Lee, Ki-Sun; Shin, Sang-Wan; Lee, Sang-Pyo; Kim, Jong-Eun; Kim, Jee-Hwan; Lee, Jeong-Yol
The purpose of this pilot study was to evaluate and compare polyetherketoneketone (PEKK) with different framework materials for implant-supported prostheses by means of a three-dimensional finite element analysis (3D-FEA) based on cone beam computed tomography (CBCT) and computer-aided design (CAD) data. A geometric model that consisted of four maxillary implants supporting a prosthesis framework was constructed from CBCT and CAD data of a treated patient. Three different materials (zirconia, titanium, and PEKK) were selected, and their material properties were simulated using FEA software in the generated geometric model. In the PEKK framework (ie, low elastic modulus) group, the stress transferred to the implant and simulated adjacent tissue was reduced when compressive stress was dominant, but increased when tensile stress was dominant. This study suggests that the shock-absorbing effects of a resilient implant-supported framework are limited in some areas and that rigid framework material shows a favorable stress distribution and safety of overall components of the prosthesis.
Intraoperative 3-Dimensional Computed Tomography and Navigation in Foot and Ankle Surgery.
Chowdhary, Ashwin; Drittenbass, Lisca; Dubois-Ferrière, Victor; Stern, Richard; Assal, Mathieu
2016-09-01
Computer-assisted orthopedic surgery has developed dramatically during the past 2 decades. This article describes the use of intraoperative 3-dimensional computed tomography and navigation in foot and ankle surgery. Traditional imaging based on serial radiography or C-arm-based fluoroscopy does not provide simultaneous real-time 3-dimensional imaging, and thus leads to suboptimal visualization and guidance. Three-dimensional computed tomography allows for accurate intraoperative visualization of the position of bones and/or navigation implants. Such imaging and navigation helps to further reduce intraoperative complications, leads to improved surgical outcomes, and may become the gold standard in foot and ankle surgery. [Orthopedics.2016; 39(5):e1005-e1010.]. Copyright 2016, SLACK Incorporated.
Diagnostic ability of computed tomography using DentaScan software in endodontics: case reports.
Siotia, Jaya; Gupta, Sunil K; Acharya, Shashi R; Saraswathi, Vidya
2011-01-01
Radiographic examination is essential in diagnosis and treatment planning in endodontics. Conventional radiographs depict structures in two dimensions only. The ability to assess the area of interest in three dimensions is advantageous. Computed tomography is an imaging technique which produces three-dimensional images of an object by taking a series of two-dimensional sectional X-ray images. DentaScan is a computed tomography software program that allows the mandible and maxilla to be imaged in three planes: axial, panoramic, and cross-sectional. As computed tomography is used in endodontics, DentaScan can play a wider role in endodontic diagnosis. It provides valuable information in the assessment of the morphology of the root canal, diagnosis of root fractures, internal and external resorptions, pre-operative assessment of anatomic structures etc. The aim of this article is to explore the clinical usefulness of computed tomography and DentaScan in endodontic diagnosis, through a series of four cases of different endodontic problems.
Chan, Ernest G; Landreneau, James R; Schuchert, Matthew J; Odell, David D; Gu, Suicheng; Pu, Jiantao; Luketich, James D; Landreneau, Rodney J
2015-09-01
Accurate cancer localization and negative resection margins are necessary for successful segmentectomy. In this study, we evaluate a newly developed software package that permits automated segmentation of the pulmonary parenchyma, allowing 3-dimensional assessment of tumor size, location, and estimates of surgical margins. A pilot study using a newly developed 3-dimensional computed tomography analytic software package was performed to retrospectively evaluate preoperative computed tomography images of patients who underwent segmentectomy (n = 36) or lobectomy (n = 15) for stage 1 non-small cell lung cancer. The software accomplishes an automated reconstruction of anatomic pulmonary segments of the lung based on bronchial arborization. Estimates of anticipated surgical margins and pulmonary segmental volume were made on the basis of 3-dimensional reconstruction. Autosegmentation was achieved in 72.7% (32/44) of preoperative computed tomography images with slice thicknesses of 3 mm or less. Reasons for segmentation failure included local severe emphysema or pneumonitis, and lower computed tomography resolution. Tumor segmental localization was achieved in all autosegmented studies. The 3-dimensional computed tomography analysis provided a positive predictive value of 87% in predicting a marginal clearance greater than 1 cm and a 75% positive predictive value in predicting a margin to tumor diameter ratio greater than 1 in relation to the surgical pathology assessment. This preoperative 3-dimensional computed tomography analysis of segmental anatomy can confirm the tumor location within an anatomic segment and aid in predicting surgical margins. This 3-dimensional computed tomography information may assist in the preoperative assessment regarding the suitability of segmentectomy for peripheral lung cancers. Published by Elsevier Inc.
Gose, Shinichi; Sakai, Takashi; Shibata, Toru; Akiyama, Keisuke; Yoshikawa, Hideki; Sugamoto, Kazuomi
2011-12-01
We evaluated the validity of the Robin and Graham classification system of hip disease in cerebral palsy (CP) using three-dimensional computed tomography in young people with CP. A total of 91 hips in 91 consecutive children with bilateral spastic CP (57 males, 34 females; nine classified at Gross Motor Function Classification System level II, 42 at level III, 32 at level IV, and eight at level V; mean age 5 y 2 mo, SD 11 mo; range 2-6 y) were investigated retrospectively using anteroposterior plain radiographs and three-dimensional computed tomography (3D-CT) of the hip. The migration percentage was calculated on plain radiographs and all participants were classified into four groups according to migration percentage: grade II, migration percentage ≥ 10% but ≤ 15%, (four hips), grade III, migration percentage >15% but ≤ 30%, (20 hips); grade IV, migration percentage >30% but <100%, (63 hips); and grade V, migration percentage ≥ 100%, (four hips). The lateral opening angle and the sagittal inclination angle of the acetabulum, the neck-shaft angle, and the femoral anteversion of the femur were measured on 3D-CT. The three-dimensional quantitative evaluation indicated that there were significant differences in the lateral opening angle and the neck-shaft angle between the four groups (Kruskal-Wallis test, p ≤ 0.001). This three-dimensional evaluation supports the validation of the Robin and Graham classification system for hip disease in 2- to 7-year-olds with CP. © The Authors. Developmental Medicine & Child Neurology © 2011 Mac Keith Press.
Characterizing Multiple Wireless Sensor Networks for Large-Scale Radio Tomography
2015-03-01
with other transceivers over a wireless frequency. A base station transceiver collects the information and processes the information into something...or most other obstructions in between the two links [4]. A base station transceiver is connected to a processing computer to collect the RSS of each... transceivers at four different heights to create a Three-Dimensional (3-D) RTI network. Using shadowing- based RTI, this research demonstrated that RTI
Mendonca, Derick A; Naidoo, Sybill D; Skolnick, Gary; Skladman, Rachel; Woo, Albert S
2013-07-01
Craniofacial anthropometry by direct caliper measurements is a common method of quantifying the morphology of the cranial vault. New digital imaging modalities including computed tomography and three-dimensional photogrammetry are similarly being used to obtain craniofacial surface measurements. This study sought to compare the accuracy of anthropometric measurements obtained by calipers versus 2 methods of digital imaging.Standard anterior-posterior, biparietal, and cranial index measurements were directly obtained on 19 participants with an age range of 1 to 20 months. Computed tomographic scans and three-dimensional photographs were both obtained on each child within 2 weeks of the clinical examination. Two analysts measured the anterior-posterior and biparietal distances on the digital images. Measures of reliability and bias between the modalities were calculated and compared.Caliper measurements were found to underestimate the anterior-posterior and biparietal distances as compared with those of the computed tomography and the three-dimensional photogrammetry (P < 0.001). Cranial index measurements between the computed tomography and the calipers differed by up to 6%. The difference between the 2 modalities was statistically significant (P = 0.021). The biparietal and cranial index results were similar between the digital modalities, but the anterior-posterior measurement was greater with the three-dimensional photogrammetry (P = 0.002). The coefficients of variation for repeated measures based on the computed tomography and the three-dimensional photogrammetry were 0.008 and 0.007, respectively.In conclusion, measurements based on digital modalities are generally reliable and interchangeable. Caliper measurements lead to underestimation of anterior-posterior and biparietal values compared with digital imaging.
Kim, Jo-Eun; Yi, Won-Jin; Heo, Min-Suk; Lee, Sam-Sun; Choi, Soon-Chul; Huh, Kyung-Hoe
2015-12-01
To evaluate the potential feasibility of cone beam computed tomography (CBCT) in the assessment of trabecular bone microarchitecture. Sixty-eight specimens from four pairs of human jaw were scanned using both micro-computed tomography (micro-CT) of 19.37-μm voxel size and CBCT of 100-μm voxel size. The correlation of 3-dimensional parameters between CBCT and micro-CT was evaluated. All parameters, except bone-specific surface and trabecular thickness, showed linear correlations between the 2 imaging modalities (P < .05). Among the parameters, bone volume, percent bone volume, trabecular separation, and degree of anisotropy (DA) of CBCT images showed strong correlations with those of micro-CT images. DA showed the strongest correlation (r = 0.693). Most microarchitectural parameters from CBCT were correlated with those from micro-CT. Some microarchitectural parameters, especially DA, could be used as strong predictors of bone quality in the human jaw. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Yamamoto, Tokihiro; Kabus, Sven; Klinder, Tobias; Lorenz, Cristian; von Berg, Jens; Blaffert, Thomas; Loo, Billy W., Jr.; Keall, Paul J.
2011-04-01
A pulmonary ventilation imaging technique based on four-dimensional (4D) computed tomography (CT) has advantages over existing techniques. However, physiologically accurate 4D-CT ventilation imaging has not been achieved in patients. The purpose of this study was to evaluate 4D-CT ventilation imaging by correlating ventilation with emphysema. Emphysematous lung regions are less ventilated and can be used as surrogates for low ventilation. We tested the hypothesis: 4D-CT ventilation in emphysematous lung regions is significantly lower than in non-emphysematous regions. Four-dimensional CT ventilation images were created for 12 patients with emphysematous lung regions as observed on CT, using a total of four combinations of two deformable image registration (DIR) algorithms: surface-based (DIRsur) and volumetric (DIRvol), and two metrics: Hounsfield unit (HU) change (VHU) and Jacobian determinant of deformation (VJac), yielding four ventilation image sets per patient. Emphysematous lung regions were detected by density masking. We tested our hypothesis using the one-tailed t-test. Visually, different DIR algorithms and metrics yielded spatially variant 4D-CT ventilation images. The mean ventilation values in emphysematous lung regions were consistently lower than in non-emphysematous regions for all the combinations of DIR algorithms and metrics. VHU resulted in statistically significant differences for both DIRsur (0.14 ± 0.14 versus 0.29 ± 0.16, p = 0.01) and DIRvol (0.13 ± 0.13 versus 0.27 ± 0.15, p < 0.01). However, VJac resulted in non-significant differences for both DIRsur (0.15 ± 0.07 versus 0.17 ± 0.08, p = 0.20) and DIRvol (0.17 ± 0.08 versus 0.19 ± 0.09, p = 0.30). This study demonstrated the strong correlation between the HU-based 4D-CT ventilation and emphysema, which indicates the potential for HU-based 4D-CT ventilation imaging to achieve high physiologic accuracy. A further study is needed to confirm these results.
Suenaga, Hideyuki; Hoang Tran, Huy; Liao, Hongen; Masamune, Ken; Dohi, Takeyoshi; Hoshi, Kazuto; Mori, Yoshiyuki; Takato, Tsuyoshi
2013-01-01
To evaluate the feasibility and accuracy of a three-dimensional augmented reality system incorporating integral videography for imaging oral and maxillofacial regions, based on preoperative computed tomography data. Three-dimensional surface models of the jawbones, based on the computed tomography data, were used to create the integral videography images of a subject's maxillofacial area. The three-dimensional augmented reality system (integral videography display, computed tomography, a position tracker and a computer) was used to generate a three-dimensional overlay that was projected on the surgical site via a half-silvered mirror. Thereafter, a feasibility study was performed on a volunteer. The accuracy of this system was verified on a solid model while simulating bone resection. Positional registration was attained by identifying and tracking the patient/surgical instrument's position. Thus, integral videography images of jawbones, teeth and the surgical tool were superimposed in the correct position. Stereoscopic images viewed from various angles were accurately displayed. Change in the viewing angle did not negatively affect the surgeon's ability to simultaneously observe the three-dimensional images and the patient, without special glasses. The difference in three-dimensional position of each measuring point on the solid model and augmented reality navigation was almost negligible (<1 mm); this indicates that the system was highly accurate. This augmented reality system was highly accurate and effective for surgical navigation and for overlaying a three-dimensional computed tomography image on a patient's surgical area, enabling the surgeon to understand the positional relationship between the preoperative image and the actual surgical site, with the naked eye. PMID:23703710
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brennan, Douglas; Schubert, Leah; Diot, Quentin
Purpose: A new form of functional imaging has been proposed in the form of 4-dimensional computed tomography (4DCT) ventilation. Because 4DCTs are acquired as part of routine care for lung cancer patients, calculating ventilation maps from 4DCTs provides spatial lung function information without added dosimetric or monetary cost to the patient. Before 4DCT-ventilation is implemented it needs to be clinically validated. Pulmonary function tests (PFTs) provide a clinically established way of evaluating lung function. The purpose of our work was to perform a clinical validation by comparing 4DCT-ventilation metrics with PFT data. Methods and Materials: Ninety-eight lung cancer patients withmore » pretreatment 4DCT and PFT data were included in the study. Pulmonary function test metrics used to diagnose obstructive lung disease were recorded: forced expiratory volume in 1 second (FEV1) and FEV1/forced vital capacity. Four-dimensional CT data sets and spatial registration were used to compute 4DCT-ventilation images using a density change–based and a Jacobian-based model. The ventilation maps were reduced to single metrics intended to reflect the degree of ventilation obstruction. Specifically, we computed the coefficient of variation (SD/mean), ventilation V20 (volume of lung ≤20% ventilation), and correlated the ventilation metrics with PFT data. Regression analysis was used to determine whether 4DCT ventilation data could predict for normal versus abnormal lung function using PFT thresholds. Results: Correlation coefficients comparing 4DCT-ventilation with PFT data ranged from 0.63 to 0.72, with the best agreement between FEV1 and coefficient of variation. Four-dimensional CT ventilation metrics were able to significantly delineate between clinically normal versus abnormal PFT results. Conclusions: Validation of 4DCT ventilation with clinically relevant metrics is essential. We demonstrate good global agreement between PFTs and 4DCT-ventilation, indicating that 4DCT-ventilation provides a reliable assessment of lung function. Four-dimensional CT ventilation enables exciting opportunities to assess lung function and create functional avoidance radiation therapy plans. The present work provides supporting evidence for the integration of 4DCT-ventilation into clinical trials.« less
Men, Kuo; Dai, Jianrong
2017-12-01
To develop a projection quality-driven tube current modulation method in cone-beam computed tomography for image-guided radiotherapy based on the prior attenuation information obtained by the planning computed tomography and then evaluate its effect on a reduction in the imaging dose. The QCKV-1 phantom with different thicknesses (0-400 mm) of solid water upon it was used to simulate different attenuation (μ). Projections were acquired with a series of tube current-exposure time product (mAs) settings, and a 2-dimensional contrast to noise ratio was analyzed for each projection to create a lookup table of mAs versus 2-dimensional contrast to noise ratio, μ. Before a patient underwent computed tomography, the maximum attenuation [Formula: see text] within the 95% range of each projection angle (θ) was estimated according to the planning computed tomography images. Then, a desired 2-dimensional contrast to noise ratio value was selected, and the mAs setting at θ was calculated with the lookup table of mAs versus 2-dimensional contrast to noise ratio,[Formula: see text]. Three-dimensional cone-beam computed tomography images were reconstructed using the projections acquired with the selected mAs. The imaging dose was evaluated with a polymethyl methacrylate dosimetry phantom in terms of volume computed tomography dose index. Image quality was analyzed using a Catphan 503 phantom with an oval body annulus and a pelvis phantom. For the Catphan 503 phantom, the cone-beam computed tomography image obtained by the projection quality-driven tube current modulation method had a similar quality to that of conventional cone-beam computed tomography . However, the proposed method could reduce the imaging dose by 16% to 33% to achieve an equivalent contrast to noise ratio value. For the pelvis phantom, the structural similarity index was 0.992 with a dose reduction of 39.7% for the projection quality-driven tube current modulation method. The proposed method could reduce the additional dose to the patient while not degrading the image quality for cone-beam computed tomography. The projection quality-driven tube current modulation method could be especially beneficial to patients who undergo cone-beam computed tomography frequently during a treatment course.
Simulating the influence of scatter and beam hardening in dimensional computed tomography
NASA Astrophysics Data System (ADS)
Lifton, J. J.; Carmignato, S.
2017-10-01
Cone-beam x-ray computed tomography (XCT) is a radiographic scanning technique that allows the non-destructive dimensional measurement of an object’s internal and external features. XCT measurements are influenced by a number of different factors that are poorly understood. This work investigates how non-linear x-ray attenuation caused by beam hardening and scatter influences XCT-based dimensional measurements through the use of simulated data. For the measurement task considered, both scatter and beam hardening are found to influence dimensional measurements when evaluated using the ISO50 surface determination method. On the other hand, only beam hardening is found to influence dimensional measurements when evaluated using an advanced surface determination method. Based on the results presented, recommendations on the use of beam hardening and scatter correction for dimensional XCT are given.
Jin, Peng; Hulshof, Maarten C C M; van Wieringen, Niek; Bel, Arjan; Alderliesten, Tanja
2017-07-01
To investigate the interfractional variability of respiration-induced esophageal tumor motion using fiducial markers and four-dimensional cone-beam computed tomography (4D-CBCT) and assess if a 4D-CT is sufficient for predicting the motion during the treatment. Twenty-four patients with 63 markers visible in the retrospectively reconstructed 4D-CBCTs were included. For each marker, we calculated the amplitude and trajectory of the respiration-induced motion. Possible time trends of the amplitude over the treatment course and the interfractional variability of amplitudes and trajectory shapes were assessed. Further, the amplitudes measured in the 4D-CT were compared to those in the 4D-CBCTs. The amplitude was largest in the cranial-caudal direction of the distal esophagus (mean: 7.1mm) and proximal stomach (mean: 7.8mm). No time trend was observed in the amplitude over the treatment course. The interfractional variability of amplitudes and trajectory shapes was limited (mean: ≤1.4mm). Moreover, small and insignificant deviation was found between the amplitudes quantified in the 4D-CT and in the 4D-CBCT (mean absolute difference: ≤1.0mm). The limited interfractional variability of amplitudes and trajectory shapes and small amplitude difference between 4D-CT-based and 4D-CBCT-based measurements imply that a single 4D-CT would be sufficient for predicting the respiration-induced esophageal tumor motion during the treatment course. Copyright © 2017 Elsevier B.V. All rights reserved.
Newton, Peter O; Hahn, Gregory W; Fricka, Kevin B; Wenger, Dennis R
2002-04-15
A retrospective radiographic review of 31 patients with congenital spine abnormalities who underwent conventional radiography and advanced imaging studies was conducted. To analyze the utility of three-dimensional computed tomography with multiplanar reformatted images for congenital spine anomalies, as compared with plain radiographs and axial two-dimensional computed tomography imaging. Conventional radiographic imaging for congenital spine disorders often are difficult to interpret because of the patient's small size, the complexity of the disorder, a deformity not in the plane of the radiographs, superimposed structures, and difficulty in forming a mental three-dimensional image. Multiplanar reformatted and three-dimensional computed tomographic imaging offers many potential advantages for defining congenital spine anomalies including visualization of the deformity in any plane, from any angle, with the overlying structures subtracted. The imaging studies of patients who had undergone a three-dimensional computed tomography for congenital deformities of the spine between 1992 and 1998 were reviewed (31 cases). All plain radiographs and axial two-dimensional computed tomography images performed before the three-dimensional computed tomography were reviewed and the findings documented. This was repeated for the three-dimensional reconstructions and, when available, the multiplanar reformatted images (15 cases). In each case, the utility of the advanced imaging was graded as one of the following: Grade A (substantial new information obtained), Grade B (confirmatory with improved visualization and understanding of the deformity), and Grade C (no added useful information obtained). In 17 of 31 cases, the multiplanar reformatted and three-dimensional images allowed identification of unrecognized malformations. In nine additional cases, the advanced imaging was helpful in better visualizing and understanding previously identified deformities. In five cases, no new information was gained. The standard and curved multiplanar reformatted images were best for defining the occiput-C1-C2 anatomy and the extent of segmentation defects. The curved multiplanar reformatted images were especially helpful in keeping the spine from "coming in" and "going out" of the plane of the image when there was significant spine deformity in the sagittal or coronal plane. The three-dimensional reconstructions proved valuable in defining failures of formation. Advanced computed tomography imaging (three-dimensional computed tomography and curved/standard multiplanar reformatted images) allows better definition of congenital spine anomalies. More than 50% of the cases showed additional abnormalities not appreciated on plain radiographs or axial two-dimensional computed tomography images. Curved multiplanar reformatted images allowed imaging in the coronal and sagittal planes of the entire deformity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.
2008-09-15
The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly amore » factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatment planning system simulations and radiographic film measurements. The feasibility of use for motion (four-dimensional) dosimetry is demonstrated on an example comparing dose distributions from static and dynamic delivery of a single-field photon plan. The capability to visualize three-dimensional dose distributions is also illustrated.« less
Peng, Kuan; He, Ling; Zhu, Ziqiang; Tang, Jingtian; Xiao, Jiaying
2013-12-01
Compared with commonly used analytical reconstruction methods, the frequency-domain finite element method (FEM) based approach has proven to be an accurate and flexible algorithm for photoacoustic tomography. However, the FEM-based algorithm is computationally demanding, especially for three-dimensional cases. To enhance the algorithm's efficiency, in this work a parallel computational strategy is implemented in the framework of the FEM-based reconstruction algorithm using a graphic-processing-unit parallel frame named the "compute unified device architecture." A series of simulation experiments is carried out to test the accuracy and accelerating effect of the improved method. The results obtained indicate that the parallel calculation does not change the accuracy of the reconstruction algorithm, while its computational cost is significantly reduced by a factor of 38.9 with a GTX 580 graphics card using the improved method.
Morphometric analysis - Cone beam computed tomography to predict bone quality and quantity.
Hohlweg-Majert, B; Metzger, M C; Kummer, T; Schulze, D
2011-07-01
Modified quantitative computed tomography is a method used to predict bone quality and quantify the bone mass of the jaw. The aim of this study was to determine whether bone quantity or quality was detected by cone beam computed tomography (CBCT) combined with image analysis. MATERIALS AND PROCEDURES: Different measurements recorded on two phantoms (Siemens phantom, Comac phantom) were evaluated on images taken with the Somatom VolumeZoom (Siemens Medical Solutions, Erlangen, Germany) and the NewTom 9000 (NIM s.r.l., Verona, Italy) in order to calculate a calibration curve. The spatial relationships of six sample cylinders and the repositioning from four pig skull halves relative to adjacent defined anatomical structures were assessed by means of three-dimensional visualization software. The calibration curves for computer tomography (CT) and cone beam computer tomography (CBCT) using the Siemens phantom showed linear correlation in both modalities between the Hounsfield Units (HU) and bone morphology. A correction factor for CBCT was calculated. Exact information about the micromorphology of the bone cylinders was only available using of micro computer tomography. Cone-beam computer tomography is a suitable choice for analysing bone mass, but, it does not give any information about bone quality. 2010 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Iwasaki, Tomonori; Takemoto, Yoshihiko; Inada, Emi; Sato, Hideo; Saitoh, Issei; Kakuno, Eriko; Kanomi, Ryuzo; Yamasaki, Youichi
2014-12-01
Pharyngeal airway size is increasingly recognized as an important factor in obstructive sleep apnea. However, few studies have examined the changes of pharyngeal airway form after dental procedures for treating obstructive sleep apnea during growth. The purpose of this study was to evaluate the effect of the Herbst appliance on the 3-dimensional form of the pharyngeal airway using cone-beam computed tomography. Twenty-four Class II subjects (ANB, ≥5°; 11 boys; mean age, 11.6 years) who required Herbst therapy with edgewise treatment had cone-beam computed tomography images taken before and after Herbst treatment. Twenty Class I control subjects (9 boys; mean age, 11.5 years) received edgewise treatment only. The volume, depth, and width of the pharyngeal airway were compared between the groups using measurements from 3-dimensional cone-beam computed tomography images of the entire pharyngeal airway. The increase of the oropharyngeal airway volume in the Herbst group (5000.2 mm(3)) was significantly greater than that of the control group (2451.6 mm(3)). Similarly, the increase of the laryngopharyngeal airway volume in the Herbst group (1941.8 mm(3)) was significantly greater than that of the control group (1060.1 mm(3)). The Herbst appliance enlarges the oropharyngeal and laryngopharyngeal airways. These results may provide a useful assessment of obstructive sleep apnea treatment during growth. Copyright © 2014 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
Feasibility of four-dimensional preoperative simulation for elbow debridement arthroplasty.
Yamamoto, Michiro; Murakami, Yukimi; Iwatsuki, Katsuyuki; Kurimoto, Shigeru; Hirata, Hitoshi
2016-04-02
Recent advances in imaging modalities have enabled three-dimensional preoperative simulation. A four-dimensional preoperative simulation system would be useful for debridement arthroplasty of primary degenerative elbow osteoarthritis because it would be able to detect the impingement lesions. We developed a four-dimensional simulation system by adding the anatomical axis to the three-dimensional computed tomography scan data of the affected arm in one position. Eleven patients with primary degenerative elbow osteoarthritis were included. A "two rings" method was used to calculate the flexion-extension axis of the elbow by converting the surface of the trochlea and capitellum into two rings. A four-dimensional simulation movie was created and showed the optimal range of motion and the impingement area requiring excision. To evaluate the reliability of the flexion-extension axis, interobserver and intraobserver reliabilities regarding the assessment of bony overlap volumes were calculated twice for each patient by two authors. Patients were treated by open or arthroscopic debridement arthroplasties. Pre- and postoperative examinations included elbow range of motion measurement, and completion of the patient-rated questionnaire Hand20, Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score, and the Mayo Elbow Performance Score. Measurement of the bony overlap volume showed an intraobserver intraclass correlation coefficient of 0.93 and 0.90, and an interobserver intraclass correlation coefficient of 0.94. The mean elbow flexion-extension arc significantly improved from 101° to 125°. The mean Hand20 score significantly improved from 52 to 22. The mean Japanese Orthopaedic Association-Japan Elbow Society Elbow Function Score significantly improved from 67 to 88. The mean Mayo Elbow Performance Score significantly improved from 71 to 91 at the final follow-up evaluation. We showed that four-dimensional, preoperative simulation can be generated by adding the rotation axis to the one-position, three-dimensional computed tomography image of the affected arm. This method is feasible for elbow debridement arthroplasty.
Nakamura, Keiko; Tajima, Kiyoshi; Chen, Ker-Kong; Nagamatsu, Yuki; Kakigawa, Hiroshi; Masumi, Shin-ich
2013-12-01
This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.
USDA-ARS?s Scientific Manuscript database
High resolution x-ray computed tomography (HRCT) is a non-destructive diagnostic imaging technique with sub-micron resolution capability that is now being used to evaluate the structure and function of plant xylem network in three dimensions (3D). HRCT imaging is based on the same principles as medi...
Kim, Hak-Jin; Kim, Bong Chul; Kim, Jin-Geun; Zhengguo, Piao; Kang, Sang Hoon; Lee, Sang-Hwy
2014-03-01
The objective of this study was to determine the reliable midsagittal (MS) reference plane in practical ways for the three-dimensional craniofacial analysis on three-dimensional computed tomography images. Five normal human dry skulls and 20 normal subjects without any dysmorphoses or asymmetries were used. The accuracies and stability on repeated plane construction for almost every possible candidate MS plane based on the skull base structures were examined by comparing the discrepancies in distances and orientations from the reference points and planes of the skull base and facial bones on three-dimensional computed tomography images. The following reference points of these planes were stable, and their distribution was balanced: nasion and foramen cecum at the anterior part of the skull base, sella at the middle part, and basion and opisthion at the posterior part. The candidate reference planes constructed using the aforementioned reference points were thought to be reliable for use as an MS reference plane for the three-dimensional analysis of maxillofacial dysmorphosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guckenberger, Matthias; Wilbert, Juergen; Krieger, Thomas
2009-06-01
Purpose: To evaluate the accuracy of direct reconstruction of mid-ventilation and peak-phase four-dimensional (4D) computed tomography (CT) frames based on the external breathing signal. Methods and Materials: For 11 patients with 15 pulmonary targets, a respiration-correlated CT study (4D CT) was acquired for treatment planning. After retrospective time-based sorting of raw projection data and reconstruction of eight CT frames equally distributed over the breathing cycle, mean tumor position (P{sub mean}), mid-ventilation frame, and breathing motion were evaluated based on the internal tumor trajectory. Analysis of the external breathing signal (pressure sensor around abdomen) with amplitude-based sorting of projections was performedmore » for direct reconstruction of the mid-ventilation frame and frames at peak phases of the breathing cycle. Results: On the basis of the eight 4D CT frames equally spaced in time, tumor motion was largest in the craniocaudal direction, with 12 {+-} 7 mm on average. Tumor motion between the two frames reconstructed at peak phases was not different in the craniocaudal and anterior-posterior directions but was systematically smaller in the left-right direction by 1 mm on average. The 3-dimensional distance between P{sub mean} and the tumor position in the mid-ventilation frame based on the internal tumor trajectory was 1.2 {+-} 1 mm. Reconstruction of the mid-ventilation frame at the mean amplitude position of the external breathing signal resulted in tumor positions 2.0 {+-} 1.1 mm distant from P{sub mean}. Breathing-induced motion artifacts in mid-ventilation frames caused negligible changes in tumor volume and shape. Conclusions: Direct reconstruction of the mid-ventilation frame and frames at peak phases based on the external breathing signal was reliable. This makes the reconstruction of only three 4D CT frames sufficient for application of the mid-ventilation technique in clinical practice.« less
Mahesh, B S; P Shastry, Shilpa; S Murthy, Padmashree; Jyotsna, T R
2017-01-01
To report a rare case of large radicular cyst-associated deciduous tooth and to discuss the importance of cone beam computed tomography (CBCT) in diagnosing the condition. Radicular cyst is the most common cyst affecting the permanent teeth, but its occurrence in deciduous teeth is rare. Most of the radicular cysts are asymptomatic and are discovered accidentally when radiographs are taken. Conventional radiographs show two-dimensional images of three-dimensional objects. Cone beam computed tomography provides undistorted three-dimensional information of hard tissues and gives adequate spatial resolution. A 7-year-old child, with a complaint of swelling in the maxillary anterior region, was diagnosed with radicular cyst in relation to primary maxillary right central incisor based on CBCT and histopathological features. Early diagnosis and prompt treatment of radicular cyst in primary dentition is important to prevent damage to permanent tooth. Mahesh BS, Shastry SP, Murthy PS, Jyotsna TR. Role of Cone Beam Computed Tomography in Evaluation of Radicular Cyst mimicking Dentigerous Cyst in a 7-year-old Child: A Case Report and Literature Review. Int J Clin Pediatr Dent 2017;10(2):213-216.
X-ray coherent scattering tomography of textured material (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zhu, Zheyuan; Pang, Shuo
2017-05-01
Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.
Terahertz Computed Tomography of NASA Thermal Protection System Materials
NASA Technical Reports Server (NTRS)
Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.
2011-01-01
A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.
Bornstein, Michael M; Horner, Keith; Jacobs, Reinhilde
2017-02-01
Diagnostic radiology is an essential component of treatment planning in the field of implant dentistry. This narrative review will present current concepts for the use of cone beam computed tomography imaging, before and after implant placement, in daily clinical practice and research. Guidelines for the selection of three-dimensional imaging will be discussed, and limitations will be highlighted. Current concepts of radiation dose optimization, including novel imaging modalities using low-dose protocols, will be presented. For preoperative cross-sectional imaging, data are still not available which demonstrate that cone beam computed tomography results in fewer intraoperative complications such as nerve damage or bleeding incidents, or that implants inserted using preoperative cone beam computed tomography data sets for planning purposes will exhibit higher survival or success rates. The use of cone beam computed tomography following the insertion of dental implants should be restricted to specific postoperative complications, such as damage of neurovascular structures or postoperative infections in relation to the maxillary sinus. Regarding peri-implantitis, the diagnosis and severity of the disease should be evaluated primarily based on clinical parameters and on radiological findings based on periapical radiographs (two dimensional). The use of cone beam computed tomography scans in clinical research might not yield any evident beneficial effect for the patient included. As many of the cone beam computed tomography scans performed for research have no direct therapeutic consequence, dose optimization measures should be implemented by using appropriate exposure parameters and by reducing the field of view to the actual region of interest. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Lee, Jung Ae; Kim, Chul Yong; Yang, Dae Sik; Yoon, Won Sup; Park, Young Je; Lee, Suk; Kim, Young Bum
2014-01-01
To investigate the effectiveness of respiratory guidance system in 4-dimensional computed tomography (4 DCT) based respiratory-gated radiation therapy (RGRT) by comparing respiratory signals and dosimetric analysis of treatment plans. The respiratory amplitude and period of the free, the audio device-guided, and the complex system-guided breathing were evaluated in eleven patients with lung or liver cancers. The dosimetric parameters were assessed by comparing free breathing CT plan and 4 DCT-based 30-70% maximal intensity projection (MIP) plan. The use of complex system-guided breathing showed significantly less variation in respiratory amplitude and period compared to the free or audio-guided breathing regarding the root mean square errors (RMSE) of full inspiration (P = 0.031), full expiration (P = 0.007), and period (P = 0.007). The dosimetric parameters including V(5 Gy), V(10 Gy), V(20 Gy), V(30 Gy), V(40 Gy), and V(50 Gy) of normal liver or lung in 4 DCT MIP plan were superior over free breathing CT plan. The reproducibility and regularity of respiratory amplitude and period were significantly improved with the complex system-guided breathing compared to the free or the audio-guided breathing. In addition, the treatment plan based on the 4D CT-based MIP images acquired with the complex system guided breathing showed better normal tissue sparing than that on the free breathing CT.
NASA Astrophysics Data System (ADS)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; Glover, B. B.; Duque, A. L. Higginbotham; Perry, W. L.; Patterson, B. M.; Dalvit, D. A. R.; Moore, D. S.
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. We analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
Ruhlandt, A; Töpperwien, M; Krenkel, M; Mokso, R; Salditt, T
2017-07-26
We present an approach towards four dimensional (4d) movies of materials, showing dynamic processes within the entire 3d structure. The method is based on tomographic reconstruction on dynamically curved paths using a motion model estimated by optical flow techniques, considerably reducing the typical motion artefacts of dynamic tomography. At the same time we exploit x-ray phase contrast based on free propagation to enhance the signal from micron scale structure recorded with illumination times down to a millisecond (ms). The concept is demonstrated by observing the burning process of a match stick in 4d, using high speed synchrotron phase contrast x-ray tomography recordings. The resulting movies reveal the structural changes of the wood cells during the combustion.
NASA Astrophysics Data System (ADS)
Preissner, M.; Murrie, R. P.; Pinar, I.; Werdiger, F.; Carnibella, R. P.; Zosky, G. R.; Fouras, A.; Dubsky, S.
2018-04-01
We have developed an x-ray imaging system for in vivo four-dimensional computed tomography (4DCT) of small animals for pre-clinical lung investigations. Our customized laboratory facility is capable of high resolution in vivo imaging at high frame rates. Characterization using phantoms demonstrate a spatial resolution of slightly below 50 μm at imaging rates of 30 Hz, and the ability to quantify material density differences of at least 3%. We benchmark our system against existing small animal pre-clinical CT scanners using a quality factor that combines spatial resolution, image noise, dose and scan time. In vivo 4DCT images obtained on our system demonstrate resolution of important features such as blood vessels and small airways, of which the smallest discernible were measured as 55–60 μm in cross section. Quantitative analysis of the images demonstrate regional differences in ventilation between injured and healthy lungs.
Iwasawa, Tae; Kanauchi, Tetsu; Hoshi, Toshiko; Ogura, Takashi; Baba, Tomohisa; Gotoh, Toshiyuki; Oba, Mari S
2016-01-01
To evaluate the feasibility of automated quantitative analysis with a three-dimensional (3D) computer-aided system (i.e., Gaussian histogram normalized correlation, GHNC) of computed tomography (CT) images from different scanners. Each institution's review board approved the research protocol. Informed patient consent was not required. The participants in this multicenter prospective study were 80 patients (65 men, 15 women) with idiopathic pulmonary fibrosis. Their mean age was 70.6 years. Computed tomography (CT) images were obtained by four different scanners set at different exposures. We measured the extent of fibrosis using GHNC, and used Pearson's correlation analysis, Bland-Altman plots, and kappa analysis to directly compare the GHNC results with manual scoring by radiologists. Multiple linear regression analysis was performed to determine the association between the CT data and forced vital capacity (FVC). For each scanner, the extent of fibrosis as determined by GHNC was significantly correlated with the radiologists' score. In multivariate analysis, the extent of fibrosis as determined by GHNC was significantly correlated with FVC (p < 0.001). There was no significant difference between the results obtained using different CT scanners. Gaussian histogram normalized correlation was feasible, irrespective of the type of CT scanner used.
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.; ...
2016-04-01
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kort-Kamp, W. J. M.; Cordes, N. L.; Ionita, A.
Electromagnetic stimulation of energetic materials provides a noninvasive and nondestructive tool for detecting and identifying explosives. We combine structural information based on x-ray computed tomography, experimental dielectric data, and electromagnetic full-wave simulations to study microscale electromagnetic heating of realistic three-dimensional heterogeneous explosives. In conclusion, we analyze the formation of electromagnetic hot spots and thermal gradients in the explosive-binder mesostructures and compare the heating rate for various binder systems.
Lifton, Joseph J; Malcolm, Andrew A; McBride, John W
2015-01-01
X-ray computed tomography (CT) is a radiographic scanning technique for visualising cross-sectional images of an object non-destructively. From these cross-sectional images it is possible to evaluate internal dimensional features of a workpiece which may otherwise be inaccessible to tactile and optical instruments. Beam hardening is a physical process that degrades the quality of CT images and has previously been suggested to influence dimensional measurements. Using a validated simulation tool, the influence of spectrum pre-filtration and beam hardening correction are evaluated for internal and external dimensional measurements. Beam hardening is shown to influence internal and external dimensions in opposition, and to have a greater influence on outer dimensions compared to inner dimensions. The results suggest the combination of spectrum pre-filtration and a local gradient-based surface determination method are able to greatly reduce the influence of beam hardening in X-ray CT for dimensional metrology.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography
NASA Astrophysics Data System (ADS)
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-01
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres—for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
Six-dimensional real and reciprocal space small-angle X-ray scattering tomography.
Schaff, Florian; Bech, Martin; Zaslansky, Paul; Jud, Christoph; Liebi, Marianne; Guizar-Sicairos, Manuel; Pfeiffer, Franz
2015-11-19
When used in combination with raster scanning, small-angle X-ray scattering (SAXS) has proven to be a valuable imaging technique of the nanoscale, for example of bone, teeth and brain matter. Although two-dimensional projection imaging has been used to characterize various materials successfully, its three-dimensional extension, SAXS computed tomography, poses substantial challenges, which have yet to be overcome. Previous work using SAXS computed tomography was unable to preserve oriented SAXS signals during reconstruction. Here we present a solution to this problem and obtain a complete SAXS computed tomography, which preserves oriented scattering information. By introducing virtual tomography axes, we take advantage of the two-dimensional SAXS information recorded on an area detector and use it to reconstruct the full three-dimensional scattering distribution in reciprocal space for each voxel of the three-dimensional object in real space. The presented method could be of interest for a combined six-dimensional real and reciprocal space characterization of mesoscopic materials with hierarchically structured features with length scales ranging from a few nanometres to a few millimetres--for example, biomaterials such as bone or teeth, or functional materials such as fuel-cell or battery components.
Witcomb, Luci A; Czupryna, Julie; Francis, Kevin P; Frankel, Gad; Taylor, Peter W
2017-08-15
In contrast to two-dimensional bioluminescence imaging, three dimensional diffuse light imaging tomography with integrated micro-computed tomography (DLIT-μCT) has the potential to realise spatial variations in infection patterns when imaging experimental animals dosed with derivatives of virulent bacteria carrying bioluminescent reporter genes such as the lux operon from the bacterium Photorhabdus luminescens. The method provides an opportunity to precisely localise the bacterial infection sites within the animal and enables the generation of four-dimensional movies of the infection cycle. Here, we describe the use of the PerkinElmer IVIS SpectrumCT in vivo imaging system to investigate progression of lethal systemic infection in neonatal rats following colonisation of the gastrointestinal tract with the neonatal pathogen Escherichia coli K1. We confirm previous observations that these bacteria stably colonize the colon and small intestine following feeding of the infectious dose from a micropipette; invading bacteria migrate across the gut epithelium into the blood circulation and establish foci of infection in major organs, including the brain. DLIT-μCT revealed novel multiple sites of colonisation within the alimentary canal, including the tongue, oesophagus and stomach, with penetration of the non-keratinised oesophageal epithelial surface, providing strong evidence of a further major site for bacterial dissemination. We highlight technical issues associated with imaging of infections in new born rat pups and show that the whole-body and organ bioburden correlates with disease severity. Copyright © 2017 Elsevier Inc. All rights reserved.
Olejník, Peter; Nosal, Matej; Havran, Tomas; Furdova, Adriana; Cizmar, Maros; Slabej, Michal; Thurzo, Andrej; Vitovic, Pavol; Klvac, Martin; Acel, Tibor; Masura, Jozef
2017-01-01
To evaluate the accuracy of the three-dimensional (3D) printing of cardiovascular structures. To explore whether utilisation of 3D printed heart replicas can improve surgical and catheter interventional planning in patients with complex congenital heart defects. Between December 2014 and November 2015 we fabricated eight cardiovascular models based on computed tomography data in patients with complex spatial anatomical relationships of cardiovascular structures. A Bland-Altman analysis was used to assess the accuracy of 3D printing by comparing dimension measurements at analogous anatomical locations between the printed models and digital imagery data, as well as between printed models and in vivo surgical findings. The contribution of 3D printed heart models for perioperative planning improvement was evaluated in the four most representative patients. Bland-Altman analysis confirmed the high accuracy of 3D cardiovascular printing. Each printed model offered an improved spatial anatomical orientation of cardiovascular structures. Current 3D printers can produce authentic copies of patients` cardiovascular systems from computed tomography data. The use of 3D printed models can facilitate surgical or catheter interventional procedures in patients with complex congenital heart defects due to better preoperative planning and intraoperative orientation.
Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian
2012-07-01
To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.
Broadband Terahertz Computed Tomography Using a 5k-pixel Real-time THz Camera
NASA Astrophysics Data System (ADS)
Trichopoulos, Georgios C.; Sertel, Kubilay
2015-07-01
We present a novel THz computed tomography system that enables fast 3-dimensional imaging and spectroscopy in the 0.6-1.2 THz band. The system is based on a new real-time broadband THz camera that enables rapid acquisition of multiple cross-sectional images required in computed tomography. Tomographic reconstruction is achieved using digital images from the densely-packed large-format (80×64) focal plane array sensor located behind a hyper-hemispherical silicon lens. Each pixel of the sensor array consists of an 85 μm × 92 μm lithographically fabricated wideband dual-slot antenna, monolithically integrated with an ultra-fast diode tuned to operate in the 0.6-1.2 THz regime. Concurrently, optimum impedance matching was implemented for maximum pixel sensitivity, enabling 5 frames-per-second image acquisition speed. As such, the THz computed tomography system generates diffraction-limited resolution cross-section images as well as the three-dimensional models of various opaque and partially transparent objects. As an example, an over-the-counter vitamin supplement pill is imaged and its material composition is reconstructed. The new THz camera enables, for the first time, a practical application of THz computed tomography for non-destructive evaluation and biomedical imaging.
SU-C-207-01: Four-Dimensional Inverse Geometry Computed Tomography: Concept and Its Validation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, K; Kim, D; Kim, T
2015-06-15
Purpose: In past few years, the inverse geometry computed tomography (IGCT) system has been developed to overcome shortcomings of a conventional computed tomography (CT) system such as scatter problem induced from large detector size and cone-beam artifact. In this study, we intend to present a concept of a four-dimensional (4D) IGCT system that has positive aspects above all with temporal resolution for dynamic studies and reduction of motion artifact. Methods: Contrary to conventional CT system, projection data at a certain angle in IGCT was a group of fractionated narrow cone-beam projection data, projection group (PG), acquired from multi-source array whichmore » have extremely short time gap of sequential operation between each of sources. At this, for 4D IGCT imaging, time-related data acquisition parameters were determined by combining multi-source scanning time for collecting one PG with conventional 4D CBCT data acquisition sequence. Over a gantry rotation, acquired PGs from multi-source array were tagged time and angle for 4D image reconstruction. Acquired PGs were sorted into 10 phase and image reconstructions were independently performed at each phase. Image reconstruction algorithm based upon filtered-backprojection was used in this study. Results: The 4D IGCT had uniform image without cone-beam artifact on the contrary to 4D CBCT image. In addition, the 4D IGCT images of each phase had no significant artifact induced from motion compared with 3D CT. Conclusion: The 4D IGCT image seems to give relatively accurate dynamic information of patient anatomy based on the results were more endurable than 3D CT about motion artifact. From this, it will be useful for dynamic study and respiratory-correlated radiation therapy. This work was supported by the Industrial R&D program of MOTIE/KEIT [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the Ministry of Science, ICT&Future Planning.« less
Thali, Michael J; Schweitzer, Wolf; Yen, Kathrin; Vock, Peter; Ozdoba, Christoph; Spielvogel, Elke; Dirnhofer, Richard
2003-03-01
The goal of this study was the full-body documentation of a gunshot wound victim with multislice helical computed tomography for subsequent comparison with the findings of the standard forensic autopsy. Complete volume data of the head, neck, and trunk were acquired by use of two acquisitions of less than 1 minute of total scanning time. Subsequent two-dimensional multiplanar reformations and three-dimensional shaded surface display reconstructions helped document the gunshot-created skull fractures and brain injuries, including the wound track, and the intracerebral bone fragments. Computed tomography also demonstrated intracardiac air embolism and pulmonary aspiration of blood resulting from bullet wound-related trauma. The "digital autopsy," even when postprocessing time was added, was more rapid than the classic forensic autopsy and, based on the nondestructive approach, offered certain advantages in comparison with the forensic autopsy.
