels enough to have driven 46 meters (151 feet) if there were no slippage. The motion appears to speed up near the end of the clip, but that is an artifact of individual frames being taken less frequently.Increasing Slew Performance of Reaction Wheel Attitude Control Systems
2013-09-01
vectors in any arbitrary direction creates the momentum envelope (Chapter IV). The shape of the reaction wheel momentum envelope is a polyhedron [15...performance. This procedural limitation further reduces the operable reaction wheel momentum space polyhedron to the largest inscribed sphere, which...respective plane. These minima are also the global minima, each marked in magenta. The four-wheel polyhedron is again shown in three orthogonal views in
Pre-exposure to wheel running disrupts taste aversion conditioning.
Salvy, Sarah-Jeanne; Pierce, W David; Heth, Donald C; Russell, James C
2002-05-01
When rats are given access to a running wheel after drinking a flavored solution, they subsequently drink less of that flavor solution. It has been suggested that running produces a conditioned taste aversion (CTA). This study explored whether CTA is eliminated by prior exposure to wheel running [i.e., unconditioned stimulus (UCS) pre-exposure effect]. The rats in the experimental group (UW) were allowed to wheel run for 1 h daily for seven consecutive days of pre-exposure. Rats in the two other groups had either access to locked wheels (LW group) or were maintained in their home cages (HC group) during the pre-exposure days. All rats were then exposed to four paired and four unpaired trials using a "ABBAABBA" design. Conditioning trials were composed of one flavored liquid followed by 60-min access to wheel running. For the unpaired trials, rats received a different flavor not followed by the opportunity to run. All rats were then initially tested for water consumption followed by tests of the two flavors (paired or unpaired) in a counterbalanced design. Rats in the UW group show no CTA to the liquid paired with wheel running, whereas LW and HC groups developed CTA. These results indicate that pre-exposure to wheel running (i.e., the UCS), eliminates subsequent CTA.
Constructing a Celestial Calendar Wheel.
ERIC Educational Resources Information Center
Cousineau, Sarah M.
1999-01-01
Explains how to create a paper replica of the Bighorn Medicine Wheel, an ancient timepiece thought to have been constructed by the Lakota Indians around 1700 A.D. The Bighorn Wheel uses four key seasonal stars as well as the solstice sunrise and sunset to mark the passage of time through the summer. (WRM)
Wainiqolo, Iris; Kafoa, Berlin; Kool, Bridget; Robinson, Elizabeth; Herman, Josephine; McCaig, Eddie; Ameratunga, Shanthi
2016-01-01
Objective To investigate the association between kava use and the risk of four-wheeled motor vehicle crashes in Fiji. Kava is a traditional beverage commonly consumed in many Pacific Island Countries. Herbal anxiolytics containing smaller doses of kava are more widely available. Methods Data for this population-based case-control study were collected from drivers of ‘case’ vehicles involved in serious injury-involved crashes (where at least one road user was killed or admitted to hospital for 12 hours or more) and ‘control’ vehicles representative of ‘driving time’ in the study base. Structured interviewer administered questionnaires collected self-reported participant data on demographic characteristics and a range of risk factors including kava use and potential confounders. Unconditional logistic regression models estimated odds ratios relating to the association between kava use and injury-involved crash risk. Findings Overall, 23% and 4% of drivers of case and control vehicles, respectively, reported consuming kava in the 12 hours prior to the crash or road survey. After controlling for assessed confounders, driving following kava use was associated with a four-fold increase in the odds of crash involvement (Odds ratio: 4.70; 95% CI: 1.90–11.63). The related population attributable risk was 18.37% (95% CI: 13.77–22.72). Acknowledging limited statistical power, we did not find a significant interaction in this association with concurrent alcohol use. Conclusion In this study conducted in a setting where recreational kava consumption is common, driving following the use of kava was associated with a significant excess of serious-injury involved road crashes. The precautionary principle would suggest road safety strategies should explicitly recommend avoiding driving following kava use, particularly in communities where recreational use is common. PMID:26930404
Wainiqolo, Iris; Kafoa, Berlin; Kool, Bridget; Robinson, Elizabeth; Herman, Josephine; McCaig, Eddie; Ameratunga, Shanthi
2016-01-01
To investigate the association between kava use and the risk of four-wheeled motor vehicle crashes in Fiji. Kava is a traditional beverage commonly consumed in many Pacific Island Countries. Herbal anxiolytics containing smaller doses of kava are more widely available. Data for this population-based case-control study were collected from drivers of 'case' vehicles involved in serious injury-involved crashes (where at least one road user was killed or admitted to hospital for 12 hours or more) and 'control' vehicles representative of 'driving time' in the study base. Structured interviewer administered questionnaires collected self-reported participant data on demographic characteristics and a range of risk factors including kava use and potential confounders. Unconditional logistic regression models estimated odds ratios relating to the association between kava use and injury-involved crash risk. Overall, 23% and 4% of drivers of case and control vehicles, respectively, reported consuming kava in the 12 hours prior to the crash or road survey. After controlling for assessed confounders, driving following kava use was associated with a four-fold increase in the odds of crash involvement (Odds ratio: 4.70; 95% CI: 1.90-11.63). The related population attributable risk was 18.37% (95% CI: 13.77-22.72). Acknowledging limited statistical power, we did not find a significant interaction in this association with concurrent alcohol use. In this study conducted in a setting where recreational kava consumption is common, driving following the use of kava was associated with a significant excess of serious-injury involved road crashes. The precautionary principle would suggest road safety strategies should explicitly recommend avoiding driving following kava use, particularly in communities where recreational use is common.
Precision wire feeder for small diameter wire
Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.
1992-01-01
A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.
Precision wire feeder for small diameter wire
Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.
1992-08-11
A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.
Open-wheel race car driving: energy cost for pilots.
Beaune, Bruno; Durand, Sylvain; Mariot, Jean-Pierre
2010-11-01
The aim of this study was to evaluate the energy cost of speedway open-wheel race car driving using actimetry. Eight pilot students participated in a training session consisting of 5 successive bouts of around 30 minutes driving at steady speed on the Bugatti speedway of Le Mans (France). Energy expenditure (EE, kcal) was determined continuously by the actimetric method using the standard equation. Energy cost was estimated through physical activity ratio (PAR = EE/BMR ratio, Mets) calculation after basal metabolism rate (BMR, kcal·min-1) estimation. A 1-met PAR value was attributed to the individual BMR of each volunteer. Bout durations and EE were not significantly different between driving bouts. Mean speed was 139.94 ± 2.96 km·h-1. Physical activity ratio values ranged 4.92 ± 0.50 to 5.43 ± 0.47 Mets, corresponding to a 5.27 ± 0.47-Mets mean PAR values and a 1.21 ± 0.41 kcal·min-1 mean BMR value. These results suggest that actimetry is a simple and efficient method for EE and PAR measurements in motor sports. However, further studies are needed in the future to accurately evaluate relationships between PAR and driving intensity or between PAR and race car type.
Definition of simulated driving tests for the evaluation of drivers' reactions and responses.
Bartolozzi, Riccardo; Frendo, Francesco
2014-01-01
This article aims at identifying the most significant measures in 2 perception-response (PR) tests performed at a driving simulator: a braking test and a lateral skid test, which were developed in this work. Forty-eight subjects (26 females and 22 males) with a mean age of 24.9 ± 3.0 years were enrolled for this study. They were asked to perform a drive on the driving simulator at the University of Pisa (Italy) following a specific test protocol, including 8-10 braking tests and 8-10 lateral skid tests. Driver input signals and vehicle model signals were recorded during the drives and analyzed to extract measures such as the reaction time, first response time, etc. Following a statistical procedure (based on analysis of variance [ANOVA] and post hoc tests), all test measures (3 for the braking test and 8 for the lateral skid test) were analyzed in terms of statistically significant differences among different drivers. The presented procedure allows evaluation of the capability of a given test to distinguish among different drivers. In the braking test, the reaction time showed a high dispersion among single drivers, leading to just 4.8 percent of statistically significant driver pairs (using the Games-Howell post hoc test), whereas the pedal transition time scored 31.9 percent. In the lateral skid test, 28.5 percent of the 2 × 2 comparisons showed significantly different reaction times, 19.5 percent had different response times, 35.2 percent had a different second peak of the steering wheel signal, and 33 percent showed different values of the integral of the steering wheel signal. For the braking test, which has been widely employed in similar forms in the literature, it was shown how the reaction time, with respect to the pedal transition time, can have a higher dispersion due to the influence of external factors. For the lateral skid test, the following measures were identified as the most significant for application studies: the reaction time for the reaction phase, the second peak of the steering wheel angle for the first instinctive response, and the integral of the steering wheel angle for the complete response. The methodology used to analyze the test measures was founded on statistically based and objective evaluation criteria and could be applied to other tests. Even if obtained with a fixed-base simulator, the obtained results represent useful information for applications of the presented PR tests in experimental campaigns with driving simulators.
Visiting EPA Region 3’s Offices
Information on visiting EPA Region 3’s offices in Philadelphia, Pa., Annapolis, Md., Fort Meade, Md. and Wheeling, W. Va. including the address, building access, public transportation and driving directions.
49 CFR 230.111 - Spring rigging.
Code of Federal Regulations, 2010 CFR
2010-10-01
... condition for service. Adjusting weights by shifting weights from one pair of wheels to another is... band; (3) Broken coil springs; or (4) Broken driving box saddle, equalizer, hanger, bolt, or pin...
Does the Tempo of Music Impact Human Behavior Behind the Wheel?
Navarro, Jordan; Osiurak, François; Reynaud, Emanuelle
2018-06-01
Assess the influence of background music tempo on driving performance. Music with a fast tempo is known to increase the level of arousal, whereas the reverse is observed for slow music. The relationship between driving performance and level of arousal was expected to take the form of an inverted U-curve. Three experiments were undertaken to manipulate the musical background during driving. In Experiment 1, the driver's preferred music track played at its original and modified (plus or minus 30%) tempo were used together with the simple ticking of a metronome. In Experiment 2, music tracks of different tempos were played during driving. In Experiment 3, music tracks were categorized as arousing or relaxing based on the associated perceived level of arousal. Listening to music tended to influence drivers' performances in a car-following task by improving coherence and gain adjustments relative to the followed vehicle but simultaneously shortened the intervehicular time. Although the tempo of the music per se did not directly affect driving behavior, arousing music tracks improved drivers' adjustments to the followed vehicle (Experiment 3). The tempo of the music listened to behind the wheel was not found to influence driving behaviors. However, arousing music improved drivers' responsiveness to changes in the speed of the followed vehicle. However, this benefit was canceled out by a reduction in the drivers' intervehicle safety margin. Listening to arousing music while driving cannot be considered to improve road safety, at least in a car-following task without attentional impairments.
A portable wheel tester for tyre-road friction and rolling resistance determination
NASA Astrophysics Data System (ADS)
Pytka, J.; Budzyński, P.; Tarkowski, P.; Piaskowski, M.
2016-09-01
The paper describes theory of operation, design and construction as well as results from primarily experiments with a portable wheel tester that has been developed by the authors as a device for on-site determination of tyre-road braking/driving friction and rolling resistance. The paper includes schematics, drawings, descriptions as well as graphical results form early tests with the presented device. It is expected that the tester can be useful in road accident reconstruction applications as well as in vehicle dynamics research.
Meek, T H; Eisenmann, J C; Keeney, B K; Hannon, R M; Dlugosz, E M; Garland, T
2014-03-01
Experimental studies manipulating diet and exercise have shown varying effects on metabolic syndrome components in both humans and rodents. To examine the potential interactive effects of diet, exercise and genetic background, we studied mice from four replicate lines bred (52 generations) for high voluntary wheel running (HR lines) and four unselected control lines (C). At weaning, animals were housed for 60 days with or without wheels and fed either a standard chow or Western diet (WD, 42% kcal from fat). Four serial (three juvenile and one adult) blood samples were taken to measure fasting total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), triglycerides and glucose. Western diet was obesogenic for all mice, even after accounting for the amount of wheel running and kilojoules consumed. Western diet significantly raised glucose as well as TC and HDL-C concentrations. At the level of individual variation (repeatability), there was a modest correlation (r = 0.3-0.5) of blood lipids over time, which was reduced with wheel access and/or WD. Neither genetic selection history nor wheel access had a statistically significant effect on blood lipids. However, HR and C mice had divergent ontogenetic trajectories for body mass and caloric intake. HR mice also had lower adiposity, an effect that was dependent on wheel access. The environmental factors of diet and wheel access had pronounced effects on body mass, food consumption and fasting glucose concentrations, interacting with each other and/or with genetic strain. These data underscore the importance (and often unpredictable nature) of genotype-by-environment and environment-by-environment interactions when studying body weight regulation. © 2013 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
ERIC Educational Resources Information Center
Oklahoma Curriculum Improvement Commission, Oklahoma City.
The purpose of this guide is to help pre-driving age students understand the responsibilities inherent in using public streets and highways. Materials, which can be integrated into existing secondary school courses, are divided into nine chapters covering traffic rules and signs; alcohol and drugs; safety on buses, skateboards, multigeared…
Safe Driving in Illinois. A Manual to Accompany the Illinois Rules of the Road.
ERIC Educational Resources Information Center
Rice, Gail; Nowack, Linda
Designed to accompany and supplement the Illinois Rules of the Road manual, this book is intended to better prepare future drivers for the written test for the instruction permit or driver's license. It includes many pictures and shows and describes driving situations a driver will probably face when behind the wheel. Parts dealing with important…
Four-Wheel Drivescapes: Embodied Understandings of the Kimberley
ERIC Educational Resources Information Center
Waitt, Gordon; Lane, Ruth
2007-01-01
In this paper, we explore understandings of the Kimberley as wilderness through the embodied knowledge of sites encountered on the travels of four-wheel drivers. We critically review attempts to conceptualise the social role of automobiles in touring practices then turn to non-representational theory to develop our own conceptual framework of…
Radiometric, Spectral and Effectiveness Equipment
1993-09-24
modified Contraves Kineto Tracking Mount (KTM) Model 443. The KTM is a self-contained trailer and mount. The trailer is a four wheel duel-axle bed with...measurement system also uses the Contraves (KTM) Model 433. The KTM is a self-contained trailer and mount. The trailer is a four wheel duel-axle bed with
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, T. Jr; Cunningham, A.R.; Iannelli, D.A.
Volume II is part of a four volume set documenting areas of research resulting from the development of the Automotive Manufacturing Assessment System (AMAS) for the DOT/Transportation Systems Center. AMAS was designed to assist in the evaluation of industry's capability to produce fuel efficient vehicles. Engine/driveline changes are the second most important contribution to fuel economy (weight reduction being the first) and are of major importance towards meeting emission standards. Through extensive synthesis of vehicle specifications and other data, chronological presentations were developed to illustrate engines and transmissions in production, engine/transmission and model/engine combinations, and automatic vs. manual transmission availability.more » Also shown are the progression of engine/driveline changes from 1975 through 1978; the correlation of these changes with new vehicle introductions; the restrictions on available drive-train options due to emission requirements; and technological improvements including dieselization, fuel metering, lock-up torque converters, and front-wheel-drive.« less
Ventilation and Heart Rate Monitoring in Drivers using a Contactless Electrical Bioimpedance System
NASA Astrophysics Data System (ADS)
Macías, R.; García, M. A.; Ramos, J.; Bragós, R.; Fernández, M.
2013-04-01
Nowadays, the road safety is one of the most important priorities in the automotive industry. Many times, this safety is jeopardized because of driving under inappropriate states, e.g. drowsiness, drugs and/or alcohol. Therefore several systems for monitoring the behavior of subjects during driving are researched. In this paper, a device based on a contactless electrical bioimpedance system is shown. Using the four-wire technique, this system is capable of obtaining the heart rate and the ventilation of the driver through multiple textile electrodes. These textile electrodes are placed on the car seat and the steering wheel. Moreover, it is also reported several measurements done in a controlled environment, i.e. a test room where there are no artifacts due to the car vibrations or the road state. In the mentioned measurements, the system response can be observed depending on several parameters such as the placement of the electrodes or the number of clothing layers worn by the driver.
Driving performance at lateral system limits during partially automated driving.
Naujoks, Frederik; Purucker, Christian; Wiedemann, Katharina; Neukum, Alexandra; Wolter, Stefan; Steiger, Reid
2017-11-01
This study investigated driver performance during system limits of partially automated driving. Using a motion-based driving simulator, drivers encountered different situations in which a partially automated vehicle could no longer safely keep the lateral guidance. Drivers were distracted by a non-driving related task on a touch display or driving without an additional secondary task. While driving in partially automated mode drivers could either take their hands off the steering wheel for only a short period of time (10s, so-called 'Hands-on' variant) or for an extended period of time (120s, so-called 'Hands-off' variant). When the system limit was reached (e.g., when entering a work zone with temporary lines), the lateral vehicle control by the automation was suddenly discontinued and a take-over request was issued to the drivers. Regardless of the hands-off interval and the availability of a secondary task, all drivers managed the transition to manual driving safely. No lane exceedances were observed and the situations were rated as 'harmless' by the drivers. The lack of difference between the hands-off intervals can be partly attributed to the fact that most of the drivers kept contact to the steering wheel, even in the hands-off condition. Although all drivers were able to control the system limits, most of them could not explain why exactly the take-over request was issued. The average helpfulness of the take-over request was rated on an intermediate level. Consequently, providing drivers with information about the reason for a system limit can be recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.
Striker Suitability Challenges in a Complex Threat Environment
2008-04-23
áåÑçêãÉÇ=ÅÜ~åÖÉ=======- 163 - = = large number of wheel spindles developed fatigue cracks and had to be replaced early. Drive shafts are also failing... spindles developing fatigue cracks – drive shafts breaking – prescribed tire pressure is 80 PSI, however, with slat armor/sandbags – must maintain...drive shafts , differentials – Impairs off-road ops, larger footprint • Though not designed primarily for the urban fight (MOUT), Stryker is well-suited
Head assembly for multiposition borehole extensometer
Frank, Donald N.
1983-01-01
A head assembly for a borehole extensometer and an improved extensometer for measuring subsurface subsidence. A plurality of inflatable anchors provide discrete measurement points. A metering rod is fixed to each of the anchors which are displaced when subsidence occurs, thereby translating the attached rod. The head assembly includes a sprocket wheel rotatably mounted on a standpipe and engaged by a chain which is connected at one end to the metering rod and at the other end to a counterweight. A second sprocket wheel connected to the standpipe also engages the chain and drives a connected potentiometer. The head assembly converts the linear displacement of the metering rod to the rotary motion of the second sprocket wheel, which is measured by the potentiometer, producing a continuous electrical output.
Diesel engine catalytic combustor system. [aircraft engines
NASA Technical Reports Server (NTRS)
Ream, L. W. (Inventor)
1984-01-01
A low compression turbocharged diesel engine is provided in which the turbocharger can be operated independently of the engine to power auxiliary equipment. Fuel and air are burned in a catalytic combustor to drive the turbine wheel of turbine section which is initially caused to rotate by starter motor. By opening a flapper value, compressed air from the blower section is directed to catalytic combustor when it is heated and expanded, serving to drive the turbine wheel and also to heat the catalytic element. To start, engine valve is closed, combustion is terminated in catalytic combustor, and the valve is then opened to utilize air from the blower for the air driven motor. When the engine starts, the constituents in its exhaust gas react in the catalytic element and the heat generated provides additional energy for the turbine section.
Using Unconstrained Tongue Motion as an Alternative Control Mechanism for Wheeled Mobility
Huo, Xueliang; Ghovanloo, Maysam
2015-01-01
Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users’ intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility. PMID:19362901
Using unconstrained tongue motion as an alternative control mechanism for wheeled mobility.
Huo, Xueliang; Ghovanloo, Maysam
2009-06-01
Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, noncontact, and wireless assistive technology that infers users' intentions by detecting and classifying their voluntary tongue motions, and translating them to user-defined commands. We have developed customized interface circuitry between an external TDS (eTDS) prototype and a commercial powered wheelchair (PWC) as well as three control strategies to evaluate the tongue motion as an alternative control input for wheeled mobility. We tested the eTDS performance in driving PWCs on 12 able-bodied human subjects, of which 11 were novice. The results showed that all subjects could complete navigation tasks by operating the PWC using their tongue motions. Despite little prior experience, the average time using the eTDS and the tongue was only approximately three times longer than using a joystick and the fingers. Navigation time was strongly dependant on the number of issued commands, which reduced by gaining experience. Particularly, the unintended issued commands (the Midas touch problem) were rare, demonstrating the effectiveness of the tongue tracking and external magnetic field cancellation algorithms as well as the safety of the TDS for wheeled mobility.