Tian, Bing; Xu, Bing; Lu, Jianping; Liu, Qi; Wang, Li; Wang, Minjie
2015-06-01
This study aimed to evaluate the usefulness of four-dimensional CTA before and after embolization treatment with ONYX-18 in eleven patients with cranial dural arteriovenous fistulas, and to compare the results with those of the reference standard DSA. Eleven patients with cranial dural arteriovenous fistulas detected on DSA underwent transarterial embolization with ONYX-18. Four-dimensional CTA was performed an average of 2 days before and 4 days after DSA. Four-dimensional CTA and DSA images were reviewed by two neuroradiologists for identification of feeding arteries and drainage veins and for determining treatment effects. Interobserver and intermodality agreement between four-dimensional CTA and DSA were assessed. Forty-two feeding arteries were identified for 14 fistulas in the 11 patients. Of these, 36 (85.71%) were detected on four-dimensional CTA. After transarterial embolization, one patient got partly embolized, and the fistulas in the remaining 10 patients were completely occluded. The interobserver agreement for four-dimensional CTA and intermodality agreement between four-dimensional CTA and DSA were excellent (κ=1) for shunt location, identification of drainage veins, and fistula occlusion after treatment. Four-dimensional CTA images are highly accurate when compared with DSA images both before and after transarterial embolization treatment. Four-dimensional CTA can be used for diagnosis as well as follow-up of cranial dural arteriovenous fistulas in clinical settings. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Wang, W; Li, J; Zhang, Y; Li, F; Xu, M; Fan, T; Shao, Q; Shang, D
2014-01-01
To compare the target volume, position and matching index of the patient-specific internal gross tumor volume (IGTV) based on three-dimensional (3D) and four-dimensional (4D) computed tomography (CT) images for primary esophageal cancer. Twenty-nine patients with primary thoracic esophageal cancer underwent 3DCT and 4DCT scans during free breathing. IGTVs were constructed using three approaches: combining the gross target volumes from the 10 respiratory phases of the 4DCT dataset to produce IGTV10 ; IGTV2 was acquired by combining the two extreme phases; and IGTV3D was created from the 3DCT-based gross target volume by enlarging the 95th percentile of motion in each direction measured by the 4DCT. 0.16 cm lateral (LR), 0.14 cm anteroposterior (AP) and 0.29 cm superoinferior (SI) in the upper; 0.18 cm LR, 0.10 cm AP and 0.63 cm SI in the middle; and 0.40 cm LR, 0.58 cm AP and 0.82 cm in the lower thoracic esophagus could account for 95% of respiratory-induced tumor motion. The centroid position shift between IGTV10 and IGTV2 was all below 0.10 cm, and less than 0.20 cm between IGTV10 and IGTV3D . IGTV10 was bigger than IGTV2 ; the mean value of matching index for IGTV2 to IGTV10 was 0.87 ± 0.05, 0.85 ± 0.06 and 0.83 ± 0.05 for upper, middle and distal thoracic esophageal tumors, respectively, and just 0.57 ± 0.11, 0.56 ± 0.13 and 0.40 ± 0.03 between IGTV3D and IGTV10 . 4DCT-based IGTV10 is a reasonable patient-specific IGTV for primary thoracic esophageal cancer, and IGTV2 is considered as an acceptable alternative to IGTV10 . However, it seems unreasonable to use IGTV3D substitute IGTV10 . © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.
Computed tomography-based finite element analysis to assess fracture risk and osteoporosis treatment
Imai, Kazuhiro
2015-01-01
Finite element analysis (FEA) is a computer technique of structural stress analysis and developed in engineering mechanics. FEA has developed to investigate structural behavior of human bones over the past 40 years. When the faster computers have acquired, better FEA, using 3-dimensional computed tomography (CT) has been developed. This CT-based finite element analysis (CT/FEA) has provided clinicians with useful data. In this review, the mechanism of CT/FEA, validation studies of CT/FEA to evaluate accuracy and reliability in human bones, and clinical application studies to assess fracture risk and effects of osteoporosis medication are overviewed. PMID:26309819
NASA Astrophysics Data System (ADS)
Castellano, Isabel; Geleijns, Jacob
After its clinical introduction in 1973, computed tomography developed from an x-ray modality for axial imaging in neuroradiology into a versatile three dimensional imaging modality for a wide range of applications in for example oncology, vascular radiology, cardiology, traumatology and even in interventional radiology. Computed tomography is applied for diagnosis, follow-up studies and screening of healthy subpopulations with specific risk factors. This chapter provides a general introduction in computed tomography, covering a short history of computed tomography, technology, image quality, dosimetry, room shielding, quality control and quality criteria.
3D Surface Reconstruction for Lower Limb Prosthetic Model using Radon Transform
NASA Astrophysics Data System (ADS)
Sobani, S. S. Mohd; Mahmood, N. H.; Zakaria, N. A.; Razak, M. A. Abdul
2018-03-01
This paper describes the idea to realize three-dimensional surfaces of objects with cylinder-based shapes where the techniques adopted and the strategy developed for a non-rigid three-dimensional surface reconstruction of an object from uncalibrated two-dimensional image sequences using multiple-view digital camera and turntable setup. The surface of an object is reconstructed based on the concept of tomography with the aid of performing several digital image processing algorithms on the two-dimensional images captured by a digital camera in thirty-six different projections and the three-dimensional structure of the surface is analysed. Four different objects are used as experimental models in the reconstructions and each object is placed on a manually rotated turntable. The results shown that the proposed method has successfully reconstruct the three-dimensional surface of the objects and practicable. The shape and size of the reconstructed three-dimensional objects are recognizable and distinguishable. The reconstructions of objects involved in the test are strengthened with the analysis where the maximum percent error obtained from the computation is approximately 1.4 % for the height whilst 4.0%, 4.79% and 4.7% for the diameters at three specific heights of the objects.
Three-dimensional electrical impedance tomography based on the complete electrode model.
Vauhkonen, P J; Vauhkonen, M; Savolainen, T; Kaipio, J P
1999-09-01
In electrical impedance tomography an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. It is often assumed that the injected currents are confined to the two-dimensional (2-D) electrode plane and the reconstruction is based on 2-D assumptions. However, the currents spread out in three dimensions and, therefore, off-plane structures have significant effect on the reconstructed images. In this paper we propose a finite element-based method for the reconstruction of three-dimensional resistivity distributions. The proposed method is based on the so-called complete electrode model that takes into account the presence of the electrodes and the contact impedances. Both the forward and the inverse problems are discussed and results from static and dynamic (difference) reconstructions with real measurement data are given. It is shown that in phantom experiments with accurate finite element computations it is possible to obtain static images that are comparable with difference images that are reconstructed from the same object with the empty (saline filled) tank as a reference.
Inci, Ercan; Ekizoglu, Oguzhan; Turkay, Rustu; Aksoy, Sema; Can, Ismail Ozgur; Solmaz, Dilek; Sayin, Ibrahim
2016-10-01
Morphometric analysis of the mandibular ramus (MR) provides highly accurate data to discriminate sex. The objective of this study was to demonstrate the utility and accuracy of MR morphometric analysis for sex identification in a Turkish population.Four hundred fifteen Turkish patients (18-60 y; 201 male and 214 female) who had previously had multidetector computed tomography scans of the cranium were included in the study. Multidetector computed tomography images were obtained using three-dimensional reconstructions and a volume-rendering technique, and 8 linear and 3 angular values were measured. Univariate, bivariate, and multivariate discriminant analyses were performed, and the accuracy rates for determining sex were calculated.Mandibular ramus values produced high accuracy rates of 51% to 95.6%. Upper ramus vertical height had the highest rate at 95.6%, and bivariate analysis showed 89.7% to 98.6% accuracy rates with the highest ratios of mandibular flexure upper border and maximum ramus breadth. Stepwise discrimination analysis gave a 99% accuracy rate for all MR variables.Our study showed that the MR, in particular morphometric measures of the upper part of the ramus, can provide valuable data to determine sex in a Turkish population. The method combines both anthropological and radiologic studies.
Multiscale tomographic analysis of heterogeneous cast Al-Si-X alloys.
Asghar, Z; Requena, G; Sket, F
2015-07-01
The three-dimensional microstructure of cast AlSi12Ni and AlSi10Cu5Ni2 alloys is investigated by laboratory X-ray computed tomography, synchrotron X-ray computed microtomography, light optical tomography and synchrotron X-ray computed microtomography with submicrometre resolution. The results obtained with each technique are correlated with the size of the scanned volumes and resolved microstructural features. Laboratory X-ray computed tomography is sufficient to resolve highly absorbing aluminides but eutectic and primary Si remain unrevealed. Synchrotron X-ray computed microtomography at ID15/ESRF gives better spatial resolution and reveals primary Si in addition to aluminides. Synchrotron X-ray computed microtomography at ID19/ESRF reveals all the phases ≥ ∼1 μm in volumes about 80 times smaller than laboratory X-ray computed tomography. The volumes investigated by light optical tomography and submicrometre synchrotron X-ray computed microtomography are much smaller than laboratory X-ray computed tomography but both techniques provide local chemical information on the types of aluminides. The complementary techniques applied enable a full three-dimensional characterization of the microstructure of the alloys at length scales ranging over six orders of magnitude. © 2015 The Authors Journal of Microscopy © 2015 Royal Microscopical Society.
Speckle variance optical coherence tomography of blood flow in the beating mouse embryonic heart.
Grishina, Olga A; Wang, Shang; Larina, Irina V
2017-05-01
Efficient separation of blood and cardiac wall in the beating embryonic heart is essential and critical for experiment-based computational modelling and analysis of early-stage cardiac biomechanics. Although speckle variance optical coherence tomography (SV-OCT) relying on calculation of intensity variance over consecutively acquired frames is a powerful approach for segmentation of fluid flow from static tissue, application of this method in the beating embryonic heart remains challenging because moving structures generate SV signal indistinguishable from the blood. Here, we demonstrate a modified four-dimensional SV-OCT approach that effectively separates the blood flow from the dynamic heart wall in the beating mouse embryonic heart. The method takes advantage of the periodic motion of the cardiac wall and is based on calculation of the SV signal over the frames corresponding to the same phase of the heartbeat cycle. Through comparison with Doppler OCT imaging, we validate this speckle-based approach and show advantages in its insensitiveness to the flow direction and velocity as well as reduced influence from the heart wall movement. This approach has a potential in variety of applications relying on visualization and segmentation of blood flow in periodically moving structures, such as mechanical simulation studies and finite element modelling. Picture: Four-dimensional speckle variance OCT imaging shows the blood flow inside the beating heart of an E8.5 mouse embryo. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Xiaodong; Zhao, Kuai-le; Guerrero, Thomas M; McGuire, Sean E; Yaremko, Brian; Komaki, Ritsuko; Cox, James D; Hui, Zhouguang; Li, Yupeng; Newhauser, Wayne D; Mohan, Radhe; Liao, Zhongxing
2008-09-01
To compare three-dimensional (3D) and four-dimensional (4D) computed tomography (CT)-based treatment plans for proton therapy or intensity-modulated radiation therapy (IMRT) for esophageal cancer in terms of doses to the lung, heart, and spinal cord and variations in target coverage and normal tissue sparing. The IMRT and proton plans for 15 patients with distal esophageal cancer were designed from the 3D average CT scans and then recalculated on 10 4D CT data sets. Dosimetric data were compared for tumor coverage and normal tissue sparing. Compared with IMRT, median lung volumes exposed to 5, 10, and 20 Gy and mean lung dose were reduced by 35.6%, 20.5%, 5.8%, and 5.1 Gy for a two-beam proton plan and by 17.4%, 8.4%, 5%, and 2.9 Gy for a three-beam proton plan. The greater lung sparing in the two-beam proton plan was achieved at the expense of less conformity to the target (conformity index [CI], 1.99) and greater irradiation of the heart (heart-V40, 41.8%) compared with the IMRT plan(CI, 1.55, heart-V40, 35.7%) or the three-beam proton plan (CI, 1.46, heart-V40, 27.7%). Target coverage differed by more than 2% between the 3D and 4D plans for patients with substantial diaphragm motion in the three-beam proton and IMRT plans. The difference in spinal cord maximum dose between 3D and 4D plans could exceed 5 Gy for the proton plans partly owing to variations in stomach gas filling. Proton therapy provided significantly better sparing of lung than did IMRT. Diaphragm motion and stomach gas-filling must be considered in evaluating target coverage and cord doses.
Olszewski, R; Frison, L; Wisniewski, M; Denis, J M; Vynckier, S; Cosnard, G; Zech, F; Reychler, H
2013-01-01
The purpose of this study is to compare the reproducibility of three-dimensional cephalometric landmarks on three-dimensional computed tomography (3D-CT) surface rendering using clinical protocols based on low-dose (35-mAs) spiral CT and cone-beam CT (I-CAT). The absorbed dose levels for radiosensitive organs in the maxillofacial region during exposure in both 3D-CT protocols were also assessed. The study population consisted of ten human dry skulls examined with low-dose CT and cone-beam CT. Two independent observers identified 24 cephalometric anatomic landmarks at 13 sites on the 3D-CT surface renderings using both protocols, with each observer repeating the identification 1 month later. A total of 1,920 imaging measurements were performed. Thermoluminescent dosimeters were placed at six sites around the thyroid gland, the submandibular glands, and the eyes in an Alderson phantom to measure the absorbed dose levels. When comparing low-dose CT and cone-beam CT protocols, the cone-beam CT protocol proved to be significantly more reproducible for four of the 13 anatomical sites. There was no significant difference between the protocols for the other nine anatomical sites. Both low-dose and cone-beam CT protocols were equivalent in dose absorption to the eyes and submandibular glands. However, thyroid glands were more irradiated with low-dose CT. Cone-beam CT was more reproducible and procured less irradiation to the thyroid gland than low-dose CT. Cone-beam CT should be preferred over low-dose CT for developing three-dimensional bony cephalometric analyses.
Frozen Gaussian approximation for 3D seismic tomography
NASA Astrophysics Data System (ADS)
Chai, Lihui; Tong, Ping; Yang, Xu
2018-05-01
Three-dimensional (3D) wave-equation-based seismic tomography is computationally challenging in large scales and high-frequency regime. In this paper, we apply the frozen Gaussian approximation (FGA) method to compute 3D sensitivity kernels and seismic tomography of high-frequency. Rather than standard ray theory used in seismic inversion (e.g. Kirchhoff migration and Gaussian beam migration), FGA is used to compute the 3D high-frequency sensitivity kernels for travel-time or full waveform inversions. Specifically, we reformulate the equations of the forward and adjoint wavefields for the purpose of convenience to apply FGA, and with this reformulation, one can efficiently compute the Green’s functions whose convolutions with source time function produce wavefields needed for the construction of 3D kernels. Moreover, a fast summation method is proposed based on local fast Fourier transform which greatly improves the speed of reconstruction as the last step of FGA algorithm. We apply FGA to both the travel-time adjoint tomography and full waveform inversion (FWI) on synthetic crosswell seismic data with dominant frequencies as high as those of real crosswell data, and confirm again that FWI requires a more sophisticated initial velocity model for the convergence than travel-time adjoint tomography. We also numerically test the accuracy of applying FGA to local earthquake tomography. This study paves the way to directly apply wave-equation-based seismic tomography methods into real data around their dominant frequencies.
The Impact of Computed Tomography on Decision Making in Tibial Plateau Fractures.
Castiglia, Marcello Teixeira; Nogueira-Barbosa, Marcello Henrique; Messias, Andre Marcio Vieira; Salim, Rodrigo; Fogagnolo, Fabricio; Schatzker, Joseph; Kfuri, Mauricio
2018-02-14
Schatzker introduced one of the most used classification systems for tibial plateau fractures, based on plain radiographs. Computed tomography brought to attention the importance of coronal plane-oriented fractures. The goal of our study was to determine if the addition of computed tomography would affect the decision making of surgeons who usually use the Schatzker classification to assess tibial plateau fractures. Image studies of 70 patients who sustained tibial plateau fractures were uploaded to a dedicated homepage. Every patient was linked to a folder which contained two radiographic projections (anteroposterior and lateral), three interactive videos of computed tomography (axial, sagittal, and coronal), and eight pictures depicting tridimensional reconstructions of the tibial plateau. Ten attending orthopaedic surgeons, who were blinded to the cases, were granted access to the homepage and assessed each set of images in two different rounds, separated to each other by an interval of 2 weeks. Each case was evaluated in three steps, where surgeons had access, respectively to radiographs, two-dimensional videos of computed tomography, and three-dimensional reconstruction images. After every step, surgeons were asked to present how would they classify the case using the Schatzker system and which surgical approaches would be appropriate. We evaluated the inter- and intraobserver reliability of the Schatzker classification using the Kappa concordance coefficient, as well as the impact of computed tomography in the decision making regarding the surgical approach for each case, by using the chi-square test and likelihood ratio. The interobserver concordance kappa coefficients after each assessment step were, respectively, 0.58, 0.62, and 0.64. For the intraobserver analysis, the coefficients were, respectively, 0.76, 0.75, and 0.78. Computed tomography changed the surgical approach selection for the types II, V, and VI of Schatzker ( p < 0.01). The addition of computed tomography scans to plain radiographs improved the interobserver reliability of Schatzker classification. Computed tomography had a statistically significant impact in the selection of surgical approaches for the lateral tibial plateau. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Argyros, A; Manos, S; Large, M C J; McKenzie, D R; Cox, G C; Dwarte, D M
2002-01-01
A combination of transmission electron tomography and computer modelling has been used to determine the three-dimensional structure of the photonic crystals found in the wing-scales of the Kaiser-I-Hind butterfly (Teinopalpus imperialis). These scales presented challenges for electron microscopy because the periodicity of the structure was comparable to the thickness of a section and because of the complex connectivity of the object. The structure obtained has been confirmed by taking slices of the three-dimensional computer model constructed from the tomography and comparing these with transmission electron microscope (TEM) images of microtomed sections of the actual scale. The crystal was found to have chiral tetrahedral repeating units packed in a triclinic lattice.
Study of Image Qualities From 6D Robot-Based CBCT Imaging System of Small Animal Irradiator.
Sharma, Sunil; Narayanasamy, Ganesh; Clarkson, Richard; Chao, Ming; Moros, Eduardo G; Zhang, Xin; Yan, Yulong; Boerma, Marjan; Paudel, Nava; Morrill, Steven; Corry, Peter; Griffin, Robert J
2017-01-01
To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device. The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm. Reconstructed images were studied for image quality (spatial resolution, image uniformity, computed tomography number linearity, voxel noise, and artifacts). Geometric accuracy was measured to be 2% corresponding to 0.7 mm accuracy on a Shelley microcomputed tomography QA phantom. Qualitative resolution of reconstructed axial computed tomography slices using the resolution coils was within 200 μm. Quantitative spatial resolution was found to be 3.16 lp/mm. Uniformity of the system was measured within 34 Hounsfield unit on a QRM microcomputed tomography water phantom. Computed tomography numbers measured using the linearity plate were linear with material density ( R 2 > 0.995). Cone beam computed tomography images of the QRM multidisk phantom had minimal artifacts. Results showed that the small animal conformal radiation therapy device is capable of producing high-quality cone beam computed tomography images for precise and conformal small animal dose delivery. With its high-caliber imaging capabilities, the small animal conformal radiation therapy device is a powerful tool for small animal research.
Sozzi, Fabiola B; Maiello, Maria; Pelliccia, Francesco; Parato, Vito Maurizio; Canetta, Ciro; Savino, Ketty; Lombardi, Federico; Palmiero, Pasquale
2016-09-01
Coronary computed tomography angiography is a noninvasive heart imaging test currently undergoing rapid development and advancement. The high resolution of the three-dimensional pictures of the moving heart and great vessels is performed during a coronary computed tomography to identify coronary artery disease and classify patient risk for atherosclerotic cardiovascular disease. The technique provides useful information about the coronary tree and atherosclerotic plaques beyond simple luminal narrowing and plaque type defined by calcium content. This application will improve image-guided prevention, medical therapy, and coronary interventions. The ability to interpret coronary computed tomography images is of utmost importance as we develop personalized medical care to enable therapeutic interventions stratified on the bases of plaque characteristics. This overview provides available data and expert's recommendations in the utilization of coronary computed tomography findings. We focus on the use of coronary computed tomography to detect coronary artery disease and stratify patients at risk, illustrating the implications of this test on patient management. We describe its diagnostic power in identifying patients at higher risk to develop acute coronary syndrome and its prognostic significance. Finally, we highlight the features of the vulnerable plaques imaged by coronary computed tomography angiography. © 2016, Wiley Periodicals, Inc.
Compton imaging tomography technique for NDE of large nonuniform structures
NASA Astrophysics Data System (ADS)
Grubsky, Victor; Romanov, Volodymyr; Patton, Ned; Jannson, Tomasz
2011-09-01
In this paper we describe a new nondestructive evaluation (NDE) technique called Compton Imaging Tomography (CIT) for reconstructing the complete three-dimensional internal structure of an object, based on the registration of multiple two-dimensional Compton-scattered x-ray images of the object. CIT provides high resolution and sensitivity with virtually any material, including lightweight structures and organics, which normally pose problems in conventional x-ray computed tomography because of low contrast. The CIT technique requires only one-sided access to the object, has no limitation on the object's size, and can be applied to high-resolution real-time in situ NDE of large aircraft/spacecraft structures and components. Theoretical and experimental results will be presented.
ERIC Educational Resources Information Center
Sander, Ian M.; McGoldrick, Matthew T.; Helms, My N.; Betts, Aislinn; van Avermaete, Anthony; Owers, Elizabeth; Doney, Evan; Liepert, Taimi; Niebur, Glen; Liepert, Douglas; Leevy, W. Matthew
2017-01-01
Advances in three-dimensional (3D) printing allow for digital files to be turned into a "printed" physical product. For example, complex anatomical models derived from clinical or pre-clinical X-ray computed tomography (CT) data of patients or research specimens can be constructed using various printable materials. Although 3D printing…
Pan, Xiaoning; Zhang, Xiaodong; Li, Yupeng; Mohan, Radhe; Liao, Zhongxing
2009-02-01
To study the impact of selecting different data sets from four-dimensional computed tomography (4D CT) imaging during proton treatment planning in patients with distal esophageal cancer. We examined the effects of changes in 4D CT data set and smearing margins in proton treatment planning for 5 patients with distal esophageal cancer whose diaphragms were in the beam path and could move several centimeters during respiration. Planning strategies based on (1) average, (2) inspiration, and (3) expiration CT were evaluated in terms of their coverage on the internal clinic target volume (ICTV) at the prescribed dose. For Strategy 1, increasing the smearing margin caused an increase in the ICTV prescription dose coverage (PDC) at the end-exhalation phase for all patients, whereas the ICTV PDC decreased for some patients at the end-inhalation phase. For Strategy 2, a smearing margin in the range of 1.0 to 3.5 cm caused the ICTV PDC to remain essentially unchanged, regardless of which phase of 4D CT was used for dose calculation, for all patients. For Strategy 3, the ICTV coverage was adequate for 2 of the 5 patients when a smearing margin of less than 1.0 cm was used, but was not adequate for the other 3 patients regardless of the smearing margin. Using the inspiration CT plus a smearing margin can lead to adequate ICTV coverage in treatment plans for patients with distal esophageal tumors surrounded by tissue that is subject to large changes in density during a proton treatment.
2012-01-01
Background Recent studies reported on the very complex morphology of the pulp system in equine cheek teeth. The continuous production of secondary dentine leads to distinct age-related changes of the endodontic cavity. Detailed anatomical knowledge of the dental cavities in all ages is required to explain the aetiopathology of typical equine endodontic diseases. Furthermore, data on mandibular and maxillary pulp systems is in high demand to provide a basis for the development of endodontic therapies. However, until now examination of the pulp cavity has been based on either sectioned teeth or clinical computed tomography. More precise results were expected by using micro-computed tomography with a resolution of about 0.1 mm and three-dimensional reconstructions based on previous greyscale analyses and histological verification. The aim of the present study was to describe the physiological configurations of the pulp system within a wide spectrum of tooth ages. Results Maxillary teeth: All morphological constituents of the endodontic cavity were present in teeth between 4 and 16 years: Triadan 06s displayed six pulp horns and five root canals, Triadan 07-10s five pulp horns and four root canals and Triadan 11s seven pulp horns and four to six root canals. A common pulp chamber was most frequent in teeth ≤5 years, but was found even in a tooth of 9 years. A large variety of pulp configurations was observed within 2.5 and 16 years post eruption, but most commonly a separation into mesial and distal pulp compartments was seen. Maxillary cheek teeth showed up to four separate pulp compartments but the frequency of two, three and four pulp compartments was not related to tooth age (P > 0.05). In Triadan 06s, pulp horn 6 was always connected to pulp horns 1 and 3 and root canal I. In Triadan 11s, pulp horns 7 and 8 were present in variable constitutions. Mandibular teeth: A common pulp chamber was present in teeth up to 15 years, but most commonly seen in teeth ≤5 years. A segmented pulp system was found in 72% of the investigated teeth. Segmentation into separate mesial and distal pulp compartments was most commonly present. Pulp horn 4 coalesced either with the mesial pulp horns 1 and 3 or with the distal pulp horns 2 and 5. Conclusions Details of the pulpar anatomy of equine cheek teeth are provided, supporting the continuous advancement in endodontic therapy. Numerous individual configurations of the pulp system were obtained in maxillary cheek teeth, but much less variability was seen in mandibular cheek teeth. PMID:23006500
NASA Technical Reports Server (NTRS)
Vest, C. M.
1982-01-01
The use of holographic interferometry to measure two and threedimensional flows and the interpretation of multiple-view interferograms with computer tomography are discussed. Computational techniques developed for tomography are reviewed. Current research topics are outlined including the development of an automated fringe readout system, optimum reconstruction procedures for when an opaque test model is present in the field, and interferometry and tomography with strongly refracting fields and shocks.
Ohno, Yoshiharu; Koyama, Hisanobu; Lee, Ho Yun; Miura, Sachiko; Yoshikawa, Takeshi; Sugimura, Kazuro
2016-01-01
Assessment of regional pulmonary perfusion as well as nodule and tumor perfusions in various pulmonary diseases are currently performed by means of nuclear medicine studies requiring radioactive macroaggregates, dual-energy computed tomography (CT), and dynamic first-pass contrast-enhanced perfusion CT techniques and unenhanced and dynamic first-pass contrast enhanced perfusion magnetic resonance imaging (MRI), as well as time-resolved three-dimensional or four-dimensional contrast-enhanced magnetic resonance angiography (MRA). Perfusion scintigraphy, single-photon emission tomography (SPECT) and SPECT fused with CT have been established as clinically available scintigraphic methods; however, they are limited by perfusion information with poor spatial resolution and other shortcomings. Although positron emission tomography with 15O water can measure absolute pulmonary perfusion, it requires a cyclotron for generation of a tracer with an extremely short half-life (2 min), and can only be performed for academic purposes. Therefore, clinicians are concentrating their efforts on the application of CT-based and MRI-based quantitative and qualitative perfusion assessment to various pulmonary diseases. This review article covers 1) the basics of dual-energy CT and dynamic first-pass contrast-enhanced perfusion CT techniques, 2) the basics of time-resolved contrast-enhanced MRA and dynamic first-pass contrast-enhanced perfusion MRI, and 3) clinical applications of contrast-enhanced CT- and MRI-based perfusion assessment for patients with pulmonary nodule, lung cancer, and pulmonary vascular diseases. We believe that these new techniques can be useful in routine clinical practice for not only thoracic oncology patients, but also patients with different pulmonary vascular diseases. PMID:27523813
Comparison of three-dimensional surface-imaging systems.
Tzou, Chieh-Han John; Artner, Nicole M; Pona, Igor; Hold, Alina; Placheta, Eva; Kropatsch, Walter G; Frey, Manfred
2014-04-01
In recent decades, three-dimensional (3D) surface-imaging technologies have gained popularity worldwide, but because most published articles that mention them are technical, clinicians often have difficulties gaining a proper understanding of them. This article aims to provide the reader with relevant information on 3D surface-imaging systems. In it, we compare the most recent technologies to reveal their differences. We have accessed five international companies with the latest technologies in 3D surface-imaging systems: 3dMD, Axisthree, Canfield, Crisalix and Dimensional Imaging (Di3D; in alphabetical order). We evaluated their technical equipment, independent validation studies and corporate backgrounds. The fastest capturing devices are the 3dMD and Di3D systems, capable of capturing images within 1.5 and 1 ms, respectively. All companies provide software for tissue modifications. Additionally, 3dMD, Canfield and Di3D can fuse computed tomography (CT)/cone-beam computed tomography (CBCT) images into their 3D surface-imaging data. 3dMD and Di3D provide 4D capture systems, which allow capturing the movement of a 3D surface over time. Crisalix greatly differs from the other four systems as it is purely web based and realised via cloud computing. 3D surface-imaging systems are becoming important in today's plastic surgical set-ups, taking surgeons to a new level of communication with patients, surgical planning and outcome evaluation. Technologies used in 3D surface-imaging systems and their intended field of application vary within the companies evaluated. Potential users should define their requirements and assignment of 3D surface-imaging systems in their clinical as research environment before making the final decision for purchase. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Pasricha, Neel D; Bhullar, Paramjit K; Shieh, Christine; Carrasco-Zevallos, Oscar M; Keller, Brenton; Izatt, Joseph A; Toth, Cynthia A; Freedman, Sharon F; Kuo, Anthony N
2017-02-14
The authors report the use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT), capable of live four-dimensional (three-dimensional across time) intraoperative imaging, to directly visualize suture depth during lateral rectus resection. Key surgical steps visualized in this report included needle depth during partial and full-thickness muscle passes along with scleral passes. [J Pediatr Ophthalmol Strabismus. 2017;54:e1-e5.]. Copyright 2017, SLACK Incorporated.
Gao, Yuan; Peters, Ove A; Wu, Hongkun; Zhou, Xuedong
2009-02-01
The purpose of this study was to customize an application framework by using the MeVisLab image processing and visualization platform for three-dimensional reconstruction and assessment of tooth and root canal morphology. One maxillary first molar was scanned before and after preparation with ProTaper by using micro-computed tomography. With a customized application framework based on MeVisLab, internal and external anatomy was reconstructed. Furthermore, the dimensions of root canal and radicular dentin were quantified, and effects of canal preparation were assessed. Finally, a virtual preparation with risk analysis was performed to simulate the removal of a broken instrument. This application framework provided an economical platform and met current requirements of endodontic research. The broad-based use of high-quality free software and the resulting exchange of experience might help to improve the quality of endodontic research with micro-computed tomography.
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Garcea, Serafina C.
2017-01-01
The role of longitudinal compressive failure mechanisms in notched cross-ply laminates is studied experimentally with in-situ synchrotron radiation based computed tomography. Carbon/epoxy specimens loaded monotonically in uniaxial compression exhibited a quasi-stable failure process, which was captured with computed tomography scans recorded continuously with a temporal resolutions of 2.4 seconds and a spatial resolution of 1.1 microns per voxel. A detailed chronology of the initiation and propagation of longitudinal matrix splitting cracks, in-plane and out-of-plane kink bands, shear-driven fiber failure, delamination, and transverse matrix cracks is provided with a focus on kink bands as the dominant failure mechanism. An automatic segmentation procedure is developed to identify the boundary surfaces of a kink band. The segmentation procedure enables 3-dimensional visualization of the kink band and conveys the orientation, inclination, and spatial variation of the kink band. The kink band inclination and length are examined using the segmented data revealing tunneling and spatial variations not apparent from studying the 2-dimensional section data.
NASA Astrophysics Data System (ADS)
Zhou, H.; Yu, X.; Chen, C.; Zeng, L.; Lu, S.; Wu, L.
2016-12-01
In this research, we combined synchrotron-based X-ray micro-computed tomography (SR-mCT), with three-dimensional lattice Bolzmann (LB) method, to quantify how the change in pore space architecture affected macroscopic hydraulic of two clayey soils amended with biochar. SR-mCT was used to characterize pore structures of the soils before and after biochar addition. The high-resolution soil pore structures were then directly used as internal boundary conditions for three-dimensional water flow simulations with the LB method, which was accelerated by graphics processing unit (GPU) parallel computing. It was shown that, due to the changes in soil pore geometry, the application of biochar increased the soil permeability by at least 1 order of magnitude, and decreased the tortuosity by 20-30%. This work was the first physics based modeling study on the effect of biochar amendment on soil hydraulic properties. The developed theories and techniques have promising potential in understanding the mechanisms of water and nutrient transport in soil at the pore scale.
Superimposition of 3-dimensional cone-beam computed tomography models of growing patients
Cevidanes, Lucia H. C.; Heymann, Gavin; Cornelis, Marie A.; DeClerck, Hugo J.; Tulloch, J. F. Camilla
2009-01-01
Introduction The objective of this study was to evaluate a new method for superimposition of 3-dimensional (3D) models of growing subjects. Methods Cone-beam computed tomography scans were taken before and after Class III malocclusion orthopedic treatment with miniplates. Three observers independently constructed 18 3D virtual surface models from cone-beam computed tomography scans of 3 patients. Separate 3D models were constructed for soft-tissue, cranial base, maxillary, and mandibular surfaces. The anterior cranial fossa was used to register the 3D models of before and after treatment (about 1 year of follow-up). Results Three-dimensional overlays of superimposed models and 3D color-coded displacement maps allowed visual and quantitative assessment of growth and treatment changes. The range of interobserver errors for each anatomic region was 0.4 mm for the zygomatic process of maxilla, chin, condyles, posterior border of the rami, and lower border of the mandible, and 0.5 mm for the anterior maxilla soft-tissue upper lip. Conclusions Our results suggest that this method is a valid and reproducible assessment of treatment outcomes for growing subjects. This technique can be used to identify maxillary and mandibular positional changes and bone remodeling relative to the anterior cranial fossa. PMID:19577154
Four-Dimensional Positron Emission Tomography: Implications for Dose Painting of High-Uptake Regions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aristophanous, Michalis, E-mail: maristophanous@lroc.harvard.edu; Yap, Jeffrey T.; Killoran, Joseph H.
Purpose: To investigate the behavior of tumor subvolumes of high [18F]-fluorodeoxyglucose (FDG) uptake as seen on clinical four-dimensional (4D) FDG-positron emission tomography (PET) scans. Methods and Materials: Four-dimensional FDG-PET/computed tomography scans from 13 patients taken before radiotherapy were available. The analysis was focused on regions of high uptake that are potential dose-painting targets. A total of 17 lesions (primary tumors and lymph nodes) were analyzed. On each one of the five phases of the 4D scan a classification algorithm was applied to obtain the region of highest uptake and segment the tumor volume. We looked at the behavior of bothmore » the high-uptake subvolume, called 'Boost,' and the segmented tumor volume, called 'Target.' We measured several quantities that characterize the Target and Boost volumes and quantified correlations between them. Results: The behavior of the Target could not always predict the behavior of the Boost. The shape deformation of the Boost regions was on average 133% higher than that of the Target. The gross to internal target volume expansion was on average 27.4% for the Target and 64% for the Boost, a statistically significant difference (p < 0.05). Finally, the inhale-to-exhale phase (20%) had the highest shape deformation for the Boost regions. Conclusions: A complex relationship between the measured quantities for the Boost and Target volumes is revealed. The results suggest that in cases in which advanced therapy techniques such as dose painting are being used, a close examination of the 4D PET scan should be performed.« less
Automated method for structural segmentation of nasal airways based on cone beam computed tomography
NASA Astrophysics Data System (ADS)
Tymkovych, Maksym Yu.; Avrunin, Oleg G.; Paliy, Victor G.; Filzow, Maksim; Gryshkov, Oleksandr; Glasmacher, Birgit; Omiotek, Zbigniew; DzierŻak, RóŻa; Smailova, Saule; Kozbekova, Ainur
2017-08-01
The work is dedicated to the segmentation problem of human nasal airways using Cone Beam Computed Tomography. During research, we propose a specialized approach of structured segmentation of nasal airways. That approach use spatial information, symmetrisation of the structures. The proposed stages can be used for construction a virtual three dimensional model of nasal airways and for production full-scale personalized atlases. During research we build the virtual model of nasal airways, which can be used for construction specialized medical atlases and aerodynamics researches.
Colohan, Shannon; Wong, Corrine; Lakhiani, Chrisovalantis; Cheng, Angela; Maia, Munique; Arbique, Gary; Saint-Cyr, Michel
2012-12-01
Increasing focus on reducing morbidity from latissimus dorsi flaps has led to the evolution of muscle-sparing variants and perforator-based flaps. This study aimed to investigate the vascular anatomy of the muscle-sparing variant and to describe its application as a free flap based on the descending branch of the thoracodorsal artery. Twelve fresh cadavers underwent anatomical dissection and angiographic injection studies of the thoracodorsal arterial system. The musculocutaneous territories of the descending and transverse branches to the latissimus dorsi muscle were identified and assessed using three-dimensional reconstruction software of computed tomography imaging results. In the clinical study, five patients underwent reconstruction of a variety of defects using the free descending branch muscle-sparing latissimus dorsi flap. Three- and four-dimensional (computed tomography) angiography demonstrated perfusion of the latissimus dorsi muscle by the transverse and descending branches, with overlap of vascular territories via cross-linking vessels. The descending branch supplied a slightly greater cutaneous area overlying the muscle, although differences between both branches were not significant (p = 0.76). In the clinical study, the free muscle-sparing latissimus dorsi flap provided excellent coverage with no flap complications or seroma. The free muscle-sparing latissimus dorsi flap based on the descending branch of the thoracodorsal artery is a viable reconstructive option. Significant collateral flow between vessels allows for larger flap harvest than would be expected. The flap is technically simple to harvest, provides a large perfusion area, and is a reliable variant of the full latissimus dorsi flap. Therapeutic, V.
Beattie, Bradley J; Klose, Alexander D; Le, Carl H; Longo, Valerie A; Dobrenkov, Konstantine; Vider, Jelena; Koutcher, Jason A; Blasberg, Ronald G
2009-01-01
The procedures we propose make possible the mapping of two-dimensional (2-D) bioluminescence image (BLI) data onto a skin surface derived from a three-dimensional (3-D) anatomical modality [magnetic resonance (MR) or computed tomography (CT)] dataset. This mapping allows anatomical information to be incorporated into bioluminescence tomography (BLT) reconstruction procedures and, when applied using sources visible to both optical and anatomical modalities, can be used to evaluate the accuracy of those reconstructions. Our procedures, based on immobilization of the animal and a priori determined fixed projective transforms, should be more robust and accurate than previously described efforts, which rely on a poorly constrained retrospectively determined warping of the 3-D anatomical information. Experiments conducted to measure the accuracy of the proposed registration procedure found it to have a mean error of 0.36+/-0.23 mm. Additional experiments highlight some of the confounds that are often overlooked in the BLT reconstruction process, and for two of these confounds, simple corrections are proposed.
Space shuttle main engine computed tomography applications
NASA Technical Reports Server (NTRS)
Sporny, Richard F.
1990-01-01
For the past two years the potential applications of computed tomography to the fabrication and overhaul of the Space Shuttle Main Engine were evaluated. Application tests were performed at various government and manufacturer facilities with equipment produced by four different manufacturers. The hardware scanned varied in size and complexity from a small temperature sensor and turbine blades to an assembled heat exchanger and main injector oxidizer inlet manifold. The evaluation of capabilities included the ability to identify and locate internal flaws, measure the depth of surface cracks, measure wall thickness, compare manifold design contours to actual part contours, perform automatic dimensional inspections, generate 3D computer models of actual parts, and image the relationship of the details in a complex assembly. The capabilities evaluated, with the exception of measuring the depth of surface flaws, demonstrated the existing and potential ability to perform many beneficial Space Shuttle Main Engine applications.
Motion artifact detection in four-dimensional computed tomography images
NASA Astrophysics Data System (ADS)
Bouilhol, G.; Ayadi, M.; Pinho, R.; Rit, S.; Sarrut, D.
2014-03-01
Motion artifacts appear in four-dimensional computed tomography (4DCT) images because of suboptimal acquisition parameters or patient breathing irregularities. Frequency of motion artifacts is high and they may introduce errors in radiation therapy treatment planning. Motion artifact detection can be useful for image quality assessment and 4D reconstruction improvement but manual detection in many images is a tedious process. We propose a novel method to evaluate the quality of 4DCT images by automatic detection of motion artifacts. The method was used to evaluate the impact of the optimization of acquisition parameters on image quality at our institute. 4DCT images of 114 lung cancer patients were analyzed. Acquisitions were performed with a rotation period of 0.5 seconds and a pitch of 0.1 (74 patients) or 0.081 (40 patients). A sensitivity of 0.70 and a specificity of 0.97 were observed. End-exhale phases were less prone to motion artifacts. In phases where motion speed is high, the number of detected artifacts was systematically reduced with a pitch of 0.081 instead of 0.1 and the mean reduction was 0.79. The increase of the number of patients with no artifact detected was statistically significant for the 10%, 70% and 80% respiratory phases, indicating a substantial image quality improvement.
Wawrzynek, Wojciech; Siemianowicz, Anna; Koczy, Bogdan; Kasprowska, Sabina; Besler, Krzysztof
2005-01-01
The Sprengel's deformity is a congenital anomaly of the shoulder girdle with an elevation of the scapula and limitation of movement of the shoulder. Sprengel's deformity is frequently associated with cervical spine malformations such as: spinal synostosis, spina bifida and an abnormal omovertebral fibrous, cartilaginous or osseus connection. The diagnosis of Sprengel's deformity is based on a clinical examination and radiological procedures. In every case of Sprengel's deformity plain radiography and computed tomography should be performed. Three-dimensional (3D) reconstructions allow to visualize precise topography and spatial proportions of examined bone structures. 3D reconstruction also enables an optional rotation of visualized bone structures in order to clarify the anatomical abnormalities and to plan surgical treatment.
Torrens, Carlos; Corrales, Monica; Gonzalez, Gemma; Solano, Alberto; Cáceres, Enrique
2008-01-01
Purpose The purpose of this study is to analyze the morphology of the scapula with reference to the glenoid component implantation in reversed shoulder prosthesis, in order to improve primary fixation of the component. Methods Seventy-three 3-dimensional computed tomography of the scapula and 108 scapular dry specimens were analyzed to determine the anterior and posterior length of the glenoid neck, the angle between the glenoid surface and the upper posterior column of the scapula and the angle between the major craneo-caudal glenoid axis and the base of the coracoid process and the upper posterior column. Results The anterior and posterior length of glenoid neck was classified into two groups named "short-neck" and "long-neck" with significant differences between them. The angle between the glenoid surface and the upper posterior column of the scapula was also classified into two different types: type I (mean 50°–52°) and type II (mean 62,50°–64°), with significant differences between them (p < 0,001). The angle between the major craneo-caudal glenoid axis and the base of the coracoid process averaged 18,25° while the angle with the upper posterior column of the scapula averaged 8°. Conclusion Scapular morphological variability advices for individual adjustments of glenoid component implantation in reversed total shoulder prosthesis. Three-dimensional computed tomography of the scapula constitutes an important tool when planning reversed prostheses implantation. PMID:18847487
Torrens, Carlos; Corrales, Monica; Gonzalez, Gemma; Solano, Alberto; Cáceres, Enrique
2008-10-10
The purpose of this study is to analyze the morphology of the scapula with reference to the glenoid component implantation in reversed shoulder prosthesis, in order to improve primary fixation of the component. Seventy-three 3-dimensional computed tomography of the scapula and 108 scapular dry specimens were analyzed to determine the anterior and posterior length of the glenoid neck, the angle between the glenoid surface and the upper posterior column of the scapula and the angle between the major craneo-caudal glenoid axis and the base of the coracoid process and the upper posterior column. The anterior and posterior length of glenoid neck was classified into two groups named "short-neck" and "long-neck" with significant differences between them. The angle between the glenoid surface and the upper posterior column of the scapula was also classified into two different types: type I (mean 50 degrees-52 degrees ) and type II (mean 62.50 degrees-64 degrees ), with significant differences between them (p < 0.001). The angle between the major craneo-caudal glenoid axis and the base of the coracoid process averaged 18,25 degrees while the angle with the upper posterior column of the scapula averaged 8 degrees . Scapular morphological variability advices for individual adjustments of glenoid component implantation in reversed total shoulder prosthesis. Three-dimensional computed tomography of the scapula constitutes an important tool when planning reversed prostheses implantation.
NASA Astrophysics Data System (ADS)
O'Brien, Ricky T.; Cooper, Benjamin J.; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J.
2014-02-01
Four dimensional cone beam computed tomography (4DCBCT) images suffer from angular under sampling and bunching of projections due to a lack of feedback between the respiratory signal and the acquisition system. To address this problem, respiratory motion guided 4DCBCT (RMG-4DCBCT) regulates the gantry velocity and projection time interval, in response to the patient’s respiratory signal, with the aim of acquiring evenly spaced projections in a number of phase or displacement bins during the respiratory cycle. Our previous study of RMG-4DCBCT was limited to sinusoidal breathing traces. Here we expand on that work to provide a practical algorithm for the case of real patient breathing data. We give a complete description of RMG-4DCBCT including full details on how to implement the algorithms to determine when to move the gantry and when to acquire projections in response to the patient’s respiratory signal. We simulate a realistic working RMG-4DCBCT system using 112 breathing traces from 24 lung cancer patients. Acquisition used phase-based binning and parameter settings typically used on commercial 4DCBCT systems (4 min acquisition time, 1200 projections across 10 respiratory bins), with the acceleration and velocity constraints of current generation linear accelerators. We quantified streaking artefacts and image noise for conventional and RMG-4DCBCT methods by reconstructing projection data selected from an oversampled set of Catphan phantom projections. RMG-4DCBCT allows us to optimally trade-off image quality, acquisition time and image dose. For example, for the same image quality and acquisition time as conventional 4DCBCT approximately half the imaging dose is needed. Alternatively, for the same imaging dose, the image quality as measured by the signal to noise ratio, is improved by 63% on average. C-arm cone beam computed tomography systems, with an acceleration up to 200°/s2, a velocity up to 100°/s and the acquisition of 80 projections per second, allow the image acquisition time to be reduced to below 60 s. We have made considerable progress towards realizing a system to reduce projection clustering in conventional 4DCBCT imaging and hence reduce the imaging dose to the patient.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu Wei; Low, Daniel A.; Parikh, Parag J.
2005-07-15
An important consideration in four-dimensional CT scanning is the selection of a breathing metric for sorting the CT data and modeling internal motion. This study compared two noninvasive breathing metrics, spirometry and abdominal height, against internal air content, used as a surrogate for internal motion. Both metrics were shown to be accurate, but the spirometry showed a stronger and more reproducible relationship than the abdominal height in the lung. The abdominal height was known to be affected by sensor placement and patient positioning while the spirometer exhibited signal drift. By combining these two, a normalization of the drift-free metric tomore » tidal volume may be generated and the overall metric precision may be improved.« less
Takashima, Kenta; Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto; Matsuda, Shojiro; Nakahira, Atsushi; Osumi, Noriko; Kohzuki, Masahiro; Onodera, Hiroshi
2015-01-01
Tissue engineering strategies for spinal cord repair are a primary focus of translational medicine after spinal cord injury (SCI). Many tissue engineering strategies employ three-dimensional scaffolds, which are made of biodegradable materials and have microstructure incorporated with viable cells and bioactive molecules to promote new tissue generation and functional recovery after SCI. It is therefore important to develop an imaging system that visualizes both the microstructure of three-dimensional scaffolds and their degradation process after SCI. Here, X-ray phase-contrast computed tomography imaging based on the Talbot grating interferometer is described and it is shown how it can visualize the polyglycolic acid scaffold, including its microfibres, after implantation into the injured spinal cord. Furthermore, X-ray phase-contrast computed tomography images revealed that degradation occurred from the end to the centre of the braided scaffold in the 28 days after implantation into the injured spinal cord. The present report provides the first demonstration of an imaging technique that visualizes both the microstructure and degradation of biodegradable scaffolds in SCI research. X-ray phase-contrast imaging based on the Talbot grating interferometer is a versatile technique that can be used for a broad range of preclinical applications in tissue engineering strategies. PMID:25537600
Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe; Kim, Tae-Il; Yi, Won-Jin
2015-03-01
We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method.
NASA Astrophysics Data System (ADS)
Ametova, Evelina; Ferrucci, Massimiliano; Chilingaryan, Suren; Dewulf, Wim
2018-06-01
The recent emergence of advanced manufacturing techniques such as additive manufacturing and an increased demand on the integrity of components have motivated research on the application of x-ray computed tomography (CT) for dimensional quality control. While CT has shown significant empirical potential for this purpose, there is a need for metrological research to accelerate the acceptance of CT as a measuring instrument. The accuracy in CT-based measurements is vulnerable to the instrument geometrical configuration during data acquisition, namely the relative position and orientation of x-ray source, rotation stage, and detector. Consistency between the actual instrument geometry and the corresponding parameters used in the reconstruction algorithm is critical. Currently available procedures provide users with only estimates of geometrical parameters. Quantification and propagation of uncertainty in the measured geometrical parameters must be considered to provide a complete uncertainty analysis and to establish confidence intervals for CT dimensional measurements. In this paper, we propose a computationally inexpensive model to approximate the influence of errors in CT geometrical parameters on dimensional measurement results. We use surface points extracted from a computer-aided design (CAD) model to model discrepancies in the radiographic image coordinates assigned to the projected edges between an aligned system and a system with misalignments. The efficacy of the proposed method was confirmed on simulated and experimental data in the presence of various geometrical uncertainty contributors.
Yuan, Fu-song; Sun, Yu-chun; Xie, Xiao-yan; Wang, Yong; Lv, Pei-jun
2013-12-18
To quantitatively evaluate the artifacts appearance of eight kinds of common dental restorative materials, such as zirconia. For the full-crown tooth preparation of mandibular first molar, eight kinds of full-crowns, such as zirconia all-ceramic crown, glass ceramic crown, ceramage crown, Au-Pt based porcelain-fused-metal (PFM) crown, Pure Titanium PFM crown, Co-Cr PFM crown, Ni-Cr PFM crown, and Au-Pd metal crown were fabricated. And natural teeth in vitro were used as controls. These full-crown and natural teeth in vitro were mounted an ultraviolet-curable resin fixed plate. High resolution cone beam computed tomography (CBCT) was used to scan all of the crowns and natural teeth in vitro, and their DICOM data were imported into software MIMICS 10.0. Then, the number of stripes and the maximum diameters of artifacts around the full-crowns were evaluated quantitatively in two-dimensional tomography images. In the two-dimensional tomography images,the artifacts did not appear around the natural teeth in vitro, glass ceramic crown, and ceramage crown. But thr artifacts appeared around the zirconia all-ceramic and metal crown. The number of stripes of artifacts was five to nine per one crown. The maximum diameters of the artifacts were 2.4 to 2.6 cm and 2.2 to 2.7 cm. In the two-dimensional tomography images of CBCT, stripe-like and radical artifacts were caused around the zirconia all-ceramic crown and metal based porcelain-fused-metal crowns. These artifacts could lower the imaging quality of the full crown shape greatly. The artifact was not caused around the natural teeth in vitro, glass ceramic crown, and ceramage crown.
The possible usability of three-dimensional cone beam computed dental tomography in dental research
NASA Astrophysics Data System (ADS)
Yavuz, I.; Rizal, M. F.; Kiswanjaya, B.
2017-08-01
The innovations and advantages of three-dimensional cone beam computed dental tomography (3D CBCT) are continually growing for its potential use in dental research. Imaging techniques are important for planning research in dentistry. Newly improved 3D CBCT imaging systems and accessory computer programs have recently been proven effective for use in dental research. The aim of this study is to introduce 3D CBCT and open a window for future research possibilities that should be given attention in dental research.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leter, Edward M.; Cademartiri, Filippo; Levendag, Peter C.
2005-07-01
Purpose: We used four-dimensional multislice spiral computed tomography (MSCT) to determine respiratory lung-tumor motion and compared this strategy to common clinical practice in conformal radiotherapy treatment-planning imaging. Methods and Materials: The entire lung volume of 10 consecutive patients with 14 lung metastases were scanned by a 16-slice MSCT. During the scans, patients were instructed to breathe through a spirometer that was connected to a laptop computer. For each patient, 10 stacks of 1.5-mm slices, equally distributed throughout the respiratory cycle, were reconstructed from the acquired MSCT data. The lung tumors were manually contoured in each data set. For each patient,more » the tumor-volume contours of all data sets were copied to 1 data set, which allowed determination of the volume that encompassed all 10 lung-tumor positions (i.e., the tumor-traversed volume [TTV]) during the respiratory cycle. The TTV was compared with the 10 tumor volumes contoured for each patient, to which an empiric respiratory-motion margin was added. The latter target volumes were designated internal-motion included tumor volume (IMITV). Results: The TTV measurements were significantly smaller than the reference IMITV measurements (5.2 {+-} 10.2 cm{sup 3} and 10.1 {+-} 13.7 cm{sup 3}, respectively). All 10 IMITVs for 2 of the 4 tumors in 1 subject completely encompassed the TTV. All 10 IMITVs for 3 tumors in 2 patients did not show overlap with up to 35% of the corresponding TTV. The 10 IMITVs for the remaining tumors either completely encompassed the corresponding TTV or did not show overlap with up to 26% of the corresponding TTV. Conclusions: We found that individualized determination of respiratory lung-tumor motion by four-dimensional respiratory-gated MSCT represents a better and simple strategy to incorporate periodic physiologic motion compared with a generalized approach. The former strategy can, therefore, improve common and state-of-the-art clinical practice in conformal radiotherapy.« less
Tomographic techniques for the study of exceptionally preserved fossils
Sutton, Mark D
2008-01-01
Three-dimensional fossils, especially those preserving soft-part anatomy, are a rich source of palaeontological information; they can, however, be difficult to work with. Imaging of serial planes through an object (tomography) allows study of both the inside and outside of three-dimensional fossils. Tomography may be performed using physical grinding or sawing coupled with photography, through optical techniques of serial focusing, or using a variety of scanning technologies such as neutron tomography, magnetic resonance imaging and most usefully X-ray computed tomography. This latter technique is applicable at a variety of scales, and when combined with a synchrotron X-ray source can produce very high-quality data that may be augmented by phase-contrast information to enhance contrast. Tomographic data can be visualized in several ways, the most effective of which is the production of isosurface-based ‘virtual fossils’ that can be manipulated and dissected interactively. PMID:18426749
Three-dimensional surface reconstruction for industrial computed tomography
NASA Technical Reports Server (NTRS)
Vannier, M. W.; Knapp, R. H.; Gayou, D. E.; Sammon, N. P.; Butterfield, R. L.; Larson, J. W.
1985-01-01
Modern high resolution medical computed tomography (CT) scanners can produce geometrically accurate sectional images of many types of industrial objects. Computer software has been developed to convert serial CT scans into a three-dimensional surface form, suitable for display on the scanner itself. This software, originally developed for imaging the skull, has been adapted for application to industrial CT scanning, where serial CT scans thrrough an object of interest may be reconstructed to demonstrate spatial relationships in three dimensions that cannot be easily understood using the original slices. The methods of three-dimensional reconstruction and solid modeling are reviewed, and reconstruction in three dimensions from CT scans through familiar objects is demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Xiaoning; Zhang Xiaodong; Li Yupeng
2009-02-01
Purpose: To study the impact of selecting different data sets from four-dimensional computed tomography (4D CT) imaging during proton treatment planning in patients with distal esophageal cancer. Methods and Materials: We examined the effects of changes in 4D CT data set and smearing margins in proton treatment planning for 5 patients with distal esophageal cancer whose diaphragms were in the beam path and could move several centimeters during respiration. Planning strategies based on (1) average, (2) inspiration, and (3) expiration CT were evaluated in terms of their coverage on the internal clinic target volume (ICTV) at the prescribed dose. Results:more » For Strategy 1, increasing the smearing margin caused an increase in the ICTV prescription dose coverage (PDC) at the end-exhalation phase for all patients, whereas the ICTV PDC decreased for some patients at the end-inhalation phase. For Strategy 2, a smearing margin in the range of 1.0 to 3.5 cm caused the ICTV PDC to remain essentially unchanged, regardless of which phase of 4D CT was used for dose calculation, for all patients. For Strategy 3, the ICTV coverage was adequate for 2 of the 5 patients when a smearing margin of less than 1.0 cm was used, but was not adequate for the other 3 patients regardless of the smearing margin. Conclusion: Using the inspiration CT plus a smearing margin can lead to adequate ICTV coverage in treatment plans for patients with distal esophageal tumors surrounded by tissue that is subject to large changes in density during a proton treatment.« less
A 4DCT imaging-based breathing lung model with relative hysteresis
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long
2016-01-01
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. PMID:28260811
A 4DCT imaging-based breathing lung model with relative hysteresis
NASA Astrophysics Data System (ADS)
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.; Lin, Ching-Long
2016-12-01
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for both models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry.
2016-01-01
PURPOSE The storage conditions of impressions affect the dimensional accuracy of the impression materials. The aim of the study was to assess the effects of storage time on dimensional accuracy of five different impression materials by cone beam computed tomography (CBCT). MATERIALS AND METHODS Polyether (Impregum), hydrocolloid (Hydrogum and Alginoplast), and silicone (Zetaflow and Honigum) impression materials were used for impressions taken from an acrylic master model. The impressions were poured and subjected to four different storage times: immediate use, and 1, 3, and 5 days of storage. Line 1 (between right and left first molar mesiobuccal cusp tips) and Line 2 (between right and left canine tips) were measured on a CBCT scanned model, and time dependent mean differences were analyzed by two-way univariate and Duncan's test (α=.05). RESULTS For Line 1, the total mean difference of Impregum and Hydrogum were statistically different from Alginoplast (P<.05), while Zetaflow and Honigum had smaller discrepancies. Alginoplast resulted in more difference than the other impressions (P<.05). For Line 2, the total mean difference of Impregum was statistically different from the other impressions. Significant differences were observed in Line 1 and Line 2 for the different storage periods (P<.05). CONCLUSION The dimensional accuracy of impression material is clinically acceptable if the impression material is stored in suitable conditions. PMID:27826388
Alkurt, Murat; Yeşıl Duymus, Zeynep; Dedeoglu, Numan
2016-10-01
The storage conditions of impressions affect the dimensional accuracy of the impression materials. The aim of the study was to assess the effects of storage time on dimensional accuracy of five different impression materials by cone beam computed tomography (CBCT). Polyether (Impregum), hydrocolloid (Hydrogum and Alginoplast), and silicone (Zetaflow and Honigum) impression materials were used for impressions taken from an acrylic master model. The impressions were poured and subjected to four different storage times: immediate use, and 1, 3, and 5 days of storage. Line 1 (between right and left first molar mesiobuccal cusp tips) and Line 2 (between right and left canine tips) were measured on a CBCT scanned model, and time dependent mean differences were analyzed by two-way univariate and Duncan's test (α=.05). For Line 1, the total mean difference of Impregum and Hydrogum were statistically different from Alginoplast ( P <.05), while Zetaflow and Honigum had smaller discrepancies. Alginoplast resulted in more difference than the other impressions ( P <.05). For Line 2, the total mean difference of Impregum was statistically different from the other impressions. Significant differences were observed in Line 1 and Line 2 for the different storage periods ( P <.05). The dimensional accuracy of impression material is clinically acceptable if the impression material is stored in suitable conditions.
Design and Construction of Detector and Data Acquisition Elements for Proton Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fermi Research Alliance; Northern Illinois University
2015-07-15
Proton computed tomography (pCT) offers an alternative to x-ray imaging with potential for three-dimensional imaging, reduced radiation exposure, and in-situ imaging. Northern Illinois University (NIU) is developing a second-generation proton computed tomography system with a goal of demonstrating the feasibility of three-dimensional imaging within clinically realistic imaging times. The second-generation pCT system is comprised of a tracking system, a calorimeter, data acquisition, a computing farm, and software algorithms. The proton beam encounters the upstream tracking detectors, the patient or phantom, the downstream tracking detectors, and a calorimeter. The schematic layout of the PCT system is shown. The data acquisition sendsmore » the proton scattering information to an offline computing farm. Major innovations of the second generation pCT project involve an increased data acquisition rate ( MHz range) and development of three-dimensional imaging algorithms. The Fermilab Particle Physics Division and Northern Illinois Center for Accelerator and Detector Development at Northern Illinois University worked together to design and construct the tracking detectors, calorimeter, readout electronics and detector mounting system.« less
NASA Astrophysics Data System (ADS)
Chioran, Doina; Nicoarǎ, Adrian; Roşu, Şerban; Cǎrligeriu, Virgil; Ianeş, Emilia
2013-10-01
Digital processing of two-dimensional cone beam computer tomography slicesstarts by identification of the contour of elements within. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating and implementation of algorithms in dental 2D imagery.
Compton imaging tomography for nondestructive evaluation of spacecraft thermal protection systems
NASA Astrophysics Data System (ADS)
Romanov, Volodymyr; Burke, Eric; Grubsky, Victor
2017-02-01
Here we present new results of in situ nondestructive evaluation (NDE) of spacecraft thermal protection system materials obtained with POC-developed NDE tool based on a novel Compton Imaging Tomography (CIT) technique recently pioneered and patented by Physical Optics Corporation (POC). In general, CIT provides high-resolution three-dimensional Compton scattered X-ray imaging of the internal structure of evaluated objects, using a set of acquired two-dimensional Compton scattered X-ray images of consecutive cross sections of these objects. Unlike conventional computed tomography, CIT requires only one-sided access to objects, has no limitation on the dimensions and geometry of the objects, and can be applied to large multilayer non-uniform objects with complicated geometries. Also, CIT does not require any contact with the objects being imaged during its application.
Faustmann, P M; Farahati, J; Rupilius, B; Dux, R; Koch, M C; Reiners, C
1996-12-01
Fifteen persons from two consecutive generations of one family affected with facio-scapulo-humeral muscular dystrophy (FSHD) were clinically and neurophysiologically examined. Diagnostic muscle biopsies were obtained from two members. Linkage analysis showed that all four affected members of the family inherit the same 4q35 haplotype giving a lod score of z = +1.44. Six family members were examined by ECG at rest and under stress, by two-dimensional echocardiography, and by cardiac Thallium-201 single-photon-emission computed tomography (Tl-201-SPECT) under dobutamine stress and at rest. Abnormal reduced Tl-201 uptake in cardiac SPECT was only found in the affected members of the family. Therefore we suggest that cardiac Tl-201-SPECT abnormalities in FSHD reflect cardiomyogenic changes in this type of muscular disease.
Hamatani, Yasuhiro; Amaki, Makoto; Kanzaki, Hideaki; Yamashita, Kizuku; Nakashima, Yasuteru; Shibata, Atsushi; Okada, Atsushi; Takahama, Hiroyuki; Hasegawa, Takuya; Shimahara, Yusuke; Sugano, Yasuo; Fujita, Tomoyuki; Shiraishi, Isao; Yasuda, Satoshi; Kobayashi, Junjiro
2017-01-01
Abstract Both surgical myectomy and percutaneous transluminal septal myocardial ablation are effective treatments for drug‐refractory symptomatic hypertrophic obstructive cardiomyopathy (HOCM). However, in some cases, it is not easy to elucidate the abnormal structure of left ventricular outflow obstruction to adopt these treatments. Here, we presented a young female patient with drug‐refractory symptomatic HOCM. In this case, contrast‐enhanced computed tomography enabled us to assess the suitability of percutaneous transluminal septal myocardial ablation. By creating three‐dimensional printed models using computed tomography data, we could also visualize intracardiac structure and simulate the surgical procedure. A multimodality assessment strategy is useful for evaluating patients complicated with drug‐refractory symptomatic HOCM. PMID:29154429
Zhang, Guanglei; Liu, Fei; Zhang, Bin; He, Yun; Luo, Jianwen; Bai, Jing
2013-04-01
Pharmacokinetic rates have the potential to provide quantitative physiological and pathological information for biological studies and drug development. Fluorescence molecular tomography (FMT) is an attractive imaging tool for three-dimensionally resolving fluorophore distribution in small animals. In this letter, pharmacokinetic rates of indocyanine green (ICG) in mouse liver are imaged with a hybrid FMT and x-ray computed tomography (XCT) system. A recently developed FMT method using structural priors from an XCT system is adopted to improve the quality of FMT reconstruction. In the in vivo experiments, images of uptake and excretion rates of ICG in mouse liver are obtained, which can be used to quantitatively evaluate liver function. The accuracy of the results is validated by a fiber-based fluorescence measurement system.
ERIC Educational Resources Information Center
Michael, Greg
2001-01-01
Describes computed tomography (CT), a medical imaging technique that produces images of transaxial planes through the human body. A CT image is reconstructed mathematically from a large number of one-dimensional projections of a plane. The technique is used in radiological examinations and radiotherapy treatment planning. (Author/MM)
Ahmad, Moiz; Balter, Peter; Pan, Tinsu
2011-10-01
Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm. With graphics processing unit hardware used to accelerate computations, the 4D-VOI reconstruction required a 40-s reconstruction time. 4D-VOI reconstruction effectively reduces undersampling artifacts and resolves lung tumor motion in 4D-CBCT. The 4D-VOI reconstruction is computationally inexpensive compared with more sophisticated iterative algorithms. Compared with these algorithms, our 4D-VOI reconstruction is an attractive alternative in 4D-CBCT for reconstructing target motion without generating numerous streak artifacts.
Ahmad, Moiz; Balter, Peter; Pan, Tinsu
2011-01-01
Purpose: Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4–6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. Methods: The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Results: Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3–8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction shows a motion blur of 13 mm. With graphics processing unit hardware used to accelerate computations, the 4D-VOI reconstruction required a 40-s reconstruction time. Conclusions: 4D-VOI reconstruction effectively reduces undersampling artifacts and resolves lung tumor motion in 4D-CBCT. The 4D-VOI reconstruction is computationally inexpensive compared with more sophisticated iterative algorithms. Compared with these algorithms, our 4D-VOI reconstruction is an attractive alternative in 4D-CBCT for reconstructing target motion without generating numerous streak artifacts. PMID:21992381
Impact of temporal probability in 4D dose calculation for lung tumors.
Rouabhi, Ouided; Ma, Mingyu; Bayouth, John; Xia, Junyi
2015-11-08
The purpose of this study was to evaluate the dosimetric uncertainty in 4D dose calculation using three temporal probability distributions: uniform distribution, sinusoidal distribution, and patient-specific distribution derived from the patient respiratory trace. Temporal probability, defined as the fraction of time a patient spends in each respiratory amplitude, was evaluated in nine lung cancer patients. Four-dimensional computed tomography (4D CT), along with deformable image registration, was used to compute 4D dose incorporating the patient's respiratory motion. First, the dose of each of 10 phase CTs was computed using the same planning parameters as those used in 3D treatment planning based on the breath-hold CT. Next, deformable image registration was used to deform the dose of each phase CT to the breath-hold CT using the deformation map between the phase CT and the breath-hold CT. Finally, the 4D dose was computed by summing the deformed phase doses using their corresponding temporal probabilities. In this study, 4D dose calculated from the patient-specific temporal probability distribution was used as the ground truth. The dosimetric evaluation matrix included: 1) 3D gamma analysis, 2) mean tumor dose (MTD), 3) mean lung dose (MLD), and 4) lung V20. For seven out of nine patients, both uniform and sinusoidal temporal probability dose distributions were found to have an average gamma passing rate > 95% for both the lung and PTV regions. Compared with 4D dose calculated using the patient respiratory trace, doses using uniform and sinusoidal distribution showed a percentage difference on average of -0.1% ± 0.6% and -0.2% ± 0.4% in MTD, -0.2% ± 1.9% and -0.2% ± 1.3% in MLD, 0.09% ± 2.8% and -0.07% ± 1.8% in lung V20, -0.1% ± 2.0% and 0.08% ± 1.34% in lung V10, 0.47% ± 1.8% and 0.19% ± 1.3% in lung V5, respectively. We concluded that four-dimensional dose computed using either a uniform or sinusoidal temporal probability distribution can approximate four-dimensional dose computed using the patient-specific respiratory trace.
Correlation of quantitative computed tomographic subchondral bone density and ash density in horses.
Drum, M G; Les, C M; Park, R D; Norrdin, R W; McIlwraith, C W; Kawcak, C E
2009-02-01
The purpose of this study was to compare subchondral bone density obtained using quantitative computed tomography with ash density values from intact equine joints, and to determine if there are measurable anatomic variations in mean subchondral bone density. Five adult equine metacarpophalangeal joints were scanned with computed tomography (CT), disarticulated, and four 1-cm(3) regions of interest (ROI) cut from the distal third metacarpal bone. Bone cubes were ashed, and percent mineralization and ash density were recorded. Three-dimensional models were created of the distal third metacarpal bone from CT images. Four ROIs were measured on the distal aspect of the third metacarpal bone at axial and abaxial sites of the medial and lateral condyles for correlation with ash samples. Overall correlations of mean quantitative CT (QCT) density with ash density (r=0.82) and percent mineralization (r=0.93) were strong. There were significant differences between abaxial and axial ROIs for mean QCT density, percent bone mineralization and ash density (p<0.05). QCT appears to be a good measure of bone density in equine subchondral bone. Additionally, differences existed between axial and abaxial subchondral bone density in the equine distal third metacarpal bone.
Sandow, M J; Fisher, T J; Howard, C Q; Papas, S
2014-05-01
This study was part of a larger project to develop a (kinetic) theory of carpal motion based on computationally derived isometric constraints. Three-dimensional models were created from computed tomography scans of the wrists of ten normal subjects and carpal spatial relationships at physiological motion extremes were assessed. Specific points on the surface of the various carpal bones and the radius that remained isometric through range of movement were identified. Analysis of the isometric constraints and intercarpal motion suggests that the carpus functions as a stable central column (lunate-capitate-hamate-trapezoid-trapezium) with a supporting lateral column (scaphoid), which behaves as a 'two gear four bar linkage'. The triquetrum functions as an ulnar translation restraint, as well as controlling lunate flexion. The 'trapezoid'-shaped trapezoid places the trapezium anterior to the transverse plane of the radius and ulna, and thus rotates the principal axis of the central column to correspond to that used in the 'dart thrower's motion'. This study presents a forward kinematic analysis of the carpus that provides the basis for the development of a unifying kinetic theory of wrist motion based on isometric constraints and rules-based motion.
Role of post-mapping computed tomography in virtual-assisted lung mapping.
Sato, Masaaki; Nagayama, Kazuhiro; Kuwano, Hideki; Nitadori, Jun-Ichi; Anraku, Masaki; Nakajima, Jun
2017-02-01
Background Virtual-assisted lung mapping is a novel bronchoscopic preoperative lung marking technique in which virtual bronchoscopy is used to predict the locations of multiple dye markings. Post-mapping computed tomography is performed to confirm the locations of the actual markings. This study aimed to examine the accuracy of marking locations predicted by virtual bronchoscopy and elucidate the role of post-mapping computed tomography. Methods Automated and manual virtual bronchoscopy was used to predict marking locations. After bronchoscopic dye marking under local anesthesia, computed tomography was performed to confirm the actual marking locations before surgery. Discrepancies between marking locations predicted by the different methods and the actual markings were examined on computed tomography images. Forty-three markings in 11 patients were analyzed. Results The average difference between the predicted and actual marking locations was 30 mm. There was no significant difference between the latest version of the automated virtual bronchoscopy system (30.7 ± 17.2 mm) and manual virtual bronchoscopy (29.8 ± 19.1 mm). The difference was significantly greater in the upper vs. lower lobes (37.1 ± 20.1 vs. 23.0 ± 6.8 mm, for automated virtual bronchoscopy; p < 0.01). Despite this discrepancy, all targeted lesions were successfully resected using 3-dimensional image guidance based on post-mapping computed tomography reflecting the actual marking locations. Conclusions Markings predicted by virtual bronchoscopy were dislocated from the actual markings by an average of 3 cm. However, surgery was accurately performed using post-mapping computed tomography guidance, demonstrating the indispensable role of post-mapping computed tomography in virtual-assisted lung mapping.
Sunaguchi, Naoki; Yuasa, Tetsuya; Hyodo, Kazuyuki; Zeniya, Tsutomu
2013-01-01
We propose a 3-dimensional fluorescent x-ray computed tomography (CT) pinhole collimator, aimed at providing molecular imaging with quantifiable measures and sub-millimeter spatial resolution. In this study, we demonstrate the feasibility of this concept and investigate imaging properties such as spatial resolution, contrast resolution and quantifiable measures, by imaging physical phantoms using a preliminary imaging system developed with monochromatic synchrotron x rays constructed at the BLNE-7A experimental line at KEK, Japan.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Izen, Steven H.
1992-01-01
A theory to determine the properties of a fluid from measurements of its projections was developed and tested. Viewing cones as small as 10 degrees were evaluated, with the only assumption being that the property was space limited. The results of applying the theory to numerical and actual interferograms of a spherical discontinuity of refractive index are presented. The theory was developed to test the practicality and limits of using three dimensional computer tomography in internal fluid dynamics.
Model studies of laser absorption computed tomography for remote air pollution measurement
NASA Technical Reports Server (NTRS)
Wolfe, D. C., Jr.; Byer, R. L.
1982-01-01
Model studies of the potential of laser absorption-computed tomography are presented which demonstrate the possibility of sensitive remote atmospheric pollutant measurements, over kilometer-sized areas, with two-dimensional resolution, at modest laser source powers. An analysis of this tomographic reconstruction process as a function of measurement SNR, laser power, range, and system geometry, shows that the system is able to yield two-dimensional maps of pollutant concentrations at ranges and resolutions superior to those attainable with existing, direct-detection laser radars.
NASA Technical Reports Server (NTRS)
Decker, Arthur J.; Izen, Steven H.
1991-01-01
A theory to determine the properties of a fluid from measurements of its projections was developed and tested. Viewing cones as small as 10 degrees were evaluated, with the only assumption being that the property was space limited. The results of applying the theory to numerical and actual interferograms of a spherical discontinuity of refractive index are presented. The theory was developed to test the practicality and limits of using three-dimensional computer tomography in internal fluid dynamics.
Madan, Renu; Pathy, Sushmita; Subramani, Vellaiyan; Sharma, Seema; Mohanti, Bidhu Kalyan; Chander, Subhash; Thulkar, Sanjay; Kumar, Lalit; Dadhwal, Vatsla
2014-01-01
Dosimetric comparison of two dimensional (2D) radiography and three-dimensional computed tomography (3D-CT) based dose distributions with high-dose-rate (HDR) intracavitry radiotherapy (ICRT) for carcinoma cervix, in terms of target coverage and doses to bladder and rectum. Sixty four sessions of HDR ICRT were performed in 22 patients. External beam radiotherapy to pelvis at a dose of 50 Gray in 27 fractions followed by HDR ICRT, 21 Grays to point A in 3 sessions, one week apart was planned . All patients underwent 2D-orthogonal and 3D-CT simulation for each session. Treatment plans were generated using 2D-orthogonal images and dose prescription was made at point A. 3D plans were generated using 3D-CT images after delineating target volume and organs at risk. Comparative evaluation of 2D and 3D treatment planning was made for each session in terms of target coverage (dose received by 90%, 95% and 100% of the target volume: D90, D95 and D100 respectively) and doses to bladder and rectum: ICRU-38 bladder and rectum point dose in 2D planning and dose to 0.1cc, 1cc, 2cc, 5cc, and 10cc of bladder and rectum in 3D planning. Mean doses received by 100% and 90% of the target volume were 4.24 ± 0.63 and 4.9 ± 0.56 Gy respectively. Doses received by 0.1cc, 1cc and 2cc volume of bladder were 2.88 ± 0.72, 2.5 ± 0.65 and 2.2 ± 0.57 times more than the ICRU bladder reference point. Similarly, doses received by 0.1cc, 1cc and 2cc of rectum were 1.80 ± 0.5, 1.48 ± 0.41 and 1.35 ± 0.37 times higher than ICRU rectal reference point. Dosimetric comparative evaluation of 2D and 3D CT based treatment planning for the same brachytherapy session demonstrates underestimation of OAR doses and overestimation of target coverage in 2D treatment planning.
Cone beam computed tomography in Endodontics - a review.
Patel, S; Durack, C; Abella, F; Shemesh, H; Roig, M; Lemberg, K
2015-01-01
Cone beam computed tomography (CBCT) produces undistorted three-dimensional information of the maxillofacial skeleton, including the teeth and their surrounding tissues with a lower effective radiation dose than computed tomography. The aim of this paper is to: (i) review the current literature on the applications and limitations of CBCT; (ii) make recommendations for the use of CBCT in Endodontics; (iii) highlight areas of further research of CBCT in Endodontics. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Kang, Sung-Won; Lee, Woo-Jin; Choi, Soon-Chul; Lee, Sam-Sun; Heo, Min-Suk; Huh, Kyung-Hoe
2015-01-01
Purpose We have developed a new method of segmenting the areas of absorbable implants and bone using region-based segmentation of micro-computed tomography (micro-CT) images, which allowed us to quantify volumetric bone-implant contact (VBIC) and volumetric absorption (VA). Materials and Methods The simple threshold technique generally used in micro-CT analysis cannot be used to segment the areas of absorbable implants and bone. Instead, a region-based segmentation method, a region-labeling method, and subsequent morphological operations were successively applied to micro-CT images. The three-dimensional VBIC and VA of the absorbable implant were then calculated over the entire volume of the implant. Two-dimensional (2D) bone-implant contact (BIC) and bone area (BA) were also measured based on the conventional histomorphometric method. Results VA and VBIC increased significantly with as the healing period increased (p<0.05). VBIC values were significantly correlated with VA values (p<0.05) and with 2D BIC values (p<0.05). Conclusion It is possible to quantify VBIC and VA for absorbable implants using micro-CT analysis using a region-based segmentation method. PMID:25793178
NASA Astrophysics Data System (ADS)
Teng, Dongdong; Liu, Lilin; Zhang, Yueli; Pang, Zhiyong; Wang, Biao
2014-09-01
Through the creative usage of a shiftable cylindrical lens, a wide-view-angle holographic display system is developed for medical object display in real three-dimensional (3D) space based on a time-multiplexing method. The two-dimensional (2D) source images for all computer generated holograms (CGHs) needed by the display system are only one group of computerized tomography (CT) or magnetic resonance imaging (MRI) slices from the scanning device. Complicated 3D message reconstruction on the computer is not necessary. A pelvis is taken as the target medical object to demonstrate this method and the obtained horizontal viewing angle reaches 28°.
Computer-assisted surgical planning and automation of laser delivery systems
NASA Astrophysics Data System (ADS)
Zamorano, Lucia J.; Dujovny, Manuel; Dong, Ada; Kadi, A. Majeed
1991-05-01
This paper describes a 'real time' surgical treatment planning interactive workstation, utilizing multimodality imaging (computer tomography, magnetic resonance imaging, digital angiography) that has been developed to provide the neurosurgeon with two-dimensional multiplanar and three-dimensional 'display' of a patient's lesion.
Tomographic digital subtraction angiography for lung perfusion estimation in rodents.
Badea, Cristian T; Hedlund, Laurence W; De Lin, Ming; Mackel, Julie S Boslego; Samei, Ehsan; Johnson, G Allan
2007-05-01
In vivo measurements of perfusion present a challenge to existing small animal imaging techniques such as magnetic resonance microscopy, micro computed tomography, micro positron emission tomography, and microSPECT, due to combined requirements for high spatial and temporal resolution. We demonstrate the use of tomographic digital subtraction angiography (TDSA) for estimation of perfusion in small animals. TDSA augments conventional digital subtraction angiography (DSA) by providing three-dimensional spatial information using tomosynthesis algorithms. TDSA is based on the novel paradigm that the same time density curves can be reproduced in a number of consecutive injections of microL volumes of contrast at a series of different angles of rotation. The capabilities of TDSA are established in studies on lung perfusion in rats. Using an imaging system developed in-house, we acquired data for four-dimensional (4D) imaging with temporal resolution of 140 ms, in-plane spatial resolution of 100 microm, and slice thickness on the order of millimeters. Based on a structured experimental approach, we optimized TDSA imaging providing a good trade-off between slice thickness, the number of injections, contrast to noise, and immunity to artifacts. Both DSA and TDSA images were used to create parametric maps of perfusion. TDSA imaging has potential application in a number of areas where functional perfusion measurements in 4D can provide valuable insight into animal models of disease and response to therapeutics.
Synchrotron-based X-ray computed tomography during compression loading of cellular materials
Cordes, Nikolaus L.; Henderson, Kevin; Stannard, Tyler; ...
2015-04-29
Three-dimensional X-ray computed tomography (CT) of in situ dynamic processes provides internal snapshot images as a function of time. Tomograms are mathematically reconstructed from a series of radiographs taken in rapid succession as the specimen is rotated in small angular increments. In addition to spatial resolution, temporal resolution is important. Thus temporal resolution indicates how close together in time two distinct tomograms can be acquired. Tomograms taken in rapid succession allow detailed analyses of internal processes that cannot be obtained by other means. This article describes the state-of-the-art for such measurements acquired using synchrotron radiation as the X-ray source.
Jin, Peng; Hulshof, Maarten C C M; de Jong, Rianne; van Hooft, Jeanin E; Bel, Arjan; Alderliesten, Tanja
2016-03-01
Respiration-induced tumor motion is an important geometrical uncertainty in esophageal cancer radiation therapy. The aim of this study was to quantify this motion using fiducial markers and four-dimensional computed tomography (4DCT). Twenty esophageal cancer patients underwent endoscopy-guided marker implantation in the tumor volume and 4DCT acquisition. The 4DCT data were sorted into 10 breathing phases and the end-of-inhalation phase was selected as reference. We quantified for each visible marker (n=60) the motion in each phase and derived the peak-to-peak motion magnitude throughout the breathing cycle. The motion was quantified and analyzed for four different regions and in three orthogonal directions. The median(interquartile range) of the peak-to-peak magnitudes of the respiration-induced marker motion (left-right/anterior-posterior/cranial-caudal) was 1.5(0.5)/1.6(0.5)/2.9(1.4) mm for the proximal esophagus (n=6), 1.5(1.4)/1.4(1.3)/3.7(2.6) mm for the middle esophagus (n=12), 2.6(1.3)/3.3(1.8)/5.4(2.9) mm for the distal esophagus (n=25), and 3.7(2.1)/5.3(1.8)/8.2(3.1) mm for the proximal stomach (n=17). The variations in the results between the three directions, four regions, and patients suggest the need of individualized region-dependent anisotropic internal margins. Therefore, we recommend using markers with 4DCT to patient-specifically adapt the internal target volume (ITV). Without 4DCT, 3DCTs at the end-of-inhalation and end-of-exhalation phases could be alternatively applied for ITV individualization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Three-dimensional monochromatic x-ray computed tomography using synchrotron radiation
NASA Astrophysics Data System (ADS)
Saito, Tsuneo; Kudo, Hiroyuki; Takeda, Tohoru; Itai, Yuji; Tokumori, Kenji; Toyofuku, Fukai; Hyodo, Kazuyuki; Ando, Masami; Nishimura, Katsuyuki; Uyama, Chikao
1998-08-01
We describe a technique of 3D computed tomography (3D CT) using monochromatic x rays generated by synchrotron radiation, which performs a direct reconstruction of a 3D volume image of an object from its cone-beam projections. For the development, we propose a practical scanning orbit of the x-ray source to obtain complete 3D information on an object, and its corresponding 3D image reconstruction algorithm. The validity and usefulness of the proposed scanning orbit and reconstruction algorithm were confirmed by computer simulation studies. Based on these investigations, we have developed a prototype 3D monochromatic x-ray CT using synchrotron radiation, which provides exact 3D reconstruction and material-selective imaging by using the K-edge energy subtraction technique.
Speckle contrast diffuse correlation tomography of complex turbid medium flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Chong; Irwin, Daniel; Lin, Yu
2015-07-15
Purpose: Developed herein is a three-dimensional (3D) flow contrast imaging system leveraging advancements in the extension of laser speckle contrast imaging theories to deep tissues along with our recently developed finite-element diffuse correlation tomography (DCT) reconstruction scheme. This technique, termed speckle contrast diffuse correlation tomography (scDCT), enables incorporation of complex optical property heterogeneities and sample boundaries. When combined with a reflectance-based design, this system facilitates a rapid segue into flow contrast imaging of larger, in vivo applications such as humans. Methods: A highly sensitive CCD camera was integrated into a reflectance-based optical system. Four long-coherence laser source positions were coupledmore » to an optical switch for sequencing of tomographic data acquisition providing multiple projections through the sample. This system was investigated through incorporation of liquid and solid tissue-like phantoms exhibiting optical properties and flow characteristics typical of human tissues. Computer simulations were also performed for comparisons. A uniquely encountered smear correction algorithm was employed to correct point-source illumination contributions during image capture with the frame-transfer CCD and reflectance setup. Results: Measurements with scDCT on a homogeneous liquid phantom showed that speckle contrast-based deep flow indices were within 12% of those from standard DCT. Inclusion of a solid phantom submerged below the liquid phantom surface allowed for heterogeneity detection and validation. The heterogeneity was identified successfully by reconstructed 3D flow contrast tomography with scDCT. The heterogeneity center and dimensions and averaged relative flow (within 3%) and localization were in agreement with actuality and computer simulations, respectively. Conclusions: A custom cost-effective CCD-based reflectance 3D flow imaging system demonstrated rapid acquisition of dense boundary data and, with further studies, a high potential for translatability to real tissues with arbitrary boundaries. A requisite correction was also found for measurements in the fashion of scDCT to recover accurate speckle contrast of deep tissues.« less
Novel Assessment of Renal Motion in Children as Measured via Four-Dimensional Computed Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pai Panandiker, Atmaram S., E-mail: atmaram.pai-panandiker@stjude.org; Sharma, Shelly; Naik, Mihir H.
Objectives: Abdominal intensity-modulated radiation therapy and proton therapy require quantification of target and organ motion to optimize localization and treatment. Although addressed in adults, there is no available literature on this issue in pediatric patients. We assessed physiologic renal motion in pediatric patients. Methods and Materials: Twenty free-breathing pediatric patients at a median age of 8 years (range, 2-18 years) with intra-abdominal tumors underwent computed tomography simulation and four-dimensional computed tomography acquisition (slice thickness, 3 mm). Kidneys and diaphragms were contoured during eight phases of respiration to estimate center-of-mass motion. We quantified center of kidney mass mobility vectors in threemore » dimensions: anteroposterior (AP), mediolateral (ML), and superoinferior (SI). Results: Kidney motion decreases linearly with decreasing age and height. The 95% confidence interval for the averaged minima and maxima of renal motion in children younger than 9 years was 5-9 mm in the ML direction, 4-11 mm in the AP direction, and 12-25 mm in the SI dimension for both kidneys. In children older than 9 years, the same confidence interval reveals a widening range of motion that was 5-16 mm in the ML direction, 6-17 mm in the AP direction, and 21-52 mm in the SI direction. Although not statistically significant, renal motion correlated with diaphragm motion in older patients. The correlation between diaphragm motion and body mass index was borderline (r = 0.52, p = 0.0816) in younger patients. Conclusions: Renal motion is age and height dependent. Measuring diaphragmatic motion alone does not reliably quantify pediatric renal motion. Renal motion in young children ranges from 5 to 25 mm in orientation-specific directions. The vectors of motion range from 5 to 52 mm in older children. These preliminary data represent novel analyses of pediatric intra-abdominal organ motion.« less
Taylor, Susan; Ringelberg, David B; Dontsova, Katerina; Daghlian, Charles P; Walsh, Marianne E; Walsh, Michael R
2013-11-01
Two compounds, 2,4-dinitroanisole (DNAN) and 3-nitro-1,2,4-triazol-5-one (NTO) are the main ingredients in a suite of explosive formulations that are being, or soon will be, fielded at military training ranges. We aim to understand the dissolution characteristics of DNAN and NTO and three insensitive muntions (IM) formulations that contain them. This information is needed to accurately predict the environmental fate of IM constituents, some of which may be toxic to people and the environment. We used Raman spectroscopy to identify the different constituents in the IM formulations and micro computed tomography to image their three-dimensional structure. These are the first three-dimensional images of detonated explosive particles. For multi-component explosives the solubility of the individual constituents and the fraction of each constituent wetted by water controls the dissolution. We found that the order of magnitude differences in solubility amongst the constituents of these IM formulations quickly produced hole-riddled particles when these were exposed to water. Micro-computed tomography showed that particles resulting from field detonations were fractured, producing conduits by which water could access the interior of the particle. We think that micro-computed tomography can also be used to determine the initial composition of IM particles and to track how their compositions change as the particles dissolve. This information is critical to quantifying dissolution and developing physically based dissolution models. Published by Elsevier Ltd.
Three-dimensional multifunctional optical coherence tomography for skin imaging
NASA Astrophysics Data System (ADS)
Li, En; Makita, Shuichi; Hong, Young-Joo; Kasaragod, Deepa; Sasaoka, Tomoko; Yamanari, Masahiro; Sugiyama, Satoshi; Yasuno, Yoshiaki
2016-02-01
Optical coherence tomography (OCT) visualizes cross-sectional microstructures of biological tissues. Recent developments of multifunctional OCT (MF-OCT) provides multiple optical contrasts which can reveal currently unknown tissue properties. In this contribution we demonstrate multifunctional OCT specially designed for dermatological investigation. And by utilizing it to measure four different body parts of in vivo human skin, three-dimensional scattering OCT, OCT angiography, polarization uniformity tomography, and local birefringence tomography images were obtained by a single scan. They respectively contrast the structure and morphology, vasculature, melanin content and collagen traits of the tissue.
Computed tomography guided localization of clinically occult breast carcinoma-the ''N'' skin guide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kopans, D.B.; Meyer, J.E.
1982-10-01
Standard computed tomography (CT) can be used for the three-dimensional localization of clinically occult suspicious breast lesions whose exact position cannot be determined by standard mammographic views. A method is described that facilitates accurate preoperative needle localization using CT guidance, once the position of these lesions is defined.
NASA Astrophysics Data System (ADS)
Li, Guo; Xia, Jun; Li, Lei; Wang, Lidai; Wang, Lihong V.
2015-03-01
Linear transducer arrays are readily available for ultrasonic detection in photoacoustic computed tomography. They offer low cost, hand-held convenience, and conventional ultrasonic imaging. However, the elevational resolution of linear transducer arrays, which is usually determined by the weak focus of the cylindrical acoustic lens, is about one order of magnitude worse than the in-plane axial and lateral spatial resolutions. Therefore, conventional linear scanning along the elevational direction cannot provide high-quality three-dimensional photoacoustic images due to the anisotropic spatial resolutions. Here we propose an innovative method to achieve isotropic resolutions for three-dimensional photoacoustic images through combined linear and rotational scanning. In each scan step, we first elevationally scan the linear transducer array, and then rotate the linear transducer array along its center in small steps, and scan again until 180 degrees have been covered. To reconstruct isotropic three-dimensional images from the multiple-directional scanning dataset, we use the standard inverse Radon transform originating from X-ray CT. We acquired a three-dimensional microsphere phantom image through the inverse Radon transform method and compared it with a single-elevational-scan three-dimensional image. The comparison shows that our method improves the elevational resolution by up to one order of magnitude, approaching the in-plane lateral-direction resolution. In vivo rat images were also acquired.
NASA Astrophysics Data System (ADS)
Pokhrel, A.; El Hannach, M.; Orfino, F. P.; Dutta, M.; Kjeang, E.
2016-10-01
X-ray computed tomography (XCT), a non-destructive technique, is proposed for three-dimensional, multi-length scale characterization of complex failure modes in fuel cell electrodes. Comparative tomography data sets are acquired for a conditioned beginning of life (BOL) and a degraded end of life (EOL) membrane electrode assembly subjected to cathode degradation by voltage cycling. Micro length scale analysis shows a five-fold increase in crack size and 57% thickness reduction in the EOL cathode catalyst layer, indicating widespread action of carbon corrosion. Complementary nano length scale analysis shows a significant reduction in porosity, increased pore size, and dramatically reduced effective diffusivity within the remaining porous structure of the catalyst layer at EOL. Collapsing of the structure is evident from the combination of thinning and reduced porosity, as uniquely determined by the multi-length scale approach. Additionally, a novel image processing based technique developed for nano scale segregation of pore, ionomer, and Pt/C dominated voxels shows an increase in ionomer volume fraction, Pt/C agglomerates, and severe carbon corrosion at the catalyst layer/membrane interface at EOL. In summary, XCT based multi-length scale analysis enables detailed information needed for comprehensive understanding of the complex failure modes observed in fuel cell electrodes.
Quantification of pericardial effusions by echocardiography and computed tomography.
Leibowitz, David; Perlman, Gidon; Planer, David; Gilon, Dan; Berman, Philip; Bogot, Naama
2011-01-15
Echocardiography is a well-accepted tool for the diagnosis and quantification of pericardial effusion (PEff). Given the increasing use of computed tomographic (CT) scanning, more PEffs are being initially diagnosed by computed tomography. No study has compared quantification of PEff by computed tomography and echocardiography. The objective of this study was to assess the accuracy of quantification of PEff by 2-dimensional echocardiography and computed tomography compared to the amount of pericardial fluid drained at pericardiocentesis. We retrospectively reviewed an institutional database to identify patients who underwent chest computed tomography and echocardiography before percutaneous pericardiocentesis with documentation of the amount of fluid withdrawn. Digital 2-dimensional echocardiographic and CT images were retrieved and quantification of PEff volume was performed by applying the formula for the volume of a prolate ellipse, π × 4/3 × maximal long-axis dimension/2 × maximal transverse dimension/2 × maximal anteroposterior dimension/2, to the pericardial sac and to the heart. Nineteen patients meeting study qualifications were entered into the study. The amount of PEff drained was 200 to 1,700 ml (mean 674 ± 340). Echocardiographically calculated pericardial effusion volume correlated relatively well with PEff volume (r = 0.73, p <0.001, mean difference -41 ± 225 ml). There was only moderate correlation between CT volume quantification and actual volume drained (r = 0.4, p = 0.004, mean difference 158 ± 379 ml). In conclusion, echocardiography appears a more accurate imaging technique than computed tomography in quantitative assessment of nonloculated PEffs and should continue to be the primary imaging in these patients. Copyright © 2011 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Ilgenstein, Bernd; Deyhle, Hans; Jaquiery, Claude; Kunz, Christoph; Stalder, Anja; Stübinger, Stefan; Jundt, Gernot; Beckmann, Felix; Müller, Bert; Hieber, Simone E.