The filter and calibration wheel for the ATHENA wide field imager
NASA Astrophysics Data System (ADS)
Rataj, M.; Polak, S.; Palgan, T.; Kamisiński, T.; Pilch, A.; Eder, J.; Meidinger, N.; Plattner, M.; Barbera, M.; Parodi, G.; D'Anca, Fabio
2016-07-01
The planned filter and calibration wheel for the Wide Field Imager (WFI) instrument on Athena is presented. With four selectable positions it provides the necessary functions, in particular an UV/VIS blocking filter for the WFI detectors and a calibration source. Challenges for the filter wheel design are the large volume and mass of the subsystem, the implementation of a robust mechanism and the protection of the ultra-thin filter with an area of 160 mm square. This paper describes performed trade-offs based on simulation results and describes the baseline design in detail. Reliable solutions are envisaged for the conceptual design of the filter and calibration wheel. Four different variant with different position of the filter are presented. Risk mitigation and the compliance to design requirements are demonstrated.
Qian, Jun; Zi, Bin; Ma, Yangang; Zhang, Dan
2017-01-01
In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields. PMID:28891964
Qian, Jun; Zi, Bin; Wang, Daoming; Ma, Yangang; Zhang, Dan
2017-09-10
In order to transport materials flexibly and smoothly in a tight plant environment, an omni-directional mobile robot based on four Mecanum wheels was designed. The mechanical system of the mobile robot is made up of three separable layers so as to simplify its combination and reorganization. Each modularized wheel was installed on a vertical suspension mechanism, which ensures the moving stability and keeps the distances of four wheels invariable. The control system consists of two-level controllers that implement motion control and multi-sensor data processing, respectively. In order to make the mobile robot navigate in an unknown semi-structured indoor environment, the data from a Kinect visual sensor and four wheel encoders were fused to localize the mobile robot using an extended Kalman filter with specific processing. Finally, the mobile robot was integrated in an intelligent manufacturing system for material conveying. Experimental results show that the omni-directional mobile robot can move stably and autonomously in an indoor environment and in industrial fields.
Wheel/rail noise generated by a high-speed train investigated with a line array of microphones
NASA Astrophysics Data System (ADS)
Barsikow, B.; King, W. F.; Pfizenmaier, E.
1987-10-01
Radiated noise generated by a high-speed electric train travelling at speeds up to 250 km/h has been measured with a line array of microphones mounted along the wayside in two different orientations. The test train comprised a 103 electric locomotive, four Intercity coaches, and a dynamo coach. Some of the wheels were fitted with experimental wheel-noise absorbers. By using the directional capabilities of the array, the locations of the dominant sources of wheel/rail radiated noise were identified on the wheels. For conventional wheels, these sources lie near or on the rim at an average height of about 0·2 m above the railhead. The effect of wheel-noise absorbers and freshly turned treads on radiated noise were also investigated.
Saffarian, M; Happee, R; Winter, J C F de
2012-01-01
Drivers in fog tend to maintain short headways, but the reasons behind this phenomenon are not well understood. This study evaluated the effect of headway on lateral control and feeling of risk in both foggy and clear conditions. Twenty-seven participants completed four sessions in a driving simulator: clear automated (CA), clear manual (CM), fog automated (FA) and fog manual (FM). In CM and FM, the drivers used the steering wheel, throttle and brake pedals. In CA and FA, a controller regulated the distance to the lead car, and the driver only had to steer. Drivers indicated how much risk they felt on a touchscreen. Consistent with our hypothesis, feeling of risk and steering activity were elevated when the lead car was not visible. These results might explain why drivers adopt short headways in fog. Practitioner Summary: Fog poses a serious road safety hazard. Our driving-simulator study provides the first experimental evidence to explain the role of risk-feeling and lateral control in headway reduction. These results are valuable for devising effective driver assistance and support systems.
Teen Drinking and Driving: A Dangerous Mix. CDC Vitalsigns[TM
ERIC Educational Resources Information Center
Centers for Disease Control and Prevention, 2012
2012-01-01
The percentage of teens in high school who drink and drive has decreased by more than half since 1991, but more can be done. Nearly one million high school teens drank alcohol and got behind the wheel in 2011. Teen drivers are 3 times more likely than more experienced drivers to be in a fatal crash. Drinking any alcohol greatly increases this risk…
Improved All-Terrain Suspension System
NASA Technical Reports Server (NTRS)
Bickler, Donald B.
1994-01-01
Redesigned suspension system for all-terrain vehicle exhibits enhanced ability to negotiate sand and rocks. Improved six-wheel suspension system includes only two links on each side. Bogie tends to pull rear wheels with it as it climbs. Designed for rover vehicle for exploration of Mars, also has potential application in off-road vehicles, military scout vehicles, robotic emergency vehicles, and toys. Predecessors of suspension system described in "Articulated Suspension Without Springs" (NPO-17354), "Four-Wheel Vehicle Suspension System" (NPO-17407), and "High-Clearance Six-Wheel Suspension" (NPO-17821).
Thompson, Zoe; Kolb, Erik M; Garland, Theodore
2018-01-01
To explore reward substitution in the context of voluntary exercise, female mice from four replicate high-runner (HR) lines (bred for wheel running) and four non-selected control (C) lines were given simultaneous access to wheels and palatable solutions as competing rewards (two doses of saccharin [0.1, 0.2% w/v]; two doses of common artificial sweetener blends containing saccharin [Sweet 'N Low ® : 0.1, 0.2% w/v], aspartame [Equal ® : 0.04, 0.08% w/v], or sucralose [Splenda ® : 0.08, 0.16% w/v]; or two doses of sucrose [3.5, 10.5% w/v]). Wheel running and fluid consumption were measured daily, with each dose (including plain water) lasting two days and two "washout" days between solutions. In a separate set of mice, the experiment was repeated without wheel access. The artificial sweeteners had no statistical effect on wheel running. However, based on proportional responses, both doses of sucrose significantly elevated wheel running in C but not HR mice. In contrast, the high dose of sucrose suppressed home-cage activity for both linetypes. Both sucrose and the artificial blends generally increased fluid consumption in a dose-dependent manner. When they had access to wheels, HR had a significantly smaller increase in consumption of artificial sweetener blends when compared with C mice, but not when housed without wheels. Overall, these results provide further evidence that the reward system of HR mice has evolved, and specifically suggest that HR mice have a reduced incentive salience for some artificial sweetener blends, likely attributable to the stronger competing reward of wheel running that has evolved in these lines. Copyright © 2017 Elsevier B.V. All rights reserved.
Emissions from U.S. waste collection vehicles.
Maimoun, Mousa A; Reinhart, Debra R; Gammoh, Fatina T; McCauley Bush, Pamela
2013-05-01
This research is an in-depth environmental analysis of potential alternative fuel technologies for waste collection vehicles. Life-cycle emissions, cost, fuel and energy consumption were evaluated for a wide range of fossil and bio-fuel technologies. Emission factors were calculated for a typical waste collection driving cycle as well as constant speed. In brief, natural gas waste collection vehicles (compressed and liquid) fueled with North-American natural gas had 6-10% higher well-to-wheel (WTW) greenhouse gas (GHG) emissions relative to diesel-fueled vehicles; however the pump-to-wheel (PTW) GHG emissions of natural gas waste collection vehicles averaged 6% less than diesel-fueled vehicles. Landfill gas had about 80% lower WTW GHG emissions relative to diesel. Biodiesel waste collection vehicles had between 12% and 75% lower WTW GHG emissions relative to diesel depending on the fuel source and the blend. In 2011, natural gas waste collection vehicles had the lowest fuel cost per collection vehicle kilometer travel. Finally, the actual driving cycle of waste collection vehicles consists of repetitive stops and starts during waste collection; this generates more emissions than constant speed driving. Published by Elsevier Ltd.
General scaling relations for locomotion in granular media
NASA Astrophysics Data System (ADS)
Slonaker, James; Motley, D. Carrington; Zhang, Qiong; Townsend, Stephen; Senatore, Carmine; Iagnemma, Karl; Kamrin, Ken
2017-05-01
Inspired by dynamic similarity in fluid systems, we have derived a general dimensionless form for locomotion in granular materials, which is validated in experiments and discrete element method (DEM) simulations. The form instructs how to scale size, mass, and driving parameters in order to relate dynamic behaviors of different locomotors in the same granular media. The scaling can be derived by assuming intrusion forces arise from resistive force theory or equivalently by assuming the granular material behaves as a continuum obeying a frictional yield criterion. The scalings are experimentally confirmed using pairs of wheels of various shapes and sizes under many driving conditions in a common sand bed. We discuss why the two models provide such a robust set of scaling laws even though they neglect a number of the complexities of granular rheology. Motivated by potential extraplanetary applications, the dimensionless form also implies a way to predict wheel performance in one ambient gravity based on tests in a different ambient gravity. We confirm this using DEM simulations, which show that scaling relations are satisfied over an array of driving modes even when gravity differs between scaled tests.
NASA Technical Reports Server (NTRS)
1970-01-01
The concept development, testing, evaluation, and the selection of a final wheel design concept for a dual-mode lunar surface vehicle (DLRV) is detailed. Four wheel configurations were fabricated (one open wheel and three closed wheel) (and subjected to a series of soft soil, mechanical, and endurance tests. Results show that the open wheel has lower draw-bar pull (slope climbing) capability in loose soil due to its higher ground pressure and tendency to dig in at high wheel slip. Endurance tests indicate that a double mesh, fully enclosed wheel can be developed to meet DLRV life requirements. There is, however, a 1.0 to 1.8 lb/wheel weight penalty associated with the wheel enclosure. Also the button cleats used as grousers for the closed-type wheels result in local stress concentration and early fatigue failure of the wire mesh. Load deflection tests indicate that the stiffness of the covered wheel increased by up to 50% after soil bin testing, due to increased friction between the fabric and the wire mesh caused by the sand. No change in stiffness was found for the open wheel. The single woven mesh open wheel design with a chevron tread is recommended for continued development
Dynamic behavior of the mechanical systems from the structure of a hybrid automobile
NASA Astrophysics Data System (ADS)
Dinel, Popa; Irina, Tudor; Nicolae-Doru, Stănescu
2017-10-01
In introduction are presented solutions of planetary mechanisms that can be used in the construction of the hybrid automobiles where the thermal and electrical sources must be coupled. The systems have in their composition a planetary mechanism with two degrees of mobility at which are coupled a thermal engine, two revertible electrical machines, a gear transmission with four gears and a differential mechanism which transmits the motion at the driving wheels. For the study of the dynamical behavior, with numerical results, one designs such mechanisms, models the elements with solids in AutoCAD, and obtains the mechanical properties of the elements. Further on, we present and solve the equations of motion of a hybrid automotive for which one knows the dynamical parameters.
Cox, Daniel J; Brown, Timothy; Ross, Veerle; Moncrief, Matthew; Schmitt, Rose; Gaffney, Gary; Reeve, Ron
2017-08-01
Investigate how novice drivers with autism spectrum disorder (ASD) differ from experienced drivers and whether virtual reality driving simulation training (VRDST) improves ASD driving performance. 51 novice ASD drivers (mean age 17.96 years, 78% male) were randomized to routine training (RT) or one of three types of VRDST (8-12 sessions). All participants followed DMV behind-the-wheel training guidelines for earning a driver's license. Participants were assessed pre- and post-training for driving-specific executive function (EF) abilities and tactical driving skills. ASD drivers showed worse baseline EF and driving skills than experienced drivers. At post-assessment, VRDST significantly improved driving and EF performance over RT. This study demonstrated feasibility and potential efficacy of VRDST for novice ASD drivers.
Ge, Yan; Zhang, Qian; Zhao, Wenguo; Zhang, Kan; Qu, Weina
2017-11-01
To explore the effect of anger behind the wheel on driving behavior and accident involvement has been the subject of many studies. However, few studies have explored the interaction between anger and driving experience on dangerous driving behavior. This study is a moderated mediation analysis of the effect of trait anger, driving anger, and driving experience on driving behavior. A sample of 303 drivers was tested using the Trait Anger Scale (TAS), the Driving Anger Scale (DAS), and the Dula Dangerous Driving Index (DDDI). The results showed that trait anger and driving anger were positively correlated with dangerous driving behavior. Driving anger partially mediated the effect of trait anger on dangerous driving behavior. Driving experience moderated the relationship between trait anger and driving anger. It also moderated the effect of driving anger on dangerous driving behavior. These results suggest that drivers with more driving experience may be safer as they are not easily irritated during driving. © 2017 Wiley Periodicals, Inc.
Efficiency analysis of a multiple axle vehicle with hydrostatic transmission overcoming obstacles
NASA Astrophysics Data System (ADS)
Comellas, M.; Pijuan, J.; Nogués, M.; Roca, J.
2018-01-01
Transmission configurations in off-road vehicles with multiple driven axles can be a determining factor in the obstacle surmounting capacity and also in the vehicle efficiency. An off-road articulated vehicle with four driven axles, four bogies and two modules has been considered for the global hydrostatic transmission efficiency analysis and for the vehicle functional efficiency analysis. The power flow through the transmission system has been quantified from the combustion engine shaft to each axle of the wheels. It has been done for different the operating conditions and taking into account the wheel-terrain interaction and the transmission configuration, that could lead to a forced slippage of some of the wheels. Results show the influence of the different wheels' requirements, the transmission configuration limitations and the considered control strategy on the global transmission and vehicle functional efficiencies.
Laser, Mark; Lynd, Lee R.
2014-01-01
This study addresses the question, “When using cellulosic biomass for vehicular transportation, which field-to-wheels pathway is more efficient: that using biofuels or that using bioelectricity?” In considering the question, the level of assumed technological maturity significantly affects the comparison, as does the intended transportation application. Results from the analysis indicate that for light-duty vehicles, over ranges typical in the United States today (e.g., 560–820 miles), field-to-wheels performance is similar, with some scenarios showing biofuel to be more efficient, and others indicating the two pathways to be essentially the same. Over the current range of heavy-duty vehicles, the field-to-wheels efficiency is higher for biofuels than for electrically powered vehicles. Accounting for technological advances and range, there is little basis to expect mature bioelectricity-powered vehicles to have greater field-to-wheels efficiency (e.g., kilometers per gigajoule biomass or per hectare) compared with mature biofuel-powered vehicles. PMID:24550477
Helland, Arne; Lydersen, Stian; Lervåg, Lone-Eirin; Jenssen, Gunnar D; Mørland, Jørg; Slørdal, Lars
2016-09-01
Simulator sickness is a major obstacle to the use of driving simulators for research, training and driver assessment purposes. The purpose of the present study was to investigate the possible influence of simulator sickness on driving performance measures such as standard deviation of lateral position (SDLP), and the effect of alcohol or repeated simulator exposure on the degree of simulator sickness. Twenty healthy male volunteers underwent three simulated driving trials of 1h's duration with a curvy rural road scenario, and rated their degree of simulator sickness after each trial. Subjects drove sober and with blood alcohol concentrations (BAC) of approx. 0.5g/L and 0.9g/L in a randomized order. Simulator sickness score (SSS) did not influence the primary outcome measure SDLP. Higher SSS significantly predicted lower average speed and frequency of steering wheel reversals. These effects seemed to be mitigated by alcohol. Higher BAC significantly predicted lower SSS, suggesting that alcohol inebriation alleviates simulator sickness. The negative relation between the number of previous exposures to the simulator and SSS was not statistically significant, but is consistent with habituation to the sickness-inducing effects, as shown in other studies. Overall, the results suggest no influence of simulator sickness on SDLP or several other driving performance measures. However, simulator sickness seems to cause test subjects to drive more carefully, with lower average speed and fewer steering wheel reversals, hampering the interpretation of these outcomes as measures of driving impairment and safety. BAC and repeated simulator exposures may act as confounding variables by influencing the degree of simulator sickness in experimental studies. Copyright © 2016 Elsevier Ltd. All rights reserved.
On-road Driving Performance of Patients with Bilateral Moderate and Advanced Glaucoma
Bhorade, Anjali M.; Yom, Victoria H.; Barco, Peggy; Wilson, Bradley; Gordon, Mae; Carr, David
2017-01-01
Purpose To compare on-road driving performance of patients with moderate or advanced glaucoma to controls and evaluate factors associated with unsafe driving. Design Case-control pilot study. Methods A consecutive sample of 21 patients with bilateral moderate or advanced glaucoma from Washington University, St. Louis, MO and 38 community-dwelling controls were enrolled. Participants, ages 55–90 years, underwent a comprehensive clinical evaluation by a trained occupational therapist and an on-road driving evaluation by a masked driver rehabilitation specialist. Overall driving performance of pass vs. marginal/fail and number of wheel and/or brake interventions were recorded. Results Fifty-two percent of glaucoma participants scored a marginal/fail compared to 21% of controls (odds ratio [OR], 4.1; 95% CI, 1.30–13.14;p=.02). Glaucoma participants had a higher risk of wheel interventions than controls (OR, 4.67; 95% CI, 1.03–21.17;p=.046). There were no differences detected between glaucoma participants who scored a pass vs. marginal/fail for visual field mean deviation of the better (p=.62) or worse (p=.88) eye, binocular distance (p=.15) or near (p=.23) visual acuity, contrast sensitivity (p=.28) or glare (p=.88). However, glaucoma participants with a marginal/fail score performed worse on Trail Making Tests A (p=.03) and B (p=.05), right-sided Jamar grip strength (p=.02), Rapid Pace Walk (p=.03), Braking Response Time (p=.03), and identifying traffic signs (p=.05). Conclusions and Relevance Patients with bilateral moderate or advanced glaucoma are at risk for unsafe driving – particularly those with impairments on psychometric and mobility tests. A comprehensive clinical assessment and on-road driving evaluation is recommended to effectively evaluate driving safety of these patients. PMID:26949136
Jankovic, Miroslava; Powell, Barry Kay
2000-12-26
A hybrid powertrain for a vehicle comprising a diesel engine and an electric motor in a parallel arrangement with a multiple ratio transmission located on the torque output side of the diesel engine, final drive gearing connecting drivably the output shaft of transmission to traction wheels of the vehicle, and an electric motor drivably coupled to the final drive gearing. A powertrain controller schedules fuel delivered to the diesel engine and effects a split of the total power available, a portion of the power being delivered by the diesel and the balance of the power being delivered by the motor. A shifting schedule for the multiple ratio transmission makes it possible for establishing a proportional relationship between accelerator pedal movement and torque desired at the wheels. The control strategy for the powertrain maintains drivability of the vehicle that resembles drivability of a conventional spark ignition vehicle engine powertrain while achieving improved fuel efficiency and low exhaust gas emissions.
NASA Astrophysics Data System (ADS)
Seki, Hirokazu; Hata, Naoki; Koyasu, Yuichi; Hori, Yoichi
Aged people and disabled people who have difficulty in walking are increasing. As one of mobility support, significance of power assisted wheelchair which assists driving force using electric motors and spreads their living areas has been enhanced. However, the increased driving force often causes a dangerous overturn of wheelchair. In this paper, control method to prevent power assisted wheelchair from overturning is proposed. It is found the front wheels rising is caused by magnitude and rapid increase of assisted torque. Therefore, feedforward control method to limit the assisted torque by tuning its magnitude or time constant is proposed. In order to emphasize safety and feeling of security, these methods make the front wheels no rise. The effectiveness of the proposed method is verified by the practical experiments and field test based performance evaluation using many trial subjects.
Soil compaction effects of forwarding and its relationship with 6- and 8-wheel drive machines
Fernando Seixas; Tim McDonald
1997-01-01
A study was done to determine the impact, if any, of a range of drive train options on the soil compaction effects of forwarders. The purpose of the study was to evaluate the cost of optional forwarder equipment versus its ability to reduce detrimental soil physical property changes. Tests were done on forwarders equipped with wide and narrow tires, rear steel tracks,...
Dynamic Modeling and Soil Mechanics for Path Planning of the Mars Exploration Rovers
NASA Technical Reports Server (NTRS)
Trease, Brian
2011-01-01
To help minimize risk of high sinkage and slippage during drives and to better understand soil properties and rover terramechanics from drive data, a multidisciplinary team was formed under the Mars Exploration Rover project to develop and utilize dynamic computer-based models for rover drives over realistic terrains. The resulting system, named ARTEMIS (Adams-based Rover Terramechanics and Mobility Interaction System), consists of the dynamic model, a library of terramechanics subroutines, and the high-resolution digital elevation maps of the Mars surface. A 200-element model of the rovers was developed and validated for drop tests before launch, using Adams dynamic modeling software. The external library was built in Fortran and called by Adams to model the wheel-soil interactions include the rut-formation effect of deformable soils, lateral and longitudinal forces, bull-dozing effects, and applied wheel torque. The paper presents the details and implementation of the system. To validate the developed system, one study case is presented from a realistic drive on Mars of the Opportunity rover. The simulation results match well from the measurement of on-board telemetry data. In its final form, ARTEMIS will be used in a predictive manner to assess terrain navigability and will become part of the overall effort in path planning and navigation for both Martian and lunar rovers.
On the Design of the Axel and DuAxel Rovers for Extreme Terrain Exploration
NASA Technical Reports Server (NTRS)
Matthews, Jaret B.; Nesnas, Issa A.