2012-10-01
Bone augmentation is a vital part of surgical interventions of the oral and maxillofacial area including dental implantology. Prior to implant placement, sufficient bone volume is needed to reduce the risk of peri-implantitis. While augmentation using harvested autologous bone is still considered as gold standard, many surgeons prefer bone substitutes to reduce operation time and to avoid donor site morbidity. To assess the osteogenic efficacy of commercially available augmentation materials we analyzed drill cores extracted before implant insertion. In younger patients, distraction osteogenesis is successfully applied to correct craniofacial deformities through targeted bone formation. To study the influence of mesenchymal stem cells on bone regeneration during distraction osteogenesis, human mesenchymal stem cells were injected into the distraction gap of nude rat mandibles immediately after osteotomy. The distraction was performed over eleven days to reach a distraction gap of 6 mm. Both the rat mandibles and the drill cores were scanned using synchrotron radiation-based micro computed tomography. The three-dimensional data were manually registered and compared with corresponding two-dimensional histological sections to assess bone regeneration and its morphology. The analysis of the rat mandibles indicates that bone formation is enhanced by mesenchymal stem cells injected before distraction. The bone substitutes yielded a wide range of bone volume and degree of resorption. The volume fraction of the newly formed bone was determined to 34.4% in the computed tomography dataset for the augmentation material Geistlich Bio-Oss®. The combination of computed tomography and histology allowed a complementary assessment for both bone augmentation and distraction osteogenesis.
Cone beam computed tomography: basics and applications in dentistry.
Venkatesh, Elluru; Elluru, Snehal Venkatesh
2017-01-01
The introduction of cone beam computed tomography (CBCT) devices, changed the way oral and maxillofacial radiology is practiced. CBCT was embraced into the dental settings very rapidly due to its compact size, low cost, low ionizing radiation exposure when compared to medical computed tomography. Alike medical CT, 3 dimensional evaluation of the maxillofacial region with minimal distortion is offered by the CBCT. This article provides an overview of basics of CBCT technology and reviews the specific application of CBCT technology to oral and maxillofacial region with few illustrations.
Phase-contrast x-ray computed tomography for observing biological specimens and organic materials
NASA Astrophysics Data System (ADS)
Momose, Atsushi; Takeda, Tohoru; Itai, Yuji
1995-02-01
A novel three-dimensional x-ray imaging method has been developed by combining a phase-contrast x-ray imaging technique with x-ray computed tomography. This phase-contrast x-ray computed tomography (PCX-CT) provides sectional images of organic specimens that would produce absorption-contrast x-ray CT images with little contrast. Comparing PCX-CT images of rat cerebellum and cancerous rabbit liver specimens with corresponding absorption-contrast CT images shows that PCX-CT is much more sensitive to the internal structure of organic specimens.
Gosnell, Jordan; Pietila, Todd; Samuel, Bennett P; Kurup, Harikrishnan K N; Haw, Marcus P; Vettukattil, Joseph J
2016-12-01
Three-dimensional (3D) printing is an emerging technology aiding diagnostics, education, and interventional, and surgical planning in congenital heart disease (CHD). Three-dimensional printing has been derived from computed tomography, cardiac magnetic resonance, and 3D echocardiography. However, individually the imaging modalities may not provide adequate visualization of complex CHD. The integration of the strengths of two or more imaging modalities has the potential to enhance visualization of cardiac pathomorphology. We describe the feasibility of hybrid 3D printing from two imaging modalities in a patient with congenitally corrected transposition of the great arteries (L-TGA). Hybrid 3D printing may be useful as an additional tool for cardiologists and cardiothoracic surgeons in planning interventions in children and adults with CHD.
Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Matsuo, Yukinori; Iizuka, Yusuke; Ueki, Nami; Iramina, Hiraku; Hirashima, Hideaki; Mizowaki, Takashi
2018-03-01
Knowledge of the imaging doses delivered to patients and accurate dosimetry of the radiation to organs from various imaging procedures is becoming increasingly important for clinicians. The purposes of this study were to calculate imaging doses delivered to the organs of lung cancer patients during real-time tumor tracking (RTTT) with three-dimensional (3D), and four-dimensional (4D) cone-beam computed tomography (CBCT), using Monte Carlo techniques to simulate kV X-ray dose distributions delivered using the Vero4DRT. Imaging doses from RTTT, 3D-CBCT and 4D-CBCT were calculated with the planning CT images for nine lung cancer patients who underwent stereotactic body radiotherapy (SBRT) with RTTT. With RTTT, imaging doses from correlation modeling and from monitoring of imaging during beam delivery were calculated. With CBCT, doses from 3D-CBCT and 4D-CBCT were also simulated. The doses covering 2-cc volumes (D2cc) in correlation modeling were up to 9.3 cGy for soft tissues and 48.4 cGy for bone. The values from correlation modeling and monitoring were up to 11.0 cGy for soft tissues and 59.8 cGy for bone. Imaging doses in correlation modeling were larger with RTTT. On a single 4D-CBCT, the skin and bone D2cc values were in the ranges of 7.4-10.5 cGy and 33.5-58.1 cGy, respectively. The D2cc from 4D-CBCT was approximately double that from 3D-CBCT. Clinicians should Figure that the imaging dose increases the cumulative doses to organs.
Yamashita, Hideomi; Okuma, Kae; Tada, Keiichiro; Shiraishi, Kenshiro; Takahashi, Wataru; Shibata-Mobayashi, Shino; Sakumi, Akira; Saotome, Naoya; Haga, Akihiro; Onoe, Tsuyoshi; Ino, Kenji; Akahane, Masaaki; Ohtomo, Kuni; Nakagawa, Keiichi
2012-10-01
To study the three-dimensional movement of internal tumor bed fiducial and breast skin markers, using 320-multislice computed tomography (CT); and to analyze intrafractional errors for breast cancer patients undergoing breast irradiation. This study examined 280 markers on the skin of the breast (200 markers) and on the primary tumor bed (80 markers) of 20 patients treated by external-beam photon radiotherapy. Motion assessment was analyzed in 41 respiratory phases during 20 s of cine CT in the radiotherapy position. To assess intrafractional errors resulting from respiratory motion, four-dimensional CT scans were acquired for 20 patients. Motion in the anterior-posterior (A/P) and superior-inferior (S/I) directions showed a strong correlation (|r| > 0.7) with the respiratory curve for most markers (79% and 70%, respectively). The average marker displacements between maximum and minimum value during 20 s for the 200 breast skin metal markers were 1.1 ± 0.3 mm, 2.1 ± 0.6 mm, and 1.6 ± 0.4 mm in the left-right, A/P, and S/I directions, respectively. For the 80 tumor bed clips, displacements were 0.9 ± 0.2 mm in left-right, 1.7 ± 0.5 mm in A/P, and 1.1 ± 0.3 mm in S/I. There was no significant difference in the motion between breast quadrant regions or between the primary site and the other regions. Motion in primary breast tumors was evaluated with 320-multislice CT. Very little change was detected during individual radiation treatment fractions. Copyright © 2012 Elsevier Inc. All rights reserved.
Nakamura, Mitsuhiro; Ishihara, Yoshitomo; Matsuo, Yukinori; Iizuka, Yusuke; Ueki, Nami; Iramina, Hiraku; Hirashima, Hideaki; Mizowaki, Takashi
2018-01-01
Abstract Knowledge of the imaging doses delivered to patients and accurate dosimetry of the radiation to organs from various imaging procedures is becoming increasingly important for clinicians. The purposes of this study were to calculate imaging doses delivered to the organs of lung cancer patients during real-time tumor tracking (RTTT) with three-dimensional (3D), and four-dimensional (4D) cone-beam computed tomography (CBCT), using Monte Carlo techniques to simulate kV X-ray dose distributions delivered using the Vero4DRT. Imaging doses from RTTT, 3D-CBCT and 4D-CBCT were calculated with the planning CT images for nine lung cancer patients who underwent stereotactic body radiotherapy (SBRT) with RTTT. With RTTT, imaging doses from correlation modeling and from monitoring of imaging during beam delivery were calculated. With CBCT, doses from 3D-CBCT and 4D-CBCT were also simulated. The doses covering 2-cc volumes (D2cc) in correlation modeling were up to 9.3 cGy for soft tissues and 48.4 cGy for bone. The values from correlation modeling and monitoring were up to 11.0 cGy for soft tissues and 59.8 cGy for bone. Imaging doses in correlation modeling were larger with RTTT. On a single 4D-CBCT, the skin and bone D2cc values were in the ranges of 7.4–10.5 cGy and 33.5–58.1 cGy, respectively. The D2cc from 4D-CBCT was approximately double that from 3D-CBCT. Clinicians should Figure that the imaging dose increases the cumulative doses to organs. PMID:29385514
Analysis of HRCT-derived xylem network reveals reverse flow in some vessels
USDA-ARS?s Scientific Manuscript database
Flow in xylem vessels is modeled based on constructions of three dimensional xylem networks derived from High Resolution Computed Tomography (HRCT) images of grapevine (Vitis vinifera) stems. Flow in 6-14% of the vessels was found to be oriented in the opposite direction to the bulk flow under norma...
Guide-star-based computational adaptive optics for broadband interferometric tomography
Adie, Steven G.; Shemonski, Nathan D.; Graf, Benedikt W.; Ahmad, Adeel; Scott Carney, P.; Boppart, Stephen A.
2012-01-01
We present a method for the numerical correction of optical aberrations based on indirect sensing of the scattered wavefront from point-like scatterers (“guide stars”) within a three-dimensional broadband interferometric tomogram. This method enables the correction of high-order monochromatic and chromatic aberrations utilizing guide stars that are revealed after numerical compensation of defocus and low-order aberrations of the optical system. Guide-star-based aberration correction in a silicone phantom with sparse sub-resolution-sized scatterers demonstrates improvement of resolution and signal-to-noise ratio over a large isotome. Results in highly scattering muscle tissue showed improved resolution of fine structure over an extended volume. Guide-star-based computational adaptive optics expands upon the use of image metrics for numerically optimizing the aberration correction in broadband interferometric tomography, and is analogous to phase-conjugation and time-reversal methods for focusing in turbid media. PMID:23284179
The dynamic micro computed tomography at SSRF
NASA Astrophysics Data System (ADS)
Chen, R.; Xu, L.; Du, G.; Deng, B.; Xie, H.; Xiao, T.
2018-05-01
Synchrotron radiation micro-computed tomography (SR-μCT) is a critical technique for quantitative characterizing the 3D internal structure of samples, recently the dynamic SR-μCT has been attracting vast attention since it can evaluate the three-dimensional structure evolution of a sample. A dynamic μCT method, which is based on monochromatic beam, was developed at the X-ray Imaging and Biomedical Application Beamline at Shanghai Synchrotron Radiation Facility, by combining the compressed sensing based CT reconstruction algorithm and hardware upgrade. The monochromatic beam based method can achieve quantitative information, and lower dose than the white beam base method in which the lower energy beam is absorbed by the sample rather than contribute to the final imaging signal. The developed method is successfully used to investigate the compression of the air sac during respiration in a bell cricket, providing new knowledge for further research on the insect respiratory system.
Use of cone beam computed tomography in periodontology
Acar, Buket; Kamburoğlu, Kıvanç
2014-01-01
Diagnosis of periodontal disease mainly depends on clinical signs and symptoms. However, in the case of bone destruction, radiographs are valuable diagnostic tools as an adjunct to the clinical examination. Two dimensional periapical and panoramic radiographs are routinely used for diagnosing periodontal bone levels. In two dimensional imaging, evaluation of bone craters, lamina dura and periodontal bone level is limited by projection geometry and superpositions of adjacent anatomical structures. Those limitations of 2D radiographs can be eliminated by three-dimensional imaging techniques such as computed tomography. Cone beam computed tomography (CBCT) generates 3D volumetric images and is also commonly used in dentistry. All CBCT units provide axial, coronal and sagittal multi-planar reconstructed images without magnification. Also, panoramic images without distortion and magnification can be generated with curved planar reformation. CBCT displays 3D images that are necessary for the diagnosis of intra bony defects, furcation involvements and buccal/lingual bone destructions. CBCT applications provide obvious benefits in periodontics, however; it should be used only in correct indications considering the necessity and the potential hazards of the examination. PMID:24876918
Karami, Elham; Wang, Yong; Gaede, Stewart; Lee, Ting-Yim; Samani, Abbas
2016-01-01
Abstract. In-depth understanding of the diaphragm’s anatomy and physiology has been of great interest to the medical community, as it is the most important muscle of the respiratory system. While noncontrast four-dimensional (4-D) computed tomography (CT) imaging provides an interesting opportunity for effective acquisition of anatomical and/or functional information from a single modality, segmenting the diaphragm in such images is very challenging not only because of the diaphragm’s lack of image contrast with its surrounding organs but also because of respiration-induced motion artifacts in 4-D CT images. To account for such limitations, we present an automatic segmentation algorithm, which is based on a priori knowledge of diaphragm anatomy. The novelty of the algorithm lies in using the diaphragm’s easy-to-segment contacting organs—including the lungs, heart, aorta, and ribcage—to guide the diaphragm’s segmentation. Obtained results indicate that average mean distance to the closest point between diaphragms segmented using the proposed technique and corresponding manual segmentation is 2.55±0.39 mm, which is favorable. An important feature of the proposed technique is that it is the first algorithm to delineate the entire diaphragm. Such delineation facilitates applications, where the diaphragm boundary conditions are required such as biomechanical modeling for in-depth understanding of the diaphragm physiology. PMID:27921072
Hashimoto, Masayuki; Nagatani, Yukihiro; Oshio, Yasuhiko; Nitta, Norihisa; Yamashiro, Tsuneo; Tsukagoshi, Shinsuke; Ushio, Noritoshi; Mayumi, Masayuki; Kimoto, Tatsuya; Igarashi, Tomoyuki; Yoshigoe, Makoto; Iwai, Kyohei; Tanaka, Koki; Sato, Shigetaka; Sonoda, Akinaga; Otani, Hideji; Murata, Kiyoshi; Hanaoka, Jun
2018-01-01
To assess the feasibility of Four-Dimensional Ultra-Low-Dose Computed Tomography (4D-ULDCT) for distinguishing pleural aspects with localized pleural adhesion (LPA) from those without. Twenty-seven patients underwent 4D-ULDCT during a single respiration with a 16cm-coverage of the body axis. The presence and severity of LPA was confirmed by their intraoperative thoracoscopic findings. A point on the pleura and a corresponding point on the outer edge of the costal bone were placed in identical axial planes at end-inspiration. The distance of the two points (PCD), traced by automatic tracking functions respectively, was calculated at each respiratory phase. The maximal and average change amounts in PCD (PCD MCA and PCD ACA ) were compared among 110 measurement points (MPs) without LPA, 16MPs with mild LPA and 10MPs with severe LPA in upper lung field cranial to the bronchial bifurcation (ULF), and 150MPs without LPA, 17MPs with mild LPA and 9MPs with severe LPA in lower lung field caudal to the bronchial bifurcation (LLF) using the Mann-Whitney U test. In the LLF, PCD ACA as well as PCD MCA demonstrated a significant difference among non-LPA, mild LPA and severe LPA (18.1±9.2, 12.3±6.2 and 5.0±3.3mm) (p<0.05). Also in the ULF, PCD ACA showed a significant difference among three conditions (9.2±5.5, 5.7±2.8 and 2.2±0.4mm, respectively) (p<0.05), whereas PCD MCA for mild LPA was similar to that for non-LPA (12.3±5.9 and 17.5±11.0mm). Four D-ULDCT could be a useful non-invasive preoperative assessment modality for the detection of the presence or severity of LPA. Copyright © 2017 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoon Jung, Sang; Min Yoon, Sang; Ho Park, Sung
2013-01-15
Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared withmore » those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase D{sub mean} and generalized equivalent uniform dose (gEUD) for liver were by 3.1%{+-} 3.3% (p= 0.003) and 2.8%{+-} 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%{+-} 11.2% (p= 0.003) and 15.1%{+-} 11.0% (p= 0.003), respectively. The D{sub max} and gEUD for stomach was decreased by 5.3%{+-} 5.8% (p= 0.003) and 9.7%{+-} 8.7% (p= 0.003), respectively. The D{sub max} and gEUD for right kidney was decreased by 11.2%{+-} 16.2% (p= 0.003) and 14.9%{+-} 16.8% (p= 0.005), respectively. For left kidney, D{sub max} and gEUD were decreased by 11.4%{+-} 11.0% (p= 0.003) and 12.8%{+-} 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%{+-} 5.8% (p= 0.003) and 17.2%{+-} 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.« less
Shaw, Calvin B; Prakash, Jaya; Pramanik, Manojit; Yalavarthy, Phaneendra K
2013-08-01
A computationally efficient approach that computes the optimal regularization parameter for the Tikhonov-minimization scheme is developed for photoacoustic imaging. This approach is based on the least squares-QR decomposition which is a well-known dimensionality reduction technique for a large system of equations. It is shown that the proposed framework is effective in terms of quantitative and qualitative reconstructions of initial pressure distribution enabled via finding an optimal regularization parameter. The computational efficiency and performance of the proposed method are shown using a test case of numerical blood vessel phantom, where the initial pressure is exactly known for quantitative comparison.
Integrated Nondestructive Evaluation and Finite Element Analysis Predicts Crack Location and Shape
NASA Technical Reports Server (NTRS)
Abdul-Azia, Ali; Baaklini, George Y.; Trudell, Jeffrey J.
2002-01-01
This study describes the finite-element analyses and the NDE modality undertaken on two flywheel rotors that were spun to burst speed. Computed tomography and dimensional measurements were used to nondestructively evaluate the rotors before and/or after they were spun to the first crack detection. Computed tomography data findings of two- and three-dimensional crack formation were used to conduct finite-element (FEA) and fracture mechanics analyses. A procedure to extend these analyses to estimate the life of these components is also outlined. NDE-FEA results for one of the rotors are presented in the figures. The stress results, which represent the radial stresses in the rim, clearly indicate that the maximum stress region is within the section defined by the computed tomography scan. Furthermore, the NDE data correlate well with the FEA results. In addition, the measurements reported show that the NDE and FEA data are in parallel.
Varma, Hari M.; Valdes, Claudia P.; Kristoffersen, Anna K.; Culver, Joseph P.; Durduran, Turgut
2014-01-01
A novel tomographic method based on the laser speckle contrast, speckle contrast optical tomography (SCOT) is introduced that allows us to reconstruct three dimensional distribution of blood flow in deep tissues. This method is analogous to the diffuse optical tomography (DOT) but for deep tissue blood flow. We develop a reconstruction algorithm based on first Born approximation to generate three dimensional distribution of flow using the experimental data obtained from tissue simulating phantoms. PMID:24761306
Shinohara, Gen; Morita, Kiyozo; Hoshino, Masato; Ko, Yoshihiro; Tsukube, Takuro; Kaneko, Yukihiro; Morishita, Hiroyuki; Oshima, Yoshihiro; Matsuhisa, Hironori; Iwaki, Ryuma; Takahashi, Masashi; Matsuyama, Takaaki; Hashimoto, Kazuhiro; Yagi, Naoto
2016-11-01
The feasibility of synchrotron radiation-based phase-contrast computed tomography (PCCT) for visualization of the atrioventricular (AV) conduction axis in human whole heart specimens was tested using four postmortem structurally normal newborn hearts obtained at autopsy. A PCCT imaging system at the beamline BL20B2 in a SPring-8 synchrotron radiation facility was used. The PCCT imaging of the conduction system was performed with "virtual" slicing of the three-dimensional reconstructed images. For histological verification, specimens were cut into planes similar to the PCCT images, then cut into 5-μm serial sections and stained with Masson's trichrome. In PCCT images of all four of the whole hearts of newborns, the AV conduction axis was distinguished as a low-density structure, which was serially traceable from the compact node to the penetrating bundle within the central fibrous body, and to the branching bundle into the left and right bundle branches. This was verified by histological serial sectioning. This is the first demonstration that visualization of the AV conduction axis within human whole heart specimens is feasible with PCCT. © The Author(s) 2016.
Zhu, Ming; Chai, Gang; Lin, Li; Xin, Yu; Tan, Andy; Bogari, Melia; Zhang, Yan; Li, Qingfeng
2016-12-01
Augmented reality (AR) technology can superimpose the virtual image generated by computer onto the real operating field to present an integral image to enhance surgical safety. The purpose of our study is to develop a novel AR-based navigation system for craniofacial surgery. We focus on orbital hypertelorism correction, because the surgery requires high preciseness and is considered tough even for senior craniofacial surgeon. Twelve patients with orbital hypertelorism were selected. The preoperative computed tomography data were imported into 3-dimensional platform for preoperational design. The position and orientation of virtual information and real world were adjusted by image registration process. The AR toolkits were used to realize the integral image. Afterward, computed tomography was also performed after operation for comparing the difference between preoperational plan and actual operational outcome. Our AR-based navigation system was successfully used in these patients, directly displaying 3-dimensional navigational information onto the surgical field. They all achieved a better appearance by the guidance of navigation image. The difference in interdacryon distance and the dacryon point of each side appear no significant (P > 0.05) between preoperational plan and actual surgical outcome. This study reports on an effective visualized approach for guiding orbital hypertelorism correction. Our AR-based navigation system may lay a foundation for craniofacial surgery navigation. The AR technology could be considered as a helpful tool for precise osteotomy in craniofacial surgery.
Frangioni, John V.; De Grand, Alec M.
2007-10-30
The invention is based, in part, on the discovery that by combining certain components one can generate a tissue-like phantom that mimics any desired tissue, is simple and inexpensive to prepare, and is stable over many weeks or months. In addition, new multi-modal imaging objects (e.g., beads) can be inserted into the phantoms to mimic tissue pathologies, such as cancer, or merely to serve as calibration standards. These objects can be imaged using one, two, or more (e.g., four) different imaging modalities (e.g., x-ray computed tomography (CT), positron emission tomography (PET), single photon emission computed tomography (SPECT), and near-infrared (NIR) fluorescence) simultaneously.
Optical computed tomography for spatially isotropic four-dimensional imaging of live single cells
Kelbauskas, Laimonas; Shetty, Rishabh; Cao, Bin; Wang, Kuo-Chen; Smith, Dean; Wang, Hong; Chao, Shi-Hui; Gangaraju, Sandhya; Ashcroft, Brian; Kritzer, Margaret; Glenn, Honor; Johnson, Roger H.; Meldrum, Deirdre R.
2017-01-01
Quantitative three-dimensional (3D) computed tomography (CT) imaging of living single cells enables orientation-independent morphometric analysis of the intricacies of cellular physiology. Since its invention, x-ray CT has become indispensable in the clinic for diagnostic and prognostic purposes due to its quantitative absorption-based imaging in true 3D that allows objects of interest to be viewed and measured from any orientation. However, x-ray CT has not been useful at the level of single cells because there is insufficient contrast to form an image. Recently, optical CT has been developed successfully for fixed cells, but this technology called Cell-CT is incompatible with live-cell imaging due to the use of stains, such as hematoxylin, that are not compatible with cell viability. We present a novel development of optical CT for quantitative, multispectral functional 4D (three spatial + one spectral dimension) imaging of living single cells. The method applied to immune system cells offers truly isotropic 3D spatial resolution and enables time-resolved imaging studies of cells suspended in aqueous medium. Using live-cell optical CT, we found a heterogeneous response to mitochondrial fission inhibition in mouse macrophages and differential basal remodeling of small (0.1 to 1 fl) and large (1 to 20 fl) nuclear and mitochondrial structures on a 20- to 30-s time scale in human myelogenous leukemia cells. Because of its robust 3D measurement capabilities, live-cell optical CT represents a powerful new tool in the biomedical research field. PMID:29226240
Flügge, Tabea Viktoria; Nelson, Katja; Schmelzeisen, Rainer; Metzger, Marc Christian
2013-08-01
To present an efficient workflow for the production of implant drilling guides using virtual planning tools. For this purpose, laser surface scanning, cone beam computed tomography, computer-aided design and manufacturing, and 3-dimensional (3D) printing were combined. Intraoral optical impressions (iTero, Align Technologies, Santa Clara, CA) and digital 3D radiographs (cone beam computed tomography) were performed at the first consultation of 1 exemplary patient. With image processing techniques, the intraoral surface data, acquired using an intraoral scanner, and radiologic 3D data were fused. The virtual implant planning process (using virtual library teeth) and the in-office production of the implant drilling guide was performed after only 1 clinical consultation of the patient. Implant surgery with a computer-aided design and manufacturing produced implant drilling guide was performed during the second consultation. The production of a scan prosthesis and multiple preoperative consultations of the patient were unnecessary. The presented procedure offers another step in facilitating the production of drilling guides in dental implantology. Four main advantages are realized with this procedure. First, no additional scan prosthesis is needed. Second, data acquisition can be performed during the first consultation. Third, the virtual planning is directly transferred to the drilling guide without a loss of accuracy. Finally, the treatment cost and time required are reduced with this facilitated production process. Copyright © 2013 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Santos, Rodrigo Mologni Gonçalves Dos; De Martino, José Mario; Haiter Neto, Francisco; Passeri, Luis Augusto
2017-08-01
The Frankfort horizontal (FH) is a plane that intersects both porions and the left orbitale. However, other combinations of points have also been used to define this plane in 3-dimensional cephalometry. These variations are based on the hypothesis that they do not affect the cephalometric analysis. We investigated the validity of this hypothesis. The material included cone-beam computed tomography data sets of 82 adult subjects with Class I molar relationship. A third-party method of cone-beam computed tomography-based 3-dimensional cephalometry was performed using 7 setups of the FH plane. Six lateral cephalometric hard tissue measurements relative to the FH plane were carried out for each setup. Measurement differences were calculated for each pair of setups of the FH plane. The number of occurrences of differences greater than the limits of agreement was counted for each of the 6 measurements. Only 3 of 21 pairs of setups had no occurrences for the 6 measurements. No measurement had no occurrences for the 21 pairs of setups. Setups based on left or right porion and both orbitales had the greatest number of occurrences for the 6 measurements. This investigation showed that significant and undesirable measurement differences can be produced by varying the definition of the FH plane. Copyright © 2017 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vinogradskiy, Yevgeniy, E-mail: yevgeniy.vinogradskiy@ucdenver.edu; Koo, Phillip J.; Castillo, Richard
Purpose: Four-dimensional computed tomography (4DCT) ventilation imaging provides lung function information for lung cancer patients undergoing radiation therapy. Before 4DCT-ventilation can be implemented clinically it needs to be validated against an established imaging modality. The purpose of this work was to compare 4DCT-ventilation to nuclear medicine ventilation, using clinically relevant global metrics and radiologist observations. Methods and Materials: Fifteen lung cancer patients with 16 sets of 4DCT and nuclear medicine ventilation-perfusion (VQ) images were used for the study. The VQ-ventilation images were acquired in planar mode using Tc-99m-labeled diethylenetriamine-pentaacetic acid aerosol inhalation. 4DCT data, spatial registration, and a density-change-based modelmore » were used to compute a 4DCT-based ventilation map for each patient. The percent ventilation was calculated in each lung and each lung third for both the 4DCT and VQ-ventilation scans. A nuclear medicine radiologist assessed the VQ and 4DCT scans for the presence of ventilation defects. The VQ and 4DCT-based images were compared using regional percent ventilation and radiologist clinical observations. Results: Individual patient examples demonstrate good qualitative agreement between the 4DCT and VQ-ventilation scans. The correlation coefficients were 0.68 and 0.45, using the percent ventilation in each individual lung and lung third, respectively. Using radiologist-noted presence of ventilation defects and receiver operating characteristic analysis, the sensitivity, specificity, and accuracy of the 4DCT-ventilation were 90%, 64%, and 81%, respectively. Conclusions: The current work compared 4DCT with VQ-based ventilation using clinically relevant global metrics and radiologist observations. We found good agreement between the radiologist's assessment of the 4DCT and VQ-ventilation images as well as the percent ventilation in each lung. The agreement lessened when the data were analyzed on a regional level. Our study presents an important step for the integration of 4DCT-ventilation into thoracic clinical practice.« less
Licht, Heather; Murray, Mark; Vassaur, John; Jupiter, Daniel C; Regner, Justin L; Chaput, Christopher D
2015-11-18
With the rise of obesity in the American population, there has been a proportionate increase of obesity in the trauma population. The purpose of this study was to use a computed tomography-based measurement of adiposity to determine if obesity is associated with an increased burden to the health-care system in patients with orthopaedic polytrauma. A prospective comprehensive trauma database at a level-I trauma center was utilized to identify 301 patients with polytrauma who had orthopaedic injuries and intensive care unit admission from 2006 to 2011. Routine thoracoabdominal computed tomographic scans allowed for measurement of the truncal adiposity volume. The truncal three-dimensional reconstruction body mass index was calculated from the computed tomography-based volumes based on a previously validated algorithm. A truncal three-dimensional reconstruction body mass index of <30 kg/m(2) denoted non-obese patients and ≥ 30 kg/m(2) denoted obese patients. The need for orthopaedic surgical procedure, in-hospital mortality, length of stay, hospital charges, and discharge disposition were compared between the two groups. Of the 301 patients, 21.6% were classified as obese (truncal three-dimensional reconstruction body mass index of ≥ 30 kg/m(2)). Higher truncal three-dimensional reconstruction body mass index was associated with longer hospital length of stay (p = 0.02), more days spent in the intensive care unit (p = 0.03), more frequent discharge to a long-term care facility (p < 0.0002), higher rate of orthopaedic surgical intervention (p < 0.01), and increased total hospital charges (p < 0.001). Computed tomographic scans, routinely obtained at the time of admission, can be utilized to calculate truncal adiposity and to investigate the impact of obesity on patients with polytrauma. Obese patients were found to have higher total hospital charges, longer hospital stays, discharge to a continuing-care facility, and a higher rate of orthopaedic surgical intervention. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
Castorina, Sergio; Luca, Tonia; Privitera, Giovanna; Riccioli, Vincenzo
2010-01-01
In this paper, we describe two cases of anomalous origin of the left coronary artery and two cases of aneurysm on the left coronary artery. Detailed three-dimensional images were acquired by the multislice computed tomography (MSCT) SOMATOM Sensation Cardiac 64 during clinical studies of cardiac diseases. Copyright 2010. Published by Elsevier Inc.
Jini service to reconstruct tomographic data
NASA Astrophysics Data System (ADS)
Knoll, Peter; Mirzaei, S.; Koriska, K.; Koehn, H.
2002-06-01
A number of imaging systems rely on the reconstruction of a 3- dimensional model from its projections through the process of computed tomography (CT). In medical imaging, for example magnetic resonance imaging (MRI), positron emission tomography (PET), and Single Computer Tomography (SPECT) acquire two-dimensional projections of a three dimensional projections of a three dimensional object. In order to calculate the 3-dimensional representation of the object, i.e. its voxel distribution, several reconstruction algorithms have been developed. Currently, mainly two reconstruct use: the filtered back projection(FBP) and iterative methods. Although the quality of iterative reconstructed SPECT slices is better than that of FBP slices, such iterative algorithms are rarely used for clinical routine studies because of their low availability and increased reconstruction time. We used Jini and a self-developed iterative reconstructions algorithm to design and implement a Jini reconstruction service. With this service, the physician selects the patient study from a database and a Jini client automatically discovers the registered Jini reconstruction services in the department's Intranet. After downloading the proxy object the this Jini service, the SPECT acquisition data are reconstructed. The resulting transaxial slices are visualized using a Jini slice viewer, which can be used for various imaging modalities.
Kim, Yoon Jeong; Henkin, Jeffrey
2015-04-01
Micro-computed tomography (micro-CT) is a valuable means to evaluate and secure information related to bone density and quality in human necropsy samples and small live animals. The aim of this study was to assess the bone density of the alveolar jaw bones in human cadaver, using micro-CT. The correlation between bone density and three-dimensional micro architecture of trabecular bone was evaluated. Thirty-four human cadaver jaw bone specimens were harvested. Each specimen was scanned with micro-CT at resolution of 10.5 μm. The bone volume fraction (BV/TV) and the bone mineral density (BMD) value within a volume of interest were measured. The three-dimensional micro architecture of trabecular bone was assessed. All the parameters in the maxilla and the mandible were subject to comparison. The variables for the bone density and the three-dimensional micro architecture were analyzed for nonparametric correlation using Spearman's rho at the significance level of p < .05. A wide range of bone density was observed. There was a significant difference between the maxilla and mandible. All micro architecture parameters were consistently higher in the mandible, up to 3.3 times greater than those in the maxilla. The most linear correlation was observed between BV/TV and BMD, with Spearman's rho = 0.99 (p = .01). Both BV/TV and BMD were highly correlated with all micro architecture parameters with Spearman's rho above 0.74 (p = .01). Two aspects of bone density using micro-CT, the BV/TV and BMD, are highly correlated with three-dimensional micro architecture parameters, which represent the quality of trabecular bone. This noninvasive method may adequately enhance evaluation of the alveolar bone. © 2013 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Poggio, Andrew J.
1988-10-01
This issue of Energy and Technology Review contains: Neutron Penumbral Imaging of Laser-Fusion Targets--using our new penumbral-imaging diagnostic, we have obtained the first images that can be used to measure directly the deuterium-tritium burn region in laser-driven fusion targets; Computed Tomography for Nondestructive Evaluation--various computed tomography systems and computational techniques are used in nondestructive evaluation; Three-Dimensional Image Analysis for Studying Nuclear Chromatin Structure--we have developed an optic-electronic system for acquiring cross-sectional views of cell nuclei, and computer codes to analyze these images and reconstruct the three-dimensional structures they represent; Imaging in the Nuclear Test Program--advanced techniques produce images of unprecedented detail and resolution from Nevada Test Site data; and Computational X-Ray Holography--visible-light experiments and numerically simulated holograms test our ideas about an X-ray microscope for biological research.
Matta, Ragai-Edward; von Wilmowsky, Cornelius; Neuhuber, Winfried; Lell, Michael; Neukam, Friedrich W; Adler, Werner; Wichmann, Manfred; Bergauer, Bastian
2016-05-01
Multi-slice computed tomography (MSCT) and cone beam computed tomography (CBCT) are indispensable imaging techniques in advanced medicine. The possibility of creating virtual and corporal three-dimensional (3D) models enables detailed planning in craniofacial and oral surgery. The objective of this study was to evaluate the impact of different scan protocols for CBCT and MSCT on virtual 3D model accuracy using a software-based evaluation method that excludes human measurement errors. MSCT and CBCT scans with different manufacturers' predefined scan protocols were obtained from a human lower jaw and were superimposed with a master model generated by an optical scan of an industrial noncontact scanner. To determine the accuracy, the mean and standard deviations were calculated, and t-tests were used for comparisons between the different settings. Averaged over 10 repeated X-ray scans per method and 19 measurement points per scan (n = 190), it was found that the MSCT scan protocol 140 kV delivered the most accurate virtual 3D model, with a mean deviation of 0.106 mm compared to the master model. Only the CBCT scans with 0.2-voxel resolution delivered a similar accurate 3D model (mean deviation 0.119 mm). Within the limitations of this study, it was demonstrated that the accuracy of a 3D model of the lower jaw depends on the protocol used for MSCT and CBCT scans. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Multidetector Computed Tomography for Congenital Anomalies of the Aortic Arch: Vascular Rings.
García-Guereta, Luis; García-Cerro, Estefanía; Bret-Zurita, Montserrat
2016-07-01
The development of multidetector computed tomography has triggered a revolution in the study of the aorta and other large vessels and has replaced angiography in the diagnosis of congenital anomalies of the aortic arch, particularly vascular rings. The major advantage of multidetector computed tomography is that it permits clear 3-dimensional assessment of not only vascular structures, but also airway and esophageal compression. The current update aims to summarize the embryonic development of the aortic arch and the developmental anomalies leading to vascular ring formation and to discuss the current diagnostic and therapeutic role of multidetector computed tomography in this field. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.
Khalil, Wael; EzEldeen, Mostafa; Van De Casteele, Elke; Shaheen, Eman; Sun, Yi; Shahbazian, Maryam; Olszewski, Raphael; Politis, Constantinus; Jacobs, Reinhilde
2016-03-01
Our aim was to determine the accuracy of 3-dimensional reconstructed models of teeth compared with the natural teeth by using 4 different 3-dimensional printers. This in vitro study was carried out using 2 intact, dry adult human mandibles, which were scanned with cone beam computed tomography. Premolars were selected for this study. Dimensional differences between natural teeth and the printed models were evaluated directly by using volumetric differences and indirectly through optical scanning. Analysis of variance, Pearson correlation, and Bland Altman plots were applied for statistical analysis. Volumetric measurements from natural teeth and fabricated models, either by the direct method (the Archimedes principle) or by the indirect method (optical scanning), showed no statistical differences. The mean volume difference ranged between 3.1 mm(3) (0.7%) and 4.4 mm(3) (1.9%) for the direct measurement, and between -1.3 mm(3) (-0.6%) and 11.9 mm(3) (+5.9%) for the optical scan. A surface part comparison analysis showed that 90% of the values revealed a distance deviation within the interval 0 to 0.25 mm. Current results showed a high accuracy of all printed models of teeth compared with natural teeth. This outcome opens perspectives for clinical use of cost-effective 3-dimensional printed teeth for surgical procedures, such as tooth autotransplantation. Copyright © 2016 Elsevier Inc. All rights reserved.
Yamamoto, Shigeru; Suga, Kazuyoshi; Maeda, Kazunari; Maeda, Noriko; Yoshimura, Kiyoshi; Oka, Masaaki
2016-05-01
To evaluate the utility of three-dimensional (3D) computed tomography (CT)-lymphography (LG) breast sentinel lymph node navigation in our institute. Between 2002 and 2013, we preoperatively identified sentinel lymph nodes (SLNs) in 576 clinically node-negative breast cancer patients with T1 and T2 breast cancer using 3D CT-LG method. SLN biopsy (SLNB) was performed in 557 of 576 patients using both the images of 3D CT-LG for guidance and the blue dye method. Using 3D CT-LG, SLNs were visualized in 569 (99%) of 576 patients. Of 569 patients, both lymphatic draining ducts and SLNs from the peritumoral and periareolar areas were visualized in 549 (96%) patients. Only SLNs without lymphatic draining ducts were visualized in 20 patients. Drainage lymphatic pathways visualized with 3D CT-LG (549 cases) were classified into four patterns: single route/single SLN (355 cases, 65%), multiple routes/single SLN (59 cases, 11%) single route/multiple SLNs (62 cases, 11%) and multiple routes/multiple SLNs (73 cases, 13%). SLNs were detected in 556 (99.8%) of 557 patients during SLNB. CT-LG is useful for preoperative visualization of SLNs and breast lymphatic draining routes. This preoperative method should contribute greatly to the easy detection of SLNs during SLNB.
Model-based registration for assessment of spinal deformities in idiopathic scoliosis
NASA Astrophysics Data System (ADS)
Forsberg, Daniel; Lundström, Claes; Andersson, Mats; Knutsson, Hans
2014-01-01
Detailed analysis of spinal deformity is important within orthopaedic healthcare, in particular for assessment of idiopathic scoliosis. This paper addresses this challenge by proposing an image analysis method, capable of providing a full three-dimensional spine characterization. The proposed method is based on the registration of a highly detailed spine model to image data from computed tomography. The registration process provides an accurate segmentation of each individual vertebra and the ability to derive various measures describing the spinal deformity. The derived measures are estimated from landmarks attached to the spine model and transferred to the patient data according to the registration result. Evaluation of the method provides an average point-to-surface error of 0.9 mm ± 0.9 (comparing segmentations), and an average target registration error of 2.3 mm ± 1.7 (comparing landmarks). Comparing automatic and manual measurements of axial vertebral rotation provides a mean absolute difference of 2.5° ± 1.8, which is on a par with other computerized methods for assessing axial vertebral rotation. A significant advantage of our method, compared to other computerized methods for rotational measurements, is that it does not rely on vertebral symmetry for computing the rotational measures. The proposed method is fully automatic and computationally efficient, only requiring three to four minutes to process an entire image volume covering vertebrae L5 to T1. Given the use of landmarks, the method can be readily adapted to estimate other measures describing a spinal deformity by changing the set of employed landmarks. In addition, the method has the potential to be utilized for accurate segmentations of the vertebrae in routine computed tomography examinations, given the relatively low point-to-surface error.
Improved Interactive Medical-Imaging System
NASA Technical Reports Server (NTRS)
Ross, Muriel D.; Twombly, Ian A.; Senger, Steven
2003-01-01
An improved computational-simulation system for interactive medical imaging has been invented. The system displays high-resolution, three-dimensional-appearing images of anatomical objects based on data acquired by such techniques as computed tomography (CT) and magnetic-resonance imaging (MRI). The system enables users to manipulate the data to obtain a variety of views for example, to display cross sections in specified planes or to rotate images about specified axes. Relative to prior such systems, this system offers enhanced capabilities for synthesizing images of surgical cuts and for collaboration by users at multiple, remote computing sites.
Miyawaki, Shinjiro; Tawhai, Merryn H.; Hoffman, Eric A.; Wenzel, Sally E.; Lin, Ching-Long
2016-01-01
We propose a method to construct three-dimensional airway geometric models based on airway skeletons, or centerlines (CLs). Given a CT-segmented airway skeleton and surface, the proposed CL-based method automatically constructs subject-specific models that contain anatomical information regarding branches, include bifurcations and trifurcations, and extend from the trachea to terminal bronchioles. The resulting model can be anatomically realistic with the assistance of an image-based surface; alternatively a model with an idealized skeleton and/or branch diameters is also possible. This method systematically identifies and classifies trifurcations to successfully construct the models, which also provides the number and type of trifurcations for the analysis of the airways from an anatomical point of view. We applied this method to 16 normal and 16 severe asthmatic subjects using their computed tomography images. The average distance between the surface of the model and the image-based surface was 11% of the average voxel size of the image. The four most frequent locations of trifurcations were the left upper division bronchus, left lower lobar bronchus, right upper lobar bronchus, and right intermediate bronchus. The proposed method automatically constructed accurate subject-specific three-dimensional airway geometric models that contain anatomical information regarding branches using airway skeleton, diameters, and image-based surface geometry. The proposed method can construct (i) geometry automatically for population-based studies, (ii) trifurcations to retain the original airway topology, (iii) geometry that can be used for automatic generation of computational fluid dynamics meshes, and (iv) geometry based only on a skeleton and diameters for idealized branches. PMID:27704229
Gleeson, Fergus V.; Brady, Michael; Schnabel, Julia A.
2018-01-01
Abstract. Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset. PMID:29662918
Papież, Bartłomiej W; Franklin, James M; Heinrich, Mattias P; Gleeson, Fergus V; Brady, Michael; Schnabel, Julia A
2018-04-01
Deformable image registration, a key component of motion correction in medical imaging, needs to be efficient and provides plausible spatial transformations that reliably approximate biological aspects of complex human organ motion. Standard approaches, such as Demons registration, mostly use Gaussian regularization for organ motion, which, though computationally efficient, rule out their application to intrinsically more complex organ motions, such as sliding interfaces. We propose regularization of motion based on supervoxels, which provides an integrated discontinuity preserving prior for motions, such as sliding. More precisely, we replace Gaussian smoothing by fast, structure-preserving, guided filtering to provide efficient, locally adaptive regularization of the estimated displacement field. We illustrate the approach by applying it to estimate sliding motions at lung and liver interfaces on challenging four-dimensional computed tomography (CT) and dynamic contrast-enhanced magnetic resonance imaging datasets. The results show that guided filter-based regularization improves the accuracy of lung and liver motion correction as compared to Gaussian smoothing. Furthermore, our framework achieves state-of-the-art results on a publicly available CT liver dataset.
Application of multidetector-row computed tomography in propeller flap planning.
Ono, Shimpei; Chung, Kevin C; Hayashi, Hiromitsu; Ogawa, Rei; Takami, Yoshihiro; Hyakusoku, Hiko
2011-02-01
The propeller flap is defined as (1) being island-shaped, (2) having an axis that includes the perforators, and (3) having the ability to be rotated around an axis. The advantage of the propeller flap is that it is a pedicle flap that can be applied to cover defects located at the distal ends of the extremities. The specific aims of the authors' study were (1) to evaluate the usefulness of multidetector-row computed tomography in the planning of propeller flaps and (2) to present a clinical case series of propeller flap reconstructions that were planned preoperatively using multidetector-row computed tomography. The authors retrospectively analyzed all cases between April of 2007 and April of 2010 at Nippon Medical School Hospital in Tokyo, where multidetector-row computed tomography was used preoperatively to plan surgical reconstructions using propeller flaps. Thirteen patients underwent 16 flaps using the propeller flap technique. The perforators were identified accurately by multidetector-row computed tomography preoperatively in all cases. This is the first report describing the application of multidetector-row computed tomography in the planning of propeller flaps. Multidetector-row computed tomography is superior to other imaging methods because it demonstrates more precisely the perforator's position and subcutaneous course using high-resolution three-dimensional images. By using multidetector-row computed tomography to preoperatively identify a flap's perforators, the surgeon can better plan the flap design to efficiently conduct the flap surgery.
Miyazawa, Arata; Hong, Young-Joo; Makita, Shuichi; Kasaragod, Deepa; Yasuno, Yoshiaki
2017-01-01
Jones matrix-based polarization sensitive optical coherence tomography (JM-OCT) simultaneously measures optical intensity, birefringence, degree of polarization uniformity, and OCT angiography. The statistics of the optical features in a local region, such as the local mean of the OCT intensity, are frequently used for image processing and the quantitative analysis of JM-OCT. Conventionally, local statistics have been computed with fixed-size rectangular kernels. However, this results in a trade-off between image sharpness and statistical accuracy. We introduce a superpixel method to JM-OCT for generating the flexible kernels of local statistics. A superpixel is a cluster of image pixels that is formed by the pixels’ spatial and signal value proximities. An algorithm for superpixel generation specialized for JM-OCT and its optimization methods are presented in this paper. The spatial proximity is in two-dimensional cross-sectional space and the signal values are the four optical features. Hence, the superpixel method is a six-dimensional clustering technique for JM-OCT pixels. The performance of the JM-OCT superpixels and its optimization methods are evaluated in detail using JM-OCT datasets of posterior eyes. The superpixels were found to well preserve tissue structures, such as layer structures, sclera, vessels, and retinal pigment epithelium. And hence, they are more suitable for local statistics kernels than conventional uniform rectangular kernels. PMID:29082073
NASA Astrophysics Data System (ADS)
Guo, Zhenyan; Song, Yang; Yuan, Qun; Wulan, Tuya; Chen, Lei
2017-06-01
In this paper, a transient multi-parameter three-dimensional (3D) reconstruction method is proposed to diagnose and visualize a combustion flow field. Emission and transmission tomography based on spatial phase-shifted technology are combined to reconstruct, simultaneously, the various physical parameter distributions of a propane flame. Two cameras triggered by the internal trigger mode capture the projection information of the emission and moiré tomography, respectively. A two-step spatial phase-shifting method is applied to extract the phase distribution in the moiré fringes. By using the filtered back-projection algorithm, we reconstruct the 3D refractive-index distribution of the combustion flow field. Finally, the 3D temperature distribution of the flame is obtained from the refractive index distribution using the Gladstone-Dale equation. Meanwhile, the 3D intensity distribution is reconstructed based on the radiation projections from the emission tomography. Therefore, the structure and edge information of the propane flame are well visualized.
Uchida, Yuichiro; Masui, Toshihiko; Sato, Asahi; Nagai, Kazuyuki; Anazawa, Takayuki; Takaori, Kyoichi; Uemoto, Shinji
2018-03-27
Peripancreatic collections occur frequently after distal pancreatectomy. However, the sequelae of peripancreatic collections vary from case to case, and their clinical impact is uncertain. In this study, the correlations between CT findings of peripancreatic collections and complications after distal pancreatectomy were investigated. Ninety-six consecutive patients who had undergone distal pancreatectomy between 2010 and 2015 were retrospectively investigated. The extent and heterogeneity of peripancreatic collections and background clinicopathological characteristics were analyzed. The extent of peripancreatic collections was calculated based on three-dimensional computed tomography images, and the degree of heterogeneity of peripancreatic collections was assessed based on the standard deviation of their density on computed tomography. Of 85 patients who underwent postoperative computed tomography imaging, a peripancreatic collection was detected in 77 (91%). Patients with either a large extent or a high degree of heterogeneity of peripancreatic collection had a significantly higher rate of clinically relevant pancreatic fistula than those without (odds ratio 5.95, 95% confidence interval 2.12-19.72, p = 0.001; odds ratio 8.0, 95% confidence interval 2.87-24.19, p = 0.0001, respectively). A large and heterogeneous peripancreatic collection was significantly associated with postoperative complications, especially clinically relevant postoperative pancreatic fistula. A small and homogenous peripancreatic collection could be safely observed.
Akiba, Tadashi; Marushima, Hideki; Harada, Junta; Kobayashi, Susumu; Morikawa, Toshiaki
2009-01-01
Video-assisted thoracic surgery (VATS) has recently been adopted for complicated anatomical lung resections. During these thoracoscopic procedures, surgeons view the operative field on a two-dimensional (2-D) video monitor and cannot palpate the organ directly, thus frequently encountering anatomical difficulties. This study aimed to estimate the usefulness of preoperative three-dimensional (3-D) imaging of thoracic organs. We compared the preoperative 64-row three-dimensional multidetector computed tomography (3DMDCT) findings of lung cancer-affected thoracic organs to the operative findings. In comparison to the operative findings, the branches of pulmonary arteries, veins, and bronchi were well defined in the 3D-MDCT images of 27 patients. 3D-MDCT imaging is useful for preoperatively understanding the individual thoracic anatomy in lung cancer surgery. This modality can therefore contribute to safer anatomical pulmonary operations, especially in VATS.
NASA Technical Reports Server (NTRS)
Wilson, Daniel W. (Inventor); Johnson, William R. (Inventor); Bearman, Gregory H. (Inventor)
2011-01-01
Computed tomography imaging spectrometers ("CTISs") employing a single lens are provided. The CTISs may be either transmissive or reflective, and the single lens is either configured to transmit and receive uncollimated light (in transmissive systems), or is configured to reflect and receive uncollimated light (in reflective systems). An exemplary transmissive CTIS includes a focal plane array detector, a single lens configured to transmit and receive uncollimated light, a two-dimensional grating, and a field stop aperture. An exemplary reflective CTIS includes a focal plane array detector, a single mirror configured to reflect and receive uncollimated light, a two-dimensional grating, and a field stop aperture.
Yang, Renhuan; Li, Xu; Song, Aiguo; He, Bin; Yan, Ruqiang
2012-01-01
Electrical properties of biological tissues are highly sensitive to their physiological and pathological status. Thus it is of importance to image electrical properties of biological tissues. However, spatial resolution of conventional electrical impedance tomography (EIT) is generally poor. Recently, hybrid imaging modalities combining electric conductivity contrast and ultrasonic resolution based on acouto-electric effect has attracted considerable attention. In this study, we propose a novel three-dimensional (3D) noninvasive ultrasound Joule heat tomography (UJHT) approach based on acouto-electric effect using unipolar ultrasound pulses. As the Joule heat density distribution is highly dependent on the conductivity distribution, an accurate and high resolution mapping of the Joule heat density distribution is expected to give important information that is closely related to the conductivity contrast. The advantages of the proposed ultrasound Joule heat tomography using unipolar pulses include its simple inverse solution, better performance than UJHT using common bipolar pulses and its independence of any priori knowledge of the conductivity distribution of the imaging object. Computer simulation results show that using the proposed method, it is feasible to perform a high spatial resolution Joule heat imaging in an inhomogeneous conductive media. Application of this technique on tumor scanning is also investigated by a series of computer simulations. PMID:23123757
A Four-Dimensional Computed Tomography Comparison of Healthy vs. Asthmatic Human Lungs
Jahani, Nariman; Choi, Sanghun; Choi, Jiwoong; Haghighi, Babak; Hoffman, Eric A.; Comellas, Alejandro P.; Kline, Joel N.; Lin, Ching-Long
2017-01-01
The purpose of this study was to explore new insights in non-linearity, hysteresis and ventilation heterogeneity of asthmatic human lungs using four-dimensional computed tomography (4D-CT) image data acquired during tidal breathing. Volumetric image data were acquired for 5 non-severe and one severe asthmatic volunteers. Besides 4D-CT image data, function residual capacity and total lung capacity image data during breath-hold were acquired for comparison with dynamic scans. Quantitative results were compared with the previously reported analysis of five healthy human lungs. Using an image registration technique, local variables such as regional ventilation and anisotropic deformation index (ADI) were estimated. Regional ventilation characteristics of non-severe asthmatic subjects were similar to those of healthy subjects, but different from the severe asthmatic subject. Lobar airflow fractions were also well correlated between static and dynamic scans (R2 > 0.84). However, local ventilation heterogeneity significantly increased during tidal breathing in both healthy and asthmatic subjects relative to that of breath-hold perhaps because of airway resistance present only in dynamic breathing. ADI was used to quantify non-linearity and hysteresis of lung motion during tidal breathing. Nonlinearity was greater on inhalation than exhalation among all subjects. However, exhalation nonlinearity among asthmatic subjects was greater than healthy subjects and the difference diminished during inhalation. An increase of non-linearity during exhalation in asthmatic subjects accounted for lower hysteresis relative to that of healthy ones. Thus, assessment of nonlinearity differences between healthy and asthmatic lungs during exhalation may provide quantitative metrics for subject identification and outcome assessment of new interventions. PMID:28372795
Yalavarthy, Phaneendra K; Lynch, Daniel R; Pogue, Brian W; Dehghani, Hamid; Paulsen, Keith D
2008-05-01
Three-dimensional (3D) diffuse optical tomography is known to be a nonlinear, ill-posed and sometimes under-determined problem, where regularization is added to the minimization to allow convergence to a unique solution. In this work, a generalized least-squares (GLS) minimization method was implemented, which employs weight matrices for both data-model misfit and optical properties to include their variances and covariances, using a computationally efficient scheme. This allows inversion of a matrix that is of a dimension dictated by the number of measurements, instead of by the number of imaging parameters. This increases the computation speed up to four times per iteration in most of the under-determined 3D imaging problems. An analytic derivation, using the Sherman-Morrison-Woodbury identity, is shown for this efficient alternative form and it is proven to be equivalent, not only analytically, but also numerically. Equivalent alternative forms for other minimization methods, like Levenberg-Marquardt (LM) and Tikhonov, are also derived. Three-dimensional reconstruction results indicate that the poor recovery of quantitatively accurate values in 3D optical images can also be a characteristic of the reconstruction algorithm, along with the target size. Interestingly, usage of GLS reconstruction methods reduces error in the periphery of the image, as expected, and improves by 20% the ability to quantify local interior regions in terms of the recovered optical contrast, as compared to LM methods. Characterization of detector photo-multiplier tubes noise has enabled the use of the GLS method for reconstructing experimental data and showed a promise for better quantification of target in 3D optical imaging. Use of these new alternative forms becomes effective when the ratio of the number of imaging property parameters exceeds the number of measurements by a factor greater than 2.
Cell culture imaging using microimpedance tomography.
Linderholm, Pontus; Marescot, Laurent; Loke, Meng Heng; Renaud, Philippe
2008-01-01
We present a novel, inexpensive, and fast microimpedance tomography system for two-dimensional imaging of cell and tissue cultures. The system is based on four-electrode measurements using 16 planar microelectrodes (5 microm x 4 mm) integrated into a culture chamber. An Agilent 4294A impedance analyzer combined with a front-end amplifier is used for the impedance measurements. Two-dimensional images are obtained using a reconstruction algorithm. This system is capable of accurately resolving the shape and position of a human hair, yielding vertical cross sections of the object. Human epithelial stem cells (YF 29) are also grown directly on the device surface. Tissue growth can be followed over several days. A rapid resistivity decrease caused by permeabilized cell membranes is also monitored, suggesting that this technique can be used in electroporation studies.
Use of computed tomography renal angiography for screening feline renal transplant donors.
Bouma, Jennifer L; Aronson, Lillian R; Keith, Dennis G; Saunders, H Mark
2003-01-01
Preoperative knowledge of the renal vascular anatomy is important for selection of the appropriate feline renal donor. Intravenous urograms (IVUs) have been performed routinely to screen potential donors at the Veterinary Hospital of the University of Pennsylvania (VHUP), but the vascular phase views lack sufficient detail of the renal vascular anatomy. Computed tomography angiography (CTA), which requires a helical computed tomography (CT) scanner, has been found to provide superior renal vascular anatomic information of prospective human renal donors. The specific aims of this study were as follows: 1) develop the CTA technique for the feline patient; and 2) obtain preliminary information on feline renal vessel anatomy in potential renal donors. Ten healthy, potential feline renal donors were anesthetized and imaged using a third-generation helical CT scanner. The time delay between i.v. contrast medium injection and image acquisition, and other parameters of slice collimation, slice interval, pitch, exposure settings, and reconstruction algorithms were varied to maximize contrast medium opacification of the renal vascular anatomy. Optimal CTA acquisition parameters were determined to be: 1) 10-sec delay post-i.v. bolus of iodinated contrast medium; 2) two serially acquired (corresponding to arterial and venous phases) helical scans through the renal vasculature; 3) pitch of 2 (4 mm/sec patient translation, 2 mm slice collimation); and 4) 120-kVp, 160-mA, and 1-sec exposure settings. Retrospective reconstructed CTA transverse images obtained at a 2-mm slice width and a 1-mm slice interval in combination with two-dimensional reformatted images and three-dimensional reconstructed images were qualitatively evaluated for vascular anatomy; vascular anatomy was confirmed at surgery. Four cats had single renal arteries and veins bilaterally; four cats had double renal veins. One cat had a small accessory artery supplying the caudal pole of the left kidney. One cat had a left renal artery originating from the aorta at a 90 degrees angle with the cranial mesenteric artery. CTA of the feline renal vascular anatomy is feasible, and reconstruction techniques provide excellent anatomic vascular detail. CTA is now used routinely at VHUP to screen all potential feline renal donors.
Zhang, Dongxia; Gan, Yangzhou; Xiong, Jing; Xia, Zeyang
2017-02-01
Complete three-dimensional(3D) tooth model provides essential information to assist orthodontists for diagnosis and treatment planning. Currently, 3D tooth model is mainly obtained by segmentation and reconstruction from dental computed tomography(CT) images. However, the accuracy of 3D tooth model reconstructed from dental CT images is low and not applicable for invisalign design. And another serious problem also occurs, i.e. frequentative dental CT scan during different intervals of orthodontic treatment often leads to radiation to the patients. Hence, this paper proposed a method to reconstruct tooth model based on fusion of dental CT images and laser-scanned images. A complete3 D tooth model was reconstructed with the registration and fusion between the root reconstructed from dental CT images and the crown reconstructed from laser-scanned images. The crown of the complete 3D tooth model reconstructed with the proposed method has higher accuracy. Moreover, in order to reconstruct complete 3D tooth model of each orthodontic treatment interval, only one pre-treatment CT scan is needed and in the orthodontic treatment process only the laser-scan is required. Therefore, radiation to the patients can be reduced significantly.
Thimm, Benjamin W; Hofmann, Sandra; Schneider, Philipp; Carretta, Roberto; Müller, Ralph
2012-03-01
Computed tomography (CT) represents a truly three-dimensional (3D) imaging technique that can provide high-resolution images on the cellular level. Thus, one approach to detect single cells is X-ray absorption-based CT, where cells are labeled with a dense, opaque material providing the required contrast for CT imaging. Within the present work, a novel cell-labeling method has been developed showing the feasibility of labeling fixed cells with iron oxide (FeO) particles for subsequent CT imaging and quantitative morphometry. A biotin-streptavidin detection system was exploited to bind FeO particles to its target endothelial cells. The binding of the particles was predominantly close to the cell centers on 2D surfaces as shown by light microscopy, scanning electron microscopy, and CT. When cells were cultured on porous, 3D polyurethane surfaces, significantly more FeO particles were detected compared with surfaces without cells and FeO particle labeling using CT. Here, we report on the implementation and evaluation of a novel cell detection method based on high-resolution CT. This system has potential in cell tracking for 3D in vitro imaging in the future.
NASA Astrophysics Data System (ADS)
DelGrande, Nancy; Dolan, Kenneth W.; Durbin, Philip F.; Gorvad, Michael R.; Kornblum, B. T.; Perkins, Dwight E.; Schneberk, Daniel J.; Shapiro, Arthur B.
1993-11-01
We discuss three-dimensional dynamic thermal imaging of structural flaws using dual-band infrared (DBIR) computed tomography. Conventional (single-band) thermal imaging is difficult to interpret. It yields imprecise or qualitative information (e.g., when subsurface flaws produce weak heat flow anomalies masked by surface clutter). We use the DBIR imaging technique to clarify interpretation. We capture the time history of surface temperature difference patterns at the epoxy-glue disbond site of a flash-heated lap joint. This type of flawed structure played a significant role in causing damage to the Aloha Aircraft fuselage on the aged Boeing 737 jetliner. The magnitude of surface-temperature differences versus time for 0.1 mm air layer compared to 0.1 mm glue layer, varies from 0.2 to 1.6 degree(s)C, for simultaneously scanned front and back surfaces. The scans are taken every 42 ms from 0 to 8 s after the heat flash. By ratioing 3 - 5 micrometers and 8 - 12 micrometers DBIR images, we located surface temperature patterns from weak heat flow anomalies at the disbond site and remove the emissivity mask from surface paint of roughness variations. Measurements compare well with calculations based on TOPAX3D, a three-dimensional, finite element computer model. We combine infrared, ultrasound and x-ray imaging methods to study heat transfer, bond quality and material differences associated with the lap joint disbond site.
A novel method for designing and fabricating low-cost facepiece prototypes.
Joe, Paula S; Shum, Phillip C; Brown, David W; Lungu, Claudiu T
2014-01-01
In 2010, the National Institute for Occupational Safety and Health (NIOSH) published new digital head form models based on their recently updated fit-test panel. The new panel, based on the 2000 census to better represent the modern work force, created two additional sizes: Short/Wide and Long/Narrow. While collecting the anthropometric data that comprised the panel, additional three-dimensional data were collected on a subset of the subjects. Within each sizing category, five individuals' three-dimensional data were used to create the new head form models. While NIOSH has recommended a switch to a five-size system for designing respirators, little has been done in assessing the potential benefits of this change. With commercially available elastomeric facepieces available in only three or four size systems, it was necessary to develop the facepieces to enable testing. This study aims to develop a method for designing and fabricating elastomeric facepieces tailored to the new head form designs for use in fit-testing studies. This novel method used computed tomography of a solid silicone facepiece and a number of computer-aided design programs (VolView, ParaView, MEGG3D, and RapidForm XOR) to develop a facepiece model to accommodate the Short/Wide head form. The generated model was given a physical form by means of three-dimensional printing using stereolithography (SLA). The printed model was then used to create a silicone mold from which elastomeric prototypes can be cast. The prototype facepieces were cast in two types of silicone for use in future fit-testing.
Viel, Guido; Cecchetto, Giovanni; Manara, Renzo; Cecchetto, Attilio; Montisci, Massimo
2011-06-01
Patients affected by cranial trauma with depressed skull fractures and increased intracranial pressure generally undergo neurosurgical intervention. Because craniotomy and craniectomy remove skull fragments and generate new fracture lines, they complicate forensic examination and sometimes prevent a clear identification of skull fracture etiology. A 3-dimensional reconstruction based on preoperative computed tomography (CT) scans, giving a picture of the injuries before surgical intervention, can help the forensic examiner in identifying skull fracture origin and the means of production.We report the case of a 41-year-old-man presenting at the emergency department with a depressed skull fracture at the vertex and bilateral subdural hemorrhage. The patient underwent 2 neurosurgical interventions (craniotomy and craniectomy) but died after 40 days of hospitalization in an intensive care unit. At autopsy, the absence of various bone fragments did not allow us to establish if the skull had been stricken by a blunt object or had hit the ground with high kinetic energy. To analyze bone injuries before craniectomy, a 3-dimensional CT reconstruction based on preoperative scans was performed. A comparative analysis between autoptic and radiological data allowed us to differentiate surgical from traumatic injuries. Moreover, based on the shape and size of the depressed skull fracture (measured from the CT reformations), we inferred that the man had been stricken by a cylindric blunt object with a diameter of about 3 cm.
Vauhkonen, P J; Vauhkonen, M; Kaipio, J P
2000-02-01
In electrical impedance tomography (EIT), an approximation for the internal resistivity distribution is computed based on the knowledge of the injected currents and measured voltages on the surface of the body. The currents spread out in three dimensions and therefore off-plane structures have a significant effect on the reconstructed images. A question arises: how far from the current carrying electrodes should the discretized model of the object be extended? If the model is truncated too near the electrodes, errors are produced in the reconstructed images. On the other hand if the model is extended very far from the electrodes the computational time may become too long in practice. In this paper the model truncation problem is studied with the extended finite element method. Forward solutions obtained using so-called infinite elements, long finite elements and separable long finite elements are compared to the correct solution. The effects of the truncation of the computational domain on the reconstructed images are also discussed and results from the three-dimensional (3D) sensitivity analysis are given. We show that if the finite element method with ordinary elements is used in static 3D EIT, the dimension of the problem can become fairly large if the errors associated with the domain truncation are to be avoided.
NASA Astrophysics Data System (ADS)
Yoo, Jinwon; Choi, Yujun; Cho, Young-Wook; Han, Sang-Wook; Lee, Sang-Yun; Moon, Sung; Oh, Kyunghwan; Kim, Yong-Su
2018-07-01
We present a detailed method to prepare and characterize four-dimensional pure quantum states or ququarts using polarization and time-bin modes of a single-photon. In particular, we provide a simple method to generate an arbitrary pure ququart and fully characterize the state with quantum state tomography. We also verify the reliability of the recipe by showing experimental preparation and characterization of 20 ququart states in mutually unbiased bases. As qudits provide superior properties over qubits in many fundamental tests of quantum physics and applications in quantum information processing, the presented method will be useful for photonic quantum information science.
Six dimensional X-ray Tensor Tomography with a compact laboratory setup
NASA Astrophysics Data System (ADS)
Sharma, Y.; Wieczorek, M.; Schaff, F.; Seyyedi, S.; Prade, F.; Pfeiffer, F.; Lasser, T.
2016-09-01
Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images with micrometer resolution. However, there is a trade-off between the smallest size of the structures that can be resolved and the measurable sample size. In this letter, we present an imaging method using a compact laboratory setup that reveals information about micrometer-sized structures within samples that are several orders of magnitudes larger. We combine the anisotropic dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimensions. The scattering tensor, thus obtained, encodes information about the orientation of micron-sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse acquisition schemes presented in this letter enable the measurement of the full scattering tensor at every spatial location and can be easily incorporated in a practical, commercially feasible laboratory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.
Okamoto, Isaku; Tokashiki, Ryoji; Hiramatsu, Hiroyuki; Motohashi, Ray; Suzuki, Mamoru
2012-02-01
In a previous study of patients with unilateral vocal-fold paralysis (UVFP), three-dimensional computed tomography (3DCT) revealed passive movement during phonation, with the arytenoid cartilage on the paralyzed side pushed to the unaffected side and deviated upwards. The present work compares the 3DCT findings with those obtained by 2-dimensional endoscopy to visualize the vertical passive movement of the arytenoid cartilage. The study population consisted of 23 patients with UVFP and two with laryngeal deviation but normal movement of the vocal folds. Two endoscopic findings represented cranial deviation during phonation: posterior deviation of the arytenoid hump and lateral deviation of the muscular process. These two findings were classified into four grades, ranging from 0 (normal) to 3 (severe). Cranial displacement detected by 3DCT was also classified into four grades. Significant correlations were found between the 3DCT-determined grade of cranial displacement of the arytenoid cartilage and the grade assigned based on the two endoscopic findings. Moreover, lateral deviation of the muscular process was more significantly correlated with 3DCT grade than with endoscopic grade. Thus, endoscopic findings may be useful in the diagnosis of vocal-fold paralysis, and passive lateral deviation of the muscular process as an indicator of UVFP.
Li, Zuoping; Alonso, Jorge E; Kim, Jong-Eun; Davidson, James S; Etheridge, Brandon S; Eberhardt, Alan W
2006-09-01
Three-dimensional finite element (FE) models of human pubic symphyses were constructed from computed tomography image data of one male and one female cadaver pelvis. The pubic bones, interpubic fibrocartilaginous disc and four pubic ligaments were segmented semi-automatically and meshed with hexahedral elements using automatic mesh generation schemes. A two-term viscoelastic Prony series, determined by curve fitting results of compressive creep experiments, was used to model the rate-dependent effects of the interpubic disc and the pubic ligaments. Three-parameter Mooney-Rivlin material coefficients were calculated for the discs using a heuristic FE approach based on average experimental joint compression data. Similarly, a transversely isotropic hyperelastic material model was applied to the ligaments to capture average tensile responses. Linear elastic isotropic properties were assigned to bone. The applicability of the resulting models was tested in bending simulations in four directions and in tensile tests of varying load rates. The model-predicted results correlated reasonably with the joint bending stiffnesses and rate-dependent tensile responses measured in experiments, supporting the validity of the estimated material coefficients and overall modeling approach. This study represents an important and necessary step in the eventual development of biofidelic pelvis models to investigate symphysis response under high-energy impact conditions, such as motor vehicle collisions.
Tsukiyama, Atsushi; Tagami, Takashi; Kim, Shiei; Yokota, Hiroyuki
2014-01-01
Computed tomography (CT) is useful for evaluating esophageal foreign bodies and detecting perforation. However, when evaluation is difficult owing to the previous use of barium as a contrast medium, 3-dimensional CT may facilitate accurate diagnosis. A 49-year-old man was transferred to our hospital with the diagnosis of esophageal perforation. Because barium had been used as a contrast medium for an esophagram performed at a previous hospital, horizontal CT and esophageal endoscopy could not be able to identify the foreign body or characterize the lesion. However, 3-dimensional CT clearly revealed an L-shaped foreign body and its anatomical relationships in the mediastinum. Accordingly, we removed the foreign body using an upper gastrointestinal endoscope. The foreign body was the premaxillary bone of a sea bream. The patient was discharged without complications.
Wei, Xu-Biao; Xu, Jie; Li, Nan; Yu, Ying; Shi, Jie; Guo, Wei-Xing; Cheng, Hong-Yan; Wu, Meng-Chao; Lau, Wan-Yee; Cheng, Shu-Qun
2016-03-01
Accurate assessment of characteristics of tumor and portal vein tumor thrombus is crucial in the management of hepatocellular carcinoma. Comparison of the three-dimensional imaging with multiple-slice computed tomography in the diagnosis and treatment of hepatocellular carcinoma with portal vein tumor thrombus. Patients eligible for surgical resection were divided into the three-dimensional imaging group or the multiple-slice computed tomography group according to the type of preoperative assessment. The clinical data were collected and compared. 74 patients were enrolled into this study. The weighted κ values for comparison between the thrombus type based on preoperative evaluation and intraoperative findings were 0.87 for the three-dimensional reconstruction group (n = 31) and 0.78 for the control group (n = 43). Three-dimensional reconstruction was significantly associated with a higher rate of en-bloc resection of tumor and thrombus (P = 0.025). Using three-dimensional reconstruction, significant correlation existed between the predicted and actual volumes of the resected specimens (r = 0.82, P < 0.01), as well as the predicted and actual resection margins (r = 0.97, P < 0.01). Preoperative three-dimensional reconstruction significantly decreased tumor recurrence and tumor-related death, with hazard ratios of 0.49 (95% confidential interval, 0.27-0.90) and 0.41 (95% confidential interval, 0.21-0.78), respectively. For hepatocellular carcinoma with portal vein tumor thrombus, three-dimensional imaging was efficient in facilitating surgical treatment and benefiting postoperative survivals. Copyright © 2015 International Hepato-Pancreato-Biliary Association Inc. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Tseng, Yolanda D.; Wootton, Landon; Nyflot, Matthew; Apisarnthanarax, Smith; Rengan, Ramesh; Bloch, Charles; Sandison, George; St. James, Sara
2018-01-01
Four dimensional computed tomography (4DCT) scans are routinely used in radiation therapy to determine the internal treatment volume for targets that are moving (e.g. lung tumors). The use of these studies has allowed clinicians to create target volumes based upon the motion of the tumor during the imaging study. The purpose of this work is to determine if a target volume based on a single 4DCT scan at simulation is sufficient to capture thoracic motion. Phantom studies were performed to determine expected differences between volumes contoured on 4DCT scans and those on the evaluation CT scans (slow scans). Evaluation CT scans acquired during treatment of 11 patients were compared to the 4DCT scans used for treatment planning. The images were assessed to determine if the target remained within the target volume determined during the first 4DCT scan. A total of 55 slow scans were compared to the 11 planning 4DCT scans. Small differences were observed in phantom between the 4DCT volumes and the slow scan volumes, with a maximum of 2.9%, that can be attributed to minor differences in contouring and the ability of the 4DCT scan to adequately capture motion at the apex and base of the motion trajectory. Larger differences were observed in the patients studied, up to a maximum volume difference of 33.4%. These results demonstrate that a single 4DCT scan is not adequate to capture all thoracic motion throughout treatment.
[The clinical and X-ray classification of osteonecrosis of the low jaw].
Medvedev, Iu A; Basin, E M; Sokolina, I A
2013-01-01
To elaborate a clinical and X-ray classification of osteonecrosis of the low jaw in people with desomorphine or pervitin addiction. Ninety-two patients with drug addiction who had undergone orthopantomography, direct frontal X-ray of the skull, and multislice computed tomography, followed by multiplanar and three-dimensional imaging reconstruction were examined. One hundred thirty four X-ray films and 74 computed tomographic images were analyzed. The authors proposed a clinical and X-ray classification of osteonecrosis of the low jaw in people with desomorphine or pervitin addiction and elaborated recommendations for surgical interventions on the basis of the developed classification. The developed clinical and X-ray classification and recommendations for surgical interventions may be used to treat osteonecroses of various etiology.
Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo.
Xia, Jun; Chatni, Muhammad R; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V
2012-05-01
We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.
Whole-body ring-shaped confocal photoacoustic computed tomography of small animals in vivo
NASA Astrophysics Data System (ADS)
Xia, Jun; Chatni, Muhammad R.; Maslov, Konstantin; Guo, Zijian; Wang, Kun; Anastasio, Mark; Wang, Lihong V.
2012-05-01
We report a novel small-animal whole-body imaging system called ring-shaped confocal photoacoustic computed tomography (RC-PACT). RC-PACT is based on a confocal design of free-space ring-shaped light illumination and 512-element full-ring ultrasonic array signal detection. The free-space light illumination maximizes the light delivery efficiency, and the full-ring signal detection ensures a full two-dimensional view aperture for accurate image reconstruction. Using cylindrically focused array elements, RC-PACT can image a thin cross section with 0.10 to 0.25 mm in-plane resolutions and 1.6 s/frame acquisition time. By translating the mouse along the elevational direction, RC-PACT provides a series of cross-sectional images of the brain, liver, kidneys, and bladder.
Nikoloudaki, Georgia E.; Kontogiannis, Taxiarchis G.; Kerezoudis, Nikolaos P.
2015-01-01
Objectives: Cone-Beam Computed Tomography is an alternative imaging technique which has been recently introduced in the field of Oral & Maxillofacial Radiology. It has rapidly gained great popularity among clinicians due to its ability to detect lesions and defects of the orofacial region and provide three-dimensional information about them. In the field of Endodontics, CBCT can be a useful tool to reveal tooth morphology irregularities, additional root canals and vertical root fractures. The objective of this study is to evaluate the root and root canal morphology of the maxillary permanent molars in Greek population using Cone-Beam Computed Tomography. Materials and Methods : 273 cone-beam computed tomography (CBCT) images were examined. The number of roots and root canals of the first and second maxillary molars were evaluated. Root canal configuration was classified according to Weine’s classification by two independent examiners and statistical analysis was performed. Results : A total of 812 molars (410 first and 402 second ones) were evaluated. The vast majority of both first and second molars had three roots (89.26% and 85.07%, respectively). Most first molars had four canals, while most second molars had three. In the mesiobuccal roots, one foramen was recorded in 80.91% of all teeth. Other rare morphologic variations were also found, such as fusion of a maxillary second molar with a supernumerary tooth. Conclusion : Within the limitations of this study, it can be concluded that more attention should be given to the detection of additional canals during root canal treatment in maxillary permanent molars. Towards this effort, CBCT can provide the clinician with supplemental information about the different root canal configurations for successful Root Canal Treatment. PMID:26464594
Computational adaptive optics for broadband optical interferometric tomography of biological tissue
NASA Astrophysics Data System (ADS)
Boppart, Stephen A.
2015-03-01
High-resolution real-time tomography of biological tissues is important for many areas of biological investigations and medical applications. Cellular level optical tomography, however, has been challenging because of the compromise between transverse imaging resolution and depth-of-field, the system and sample aberrations that may be present, and the low imaging sensitivity deep in scattering tissues. The use of computed optical imaging techniques has the potential to address several of these long-standing limitations and challenges. Two related techniques are interferometric synthetic aperture microscopy (ISAM) and computational adaptive optics (CAO). Through three-dimensional Fourierdomain resampling, in combination with high-speed OCT, ISAM can be used to achieve high-resolution in vivo tomography with enhanced depth sensitivity over a depth-of-field extended by more than an order-of-magnitude, in realtime. Subsequently, aberration correction with CAO can be performed in a tomogram, rather than to the optical beam of a broadband optical interferometry system. Based on principles of Fourier optics, aberration correction with CAO is performed on a virtual pupil using Zernike polynomials, offering the potential to augment or even replace the more complicated and expensive adaptive optics hardware with algorithms implemented on a standard desktop computer. Interferometric tomographic reconstructions are characterized with tissue phantoms containing sub-resolution scattering particles, and in both ex vivo and in vivo biological tissue. This review will collectively establish the foundation for high-speed volumetric cellular-level optical interferometric tomography in living tissues.
Mitsuhashi, Kenji; Poudel, Joemini; Matthews, Thomas P.; Garcia-Uribe, Alejandro; Wang, Lihong V.; Anastasio, Mark A.
2017-01-01
Photoacoustic computed tomography (PACT) is an emerging imaging modality that exploits optical contrast and ultrasonic detection principles to form images of the photoacoustically induced initial pressure distribution within tissue. The PACT reconstruction problem corresponds to an inverse source problem in which the initial pressure distribution is recovered from measurements of the radiated wavefield. A major challenge in transcranial PACT brain imaging is compensation for aberrations in the measured data due to the presence of the skull. Ultrasonic waves undergo absorption, scattering and longitudinal-to-shear wave mode conversion as they propagate through the skull. To properly account for these effects, a wave-equation-based inversion method should be employed that can model the heterogeneous elastic properties of the skull. In this work, a forward model based on a finite-difference time-domain discretization of the three-dimensional elastic wave equation is established and a procedure for computing the corresponding adjoint of the forward operator is presented. Massively parallel implementations of these operators employing multiple graphics processing units (GPUs) are also developed. The developed numerical framework is validated and investigated in computer19 simulation and experimental phantom studies whose designs are motivated by transcranial PACT applications. PMID:29387291
Ostwald ripening of faceted Si particles in an Al-Si-Cu melt
Shahani, A. J.; Xiao, X.; Skinner, K.; ...
2016-07-04
The microstructural evolution of an Al-Si-Cu alloy during Ostwald ripening is imaged via synchrotron-based, four-dimensional (i.e., space and time resolved) X-ray tomography. Samples of composition Al-32 wt%Si-15 wt%Cu were annealed isothermally at 650 °C, in the two-phase solid-liquid regime, while tomographic projections were collected in situ over the course of five hours. Advances in experimental methods and computational approaches enable us to characterize the local interfacial curvatures and velocities during ripening. The sequence of three-dimensional reconstructions and interfacial shape distributions shows highly faceted Si particles in a copper-enriched liquid, that become increasingly isotropic or rounded over time. In addition, wemore » find that the coarsening rate constant is approximately the same in the binary and ternary systems. By coupling these experimental measurements with CALPHAD modeling and ab initio molecular dynamics simulation, we assess the influence of Cu on the coarsening process. Lastly, we find the unusual “pinning” of microstructure at the junction between rough and smooth interfaces and suggest a mechanism for this behavior.« less
Sipkova, Zuzana; Lam, Fook Chang; Francis, Ian; Herold, Jim; Liu, Christopher
2013-04-01
To assess the use of serial computed tomography (CT) in the detection of osteo-odonto-lamina resorption in osteo-odonto-keratoprosthesis (OOKP) and to investigate the use of new volumetric software, Advanced Lung Analysis software (3D-ALA; GE Healthcare), for detecting changes in OOKP laminar volume. A retrospective assessment of the radiological databases and hospital records was performed for 22 OOKP patients treated at the National OOKP referral center in Brighton, United Kingdom. Three-dimensional surface reconstructions of the OOKP laminae were performed using stored CT data. For the 2-dimensional linear analysis, the linear dimensions of the reconstructed laminae were measured, compared with original measurements taken at the time of surgery, and then assigned a CT grade based on a predetermined resorption grading scale. The volumetric analysis involved calculating the laminar volumes using 3D-ALA. The effectiveness of 2-dimensional linear analysis, volumetric analysis, and clinical examination in detecting laminar resorption was compared. The mean change in laminar volume between the first and second scans was -6.67% (range, +10.13% to -24.86%). CT grades assigned to patients based on laminar dimension measurements remained the same, despite significant changes in laminar volumes. Clinical examination failed to identify 60% of patients who were found to have resorption on volumetric analysis. Currently, the detection of laminar resorption relies on clinical examination and the measurement of laminar dimensions on the 2- and 3-dimensional radiological images. Laminar volume measurement is a useful new addition to the armamentarium. It provides an objective tool that allows for a precise and reproducible assessment of laminar resorption.
Use of Cone Beam Computed Tomography in Endodontics
Scarfe, William C.; Levin, Martin D.; Gane, David; Farman, Allan G.
2009-01-01
Cone Beam Computed Tomography (CBCT) is a diagnostic imaging modality that provides high-quality, accurate three-dimensional (3D) representations of the osseous elements of the maxillofacial skeleton. CBCT systems are available that provide small field of view images at low dose with sufficient spatial resolution for applications in endodontic diagnosis, treatment guidance, and posttreatment evaluation. This article provides a literature review and pictorial demonstration of CBCT as an imaging adjunct for endodontics. PMID:20379362
NASA Technical Reports Server (NTRS)
Effinger, Michael; Beshears, Ron; Hufnagle, David; Walker, James; Russell, Sam; Stowell, Bob; Myers, David
2002-01-01
Nondestructive characterization techniques have been used to steer development and testing of CMCs. Computed tomography is used to determine the volumetric integrity of the CMC plates and components. Thermography is used to determine the near surface integrity of the CMC plates and components. For process and material development, information such as density uniformity, part delamination, and dimensional tolerance conformity is generated. The information from the thermography and computed tomography is correlated and then specimen cutting maps are superimposed on the thermography images. This enables for tighter data and potential explanation of off nominal test data. Examples of nondestructive characterization utilization to make decisions in process and material development and testing are presented.
Ikeda, Norihiko; Yoshimura, Akinobu; Hagiwara, Masaru; Akata, Soichi; Saji, Hisashi
2013-01-01
The number of minimally invasive operations, such as video-assisted thoracoscopic surgery (VATS) lobectomy or segmentectomy, has enormously increased in recent years. These operations require extreme knowledge of the anatomy of pulmonary vessels and bronchi in each patient, and surgeons must carefully dissect the branches of pulmonary vessels during operation. Thus, foreknowledge of the anatomy of each patient would greatly contribute to the safety and accuracy of the operation. The development of multi-detector computed tomography (MDCT) has promoted three dimensional (3D) images of lung structures. It is possible to see the vascular and bronchial structures from the view of the operator; therefore, it is employed for preoperative simulation as well as navigation during operation. Due to advances in software, even small vessels can be accurately imaged, which is useful in performing segmentectomy. Surgical simulation and navigation systems based on high quality 3D lung modeling, including vascular and bronchial structures, can be used routinely to enhance the safety operation, education of junior staff, as well as providing a greater sense of security to the operators.
Koddenberg, Tim; Militz, Holger
2018-05-05
The popularity of X-ray based imaging methods has continued to increase in research domains. In wood research, X-ray micro-computed tomography (XμCT) is useful for structural studies examining the three-dimensional and complex xylem tissue of trees qualitatively and quantitatively. In this study, XμCT made it possible to visualize and quantify the spatial xylem organization of the angiosperm species Fraxinus excelsior L. on the microscopic level. Through image analysis, it was possible to determine morphological characteristics of the cellular axial tissue (vessel elements, fibers, and axial parenchyma cells) three-dimensionally. X-ray imaging at high resolutions provides very distinct visual insight into the xylem structure. Numerical analyses performed through semi-automatic procedures made it possible to quickly quantify cell characteristics (length, diameter, and volume of cells). Use of various spatial resolutions (0.87-5 μm) revealed boundaries users should be aware of. Nevertheless, our findings, both qualitative and quantitative, demonstrate XμCT to be a valuable tool for studying the spatial cell morphology of F. excelsior. Copyright © 2018. Published by Elsevier Ltd.
Sakakibara, Shunsuke; Onishi, Hiroyuki; Hashikawa, Kazunobu; Akashi, Masaya; Sakakibara, Akiko; Nomura, Tadashi; Terashi, Hiroto
2015-05-01
Most free flap reconstruction complications involve vascular compromise. Evaluation of vascular anatomy provides considerable information that can potentially minimize these complications. Previous reports have shown that contrast-enhanced computed tomography is effective for understanding three-dimensional arterial anatomy. However, most vascular complications result from venous thromboses, making imaging of venous anatomy highly desirable. The phase-lag computed tomography angiography (pl-CTA) technique involves 64-channel (virtually, 128-channel) multidetector CT and is used to acquire arterial images using conventional CTA. Venous images are three-dimensionally reconstructed using a subtraction technique involving combined venous phase and arterial phase images, using a computer workstation. This technique was used to examine 48 patients (12 lower leg reconstructions, 34 head and neck reconstructions, and 2 upper extremity reconstructions) without complications. The pl-CTA technique can be used for three-dimensional visualization of peripheral veins measuring approximately 1 mm in diameter. The pl-CTA information was especially helpful for secondary free flap reconstructions in the head and neck region after malignant tumor recurrence. In such cases, radical dissection of the neck was performed as part of the first operation, and many vessels, including veins, were resected and used in the first free-tissue transfer. The pl-CTA images also allowed visualization of varicose changes in the lower leg region and helped us avoid selecting those vessels for anastomosis. Thus, the pl-CTA-derived venous anatomy information was useful for exact evaluations during the planning of free-tissue transfers. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worm, Esben S., E-mail: esbeworm@rm.dk; Department of Medical Physics, Aarhus University Hospital, Aarhus; Hoyer, Morten
2012-05-01
Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensionalmore » marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of trajectory estimation from CBCT projections for precise setup in stereotactic body radiotherapy was demonstrated. Uncertainty in the conventional CBCT-based setup procedure was eliminated with the new method.« less
Mudrak, Daniel; Kampusch, Stefan; Wielandner, Alice; Prosch, Helmut; Braun, Christina; Toemboel, Frédéric P. R.; Hofmanninger, Johannes; Kaniusas, Eugenijus
2017-01-01
Electrical impedance tomography (EIT) is a promising imaging technique for bedside monitoring of lung function. It is easily applicable, cheap and requires no ionizing radiation, but clinical interpretation of EIT-images is still not standardized. One of the reasons for this is the ill-posed nature of EIT, allowing a range of possible images to be produced–rather than a single explicit solution. Thus, to further advance the EIT technology for clinical application, thorough examinations of EIT-image reconstruction settings–i.e., mathematical parameters and addition of a priori (e.g., anatomical) information–is essential. In the present work, regional ventilation distribution profiles derived from different EIT finite-element reconstruction models and settings (for GREIT and Gauss Newton) were compared to regional aeration profiles assessed by the gold-standard of 4-dimensional computed tomography (4DCT) by calculating the root mean squared error (RMSE). Specifically, non-individualized reconstruction models (based on circular and averaged thoracic contours) and individualized reconstruction models (based on true thoracic contours) were compared. Our results suggest that GREIT with noise figure of 0.15 and non-uniform background works best for the assessment of regional ventilation distribution by EIT, as verified versus 4DCT. Furthermore, the RMSE of anteroposterior ventilation profiles decreased from 2.53±0.62% to 1.67±0.49% while correlation increased from 0.77 to 0.89 after embedding anatomical information into the reconstruction models. In conclusion, the present work reveals that anatomically enhanced EIT-image reconstruction is superior to non-individualized reconstruction models, but further investigations in humans, so as to standardize reconstruction settings, is warranted. PMID:28763474
Imaging cellular and subcellular structure of human brain tissue using micro computed tomography
NASA Astrophysics Data System (ADS)
Khimchenko, Anna; Bikis, Christos; Schweighauser, Gabriel; Hench, Jürgen; Joita-Pacureanu, Alexandra-Teodora; Thalmann, Peter; Deyhle, Hans; Osmani, Bekim; Chicherova, Natalia; Hieber, Simone E.; Cloetens, Peter; Müller-Gerbl, Magdalena; Schulz, Georg; Müller, Bert
2017-09-01
Brain tissues have been an attractive subject for investigations in neuropathology, neuroscience, and neurobiol- ogy. Nevertheless, existing imaging methodologies have intrinsic limitations in three-dimensional (3D) label-free visualisation of extended tissue samples down to (sub)cellular level. For a long time, these morphological features were visualised by electron or light microscopies. In addition to being time-consuming, microscopic investigation includes specimen fixation, embedding, sectioning, staining, and imaging with the associated artefacts. More- over, optical microscopy remains hampered by a fundamental limit in the spatial resolution that is imposed by the diffraction of visible light wavefront. In contrast, various tomography approaches do not require a complex specimen preparation and can now reach a true (sub)cellular resolution. Even laboratory-based micro computed tomography in the absorption-contrast mode of formalin-fixed paraffin-embedded (FFPE) human cerebellum yields an image contrast comparable to conventional histological sections. Data of a superior image quality was obtained by means of synchrotron radiation-based single-distance X-ray phase-contrast tomography enabling the visualisation of non-stained Purkinje cells down to the subcellular level and automated cell counting. The question arises, whether the data quality of the hard X-ray tomography can be superior to optical microscopy. Herein, we discuss the label-free investigation of the human brain ultramorphology be means of synchrotron radiation-based hard X-ray magnified phase-contrast in-line tomography at the nano-imaging beamline ID16A (ESRF, Grenoble, France). As an example, we present images of FFPE human cerebellum block. Hard X-ray tomography can provide detailed information on human tissues in health and disease with a spatial resolution below the optical limit, improving understanding of the neuro-degenerative diseases.
NASA Astrophysics Data System (ADS)
Wang, Jia; Guo, Zhenyan; Song, Yang; Han, Jun
2018-01-01
To realize volume moiré tomography (VMT) for the real three-dimensional (3D) diagnosis of combustion fields, according to 3D filtered back projection (FBP) reconstruction algorithm, the radial derivatives of the projected phase should be measured firstly. In this paper, a simple spatial phase-shifting moiré deflectometry with double cross gratings is presented to measure the radial first-order derivative of the projected phase. Based on scalar diffraction theory, the explicit analytical intensity distributions of moiré patterns on different diffracted orders are derived, and the spatial shifting characteristics are analyzed. The results indicate that the first-order derivatives of the projected phase in two mutually perpendicular directions are involved in moiré patterns, which can be combined to compute the radial first-order derivative. And multiple spatial phase-shifted moiré patterns can be simultaneously obtained; the phase-shifted values are determined by the parameters of the system. A four-step phase-shifting algorithm is proposed for phase extraction, and its accuracy is proved by numerical simulations. Finally, the moiré deflectometry is used to measure the radial first-order derivative of projected phase of a propane flame with plane incident wave, and the 3D temperature distribution is reconstructed.
Kido, Masamitsu; Ikoma, Kazuya; Hara, Yusuke; Imai, Kan; Maki, Masahiro; Ikeda, Takumi; Fujiwara, Hiroyoshi; Tokunaga, Daisaku; Inoue, Nozomu; Kubo, Toshikazu
2014-12-01
Insoles are frequently used in orthotic therapy as the standard conservative treatment for symptomatic flatfoot deformity to rebuild the arch and stabilize the foot. However, the effectiveness of therapeutic insoles remains unclear. In this study, we assessed the effectiveness of therapeutic insoles for flatfoot deformity using subject-based three-dimensional (3D) computed tomography (CT) models by evaluating the load responses of the bones in the medial longitudinal arch in vivo in 3D. We studied eight individuals (16 feet) with mild flatfoot deformity. CT scans were performed on both feet under non-loaded and full-body-loaded conditions, first with accessory insoles and then with therapeutic insoles under the same conditions. Three-dimensional CT models were constructed for the tibia and the tarsal and metatarsal bones of the medial longitudinal arch (i.e., first metatarsal bone, cuneiforms, navicular, talus, and calcaneus). The rotational angles between the tarsal bones were calculated under loading with accessory insoles or therapeutic insoles and compared. Compared with the accessory insoles, the therapeutic insoles significantly suppressed the eversion of the talocalcaneal joint. This is the first study to precisely verify the usefulness of therapeutic insoles (arch support and inner wedges) in vivo. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adachi, Nobuo; Ochi, Mitsuo; Takazawa, Kobun; Ishifuro, Minoru; Deie, Masataka; Nakamae, Atsuo; Kamei, Goki
2016-01-01
This study aimed to investigate the morphological patterns of remnant anterior cruciate ligament bundles after injury (ACL remnant) on three-dimensional computed tomography (3DCT) and compare them with those on arthroscopy. Sixty-three patients (33 males and 30 females; mean age 25.2 ± 10.1 years) who had undergone primary ACL reconstruction between March 2011 and December 2012 were included in this study. The average durations between traumas and 3DCT and between 3DCT and surgery were 101.7 ± 87.2 and 38.2 ± 38.7 days, respectively. ACL remnants were classified into four morphological patterns on 3DCT. 3DCT findings were compared with arthroscopic findings with and without probing. The morphological patterns of the ACL remnants on 3DCT were well matched with those on arthroscopy without probing (the concordance rate was 77.8%). However, the concordance rate was reduced to 49.2% when arthroscopic probing was used to confirm the femoral attachment of ACL remnants (p ≤ 0.05). This study demonstrates that the morphological patterns of ACL remnants on 3DCT were well matched with those on arthroscopy without probing. Therefore, the technique can be useful for preoperative planning of the ACL reconstruction or informed consent to the patients. However, for definitive diagnosis, arthroscopic probing is required. IV.