2012-01-01
The solar system's most scientifically tantalizing terrain remains out of reach for traditional planetary rovers, which are typically limited to driving on slopes below 30 degrees. This paper details the design of a novel robotic explorer that would open access to these previously inaccessible locales, such as Martian crater walls where evidence of salty water was recently detected, Lunar polar craters where evidence of water ice was detected, and Lunar and Martian lava tubes for future habitability. The Axel rover is a two-wheeled robot capable of rappelling down steep (even vertical) slopes supported by a tether. The DuAxel rover is comprised of two Axel vehicles docked to a central module. Unrestricted by tether length, this four-wheeled system would be capable of driving long distances from a safe landing zone to the extreme terrain of interest. Once in the vicinity of terrain in which the tether would be required, one of the Axel rovers could undock from the central chassis and rappel downslope. The other Axel and central chassis would remain topside to act as an anchor and to provide line of site to Earth (for communications) and the Sun (for energy). As the detached Axel descends into the area of interest, it would receive power and relays data through conductors in its tether. Each Axel would carry a suite of instruments in a bay that would be tucked inside the wheels. Because of the novel configuration of Axel's major degrees of freedom, these instruments could be precisely pointed at targets at any desired downslope spatial separation. These instruments could then be deployed into close proximately to the ground by means of a simple mechanism, allowing for detailed study of the strata on the slope. Axel could accommodate a host of instruments, including a microscopic imager, infra-red spectrometers, thermal probes, and sample collection devices. This paper will describe the design of both the latest generation of Axel and DuAxel systems and their instrument/sampling mechanisms. Results from recent field trials at a rock quarry in California and a Martian analog site in the desert of Arizona will be described.
2017-07-01
More than 30,000 people die in motor vehicle collisions each year in the United States. Distracted, drowsy, and drunk driving cause most motor vehicle collision injuries and deaths. An editorial published in the October 2016 issue of JOSPT identified the global need for effective strategies to reduce, if not eliminate, preventable injuries, including whiplash-associated disorders and deaths from distracted driving. This is a call to action for everyone who gets behind the wheel of a car. J Orthop Sports Phys Ther 2017;47(7):449. doi:10.2519/jospt.2017.0506.
Impaired alertness and performance driving home from the night shift: a driving simulator study.
Akerstedt, Torbjörn; Peters, Björn; Anund, Anna; Kecklund, Göran
2005-03-01
Driving in the early morning is associated with increased accident risk affecting not only professional drivers but also those who commute to work. The present study used a driving simulator to investigate the effects of driving home from a night shift. Ten shift workers participated after a normal night shift and after a normal night sleep. The results showed that driving home from the night shift was associated with an increased number of incidents (two wheels outside the lane marking, from 2.4 to 7.6 times), decreased time to first accident, increased lateral deviation (from 18 to 43 cm), increased eye closure duration (0.102 to 0.143 s), and increased subjective sleepiness. The results indicate severe postnight shift effects on sleepiness and driving performance.
NASA Astrophysics Data System (ADS)
Ganji, Farid
This dissertation presents novel nonlinear adaptive formation controllers for a heterogeneous group of holonomic planetary exploration rovers navigating over flat terrains with unknown soil types and surface conditions. A leader-follower formation control architecture is employed. In the first part, using a point-mass model for robots and a Coulomb-viscous friction model for terrain resistance, direct adaptive control laws and a formation speed-adaptation strategy are developed for formation navigation over unknown and changing terrain in the presence of actuator saturation. On-line estimates of terrain frictional parameters compensate for unknown terrain resistance and its variations. In saturation events over difficult terrain, the formation speed is reduced based on the speed of the slowest saturated robot, using internal fleet communication and a speed-adaptation strategy, so that the formation error stays bounded and small. A formal proof for asymptotic stability of the formation system in non-saturated conditions is given. The performance of robot controllers are verified using a modular 3-robot formation simulator. Simulations show that the formation errors reduce to zero asymptotically under non-saturated conditions as is guaranteed by the theoretical proof. In the second part, the proposed adaptive control methodology is extended for formation control of a class of omnidirectional rovers with three independently-driven universal holonomic rigid wheels, where the rovers' rigid-body dynamics, drive-system electromechanical characteristics, and wheel-ground interaction mechanics are incorporated. Holonomic rovers have the ability to move simultaneously and independently in translation and rotation, rendering great maneuverability and agility, which makes them suitable for formation navigation. Novel nonlinear adaptive control laws are designed for the input voltages of the three wheel-drive motors. The motion resistance, which is due to the sinkage of rover wheels in soft planetary terrain, is modeled using classical terramechanics theory. The unknown system parameters for adaptive estimation pertain to the rolling resistance forces and scrubbing resistance torques at the wheel-terrain interfaces. Novel terramechanical formulas for terrain resistance forces and torques are derived via considering the universal holonomic wheels as rigid toroidal wheels moving forward and/or sideways as well as turning on soft ground. The asymptotic stability of the formation control system is rigorously proved using Lyapunov's direct method.
The colour wheels of art, perception, science and physiology
NASA Astrophysics Data System (ADS)
Harkness, Nick
2006-06-01
Colour is not the domain of any one discipline be it art, philosophy, psychology or science. Each discipline has its own colour wheel and this presentation examines the origins and philosophies behind the colour circles of Art, Perception, Science and Physiology (after image) with reference to Aristotle, Robert Boyle, Leonardo da Vinci, Goethe, Ewald Hering and Albert Munsell. The paper analyses and discusses the differences between the four colour wheels using the Natural Colour System® notation as the reference for hue (the position of colours within each of the colour wheels). Examination of the colour wheels shows the dominance of blue in the wheels of art, science and physiology particularly at the expense of green. This paper does not consider the three-dimensionality of colour space its goal was to review the hue of a colour with regard to its position on the respective colour wheels.
Test Rover Sinks into Prepared Soil
2009-06-30
While a test rover rolls off a plywood surface into a prepared bed of soft soil, rover team members Colette Lohr left and Kim Lichtenberg center eye the wheels digging into the soil and Paolo Bellutta enters the next driving command.
57. Exterior view of marine railway #4. BBW work Tun ...
57. Exterior view of marine railway #4. BBW work Tun Sam on the ways seen from Starboard Bow. Note rail/roller type (steel railway/steel wheels). - Barbour Boat Works, Tryon Palace Drive, New Bern, Craven County, NC
Thompson, Zoe; Argueta, Donovan; Garland, Theodore; DiPatrizio, Nicholas
2017-01-01
The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA concentrations than males. For mice housed with wheels, the amount of running during the 30 minutes before sampling was a significant positive predictor of plasma AEA within groups, and HR mice had significantly lower levels of AEA than C mice. Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system. PMID:28017680
Thompson, Zoe; Argueta, Donovan; Garland, Theodore; DiPatrizio, Nicholas
2017-03-01
The endocannabinoid system serves many physiological roles, including in the regulation of energy balance, food reward, and voluntary locomotion. Signaling at the cannabinoid type 1 receptor has been specifically implicated in motivation for rodent voluntary exercise on wheels. We studied four replicate lines of high runner (HR) mice that have been selectively bred for 81 generations based on average number of wheel revolutions on days five and six of a six-day period of wheel access. Four additional replicate lines are bred without regard to wheel running, and serve as controls (C) for random genetic effects that may cause divergence among lines. On average, mice from HR lines voluntarily run on wheels three times more than C mice on a daily basis. We tested the general hypothesis that circulating levels of endocannabinoids (i.e., 2-arachidonoylglycerol [2-AG] and anandamide [AEA]) differ between HR and C mice in a sex-specific manner. Fifty male and 50 female mice were allowed access to wheels for six days, while another 50 males and 50 females were kept without access to wheels (half HR, half C for all groups). Blood was collected by cardiac puncture during the time of peak running on the sixth night of wheel access or no wheel access, and later analyzed for 2-AG and AEA content by ultra-performance liquid chromatography coupled to tandem mass spectrometry. We observed a significant three-way interaction among sex, linetype, and wheel access for 2-AG concentrations, with females generally having lower levels than males and wheel access lowering 2-AG levels in some but not all subgroups. The number of wheel revolutions in the minutes or hours immediately prior to sampling did not quantitatively predict plasma 2-AG levels within groups. We also observed a trend for a linetype-by-wheel access interaction for AEA levels, with wheel access lowering plasma concentrations of AEA in HR mice, while raising them in C mice. In addition, females tended to have higher AEA concentrations than males. For mice housed with wheels, the amount of running during the 30min before sampling was a significant positive predictor of plasma AEA within groups, and HR mice had significantly lower levels of AEA than C mice. Our results suggest that voluntary exercise alters circulating levels of endocannabinoids, and further demonstrate that selective breeding for voluntary exercise is associated with evolutionary changes in the endocannabinoid system. Copyright © 2016 Elsevier Inc. All rights reserved.
Prototype Space Fabrication Platform
1993-12-01
Wheel Mechanism . . 5-12 5.3.4 Butt Welding of T-Beams ..... .......... 5-14 5.3.5 Application of Cross Members ............ 5-17 5.3.6 Application of...fabrication process and deployed into spece by a drive mechanism on each cap member. The drive mechanism also provided the force necessary to extract...members were stacked closely together and stored in a clip mechanism . The clip had a belt ’ ed mechanism designed to advance the stack, one member at
Model Predictive Control considering Reachable Range of Wheels for Leg / Wheel Mobile Robots
NASA Astrophysics Data System (ADS)
Suzuki, Naito; Nonaka, Kenichiro; Sekiguchi, Kazuma
2016-09-01
Obstacle avoidance is one of the important tasks for mobile robots. In this paper, we study obstacle avoidance control for mobile robots equipped with four legs comprised of three DoF SCARA leg/wheel mechanism, which enables the robot to change its shape adapting to environments. Our previous method achieves obstacle avoidance by model predictive control (MPC) considering obstacle size and lateral wheel positions. However, this method does not ensure existence of joint angles which achieves reference wheel positions calculated by MPC. In this study, we propose a model predictive control considering reachable mobile ranges of wheels positions by combining multiple linear constraints, where each reachable mobile range is approximated as a convex trapezoid. Thus, we achieve to formulate a MPC as a quadratic problem with linear constraints for nonlinear problem of longitudinal and lateral wheel position control. By optimization of MPC, the reference wheel positions are calculated, while each joint angle is determined by inverse kinematics. Considering reachable mobile ranges explicitly, the optimal joint angles are calculated, which enables wheels to reach the reference wheel positions. We verify its advantages by comparing the proposed method with the previous method through numerical simulations.
An examination of the concept of driving point receptance
NASA Astrophysics Data System (ADS)
Sheng, X.; He, Y.; Zhong, T.
2018-04-01
In the field of vibration, driving point receptance is a well-established and widely applied concept. However, as demonstrated in this paper, when a driving point receptance is calculated using the finite element (FE) method with solid elements, it does not converge as the FE mesh becomes finer, suggesting that there is a singularity. Hence, the concept of driving point receptance deserves a rigorous examination. In this paper, it is firstly shown that, for a point harmonic force applied on the surface of an elastic half-space, the Boussinesq formula can be applied to calculate the displacement amplitude of the surface if the response point is sufficiently close to the load. Secondly, by applying the Betti reciprocal theorem, it is shown that the displacement of an elastic body near a point harmonic force can be decomposed into two parts, with the first one being the displacement of an elastic half-space. This decomposition is useful, since it provides a solid basis for the introduction of a contact spring between a wheel and a rail in interaction. However, according to the Boussinesq formula, this decomposition also leads to the conclusion that a driving point receptance is infinite (singular), and would be undefinable. Nevertheless, driving point receptances have been calculated using different methods. Since the singularity identified in this paper was not appreciated, no account was given to the singularity in these calculations. Thus, the validity of these calculation methods must be examined. This constructs the third part of the paper. As the final development of the paper, the above decomposition is utilised to define and determine driving point receptances required for dealing with wheel/rail interactions.
Wang, Zhe; Lv, Haoliang; Zhou, Xiaojun; Chen, Zhaomeng; Yang, Yong
2018-06-21
Dual-motor Electric Drive Tracked Vehicles (DDTVs) have attracted increasing attention due to their high transmission efficiency and economical fuel consumption. A test bench for the development and validation of new DDTV technologies is necessary and urgent. How to load the vehicle on a DDTV test bench exactly the same as on a real road is a crucial issue when designing the bench. This paper proposes a novel dynamic load emulation method to address this problem. The method adopts dual dynamometers to simulate both the road load and the inertia load that are imposed on the dual independent drive systems. The vehicle’s total inertia equivalent to the drive wheels is calculated with separate consideration of vehicle body, tracks and road wheels to obtain a more accurate inertia load. A speed tracking control strategy with feedforward compensation is implemented to control the dual dynamometers, so as to make the real-time dynamic load emulation possible. Additionally, a MATLAB/Simulink model of the test bench is built based on a dynamics analysis of the platform. Experiments are finally carried out on this test bench under different test conditions. The outcomes show that the proposed load emulation method is effective, and has good robustness and adaptability to complex driving conditions. Besides, the accuracy of the established test bench model is also demonstrated by comparing the results obtained from the simulation model and experiments.
Cobos, Enrique J; Ghasemlou, Nader; Araldi, Dionéia; Segal, David; Duong, Kelly; Woolf, Clifford J
2012-04-01
Inflammatory pain impacts adversely on the quality of life of patients, often resulting in motor disabilities. Therefore, we studied the effect of peripheral inflammation induced by intraplantar administration of complete Freund's adjuvant (CFA) in mice on a particular form of voluntary locomotion, wheel running, as an index of mobility impairment produced by pain. The distance traveled over 1 hour of free access to activity wheels decreased significantly in response to hind paw inflammation, peaking 24 hours after CFA administration. Recovery of voluntary wheel running by day 3 correlated with the ability to support weight on the inflamed limb. Inflammation-induced mechanical hypersensitivity, measured with von Frey hairs, lasted considerably longer than the impaired voluntary wheel running and is not driving; therefore, the change in voluntary behavior. The CFA-induced decrease in voluntary wheel running was dose-dependently reversed by subcutaneous administration of antiinflammatory and analgesic drugs, including naproxen (10-80 mg/kg), ibuprofen (2.5-20mg/kg), diclofenac (1.25-10mg/kg), celecoxib (2.5-20mg/kg), prednisolone (0.62-5mg/kg), and morphine (0.06-0.5mg/kg), all at much lower doses than reported in most rodent models. Furthermore, the doses that induced recovery in voluntary wheel running did not reduce CFA-induced mechanical allodynia, indicating a greater sensitivity of the former as a surrogate measure of inflammatory pain. We conclude that monitoring changes in voluntary wheel running in mice during peripheral inflammation is a simple, observer-independent objective measure of functional changes produced by inflammation, likely more aligned to the global level of pain than reflexive measures, and much more sensitive to analgesic drug effects. Copyright © 2012 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.
Prototype high speed optical delay line for stellar interferometry
NASA Astrophysics Data System (ADS)
Colavita, M. M.; Hines, B. E.; Shao, M.; Klose, G. J.; Gibson, B. V.
1991-12-01
The long baselines of the next-generation ground-based optical stellar interferometers require optical delay lines which can maintain nm-level path-length accuracy while moving at high speeds. NASA-JPL is currently designing delay lines to meet these requirements. The design is an enhanced version of the Mark III delay line, with the following key features: hardened, large diameter wheels, rather than recirculating ball bearings, to reduce mechanical noise; a friction-drive cart which bears the cable-dragging forces, and drives the optics cart through a force connection only; a balanced PZT assembly to enable high-bandwidth path-length control; and a precision aligned flexural suspension for the optics assembly to minimize bearing noise feedthrough. The delay line is fully programmable in position and velocity, and the system is controlled with four cascaded software feedback loops. Preliminary performance is a jitter in any 5 ms window of less than 10 nm rms for delay rates of up to 28 mm/s; total jitter is less than 10 nm rms for delay rates up to 20 mm/s.
Online Detection of Driver Fatigue Using Steering Wheel Angles for Real Driving Conditions.
Li, Zuojin; Li, Shengbo Eben; Li, Renjie; Cheng, Bo; Shi, Jinliang
2017-03-02
This paper presents a drowsiness on-line detection system for monitoring driver fatigue level under real driving conditions, based on the data of steering wheel angles (SWA) collected from sensors mounted on the steering lever. The proposed system firstly extracts approximate entropy (ApEn)featuresfromfixedslidingwindowsonreal-timesteeringwheelanglestimeseries. Afterthat, this system linearizes the ApEn features series through an adaptive piecewise linear fitting using a given deviation. Then, the detection system calculates the warping distance between the linear features series of the sample data. Finally, this system uses the warping distance to determine the drowsiness state of the driver according to a designed binary decision classifier. The experimental data were collected from 14.68 h driving under real road conditions, including two fatigue levels: "wake" and "drowsy". The results show that the proposed system is capable of working online with an average 78.01% accuracy, 29.35% false detections of the "awake" state, and 15.15% false detections of the "drowsy" state. The results also confirm that the proposed method based on SWA signal is valuable for applications in preventing traffic accidents caused by driver fatigue.
Activities of the Boom and Chassis Group
NASA Technical Reports Server (NTRS)
Dell, Jason Scott; Meeks, Thomas Bayne; Merkel, Kelly; Nelson, Brent; Winchell, Tom
1992-01-01
Group One of the NASA Lunar Enabler Project has designed the primary chassis and boom structures for the lunar vehicle. Both components also feature V-clamps that were adapted to interface connections within the structure. The chassis features a front end, rear end section, middle cross-section, and face plate. The rear section contains an extra compartment for the engine, hydraulic pump, fuel bottles, and oil reservoir necessary for the wheel drives. Each section consists of tubular aluminum 6061-T6. The boom features four degrees of freedom system, where the minimum factor of safety of any part is 1.5 (but, normally much higher). It consists of a tapered upper boom, lower boom, and three elbows that complement the articulation joints. Each section of the boom has been constructed from aluminum 6061-T6. There are four joints and eight V-clamps in the boom assembly. The V-clamps feature support rings that prevent axial rotation. They provide easy adaptability and assembly.
24. UPPER STATION, LOWER FLOOR, MOTOR ROOM, OFF VERTICAL DEFLECTOR ...
24. UPPER STATION, LOWER FLOOR, MOTOR ROOM, OFF VERTICAL DEFLECTOR SHEAVE, MOTOR, BRAKE, PINION SHAFT, DRIVE WHEEL. - Monongahela Incline Plane, Connecting North side of Grandview Avenue at Wyoming Street with West Carson Street near Smithfield Street, Pittsburgh, Allegheny County, PA
Study of shuttle imaging microwave system antenna. Volume 1: Conceptual design
NASA Technical Reports Server (NTRS)
Wesley, R. W.; Waineo, D. K.; Barton, C. R.; Love, A. W.
1975-01-01
A detailed preliminary design and complete performance evaluation are presented of an 11-channel large aperture scanning radiometer antenna for the shuttle imaging microwave system (SIMS) program. Provisions for interfacing the antenna with the space shuttle orbiter are presented and discussed. A program plan for hardware development and a rough order of magnitude (ROM) cost are also included. The conceptual design of the antenna is presented. It consists of a four-meter diameter parabolic torus main reflector, which is a graphite/epoxy shell supported by a graphite/epoxy truss. A rotating feed wheel assembly supports six Gregorian subreflectors covering the upper eight frequency channels from 6.6 GHz through 118.7 GHz, and two three-channel prime forms feed assemblies for 0.6, 1.4, and 2.7 GHz. The feed wheel assembly also holds the radiometers and power supplies, and a drive system using a 400 Hz synchronous motor is described. The RF analysis of the antenna is performed using physical optics procedures for both the dual reflector Gregorian concept and the single reflector prime focus concept. A unique aberration correcting feed for 2.7 GHz is analyzed. A structural analysis is also included. The analyses indicate that the antenna will meet system requirements.
Defining Toll Fee of Wheeling Renewable with Reference to a Gas Pipeline in Indonesia
NASA Astrophysics Data System (ADS)
Hakim, Amrullah
2017-07-01
Indonesia has a huge number of renewable energy sources (RE) however; the utilization of these is currently very low. The main challenge of power production is its alignment with consumption levels; supply should equal demand at all times. There is a strong initiative from corporations with high energy demand, compared to other sectors, to apply a renewable portfolio standard for their energy input, e.g. 15% of their energy consumption requirement must come from a renewable energy source. To support this initiative, the utilization of power wheeling will help large factories on industrial estates to source firm and steady renewables from remote sites. The wheeling renewable via PLN’s transmission line has been regulated under the Ministry Decree in 2015 however; the tariff or toll fee has not yet been defined. The potential project to apply wheeling renewable will obtain power supply from a geothermal power plant, with power demand from the scattered factories under one company. This is the concept driving the application of power wheeling in the effort to push the growth of renewable energy in Indonesia. Given that the capacity of PLN’s transmission line are normally large and less congested compared to distribution line, the wheeling renewable can accommodate the scattered factories locations which then results in the cheaper toll fee of the wheeling renewable. Defining the best toll fee is the main topic of this paper with comparison of the toll fee of the gas pipeline infrastructure in Indonesia, so that it can be applied massively to achieve COP21’s commitment.
A study on high-speed rolling contact between a wheel and a contaminated rail
NASA Astrophysics Data System (ADS)
Zhao, Xin; Wen, Zefeng; Zhu, Minhao; Jin, Xuesong
2014-10-01
A 3-D explicit finite element model is developed to investigate the transient wheel-rail rolling contact in the presence of rail contamination or short low adhesion zones (LAZs). A transient analysis is required because the wheel passes by a short LAZ very quickly, especially at high speeds. A surface-to-surface contact algorithm (by the penalty method) is employed to solve the frictional rolling contact between the wheel and the rail meshed by solid elements. The LAZ is simulated by a varying coefficient of friction along the rail. Different traction efforts and action of the traction control system triggered by the LAZ are simulated by applying a time-dependent driving torque to the wheel axle. Structural flexibilities of the vehicle-track system are considered properly. Analysis focuses on the contact forces, creepage, contact stresses and the derived frictional work and plastic deformation. It is found that the longitudinal contact force and the maximum surface shear stress in the contact patch become obviously lower in the LAZ and much higher as the wheel re-enters the dry rail section. Consequently, a higher wear rate and larger plastic flow are expected at the location where the dry contact starts to be rebuilt. In other words, contact surface damages such as wheel flats and rail burns may come into being because of the LAZ. Length of the LAZ, the traction level, etc. are varied. The results also show that local contact surface damages may still occur as the traction control system acts.
NASA Astrophysics Data System (ADS)
Tagesson, Kristoffer; Cole, David
2017-07-01
The steering system in most heavy trucks is such that it causes a destabilising steering wheel torque when braking on split friction, that is, different friction levels on the two sides of the vehicle. Moreover, advanced emergency braking systems are now mandatory in most heavy trucks, making vehicle-induced split friction braking possible. This imposes higher demands on understanding how the destabilising steering wheel torque affects the driver, which is the focus here. Firstly, an experiment has been carried out involving 24 subjects all driving a truck where automatic split friction braking was emulated. Secondly, an existing driver-vehicle model has been adapted and implemented to improve understanding of the observed outcome. A common conclusion drawn, after analysing results, is that the destabilising steering wheel torque only has a small effect on the motion of the vehicle. The underlying reason is a relatively slow ramp up of the disturbance in comparison to the observed cognitive delay amongst subjects; also the magnitude is low and initially suppressed by passive driver properties.
NASA Technical Reports Server (NTRS)
Barlow, Edward; Marzwell, Nevellie; Fuller, Sawyer; Fionni, Paolo; Tretton, Andy; Burdick, Joel; Schell, Steve
2003-01-01
A small prototype mobile robot is capable of (1) hopping to move rapidly or avoid obstacles and then (2) moving relatively slowly and precisely on the ground by use of wheels in the manner of previously reported exploratory robots of the "rover" type. This robot is a descendant of a more primitive hopping robot described in "Minimally Actuated Hopping Robot" (NPO- 20911), NASA Tech Briefs, Vol. 26, No. 11 (November 2002), page 50. There are many potential applications for robots with hopping and wheeled-locomotion (roving) capabilities in diverse fields of endeavor, including agriculture, search-and-rescue operations, general military operations, removal or safe detonation of land mines, inspection, law enforcement, and scientific exploration on Earth and remote planets. The combination of hopping and roving enables this robot to move rapidly over very rugged terrain, to overcome obstacles several times its height, and then to position itself precisely next to a desired target. Before a long hop, the robot aims itself in the desired hopping azimuth and at a desired takeoff angle above horizontal. The robot approaches the target through a series of hops and short driving operations utilizing the steering wheels for precise positioning.
Western diet increases wheel running in mice selectively bred for high voluntary wheel running.
Meek, T H; Eisenmann, J C; Garland, T
2010-06-01
Mice from a long-term selective breeding experiment for high voluntary wheel running offer a unique model to examine the contributions of genetic and environmental factors in determining the aspects of behavior and metabolism relevant to body-weight regulation and obesity. Starting with generation 16 and continuing through to generation 52, mice from the four replicate high runner (HR) lines have run 2.5-3-fold more revolutions per day as compared with four non-selected control (C) lines, but the nature of this apparent selection limit is not understood. We hypothesized that it might involve the availability of dietary lipids. Wheel running, food consumption (Teklad Rodent Diet (W) 8604, 14% kJ from fat; or Harlan Teklad TD.88137 Western Diet (WD), 42% kJ from fat) and body mass were measured over 1-2-week intervals in 100 males for 2 months starting 3 days after weaning. WD was obesogenic for both HR and C, significantly increasing both body mass and retroperitoneal fat pad mass, the latter even when controlling statistically for wheel-running distance and caloric intake. The HR mice had significantly less fat than C mice, explainable statistically by their greater running distance. On adjusting for body mass, HR mice showed higher caloric intake than C mice, also explainable by their higher running. Accounting for body mass and running, WD initially caused increased caloric intake in both HR and C, but this effect was reversed during the last four weeks of the study. Western diet had little or no effect on wheel running in C mice, but increased revolutions per day by as much as 75% in HR mice, mainly through increased time spent running. The remarkable stimulation of wheel running by WD in HR mice may involve fuel usage during prolonged endurance exercise and/or direct behavioral effects on motivation. Their unique behavioral responses to WD may render HR mice an important model for understanding the control of voluntary activity levels.
Durability, value, and reliability of selected electric powered wheelchairs.
Fass, Megan V; Cooper, Rory A; Fitzgerald, Shirley G; Schmeler, Mark; Boninger, Michael L; Algood, S David; Ammer, William A; Rentschler, Andrew J; Duncan, John
2004-05-01
To compare the durability, value, and reliability of selected electric powered wheelchairs (EPWs), purchased in 1998. Engineering standards tests of quality and performance. A rehabilitation engineering center. Fifteen EPWs: 3 each of the Jazzy, Quickie, Lancer, Arrow, and Chairman models. Not applicable. Wheelchairs were evaluated for durability (lifespan), value (durability, cost), and reliability (rate of repairs) using 2-drum and curb-drop machines in accordance with the standards of the American National Standards Institute and Rehabilitation Engineering and Assistive Technology Society of North America. The 5 brands differed significantly (P
Development and validation of a new kind of coupling element for wheel-hub motors
NASA Astrophysics Data System (ADS)
Perekopskiy, Sergey; Kasper, Roland
2018-05-01
For the automotive industry, electric powered vehicles are becoming an increasingly relevant factor in the competition against climate change. Application of one special example - a wheel-hub motor, for electric powered vehicle can support this challenge. Patented slotless air gap winding invented at the chair of mechatronics of the Otto von Guericke University Magdeburg has great application potential in constantly growing e-mobility field, especially for wheel-hub motors based on this technology due to its advantages, such as a high gravimetric power density and high efficiency. However, advantages of this technology are decreased by its sensibility to the loads out of driving maneuvers by dimensional variations of air gap consistency. This article describes the development and validation of a coupling element for the designed wheel-hub motor. To find a suitable coupling concept first the assembly structure of the motor was analyzed and developed design of the coupling element was checked. Based on the geometry of the motor and wheel a detailed design of the coupling element was generated. The analytical approach for coupling element describes a potential of the possible loads on the coupling element. The FEM simulation of critical load cases for the coupling element validated results of the analytical approach.
Automatic guidance control of an articulated all-wheel-steered vehicle
NASA Astrophysics Data System (ADS)
Kim, Young Chol; Yun, Kyong-Han; Min, Kyung-Deuk
2014-04-01
This paper presents automatic guidance control of a single-articulated all-wheel-steered vehicle being developed by the Korea Railroad Research Institute. The vehicle has an independent drive motor on each wheel except for the front axle. The guidance controller is designed so that the vehicle follows the given reference path within permissible lateral deviations. We use a three-input/three-output linearised model derived from the nonlinear dynamic model of the vehicle. For the purpose of simplifying the controller and making it tunable, we consider a decentralised control configuration. We first design a second-order decoupling compensator for the two-input/two-output system that is strongly coupled and then design a first-order controller for each decoupled feedback loop by using the characteristic ratio assignment method. The simulation results for the nonlinear dynamic model indicate that the proposed control configuration successfully achieves the design objectives.
Dual optical mechanical position tracker
NASA Astrophysics Data System (ADS)
Everett, S. L., Jr.
1985-06-01
This patent application describes an apparatus for retaining control of moving carriage impact dot matrix print heads when subjected to strong external forces such as shock and/or vibration. Position and direction of carriage movement is provided by a photo emitter-sensor assembly and a slotted timing wheel or disc having a plurality of equally spaced slots whose slot width is equal to the slot separation. The slot width is sufficient to frame a pair of side-by-side emitters which operate in conjunction with a pair of side-by-side sensors on the other side of the timing wheel. The order or sequence in which the sensors receive photo energy from their respective emitters indicates the direction of rotation of the timing wheel while simultaneous reception of photo energy by the side-by-side sensors provides an indication of valid rest position of the carriage drive motor.
Automated Coal-Mine Shuttle Car
NASA Technical Reports Server (NTRS)
Collins, E. R., Jr.
1984-01-01
Cable-guided car increases efficiency in underground coal mines. Unmanned vehicle contains storage batteries in side panels for driving traction motors located in wheels. Batteries recharged during inactive periods or slid out as unit and replaced by fresh battery bank. Onboard generator charges batteries as car operates.
Computer Simulations and Literature Survey of Continuously Variable Transmissions for Use in Buses
DOT National Transportation Integrated Search
1981-12-01
Numerous studies have been conducted on the concept of flywheel energy storage for buses. Flywheel systems require a continuously variable transmission (CVT) of some type to transmit power between the flywheel and the drive wheels. However, a CVT can...
NASA Curiosity Rover in Profile
2011-12-09
About the size of a small SUV, NASA Curiosity rover is well equipped for a tour of Gale Crater on Mars. This impressive rover has six-wheel drive and the ability to turn in place a full 360 degrees, as well as the agility to climb steep hills.
On the efficiency of small air coil motors
NASA Astrophysics Data System (ADS)
Horowitz, P.
1981-05-01
The efficiency of two types of small ironless motors in the output range of 5 to 500 mW was investigated for use in driving a miniature roller pump for a portable infusion system. One motor has a continuous rotating coil (commutator motor) and one has an oscillating coil. In this case a ratchet and ratchet wheel is needed to generate a rotating motion (ratchet wheel motor). The electromechanical transducer and a mechanical transformation and support system are discussed as well as frictional losses. The influence of the size of the motor is discussed. An expression for the total efficiency is obtained which enables the calculation of the speed of rotation of a certain motor at maximum efficiency for a certain required output. This optimal speed of rotation is hardly influenced by the required speed of rotation at the output shaft of the driving. The transmission, if required, has only a small effect on the optimum speed of rotation of the motor.
Optimisation of driver actions in RWD race car including tyre thermodynamics
NASA Astrophysics Data System (ADS)
Maniowski, Michal
2016-04-01
The paper presents an innovative method for a lap time minimisation by using genetic algorithms for a multi objective optimisation of a race driver-vehicle model. The decision variables consist of 16 parameters responsible for actions of a professional driver (e.g. time traces for brake, accelerator and steering wheel) on a race track part with RH corner. Purpose-built, high fidelity, multibody vehicle model (called 'miMa') is described by 30 generalised coordinates and 440 parameters, crucial in motorsport. Focus is put on modelling of the tyre tread thermodynamics and its influence on race vehicle dynamics. Numerical example considers a Rear Wheel Drive BMW E36 prepared for track day events. In order to improve the section lap time (by 5%) and corner exit velocity (by 4%) a few different driving strategies are found depending on thermal conditions of semi-slick tyres. The process of the race driver adaptation to initially cold or hot tyres is explained.
Kelly, Scott A; Rezende, Enrico L; Chappell, Mark A; Gomes, Fernando R; Kolb, Erik M; Malisch, Jessica L; Rhodes, Justin S; Mitchell, Gordon S; Garland, Theodore
2014-02-01
What is the central question of this study? We used experimental evolution to determine how selective breeding for high voluntary wheel running and exercise training (7-11 weeks) affect ventilatory chemoreflexes of laboratory mice at rest. What is the main finding and its importance? Selective breeding, although significantly affecting some traits, did not systematically alter ventilation across gas concentrations. As with most human studies, our findings support the idea that endurance training attenuates resting ventilation. However, little evidence was found for a correlation between ventilatory chemoreflexes and the amount of individual voluntary wheel running. We conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running. Ventilatory control is affected by genetics, the environment and gene-environment and gene-gene interactions. Here, we used an experimental evolution approach to test whether 37 generations of selective breeding for high voluntary wheel running (genetic effects) and/or long-term (7-11 weeks) wheel access (training effects) alter acute respiratory behaviour of mice resting in normoxic, hypoxic and hypercapnic conditions. As the four replicate high-runner (HR) lines run much more than the four non-selected control (C) lines, we also examined whether the amount of exercise among individual mice was a quantitative predictor of ventilatory chemoreflexes at rest. Selective breeding and/or wheel access significantly affected several traits. In normoxia, HR mice tended to have lower mass-adjusted rates of oxygen consumption and carbon dioxide production. Chronic wheel access increased oxygen consumption and carbon dioxide production in both HR and C mice during hypercapnia. Breathing frequency and minute ventilation were significantly reduced by chronic wheel access in both HR and C mice during hypoxia. Selection history, while significantly affecting some traits, did not systematically alter ventilation across all gas concentrations. As with most human studies, our findings support the idea that endurance training (access to wheel running) attenuates resting ventilation. However, little evidence was found for a correlation at the level of the individual variation between ventilatory chemoreflexes and performance (amount of individual voluntary wheel running). We tentatively conclude that exercise 'training' alters respiratory behaviours, but these changes may not be necessary to achieve high levels of wheel running.
NASA Astrophysics Data System (ADS)
Fleury, Gérard; Mistrot, Pierre
2006-12-01
While driving off-road vehicles, operators are exposed to whole-body vibration acting in the fore-and-aft direction. Seat manufacturers supply products equipped with fore-and-aft suspension but only a few studies report on their performance. This work proposes a computational approach to design fore-and-aft suspensions for wheel loader seats. Field tests were conducted in a quarry to analyse the nature of vibration to which the driver was exposed. Typical input signals were recorded to be reproduced in the laboratory. Technical specifications are defined for the suspension. In order to evaluate the suspension vibration attenuation performance, a model of a sitting human body was developed and coupled to a seat model. The seat model combines the models of each suspension component. A linear two-degree-of-freedom model is used to describe the dynamic behaviour of the sitting driver. Model parameters are identified by fitting the computed apparent mass frequency response functions to the measured values. Model extensions are proposed to investigate postural effects involving variations in hands and feet positions and interaction of the driver's back with the backrest. Suspension design parameters are firstly optimized by computing the seat/man model response to sinusoidal acceleration. Four criteria including transmissibility, interaction force between the driver's back and the backrest and relative maximal displacement of the suspension are computed. A new suspension design with optimized features is proposed. Its performance is checked from calculations of the response of the seat/man model subjected to acceleration measured on the wheel loader during real work conditions. On the basis of the computed values of the SEAT factors, it is found possible to design a suspension that would increase the attenuation provided by the seat by a factor of two.
Gonçalves, M; Peralta, A R; Monteiro Ferreira, J; Guilleminault, Christian
2015-01-01
Sleepiness is considered to be a leading cause of crashes. Despite the huge amount of information collected in questionnaire studies, only some are based on representative samples of the population. Specifics of the populations studied hinder the generalization of these previous findings. For the Portuguese population, data from sleep-related car crashes/near misses and sleepiness while driving are missing. The objective of this study is to determine the prevalence of near-miss and nonfatal motor vehicle crashes related to sleepiness in a representative sample of Portuguese drivers. Structured phone interviews regarding sleepiness and sleep-related crashes and near misses, driving habits, demographic data, and sleep quality were conducted using the Pittsburgh Sleep Quality Index and sleep apnea risk using the Berlin questionnaire. A multivariate regression analysis was used to determine the associations with sleepy driving (feeling sleepy or falling asleep while driving) and sleep-related near misses and crashes. Nine hundred subjects, representing the Portuguese population of drivers, were included; 3.1% acknowledged falling asleep while driving during the previous year and 0.67% recalled sleepiness-related crashes. Higher education, driving more than 15,000 km/year, driving more frequently between 12:00 a.m. and 6 a.m., fewer years of having a driver's license, less total sleep time per night, and higher scores on the Epworth Sleepiness Scale (ESS) were all independently associated with sleepy driving. Sleepiness-related crashes and near misses were associated only with falling asleep at the wheel in the previous year. Sleep-related crashes occurred more frequently in drivers who had also had sleep-related near misses. Portugal has lower self-reported sleepiness at the wheel and sleep-related near misses than most other countries where epidemiological data are available. Different population characteristics and cultural, social, and road safety specificities may be involved in these discrepancies. Despite this, Portuguese drivers report sleep-related crashes in frequencies similar to those of drivers in other countries.
ERIC Educational Resources Information Center
Levy, Lawrence C.
1976-01-01
Adelphi University has awarded 76 Masters in Business Administration degrees to people in the New York City area who attended its Classroom on Wheels, one specially equipped car on each of four commuter train lines. The program, reaching over 1000 people since 1971 is run and promoted solely on tuition. (JT)
2012-09-01
and traveled all the way around Lake Tahoe. The self - driving cars have logged over 140,000 miles since October 9, 2010 (Google 2010) pictured here...UNDERWATER VEHICLES (AUV) STARFISH is the name given to a small team of autonomous robotic fish - a project carried out by the Acoustic Research...www.scribd.com/doc/42245301/Manual-Mine- Clearance-Book1. Accessed July 23, 2012. Google. The Self - Driving Car Logs more Miles on New Wheels. August 7
Refined Gearbox Design for the Chariot Lunar Rover
NASA Technical Reports Server (NTRS)
Bauman, Steve; Lewicki, David
2010-01-01
In planning for NASA's return to the moon by the year 2020, the NASA Johnson Space Center (JSC) designed and built a lunar concept vehicle called Chariot. Slightly larger than a pickup truck, it was designed to demonstrate similar utilitarian functions, but with twelve wheels for redundancy, reliability, and reduced surface contact pressure. JSC designed a motor gearbox to drive each of Chariot s six wheel pods. The pods can be independently steered over 360 for maneuverability. This paper describes the design of a second generation, drop-in replacement gearbox. The new design has a lower parts count, and is lighter than the original, which represents a step toward flight hardware.
Process Research and Development of Antibodies as Countermeasures for C. Botulinum
2007-03-01
Suite: 150 L working volume fermentor for yeast and bacteria, harvesting and clarifying capabilities using either continuous centrifugation or cross... CONTACTOR /DISCONNCT WITH 120VAC COIL INTERFACE FOR ATC 9. ALUMINUM WHEELS, STEEL HOUSING, STEEL MOTOR AND DRIVE HOUSINGS 5. ADJUSTABLE MOTOR SUPPORTS
Canadian truckers could drive 14 hours at a stretch, under proposed new rule
DOT National Transportation Integrated Search
2000-01-15
Research shows the risk of crashing increases substantially if truck drivers spend more than eight hours behind the wheel. A new Canadian rule governing truckers' hours of service is due in June 2000. In contrast, truckers on United States roads are ...
Magnetically-Guided Penetrant Applicator
NASA Technical Reports Server (NTRS)
Molina, Orlando G.
1990-01-01
Small wheeled vehicle moved inside nonmagnetic enclosure. Miniature magnetically guided truck uses foam-rubber sponge pads to apply penetrant fluid for inspection of welds in hidden surfaces of nonmagnetic tubes. Risk of explosion less than if electric motor used to drive vehicle. Inexpensive to make and made in range of sizes.
Flight Test Evaluation of Airborne Tire Pressure Indicating Systems.
1979-09-01
System (Concept J, Part I Report) This system employs a wheel This system was the best mounted pressure switch the thought out and implemented state of...which is detected across system of its type with an air gap by a rotating coil excellent electror.ic and passing by a statiorery coil pressure switch designs...Pressure Low tire pressure is sensed by a The supplier of this pressure switch in wheel. hardware built a four wheel Pressure switch shorts secondary
Risky behavior of drivers of motorized two wheeled vehicles in India.
Dandona, Rakhi; Kumar, G Anil; Dandona, Lalit
2006-01-01
Motorized two-wheeled vehicles (MTV) account for a large proportion of road traffic in India and the riders of these vehicles have a high risk of road traffic injuries. We report on the availability of drivers licenses, use of a helmet, driver behavior, and condition of vehicles for MTV drivers in Hyderabad, a city in India Drivers of a MTV aged >16 years were interviewed at petrol filling stations There were 4,183 MTV drivers who participated in the study. Four hundred sixty one (11%; 95% CI 9.7-12.3%) drivers had not obtained a drivers license and 798 (21.4%) had obtained a license without taking the mandatory driving test. Two thousand nine hundred twenty (69.8%; 95% CI 67.9-71.7%) drivers reported no/very occasional use of a helmet, the significant predictors of which included that those driving borrowed a MTV (odds ratio 7.90; 95% CI 3.40-18.40) or driving moped/scooterette/scooter as compared with motorcycle (3.32; 2.76-3.98), lower education (3.10; 2.66-3.61), age >45 years (2.41; 1.63-3.57), and males (1.57; 1.16-2.13). Two thousand five hundred and eight (59.9%) drivers reported committing a traffic law violation at least once within the last 3 months. Overall, 1,222 (29.2%) drivers reported ever being caught by traffic police for a traffic law violation with data on violations available for 1,205 of these drivers, of whom 680 (56.4%) paid a fine, 310 (25.7%) paid by bribe, and 215 (17.8%) made no payment. The proportion of those who did not make payment for committed violation was significantly higher among females (46.8%) than males (16.3%). Two thousand fifty two (49%) of all MTVs had no rearview mirror These data suggest the need to enact and enforce policy interventions for improving the drivers license system, mandatory use of a helmet, effective traffic law enforcement, and ensuring good vehicle condition to reduce the risk factors that potentially contribute to mortality and morbidity in road traffic crashes in MTV drivers in Indian cities.