Evaluation of a Multicore-Optimized Implementation for Tomographic Reconstruction
Agulleiro, Jose-Ignacio; Fernández, José Jesús
2012-01-01
Tomography allows elucidation of the three-dimensional structure of an object from a set of projection images. In life sciences, electron microscope tomography is providing invaluable information about the cell structure at a resolution of a few nanometres. Here, large images are required to combine wide fields of view with high resolution requirements. The computational complexity of the algorithms along with the large image size then turns tomographic reconstruction into a computationally demanding problem. Traditionally, high-performance computing techniques have been applied to cope with such demands on supercomputers, distributed systems and computer clusters. In the last few years, the trend has turned towards graphics processing units (GPUs). Here we present a detailed description and a thorough evaluation of an alternative approach that relies on exploitation of the power available in modern multicore computers. The combination of single-core code optimization, vector processing, multithreading and efficient disk I/O operations succeeds in providing fast tomographic reconstructions on standard computers. The approach turns out to be competitive with the fastest GPU-based solutions thus far. PMID:23139768
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm(-1) (1343.3 nm) and 7185.6 cm(-1) (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
NASA Astrophysics Data System (ADS)
Xu, Lijun; Liu, Chang; Jing, Wenyang; Cao, Zhang; Xue, Xin; Lin, Yuzhen
2016-01-01
To monitor two-dimensional (2D) distributions of temperature and H2O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors' knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H2O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm-1 (1343.3 nm) and 7185.6 cm-1 (1391.67 nm), respectively. The tomographic sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H2O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H2O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Lijun, E-mail: lijunxu@buaa.edu.cn; Liu, Chang; Jing, Wenyang
2016-01-15
To monitor two-dimensional (2D) distributions of temperature and H{sub 2}O mole fraction, an on-line tomography system based on tunable diode laser absorption spectroscopy (TDLAS) was developed. To the best of the authors’ knowledge, this is the first report on a multi-view TDLAS-based system for simultaneous tomographic visualization of temperature and H{sub 2}O mole fraction in real time. The system consists of two distributed feedback (DFB) laser diodes, a tomographic sensor, electronic circuits, and a computer. The central frequencies of the two DFB laser diodes are at 7444.36 cm{sup −1} (1343.3 nm) and 7185.6 cm{sup −1} (1391.67 nm), respectively. The tomographicmore » sensor is used to generate fan-beam illumination from five views and to produce 60 ray measurements. The electronic circuits not only provide stable temperature and precise current controlling signals for the laser diodes but also can accurately sample the transmitted laser intensities and extract integrated absorbances in real time. Finally, the integrated absorbances are transferred to the computer, in which the 2D distributions of temperature and H{sub 2}O mole fraction are reconstructed by using a modified Landweber algorithm. In the experiments, the TDLAS-based tomography system was validated by using asymmetric premixed flames with fixed and time-varying equivalent ratios, respectively. The results demonstrate that the system is able to reconstruct the profiles of the 2D distributions of temperature and H{sub 2}O mole fraction of the flame and effectively capture the dynamics of the combustion process, which exhibits good potential for flame monitoring and on-line combustion diagnosis.« less
Four-dimensional optical coherence tomography imaging of total liquid ventilated rats
NASA Astrophysics Data System (ADS)
Kirsten, Lars; Schnabel, Christian; Gaertner, Maria; Koch, Edmund
2013-06-01
Optical coherence tomography (OCT) can be utilized for the spatially and temporally resolved visualization of alveolar tissue and its dynamics in rodent models, which allows the investigation of lung dynamics on the microscopic scale of single alveoli. The findings could provide experimental input data for numerical simulations of lung tissue mechanics and could support the development of protective ventilation strategies. Real four-dimensional OCT imaging permits the acquisition of several OCT stacks within one single ventilation cycle. Thus, the entire four-dimensional information is directly obtained. Compared to conventional virtual four-dimensional OCT imaging, where the image acquisition is extended over many ventilation cycles and is triggered on pressure levels, real four-dimensional OCT is less vulnerable against motion artifacts and non-reproducible movement of the lung tissue over subsequent ventilation cycles, which widely reduces image artifacts. However, OCT imaging of alveolar tissue is affected by refraction and total internal reflection at air-tissue interfaces. Thus, only the first alveolar layer beneath the pleura is visible. To circumvent this effect, total liquid ventilation can be carried out to match the refractive indices of lung tissue and the breathing medium, which improves the visibility of the alveolar structure, the image quality and the penetration depth and provides the real structure of the alveolar tissue. In this study, a combination of four-dimensional OCT imaging with total liquid ventilation allowed the visualization of the alveolar structure in rat lung tissue benefiting from the improved depth range beneath the pleura and from the high spatial and temporal resolution.
Introduction to Seismic Tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowe, Charlotte Anne
2017-11-21
Tomography is a method of obtaining an image of a 3d object by observing the behavior of energy transmissions through the object. The image is obtained by Interrogating the object with Energy sources at a variety of Locations and observing the Object’s effects on the energy at a Variety of sensors. Tomography was first Used to build 3-dimensional Scans through Human bodies. These Are called computed Tomographic (ct) scans.
Direct integration of the inverse Radon equation for X-ray computed tomography.
Libin, E E; Chakhlov, S V; Trinca, D
2016-11-22
A new mathematical appoach using the inverse Radon equation for restoration of images in problems of linear two-dimensional x-ray tomography is formulated. In this approach, Fourier transformation is not used, and it gives the chance to create the practical computing algorithms having more reliable mathematical substantiation. Results of software implementation show that for especially for low number of projections, the described approach performs better than standard X-ray tomographic reconstruction algorithms.
NASA Astrophysics Data System (ADS)
Galmed, A. H.; du Plessis, A.; le Roux, S. G.; Hartnick, E.; Von Bergmann, H.; Maaza, M.
2018-01-01
Laboratory X-ray computed tomography is an emerging technology for the 3D characterization and dimensional analysis of many types of materials. In this work we demonstrate the usefulness of this characterization method for the full three dimensional analysis of laser ablation craters, in the context of a laser induced breakdown spectroscopy setup. Laser induced breakdown spectroscopy relies on laser ablation for sampling the material of interest. We demonstrate here qualitatively (in images) and quantitatively (in terms of crater cone angles, depths, diameters and volume) laser ablation crater analysis in 3D for metal (aluminum) and rock (false gold ore). We show the effect of a Gaussian beam profile on the resulting crater geometry, as well as the first visual evidence of undercutting in the rock sample, most likely due to ejection of relatively large grains. The method holds promise for optimization of laser ablation setups especially for laser induced breakdown spectroscopy.
Ultra-high resolution computed tomography imaging
Paulus, Michael J.; Sari-Sarraf, Hamed; Tobin, Jr., Kenneth William; Gleason, Shaun S.; Thomas, Jr., Clarence E.
2002-01-01
A method for ultra-high resolution computed tomography imaging, comprising the steps of: focusing a high energy particle beam, for example x-rays or gamma-rays, onto a target object; acquiring a 2-dimensional projection data set representative of the target object; generating a corrected projection data set by applying a deconvolution algorithm, having an experimentally determined a transfer function, to the 2-dimensional data set; storing the corrected projection data set; incrementally rotating the target object through an angle of approximately 180.degree., and after each the incremental rotation, repeating the radiating, acquiring, generating and storing steps; and, after the rotating step, applying a cone-beam algorithm, for example a modified tomographic reconstruction algorithm, to the corrected projection data sets to generate a 3-dimensional image. The size of the spot focus of the beam is reduced to not greater than approximately 1 micron, and even to not greater than approximately 0.5 microns.
Representation of photon limited data in emission tomography using origin ensembles
NASA Astrophysics Data System (ADS)
Sitek, A.
2008-06-01
Representation and reconstruction of data obtained by emission tomography scanners are challenging due to high noise levels in the data. Typically, images obtained using tomographic measurements are represented using grids. In this work, we define images as sets of origins of events detected during tomographic measurements; we call these origin ensembles (OEs). A state in the ensemble is characterized by a vector of 3N parameters Y, where the parameters are the coordinates of origins of detected events in a three-dimensional space and N is the number of detected events. The 3N-dimensional probability density function (PDF) for that ensemble is derived, and we present an algorithm for OE image estimation from tomographic measurements. A displayable image (e.g. grid based image) is derived from the OE formulation by calculating ensemble expectations based on the PDF using the Markov chain Monte Carlo method. The approach was applied to computer-simulated 3D list-mode positron emission tomography data. The reconstruction errors for a 10 000 000 event acquisition for simulated ranged from 0.1 to 34.8%, depending on object size and sampling density. The method was also applied to experimental data and the results of the OE method were consistent with those obtained by a standard maximum-likelihood approach. The method is a new approach to representation and reconstruction of data obtained by photon-limited emission tomography measurements.
[Computed tomography of the lungs. A step into the fourth dimension].
Dinkel, J; Hintze, C; Rochet, N; Thieke, C; Biederer, J
2009-08-01
To discuss the techniques for four dimensional computed tomography of the lungs in tumour patients. The image acquisition in CT can be done using respiratory gating in two different ways: the helical or cine mode. In the helical mode, the couch moves continuously during image and respiratory signal acquisition. In the cine mode, the couch remains in the same position during at least one complete respiratory cycle and then moves to next position. The 4D images are either acquired prospectively or reconstructed retrospectively with dedicated algorithms in a freely selectable respiratory phase. The time information required for motion depiction in 4D imaging can be obtained with tolerable motion artefacts. Partial projection and stepladder-artifacts are occurring predominantly close to the diaphragm, where the displacement is most prominent. Due to the long exposure times, radiation exposure is significantly higher compared to a simple breathhold helical acquisition. Therefore, the use of 4D-CT is restricted to only specific indications (i.e. radiotherapy planning). 4D-CT of the lung allows evaluating the respiration-correlated displacement of lungs and tumours in space for radiotherapy planning.
Mori, Shinichiro; Yanagi, Takeshi; Hara, Ryusuke; Sharp, Gregory C; Asakura, Hiroshi; Kumagai, Motoki; Kishimoto, Riwa; Yamada, Shigeru; Kato, Hirotoshi; Kandatsu, Susumu; Kamada, Tadashi
2010-01-01
We compared respiratory-gated and respiratory-ungated treatment strategies using four-dimensional (4D) scattered carbon ion beam distribution in pancreatic 4D computed tomography (CT) datasets. Seven inpatients with pancreatic tumors underwent 4DCT scanning under free-breathing conditions using a rapidly rotating cone-beam CT, which was integrated with a 256-slice detector, in cine mode. Two types of bolus for gated and ungated treatment were designed to cover the planning target volume (PTV) using 4DCT datasets in a 30% duty cycle around exhalation and a single respiratory cycle, respectively. Carbon ion beam distribution for each strategy was calculated as a function of respiratory phase by applying the compensating bolus to 4DCT at the respective phases. Smearing was not applied to the bolus, but consideration was given to drill diameter. The accumulated dose distributions were calculated by applying deformable registration and calculating the dose-volume histogram. Doses to normal tissues in gated treatment were minimized mainly on the inferior aspect, which thereby minimized excessive doses to normal tissues. Over 95% of the dose, however, was delivered to the clinical target volume at all phases for both treatment strategies. Maximum doses to the duodenum and pancreas averaged across all patients were 43.1/43.1 GyE (ungated/gated) and 43.2/43.2 GyE (ungated/gated), respectively. Although gated treatment minimized excessive dosing to normal tissue, the difference between treatment strategies was small. Respiratory gating may not always be required in pancreatic treatment as long as dose distribution is assessed. Any application of our results to clinical use should be undertaken only after discussion with oncologists, particularly with regard to radiotherapy combined with chemotherapy.
Wang, Wei; Li, Jianbin; Zhang, Yingjie; Shao, Qian; Xu, Min; Guo, Bing; Shang, Dongping
2016-01-01
To investigate the correlation of gross tumor volume (GTV) motion with the structure of interest (SOI) motion and volume variation for middle and distal esophageal cancers using four-dimensional computed tomography (4DCT). Thirty-three patients with middle or distal esophageal carcinoma underwent 4DCT simulation scan during free breathing. All image sets were registered with 0% phase, and the GTV, apex of diaphragm, lung, and heart were delineated on each phase of the 4DCT data. The position of GTV and SOI was identified in all 4DCT phases, and the volume of lung and heart was also achieved. The phase relationship between the GTV and SOI was estimated through Pearson's correlation test. The mean peak-to-peak displacement of all primary tumors in the lateral (LR), anteroposterior (AP), and superoinferior (SI) directions was 0.13 cm, 0.20 cm, and 0.30 cm, respectively. The SI peak-to-peak motion of the GTV was defined as the greatest magnitude of motion. The displacement of GTV correlated well with heart in three dimensions and significantly associated with bilateral lung in LR and SI directions. A significant correlation was found between the GTV and apex of the diaphragm in SI direction (r left=0.918 and r right=0.928). A significant inverse correlation was found between GTV motion and varying lung volume, but the correlation was not significant with heart (r LR=-0.530, r AP=-0.531, and r SI=-0.588) during respiratory cycle. For middle and distal esophageal cancers, GTV should expand asymmetric internal margins. The primary tumor motion has quite good correlation with diaphragm, heart, and lung.
Duan, Yuanyuan; Chandran, Ravi; Cherry, Denise
The purpose of this study was to create three-dimensional composite models of quad zygomatic implant-supported maxillary prostheses with a variety of alveolar bone defects around implant sites, and to investigate the stress distribution in the surrounding bone using the finite element analysis (FEA) method. Three-dimensional models of titanium zygomatic implants, maxillary prostheses, and human skulls were created and assembled using Mimics based on microcomputed tomography and cone beam computed tomography images. A variety of additional bone defects were created at the locations of four zygomatic implants to simulate multiple clinical scenarios. The volume meshes were created and exported into FEA software. Material properties were assigned respectively for all the structures, and von Mises stress data were collected and plotted in the postprocessing module. The maximum stress in the surrounding bone was located in the crestal bone around zygomatic implants. The maximum stress in the prostheses was located at the angled area of the implant-abutment connection. The model with anterior defects had a higher peak stress value than the model with posterior defects. All the models with additional bone defects had higher maximum stress values than the control model without additional bone loss. Additional alveolar bone loss has a negative influence on the stress concentration in the surrounding bone of quad zygomatic implant-supported prostheses. More care should be taken if these additional bone defects are at the sites of anterior zygomatic implants.
NASA Astrophysics Data System (ADS)
Yatsishina, E. B.; Kovalchuk, M. V.; Loshak, M. D.; Vasilyev, S. V.; Vasilieva, O. A.; Dyuzheva, O. P.; Pojidaev, V. M.; Ushakov, V. L.
2018-05-01
Nine ancient Egyptian mummies (dated preliminarily to the period from the 1st mill. BCE to the first centuries CE) from the collection of the State Pushkin Museum of Fine Arts have been studied at the National Research Centre "Kurchatov Institute" (NRC KI) on the base of the complex of NBICS technologies. Tomographic scanning is performed using a magneto-resonance tomograph (3 T) and a hybrid positron emission tomography/computed tomography (PET-CT) scanner. Three-dimensional reconstructions of mummies and their anthropological measurements are carried out. Some medical conclusions are drawn based on the tomographic data. In addition, the embalming composition and tissue of one of the mummies are preliminarily analyzed.
Saeedi, Mostafa; Vahidi, Omid; Goodarzi, Vahabodin; Saeb, Mohammad Reza; Izadi, Leila; Mozafari, Masoud
2017-11-01
Distribution patterns/performance of magnetic nanoparticles (MNPs) was visualized by computer simulation and experimental validation on agarose gel tissue-mimicking phantom (AGTMP) models. The geometry of a complex three-dimensional mathematical phantom model of a cancer tumor was examined by tomography imaging. The capability of mathematical model to predict distribution patterns/performance in AGTMP model was captured. The temperature profile vs. hyperthermia duration was obtained by solving bio-heat equations for four different MNPs distribution patterns and correlated with cell death rate. The outcomes indicated that bio-heat model was able to predict temperature profile throughout the tissue model with a reasonable precision, to be applied for complex tissue geometries. The simulation results on the cancer tumor model shed light on the effectiveness of the studied parameters. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Garay, Michael J.; Davis, Anthony B.; Diner, David J.
2016-12-01
We present initial results using computed tomography to reconstruct the three-dimensional structure of an aerosol plume from passive observations made by the Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite. MISR views the Earth from nine different angles at four visible and near-infrared wavelengths. Adopting the 672 nm channel, we treat each view as an independent measure of aerosol optical thickness along the line of sight at 1.1 km resolution. A smoke plume over dark water is selected as it provides a more tractable lower boundary condition for the retrieval. A tomographic algorithm is used to reconstruct the horizontal and vertical aerosol extinction field for one along-track slice from the path of all camera rays passing through a regular grid. The results compare well with ground-based lidar observations from a nearby Micropulse Lidar Network site.
Into the decomposed body-forensic digital autopsy using multislice-computed tomography.
Thali, M J; Yen, K; Schweitzer, W; Vock, P; Ozdoba, C; Dirnhofer, R
2003-07-08
It is impossible to obtain a representative anatomical documentation of an entire body using classical X-ray methods, they subsume three-dimensional bodies into a two-dimensional level. We used the novel multislice-computed tomography (MSCT) technique in order to evaluate a case of homicide with putrefaction of the corpse before performing a classical forensic autopsy. This non-invasive method showed gaseous distension of the decomposing organs and tissues in detail as well as a complex fracture of the calvarium. MSCT also proved useful in screening for foreign matter in decomposing bodies, and full-body scanning took only a few minutes. In conclusion, we believe postmortem MSCT imaging is an excellent vizualisation tool with great potential for forensic documentation and evaluation of decomposed bodies.
Review: Polymeric-Based 3D Printing for Tissue Engineering.
Wu, Geng-Hsi; Hsu, Shan-Hui
Three-dimensional (3D) printing, also referred to as additive manufacturing, is a technology that allows for customized fabrication through computer-aided design. 3D printing has many advantages in the fabrication of tissue engineering scaffolds, including fast fabrication, high precision, and customized production. Suitable scaffolds can be designed and custom-made based on medical images such as those obtained from computed tomography. Many 3D printing methods have been employed for tissue engineering. There are advantages and limitations for each method. Future areas of interest and progress are the development of new 3D printing platforms, scaffold design software, and materials for tissue engineering applications.
Wang, Ming Feng; Otsuka, Takero; Akimoto, Susumu; Sato, Sadao
2013-01-01
The aim of the present study was to evaluate how vertical facial height correlates with mandibular plane angle, facial width and depth from a three dimensional (3D) viewing angle. In this study 3D cephalometric landmarks were identified and measurements from 43 randomly selected cone beam computed tomography (CBCT) images of dry skulls from the Weisbach collection of Vienna Natural History Museum were analyzed. Pearson correlation coefficients of facial height measurements and mandibular plane angle and the correlation coefficients of height-width and height-depth were calculated, respectively. The mandibular plane angle (MP-SN) significantly correlated with ramus height (Co-Go) and posterior facial height (PFH) but not with anterior lower face height (ALFH) or anterior total face height (ATFH). The ALFH and ATFH showed significant correlation with anterior cranial base length (S-N), whereas PFH showed significant correlation with the mandible (S-B) and maxilla (S-A) anteroposterior position. High or low mandibular plane angle might not necessarily be accompanied by long or short anterior face height, respectively. The PFH rather than AFH is assumed to play a key role in the vertical facial type whereas AFH seems to undergo relatively intrinsic growth.
Computer system for definition of the quantitative geometry of musculature from CT images.
Daniel, Matej; Iglic, Ales; Kralj-Iglic, Veronika; Konvicková, Svatava
2005-02-01
The computer system for quantitative determination of musculoskeletal geometry from computer tomography (CT) images has been developed. The computer system processes series of CT images to obtain three-dimensional (3D) model of bony structures where the effective muscle fibres can be interactively defined. Presented computer system has flexible modular structure and is suitable also for educational purposes.
Quadruple Axis Neutron Computed Tomography
NASA Astrophysics Data System (ADS)
Schillinger, Burkhard; Bausenwein, Dominik
Neutron computed tomography takes more time for a full tomography than X-rays or Synchrotron radiation, because the source intensity is limited. Most neutron imaging detectors have a square field of view, so if tomography of elongated, narrow samples, e.g. fuel rods, sword blades is recorded, much of the detector area is wasted. Using multiple rotation axes, several samples can be placed inside the field of view, and multiple tomographies can be recorded at the same time by later splitting the recorded images into separate tomography data sets. We describe a new multiple-axis setup using four independent miniaturized rotation tables.
Lemieux, Genevieve; Carey, Jason P; Flores-Mir, Carlos; Secanell, Marc; Hart, Adam; Lagravère, Manuel O
2016-01-01
Our objective was to identify and evaluate the accuracy and precision (intrarater and interrater reliabilities) of various anatomic landmarks for use in 3-dimensional maxillary and mandibular regional superimpositions. We used cone-beam computed tomography reconstructions of 10 human dried skulls to locate 10 landmarks in the maxilla and the mandible. Precision and accuracy were assessed with intrarater and interrater readings. Three examiners located these landmarks in the cone-beam computed tomography images 3 times with readings scheduled at 1-week intervals. Three-dimensional coordinates were determined (x, y, and z coordinates), and the intraclass correlation coefficient was computed to determine intrarater and interrater reliabilities, as well as the mean error difference and confidence intervals for each measurement. Bilateral mental foramina, bilateral infraorbital foramina, anterior nasal spine, incisive canal, and nasion showed the highest precision and accuracy in both intrarater and interrater reliabilities. Subspinale and bilateral lingulae had the lowest precision and accuracy in both intrarater and interrater reliabilities. When choosing the most accurate and precise landmarks for 3-dimensional cephalometric analysis or plane-derived maxillary and mandibular superimpositions, bilateral mental and infraorbital foramina, landmarks in the anterior region of the maxilla, and nasion appeared to be the best options of the analyzed landmarks. Caution is needed when using subspinale and bilateral lingulae because of their higher mean errors in location. Copyright © 2016 American Association of Orthodontists. Published by Elsevier Inc. All rights reserved.
A fully 3D approach for metal artifact reduction in computed tomography.
Kratz, Barbel; Weyers, Imke; Buzug, Thorsten M
2012-11-01
In computed tomography imaging metal objects in the region of interest introduce inconsistencies during data acquisition. Reconstructing these data leads to an image in spatial domain including star-shaped or stripe-like artifacts. In order to enhance the quality of the resulting image the influence of the metal objects can be reduced. Here, a metal artifact reduction (MAR) approach is proposed that is based on a recomputation of the inconsistent projection data using a fully three-dimensional Fourier-based interpolation. The success of the projection space restoration depends sensitively on a sensible continuation of neighboring structures into the recomputed area. Fortunately, structural information of the entire data is inherently included in the Fourier space of the data. This can be used for a reasonable recomputation of the inconsistent projection data. The key step of the proposed MAR strategy is the recomputation of the inconsistent projection data based on an interpolation using nonequispaced fast Fourier transforms (NFFT). The NFFT interpolation can be applied in arbitrary dimension. The approach overcomes the problem of adequate neighborhood definitions on irregular grids, since this is inherently given through the usage of higher dimensional Fourier transforms. Here, applications up to the third interpolation dimension are presented and validated. Furthermore, prior knowledge may be included by an appropriate damping of the transform during the interpolation step. This MAR method is applicable on each angular view of a detector row, on two-dimensional projection data as well as on three-dimensional projection data, e.g., a set of sequential acquisitions at different spatial positions, projection data of a spiral acquisition, or cone-beam projection data. Results of the novel MAR scheme based on one-, two-, and three-dimensional NFFT interpolations are presented. All results are compared in projection data space and spatial domain with the well-known one-dimensional linear interpolation strategy. In conclusion, it is recommended to include as much spatial information into the recomputation step as possible. This is realized by increasing the dimension of the NFFT. The resulting image quality can be enhanced considerably.
The Applications of Cone-Beam Computed Tomography in Endodontics: A Review of Literature
Kiarudi, Amir Hosein; Eghbal, Mohammad Jafar; Safi, Yaser; Aghdasi, Mohammad Mehdi; Fazlyab, Mahta
2015-01-01
By producing undistorted three-dimensional images of the area under examination, cone-beam computed tomography (CBCT) systems have met many of the limitations of conventional radiography. These systems produce images with small field of view at low radiation doses with adequate spatial resolution that are suitable for many applications in endodontics from diagnosis to treatment and follow-up. This review article comprehensively assembles all the data from literature regarding the potential applications of CBCT in endodontics. PMID:25598804
Ventura Ferreira, Nuno; Leal, Nuno; Correia Sá, Inês; Reis, Ana; Marques, Marisa
2014-01-01
The fabrication of digital prostheses has acquired growing importance not only for the possibility for the patient to overcome psychosocial trauma but also to promote grip functionality. An application method of three dimensional-computer-aided design technologies for the production of passive prostheses is presented by means of a fifth finger amputee clinical case following bilateral hand replantation.Three-dimensional-computerized tomography was used for the collection of anthropometric images of the hands. Computer-aided design techniques were used to develop the digital file-based prosthesis from the reconstruction images by inversion and superimposing the contra-lateral finger images. The rapid prototyping manufacturing method was used for the production of a silicone bandage prosthesis prototype. This approach replaces the traditional manual method by a virtual method that is basis for the optimization of a high speed, accurate and innovative process.
The application of rapid prototyping technique in chin augmentation.
Li, Min; Lin, Xin; Xu, Yongchen
2010-04-01
This article discusses the application of computer-aided design and rapid prototyping techniques in prosthetic chin augmentation for mild microgenia. Nine cases of mild microgenia underwent an electrobeam computer tomography scan. Then we performed three-dimensional reconstruction and operative design using computer software. According to the design, we determined the shape and size of the prostheses and made an individualized prosthesis for each chin augmentation with the rapid prototyping technique. With the application of computer-aided design and a rapid prototyping technique, we could determine the shape, size, and embedding location accurately. Prefabricating the individual prosthesis model is useful in improving the accuracy of treatment. In the nine cases of mild microgenia, three received a silicone implant, four received an ePTFE implant, and two received a Medpor implant. All patients were satisfied with the results. During follow-up at 6-12 months, all patients remained satisfied. The application of computer-aided design and rapid prototyping techniques can offer surgeons the ability to design an individualized ideal prosthesis for each patient.
Yu, Yao; Zhang, Wen-Bo; Liu, Xiao-Jing; Guo, Chuan-Bin; Yu, Guang-Yan; Peng, Xin
2017-06-01
The purpose of this study was to describe new technology assisted by 3-dimensional (3D) image fusion of 18 F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) and contrast-enhanced CT (CECT) for computer planning of a maxillectomy of recurrent maxillary squamous cell carcinoma and defect reconstruction. Treatment of recurrent maxillary squamous cell carcinoma usually includes tumor resection and free flap reconstruction. FDG-PET/CT provided images of regions of abnormal glucose uptake and thus showed metabolic tumor volume to guide tumor resection. CECT data were used to create 3D reconstructed images of vessels to show the vascular diameters and locations, so that the most suitable vein and artery could be selected during anastomosis of the free flap. The data from preoperative maxillofacial CECT scans and FDG-PET/CT imaging were imported into the navigation system (iPlan 3.0; Brainlab, Feldkirchen, Germany). Three-dimensional image fusion between FDG-PET/CT and CECT was accomplished using Brainlab software according to the position of the 2 skulls simulated in the CECT image and PET/CT image, respectively. After verification of the image fusion accuracy, the 3D reconstruction images of the metabolic tumor, vessels, and other critical structures could be visualized within the same coordinate system. These sagittal, coronal, axial, and 3D reconstruction images were used to determine the virtual osteotomy sites and reconstruction plan, which was provided to the surgeon and used for surgical navigation. The average shift of the 3D image fusion between FDG-PET/CT and CECT was less than 1 mm. This technique, by clearly showing the metabolic tumor volume and the most suitable vessels for anastomosis, facilitated resection and reconstruction of recurrent maxillary squamous cell carcinoma. We used 3D image fusion of FDG-PET/CT and CECT to successfully accomplish resection and reconstruction of recurrent maxillary squamous cell carcinoma. This method has the potential to improve the clinical outcomes of these challenging procedures. Copyright © 2017 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Three-Dimensional Computer Graphics Brain-Mapping Project
1988-03-24
1975-76, one of these brains was hand digitized. It was then reconstructed three dimensionally, using an Evans and Sutherland Picture System 2. This...Yakovlev Collection, we use the Evans and Sutherland Picture System 2 which we have been employing for this purpose for a dozen years. Its virtue is...careful, experimentally designed new protocol (See Figure 20). Most of these heads were imaged with Computed Tomography, thanks to Clint Stiles of Picker
A Method for Identifying Contours in Processing Digital Images from Computer Tomograph
NASA Astrophysics Data System (ADS)
Roşu, Şerban; Pater, Flavius; Costea, Dan; Munteanu, Mihnea; Roşu, Doina; Fratila, Mihaela
2011-09-01
The first step in digital processing of two-dimensional computed tomography images is to identify the contour of component elements. This paper deals with the collective work of specialists in medicine and applied mathematics in computer science on elaborating new algorithms and methods in medical 2D and 3D imagery.
[CONE BEAM COMPUTED TOMOGRAPHY IN DIAGNOSTICS OF ODONTOGENIC MAXILLARY SINUSITIS (CASE REPORTS)].
Demidova, E; Khurdzidze, G
2017-06-01
Diagnostic studies performed by cone beam computed tomography Morita 3D made possible to obtain high resolution images of hard tissues of upper jawbone and maxillary sinus, to detect bony tissue defects, such as odontogenic cysts, cystogranulomas and granulomas. High-resolution and three dimensional tomographic image reconstructions allowed for optimal and prompt determination of the scope of surgical treatment and planning of effective conservative treatment regimen. Interactive diagnostics helped to estimate cosmetic and functional results of surgical treatment, to prevent the occurrence of surgical complications, and to evaluate the efficacy of conservative treatment. The obtained data contributed to determination of particular applications of cone beam computed tomography in the diagnosis of odontogenic maxillary sinusitis, detection of specific defects with cone beam tomography as the most informative method of diagnosis; as well as to determination of weak and strong sides, and helped to offer mechanisms of x-ray diagnostics to dental surgeons and ENT specialists.
Xiang, Liangzhong; Wang, Bo; Ji, Lijun; Jiang, Huabei
2013-01-01
Photoacoustic tomography (PAT) offers three-dimensional (3D) structural and functional imaging of living biological tissue with label-free, optical absorption contrast. These attributes lend PAT imaging to a wide variety of applications in clinical medicine and preclinical research. Despite advances in live animal imaging with PAT, there is still a need for 3D imaging at centimeter depths in real-time. We report the development of four dimensional (4D) PAT, which integrates time resolutions with 3D spatial resolution, obtained using spherical arrays of ultrasonic detectors. The 4D PAT technique generates motion pictures of imaged tissue, enabling real time tracking of dynamic physiological and pathological processes at hundred micrometer-millisecond resolutions. The 4D PAT technique is used here to image needle-based drug delivery and pharmacokinetics. We also use this technique to monitor 1) fast hemodynamic changes during inter-ictal epileptic seizures and 2) temperature variations during tumor thermal therapy.
Image matrix processor for fast multi-dimensional computations
Roberson, George P.; Skeate, Michael F.
1996-01-01
An apparatus for multi-dimensional computation which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination.
A 4DCT imaging-based breathing lung model with relative hysteresis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miyawaki, Shinjiro; Choi, Sanghun; Hoffman, Eric A.
To reproduce realistic airway motion and airflow, the authors developed a deforming lung computational fluid dynamics (CFD) model based on four-dimensional (4D, space and time) dynamic computed tomography (CT) images. A total of 13 time points within controlled tidal volume respiration were used to account for realistic and irregular lung motion in human volunteers. Because of the irregular motion of 4DCT-based airways, we identified an optimal interpolation method for airway surface deformation during respiration, and implemented a computational solid mechanics-based moving mesh algorithm to produce smooth deforming airway mesh. In addition, we developed physiologically realistic airflow boundary conditions for bothmore » models based on multiple images and a single image. Furthermore, we examined simplified models based on one or two dynamic or static images. By comparing these simplified models with the model based on 13 dynamic images, we investigated the effects of relative hysteresis of lung structure with respect to lung volume, lung deformation, and imaging methods, i.e., dynamic vs. static scans, on CFD-predicted pressure drop. The effect of imaging method on pressure drop was 24 percentage points due to the differences in airflow distribution and airway geometry. - Highlights: • We developed a breathing human lung CFD model based on 4D-dynamic CT images. • The 4DCT-based breathing lung model is able to capture lung relative hysteresis. • A new boundary condition for lung model based on one static CT image was proposed. • The difference between lung models based on 4D and static CT images was quantified.« less
Bayesian statistical ionospheric tomography improved by incorporating ionosonde measurements
NASA Astrophysics Data System (ADS)
Norberg, Johannes; Virtanen, Ilkka I.; Roininen, Lassi; Vierinen, Juha; Orispää, Mikko; Kauristie, Kirsti; Lehtinen, Markku S.
2016-04-01
We validate two-dimensional ionospheric tomography reconstructions against EISCAT incoherent scatter radar measurements. Our tomography method is based on Bayesian statistical inversion with prior distribution given by its mean and covariance. We employ ionosonde measurements for the choice of the prior mean and covariance parameters and use the Gaussian Markov random fields as a sparse matrix approximation for the numerical computations. This results in a computationally efficient tomographic inversion algorithm with clear probabilistic interpretation. We demonstrate how this method works with simultaneous beacon satellite and ionosonde measurements obtained in northern Scandinavia. The performance is compared with results obtained with a zero-mean prior and with the prior mean taken from the International Reference Ionosphere 2007 model. In validating the results, we use EISCAT ultra-high-frequency incoherent scatter radar measurements as the ground truth for the ionization profile shape. We find that in comparison to the alternative prior information sources, ionosonde measurements improve the reconstruction by adding accurate information about the absolute value and the altitude distribution of electron density. With an ionosonde at continuous disposal, the presented method enhances stand-alone near-real-time ionospheric tomography for the given conditions significantly.
A COMPUTER MODEL OF LUNG MORPHOLOGY TO ANALYZE SPECT IMAGES
Measurement of the three-dimensional (3-D) spatial distribution of aerosol deposition can be performed using Single Photon Emission Computed Tomography (SPECT). The advantage of using 3-D techniques over planar gamma imaging is that deposition patterns can be related to real lun...
Bianconi, Francesco; Fravolini, Mario Luca; Bello-Cerezo, Raquel; Minestrini, Matteo; Scialpi, Michele; Palumbo, Barbara
2018-04-01
We retrospectively investigated the prognostic potential (correlation with overall survival) of 9 shape and 21 textural features from non-contrast-enhanced computed tomography (CT) in patients with non-small-cell lung cancer. We considered a public dataset of 203 individuals with inoperable, histologically- or cytologically-confirmed NSCLC. Three-dimensional shape and textural features from CT were computed using proprietary code and their prognostic potential evaluated through four different statistical protocols. Volume and grey-level run length matrix (GLRLM) run length non-uniformity were the only two features to pass all four protocols. Both features correlated negatively with overall survival. The results also showed a strong dependence on the evaluation protocol used. Tumour volume and GLRLM run-length non-uniformity from CT were the best predictor of survival in patients with non-small-cell lung cancer. We did not find enough evidence to claim a relationship with survival for the other features. Copyright© 2018, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.
Sandgren, Buster; Crafoord, Joakim; Garellick, Göran; Carlsson, Lars; Weidenhielm, Lars; Olivecrona, Henrik
2013-10-01
Digital radiographic images in the anterior-posterior and lateral view have been gold standard for evaluation of peri-acetabular osteolysis for patients with an uncemented hip replacement. We compared digital radiographic images and computer tomography in detection of peri-acetabular osteolysis and devised a classification system based on computer tomography. Digital radiographs were compared with computer tomography on 206 hips, with a mean follow up 10 years after surgery. The patients had no clinical signs of osteolysis and none were planned for revision surgery. On digital radiographs, 192 cases had no osteolysis and only 14 cases had osteolysis. When using computer tomography there were 184 cases showing small or large osteolysis and only 22 patients had no osteolysis. A classification system for peri-acetabular osteolysis is proposed based on computer tomography that is easy to use on standard follow up evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.
Yamada, Kazuki; Endo, Hirosuke; Tetsunaga, Tomonori; Miyake, Takamasa; Sanki, Tomoaki; Ozaki, Toshifumi
2018-01-01
The accuracy of various navigation systems used for total hip arthroplasty has been described, but no publications reported the accuracy of cup orientation in computed tomography (CT)-based 2D-3D (two-dimensional to three-dimensional) matched navigation. In a prospective, randomized controlled study, 80 hips including 44 with developmental dysplasia of the hips were divided into a CT-based 2D-3D matched navigation group (2D-3D group) and a paired-point matched navigation group (PPM group). The accuracy of cup orientation (absolute difference between the intraoperative record and the postoperative measurement) was compared between groups. Additionally, multiple logistic regression analysis was performed to evaluate patient factors affecting the accuracy of cup orientation in each navigation. The accuracy of cup inclination was 2.5° ± 2.2° in the 2D-3D group and 4.6° ± 3.3° in the PPM group (P = .0016). The accuracy of cup anteversion was 2.3° ± 1.7° in the 2D-3D group and 4.4° ± 3.3° in the PPM group (P = .0009). In the PPM group, the presence of roof osteophytes decreased the accuracy of cup inclination (odds ratio 8.27, P = .0140) and the absolute value of pelvic tilt had a negative influence on the accuracy of cup anteversion (odds ratio 1.27, P = .0222). In the 2D-3D group, patient factors had no effect on the accuracy of cup orientation. The accuracy of cup positioning in CT-based 2D-3D matched navigation was better than in paired-point matched navigation, and was not affected by patient factors. It is a useful system for even severely deformed pelvises such as developmental dysplasia of the hips. Copyright © 2017 Elsevier Inc. All rights reserved.
Li, Dongxia; Jiang, Shan; Yin, Xingzhe; Chang, Jeffrey Wen Wei; Ke, Jie; Zhang, Chengfei
2015-06-01
The aim of this in vitro study was to use high-resolution micro-computed tomography (micro-CT) and scanning electron microscopy (SEM) to compare the efficacy of four irrigation techniques [needle, ultrasonic, EndoActivator, and photon-induced photoacoustic streaming (PIPS)] in removing calcium hydroxide (Ca[OH]2) from the root canal and isthmus of maxillary premolars. Twenty-four maxillary first premolars were selected based on the presence of isthmus regions on micro-CT scans. Root canals were instrumented with an F2 file using ProTaper rotary instruments and filled with Ca(OH)2 paste. Samples were stored at 37°C and 100% humidity for 1 week and randomly divided into four groups (n=6 each), according to irrigation technique. Samples were scanned with micro-CT before instrumentation, after Ca(OH)2 filling, and after irrigation. Ca(OH)2 reduction in the coronal, middle, and apical thirds and in the isthmus were assessed with three-dimensional image analysis. Next, specimens were split longitudinally, and canal walls were examined with SEM for Ca(OH)2 residues. Data were statistically evaluated with the Kruskal-Wallis and Mann-Whitney tests (p=0.05). The PIPS and ultrasonic groups showed greater Ca(OH)2 reduction in the apical third and higher cleanliness of the isthmus than the EndoActivator and needle irrigation groups (p<0.05). Ca(OH)2 residue scores in the PIPS and ultrasonic groups were significantly lower than those in the EndoActivator and needle groups in all regions of the root canals (p<0.05). There was no significant difference between PIPS and ultrasonic groups (p>0.05), or between EndoActivator and needle groups (p>0.05). PIPS and ultrasonic irrigation more effectively removed Ca(OH)2 from the main canal and isthmus in maxillary premolars than did EndoActivator or needle irrigation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tai, An, E-mail: atai@mcw.edu; Liang, Zhiwen; Radiation Oncology Center, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan
2013-08-01
Purpose: The purposes of this study were to quantify respiration-induced organ motions for pancreatic cancer patients and to explore strategies to account for these motions. Methods and Materials: Both 3-dimensional computed tomography (3DCT) and 4-dimensional computed tomography (4DCT) scans were acquired sequentially for 15 pancreatic cancer patients, including 10 randomly selected patients and 5 patients selected from a subgroup of patients with large tumor respiratory motions. 3DCTs were fused with 2 sets of 4DCT data at the end of exhale phase (50%) and the end of inhale phase (0%). The target was delineated on the 50% and 0% phase CTmore » sets, and the organs at risk were drawn on the 3DCT. These contours were populated to the CT sets at other respiratory phases based on deformable image registration. Internal target volumes (ITV) were generated by tracing the target contours of all phases (ITV{sub 10}), 3 phases of 0%, 20% and 50% (ITV{sub 3}), and 2 phases of 0% and 50% (ITV{sub 2}). ITVs generated from phase images were compared using percentage of volume overlap, Dice coefficient, geometric centers, and average surface distance. Results: Volume variations of pancreas, kidneys, and liver as a function of respiratory phases were small (<5%) during respiration. For the 10 randomly selected patients, peak-to-peak amplitudes of liver, left kidney, right kidney, and the target along the superior-inferior (SI) direction were 7.9 ± 3.2 mm, 7.1 ± 3.1 mm, 5.7 ± 3.2 mm, and 5.9 ± 2.8 mm, respectively. The percentage of volume overlap and Dice coefficient were 92% ± 1% and 96% ± 1% between ITV{sub 10} and ITV{sub 2} and 96% ± 1% and 98% ± 1% between ITV{sub 10} and ITV{sub 3}, respectively. The percentage of volume overlap between ITV{sub 10} and ITV{sub 3} was 93.6 ± 1.1 for patients with tumor motion >8 mm. Conclusions: Appropriate motion management strategies are proposed for radiation treatment planning of pancreatic tumors based on magnitudes of tumor respiratory motions.« less
Ulker Karbeyaz, Başak; Miller, Eric L; Cleveland, Robin O
2008-05-01
A shaped-based ultrasound tomography method is proposed to reconstruct ellipsoidal objects using a linearized scattering model. The method is motivated by the desire to detect the presence of lesions created by high intensity focused ultrasound (HIFU) in applications of cancer therapy. The computational size and limited view nature of the relevant three-dimensional inverse problem renders impractical the use of traditional pixel-based reconstruction methods. However, by employing a shape-based parametrization it is only necessary to estimate a small number of unknowns describing the geometry of the lesion, in this paper assumed to be ellipsoidal. The details of the shape-based nonlinear inversion method are provided. Results obtained from a commercial ultrasound scanner and a tissue phantom containing a HIFU-like lesion demonstrate the feasibility of the approach where a 20 mm x 5 mm x 6 mm ellipsoidal inclusion was detected with an accuracy of around 5%.
Opolski, Maksymilian P; Debski, Artur; Borucki, Bartosz A; Szpak, Marcin; Staruch, Adam D; Kepka, Cezary; Witkowski, Adam
2016-06-01
We report a case of successful computed tomography-guided percutaneous revascularization of a chronically occluded right coronary artery using a wearable, hands-free computer with a head-mounted display worn by interventional cardiologists in the catheterization laboratory. The projection of 3-dimensional computed tomographic reconstructions onto the screen of virtual reality glass allowed the operators to clearly visualize the distal coronary vessel, and verify the direction of the guide wire advancement relative to the course of the occluded vessel segment. This case provides proof of concept that wearable computers can improve operator comfort and procedure efficiency in interventional cardiology. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Ambient noise adjoint tomography for a linear array in North China
NASA Astrophysics Data System (ADS)
Zhang, C.; Yao, H.; Liu, Q.; Yuan, Y. O.; Zhang, P.; Feng, J.; Fang, L.
2017-12-01
Ambient noise tomography based on dispersion data and ray theory has been widely utilized for imaging crustal structures. In order to improve the inversion accuracy, ambient noise tomography based on the 3D adjoint approach or full waveform inversion has been developed recently, however, the computational cost is tremendous. In this study we present 2D ambient noise adjoint tomography for a linear array in north China with significant computational efficiency compared to 3D ambient noise adjoint tomography. During the preprocessing, we first convert the observed data in 3D media, i.e., surface-wave empirical Green's functions (EGFs) from ambient noise cross-correlation, to the reconstructed EGFs in 2D media using a 3D/2D transformation scheme. Different from the conventional steps of measuring phase dispersion, the 2D adjoint tomography refines 2D shear wave speeds along the profile directly from the reconstructed Rayleigh wave EGFs in the period band 6-35s. With the 2D initial model extracted from the 3D model from traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime misfits between the reconstructed EGFs and synthetic Green function (SGFs) in 2D media generated by the spectral-element method (SEM), with a preconditioned conjugate gradient method. The multitaper traveltime difference measurement is applied in four period bands during the inversion: 20-35s, 15-30s, 10-20s and 6-15s. The recovered model shows more detailed crustal structures with pronounced low velocity anomaly in the mid-lower crust beneath the junction of Taihang Mountains and Yin-Yan Mountains compared with the initial model. This low velocity structure may imply the possible intense crust-mantle interactions, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of the region. To our knowledge, it's first time that ambient noise adjoint tomography is implemented in 2D media. Considering the intensive computational cost and storage of 3D adjoint tomography, this 2D ambient noise adjoint tomography has potential advantages to get high-resolution 2D crustal structures with limited computational resource.
NASA Astrophysics Data System (ADS)
Fetita, C.; Chang-Chien, K. C.; Brillet, P. Y.; Pr"teux, F.; Chang, R. F.
2012-03-01
Our study aims at developing a computer-aided diagnosis (CAD) system for fully automatic detection and classification of pathological lung parenchyma patterns in idiopathic interstitial pneumonias (IIP) and emphysema using multi-detector computed tomography (MDCT). The proposed CAD system is based on three-dimensional (3-D) mathematical morphology, texture and fuzzy logic analysis, and can be divided into four stages: (1) a multi-resolution decomposition scheme based on a 3-D morphological filter was exploited to discriminate the lung region patterns at different analysis scales. (2) An additional spatial lung partitioning based on the lung tissue texture was introduced to reinforce the spatial separation between patterns extracted at the same resolution level in the decomposition pyramid. Then, (3) a hierarchic tree structure was exploited to describe the relationship between patterns at different resolution levels, and for each pattern, six fuzzy membership functions were established for assigning a probability of association with a normal tissue or a pathological target. Finally, (4) a decision step exploiting the fuzzy-logic assignments selects the target class of each lung pattern among the following categories: normal (N), emphysema (EM), fibrosis/honeycombing (FHC), and ground glass (GDG). According to a preliminary evaluation on an extended database, the proposed method can overcome the drawbacks of a previously developed approach and achieve higher sensitivity and specificity.