Multi-disciplinary optimization of railway wheels
NASA Astrophysics Data System (ADS)
Nielsen, J. C. O.; Fredö, C. R.
2006-06-01
A numerical procedure for multi-disciplinary optimization of railway wheels, based on Design of Experiments (DOE) methodology and automated design, is presented. The target is a wheel design that meets the requirements for fatigue strength, while minimizing the unsprung mass and rolling noise. A 3-level full factorial (3LFF) DOE is used to collect data points required to set up Response Surface Models (RSM) relating design and response variables in the design space. Computationally efficient simulations are thereafter performed using the RSM to identify the solution that best fits the design target. A demonstration example, including four geometric design variables in a parametric finite element (FE) model, is presented. The design variables are wheel radius, web thickness, lateral offset between rim and hub, and radii at the transitions rim/web and hub/web, but more variables (including material properties) can be added if needed. To improve further the performance of the wheel design, a constrained layer damping (CLD) treatment is applied on the web. For a given load case, compared to a reference wheel design without CLD, a combination of wheel shape and damping optimization leads to the conclusion that a reduction in the wheel component of A-weighted rolling noise of 11 dB can be achieved if a simultaneous increase in wheel mass of 14 kg is accepted.
32 CFR 636.35 - Headphones and earphones.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 32 National Defense 4 2011-07-01 2011-07-01 false Headphones and earphones. 636.35 Section 636.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND... U.S. Government vehicle, POV, motorcycle, or other self-propelled two-wheel, three-wheel, or four...
32 CFR 636.35 - Headphones and earphones.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 32 National Defense 4 2013-07-01 2013-07-01 false Headphones and earphones. 636.35 Section 636.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND... U.S. Government vehicle, POV, motorcycle, or other self-propelled two-wheel, three-wheel, or four...
32 CFR 636.35 - Headphones and earphones.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 32 National Defense 4 2012-07-01 2011-07-01 true Headphones and earphones. 636.35 Section 636.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND... U.S. Government vehicle, POV, motorcycle, or other self-propelled two-wheel, three-wheel, or four...
32 CFR 636.35 - Headphones and earphones.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 32 National Defense 4 2010-07-01 2010-07-01 true Headphones and earphones. 636.35 Section 636.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND... U.S. Government vehicle, POV, motorcycle, or other self-propelled two-wheel, three-wheel, or four...
32 CFR 636.35 - Headphones and earphones.
Code of Federal Regulations, 2014 CFR
2014-07-01
... 32 National Defense 4 2014-07-01 2013-07-01 true Headphones and earphones. 636.35 Section 636.35 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND... U.S. Government vehicle, POV, motorcycle, or other self-propelled two-wheel, three-wheel, or four...
78 FR 18531 - Airworthiness Directives; Learjet Inc. Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2013-03-27
... cause damage to various components, including the MLG squat switches, brake hydraulic tubes, wheel speed... airplanes. This proposed AD was prompted by a report of a high-speed rejected takeoff caused by all four... necessary; and, for certain airplanes; installing a new wheel speed detect box assembly, nutplates, and...
The Four-Ball Gyro and Motorcycle Countersteering
ERIC Educational Resources Information Center
Galli, J. Ronald; Carroll, Bradley W.
2017-01-01
Most two-wheel motorcycle riders know that, at highway speeds, if you want to turn left you push on the "left" handlebar and pull on the "right" handlebar. This is called "countersteering." Countersteering is counterintuitive since pushing left and pulling right when the front wheel is not spinning would turn the…
SDO Delta H Mode Design and Analysis
NASA Technical Reports Server (NTRS)
Mason, Paul A.; Starin, Scott R.
2007-01-01
While on orbit, disturbance torques on a three axis stabilized spacecraft tend to increase the system momentum, which is stored in the reaction wheels. Upon reaching the predefined momentum capacity (or maximum wheel speed) of the reaction wheel, an external torque must be used to unload the momentum. The purpose of the Delta H mode is to manage the system momentum. This is accomplished by driving the reaction wheels to a target momentum state while the attitude thrusters, which provide an external torque, are used to maintain the attitude. The Delta H mode is designed to meet the mission requirements and implement the momentum management plan. Changes in the requirements or the momentum management plan can lead to design changes in the mode. The momentum management plan defines the expected momentum buildup trend, the desired momentum state and how often the system is driven to the desired momentum state (unloaded). The desired momentum state is chosen based on wheel capacity, wheel configuration, thruster layout and thruster sizing. For the Solar Dynamics Observatory mission, the predefined wheel momentum capacity is a function of the jitter requirements, power, and maximum momentum capacity. Changes in jitter requirements or power limits can lead to changes in the desired momentum state. These changes propagate into the changes in the momentum management plan and therefore the Delta H mode design. This paper presents the analysis and design performed for the Solar Dynamics Observatory Delta H mode. In particular, the mode logic and processing needed to meet requirements is described along with the momentum distribution formulation. The Delta H mode design is validated using the Solar Dynamics Observatory High Fidelity simulator. Finally, a summary of the design is provided along with concluding remarks.
Judging rolling wheels: Dynamic and kinematic aspects of rotation-translation coupling
NASA Technical Reports Server (NTRS)
Hecht, Heiko
1993-01-01
Four experiments were carried out to investigate observers' abilities to judge rolling motions. The experiments were designed to assess whether two important aspects of such motions are appreciated: the kinematic coupling of rotation and translation, and the dynamic effects of gravity. Different motion contexts of rolling wheels were created using computer-generated displays. The first experiment involved wheels rolling down an inclined plane. Observers spontaneously appreciated the anomaly of wheels that failed to accelerate, but they were not able to differentiate between different acceleration functions. Moreover, their judgements were almost exclusively based on the translation component of the rolling motion, neglecting the rotation component. In a second experiment it was found that observers could accurately estimate the perimeter of various objects. Thus, their inability to consider rotation information is not attributable to misperceptions of the geometry of wheels. In a third experiment the finding that rolling wheels appear to overrotate was replicated; however, findings from this experiment also showed, together with those from a fourth experiment, that observers are able to make very accurate judgments about translation-rotation coupling in rolling wheels when information is provided about the orientation of the wheel and the texture of the surface on which it rolls.
Judging rolling wheels: dynamic and kinematic aspects of rotation-translation coupling.
Hecht, H
1993-01-01
Four experiments were carried out to investigate observers' abilities to judge rolling motions. The experiments were designed to assess whether two important aspects of such motions are appreciated: the kinematic coupling of rotation and translation, and the dynamic effects of gravity. Different motion contexts of rolling wheels were created using computer-generated displays. The first experiment involved wheels rolling down an inclined plane. Observers spontaneously appreciated the anomaly of wheels that failed to accelerate, but they were not able to differentiate between different acceleration functions. Moreover, their judgments were almost exclusively based on the translation component of the rolling motion, neglecting the rotation component. In a second experiment it was found that observers could accurately estimate the perimeter of various objects. Thus, their inability to consider rotation information is not attributable to misperceptions of the geometry of wheels. In a third experiment the finding that rolling wheels appear to overrotate was replicated; however, findings from this experiment also showed, together with those from a fourth experiment, that observers are able to make very accurate judgments about translation-rotation coupling in rolling wheels when information is provided about the orientation of the wheel and the texture of the surface on which it rolls.
Work schedules of long-distance truck drivers before and after 2004 hours-of-service rule change.
McCartt, Anne T; Hellinga, Laurie A; Solomon, Mark G
2008-01-01
Federal rules regulate work hours of interstate commercial truck drivers. On January 4, 2004, a new work rule was implemented, increasing daily and weekly maximum driving limits and daily off-duty requirements. The present study assessed changes in long-distance truck drivers' reported work schedules and reported fatigued driving after the rule change. Associations between reported rule violations, fatigued driving, and schedule as well as other characteristics were examined. Samples of long-distance truck drivers were interviewed face-to-face in two states immediately before the rule change (November-December 2003) and about 1 year (November-December 2004) and 2 years (November-December 2005) after the change. Drivers reported substantially more hours of driving after the rule change. Most drivers reported regularly using a new restart provision, which permits a substantial increase in weekly driving. Reported daily off-duty and sleep time increased. Reported incidents of falling asleep at the wheel of the truck increased between 2003 (before the rule change) and 2004 and 2005 (after the change); in 2005 about one fifth of drivers reported falling asleep at the wheel in the past month. The frequency of reported rule violations under the old and new rules was similar. The percentage of trucks with electronic on-board recorders increased significantly to almost half the fleet; only a few drivers were using automated recorders to report rule compliance. More than half of drivers said that requiring automated recorders on all large trucks to enforce driving-hour limits would improve compliance with work rules. Based on the 2004-2005 survey data, drivers who reported more frequent rule violations were significantly more likely to report fatigued driving. Predictors of reported violations included having unrealistic delivery schedules, longer wait times to drop off or pick up loads, difficulty finding a legal place to stop or rest, and driving a refrigerated trailer. Reported truck driver fatigue increased after the new rule was implemented, suggesting that the rule change may not have achieved the goal of reducing fatigued driving. Reported violations of the work rules remain common. Because many trucks already have electronic recorders, requiring them as a means of monitoring driving hours appears feasible.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bak, J. H.; Le, V. D.; Kang, J.
2012-04-05
Open-site paddle wheels, comprised of two transition metals bridged with four carboxylate ions, have been widely used for constructing metal-organic frameworks with large surface area and high binding energy sites. Using first-principles density functional theory calculations, we have investigated atomic and electronic structures of various 3d transition metal paddle wheels before and after metal exposure and their hydrogen adsorption properties at open metal sites. Notably, the hydrogen adsorption is impeded by covalent metal-metal bonds in early transition metal paddle wheels from Sc to Cr and by the strong ferromagnetic coupling of diatomic Mn and Fe in the paddle wheel configurations.more » A significantly enhanced H{sub 2} adsorption is predicted in the nonmagnetic Co{sub 2} and Zn{sub 2} paddle wheel with the binding energy of {approx}0.2 eV per H{sub 2}. We also propose the use of two-dimensional Co{sub 2} and Zn{sub 2} paddle wheel frameworks that could have strongly adsorbed dihydrogen up to 1.35 wt % for noncryogenic hydrogen storage applications.« less
Are drivers aware of sleepiness and increasing crash risk while driving?
Williamson, Ann; Friswell, Rena; Olivier, Jake; Grzebieta, Raphael
2014-09-01
Drivers are advised to take breaks when they feel too tired to drive, but there is question over whether they are able to detect increasing fatigue and sleepiness sufficiently to decide when to take a break. The aim of this study was to investigate the extent to which drivers have access to cognitive information about their current state of sleepiness, likelihood of falling asleep, and the implications for driving performance and the likelihood of crashing. Ninety drivers were recruited to do a 2h drive in a driving simulator. They were divided into three groups: one made ratings of their sleepiness, likelihood of falling asleep and likelihood of crashing over the next few minutes at prompts occurring at 200s intervals throughout the drive, the second rated sleepiness and likelihood of falling asleep at prompts but pressed a button on the steering wheel at any time if they felt they were near to crashing and the third made no ratings and only used a button-press if they felt a crash was likely. Fatigue and sleepiness was encouraged by monotonous driving conditions, an imposed shorter than usual sleep on the night before and by afternoon testing. Drivers who reported that they were possibly, likely or very likely to fall asleep in the next few minutes, were more than four times more likely to crash subsequently. Those who rated themselves as sleepy or likely to fall asleep had a more than 9-fold increase in the hazards of a centerline crossing compared to those who rated themselves as alert. The research shows clearly that drivers can detect changes in their levels of sleepiness sufficiently to make a safe decision to stop driving due to sleepiness. Therefore, road safety policy needs to move from reminding drivers of the signs of sleepiness and focus on encouraging drivers to respond to obvious indicators of fatigue and sleepiness and consequent increased crash risk. Copyright © 2014 Elsevier Ltd. All rights reserved.
40 CFR 86.136-90 - Engine starting and restarting.
Code of Federal Regulations, 2010 CFR
2010-07-01
... started. If necessary, braking may be employed to keep the drive wheels from turning. (c) If the vehicle... petroleum-fueled diesel vehicles and the particulate sampling system when testing methanol-fueled diesel... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission...
36 CFR 7.2 - Crater Lake National Park.
Code of Federal Regulations, 2013 CFR
2013-07-01
... with snow poles and signs, only that portion of the North Entrance Road intended for wheeled vehicle... permitted in Crater Lake National Park on the North Entrance Road from its intersection with the Rim Drive to the park boundary, and on intermittent routes detouring from the North Entrance Road as designated...
36 CFR 7.2 - Crater Lake National Park.
Code of Federal Regulations, 2012 CFR
2012-07-01
... with snow poles and signs, only that portion of the North Entrance Road intended for wheeled vehicle... permitted in Crater Lake National Park on the North Entrance Road from its intersection with the Rim Drive to the park boundary, and on intermittent routes detouring from the North Entrance Road as designated...
36 CFR 7.2 - Crater Lake National Park.
Code of Federal Regulations, 2014 CFR
2014-07-01
... with snow poles and signs, only that portion of the North Entrance Road intended for wheeled vehicle... permitted in Crater Lake National Park on the North Entrance Road from its intersection with the Rim Drive to the park boundary, and on intermittent routes detouring from the North Entrance Road as designated...
36 CFR 7.2 - Crater Lake National Park.
Code of Federal Regulations, 2011 CFR
2011-07-01
... with snow poles and signs, only that portion of the North Entrance Road intended for wheeled vehicle... permitted in Crater Lake National Park on the North Entrance Road from its intersection with the Rim Drive to the park boundary, and on intermittent routes detouring from the North Entrance Road as designated...
36 CFR 7.2 - Crater Lake National Park.
Code of Federal Regulations, 2010 CFR
2010-07-01
... with snow poles and signs, only that portion of the North Entrance Road intended for wheeled vehicle... permitted in Crater Lake National Park on the North Entrance Road from its intersection with the Rim Drive to the park boundary, and on intermittent routes detouring from the North Entrance Road as designated...
/generator visible. The car is moving. There are purple arrows flowing from the gasoline engine to the electric starter/generator. There are red arrows flowing from the gasoline engine to the front wheels . There are blue arrows flowing from the electric starter/generator to the battery. Main stage: See
High Performance Split-Stirling Cooler Program
1982-09-01
or crankcase subassembly includes the two drive cranks 1800 apart, the two motor bearings, the flywheel and target wheel . This assembly is dynamically...DISPLACER SEAL FRICTION REGENERATOR FLOW @ lOPSI E"I’ •’ REGENERATOR RUNOUT COMP. BRG. LUBRICATION "COMP. PISTON SEAL COMP. PISTON SEAL FRICTION INTER
30 CFR 18.20 - Quality of material, workmanship, and design.
Code of Federal Regulations, 2013 CFR
2013-07-01
..., circuits, arrangements, or combinations of components and materials cannot be foreseen, MSHA reserves the... provided on each mobile machine that travels at a speed greater than 2.5 miles per hour. (f) Brakes shall be provided for each wheel-mounted machine, unless design of the driving mechanism will preclude...
30 CFR 18.20 - Quality of material, workmanship, and design.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., circuits, arrangements, or combinations of components and materials cannot be foreseen, MSHA reserves the... provided on each mobile machine that travels at a speed greater than 2.5 miles per hour. (f) Brakes shall be provided for each wheel-mounted machine, unless design of the driving mechanism will preclude...
30 CFR 18.20 - Quality of material, workmanship, and design.
Code of Federal Regulations, 2012 CFR
2012-07-01
..., circuits, arrangements, or combinations of components and materials cannot be foreseen, MSHA reserves the... provided on each mobile machine that travels at a speed greater than 2.5 miles per hour. (f) Brakes shall be provided for each wheel-mounted machine, unless design of the driving mechanism will preclude...
NASA Astrophysics Data System (ADS)
Richter, L.; Ellery, A.; Gao, Y.; Michaud, S.; Schmitz, N.; Weiss, S.
Successful designs of vehicles intended for operations on planetary objects outside the Earth demand, just as for terrestrial off-the-road vehicles, a careful assessment of the terrain relevant for the vehicle mission and predictions of the mobility performance to allow rational trade-off's to be made for the choice of the locomotion concept and sizing. Principal issues driving the chassis design for rovers are the stress-strain properties of the planetary surface soil, the distribution of rocks in the terrain representing potential obstacles to movement, and the gravity level on the celestial object in question. Thus far, planetary rovers have been successfully designed and operated for missions to the Earth's moon and to the planet Mars, including NASA's Mars Exploration Rovers (MER's) `Spirit' and `Opportunity' being in operation on Mars since their landings in January 2004. Here we report on the development of a wheel-soil interaction model with application to wheel sizes and wheel loads relevant to current and near-term robotic planetary rovers, i.e. wheel diameters being between about 200 and 500 mm and vertical quasistatic wheel loads in operation of roughly 100 to 200 N. Such a model clearly is indispensable for sizings of future rovers to analyse the aspect of rover mobility concerned with motion across soils. This work is presently funded by the European Space Agency (ESA) as part of the `Rover Chassis Evaluation Tools' (RCET) effort which has developed a set of S/W-implemented models for predictive mobility analysis of rovers in terms of movement on soils and across obstacles, coupled with dedicated testbeds to validate the wheel-soil models. In this paper, we outline the details of the wheel-soil modelling performed within the RCET work and present comparisons of predictions of wheel performance (motion resistance, torque vs. slip and drawbar pull vs. slip) for specific test cases with the corresponding measurements performed in the RCET single wheel testbed and in the RCET system-level testbed, the latter permitting drawbar pull vs. slip measurements for complete rover development vehicles under controlled and homogeneous soil conditions. Required modifications of the wheel-soil model, in particular related to modelling the effect of wheel slip, are discussed. To strengthen the model validation base, we have run single wheel measurements using a spare MER Mars rover wheel and have performed comparisons with MER actual mobility performance data, available through one of us (LR) who is a member of the MER Athena science team. Corresponding results will be presented. Keywords: rovers, wheel, soil, mobility, vehicle performance, RCET (Rover Chassis Evaluation Tools), MER (Mars Exploration Rover mission) 2
Extremity fractures associated with ATVs and dirt bikes: a 10-year national epidemiologic study.
Lombardo, D J; Jelsema, T; Gambone, A; Weisman, M; Petersen-Fitts, G; Whaley, J D; Sabesan, V J
2017-08-01
Morbidity and mortality of all-terrain vehicles and dirt bikes have been studied, as well as the association of helmet use and head injury. The purpose of this study is to compare and contrast the patterns of extremity fractures associated with ATVs and dirt bikes. We believe there will be unique and potentially preventable injury patterns associated with dirt bikes and three-wheeled ATVs due to the poor stability of these vehicles. Descriptive epidemiology study. The National Electronic Injury Surveillance System (NEISS) was used to acquire data for extremity fractures related to ATV (three wheels, four wheels, and number of wheels undefined) and dirt bike use from 2007 to 2012. Nationwide estimation of injury incidence was determined using NEISS weight calculations. The database yielded an estimate of 229,362 extremity fractures from 2007 to 2012. The incidence rates of extremity fractures associated with ATV and dirt bike use were 3.87 and 6.85 per 1000 participant-years. The largest proportion of all fractures occurred in the shoulder (27.2%), followed by the wrist and lower leg (13.8 and 12.4%, respectively). There were no differences in the distribution of the location of fractures among four-wheeled or unspecified ATVs. However, three-wheeled ATVs and dirt bikes had much larger proportion of lower leg, foot, and ankle fractures compared to the other vehicle types. While upper extremity fractures were the most commonly observed in this database, three-wheeled ATVs and dirt bikes showed increased proportions of lower extremity fractures. Several organizations have previously advocated for better regulation of the sale and use of these specific vehicles due to increased risks. These findings help illustrate some of the specific risks associated with these commonly used vehicles.
Frost, Karen L; van Roosmalen, Linda; Bertocci, Gina; Cross, Douglas J
2012-01-01
An overview of the current status of wheelchair transportation safety in fixed route and demand-responsive, non-rail, public transportation vehicles within the US is presented. A description of each mode of transportation is provided, followed by a discussion of the primary issues affecting safety, accessibility, and usability. Technologies such as lifts, ramps, securement systems, and occupant restraint systems, along with regulations and voluntary industry standards have been implemented with the intent of improving safety and accessibility for individuals who travel while seated in their wheeled mobility device (e.g., wheelchair or scooter). However, across both fixed route and demand-responsive transit systems a myriad of factors such as nonuse and misuse of safety systems, oversized wheeled mobility devices, vehicle space constraints, and inadequate vehicle operator training may place wheeled mobility device (WhMD) users at risk of injury even under non-impact driving conditions. Since WhMD-related incidents also often occur during the boarding and alighting process, the frequency of these events, along with factors associated with these events are described for each transit mode. Recommendations for improving WhMD transportation are discussed given the current state of
Progress in Development of the Axel Rovers
NASA Technical Reports Server (NTRS)
Nesnas, Issa A.; Helmick, Daniel M.; Volpe, Richard A.; Abad-Manterola, Pablo; Edlund, Jeffrey A.
2010-01-01
Progress has been made in the development of a family of robotic land vehicles having modular and minimalist design features chosen to impart a combination of robustness, reliability, and versatility. These vehicles at earlier stages of development were described in two previous NASA Tech Briefs articles: "Reconfigurable Exploratory Robotic Vehicles" (NPO-20944), Vol. 25, No. 7 (July 2001), page 56; and "More About Reconfigurable Exploratory Robotic Vehicles" (NPO-30890), Vol. 33, No. 8 (August 2009), page 40. Conceived for use in exploration of the surfaces of Mars and other remote planets, these vehicles could also be adapted to terrestrial applications, including exploration of volcanic craters or other hostile terrain, military reconnaissance, inspection of hazardous sites, and searching for victims of earthquakes, landslides, avalanches, or mining accidents. In addition, simplified versions of these vehicles might be marketable as toys. The most basic module in this family of reconfigurable robots is the Axel rover, which has a cylindrical body with two main wheels and a trailing link. Inside its body are three motors and associated mechanisms for driving the two wheels and for rotating the link 360 around its symmetrical body. The actuated link serves several purposes: It is used as a lever arm to react to the wheels thrust to move Axel in multiple directions. It is used to rotate the Axel housing in order to tilt, to the desired angle, any sensors and instruments mounted on or in the Axel housing. It provides an alternative mobility mode, which is primarily used in its tethered configuration. Turn ing the link into the ground in lieu of driving the wheels causes the Axel housing and wheels to roll as a unit and thereby leads to a tumbling motion along the ground. With a tether mounted around Axel s cylindrical body, the link serves as a winch mechanism to reel and unreel the tether raising and lowering Axel over steep and vertical surfaces (Figure 1). Sensors, computation, and communication modules are also housed inside Axel s body. A pair of stereo vision cameras provides three-dimensional view for autonomous navigation and avoiding obstacles. Inertial sensors determine the tilt of the robot and are used for estimating its motion. In a fully developed version, power would be supplied by rechargeable batteries aboard Axel; at the time of reporting the information for this article, power was supplied from an external source via a cable. In and of itself, the Axel rover is fully capable of traversing and sampling terrains on planetary surfaces. By use of only the two main wheel actuators and the caster link actuator, Axel can be made to follow an arbitrary path, turn in place, and operate upside- down or right-side-up. If operated in a tethered configuration, as shown in Figure 1, it can be made to move down and up a steep crater wall, descend from an overhang to a cave, and ascend from the cave back to the overhang, all by use of the same three actuators. Such tethered operation could be useful in searching for accident victims or missing persons in mines, caves, and rubble piles. Running the tether through the caster link enhances the stability of Axel and provides a restoring force that keeps the link off the ground for the most part during operation on a steep slope. In its extended configuration, two Axel modules can dock to either side of a payload module to form the four wheeled Axel2 rover (Figure 2). Additional payload and Axel modules can dock to either side of the Axel2 to form the Axel3 rover, extending its payload capacity and its mobility capabilities.
Speed Daemon: Experience-Based Mobile Robot Speed Scheduling
2014-10-01
a wheeled mobile robot. Robotica , 20(2): 181–193, 2002. [7] O. Purwin and R. D‘Andrea. Trajectory generation and control for four wheeled...robot on an uneven surface. Robotica , 27(4):481–498, 2009. [9] S. Thrun, M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Diebel, P. Fong, J. Gale
The Holistic Medicine Wheel: An Indigenous Model of Teaching and Learning.
ERIC Educational Resources Information Center
Pewewardy, Cornel
1999-01-01
Based on the Medicine Wheel, a culturally relevant model for holistic teaching and curriculum development in indigenous education is centered on the self, then expands to four domains (mental, spiritual, physical, emotional) operationalized via eight multiple intelligences. Outer circles portray societal values and a global view of the world. A…
NASA Astrophysics Data System (ADS)
Arvidson, R. E.; Bellutta, P.; Calef, F.; Fraeman, A. A.; Garvin, J. B.; Gasnault, O.; Grant, J. A.; Grotzinger, J. P.; Hamilton, V. E.; Heverly, M.; Iagnemma, K. A.; Johnson, J. R.; Lanza, N.; Le Mouélic, S.; Mangold, N.; Ming, D. W.; Mehta, M.; Morris, R. V.; Newsom, H. E.; Rennó, N.; Rubin, D.; Schieber, J.; Sletten, R.; Stein, N. T.; Thuillier, F.; Vasavada, A. R.; Vizcaino, J.; Wiens, R. C.
2014-06-01
Physical properties of terrains encountered by the Curiosity rover during the first 360 sols of operations have been inferred from analysis of the scour zones produced by Sky Crane Landing System engine plumes, wheel touch down dynamics, pits produced by Chemical Camera (ChemCam) laser shots, rover wheel traverses over rocks, the extent of sinkage into soils, and the magnitude and sign of rover-based slippage during drives. Results have been integrated with morphologic, mineralogic, and thermophysical properties derived from orbital data, and Curiosity-based measurements, to understand the nature and origin of physical properties of traversed terrains. The hummocky plains (HP) landing site and traverse locations consist of moderately to well-consolidated bedrock of alluvial origin variably covered by slightly cohesive, hard-packed basaltic sand and dust, with both embedded and surface-strewn rock clasts. Rock clasts have been added through local bedrock weathering and impact ejecta emplacement and form a pavement-like surface in which only small clasts (<5 to 10 cm wide) have been pressed into the soil during wheel passages. The bedded fractured (BF) unit, site of Curiosity's first drilling activity, exposes several alluvial-lacustrine bedrock units with little to no soil cover and varying degrees of lithification. Small wheel sinkage values (<1 cm) for both HP and BF surfaces demonstrate that compaction resistance countering driven-wheel thrust has been minimal and that rover slippage while traversing across horizontal surfaces or going uphill, and skid going downhill, have been dominated by terrain tilts and wheel-surface material shear modulus values.
Lardelli-Claret, Pablo; Luna-Del-Castillo, Juan de Dios; Jiménez-Moleón, José Juan; Rueda-Domínguez, Trinidad; García-Martín, Miguel; Femia-Marzo, Pedro; Bueno-Cavanillas, Aurora
2003-08-01
To assess the strength of association of main driver-dependent risk factors with the risk of causing a collision between vehicles in Spain, from 1990 to 1999. The data for this paired-by-collision, case-control study were obtained from the Spanish Dirección General de Tráfico traffic crash database. The study included all 220284 collisions involving two or more vehicles with four or more wheels, in which only one of the drivers involved committed an infraction. Infractor drivers comprised the case group; noninfractor drivers involved in the same collision were their corresponding paired controls. All driver-dependent factors were associated with the risk of causing a collision. The highest adjusted odds ratio estimates were obtained for sleepiness (64.35; CI, 45.12-91.79), inappropriate speed (28.33; CI, 26.37-30.44), and driving under the influence of alcohol with a positive breath test (22.32; CI, 19.64-25.37). An increase in the number of years in possession of a driving license showed a protective effect, albeit the strength of the effect decreased as age increased. Our results emphasize the urgent need to implement strategies aimed mainly at controlling speeding, sleepiness, and alcohol consumption before driving-the main driver-dependent risk factors for causing a vehicle collision.
2015-12-01
angular momentum is simply the scalar value projected along the axis of rotation of the momentum wheel (see Figure 1). Since reaction wheels are fixed ...CMGs generate torque by gimbaling a momentum wheel rotating at a nominally fixed rate [2]. The torque output of a CMG is the cross product of the...notably the fixed skew angle of the original system. The goal of this research is to build upon the previous redesign efforts and develop a four-CMG HIL
NASA Astrophysics Data System (ADS)
Jing, Lin; Han, Liangliang
2017-12-01
A comprehensive dynamic finite-element simulation method was proposed to study the wheel-rail impact response induced by a single wheel flat based on a 3-D rolling contact model, where the influences of the structural inertia, strain rate effect of wheel-rail materials and thermal stress due to the wheel-rail sliding friction were considered. Four different initial conditions (i.e. pure mechanical loading plus rate-independent, pure mechanical loading plus rate-dependent, thermo-mechanical loading plus rate-independent, and thermo-mechanical loading plus rate-dependent) were involved into explore the corresponding impact responses in term of the vertical impact force, von-Mises equivalent stress, equivalent plastic strain and shear stress. Influences of train speed, flat length and axle load on the flat-induced wheel-rail impact response were discussed, respectively. The results indicate that the maximum thermal stresses are occurred on the tread of the wheel and on the top surface of the middle rail; the strain rate hardening effect contributes to elevate the von-Mises equivalent stress and restrain the plastic deformation; and the initial thermal stress due to the sliding friction will aggravate the plastic deformation of wheel and rail. Besides, the wheel-rail impact responses (i.e. impact force, von-Mises equivalent stress, equivalent plastic strain, and XY shear stress) induced by a flat are sensitive to the train speed, flat length and axle load.
NASA Astrophysics Data System (ADS)
Uzzal, R. U. A.; Ahmed, A. K. W.; Bhat, R. B.
2013-11-01
This paper presents dynamic contact loads at wheel-rail contact point in a three-dimensional railway vehicle-track model as well as dynamic response at vehicle-track component levels in the presence of wheel flats. The 17-degrees of freedom lumped mass vehicle is modelled as a full car body, two bogies and four wheelsets, whereas the railway track is modelled as two parallel Timoshenko beams periodically supported by lumped masses representing the sleepers. The rail beam is also supported by nonlinear spring and damper elements representing the railpad and ballast. In order to ensure the interactions between the railpads, a shear parameter beneath the rail beams has also been considered into the model. The wheel-rail contact is modelled using nonlinear Hertzian contact theory. In order to solve the coupled partial and ordinary differential equations of the vehicle-track system, modal analysis method is employed. Idealised Haversine wheel flats with the rounded corner are included in the wheel-rail contact model. The developed model is validated with the existing measured and analytical data available in the literature. The nonlinear model is then employed to investigate the wheel-rail impact forces that arise in the wheel-rail interface due to the presence of wheel flats. The validated model is further employed to investigate the dynamic responses of vehicle and track components in terms of displacement, velocity, and acceleration in the presence of single wheel flat.
Hurst, Howard Thomas; Sinclair, Jonathan; Atkins, Stephen; Rylands, Lee; Metcalfe, John
2017-07-01
This study aimed to investigate the influence of different mountain bike wheel diameters on muscle activity and whether larger diameter wheels attenuate muscle vibrations during cross-country riding. Nine male competitive mountain bikers (age 34.7 ± 10.7 years; stature 177.7 ± 5.6 cm; body mass 73.2 ± 8.6 kg) participated in the study. Riders performed one lap at race pace on 26, 27.5 and 29 inch wheeled mountain bikes. sEMG and acceleration (RMS) were recorded for the full lap and during ascent and descent phases at the gastrocnemius, vastus lateralis, biceps brachii and triceps brachii. No significant main effects were found by wheel size for each of the four muscle groups for sEMG or acceleration during the full lap and for ascent and descent (P > .05). When data were analysed between muscle groups, significant differences were found between biceps brachii and triceps brachii (P < .05) for all wheel sizes and all phases of the lap with the exception of for the 26 inch wheel during the descent. Findings suggest wheel diameter has no influence on muscle activity and vibration during mountain biking. However, more activity was observed in the biceps brachii during 26 inch wheel descending. This is possibly due to an increased need to manoeuvre the front wheel over obstacles.
Hiramatsu, Layla; Garland, Theodore
2018-04-20
Physical activity is an important component of energy expenditure, and acute changes in activity can lead to energy imbalances that affect body composition, even under ad libitum food availability. One example of acute increases in physical activity is four replicate, selectively-bred High Runner (HR) lines of mice that voluntarily run ~3-fold more wheel revolutions per day over 6-day trials and are leaner, as compared with four non-selected control (C) lines. We expected that voluntary exercise would increase food consumption, build lean mass, and reduce fat mass, but that these effects would likely differ between HR and C lines or between the sexes. We compared wheel running, cage activity, food consumption, and body composition between HR and C lines for young adults of both sexes, and examined interrelationships of those traits across 6 days of wheel access. Before wheel testing, HR mice weighed less than C, primarily due to reduced lean mass, and females were lighter than males, entirely due to lower lean mass. Over 6 days of wheel access, all groups tended to gain small amounts of lean mass, but lose fat mass. HR mice lost less fat than C mice, in spite of much higher activity levels, resulting in convergence to a fat mass of ~1.7 g for all 4 groups. HR mice consumed more food than C mice (with body mass as a covariate), even accounting for their higher activity levels. No significant sex-by-linetype interactions were observed for any of the foregoing traits. Structural equation models showed that the four sex-by-linetype groups differed considerably in the complex phenotypic architecture of these traits. Interrelationships among traits differed by genetic background and sex, lending support to the idea that recommendations regarding weight management, diet, and exercise may need to be tailored to the individual level. Copyright © 2018 Elsevier Inc. All rights reserved.
High-speed trains subject to abrupt braking
NASA Astrophysics Data System (ADS)
Tran, Minh Thi; Ang, Kok Keng; Luong, Van Hai; Dai, Jian
2016-12-01
The dynamic response of high-speed train subject to braking is investigated using the moving element method. Possible sliding of wheels over the rails is accounted for. The train is modelled as a 15-DOF system comprising of a car body, two bogies and four wheels interconnected by spring-damping units. The rail is modelled as a Euler-Bernoulli beam resting on a two-parameter elastic damped foundation. The interaction between the moving train and track-foundation is accounted for through the normal and tangential wheel-rail contact forces. The effects of braking torque, wheel-rail contact condition, initial train speed and severity of railhead roughness on the dynamic response of the high-speed train are investigated. For a given initial train speed and track irregularity, the study revealed that there is an optimal braking torque that would result in the smallest braking distance with no occurrence of wheel sliding, representing a good compromise between train instability and safety.
Machinability of cast commercial titanium alloys.
Watanabe, I; Kiyosue, S; Ohkubo, C; Aoki, T; Okabe, T
2002-01-01
This study investigated the machinability of cast orthopedic titanium (metastable beta) alloys for possible application to dentistry and compared the results with those of cast CP Ti, Ti-6Al-4V, and Ti-6Al-7Nb, which are currently used in dentistry. Machinability was determined as the amount of metal removed with the use of an electric handpiece and a SiC abrasive wheel turning at four different rotational wheel speeds. The ratios of the amount of metal removed and the wheel volume loss (machining ratio) were also evaluated. Based on these two criteria, the two alpha + beta alloys tested generally exhibited better results for most of the wheel speeds compared to all the other metals tested. The machinability of the three beta alloys employed was similar or worse, depending on the speed of the wheel, compared to CP Ti. Copyright 2002 Wiley Periodicals, Inc.
The analysis of the accuracy of the wheel alignment inspection method on the side-slip plate stand
NASA Astrophysics Data System (ADS)
Gajek, A.; Strzępek, P.
2016-09-01
The article presents the theoretical basis and the results of the examination of the wheel alignment inspection method on the slide slip plate stand. It is obligatory test during periodic technical inspection of the vehicle. The measurement is executed in the dynamic conditions. The dependence between the lateral displacement of the plate and toe-in of the tested wheels has been shown. If the diameter of the wheel rim is known then the value of the toe-in can be calculated. The comparison of the toe-in measurements on the plate stand and on the four heads device for the wheel alignment inspection has been carried out. The accuracy of the measurements and the influence of the conditions of the tests on the plate stand (the way of passing through the plate) were estimated. The conclusions about the accuracy of this method are presented.
Cryogenic Motor Enhancement for the NIRISS Instrument on the James Webb Space Telescope
NASA Astrophysics Data System (ADS)
Aldridge, David; Gentilhomme, Macso; Gibson, Andrew; Cameron, Peter; McColgan, Ashley; Dhanji, Zul; Lambros, Scott; Anderson, Mike
2015-09-01
Initial testing of the JWST NIRISS Dual Wheel Mechanism showed unsatisfactory life from the motors used to drive the individual wheel components. An investigation uncovered that theinternal friction had increased due to wear at the lubricated interface between the motor gearhead planetary gears and the planet gear retaining pins, reducing output torque. Work was undertaken to improve the life of this interface. Several design options were selected for development. A successful redesign was qualified with a larger gearhead, modified to use ball-bearings for planetary gear support. To further enhance life, all internal lubrication was changed to sputtered MoS2. PGM- HT cages were also employed for planetary and motor rotor bearings.
Use of the dispersion ratio in estimating the nonlinear properties of an object of diagnosis
NASA Technical Reports Server (NTRS)
Balitskiy, F. Y.; Genkin, M. D.; Ivanova, M. A.; Kobrinskiy, A. A.; Sokolova, A. G.
1973-01-01
An experimental investigation for estimating the nonlinearity of a diagnostic object was carried out on a single-stage, spur gear reducer. The linearity of the properties of spur gearing (including the linearity of its mode of operation) was tested. Torsional vibrations of the driven wheel and transverse (to the meshing plane) vibrations of the drive wheel on its support were taken as the two outputs of the object to be analyzed. The results of the investigation showed that the degree of nonlinearity of a reducing gear is essentially connected with its operating mode, so that different mathematical models of it can correspond to different values of the system parameters.
PD-like controller for delayed bilateral teleoperation of wheeled robots
NASA Astrophysics Data System (ADS)
Slawiñski, E.; Mut, V.; Santiago, D.
2016-08-01
This paper proposes a proportional derivative (PD)-like controller applied to the delayed bilateral teleoperation of wheeled robots with force feedback in face of asymmetric and varying-time delays. In contrast to bilateral teleoperation of manipulator robots, in these systems, there is a mismatch between the models of the master and slave (mobile robot), problem that is approached in this work, where the system stability is analysed. From this study, it is possible to infer the control parameters, depending on the time delay, necessary to assure stability. Finally, the performance of the delayed teleoperation system is evaluated through tests where a human operator drives a 3D simulator as well as a mobile robot for pushing objects.
Development of crawler type device using new measuring system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Maruyama, T.; Sasaki, T.; Yagi, T.
1995-08-01
This paper reports the development and field application of a new device which examine shell to shell weld joints of RPV. In a BWR type nuclear power plant, there is narrow space around the Reactor Pressure Vessel (RPV) because RPV is enclosed by the Reactor Shield Wall (RSW) and thermal insulations. The developed device is characterized by a new position measuring system and magnet wheels for driving. The new position measuring system uses laser beam and ultrasonic wave. The magnet wheels make the device travel freely in the narrow space between RPV and insulation. This device is tested on mock-upsmore » and applied examination of RPVs to verify field applicability.« less
Small Dog-Like Quadruped Robot Powered With McKibben Air Muscles
NASA Technical Reports Server (NTRS)
Lacy, John M.
2005-01-01
Planetary surface robotic exploration is typically done by wheeled robots, which are limited to traveling on relatively flat terrain. The goal of this project was to design a bio-inspired robot to mimic the movements and agility of animals to navigate in various types of natural terrain, such as found on Mars. My objective for the summer was to design and construct a quadruped robot with a locomotion gait similar to a small dog. The design includes four legs and an actuated flexible spine for added mobility and performance; each leg has three joints - hip, knee, and ankle. I created 3D CAD models and machined the pieces for the assemblies of each part. One of the key areas of concern is weight vs. power issues for the driving force of locomotion. To maximize the power-to-weight ratio, I used McKibben air muscles to drive the motion of the quadruped. The prototype went through several iterations to analyze performance, with adjustments made to each assembly. We expect the final working prototype will be capable of standing unassisted and pronking into the air without active control. It will serve as a research platform for future bio-inspired control algorithms.
A Novel GMM-Based Behavioral Modeling Approach for Smartwatch-Based Driver Authentication.
Yang, Ching-Han; Chang, Chin-Chun; Liang, Deron
2018-03-28
All drivers have their own distinct driving habits, and usually hold and operate the steering wheel differently in different driving scenarios. In this study, we proposed a novel Gaussian mixture model (GMM)-based method that can improve the traditional GMM in modeling driving behavior. This new method can be applied to build a better driver authentication system based on the accelerometer and orientation sensor of a smartwatch. To demonstrate the feasibility of the proposed method, we created an experimental system that analyzes driving behavior using the built-in sensors of a smartwatch. The experimental results for driver authentication-an equal error rate (EER) of 4.62% in the simulated environment and an EER of 7.86% in the real-traffic environment-confirm the feasibility of this approach.