Towards Omni-Tomography—Grand Fusion of Multiple Modalities for Simultaneous Interior Tomography
Wang, Ge; Zhang, Jie; Gao, Hao; Weir, Victor; Yu, Hengyong; Cong, Wenxiang; Xu, Xiaochen; Shen, Haiou; Bennett, James; Furth, Mark; Wang, Yue; Vannier, Michael
2012-01-01
We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose “omni-tomography”, a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality fusion: Software based image registration and hybrid scanners such as PET-CT, PET-MRI, and SPECT-CT among others. While there are intrinsic limitations with both approaches, the main obstacle to the seamless fusion of multiple imaging modalities has been the bulkiness of each individual imager and the conflict of their physical (especially spatial) requirements. To address this challenge, omni-tomography is now unveiled as an emerging direction for biomedical imaging and systems biomedicine. PMID:22768108
NASA Astrophysics Data System (ADS)
Cao, Liji; Peter, Jörg
2013-06-01
The adoption of axially oriented line illumination patterns for fluorescence excitation in small animals for fluorescence surface imaging (FSI) and fluorescence optical tomography (FOT) is being investigated. A trimodal single-photon-emission-computed-tomography/computed-tomography/optical-tomography (SPECT-CT-OT) small animal imaging system is being modified for employment of point- and line-laser excitation sources. These sources can be arbitrarily positioned around the imaged object. The line source is set to illuminate the object along its entire axial direction. Comparative evaluation of point and line illumination patterns for FSI and FOT is provided involving phantom as well as mouse data. Given the trimodal setup, CT data are used to guide the optical approaches by providing boundary information. Furthermore, FOT results are also being compared to SPECT. Results show that line-laser illumination yields a larger axial field of view (FOV) in FSI mode, hence faster data acquisition, and practically acceptable FOT reconstruction throughout the whole animal. Also, superimposed SPECT and FOT data provide additional information on similarities as well as differences in the distribution and uptake of both probe types. Fused CT data enhance further the anatomical localization of the tracer distribution in vivo. The feasibility of line-laser excitation for three-dimensional fluorescence imaging and tomography is demonstrated for initiating further research, however, not with the intention to replace one by the other.
Lu, Yongtao; Engelke, Klaus; Glueer, Claus-C; Morlock, Michael M; Huber, Gerd
2014-11-01
Quantitative computed tomography-based finite element modeling technique is a promising clinical tool for the prediction of bone strength. However, quantitative computed tomography-based finite element models were created from image datasets with different image voxel sizes. The aim of this study was to investigate whether there is an influence of image voxel size on the finite element models. In all 12 thoracolumbar vertebrae were scanned prior to autopsy (in situ) using two different quantitative computed tomography scan protocols, which resulted in image datasets with two different voxel sizes (0.29 × 0.29 × 1.3 mm(3) vs 0.18 × 0.18 × 0.6 mm(3)). Eight of them were scanned after autopsy (in vitro) and the datasets were reconstructed with two voxel sizes (0.32 × 0.32 × 0.6 mm(3) vs. 0.18 × 0.18 × 0.3 mm(3)). Finite element models with cuboid volume of interest extracted from the vertebral cancellous part were created and inhomogeneous bilinear bone properties were defined. Axial compression was simulated. No effect of voxel size was detected on the apparent bone mineral density for both the in situ and in vitro cases. However, the apparent modulus and yield strength showed significant differences in the two voxel size group pairs (in situ and in vitro). In conclusion, the image voxel size may have to be considered when the finite element voxel modeling technique is used in clinical applications. © IMechE 2014.
Terahertz computed tomography of NASA thermal protection system materials
NASA Astrophysics Data System (ADS)
Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.
2012-05-01
A terahertz (THz) axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 m3 (1 ft3) with no safety concerns as for x-ray computed tomography. In this study, the THz-CT system was evaluated for its ability to detect and characterize 1) an embedded void in Space Shuttle external fuel tank thermal protection system (TPS) foam material and 2) impact damage in a TPS configuration under consideration for use in NASA's multi-purpose Orion crew module (CM). Micro-focus X-ray CT is utilized to characterize the flaws and provide a baseline for which to compare the THz CT results.
X-ray micro computed tomography for the visualization of an atherosclerotic human coronary artery
NASA Astrophysics Data System (ADS)
Matviykiv, Sofiya; Buscema, Marzia; Deyhle, Hans; Pfohl, Thomas; Zumbuehl, Andreas; Saxer, Till; Müller, Bert
2017-06-01
Atherosclerosis refers to narrowing or blocking of blood vessels that can lead to a heart attack, chest pain or stroke. Constricted segments of diseased arteries exhibit considerably increased wall shear stress, compared to the healthy ones. One of the possibilities to improve patient’s treatment is the application of nano-therapeutic approaches, based on shear stress sensitive nano-containers. In order to tailor the chemical composition and subsequent physical properties of such liposomes, one has to know precisely the morphology of critically stenosed arteries at micrometre resolution. It is often obtained by means of histology, which has the drawback of offering only two-dimensional information. Additionally, it requires the artery to be decalcified before sectioning, which might lead to deformations within the tissue. Micro computed tomography (μCT) enables the three-dimensional (3D) visualization of soft and hard tissues at micrometre level. μCT allows lumen segmentation that is crucial for subsequent flow simulation analysis. In this communication, tomographic images of a human coronary artery before and after decalcification are qualitatively and quantitatively compared. We analyse the cross section of the diseased human coronary artery before and after decalcification, and calculate the lumen area of both samples.
Glaser, Adam K; Andreozzi, Jacqueline M; Zhang, Rongxiao; Pogue, Brian W; Gladstone, David J
2015-07-01
To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp-Davis-Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm(3) volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%-99% pass fraction depending on the chosen threshold dose. The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.
Brun, E; Grandl, S; Sztrókay-Gaul, A; Barbone, G; Mittone, A; Gasilov, S; Bravin, A; Coan, P
2014-11-01
Phase contrast computed tomography has emerged as an imaging method, which is able to outperform present day clinical mammography in breast tumor visualization while maintaining an equivalent average dose. To this day, no segmentation technique takes into account the specificity of the phase contrast signal. In this study, the authors propose a new mathematical framework for human-guided breast tumor segmentation. This method has been applied to high-resolution images of excised human organs, each of several gigabytes. The authors present a segmentation procedure based on the viscous watershed transform and demonstrate the efficacy of this method on analyzer based phase contrast images. The segmentation of tumors inside two full human breasts is then shown as an example of this procedure's possible applications. A correct and precise identification of the tumor boundaries was obtained and confirmed by manual contouring performed independently by four experienced radiologists. The authors demonstrate that applying the watershed viscous transform allows them to perform the segmentation of tumors in high-resolution x-ray analyzer based phase contrast breast computed tomography images. Combining the additional information provided by the segmentation procedure with the already high definition of morphological details and tissue boundaries offered by phase contrast imaging techniques, will represent a valuable multistep procedure to be used in future medical diagnostic applications.
[Fever, atrial fibrillation, and angina pectoris in a 58-year-old man].
Groebner, M; Südhoff, T; Doering, M; Kirmayer, M; Nitsch, T; Prügl, L; Römer, W; Wolf, H; Tacke, J; Massoudy, P; Nüsse, T; Elsner, D
2014-05-01
Primary cardiac lymphoma (PCL) respresents a very rare type of cardiac tumour. This report illustrates a case of PCL in an immunocompetent 58-year-old man presenting with atrial fibrillation and febrile syndrome. Comprehensive imaging [computer tomography (CT), cardiac magnetic resonance imaging (cMRI), 3-dimensional transesophageal echocardiography (3D-TEE)] identified a large right atrial tumour, leading to pericardial effusion. Isolated cardiac involvement was confirmed by positron emission tomography (PET)-CT. A diffuse large B-cell lymphoma (DLBCL) was diagnosed based on the results of a TEE-guided biopsy. A normalized PET scan (PETAL study) indicated complete remission following R-CHOP 14 immunochemotherapy. Thus, an interdisciplinary and multimodal approach avoided unnecessary cardiac surgery.
Michelinakis, George
2017-01-01
This case report presents an alternative method for fabricating an obturator for patients that develop xerostomia and mild trismus following radiation to the Head and Neck region. Multiple initial impression stages are avoided leading to less irritation to soft tissues and less discomfort to the patient. A 69-year-old male patient was referred to our dental practice by the Maxillofacial Surgery Department of the local General Hospital. The patient had undergone a right maxillectomy for removal of a Squamous Cell Carcinoma 2 weeks prior. Four endosseous dental implants were placed in the remaining upper jaw and 2 implants were inserted into the canine region of his edentulous mandible 3 weeks after ablative surgery. Five months following completion of radiotherapy and chemotherapy, a cone beam computed tomography of the maxilla was obtained, and a three dimensional model was constructed using an appropriate resin. Using the model as the detailed primary cast, a custom acrylic special tray was fabricated for the final impression of the remaining maxilla and the maxillary defect. An implant retained maxillary obturator and an implant retained mandibular overdenture were constructed to restore patient's speech, mastication and deglutition. The method presented here can limit the impression stages needed for construction of a maxillary obturator prosthesis to a single impression procedure advocating a partial digital workflow process. This can be very beneficial to the patient suffering from postradiation side-effects such as trismus, mucositis, and xerostomia.
Wang, Guang-Ye; Huang, Wen-Jun; Song, Qi; Qin, Yun-Tian; Liang, Jin-Feng
2016-12-01
Acetabular fractures have always been very challenging for orthopedic surgeons; therefore, appropriate preoperative evaluation and planning are particularly important. This study aimed to explore the application methods and clinical value of preoperative computer simulation (PCS) in treating pelvic and acetabular fractures. Spiral computed tomography (CT) was performed on 13 patients with pelvic and acetabular fractures, and Digital Imaging and Communications in Medicine (DICOM) data were then input into Mimics software to reconstruct three-dimensional (3D) models of actual pelvic and acetabular fractures for preoperative simulative reduction and fixation, and to simulate each surgical procedure. The times needed for virtual surgical modeling and reduction and fixation were also recorded. The average fracture-modeling time was 45 min (30-70 min), and the average time for bone reduction and fixation was 28 min (16-45 min). Among the surgical approaches planned for these 13 patients, 12 were finally adopted; 12 cases used the simulated surgical fixation, and only 1 case used a partial planned fixation method. PCS can provide accurate surgical plans and data support for actual surgeries.
A GPU-Based Architecture for Real-Time Data Assessment at Synchrotron Experiments
NASA Astrophysics Data System (ADS)
Chilingaryan, Suren; Mirone, Alessandro; Hammersley, Andrew; Ferrero, Claudio; Helfen, Lukas; Kopmann, Andreas; Rolo, Tomy dos Santos; Vagovic, Patrik
2011-08-01
Advances in digital detector technology leads presently to rapidly increasing data rates in imaging experiments. Using fast two-dimensional detectors in computed tomography, the data acquisition can be much faster than the reconstruction if no adequate measures are taken, especially when a high photon flux at synchrotron sources is used. We have optimized the reconstruction software employed at the micro-tomography beamlines of our synchrotron facilities to use the computational power of modern graphic cards. The main paradigm of our approach is the full utilization of all system resources. We use a pipelined architecture, where the GPUs are used as compute coprocessors to reconstruct slices, while the CPUs are preparing the next ones. Special attention is devoted to minimize data transfers between the host and GPU memory and to execute memory transfers in parallel with the computations. We were able to reduce the reconstruction time by a factor 30 and process a typical data set of 20 GB in 40 seconds. The time needed for the first evaluation of the reconstructed sample is reduced significantly and quasi real-time visualization is now possible.
Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography
Sidky, Emil Y.; Kraemer, David N.; Roth, Erin G.; Ullberg, Christer; Reiser, Ingrid S.; Pan, Xiaochuan
2014-01-01
Abstract. One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data. PMID:25685824
Analysis of iterative region-of-interest image reconstruction for x-ray computed tomography.
Sidky, Emil Y; Kraemer, David N; Roth, Erin G; Ullberg, Christer; Reiser, Ingrid S; Pan, Xiaochuan
2014-10-03
One of the challenges for iterative image reconstruction (IIR) is that such algorithms solve an imaging model implicitly, requiring a complete representation of the scanned subject within the viewing domain of the scanner. This requirement can place a prohibitively high computational burden for IIR applied to x-ray computed tomography (CT), especially when high-resolution tomographic volumes are required. In this work, we aim to develop an IIR algorithm for direct region-of-interest (ROI) image reconstruction. The proposed class of IIR algorithms is based on an optimization problem that incorporates a data fidelity term, which compares a derivative of the estimated data with the available projection data. In order to characterize this optimization problem, we apply it to computer-simulated two-dimensional fan-beam CT data, using both ideal noiseless data and realistic data containing a level of noise comparable to that of the breast CT application. The proposed method is demonstrated for both complete field-of-view and ROI imaging. To demonstrate the potential utility of the proposed ROI imaging method, it is applied to actual CT scanner data.
Panuccio, Giuseppe; Torsello, Giovanni Federico; Pfister, Markus; Bisdas, Theodosios; Bosiers, Michel J; Torsello, Giovanni; Austermann, Martin
2016-12-01
To assess the usability of a fully automated fusion imaging engine prototype, matching preinterventional computed tomography with intraoperative fluoroscopic angiography during endovascular aortic repair. From June 2014 to February 2015, all patients treated electively for abdominal and thoracoabdominal aneurysms were enrolled prospectively. Before each procedure, preoperative planning was performed with a fully automated fusion engine prototype based on computed tomography angiography, creating a mesh model of the aorta. In a second step, this three-dimensional dataset was registered with the two-dimensional intraoperative fluoroscopy. The main outcome measure was the applicability of the fully automated fusion engine. Secondary outcomes were freedom from failure of automatic segmentation or of the automatic registration as well as accuracy of the mesh model, measuring deviations from intraoperative angiography in millimeters, if applicable. Twenty-five patients were enrolled in this study. The fusion imaging engine could be used in successfully 92% of the cases (n = 23). Freedom from failure of automatic segmentation was 44% (n = 11). The freedom from failure of the automatic registration was 76% (n = 19), the median error of the automatic registration process was 0 mm (interquartile range, 0-5 mm). The fully automated fusion imaging engine was found to be applicable in most cases, albeit in several cases a fully automated data processing was not possible, requiring manual intervention. The accuracy of the automatic registration yielded excellent results and promises a useful and simple to use technology. Copyright © 2016 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.
Equally sloped tomography based X-ray full-field nano-CT at Shanghai Synchrotron Radiation Facility
NASA Astrophysics Data System (ADS)
Wang, Yudan; Ren, Yuqi; Zhou, Guangzhao; Du, Guohao; Xie, Honglan; Deng, Biao; Xiao, Tiqiao
2018-07-01
X-ray full-field nano-computed tomography (nano-CT) has non-destructive three-dimensional imaging capabilities with high spatial resolution, and has been widely applied to investigate morphology and structures in various areas. Conventional tomography reconstructs a 3D object from a large number of equal-angle projections. For nano-CT, it takes long collecting time due to the large projection numbers and long exposure time. Here, equally-sloped tomography (EST) based nano-CT was implemented and constructed on X-ray imaging beamline at the Shanghai Synchrotron Radiation Facility (SSRF) to overcome or alleviate these difficulties. Preliminary results show that hard TXM with the spatial resolution of 100 nm and the EST-based nano-CT with the ability of 3D nano non-destructive characterization have been realized. This technique promotes hard X-ray imaging capability to nano scales at SSRF and could have applications in many fields including nanomaterials, new energy and life sciences. The study will be helpful for the construction of the new full field X-ray nano-imaging beamline with the spatial resolution of 20 nm at SSRF phase II project.
Schmidt, Jodi L; Cole, Theodore M; Silcox, Mary T
2011-08-01
Previous study of the ear ossicles in Primates has demonstrated that they vary on both functional and phylogenetic bases. Such studies have generally employed two-dimensional linear measurements rather than three-dimensional data. The availability of Ultra- high-resolution X-ray computed tomography (UhrCT) has made it possible to accurately image the ossicles so that broadly accepted methodologies for acquiring and studying morphometric data can be applied. Using UhrCT data also allows for the ossicular chain to be studied in anatomical position, so that it is possible to consider the spatial and size relationships of all three bones. One issue impeding the morphometric study of the ear ossicles is a lack of broadly recognized landmarks. Distinguishing landmarks on the ossicles is difficult in part because there are only two areas of articulation in the ossicular chain, one of which (the malleus/incus articulation) has a complex three-dimensional form. A measurement error study is presented demonstrating that a suite of 16 landmarks can be precisely located on reconstructions of the ossicles from UhrCT data. Estimates of measurement error showed that most landmarks were highly replicable, with an average CV for associated interlandmark distances of less than 3%. The positions of these landmarks are chosen to reflect not only the overall shape of the bones in the chain and their relative positions, but also functional parameters. This study should provide a basis for further examination of the smallest bones in the body in three dimensions. Copyright © 2011 Wiley-Liss, Inc.
Three-Dimensional Printed Prosthesis for Repair of Superior Canal Dehiscence.
Kozin, Elliott D; Remenschneider, Aaron K; Cheng, Song; Nakajima, Hideko Heidi; Lee, Daniel J
2015-10-01
Outcomes following repair of superior canal dehiscence (SCD) are variable, and surgery carries a risk of persistent or recurrent SCD symptoms, as well as a risk of hearing loss and vestibulopathy. Poor outcomes may occur from inadequate repair of the SCD or mechanical insult to the membranous labyrinth. Repair of SCD using a customized, fixed-length prosthesis may address current operative limitations and improve surgical outcomes. We aim to 3-dimensionally print customized prostheses to resurface or occlude bony SCD defects. Dehiscences were created along the arcuate eminence of superior semicircular canals in cadaveric temporal bones. Prostheses were designed and created using computed tomography and a 3-dimensional printer. The prostheses occupied the superior semicircular canal defect, reflected in postrepair computed tomography scans. This novel approach to SCD repair could have advantages over current techniques. Refinement of prosthesis design and materials will be important if this approach is translated into clinical use. © American Academy of Otolaryngology-Head and Neck Surgery Foundation 2015.
Three-Dimensional Computed Tomography as a Method for Finding Die Attach Voids in Diodes
NASA Technical Reports Server (NTRS)
Brahm, E. N.; Rolin, T. D.
2010-01-01
NASA analyzes electrical, electronic, and electromechanical (EEE) parts used in space vehicles to understand failure modes of these components. The diode is an EEE part critical to NASA missions that can fail due to excessive voiding in the die attach. Metallography, one established method for studying the die attach, is a time-intensive, destructive, and equivocal process whereby mechanical grinding of the diodes is performed to reveal voiding in the die attach. Problems such as die attach pull-out tend to complicate results and can lead to erroneous conclusions. The objective of this study is to determine if three-dimensional computed tomography (3DCT), a nondestructive technique, is a viable alternative to metallography for detecting die attach voiding. The die attach voiding in two- dimensional planes created from 3DCT scans was compared to several physical cross sections of the same diode to determine if the 3DCT scan accurately recreates die attach volumetric variability
Lumbo-Pelvic-Hip Complex Pain in a Competitive Basketball Player
Reiman, Michael P.; Cox, Kara D.; Jones, Kay S.; Byrd, J. W.
2011-01-01
Establishing the cause of lumbo-pelvic-hip complex pain is a challenge for many clinicians. This case report describes the mechanism of injury, diagnostic process, surgical management, and rehabilitation of a female high school basketball athlete who sustained an injury when falling on her right side. Diagnostics included clinical examination, radiography of the spine and hip joint, magnetic resonance imaging arthrogram, 3-dimensional computed tomography scan, and computed tomography of the hip joint. A systematic multidisciplinary clinical approach resulted in the patient’s return to previous functional levels. PMID:23015993
Accuracy and Specific Value of Cardiovascular 3D-Models in Pediatric CT-Angiography.
Hammon, Matthias; Rompel, Oliver; Seuss, Hannes; Dittrich, Sven; Uder, Michael; Rüffer, Andrè; Cesnjevar, Robert; Ehret, Nicole; Glöckler, Martin
2017-12-01
Computed tomography (CT)-angiography is routinely performed prior to catheter-based and surgical treatment in congenital heart disease. To date, little is known about the accuracy and advantage of different 3D-reconstructions in CT-data. Exact anatomical information is crucial. We analyzed 35 consecutive CT-angiographies of infants with congenital heart disease. All datasets are reconstructed three-dimensionally using volume rendering technique (VRT) and threshold-based segmentation (stereolithographic model, STL). Additionally, the two-dimensional maximum intensity projection (MIP) reconstructs two-dimensional data. In each dataset and resulting image, measurements of vascular diameters for four different vessels were estimated and compared to the reference standard, measured via multiplanar reformation (MPR). The resulting measurements obtained via the STL-images, MIP-images, and the VRT-images were compared with the reference standard. There was a significant difference (p < 0.05) between measurements. The mean difference was 0.0 for STL-images, -0.1 for MIP-images, and -0.3 for VRT-images. The range of the differences was -0.7 to 1.0 mm for STL-images, -0.6 to 0.5 mm for MIP-images and -1.1 to 0.7 mm for VRT-images. There was an excellent correlation between the STL-, MIP-, VRT-measurements, and the reference standard. Inter-reader reliability was excellent (p < 0.01). STL-models of cardiovascular structures are more accurate than the traditional VRT-models. Additionally, they can be standardized and are reproducible.
Time-resolved seismic tomography detects magma intrusions at Mount Etna.
Patanè, D; Barberi, G; Cocina, O; De Gori, P; Chiarabba, C
2006-08-11
The continuous volcanic and seismic activity at Mount Etna makes this volcano an important laboratory for seismological and geophysical studies. We used repeated three-dimensional tomography to detect variations in elastic parameters during different volcanic cycles, before and during the October 2002-January 2003 flank eruption. Well-defined anomalous low P- to S-wave velocity ratio volumes were revealed. Absent during the pre-eruptive period, the anomalies trace the intrusion of volatile-rich (>/=4 weight percent) basaltic magma, most of which rose up only a few months before the onset of eruption. The observed time changes of velocity anomalies suggest that four-dimensional tomography provides a basis for more efficient volcano monitoring and short- and midterm eruption forecasting of explosive activity.
Automated Quantification of Pneumothorax in CT
Do, Synho; Salvaggio, Kristen; Gupta, Supriya; Kalra, Mannudeep; Ali, Nabeel U.; Pien, Homer
2012-01-01
An automated, computer-aided diagnosis (CAD) algorithm for the quantification of pneumothoraces from Multidetector Computed Tomography (MDCT) images has been developed. Algorithm performance was evaluated through comparison to manual segmentation by expert radiologists. A combination of two-dimensional and three-dimensional processing techniques was incorporated to reduce required processing time by two-thirds (as compared to similar techniques). Volumetric measurements on relative pneumothorax size were obtained and the overall performance of the automated method shows an average error of just below 1%. PMID:23082091
Computationally Guided Photothermal Tumor Therapy Using Long-Circulating Gold Nanorod Antennas
Maltzahn, Geoffrey von; Park, Ji-Ho; Agrawal, Amit; Bandaru, Nanda Kishor; Das, Sarit K.; Sailor, Michael J.; Bhatia, Sangeeta N.
2009-01-01
Plasmonic nanomaterials have the opportunity to considerably improve the specificity of cancer ablation by i.v. homing to tumors and acting as antennas for accepting externally applied energy. Here, we describe an integrated approach to improved plasmonic therapy composed of multimodal nanomaterial optimization and computational irradiation protocol development. We synthesized polyethylene glycol (PEG)-protected gold nanorods (NR) that exhibit superior spectral bandwidth, photothermal heat generation per gram of gold, and circulation half-life in vivo (t1/2, ~17 hours) compared with the prototypical tunable plasmonic particles, gold nanoshells, as well as ~2-fold higher X-ray absorption than a clinical iodine contrast agent. After intratumoral or i.v. administration, we fuse PEG-NR biodistribution data derived via noninvasive X-ray computed tomography or ex vivo spectrometry, respectively, with four-dimensional computational heat transport modeling to predict photothermal heating during irradiation. In computationally driven pilot therapeutic studies, we show that a single i.v. injection of PEG-NRs enabled destruction of all irradiated human xenograft tumors in mice. These studies highlight the potential of integrating computational therapy design with nanotherapeutic development for ultraselective tumor ablation. PMID:19366797
Duan, Yuping; Bouslimi, Dalel; Yang, Guanyu; Shu, Huazhong; Coatrieux, Gouenou
2017-07-01
In this paper, we focus on the "blind" identification of the computed tomography (CT) scanner that has produced a CT image. To do so, we propose a set of noise features derived from the image chain acquisition and which can be used as CT-scanner footprint. Basically, we propose two approaches. The first one aims at identifying a CT scanner based on an original sensor pattern noise (OSPN) that is intrinsic to the X-ray detectors. The second one identifies an acquisition system based on the way this noise is modified by its three-dimensional (3-D) image reconstruction algorithm. As these reconstruction algorithms are manufacturer dependent and kept secret, our features are used as input to train a support vector machine (SVM) based classifier to discriminate acquisition systems. Experiments conducted on images issued from 15 different CT-scanner models of 4 distinct manufacturers demonstrate that our system identifies the origin of one CT image with a detection rate of at least 94% and that it achieves better performance than sensor pattern noise (SPN) based strategy proposed for general public camera devices.
Image matrix processor for fast multi-dimensional computations
Roberson, G.P.; Skeate, M.F.
1996-10-15
An apparatus for multi-dimensional computation is disclosed which comprises a computation engine, including a plurality of processing modules. The processing modules are configured in parallel and compute respective contributions to a computed multi-dimensional image of respective two dimensional data sets. A high-speed, parallel access storage system is provided which stores the multi-dimensional data sets, and a switching circuit routes the data among the processing modules in the computation engine and the storage system. A data acquisition port receives the two dimensional data sets representing projections through an image, for reconstruction algorithms such as encountered in computerized tomography. The processing modules include a programmable local host, by which they may be configured to execute a plurality of different types of multi-dimensional algorithms. The processing modules thus include an image manipulation processor, which includes a source cache, a target cache, a coefficient table, and control software for executing image transformation routines using data in the source cache and the coefficient table and loading resulting data in the target cache. The local host processor operates to load the source cache with a two dimensional data set, loads the coefficient table, and transfers resulting data out of the target cache to the storage system, or to another destination. 10 figs.
Dutilleul, Pierre; Han, Liwen; Smith, Donald L
2008-01-01
Light interception by the leaf canopy is a key aspect of plant photosynthesis, which helps mitigate the greenhouse effect via atmospheric CO(2) recycling. The relationship between plant light interception and leaf area was traditionally modelled with the Beer-Lambert law, until the spatial distribution of leaves was incorporated through the fractal dimension of leafless plant structure photographed from the side allowing maximum appearance of branches and petioles. However, photographs of leafless plants are two-dimensional projections of three-dimensional structures, and sampled plants were cut at the stem base before leaf blades were detached manually, so canopy development could not be followed for individual plants. Therefore, a new measurement and modelling approach were developed to explain plant light interception more completely and precisely, based on appropriate processing of computed tomography (CT) scanning data collected for developing canopies. Three-dimensional images of canopies were constructed from CT scanning data. Leaf volumes (LV) were evaluated from complete canopy images, and fractal dimensions (FD) were estimated from skeletonized leafless images. The experimental plant species is pyramidal cedar (Thuja occidentalis, Fastigiata). The three-dimensional version of the Beer-Lambert law based on FD alone provided a much better explanation of plant light interception (R(2) = 0.858) than those using the product LV*FD (0.589) or LV alone (0.548). While values of all three regressors were found to increase over time, FD in the Beer-Lambert law followed the increase in light interception the most closely. The delayed increase of LV reflected the appearance of new leaves only after branches had lengthened and ramified. The very strong correlation obtained with FD demonstrates that CT scanning data contain fundamental information about the canopy architecture geometry. The model can be used to identify crops and plantation trees with improved light interception and productivity.
Dutilleul, Pierre; Han, Liwen; Smith, Donald L.
2008-01-01
Background and Aims Light interception by the leaf canopy is a key aspect of plant photosynthesis, which helps mitigate the greenhouse effect via atmospheric CO2 recycling. The relationship between plant light interception and leaf area was traditionally modelled with the Beer–Lambert law, until the spatial distribution of leaves was incorporated through the fractal dimension of leafless plant structure photographed from the side allowing maximum appearance of branches and petioles. However, photographs of leafless plants are two-dimensional projections of three-dimensional structures, and sampled plants were cut at the stem base before leaf blades were detached manually, so canopy development could not be followed for individual plants. Therefore, a new measurement and modelling approach were developed to explain plant light interception more completely and precisely, based on appropriate processing of computed tomography (CT) scanning data collected for developing canopies. Methods Three-dimensional images of canopies were constructed from CT scanning data. Leaf volumes (LV) were evaluated from complete canopy images, and fractal dimensions (FD) were estimated from skeletonized leafless images. The experimental plant species is pyramidal cedar (Thuja occidentalis, Fastigiata). Key Results The three-dimensional version of the Beer–Lambert law based on FD alone provided a much better explanation of plant light interception (R2 = 0·858) than those using the product LV*FD (0·589) or LV alone (0·548). While values of all three regressors were found to increase over time, FD in the Beer–Lambert law followed the increase in light interception the most closely. The delayed increase of LV reflected the appearance of new leaves only after branches had lengthened and ramified. Conclusions The very strong correlation obtained with FD demonstrates that CT scanning data contain fundamental information about the canopy architecture geometry. The model can be used to identify crops and plantation trees with improved light interception and productivity. PMID:17981879
Real-time three-dimensional optical coherence tomography image-guided core-needle biopsy system.
Kuo, Wei-Cheng; Kim, Jongsik; Shemonski, Nathan D; Chaney, Eric J; Spillman, Darold R; Boppart, Stephen A
2012-06-01
Advances in optical imaging modalities, such as optical coherence tomography (OCT), enable us to observe tissue microstructure at high resolution and in real time. Currently, core-needle biopsies are guided by external imaging modalities such as ultrasound imaging and x-ray computed tomography (CT) for breast and lung masses, respectively. These image-guided procedures are frequently limited by spatial resolution when using ultrasound imaging, or by temporal resolution (rapid real-time feedback capabilities) when using x-ray CT. One feasible approach is to perform OCT within small gauge needles to optically image tissue microstructure. However, to date, no system or core-needle device has been developed that incorporates both three-dimensional OCT imaging and tissue biopsy within the same needle for true OCT-guided core-needle biopsy. We have developed and demonstrate an integrated core-needle biopsy system that utilizes catheter-based 3-D OCT for real-time image-guidance for target tissue localization, imaging of tissue immediately prior to physical biopsy, and subsequent OCT imaging of the biopsied specimen for immediate assessment at the point-of-care. OCT images of biopsied ex vivo tumor specimens acquired during core-needle placement are correlated with corresponding histology, and computational visualization of arbitrary planes within the 3-D OCT volumes enables feedback on specimen tissue type and biopsy quality. These results demonstrate the potential for using real-time 3-D OCT for needle biopsy guidance by imaging within the needle and tissue during biopsy procedures.
4D x-ray phase contrast tomography for repeatable motion of biological samples
NASA Astrophysics Data System (ADS)
Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto
2016-09-01
X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm3. A maximum volume size of 13 × 13 × 6 mm3 was obtained with a single tomographic measurement with a voxel size of 6.5 μm. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.
4D x-ray phase contrast tomography for repeatable motion of biological samples.
Hoshino, Masato; Uesugi, Kentaro; Yagi, Naoto
2016-09-01
X-ray phase contrast tomography based on a grating interferometer was applied to fast and dynamic measurements of biological samples. To achieve this, the scanning procedure in the tomographic scan was improved. A triangle-shaped voltage signal from a waveform generator to a Piezo stage was used for the fast phase stepping in the grating interferometer. In addition, an optical fiber coupled x-ray scientific CMOS camera was used to achieve fast and highly efficient image acquisitions. These optimizations made it possible to perform an x-ray phase contrast tomographic measurement within an 8 min scan with density resolution of 2.4 mg/cm 3 . A maximum volume size of 13 × 13 × 6 mm 3 was obtained with a single tomographic measurement with a voxel size of 6.5 μm. The scanning procedure using the triangle wave was applied to four-dimensional measurements in which highly sensitive three-dimensional x-ray imaging and a time-resolved dynamic measurement of biological samples were combined. A fresh tendon in the tail of a rat was measured under a uniaxial stretching and releasing condition. To maintain the freshness of the sample during four-dimensional phase contrast tomography, the temperature of the bathing liquid of the sample was kept below 10° using a simple cooling system. The time-resolved deformation of the tendon and each fascicle was measured with a temporal resolution of 5.7 Hz. Evaluations of cross-sectional area size, length of the axis, and mass density in the fascicle during a stretching process provided a basis for quantitative analysis of the deformation of tendon fascicle.
Allner, S; Koehler, T; Fehringer, A; Birnbacher, L; Willner, M; Pfeiffer, F; Noël, P B
2016-05-21
The purpose of this work is to develop an image-based de-noising algorithm that exploits complementary information and noise statistics from multi-modal images, as they emerge in x-ray tomography techniques, for instance grating-based phase-contrast CT and spectral CT. Among the noise reduction methods, image-based de-noising is one popular approach and the so-called bilateral filter is a well known algorithm for edge-preserving filtering. We developed a generalization of the bilateral filter for the case where the imaging system provides two or more perfectly aligned images. The proposed generalization is statistically motivated and takes the full second order noise statistics of these images into account. In particular, it includes a noise correlation between the images and spatial noise correlation within the same image. The novel generalized three-dimensional bilateral filter is applied to the attenuation and phase images created with filtered backprojection reconstructions from grating-based phase-contrast tomography. In comparison to established bilateral filters, we obtain improved noise reduction and at the same time a better preservation of edges in the images on the examples of a simulated soft-tissue phantom, a human cerebellum and a human artery sample. The applied full noise covariance is determined via cross-correlation of the image noise. The filter results yield an improved feature recovery based on enhanced noise suppression and edge preservation as shown here on the example of attenuation and phase images captured with grating-based phase-contrast computed tomography. This is supported by quantitative image analysis. Without being bound to phase-contrast imaging, this generalized filter is applicable to any kind of noise-afflicted image data with or without noise correlation. Therefore, it can be utilized in various imaging applications and fields.
Axial Tomography from Digitized Real Time Radiography
DOE R&D Accomplishments Database
Zolnay, A. S.; McDonald, W. M.; Doupont, P. A.; McKinney, R. L.; Lee, M. M.
1985-01-18
Axial tomography from digitized real time radiographs provides a useful tool for industrial radiography and tomography. The components of this system are: x-ray source, image intensifier, video camera, video line extractor and digitizer, data storage and reconstruction computers. With this system it is possible to view a two dimensional x-ray image in real time at each angle of rotation and select the tomography plane of interest by choosing which video line to digitize. The digitization of a video line requires less than a second making data acquisition relatively short. Further improvements on this system are planned and initial results are reported.
Chvetsov, Alexei V; Dong, Lei; Palta, Jantinder R; Amdur, Robert J
2009-10-01
To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.
[Nasolabial muscle finite-element study and clinical application].
Yin, Ningbei; Wu, Jiajun; Chen, Bo; Wang, Yongqian; Song, Tao; Ma, Hengyuan
2015-05-01
To investigate the nasolabial muscle anatomy and biomechanical characteristics. Micro-computed tomography scan was performed in 8 cases of spontaneous abortion fetus lip nasal specimens to construct a three-dimensional model. The nasolabial muscle structure was analyzed using Mimics software. The three-dimensional configuration model of nasolabial muscle was established based on local anatomy and tissue section, and compared with tissue section. Three dimensional finite element analysis was performed on lip nasal muscle related biomechanics and surface deformation in Application verification was carried out in 263 cases of microform cleft lip surgery. There was close relationship between nasolabial muscle. The nasolabial muscle tension system was constituted, based on which a new cleft lip repair surgery was designed and satisfied results were achieved. There is close relationship among nasolabial muscle in anatomy, histology and biomechanics. To obtain better effect, cleft lip repair should be performed on the basis of recovering muscle tension system.
Processing And Display Of Medical Three Dimensional Arrays Of Numerical Data Using Octree Encoding
NASA Astrophysics Data System (ADS)
Amans, Jean-Louis; Darier, Pierre
1986-05-01
imaging modalities such as X-Ray computerized Tomography (CT), Nuclear Medecine and Nuclear Magnetic Resonance can produce three-dimensional (3-D) arrays of numerical data of medical object internal structures. The analysis of 3-D data by synthetic generation of realistic images is an important area of computer graphics and imaging.
NASA Technical Reports Server (NTRS)
Muller, Richard E. (Inventor); Mouroulis, Pantazis Z. (Inventor); Maker, Paul D. (Inventor); Wilson, Daniel W. (Inventor)
2003-01-01
The optical system of this invention is an unique type of imaging spectrometer, i.e. an instrument that can determine the spectra of all points in a two-dimensional scene. The general type of imaging spectrometer under which this invention falls has been termed a computed-tomography imaging spectrometer (CTIS). CTIS's have the ability to perform spectral imaging of scenes containing rapidly moving objects or evolving features, hereafter referred to as transient scenes. This invention, a reflective CTIS with an unique two-dimensional reflective grating, can operate in any wavelength band from the ultraviolet through long-wave infrared. Although this spectrometer is especially useful for rapidly occurring events it is also useful for investigation of some slow moving phenomena as in the life sciences.
Lee, W Anthony
2007-01-01
The gold standard for preoperative evaluation of an aortic aneurysm is a computed tomography angiogram (CTA). Three-dimensional reconstruction and analysis of the computed tomography data set is enormously helpful, and even sometimes essential, in proper sizing and planning for endovascular stent graft repair. To a large extent, it has obviated the need for conventional angiography for morphologic evaluation. The TeraRecon Aquarius workstation (San Mateo, Calif) represents a highly sophisticated but user-friendly platform utilizing a combination of task-specific hardware and software specifically designed to rapidly manipulate large Digital Imaging and Communications in Medicine (DICOM) data sets and provide surface-shaded and multiplanar renderings in real-time. This article discusses the basics of sizing and planning for endovascular abdominal aortic aneurysm repair and the role of 3-dimensional analysis using the TeraRecon workstation.
Benavides, Erika; Rios, Hector F; Ganz, Scott D; An, Chang-Hyeon; Resnik, Randolph; Reardon, Gayle Tieszen; Feldman, Steven J; Mah, James K; Hatcher, David; Kim, Myung-Jin; Sohn, Dong-Seok; Palti, Ady; Perel, Morton L; Judy, Kenneth W M; Misch, Carl E; Wang, Hom-Lay
2012-04-01
The International Congress of Oral Implantologists has supported the development of this consensus report involving the use of Cone Beam Computed Tomography (CBCT) in implant dentistry with the intent of providing scientifically based guidance to clinicians regarding its use as an adjunct to traditional imaging modalities. The literature regarding CBCT and implant dentistry was systematically reviewed. A PubMed search that included studies published between January 1, 2000, and July 31, 2011, was conducted. Oral presentations, in conjunction with these studies, were given by Dr. Erika Benavides, Dr. Scott Ganz, Dr. James Mah, Dr. Myung-Jin Kim, and Dr. David Hatcher at a meeting of the International Congress of Oral Implantologists in Seoul, Korea, on October 6-8, 2011. The studies published could be divided into four main groups: diagnostics, implant planning, surgical guidance, and postimplant evaluation. The literature supports the use of CBCT in dental implant treatment planning particularly in regards to linear measurements, three-dimensional evaluation of alveolar ridge topography, proximity to vital anatomical structures, and fabrication of surgical guides. Areas such as CBCT-derived bone density measurements, CBCT-aided surgical navigation, and postimplant CBCT artifacts need further research. ICOI RECOMMENDATIONS: All CBCT examinations, as all other radiographic examinations, must be justified on an individualized needs basis. The benefits to the patient for each CBCT scan must outweigh the potential risks. CBCT scans should not be taken without initially obtaining thorough medical and dental histories and performing a comprehensive clinical examination. CBCT should be considered as an imaging alternative in cases where the projected implant receptor or bone augmentation site(s) are suspect, and conventional radiography may not be able to assess the true regional three-dimensional anatomical presentation. The smallest possible field of view should be used, and the entire image volume should be interpreted.
Parsa, Azin; Ibrahim, Norliza; Hassan, Bassam; Motroni, Alessandro; van der Stelt, Paul; Wismeijer, Daniel
2012-01-01
To assess the reliability of cone beam computed tomography (CBCT) voxel gray value measurements using Hounsfield units (HU) derived from multislice computed tomography (MSCT) as a clinical reference (gold standard). Ten partially edentulous human mandibular cadavers were scanned by two types of computed tomography (CT) modalities: multislice CT and cone beam CT. On MSCT scans, eight regions of interest (ROI) designating the site for preoperative implant placement were selected in each mandible. The datasets from both CT systems were matched using a three-dimensional (3D) registration algorithm. The mean voxel gray values of the region around the implant sites were compared between MSCT and CBCT. Significant differences between the mean gray values obtained by CBCT and HU by MSCT were found. In all the selected ROIs, CBCT showed higher mean values than MSCT. A strong correlation (R=0.968) between mean voxel gray values of CBCT and mean HU of MSCT was determined. Voxel gray values from CBCT deviate from actual HU units. However, a strong linear correlation exists, which may permit deriving actual HU units from CBCT using linear regression models.
Three-dimensional visualisation improves understanding of surgical liver anatomy.
Beermann, Judith; Tetzlaff, Ralf; Bruckner, Thomas; Schöebinger, Max; Müller-Stich, Beat P; Gutt, Carsten N; Meinzer, Hans-Peter; Kadmon, Martina; Fischer, Lars
2010-09-01
Three-dimensional (3-D) representation is thought to improve understanding of complex spatial interactions and is being used more frequently in diagnostic and therapeutic procedures. It has been suggested that males benefit more than females from 3-D presentations. There have been few randomised trials to confirm these issues. We carried out a randomised trial, based on the identification of complex surgical liver anatomy, to evaluate whether 3-D presentation has a beneficial impact and if gender differences were evident. A computer-based teaching module (TM) was developed to test whether two-dimensional (2-D) computed tomography (CT) images or 3-D presentations result in better understanding of liver anatomy. Following a PowerPoint lecture, students were randomly selected to participate in computer-based testing which used either 2-D images presented as consecutive transversal slices, or one of two 3-D variations. In one of these the vessel tree of portal and hepatic veins was shown in one colour (3-D) and in the other the two vessel systems were coloured differently (3-Dc). Participants were asked to answer 11 medical questions concerning surgical anatomy and four questions on their subjective assessment of the TM. Of the 160 Year 4 and 5 medical students (56.8% female) who participated in this prospective randomised trial, students exposed to 3-D presentation performed significantly better than those exposed to 2-D images (p < 0.001). Comparison of the number of correct answers revealed no significant differences between the 3-D and 3-Dc modalities p > 0.1). Male students gave significantly more correct answers in the 3-D and 3-Dc modalities than female students (p < 0.03). The gender difference observed in both 3-D modalities was not evident in the 2-D group (p = 0.21). This study showed that 3-D imaging significantly improved the identification of complex surgical liver anatomy. Male students benefited significantly more than female students from 3-D presentations. Use of colour in 3-D presentation did not improve student performance.
Wilson loops in supersymmetric gauge theories
NASA Astrophysics Data System (ADS)
Pestun, Vasily
This thesis is devoted to several exact computations in four-dimensional supersymmetric gauge field theories. In the first part of the thesis we prove conjecture due to Erickson-Semenoff-Zarembo and Drukker-Gross which relates supersymmetric circular Wilson loop operators in the N = 4 supersymmetric Yang-Mills theory with a Gaussian matrix model. We also compute the partition function and give a new matrix model formula for the expectation value of a supersymmetric circular Wilson loop operator for the pure N = 2 and the N* = 2 supersymmetric Yang-Mills theory on a four-sphere. Circular supersymmetric Wilson loops in four-dimensional N = 2 superconformal gauge theory are treated similarly. In the second part we consider supersymmetric Wilson loops of arbitrary shape restricted to a two-dimensional sphere in the four-dimensional N = 4 supersymmetric Yang-Mills theory. We show that expectation value for these Wilson loops can be exactly computed using a two-dimensional theory closely related to the topological two-dimensional Higgs-Yang-Mills theory, or two-dimensional Yang-Mills theory for the complexified gauge group.
Stieger-Vanegas, Susanne M; Senthirajah, Sri Kumar Jamie; Nemanic, Sarah; Baltzer, Wendy; Warnock, Jennifer; Hollars, Katelyn; Lee, Scott S; Bobe, Gerd
2015-08-01
To determine, using 3 groups of evaluators of varying experience reading orthopedic CT studies, if 3-dimensional computed tomography (3D-CT) provides a more accurate and time efficient method for diagnosis of canine sacral and pelvic fractures, and displacements of the sacroiliac and coxofemoral joints compared with 2-dimensional computed tomography (2D-CT). Retrospective clinical and prospective study. Dogs (n = 23): 12 dogs with traumatic pelvic fractures, 11 canine cadavers with pelvic trauma induced by a lateral impactor. All dogs had a 2D-CT exam of the pelvis and subsequent 3D-CT reconstructions from the 2D-CT images. Both 2D-CT and 3D-CT studies were anonymized and randomly presented to 2 veterinary radiologists, 2 veterinary orthopedic surgeons, and 2 veterinary medical students. Evaluators classified fractures using a confidence scale and recorded the duration of evaluation for each modality and case. 3D-CT was a more time-efficient technique for evaluation of traumatic sacral and pelvic injuries compared with 2D-CT in all evaluator groups irrespective of experience level reading orthopedic CT studies. However, for radiologists and surgeons, 2D-CT was the more accurate technique for evaluating sacral and pelvic fractures. 3D-CT improves sacral and pelvic fracture diagnosis when added to 2D-CT; however, 3D-CT has a reduced accuracy for evaluation of sacral and pelvic fractures if used without concurrent evaluation of 2D-CT images. © Copyright 2014 by The American College of Veterinary Surgeons.
Darwish, Ragaa T; Abdel-Aziz, Manal H; El Nekiedy, Abdel-Aziz M; Sobh, Zahraa K
2017-11-01
In forensic sciences to determine one's sex is quite important during the identity defining stage. The reliability of sex determination depends on the completeness of the remains and the degree of sexual dimorphism inherent in the population. Computed Tomography is the imaging modality of choice for two- and three-dimensional documentation and analysis of many autopsy findings. The aim of the present work was to assess the reliability of Three-dimensional Multislice Computed Tomography (3D MSCT) to determine sexual dimorphism from certain chest measurements; sternum and fourth rib using the 3D MSCT and to develop equations for sex determination from these bones among adult Egyptians sample. The present study was performed on 60 adult Egyptians. Their age ranged from 21 up to 74 years and they were equally divided between both sexes. Sixty virtual chests (reconstructed Multislice Computed Tomography 3D images) were examined for detection of Sternal measurements; Manubrium length (ML), Sternal body length (BL), Manubrium width (MW), Sternal body widths(BWa&BWb), Sternal area (SA) [(ML + BL) × (MW + BWa + BWb)/3]and Fourth rib width (FRW). All the studied measurements were significantly higher in males than in females. Multiple regression analysis was used to and three significant regression equations were developed for predicting sex using the different studied chest measurements; the sternal measurements, the sternal area and the widths of the right and left fourth ribs with their accuracies 96.67%.95.0%.72.68% respectively. Sterunm and fourth rib width revealed significant metric sex differences with the use of Multislice Computed Tomography 3D images thus provide a great advantage in the analysis of skeletal remains and badly decomposed bodies. Copyright © 2017 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.