NASA Astrophysics Data System (ADS)
Kurzeck, Bernhard; Heckmann, Andreas; Wesseler, Christoph; Rapp, Matthias
2014-05-01
Future high-speed trains are the main focus of the DLR research project Next Generation Train. One central point of the research activities is the development of mechatronic track guidance for the two-axle intermediate wagons with steerable, individually powered, independently rotating wheels. The traction motors hereby fulfil two functions; they concurrently are traction drives and steering actuators. In this paper, the influence of the track properties - line layout and track irregularities - on the performance requirements for the guidance actuator is investigated using multi-body models in SIMPACK®. In order to compromise on the design conflict between low wheel wear and low steering torque, the control parameters of the mechatronic track guidance are optimised using the DLR in-house software MOPS. Besides the track irregularities especially the increasing inclination at transition curves defines high actuator requirements due to gyroscopic effects at high speed. After introducing a limiter for the actuating variables into the control system, a good performance is achieved.
NASA Astrophysics Data System (ADS)
Hsieh, Long-Chang; Chen, Tzu-Hsia
2017-12-01
Traditionally, the mechanism of wheelchair with lifting and standing functions has 2 degrees of freedom, and used 2 power sources to perform these 2 motion function. The purpose of this paper is to invent new wheelchair with 1 degree of freedom to perform these 2 motion functions. Hence, we can use only 1 power source to drive the mechanism to achieve lifting and standing motion functions. The new design has the advantages of simple operation, more stability, and more safety. For traditional standing wheelchair, its’ centre of gravity moves forward when standing up and it needs 2 auxiliary wheels to prevent dumping. In this paper, by using the checklist method of Osborn, the wheelchair with 1 DOF is invented to perform lifting and standing functions. The centre of gravity of this new wheelchair after standing up still located between the front and rear wheels, no auxiliary wheels needed. Finally, the prototype is manufactured to verify the theoretical results.
40 CFR 600.002-85 - Definitions.
Code of Federal Regulations, 2011 CFR
2011-07-01
... differential (or equivalent) turns for each turn of the drive wheels. (29) “Auxiliary Emission Control Device... miles traveled by an automobile or group of automobiles per gallon of gasoline or diesel fuel consumed as computed in § 600.113 or § 600.207 or (ii) the equivalent petroleum-based fuel economy for an...
Solar panels make really good cents.
Hancock, Bobby
2009-02-01
Bobby Hancock, senior director of facility management for the Bloorview Kids Rehab facility in Toronto, describes how features such as a 37 kW penthouse roof solar array, thermal glazed windows, rainwater harvesting, and air handling units with variable speed drives and heat recovery wheels, contribute to the "green" credentials of Canada's largest children's rehabilitation centre.
Mobile Business Retailing: Driving Experiential Learning on Campus
ERIC Educational Resources Information Center
Fischbach, Sarah; Guerrero, Veronica
2018-01-01
Engaging students in the classroom is a struggle all faculty face especially in the age of modern technology. This article proposes a novel approach to engage and motivate students through the mobile business "on wheels" marketing concept. The growth in mobile business retailing (e.g., food trucks, mobile dog groomers, etc.) is an…
Code of Federal Regulations, 2010 CFR
2010-10-01
..., manufacturer, and model year are used as defined in section 501 of the Act. (2) The term automobile is used as..., one which is not domestically manufactured but which is imported in the 1980 model year or thereafter by a manufacturer whose principal place of business is in the United States. 4-wheel drive, general...
The Selection of a Van Lift or a Scooter.
ERIC Educational Resources Information Center
Stevens, John H.
1990-01-01
This newsletter issue describes 3-wheeled scooters and van lifts that can assist a person with a disability to drive independently or have access to transportation. The section on van lifts compares hydraulic lifts and electric lifts, lists manufacturers, and offers an "assessment quiz" outlining factors to consider in selecting a van…
Quinn, Patrick D.; Harden, K. Paige
2013-01-01
Drunk driving, a major contributor to alcohol-related mortality, has been linked to a variety of other alcohol-related (e.g., Alcohol Dependence, early age at first drink) and non-alcohol-related externalizing behaviors. In a sample of 517 same-sex twin pairs from the National Longitudinal Study of Adolescent Health, we examined three conceptualizations of the etiology of drunk driving in relation to other externalizing behaviors. A series of behavioral-genetic models found consistent evidence for drunk driving as a manifestation of genetic vulnerabilities toward a spectrum of alcohol-related and non-alcohol-related externalizing behaviors. Most notably, multidimensional scaling analyses produced a genetic “map” with drunk driving located near its center, supporting the strength of drunk driving’s genetic relations with a broad range of externalizing behaviors. In contrast, non-shared environmental associations with drunk driving were weaker and more diffuse. Drunk driving may be a manifestation of genetic vulnerabilities toward a broad externalizing spectrum. PMID:24128260
Analysis of the relationship between errors in manufacture of slot connections and gear drive noises
NASA Technical Reports Server (NTRS)
Bodronosov, M. K.
1973-01-01
On the basis of experimental research, an analysis was carried out of the effect of certain errors in manufacture of straight-barrel slots on the noise characteristics of gear drives. In carrying out the experiments, the gear crowns of the test wheels were held immovable, and only the geometric dimensions of the slots and the mutual locations of the individual elements were varied. The investigation of the effect of each factor was carried out under otherwise equal conditions, on 34:56 cog ratio gear pairs (m = 2mm), made of 40 C steel, with a gear crown accuracy of 7 X, machining fineness 7, at a speed v = 7.1 m/sec. The number of slots was 6. The clearance in slot pairs in dimension D, equal to 0.015, 0.05, 0.08 and 0.110 mm, was obtained by change in the outer diameter of the spindle by means of polishing. The results of the tests of the experimental wheels showed that their noise level increases with increase in clearance.
Solar collector mounting and support apparatus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutchison, J.A.
1981-12-22
A solar collector system is described of the type having a movable surface for receiving solar radiation having improved means for rotatably supporting the movable surface and for rotating the collector surface. A support axle for the collector includes a ball at one end which is carried within a cylindrical sleeve in the solar collector to support the weight of the collector. A torque transmitting arm comprising a flexible flat strip is connected at one end to the axle and at the other end to the collector surface. An improved rotational drive mechanism includes a first sprocket wheel carried onmore » the axle and a second sprocket wheel supported on a support pylon with a drive chain engaging both sprockets. A double acting piston also supported by the pylon is coupled to the chain so that the chain may be driven by a hydraulic control system to rotate the collector surfaces as required. An improved receiver tube support ring is also provided for use with the improved mounting and support apparatus to improve overall efficiency by reducing thermal losses.« less
Handling performance control for hybrid 8-wheel-drive vehicle and simulation verification
NASA Astrophysics Data System (ADS)
Ni, Jun; Hu, Jibin
2016-08-01
In order to improve handling performance of a hybrid 8-Wheel-Drive vehicle, the handling performance control strategy was proposed. For armoured vehicle, besides handling stability in high speed, the minimum steer radius in low speed is also a key tactical and technical index. Based on that, the proposed handling performance control strategy includes 'Handling Stability' and 'Radius Minimization' control modes. In 'Handling Stability' control mode, 'Neutralsteer Radio' is defined to adjust the steering characteristics to satisfy different demand in different speed range. In 'Radius Minimization' control mode, the independent motors are controlled to provide an additional yaw moment to decrease the minimum steer radius. In order to verify the strategy, a simulation platform was built including engine and continuously variable transmission systems, generator and battery systems, independent motors and controllers systems, vehicle dynamic and tyre mechanical systems. The simulation results show that the handling performance of the vehicle can be enhanced significantly, and the minimum steer radius can be decreased by 20% which is significant improvement compared to the common level of main battle armoured vehicle around the world.
Creation of the Naturalistic Engagement in Secondary Tasks (NEST) distracted driving dataset.
Owens, Justin M; Angell, Linda; Hankey, Jonathan M; Foley, James; Ebe, Kazutoshi
2015-09-01
Distracted driving has become a topic of critical importance to driving safety research over the past several decades. Naturalistic driving data offer a unique opportunity to study how drivers engage with secondary tasks in real-world driving; however, the complexities involved with identifying and coding relevant epochs of naturalistic data have limited its accessibility to the general research community. This project was developed to help address this problem by creating an accessible dataset of driver behavior and situational factors observed during distraction-related safety-critical events and baseline driving epochs, using the Strategic Highway Research Program 2 (SHRP2) naturalistic dataset. The new NEST (Naturalistic Engagement in Secondary Tasks) dataset was created using crashes and near-crashes from the SHRP2 dataset that were identified as including secondary task engagement as a potential contributing factor. Data coding included frame-by-frame video analysis of secondary task and hands-on-wheel activity, as well as summary event information. In addition, information about each secondary task engagement within the trip prior to the crash/near-crash was coded at a higher level. Data were also coded for four baseline epochs and trips per safety-critical event. 1,180 events and baseline epochs were coded, and a dataset was constructed. The project team is currently working to determine the most useful way to allow broad public access to the dataset. We anticipate that the NEST dataset will be extraordinarily useful in allowing qualified researchers access to timely, real-world data concerning how drivers interact with secondary tasks during safety-critical events and baseline driving. The coded dataset developed for this project will allow future researchers to have access to detailed data on driver secondary task engagement in the real world. It will be useful for standalone research, as well as for integration with additional SHRP2 data to enable the conduct of more complex research. Copyright © 2015 Elsevier Ltd and National Safety Council. All rights reserved.
14 CFR 25.511 - Ground load: unsymmetrical loads on multiple-wheel units.
Code of Federal Regulations, 2011 CFR
2011-01-01
... effects of any seesaw motion of the truck during the landing impact must be considered in determining the... gear unit using four or more wheels per unit, must be considered; and (2) The ground reactions must be... shock strut, a rational distribution of the ground reactions between the deflated and inflated tires...
14 CFR 25.511 - Ground load: unsymmetrical loads on multiple-wheel units.
Code of Federal Regulations, 2010 CFR
2010-01-01
... effects of any seesaw motion of the truck during the landing impact must be considered in determining the... gear unit using four or more wheels per unit, must be considered; and (2) The ground reactions must be... shock strut, a rational distribution of the ground reactions between the deflated and inflated tires...
ERIC Educational Resources Information Center
Li, Jie; Alagaraja, Meera
2007-01-01
The authors suggest a conceptual framework for developing CU's in the Chinese organizational context. We reviewed literature on existing conceptual frameworks and chose the CU wheel as proposed by Prince and Stewart. Four core processes identified in the CU wheel were realigned and readjusted in developing our framework of Corporate University in…
Comparing spatially static and dynamic vibrotactile take-over requests in the driver seat.
Petermeijer, S M; Cieler, S; de Winter, J C F
2017-02-01
Vibrotactile stimuli can be effective as warning signals, but their effectiveness as directional take-over requests in automated driving is yet unknown. This study aimed to investigate the correct response rate, reaction times, and eye and head orientation for static versus dynamic directional take-over requests presented via vibrating motors in the driver seat. In a driving simulator, eighteen participants performed three sessions: 1) a session involving no driving (Baseline), 2) driving a highly automated car without additional task (HAD), and 3) driving a highly automated car while performing a mentally demanding task (N-Back). Per session, participants received four directional static (in the left or right part of the seat) and four dynamic (moving from one side towards the opposite left or right of the seat) take-over requests via two 6×4 motor matrices embedded in the seat back and bottom. In the Baseline condition, participants reported whether the cue was left or right, and in the HAD and N-Back conditions participants had to change lanes to the left or to the right according to the directional cue. The correct response rate was operationalized as the accuracy of the self-reported direction (Baseline session) and the accuracy of the lane change direction (HAD & N-Back sessions). The results showed that the correct response rate ranged between 94% for static patterns in the Baseline session and 74% for dynamic patterns in the N-Back session, although these effects were not statistically significant. Steering wheel touch and steering input reaction times were approximately 200ms faster for static patterns than for dynamic ones. Eye tracking results revealed a correspondence between head/eye-gaze direction and lane change direction, and showed that head and eye-gaze movements where initiated faster for static vibrations than for dynamic ones. In conclusion, vibrotactile stimuli presented via the driver seat are effective as warnings, but their effectiveness as directional take-over requests may be limited. The present study may encourage further investigation into how to get drivers safely back into the loop. Copyright © 2016 Elsevier Ltd. All rights reserved.
Opportunity Rolls Free Again (Left Front Wheel)
NASA Technical Reports Server (NTRS)
2006-01-01
This animated piece illustrates the recent escape of NASA's Mars Exploration Rover Opportunity from dangerous, loose material on the vast plains leading to the rover's next long-term target, 'Victoria Crater.' A series of images of the rover's left front wheel, taken by the front hazard-avoidance camera, make up this brief movie. It chronicles the challenge Opportunity faced to free itself from a ripple dubbed 'Jammerbugt.' The rover's wheels became partially embedded in the ripple at the end of a drive on Opportunity's 833rd Martian day, or sol (May 28, 2006). The images in this clip were taken on sols 836 through 841 (May 31 through June 5, 2006). Scientists and engineers who had been elated at the meters of progress the rover had been making in earlier drives were happy for even centimeters of advance per sol as they maneuvered their explorer through the slippery material of Jammerbugt. The wheels reached solid footing on a rock outcrop on the final sol of this sequence. The science and engineering teams appropriately chose the ripple's informal from name the name of a bay on the north coast of Denmark. Jammerbugt, or Jammerbugten, loosely translated, means Bay of Lamentation or Bay of Wailing. The shipping route from the North Sea to the Baltic passes Jammerbugt on its way around the northern tip of Jutland. This has always been an important trade route and many ships still pass by the bay. The prevailing wind directions are typically northwest to southwest with the strongest winds and storms tending to blow from the northwest. A northwesterly wind will blow straight into the Jammerbugt, towards shore. Therefore, in the age of sail, many ships sank there during storms. The shore is sandy, but can have strong waves, so running aground was very dangerous even though there are no rocks. Fortunately, Opportunity weathered its 'Jammerbugt' and is again on its way toward Victoria Crater.Opportunity Rolls Free Again (Right Front Wheel)
NASA Technical Reports Server (NTRS)
2006-01-01
This animated piece illustrates the recent escape of NASA's Mars Exploration Rover Opportunity from dangerous, loose material on the vast plains leading to the rover's next long-term target, 'Victoria Crater.' A series of images of the rover's right front wheel, taken by the front hazard-avoidance camera, make up this brief movie. It chronicles the challenge Opportunity faced to free itself from a ripple dubbed 'Jammerbugt.' The rover's wheels became partially embedded in the ripple at the end of a drive on Opportunity's 833rd Martian day, or sol (May 28, 2006). The images in this clip were taken on sols 836 through 841 (May 31 through June 5, 2006). Scientists and engineers who had been elated at the meters of progress the rover had been making in earlier drives were happy for even centimeters of advance per sol as they maneuvered their explorer through the slippery material of Jammerbugt. The wheels reached solid footing on a rock outcrop on the final sol of this sequence. The science and engineering teams appropriately chose the ripple's informal from name the name of a bay on the north coast of Denmark. Jammerbugt, or Jammerbugten, loosely translated, means Bay of Lamentation or Bay of Wailing. The shipping route from the North Sea to the Baltic passes Jammerbugt on its way around the northern tip of Jutland. This has always been an important trade route and many ships still pass by the bay. The prevailing wind directions are typically northwest to southwest with the strongest winds and storms tending to blow from the northwest. A northwesterly wind will blow straight into the Jammerbugt, towards shore. Therefore, in the age of sail, many ships sank there during storms. The shore is sandy, but can have strong waves, so running aground was very dangerous even though there are no rocks. Fortunately, Opportunity weathered its 'Jammerbugt' and is again on its way toward Victoria Crater.Sohlberg, McKay Moore; Fickas, Stephen; Lemoncello, Rik; Hung, Pei-Fang
2009-01-01
To develop a theoretical, functional model of community navigation for individuals with cognitive impairments: the Activities of Community Transportation (ACTs). Iterative design using qualitative methods (i.e. document review, focus groups and observations). Four agencies providing travel training to adults with cognitive impairments in the USA participated in the validation study. A thorough document review and series of focus groups led to the development of a comprehensive model (ACTs Wheels) delineating the requisite steps and skills for community navigation. The model was validated and updated based on observations of 395 actual trips by travellers with navigational challenges from the four participating agencies. Results revealed that the 'ACTs Wheel' models were complete and comprehensive. The 'ACTs Wheels' represent a comprehensive model of the steps needed to navigate to destinations using paratransit and fixed-route public transportation systems for travellers with cognitive impairments. Suggestions are made for future investigations of community transportation for this population.
Adams-Based Rover Terramechanics and Mobility Simulator - ARTEMIS
NASA Technical Reports Server (NTRS)
Trease, Brian P.; Lindeman, Randel A.; Arvidson, Raymond E.; Bennett, Keith; VanDyke, Lauren P.; Zhou, Feng; Iagnemma, Karl; Senatore, Carmine
2013-01-01
The Mars Exploration Rovers (MERs), Spirit and Opportunity, far exceeded their original drive distance expectations and have traveled, at the time of this reporting, a combined 29 kilometers across the surface of Mars. The Rover Sequencing and Visualization Program (RSVP), the current program used to plan drives for MERs, is only a kinematic simulator of rover movement. Therefore, rover response to various terrains and soil types cannot be modeled. Although sandbox experiments attempt to model rover-terrain interaction, these experiments are time-intensive and costly, and they cannot be used within the tactical timeline of rover driving. Imaging techniques and hazard avoidance features on MER help to prevent the rover from traveling over dangerous terrains, but mobility issues have shown that these methods are not always sufficient. ARTEMIS, a dynamic modeling tool for MER, allows planned drives to be simulated before commands are sent to the rover. The deformable soils component of this model allows rover-terrain interactions to be simulated to determine if a particular drive path would take the rover over terrain that would induce hazardous levels of slip or sink. When used in the rover drive planning process, dynamic modeling reduces the likelihood of future mobility issues because high-risk areas could be identified before drive commands are sent to the rover, and drives planned over these areas could be rerouted. The ARTEMIS software consists of several components. These include a preprocessor, Digital Elevation Models (DEMs), Adams rover model, wheel and soil parameter files, MSC Adams GUI (commercial), MSC Adams dynamics solver (commercial), terramechanics subroutines (FORTRAN), a contact detection engine, a soil modification engine, and output DEMs of deformed soil. The preprocessor is used to define the terrain (from a DEM) and define the soil parameters for the terrain file. The Adams rover model is placed in this terrain. Wheel and soil parameter files can be altered in the respective text files. The rover model and terrain are viewed in Adams View, the GUI for ARTEMIS. The Adams dynamics solver calls terramechanics subroutines in FORTRAN containing the Bekker-Wong equations.
A New Superalloy Enabling Heavy Duty Gas Turbine Wheels for Improved Combined Cycle Efficiency
DOE Office of Scientific and Technical Information (OSTI.GOV)
Detor, Andrew; DiDomizio, Richard; McAllister, Don
The drive to increase combined cycle turbine efficiency from 62% to 65% for the next-generation advanced cycle requires a new heavy duty gas turbine wheel material capable of operating at 1200°F and above. Current wheel materials are limited by the stability of their major strengthening phase (gamma double prime), which coarsens at temperatures approaching 1200°F, resulting in a substantial reduction in strength. More advanced gamma prime superalloys, such as those used in jet engine turbine disks, are also not suitable due to size constraints; the gamma prime phase overages during the slow cooling rates inherent in processing thick-section turbine wheels.more » The current program addresses this need by screening two new alloy design concepts. The first concept exploits a gamma prime/gamma double prime coprecipitation reaction. Through manipulation of alloy chemistry, coprecipitation is controlled such that gamma double prime is used only to slow the growth of gamma prime during slow cooling, preventing over-aging, and allowing for subsequent heat treatment to maximize strength. In parallel, phase field modeling provides fundamental understanding of the coprecipitation reaction. The second concept uses oxide dispersion strengthening to improve on two existing alloys that exhibit excellent hold time fatigue crack growth resistance, but have insufficient strength to be considered for gas turbine wheels. Mechanical milling forces the dissolution of starting oxide powders into a metal matrix allowing for solid state precipitation of new, nanometer scale oxides that are effective at dispersion strengthening.« less
Beck, Donghyun; Lee, Minho; Park, Woojin
2017-12-01
This study conducted a driving simulator experiment to comparatively evaluate three in-vehicle side view displays layouts for camera monitor systems (CMS) and the traditional side view mirror arrangement. The three layouts placed two electronic side view displays near the traditional mirrors positions, on the dashboard at each side of the steering wheel and on the centre fascia with the two displays joined side-by-side, respectively. Twenty-two participants performed a time- and safety-critical driving task that required rapidly gaining situation awareness through the side view displays/mirrors and making a lane change to avoid collision. The dependent variables were eye-off-the-road time, response time, and, ratings of perceived workload, preference and perceived safety. Overall, the layout placing the side view displays on the dashboard at each side of the steering wheel was found to be the best. The results indicated that reducing eye gaze travel distance and maintaining compatibility were both important for the design of CMS displays layout. Practitioner Summary: A driving simulator study was conducted to comparatively evaluate three in-vehicle side view displays layouts for camera monitor systems (CMS) and the traditional side view mirror arrangement in critical lane changing situation. Reducing eye movement and maintaining compatibility were found to be both important for the ergonomics design of CMS displays layout.
Path-following control of wheeled planetary exploration robots moving on deformable rough terrain.
Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren
2014-01-01
The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip.
Path-Following Control of Wheeled Planetary Exploration Robots Moving on Deformable Rough Terrain
Ding, Liang; Gao, Hai-bo; Deng, Zong-quan; Li, Zhijun; Xia, Ke-rui; Duan, Guang-ren
2014-01-01
The control of planetary rovers, which are high performance mobile robots that move on deformable rough terrain, is a challenging problem. Taking lateral skid into account, this paper presents a rough terrain model and nonholonomic kinematics model for planetary rovers. An approach is proposed in which the reference path is generated according to the planned path by combining look-ahead distance and path updating distance on the basis of the carrot following method. A path-following strategy for wheeled planetary exploration robots incorporating slip compensation is designed. Simulation results of a four-wheeled robot on deformable rough terrain verify that it can be controlled to follow a planned path with good precision, despite the fact that the wheels will obviously skid and slip. PMID:24790582
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-22
... recall responsibilities of 49 CFR part 573 for the affected vehicles. However, a decision on this... vehicle's tires, up to a total of four tires, is equal to or less than either the pressure 25 percent...; Summary of Honda's Analysis and Arguments A total of approximately 848 wheels, or 212 complete wheel sets...
Open-field behavior of house mice selectively bred for high voluntary wheel-running.
Bronikowski, A M; Carter, P A; Swallow, J G; Girard, I A; Rhodes, J S; Garland, T
2001-05-01
Open-field behavioral assays are commonly used to test both locomotor activity and emotionality in rodents. We performed open-field tests on house mice (Mus domesticus) from four replicate lines genetically selected for high voluntary wheel-running for 22 generations and from four replicate random-bred control lines. Individual mice were recorded by video camera for 3 min in a 1-m2 open-field arena on 2 consecutive days. Mice from selected lines showed no statistical differences from control mice with respect to distance traveled, defecation, time spent in the interior, or average distance from the center of the arena during the trial. Thus, we found little evidence that open-field behavior, as traditionally defined, is genetically correlated with wheel-running behavior. This result is a useful converse test of classical studies that report no increased wheel-running in mice selected for increased open-field activity. However, mice from selected lines turned less in their travel paths than did control-line mice, and females from selected lines had slower travel times (longer latencies) to reach the wall. We discuss these results in the context of the historical open-field test and newly defined measures of open-field activity.
Investigation of an alleged mechanism of finger injury in an automobile crash.
Stacey, Stephen; Kent, Richard
2006-07-01
This investigation centers on the case of an adult male whose finger was allegedly amputated by the steering wheel of his car during a crash. The subject claimed to have been driving with his left index finger inserted through a hole in the spoke of his steering wheel and was subsequently involved in an offset frontal collision with a tree. The finger was found to be cleanly severed at the mid-shaft of the proximal phalanx after the crash. This injury was alleged to have been caused by inertial loading from the rotation of the steering wheel during the crash. To determine whether this injury mechanism was plausible, three laboratory tests representing distinct loading scenarios were carried out with postmortem human surrogates loaded dynamically by the subject's steering wheel. It was found that the inertial loads generated in this loading scenario are insufficient to amputate the finger. Additionally, artificially constraining the finger to force an amputation to occur revealed that a separation at the proximal interphalangeal joint occurs rather than a bony fracture of the proximal phalanx. Based on these biomechanical tests, it can be concluded that the subject's injury did not occur during the automobile crash in question. Furthermore, it can be shown that the injury was self-inflicted to fraudulently claim on an insurance policy.
Testing of Lightweight Fuel Cell Vehicles System at Low Speeds with Energy Efficiency Analysis
NASA Astrophysics Data System (ADS)
Mustaffa, Muhammad Rizuwan B.; Mohamed, Wan Ahmad Najmi B. Wan
2013-12-01
A fuel cell vehicle power train mini test bench was developed which consists of a 1 kW open cathode hydrogen fuel cell, electric motor, wheel, gearing system, DC/DC converter and vehicle control system (VCS). Energy efficiency identification and energy flow evaluation is a useful tool in identifying a detail performance of each component and sub-systems in a fuel cell vehicle system configuration. Three artificial traction loads was simulated at 30 kg, 40 kg and 50 kg force on a single wheel drive configuration. The wheel speed range reported here covers from idle to 16 km/h (low speed range) as a preliminary input in the research work frame. The test result shows that the system efficiency is 84.5 percent when the energy flow is considered from the fuel cell to the wheel and 279 watts of electrical power was produced by the fuel cell during that time. Dynamic system responses was also identified as the load increases beyond the motor traction capabilities where the losses at the converter and motor controller increased significantly as it tries to meet the motor traction power demands. This work is currently being further expanded within the work frame of developing a road-worthy fuel cell vehicle.
Development of feedback-speed-control system of fixed-abrasive tool for mat-surface fabrication
NASA Astrophysics Data System (ADS)
Yanagihara, K.; Kita, R.
2018-01-01
This study deals with the new method to fabricate a mat-surface by using fixed-abrasive tool. Mat-surface is a surface with microscopic irregularities whose dimensions are close to the wavelengths of visible light (400-700 nanometers). In order to develop the new method to fabricate mat-surface without pre-masking and large scale back up facility, utilization of fixed-abrasive tool is discussed. The discussion clarifies that abrasives in shot blasting are given kinetic energy along to only plunge-direction while excluding traverse-direction. If the relative motion between tool and work in fixed-abrasive process can be realized as that in blasting, mat-surface will be accomplished with fixed-abrasive process. To realize the proposed idea, new surface-fabrication system to which is adopted feedback-speed-control of abrasive wheel has been designed. The system consists of micro-computer unit (MPU), work-speed sensor, fixed-abrasive wheel, and wheel driving unit. The system can control relative speed between work and wheel in optimum range to produce mat-surface. Finally experiment to verify the developed system is carried out. The results of experiments show that the developed system is effective and it can produce the surface from grinding to mat-surface seamlessly.
ERIC Educational Resources Information Center
Leonard, Bobby
2006-01-01
In this article, author Bobby Leonard asserts that the best institutions in India today are good in Policies Systems and administration. However, the key is developing a new generation of education based workforce under the hands of a good leader. India requires transformational leaders, leaders who can transform educational systems and who are…
49 CFR 384.204 - CDL issuance and information.
Code of Federal Regulations, 2010 CFR
2010-10-01
... a CMV only by issuance of a CDL, unless a waiver under the provisions of § 383.7 applies, which... training occurs, to undergo behind-the-wheel training in a CMV only by means of a learner's permit issued... offense under § 383.51 based on such enforcement, to drive a CMV while holding a dated receipt for such...
ERIC Educational Resources Information Center
Hashim, Khairuddin; Kutbi, Ibrahim
2017-01-01
Significant changes are driving the wheels of progress. In the context of higher education, developments in technology and globalization have made a profound impact. There is need for universities to take stock of developments to plan with realistic goals so as not to be left behind in a highly competitive globalized environment. With rapid…
Dynamo: A Model Transition Framework for Dynamic Stability Control and Body Mass Manipulation
2011-11-01
driving at high speed, and you turn the steering wheel hard to the right and slam on the brakes, then you will end up in the oversteer regime. At the...sensors (GPS, IMU, LIDAR ) for vehicle control. Figure 17: Dynamo high-speed small UGV hardware platform We will perform experiments to measure the MTC
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-16
...; Project No. 2266-102--California] Pacific Gas and Electric Company; Nevada Irrigation District; Notice of... Pacific Gas and Electric Company (PG&E) and Nevada Irrigation District (NID) (applicants) will conduct an... (recommend a 4-wheel drive vehicle), but car pooling to the extent possible is encouraged. We do not...
2010-04-28
34 to 1" drive adapter MHE ============ 15,000 lbs forklift 6,000 lbs. forklift 5,000 pallet truck Two 30,000 lbs. 6’x16’ caster wheeled carts...Suggested modifications to reduce assembly time* ================================================== Use powered torque multipliers to torque bolts
Helicopter Drive System R and M Design Guide
1979-04-01
Section Page Misalignment and Shaft Runout ...... .................. ... 50 Seal Materials .............. ......................... ... 53 Environmental...rotor brake analysis differs from aircraft wheel brake analysis in two respects. First, advantage is taken of the aerodynamic drag on the rotating...expected transmission cavity pressure and shaft runout . It is stressed that both the pressure and runout must be considered, since they drastically affect
NASA Technical Reports Server (NTRS)
Koerner, Christian; Kampf, Dirk; Poglitsch, Albrecht; Schubert, Josef; Ruppert, U.; Schoele, M.
2014-01-01
This paper describes the two PACS Filter Wheels that are direct-drive rotational mechanisms operated at a temperature below 5K inside the PACS focal plane unit of the Herschel Satellite. The purpose of the mechanisms is to switch between filters. The rotation axis is pivoted to the support structure via a slightly preloaded pair of ball bearings and driven by a Cryotorquer. Position sensing is realized by a pair of Hall effect sensors. Powerless positioning at the filter positions is achieved by a magnetic ratchet system. The key technologies are the Cryotorquer design and the magnetic ratchet design in the low temperature range. Furthermore, we will report on lessons learned during the development and qualification of the mechanism and the paint.
Theoretical design study of the MSFC wind-wheel turbine
NASA Technical Reports Server (NTRS)
Frost, W.; Kessel, P. A.
1982-01-01
A wind wheel turbine (WWT) is studied. Evaluation of the probable performance, possible practical applications, and economic viability as compared to other conventional wind energy systems is discussed. The WWT apparatus is essentially a bladed wheel which is directly exposed to the wind on the upper half and exposed to wind through multiple ducting on the lower half. The multiple ducts consist of a forward duct (front concentrator) and two side ducts (side concentrators). The forced rotation of the wheel is then converted to power through appropriate subsystems. Test results on two simple models, a paper model and a stainless steel model, are reported. Measured values of power coefficients over wind speeds ranging from 4 to 16 m/s are given. An analytical model of a four bladed wheel is also developed. Overall design features of the wind turbine are evaluated and discussed. Turbine sizing is specified for a 5 and 25 kW machine. Suggested improvements to the original design to increase performance and performance predictions for an improved WWT design are given.
Kelly, Scott A; Gomes, Fernando R; Kolb, Erik M; Malisch, Jessica L; Garland, Theodore
2017-03-15
Chronic voluntary exercise elevates total daily energy expenditure and food consumption, potentially resulting in organ compensation supporting nutrient extraction/utilization. Additionally, species with naturally higher daily energy expenditure often have larger processing organs, which may represent genetic differences and/or phenotypic plasticity. We tested for possible adaptive changes in organ masses of four replicate lines of house mice selected (37 generations) for high running (HR) compared with four non-selected control (C) lines. Females were housed with or without wheel access for 13-14 weeks beginning at 53-60 days of age. In addition to organ compensation, chronic activity may also require an elevated aerobic capacity. Therefore, we also measured hematocrit and both citrate synthase activity and myoglobin concentration in heart and gastrocnemius. Both selection (HR versus C) and activity (wheels versus no wheels) significantly affected morphological and biochemical traits. For example, with body mass as a covariate, mice from HR lines had significantly higher hematocrit and larger ventricles, with more myoglobin. Wheel access lengthened the small intestine, increased relative ventricle and kidney size, and increased skeletal muscle citrate synthase activity and myoglobin concentration. As compared with C lines, HR mice had greater training effects for ventricle mass, hematocrit, large intestine length and gastrocnemius citrate synthase activity. For ventricle and gastrocnemius citrate synthase activity, the greater training was quantitatively explainable as a result of greater wheel running (i.e. 'more pain, more gain'). For hematocrit and large intestine length, differences were not related to amount of wheel running and instead indicate inherently greater adaptive plasticity in HR lines. © 2017. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Pin, F.G.
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin's maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the accelerationmore » on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reister, D.B.; Pin, F.G.
This paper addresses the problem of time-optional motions for a mobile platform in a planar environment. The platform has two non-steerable independently driven wheels. The overall mission of the robot is expressed in terms of a sequence of via points at which the platform must be at rest in a given configuration (position and orientation). The objective is to plan time-optimal trajectories between these configurations assuming an unobstructed environment. Using Pontryagin`s maximum principle (PMP), we formally demonstrate that all time optimal motions of the platform for this problem occur for bang-bang controls on the wheels (at each instant, the accelerationmore » on each wheel is either at its upper or lower limit). The PMP, however, only provides necessary conditions for time optimality. To find the time optimal robot trajectories, we first parameterize the bang-bang trajectories using the switch times on the wheels (the times at which the wheel accelerations change sign). With this parameterization, we can fully search the robot trajectory space and find the switch times that will produce particular paths to a desired final configuration of the platform. We show numerically that robot trajectories with three switch times (two on one wheel, one on the other) can reach any position, while trajectories with four switch times can reach any configuration. By numerical comparison with other trajectories involving similar or greater numbers of switch times, we then identify the sets of time-optimal trajectories. These are uniquely defined using ranges of the parameters, and consist of subsets of trajectories with three switch times for the problem when the final orientation of the robot is not specified, and four switch times when a full final configuration is specified. We conclude with a description of the use of the method for trajectory planning for one of our robots.« less
Asleep at the Wheel-The Road to Addressing Drowsy Driving.
Higgins, J Stephen; Michael, Jeff; Austin, Rory; Åkerstedt, Torbjörn; Van Dongen, Hans P A; Watson, Nathaniel; Czeisler, Charles; Pack, Allan I; Rosekind, Mark R
2017-02-01
Drowsy driving is a dangerous behavior that leads to thousands of deaths and injuries each year. It is also a controllable factor for drivers. Drivers are capable of modifying this behavior if given sufficient information and motivation. Our goal is to establish a comprehensive and strategic effort to end drowsy driving crashes and deaths. This article highlights some of the conclusions of a unique recent meeting of sleep experts and highway safety professionals and describes the first steps the community has taken and plans to take in the future to address this issue. Published by Oxford University Press on behalf of Sleep Research Society (SRS) 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive (Vertical)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends. Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). This view is presented as a vertical projection with geometric seam correction.Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends. Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). This view is presented as a cylindrical projection with geometric seam correction.Wind-Sculpted Vicinity After Opportunity's Sol 1797 Drive (Polar)
NASA Technical Reports Server (NTRS)
2009-01-01
NASA's Mars Exploration Rover Opportunity used its navigation camera to take the images combined into this full-circle view of the rover's surroundings just after driving 111 meters (364 feet) on the 1,797th Martian day, or sol, of Opportunity's surface mission (Feb. 12, 2009). North is at the center; south at both ends. Tracks from the drive recede northward across dark-toned sand ripples in the Meridiani Planum region of Mars. Patches of lighter-toned bedrock are visible on the left and right sides of the image. For scale, the distance between the parallel wheel tracks is about 1 meter (about 40 inches). This view is presented as a polar projection with geometric seam correction.TTI (Texas Transportation Institute) track/dynamometer study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reineman, M.; Thompson, G.
1983-01-01
Seven passenger cars and one light truck were operated over the EPA urban and highway driving cycles to compare fuel economy measurements obtained on a test track with the fuel economy results obtained on a chassis dynamometer. The test program was designed to duplicate, as closely as possible, the track force loading (as determined by standard EPA road coastdown procedures) on the dynamometer. Experimental parameters which were investigated included loading differences between front- and rear-wheel drive vehicles, volumetric versus carbon balance fuel measurement techniques, coupled versus uncoupled roll dynamometer tests, and curved track versus straight track coastdowns.
Fuel cell drives for road vehicles
NASA Astrophysics Data System (ADS)
Charnah, R. M.
For fuel-cell driven vehicles, including buses, the fuel cell may be the main, determining factor in the system but must be integrated into the complete design process. A Low-Floor Bus design is used to illustrate this point. The influence of advances in drive-train electronics is illustrated as are novel designs for motors and mechanical transmission of power to the wheels allowing the use of novel hub assemblies. A hybrid electric power system is being deployed in which Fuel Cells produce the energy needs but are coupled with batteries especially for acceleration phases and for recuperative braking.
Inflight Performance of Cassini Reaction Wheel Bearing Drag in 1997-2013
NASA Technical Reports Server (NTRS)
Lee, Allan Y.; Wang, Eric K.
2013-01-01
As the first spacecraft to achieve orbit at Saturn in 2004, Cassini has collected science data throughout its four-year prime mission (2004-08), and has since been approved for a first and second extended missions through September 2017. Cassini is a three-axis stabilized spacecraft. It uses reaction wheels to achieve high level of spacecraft pointing stability that is needed during imaging operations of several science instruments. The Cassini flight software makes in-flight estimates of reaction wheel bearing drag torque and made them available to the mission operations team. These telemetry data are being trended for the purpose of monitoring the long-term health of the reaction wheel bearings. Anomalous drag torque signatures observed over the past 15 years are described in this paper. One of these anomalous drag conditions is bearing cage instability that appeared (and disappeared) spontaneously and unpredictably. Cage instability is an uncontrolled vibratory motion of the bearing cage that can produce high-impact forces internal to the bearing that will cause intermittent and erratic torque transients. Characteristics of the observed cage instabilities and other drag torque "spikes" are described in this paper. In day-to-day operations, the reaction wheels' rates must be neither too high nor too low. To protect against operating the wheels in any undesirable conditions (such as prolonged low spin rate operations), a ground software tool named Reaction Wheel Bias Optimization Tool (RBOT) was developed for the management of the wheels. Disciplined and long-term use of this ground software has led to significant reduction in the daily consumption rate of the wheels' low spin rate dwell time. Flight experience on the use of this ground software tool as well as other lessons learned on the management of Cassini reaction wheels is given in this paper.
NASA Astrophysics Data System (ADS)
Kumar, T. S.
2016-08-01
In this paper, we describe the details of control unit and GUI software for positioning two filter wheels, a slit wheel and a grism wheel in the ADFOSC instrument. This is a first generation instrument being built for the 3.6 m Devasthal optical telescope. The control hardware consists of five electronic boards based on low cost 8-bit PIC microcontrollers and are distributed over I2C bus. The four wheels are controlled by four identical boards which are configured in I2C slave mode while the fifth board acts as an I2C master for sending commands to and receiving status from the slave boards. The master also communicates with the interfacing PC over TCP/IP protocol using simple ASCII commands. For moving the wheels stepper motors along with suitable amplifiers have been employed. Homing after powering ON is achieved using hall effect sensors. By implementing distributed control units having identical design modularity is achieved enabling easier maintenance and upgradation. A GUI based software for commanding the instrument is developed in Microsoft Visual C++. For operating the system during observations the user selects normal mode while the engineering mode is available for offering additional flexibility and low level control during maintenance and testing. A detailed time-stamped log of commands, status and errors are continuously generated. Both the control unit and the software have been successfully tested and integrated with the ADFOSC instrument.
Service Test of the Airfield Specialized Trailer System
1966-10-31
universal trailer is a lightweight, air-transportable, four- wheel trailer. It is capable of transferring loads to compatible main- tenance and storage...transverse beams). The suspension sys- tem is a specially designed, three-point system which protects loads from excessive wheel displacement when...lightweight steel and can accommodate hoist and lift facilities. Sockets are provided to permit attachment of several accessory kits (running gear caster
Roach, Grahm C.; Edke, Mangesh
2012-01-01
Biomechanical data provide fundamental information about changes in musculoskeletal function during development, adaptation, and disease. To facilitate the study of mouse locomotor biomechanics, we modified a standard mouse running wheel to include a force-sensitive rung capable of measuring the normal and tangential forces applied by individual paws. Force data were collected throughout the night using an automated threshold trigger algorithm that synchronized force data with wheel-angle data and a high-speed infrared video file. During the first night of wheel running, mice reached consistent running speeds within the first 40 force events, indicating a rapid habituation to wheel running, given that mice generated >2,000 force-event files/night. Average running speeds and peak normal and tangential forces were consistent throughout the first four nights of running, indicating that one night of running is sufficient to characterize the locomotor biomechanics of healthy mice. Twelve weeks of wheel running significantly increased spontaneous wheel-running speeds (16 vs. 37 m/min), lowered duty factors (ratio of foot-ground contact time to stride time; 0.71 vs. 0.58), and raised hindlimb peak normal forces (93 vs. 115% body wt) compared with inexperienced mice. Peak normal hindlimb-force magnitudes were the primary force component, which were nearly tenfold greater than peak tangential forces. Peak normal hindlimb forces exceed the vertical forces generated during overground running (50-60% body wt), suggesting that wheel running shifts weight support toward the hindlimbs. This force-instrumented running-wheel system provides a comprehensive, noninvasive screening method for monitoring gait biomechanics in mice during spontaneous locomotion. PMID:22723628