Nesterets, Yakov I; Gureyev, Timur E; Mayo, Sheridan C; Stevenson, Andrew W; Thompson, Darren; Brown, Jeremy M C; Kitchen, Marcus J; Pavlov, Konstantin M; Lockie, Darren; Brun, Francesco; Tromba, Giuliana
2015-11-01
Results are presented of a recent experiment at the Imaging and Medical beamline of the Australian Synchrotron intended to contribute to the implementation of low-dose high-sensitivity three-dimensional mammographic phase-contrast imaging, initially at synchrotrons and subsequently in hospitals and medical imaging clinics. The effect of such imaging parameters as X-ray energy, source size, detector resolution, sample-to-detector distance, scanning and data processing strategies in the case of propagation-based phase-contrast computed tomography (CT) have been tested, quantified, evaluated and optimized using a plastic phantom simulating relevant breast-tissue characteristics. Analysis of the data collected using a Hamamatsu CMOS Flat Panel Sensor, with a pixel size of 100 µm, revealed the presence of propagation-based phase contrast and demonstrated significant improvement of the quality of phase-contrast CT imaging compared with conventional (absorption-based) CT, at medically acceptable radiation doses.
Elsyad, Moustafa Abdou
2012-10-01
This article describes the fabrication of a new and inexpensive surgical template from a radiographic template for flapless placement of dental implants to retain a mandibular overdenture. A radiographic template with radiopaque metal plate markers is constructed and used as a guide for achieving three-dimensional evaluation of bone using computed tomography (CT). The potential position and angulation of the implants are measured relative to the metal plates using the CT data. The radiographic template is converted into a surgical template by attaching rigid metal rods that guide the handpiece precisely during subsequent drilling procedures. © 2012 by the American College of Prosthodontists.
Kabashima, Hiroaki; Mizobe, Kunitaka; Nakamuta, Hiroyoshi; Fujiwara, Hiroaki; Okamura, Kazutoshi; Unemori, Masako; Akamine, Akifumi; Yoshiura, Kazunori; Maeda, Katsumasa
2011-06-01
We evaluated and treated a 54-year-old woman with gingival swelling. Conventional intraoral and panoramic radiography did not provide sufficient information for either determining the cause of gingival swelling or planning treatment of clinical symptoms. The 3D Accuitomo XYZ Slice View Tomograph (3DX) is a compact dental computed tomography device that allowed for accurate identification and optimal treatment of the causes of gingival swelling. At four years after treatment, 3DX radiographs showed no abnormalities in treated teeth or healing of surrounding structures. We conclude that high-resolution 3D images obtained with 3DX promise to be very effective for diagnosing oral diseases and determining effective treatment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Guanglei, E-mail: guangleizhang@bjtu.edu.cn; Department of Biomedical Engineering, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044; Pu, Huangsheng
2015-02-23
Images of pharmacokinetic parameters (also known as parametric images) in dynamic fluorescence molecular tomography (FMT) can provide three-dimensional metabolic information for biological studies and drug development. However, the ill-posed nature of FMT and the high temporal variation of fluorophore concentration together make it difficult to obtain accurate parametric images in small animals in vivo. In this letter, we present a method to directly reconstruct the parametric images from the boundary measurements based on hybrid FMT/X-ray computed tomography (XCT) system. This method can not only utilize structural priors obtained from the XCT system to mitigate the ill-posedness of FMT but alsomore » make full use of the temporal correlations of boundary measurements to model the high temporal variation of fluorophore concentration. The results of numerical simulation and mouse experiment demonstrate that the proposed method leads to significant improvements in the reconstruction quality of parametric images.« less
NASA Astrophysics Data System (ADS)
Kajiwara, K.; Shobu, T.; Toyokawa, H.; Sato, M.
2014-04-01
A technique for three-dimensional visualization of grain boundaries was developed at BL28B2 at SPring-8. The technique uses white X-ray microbeam diffraction and a rotating slit. Three-dimensional images of small silicon single crystals filled in a plastic tube were successfully obtained using this technique for demonstration purposes. The images were consistent with those obtained by X-ray computed tomography.
A review of setup error in supine breast radiotherapy using cone-beam computed tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Batumalai, Vikneswary, E-mail: Vikneswary.batumalai@sswahs.nsw.gov.au; Liverpool and Macarthur Cancer Therapy Centres, New South Wales; Ingham Institute of Applied Medical Research, Sydney, New South Wales
2016-10-01
Setup error in breast radiotherapy (RT) measured with 3-dimensional cone-beam computed tomography (CBCT) is becoming more common. The purpose of this study is to review the literature relating to the magnitude of setup error in breast RT measured with CBCT. The different methods of image registration between CBCT and planning computed tomography (CT) scan were also explored. A literature search, not limited by date, was conducted using Medline and Google Scholar with the following key words: breast cancer, RT, setup error, and CBCT. This review includes studies that reported on systematic and random errors, and the methods used when registeringmore » CBCT scans with planning CT scan. A total of 11 relevant studies were identified for inclusion in this review. The average magnitude of error is generally less than 5 mm across a number of studies reviewed. The common registration methods used when registering CBCT scans with planning CT scan are based on bony anatomy, soft tissue, and surgical clips. No clear relationships between the setup errors detected and methods of registration were observed from this review. Further studies are needed to assess the benefit of CBCT over electronic portal image, as CBCT remains unproven to be of wide benefit in breast RT.« less
Applications of cone beam computed tomography for a prosthodontist.
John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R B
2016-01-01
Cone beam computed tomography (CBCT) is a medical imaging technique of X-ray computed tomography where the X-rays are divergent, forming a cone. CBCT systems have been designed for imaging hard tissues of the maxillofacial region. The increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. This article is intended to elaborate and enunciate on the various applications and benefits of CBCT, in the realm of maxillofacial prosthodontics, over and beyond its obvious benefits in the rehabilitation of patients with implants. With the onus of meticulous reconstruction of near ideal occlusion resting on the prosthodontist, CBCT provides a unique imaging option, which can be a boon in various aspects of prosthodontic practice - from imaging of the temporomandibular joint for accurate movement simulation, to template assisted maxillofacial reconstruction or even over denture therapy. CBCT could play a crucial role in lessening the burden of a hectic prosthodontic routine for the clinician and critically contribute to accurate and effective treatment for the patient. Apart from the authors' clinical experiences shared here, a web-based search for relevant articles in this specific area of interest was also conducted. The selected articles were critically reviewed and the data acquired were systematically compiled.
Applications of cone beam computed tomography for a prosthodontist
John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.
2016-01-01
Cone beam computed tomography (CBCT) is a medical imaging technique of X-ray computed tomography where the X-rays are divergent, forming a cone. CBCT systems have been designed for imaging hard tissues of the maxillofacial region. The increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. This article is intended to elaborate and enunciate on the various applications and benefits of CBCT, in the realm of maxillofacial prosthodontics, over and beyond its obvious benefits in the rehabilitation of patients with implants. With the onus of meticulous reconstruction of near ideal occlusion resting on the prosthodontist, CBCT provides a unique imaging option, which can be a boon in various aspects of prosthodontic practice – from imaging of the temporomandibular joint for accurate movement simulation, to template assisted maxillofacial reconstruction or even over denture therapy. CBCT could play a crucial role in lessening the burden of a hectic prosthodontic routine for the clinician and critically contribute to accurate and effective treatment for the patient. Apart from the authors’ clinical experiences shared here, a web-based search for relevant articles in this specific area of interest was also conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:27134420
Giesel, Frederik L; Mehndiratta, Amit; von Tengg-Kobligk, Hendrik; Schaeffer, A; Teh, Kevin; Hoffman, E A; Kauczor, Hans-Ulrich; van Beek, E J R; Wild, Jim M
2009-04-01
Three-dimensional image reconstruction by volume rendering and rapid prototyping has made it possible to visualize anatomic structures in three dimensions for interventional planning and academic research. Volumetric chest computed tomography was performed on a healthy volunteer. Computed tomographic images of the larger bronchial branches were segmented by an extended three-dimensional region-growing algorithm, converted into a stereolithography file, and used for computer-aided design on a laser sintering machine. The injection of gases for respiratory flow modeling and measurements using magnetic resonance imaging were done on a hollow cast. Manufacturing the rapid prototype took about 40 minutes and included the airway tree from trackea to segmental bronchi (fifth generation). The branching of the airways are clearly visible in the (3)He images, and the radial imaging has the potential to elucidate the airway dimensions. The results for flow patterns in the human bronchial tree using the rapid-prototype model with hyperpolarized helium-3 magnetic resonance imaging show the value of this model for flow phantom studies.
Single photon emission computed tomography-guided Cerenkov luminescence tomography
NASA Astrophysics Data System (ADS)
Hu, Zhenhua; Chen, Xueli; Liang, Jimin; Qu, Xiaochao; Chen, Duofang; Yang, Weidong; Wang, Jing; Cao, Feng; Tian, Jie
2012-07-01
Cerenkov luminescence tomography (CLT) has become a valuable tool for preclinical imaging because of its ability of reconstructing the three-dimensional distribution and activity of the radiopharmaceuticals. However, it is still far from a mature technology and suffers from relatively low spatial resolution due to the ill-posed inverse problem for the tomographic reconstruction. In this paper, we presented a single photon emission computed tomography (SPECT)-guided reconstruction method for CLT, in which a priori information of the permissible source region (PSR) from SPECT imaging results was incorporated to effectively reduce the ill-posedness of the inverse reconstruction problem. The performance of the method was first validated with the experimental reconstruction of an adult athymic nude mouse implanted with a Na131I radioactive source and an adult athymic nude mouse received an intravenous tail injection of Na131I. A tissue-mimic phantom based experiment was then conducted to illustrate the ability of the proposed method in resolving double sources. Compared with the traditional PSR strategy in which the PSR was determined by the surface flux distribution, the proposed method obtained much more accurate and encouraging localization and resolution results. Preliminary results showed that the proposed SPECT-guided reconstruction method was insensitive to the regularization methods and ignored the heterogeneity of tissues which can avoid the segmentation procedure of the organs.
Masjedi, Milad; Marquardt, Charles S; Drummond, Isabella M H; Harris, Simon J; Cobb, Justin P
2013-03-01
Cam hips are commonly quantified using the two-dimensional α angle. The accuracy of this measurement may be affected by patient position and the technician's experience. In this paper, we describe a method of measurement that provides a quantitative definition of cam hips based upon three-dimensional computed tomography (CT) images. CT scans of 47 (24 cam, 23 normal) femurs were segmented. A sphere was fitted to the articulating surface of the femoral head, the radius (r) recorded, and the femoral neck axis obtained. The cross sectional area at four locations spanning the head neck junction (r/4, r/2, 3r/4 and r), perpendicular to the neck axis, was measured. The ratios (Neck/Head) between the areas at each cut relative to the surface area at the head centre were calculated and aggregated. Normal and cam hips were significantly different: the sum of the head-neck ratios (HNRs) of the cam hips were always smaller than normal hips (p < 0.01). A cut off point of 2.55 with no overlap was found between the two groups, with HNRs larger than this being cam hips, and smaller being normal ones. Owing to its sensitivity and repeatability, the method could be used to confirm or refute the clinical diagnosis of a cam hip. Furthermore it can be used as a tool to measure the outcome of cam surgery.
Offset-electrode profile acquisition strategy for electrical resistivity tomography
NASA Astrophysics Data System (ADS)
Robbins, Austin R.; Plattner, Alain
2018-04-01
We present an electrode layout strategy that allows electrical resistivity profiles to image the third dimension close to the profile plane. This "offset-electrode profile" approach involves laterally displacing electrodes away from the profile line in an alternating fashion and then inverting the resulting data using three-dimensional electrical resistivity tomography software. In our synthetic and field surveys, the offset-electrode method succeeds in revealing three-dimensional structures in the vicinity of the profile plane, which we could not achieve using three-dimensional inversions of linear profiles. We confirm and explain the limits of linear electrode profiles through a discussion of the three-dimensional sensitivity patterns: For a homogeneous starting model together with a linear electrode layout, all sensitivities remain symmetric with respect to the profile plane through each inversion step. This limitation can be overcome with offset-electrode layouts by breaking the symmetry pattern among the sensitivities. Thanks to freely available powerful three-dimensional resistivity tomography software and cheap modern computing power, the requirement for full three-dimensional calculations does not create a significant burden and renders the offset-electrode approach a cost-effective method. By offsetting the electrodes in an alternating pattern, as opposed to laying the profile out in a U-shape, we minimize shortening the profile length.
Computational Fluid Dynamics Modeling of Bacillus anthracis ...
Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict
Gignac, Paul M; Kley, Nathan J; Clarke, Julia A; Colbert, Matthew W; Morhardt, Ashley C; Cerio, Donald; Cost, Ian N; Cox, Philip G; Daza, Juan D; Early, Catherine M; Echols, M Scott; Henkelman, R Mark; Herdina, A Nele; Holliday, Casey M; Li, Zhiheng; Mahlow, Kristin; Merchant, Samer; Müller, Johannes; Orsbon, Courtney P; Paluh, Daniel J; Thies, Monte L; Tsai, Henry P; Witmer, Lawrence M
2016-06-01
Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward. © 2016 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
Lautenschlager, Stephan; Bright, Jen A; Rayfield, Emily J
2014-04-01
Gross dissection has a long history as a tool for the study of human or animal soft- and hard-tissue anatomy. However, apart from being a time-consuming and invasive method, dissection is often unsuitable for very small specimens and often cannot capture spatial relationships of the individual soft-tissue structures. The handful of comprehensive studies on avian anatomy using traditional dissection techniques focus nearly exclusively on domestic birds, whereas raptorial birds, and in particular their cranial soft tissues, are essentially absent from the literature. Here, we digitally dissect, identify, and document the soft-tissue anatomy of the Common Buzzard (Buteo buteo) in detail, using the new approach of contrast-enhanced computed tomography using Lugol's iodine. The architecture of different muscle systems (adductor, depressor, ocular, hyoid, neck musculature), neurovascular, and other soft-tissue structures is three-dimensionally visualised and described in unprecedented detail. The three-dimensional model is further presented as an interactive PDF to facilitate the dissemination and accessibility of anatomical data. Due to the digital nature of the data derived from the computed tomography scanning and segmentation processes, these methods hold the potential for further computational analyses beyond descriptive and illustrative proposes. © 2013 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.
NASA Astrophysics Data System (ADS)
Bogiatzis, P.; Ishii, M.; Davis, T. A.
2016-12-01
Seismic tomography inverse problems are among the largest high-dimensional parameter estimation tasks in Earth science. We show how combinatorics and graph theory can be used to analyze the structure of such problems, and to effectively decompose them into smaller ones that can be solved efficiently by means of the least squares method. In combination with recent high performance direct sparse algorithms, this reduction in dimensionality allows for an efficient computation of the model resolution and covariance matrices using limited resources. Furthermore, we show that a new sparse singular value decomposition method can be used to obtain the complete spectrum of the singular values. This procedure provides the means for more objective regularization and further dimensionality reduction of the problem. We apply this methodology to a moderate size, non-linear seismic tomography problem to image the structure of the crust and the upper mantle beneath Japan using local deep earthquakes recorded by the High Sensitivity Seismograph Network stations.
Addressing the computational cost of large EIT solutions.
Boyle, Alistair; Borsic, Andrea; Adler, Andy
2012-05-01
Electrical impedance tomography (EIT) is a soft field tomography modality based on the application of electric current to a body and measurement of voltages through electrodes at the boundary. The interior conductivity is reconstructed on a discrete representation of the domain using a finite-element method (FEM) mesh and a parametrization of that domain. The reconstruction requires a sequence of numerically intensive calculations. There is strong interest in reducing the cost of these calculations. An improvement in the compute time for current problems would encourage further exploration of computationally challenging problems such as the incorporation of time series data, wide-spread adoption of three-dimensional simulations and correlation of other modalities such as CT and ultrasound. Multicore processors offer an opportunity to reduce EIT computation times but may require some restructuring of the underlying algorithms to maximize the use of available resources. This work profiles two EIT software packages (EIDORS and NDRM) to experimentally determine where the computational costs arise in EIT as problems scale. Sparse matrix solvers, a key component for the FEM forward problem and sensitivity estimates in the inverse problem, are shown to take a considerable portion of the total compute time in these packages. A sparse matrix solver performance measurement tool, Meagre-Crowd, is developed to interface with a variety of solvers and compare their performance over a range of two- and three-dimensional problems of increasing node density. Results show that distributed sparse matrix solvers that operate on multiple cores are advantageous up to a limit that increases as the node density increases. We recommend a selection procedure to find a solver and hardware arrangement matched to the problem and provide guidance and tools to perform that selection.
Four-Dimensional Dose Reconstruction for Scanned Proton Therapy Using Liver 4DCT-MRI
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bernatowicz, Kinga, E-mail: kinga.bernatowicz@psi.ch; Proton Therapy Center, Paul Scherrer Institute, PSI Villigen; Peroni, Marta
Purpose: Four-dimensional computed tomography-magnetic resonance imaging (4DCT-MRI) is an image-processing technique for simulating many 4DCT data sets from a static reference CT and motions extracted from 4DMRI studies performed using either volunteers or patients. In this work, different motion extraction approaches were tested using 6 liver cases, and a detailed comparison between 4DCT-MRI and 4DCT was performed. Methods and Materials: 4DCT-MRI has been generated using 2 approaches. The first approach used motion extracted from 4DMRI as being “most similar” to that of 4DCT from the same patient (subject-specific), and the second approach used the most similar motion obtained from amore » motion library derived from 4DMRI liver studies of 13 healthy volunteers (population-based). The resulting 4DCT-MRI and 4DCTs were compared using scanned proton 4D dose calculations (4DDC). Results: Dosimetric analysis showed that 93% ± 8% of points inside the clinical target volume (CTV) agreed between 4DCT and subject-specific 4DCT-MRI (gamma analysis: 3%/3 mm). The population-based approach however showed lower dosimetric agreement with only 79% ± 14% points in the CTV reaching the 3%/3 mm criteria. Conclusions: 4D CT-MRI extends the capabilities of motion modeling for dose calculations by accounting for realistic and variable motion patterns, which can be directly employed in clinical research studies. We have found that the subject-specific liver modeling appears more accurate than the population-based approach. The former is particularly interesting for clinical applications, such as improved target delineation and 4D dose reconstruction for patient-specific QA to allow for inter- and/or intra-fractional plan corrections.« less
Treatment of a Four-Rooted Maxillary Second Molar Detected with Cone-Beam Computed Tomography
Mohammadzade Akhlaghi, Nahid
2017-01-01
The significance of clinician’s knowledge about root canal anatomy and its possible variations cannot be overlooked. In some cases, taking advantage of complementary imaging techniques can help achieve a perfect flawless endodontic treatment. This article reports endodontic management of a second maxillary molar that had an uncommon anatomy of the chamber floor. After obtaining a cone-beam computed tomography (CBCT) image, the presence of a second palatal root was confirmed. All four roots were treated and patient’s symptoms were resolved. PMID:29104601
[Three-dimensional computer aided design for individualized post-and-core restoration].
Gu, Xiao-yu; Wang, Ya-ping; Wang, Yong; Lü, Pei-jun
2009-10-01
To develop a method of three-dimensional computer aided design (CAD) of post-and-core restoration. Two plaster casts with extracted natural teeth were used in this study. The extracted teeth were prepared and scanned using tomography method to obtain three-dimensional digitalized models. According to the basic rules of post-and-core design, posts, cores and cavity surfaces of the teeth were designed using the tools for processing point clouds, curves and surfaces on the forward engineering software of Tanglong prosthodontic system. Then three-dimensional figures of the final restorations were corrected according to the configurations of anterior teeth, premolars and molars respectively. Computer aided design of 14 post-and-core restorations were finished, and good fitness between the restoration and the three-dimensional digital models were obtained. Appropriate retention forms and enough spaces for the full crown restorations can be obtained through this method. The CAD of three-dimensional figures of the post-and-core restorations can fulfill clinical requirements. Therefore they can be used in computer-aided manufacture (CAM) of post-and-core restorations.
Computing the optimal path in stochastic dynamical systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bauver, Martha; Forgoston, Eric, E-mail: eric.forgoston@montclair.edu; Billings, Lora
2016-08-15
In stochastic systems, one is often interested in finding the optimal path that maximizes the probability of escape from a metastable state or of switching between metastable states. Even for simple systems, it may be impossible to find an analytic form of the optimal path, and in high-dimensional systems, this is almost always the case. In this article, we formulate a constructive methodology that is used to compute the optimal path numerically. The method utilizes finite-time Lyapunov exponents, statistical selection criteria, and a Newton-based iterative minimizing scheme. The method is applied to four examples. The first example is a two-dimensionalmore » system that describes a single population with internal noise. This model has an analytical solution for the optimal path. The numerical solution found using our computational method agrees well with the analytical result. The second example is a more complicated four-dimensional system where our numerical method must be used to find the optimal path. The third example, although a seemingly simple two-dimensional system, demonstrates the success of our method in finding the optimal path where other numerical methods are known to fail. In the fourth example, the optimal path lies in six-dimensional space and demonstrates the power of our method in computing paths in higher-dimensional spaces.« less
Kawata, Yasuo; Arimura, Hidetaka; Ikushima, Koujirou; Jin, Ze; Morita, Kento; Tokunaga, Chiaki; Yabu-Uchi, Hidetake; Shioyama, Yoshiyuki; Sasaki, Tomonari; Honda, Hiroshi; Sasaki, Masayuki
2017-10-01
The aim of this study was to investigate the impact of pixel-based machine learning (ML) techniques, i.e., fuzzy-c-means clustering method (FCM), and the artificial neural network (ANN) and support vector machine (SVM), on an automated framework for delineation of gross tumor volume (GTV) regions of lung cancer for stereotactic body radiation therapy. The morphological and metabolic features for GTV regions, which were determined based on the knowledge of radiation oncologists, were fed on a pixel-by-pixel basis into the respective FCM, ANN, and SVM ML techniques. Then, the ML techniques were incorporated into the automated delineation framework of GTVs followed by an optimum contour selection (OCS) method, which we proposed in a previous study. The three-ML-based frameworks were evaluated for 16 lung cancer cases (six solid, four ground glass opacity (GGO), six part-solid GGO) with the datasets of planning computed tomography (CT) and 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT images using the three-dimensional Dice similarity coefficient (DSC). DSC denotes the degree of region similarity between the GTVs contoured by radiation oncologists and those estimated using the automated framework. The FCM-based framework achieved the highest DSCs of 0.79±0.06, whereas DSCs of the ANN-based and SVM-based frameworks were 0.76±0.14 and 0.73±0.14, respectively. The FCM-based framework provided the highest segmentation accuracy and precision without a learning process (lowest calculation cost). Therefore, the FCM-based framework can be useful for delineation of tumor regions in practical treatment planning. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
Al Kaissi, Ali; Ben Chehida, Farid; Ben Ghachem, Maher; Klaushofer, Klaus; Grill, Franz
2008-06-01
A study on a pair of male sibs to reach for the etiological understanding of unusual skull base/spine maldevelopment. Previously, radiographs alone were used to formulate this diagnosis. Here, three-dimensional computed tomography (3D CT) studies further clarified the typical diagnostic findings associated with spondylocostal dysostosis (SCD). Interestingly, patients with SCD are at increased risk for diffuse skull base/cervical fusion syndromes and can result in severe neurologic deficits associated with any degree of trauma. Classically SCD is defined as a skeletal dysplasia with clinical and radiologic manifestations, consisting of short neck and trunk, nonprogressive scoliosis and abnormalities of vertebral segmentation and of the ribs. Radiograms have been adopted as the only modality for the classification and prognostication of patients with SCD. Detailed clinical and radiographic examinations were undertaken with emphasis on the significance of the 3D CT scanning. We observed extensive fusion of the clivus with the cervical/entire spine, resulting in a remarkable solid, immobile, and fixed bony ankylosis of extremely serious outcome. Patients with spondylcostal dysostosis are predisposed to develop extensive skull-base-cervical spine fusion. The latter might lead to the development of a solid, immobile, and fixed bony ankylosis. In children/adults trivial injuries and/or high-energy trauma can lead to serious intracranial and spinal cord injury. Comprehensive orthopedic and neurosurgeons management must follow the recognition of these anomalies. To the best of our knowledge, no previous CT studies of the spine have been published in patients with SCD.
Privacy preserving data publishing of categorical data through k-anonymity and feature selection.
Aristodimou, Aristos; Antoniades, Athos; Pattichis, Constantinos S
2016-03-01
In healthcare, there is a vast amount of patients' data, which can lead to important discoveries if combined. Due to legal and ethical issues, such data cannot be shared and hence such information is underused. A new area of research has emerged, called privacy preserving data publishing (PPDP), which aims in sharing data in a way that privacy is preserved while the information lost is kept at a minimum. In this Letter, a new anonymisation algorithm for PPDP is proposed, which is based on k-anonymity through pattern-based multidimensional suppression (kPB-MS). The algorithm uses feature selection for reducing the data dimensionality and then combines attribute and record suppression for obtaining k-anonymity. Five datasets from different areas of life sciences [RETINOPATHY, Single Proton Emission Computed Tomography imaging, gene sequencing and drug discovery (two datasets)], were anonymised with kPB-MS. The produced anonymised datasets were evaluated using four different classifiers and in 74% of the test cases, they produced similar or better accuracies than using the full datasets.
Clinical applications of cone beam computed tomography in endodontics: A comprehensive review.
Cohenca, Nestor; Shemesh, Hagay
2015-06-01
Cone beam computed tomography (CBCT) is a new technology that produces three-dimensional (3D) digital imaging at reduced cost and less radiation for the patient than traditional CT scans. It also delivers faster and easier image acquisition. By providing a 3D representation of the maxillofacial tissues in a cost- and dose-efficient manner, a better preoperative assessment can be obtained for diagnosis and treatment. This comprehensive review presents current applications of CBCT in endodontics. Specific case examples illustrate the difference in treatment planning with traditional periapical radiography versus CBCT technology.
Bone metabolism in oxalosis: a single-center study using new imaging techniques and biomarkers.
Bacchetta, Justine; Fargue, Sonia; Boutroy, Stéphanie; Basmaison, Odile; Vilayphiou, Nicolas; Plotton, Ingrid; Guebre-Egziabher, Fitsum; Dohin, Bruno; Kohler, Rémi; Cochat, Pierre
2010-06-01
The deposition of calcium oxalate crystals in the kidney and bone is a hallmark of primary hyperoxaluria type 1 (PH1). We report here an evaluation of the bone status of 12 PH1 children based on bone biomarkers [parathyroid hormone, vitamin D, fibroblast growth factor 23 (FGF23)] and radiological assessments (skeletal age, three-dimensional high-resolution peripheral quantitative computed tomography, HR-pQCT) carried out within the framework of a cross-sectional single-center study. The controls consisted of healthy and children with chronic kidney disease already enrolled in local bone and mineral metabolism studies. The mean age (+ or - standard deviation) age of the patients was 99 (+ or - 63) months. Six children suffered from fracture. Bone maturation was accelerated in five patients, four of whom were <5 years. The combination of new imaging techniques and biomarkers highlighted new and unexplained features of PH1: advanced skeletal age in young PH1 patients, increased FGF23 levels and decreased total volumetric bone mineral density with bone microarchitecture alteration.
Multimodal system for the planning and guidance of bronchoscopy
NASA Astrophysics Data System (ADS)
Higgins, William E.; Cheirsilp, Ronnarit; Zang, Xiaonan; Byrnes, Patrick
2015-03-01
Many technical innovations in multimodal radiologic imaging and bronchoscopy have emerged recently in the effort against lung cancer. Modern X-ray computed-tomography (CT) scanners provide three-dimensional (3D) high-resolution chest images, positron emission tomography (PET) scanners give complementary molecular imaging data, and new integrated PET/CT scanners combine the strengths of both modalities. State-of-the-art bronchoscopes permit minimally invasive tissue sampling, with vivid endobronchial video enabling navigation deep into the airway-tree periphery, while complementary endobronchial ultrasound (EBUS) reveals local views of anatomical structures outside the airways. In addition, image-guided intervention (IGI) systems have proven their utility for CT-based planning and guidance of bronchoscopy. Unfortunately, no IGI system exists that integrates all sources effectively through the complete lung-cancer staging work flow. This paper presents a prototype of a computer-based multimodal IGI system that strives to fill this need. The system combines a wide range of automatic and semi-automatic image-processing tools for multimodal data fusion and procedure planning. It also provides a flexible graphical user interface for follow-on guidance of bronchoscopy/EBUS. Human-study results demonstrate the system's potential.
Hinton, Thomas J.; Jallerat, Quentin; Palchesko, Rachelle N.; Park, Joon Hyung; Grodzicki, Martin S.; Shue, Hao-Jan; Ramadan, Mohamed H.; Hudson, Andrew R.; Feinberg, Adam W.
2015-01-01
We demonstrate the additive manufacturing of complex three-dimensional (3D) biological structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels, enables 3D printing of hydrated materials with an elastic modulus <500 kPa including alginate, collagen, and fibrin. Computer-aided design models of 3D optical, computed tomography, and magnetic resonance imaging data were 3D printed at a resolution of ~200 μm and at low cost by leveraging open-source hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains were mechanically robust and recreated complex 3D internal and external anatomical architectures. PMID:26601312
Analytic Intermodel Consistent Modeling of Volumetric Human Lung Dynamics.
Ilegbusi, Olusegun; Seyfi, Behnaz; Neylon, John; Santhanam, Anand P
2015-10-01
Human lung undergoes breathing-induced deformation in the form of inhalation and exhalation. Modeling the dynamics is numerically complicated by the lack of information on lung elastic behavior and fluid-structure interactions between air and the tissue. A mathematical method is developed to integrate deformation results from a deformable image registration (DIR) and physics-based modeling approaches in order to represent consistent volumetric lung dynamics. The computational fluid dynamics (CFD) simulation assumes the lung is a poro-elastic medium with spatially distributed elastic property. Simulation is performed on a 3D lung geometry reconstructed from four-dimensional computed tomography (4DCT) dataset of a human subject. The heterogeneous Young's modulus (YM) is estimated from a linear elastic deformation model with the same lung geometry and 4D lung DIR. The deformation obtained from the CFD is then coupled with the displacement obtained from the 4D lung DIR by means of the Tikhonov regularization (TR) algorithm. The numerical results include 4DCT registration, CFD, and optimal displacement data which collectively provide consistent estimate of the volumetric lung dynamics. The fusion method is validated by comparing the optimal displacement with the results obtained from the 4DCT registration.
Bianchi, Francesca Antonella; Gerbino, Giovanni; Corsico, Marina; Schellino, Eleonora; Barla, Niccolò; Verzè, Laura; Ramieri, Guglielmo
2017-01-01
Maxillomandibular transverse osteodistraction (MMTOD) is an alternative approach to the traditional treatment for transverse maxillary and mandibular deficiencies and crowding. The aim was to report soft and hard-tissues changes and airway volume variation. In this study, skeletally mature, non-syndromic patients with transverse maxillary and mandibular hypoplasia, who underwent a MMTOD between 2010 and 2012, were included. Surgical changes were analysed using clinical evaluation, three-dimensional facial surface data and computed tomography analysis before (T0) and after the completion of post-op orthodontic treatment (T1). Nineteen patients (eight males and eleven females; average age: 26.3 years) were enrolled. MMTOD produces facial changes in the cheek, paranasal areas, nasal base and chin. Facial changes are mostly explained by the underlying skeletal movements, which are essentially represented by the transverse enlargement of both the maxilla and the mandible. Following MMTOD, the airway volume and the lateral dimension of the cross-sectional airway increased significantly. MMTOD is a technique that allows an increase in airway volume and in both maxillary and mandibular arch perimeters simultaneously by increasing skeletal width. Facial appearance is improved and a stable occlusion is obtained. Copyright © 2016 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.
Ober, Ciprian; Pestean, Cosmin; Bel, Lucia; Taulescu, Marian; Milgram, Joshua; Todor, Adrian; Ungur, Rodica; Leșu, Mirela; Oana, Liviu
2018-05-10
Femoral head and neck ostectomy (FHNO) is a salvage surgical procedure intended to eliminate hip joint laxity associated pain in the immature dog, or pain due to secondary osteoarthritis in the mature dog. The outcome of the procedure is associated with the size of the dog but the cause of a generally poorer outcome in larger breeds has not been determined. The objective of this study was to assess the long-term results of FHNO associated with unsatisfactory functional outcome by means of clinical examination and computed tomography (CT) scanning. Four large mixed breed dogs underwent FHNO in different veterinary clinics. Clinical and CT scanning evaluations were carried out long time after the procedures had been done. Hip pain, muscle atrophy, decreased range of motion and chronic lameness were observed at clinical examination. Extensive remodelling, unacceptable bone-on-bone contact with bony proliferation involving the femoral neck and acetabulum, but also excessive removal with bone lysis were observed by CT scanning. Revision osteotomy was performed in one dog. Deep gluteal muscle interposition was used, but no improvements were observed postoperatively. This is the first report on the evaluation of three-dimensional CT reconstructions of the late bone remodelling associated with poor clinical outcome in large dogs. The study shows that FHNO could lead to severe functional deficits in large breed dogs. An extensive follow-study is necessary to more accurately determine the frequency of such complications.
NASA Astrophysics Data System (ADS)
Cleland, Timothy P.; Stoskopf, Michael K.; Schweitzer, Mary H.
2011-03-01
A three-dimensional, iron-cemented structure found in the anterior thoracic cavity of articulated Thescelosaurus skeletal remains was hypothesized to be the fossilized remains of the animal's four-chambered heart. This was important because the finding could be interpreted to support a hypothesis that non-avian dinosaurs were endothermic. Mammals and birds, the only extant organisms with four-chambered hearts and single aortae, are endotherms. The hypothesis that this Thescelosaurus has a preserved heart was controversial, and therefore, we reexamined it using higher-resolution computed tomography, paleohistological examination, X-ray diffraction analysis, X-ray photoelectron spectroscopy, and scanning electron microscopy. This suite of analyses allows for detailed morphological and chemical examination beyond what was provided in the original work. Neither the more detailed examination of the gross morphology and orientation of the thoracic "heart" nor the microstructural studies supported the hypothesis that the structure was a heart. The more advanced computed tomography showed the same three areas of low density as the earlier studies with no evidence of additional low-density areas as might be expected from examinations of an ex situ ostrich heart. Microstructural examination of a fragment taken from the "heart" was consistent with cemented sand grains, and no chemical signal consistent with a biological origin was detected. However, small patches of cell-like microstructures were preserved in the sandstone matrix of the thoracic structure. A possible biological origin for these microstructures is the focus of ongoing investigation.
Optical computed tomography in PRESAGE® three-dimensional dosimetry: Challenges and prospective.
Khezerloo, Davood; Nedaie, Hassan Ali; Farhood, Bagher; Zirak, Alireza; Takavar, Abbas; Banaee, Nooshin; Ahmadalidokht, Isa; Kron, Tomas
2017-01-01
With the advent of new complex but precise radiotherapy techniques, the demands for an accurate, feasible three-dimensional (3D) dosimetry system have been increased. A 3D dosimeter system generally should not only have accurate and precise results but should also feasible, inexpensive, and time consuming. Recently, one of the new candidates for 3D dosimetry is optical computed tomography (CT) with a radiochromic dosimeter such as PRESAGE®. Several generations of optical CT have been developed since the 90s. At the same time, a large attempt has been also done to introduce the robust dosimeters that compatible with optical CT scanners. In 2004, PRESAGE® dosimeter as a new radiochromic solid plastic dosimeters was introduced. In this decade, a large number of efforts have been carried out to enhance optical scanning methods. This article attempts to review and reflect on the results of these investigations.
Comparison of face types in Chinese women using three-dimensional computed tomography.
Zhou, Rong-Rong; Zhao, Qi-Ming; Liu, Miao
2015-04-01
This study compared inverted triangle and square faces of 21 young Chinese Han women (18-25 years old) using three-dimensional computed tomography images retrieved from a records database. In this study, 11 patients had inverted triangle faces and 10 had square faces. The anatomic features were examined and compared. There were significant differences in lower face width, lower face height, masseter thickness, middle/lower face width ratio, and lower face width/height ratio between the two facial types (p < 0.01). Lower face width was positively correlated with masseter thickness and negatively correlated with gonial angle. Lower face height was positively correlated with gonial angle and negatively correlated with masseter thickness, and gonial angle was negatively correlated with masseter thickness. In young Chinese Han women, inverted triangle faces and square faces differ significantly in masseter thickness and lower face height. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
NASA Technical Reports Server (NTRS)
Czabaj, M. W.; Riccio, M. L.; Whitacre, W. W.
2014-01-01
A combined experimental and computational study aimed at high-resolution 3D imaging, visualization, and numerical reconstruction of fiber-reinforced polymer microstructures at the fiber length scale is presented. To this end, a sample of graphite/epoxy composite was imaged at sub-micron resolution using a 3D X-ray computed tomography microscope. Next, a novel segmentation algorithm was developed, based on concepts adopted from computer vision and multi-target tracking, to detect and estimate, with high accuracy, the position of individual fibers in a volume of the imaged composite. In the current implementation, the segmentation algorithm was based on Global Nearest Neighbor data-association architecture, a Kalman filter estimator, and several novel algorithms for virtualfiber stitching, smoothing, and overlap removal. The segmentation algorithm was used on a sub-volume of the imaged composite, detecting 508 individual fibers. The segmentation data were qualitatively compared to the tomographic data, demonstrating high accuracy of the numerical reconstruction. Moreover, the data were used to quantify a) the relative distribution of individual-fiber cross sections within the imaged sub-volume, and b) the local fiber misorientation relative to the global fiber axis. Finally, the segmentation data were converted using commercially available finite element (FE) software to generate a detailed FE mesh of the composite volume. The methodology described herein demonstrates the feasibility of realizing an FE-based, virtual-testing framework for graphite/fiber composites at the constituent level.
NASA Astrophysics Data System (ADS)
Ohtani, Tomoyuki; Nakano, Tsukasa; Nakashima, Yoshito; Muraoka, Hirofumi
2001-11-01
Three-dimensional shape analysis of miarolitic cavities and enclaves from the Kakkonda granite, NE Japan, was performed by X-ray computed tomography (CT) and image analysis. The three-dimensional shape of the miarolitic cavities and enclaves was reconstructed by stacked two-dimensional CT slice images with an in-plane resolution of 0.3 mm and an inter-slice spacing of 1 mm. An ellipsoid was fitted to each reconstructed object by the image processing programs. The shortest, intermediate, and longest axes of the ellipsoids fitted to miarolitic cavities had E-W, N-S, and vertical directions, respectively. The shortest axes of the ellipsoids fitted to enclaves were sub-vertical to vertical. Three-dimensional strains calculated from miarolitic cavities and enclaves have E-W and vertical shortening, respectively. The shape characteristics of miarolitic cavities probably reflect regional stress during the late magmatic stage, and those of enclaves reflect shortening by later-intruded magma or body rotation during the early magmatic stage. The miarolitic cavities may not be strained homogeneously with the surrounding granite, because the competence of minerals is different from that of the fluid-filled cavities. Although the strain markers require sufficient contrast between their CT numbers and those of the surrounding minerals, this method has several advantages over conventional methods, including the fact that it is non-destructive, expedient, and allows direct three-dimensional observation of each object.
Nakata, Norio; Suzuki, Naoki; Hattori, Asaki; Hirai, Naoya; Miyamoto, Yukio; Fukuda, Kunihiko
2012-01-01
Although widely used as a pointing device on personal computers (PCs), the mouse was originally designed for control of two-dimensional (2D) cursor movement and is not suited to complex three-dimensional (3D) image manipulation. Augmented reality (AR) is a field of computer science that involves combining the physical world and an interactive 3D virtual world; it represents a new 3D user interface (UI) paradigm. A system for 3D and four-dimensional (4D) image manipulation has been developed that uses optical tracking AR integrated with a smartphone remote control. The smartphone is placed in a hard case (jacket) with a 2D printed fiducial marker for AR on the back. It is connected to a conventional PC with an embedded Web camera by means of WiFi. The touch screen UI of the smartphone is then used as a remote control for 3D and 4D image manipulation. Using this system, the radiologist can easily manipulate 3D and 4D images from computed tomography and magnetic resonance imaging in an AR environment with high-quality image resolution. Pilot assessment of this system suggests that radiologists will be able to manipulate 3D and 4D images in the reading room in the near future. Supplemental material available at http://radiographics.rsna.org/lookup/suppl/doi:10.1148/rg.324115086/-/DC1.
Harada, Keiichi; Katoh, Norio; Suzuki, Ryusuke; Ito, Yoichi M; Shimizu, Shinichi; Onimaru, Rikiya; Inoue, Tetsuya; Miyamoto, Naoki; Shirato, Hiroki
2016-02-01
We investigated the usefulness of four-dimensional computed tomography (4DCT) performed before stereotactic body radiation therapy (SBRT) in determining the internal margins for peripheral lung tumors. The amplitude of the movement of a fiducial marker near a lung tumor measured using the maximum intensity projection (MIP) method in 4DCT imaging was acquired before the SBRT (AmpCT) and compared with the mean amplitude of the marker movement during SBRT (Ampmean) and with the maximum amplitude of the marker movement during SBRT (Ampmax) using a real-time tumor-tracking radiotherapy (RTRT) system with 22 patients. There were no significant differences between the means of the Ampmean and the means of the AmpCT in all directions (LR, P = 0.45; CC, P = 0.80; AP, P = 0.65). The means of the Ampmax were significantly larger than the means of the AmpCT in all directions (LR, P < 0.01; CC, P = 0.03; AP, P < 0.01). In the lower lobe, the mean difference of the AmpCT from the mean of the Ampmax was 5.7 ± 8.0 mm, 12.5 ± 16.7 mm, and 6.8 ± 8.5 mm in the LR, CC, and AP directions, respectively. Acquiring 4DCT MIP images before the SBRT treatment is useful to establish the mean amplitude for a patient during SBRT but it underestimates the maximum amplitude during actual SBRT. Caution must be paid to determine the margin with the 4DCT especially for tumors at the lower lobe where it is of the potentially greatest benefit. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mori, Shinichiro, E-mail: shinshin@nirs.go.j; Yanagi, Takeshi; Hara, Ryusuke
2010-01-15
Purpose: We compared respiratory-gated and respiratory-ungated treatment strategies using four-dimensional (4D) scattered carbon ion beam distribution in pancreatic 4D computed tomography (CT) datasets. Methods and Materials: Seven inpatients with pancreatic tumors underwent 4DCT scanning under free-breathing conditions using a rapidly rotating cone-beam CT, which was integrated with a 256-slice detector, in cine mode. Two types of bolus for gated and ungated treatment were designed to cover the planning target volume (PTV) using 4DCT datasets in a 30% duty cycle around exhalation and a single respiratory cycle, respectively. Carbon ion beam distribution for each strategy was calculated as a function ofmore » respiratory phase by applying the compensating bolus to 4DCT at the respective phases. Smearing was not applied to the bolus, but consideration was given to drill diameter. The accumulated dose distributions were calculated by applying deformable registration and calculating the dose-volume histogram. Results: Doses to normal tissues in gated treatment were minimized mainly on the inferior aspect, which thereby minimized excessive doses to normal tissues. Over 95% of the dose, however, was delivered to the clinical target volume at all phases for both treatment strategies. Maximum doses to the duodenum and pancreas averaged across all patients were 43.1/43.1 GyE (ungated/gated) and 43.2/43.2 GyE (ungated/gated), respectively. Conclusions: Although gated treatment minimized excessive dosing to normal tissue, the difference between treatment strategies was small. Respiratory gating may not always be required in pancreatic treatment as long as dose distribution is assessed. Any application of our results to clinical use should be undertaken only after discussion with oncologists, particularly with regard to radiotherapy combined with chemotherapy.« less
Mathew, L; Castillo, R; Castillo, E; Yaremko, B; Rodrigues, G; Etemad-Rezai, R; Guerrero, T; Parraga, G
2012-07-01
Dynamic imaging methods such as four-dimensional computed tomography (4DCT) and static imaging methods such as noble gas magnetic resonance imaging (MRI) deliver direct and regional measurements of lung function even in lung cancer patients in whom global lung function measurements are dominated by tumour burden. The purpose of this study was to directly compare quantitative measurements of gas distribution from static hyperpolarized 3 He MRI and dynamic 4DCT in a small group of lung cancer patients. MRI and 4DCT were performed in 11 subjects prior to radiation therapy. MRI was performed at 3.0T in breath-hold after inhalation 1L of hyperpolarized 3 He gas. Gas distribution in 3 He MRI was quantified using a semi-automated segmentation algorithm to generate percent-ventilated volume (PVV), reflecting the volume of gas in the lung normalized to the thoracic cavity volume. 4DCT pulmonary function maps were generated using deformable image registration of six expiratory phase images. The correspondence between identical tissue elements at inspiratory and expiratory phases was used to estimate regional gas distribution and PVV was quantified from these images. After accounting for differences in lung volumes between 3 He MRI (1.9±0.5L ipsilateral, 2.3±0.7 contralateral) and 4DCT (1.2±0.3L ipsilateral, 1.3±0.4L contralateral) during image acquisition, there was no statistically significant difference in PVV between 3 He MRI (72±11% ipsilateral, 79±12% contralateral) and 4DCT (74±3% ipsilateral, 75±4% contralateral). Our results indicate quantitative agreement in the regional distribution of inhaled gas in both static and dynamic imaging methods. PVV may be considered as a regional surrogate measurement of lung function or ventilation. © 2012 American Association of Physicists in Medicine.
Inamoto, Y; Saitoh, E; Okada, S; Kagaya, H; Shibata, S; Baba, M; Onogi, K; Hashimoto, S; Katada, K; Wattanapan, P; Palmer, J B
2015-09-01
Although oropharyngeal and laryngeal structures are essential for swallowing, the three-dimensional (3D) anatomy is not well understood, due in part to limitations of available measuring techniques. This study uses 3D images acquired by 320-row area detector computed tomography ('320-ADCT'), to measure the pharynx and larynx and to investigate the effects of age, gender and height. Fifty-four healthy volunteers (30 male, 24 female, 23-77 years) underwent one single-phase volume scan (0.35 s) with 320-ADCT during resting tidal breathing. Six measurements of the pharynx and two of larynx were performed. Bivariate statistical methods were used to analyse the effects of gender, age and height on these measurements. Length and volume were significantly larger for men than for women for every measurement (P < 0.05) and increased with height (P < 0.05). Multiple regression analysis was performed to understand the interactions of gender, height and age. Gender, height and age each had significant effects on certain values. The volume of the larynx and hypopharynx was significantly affected by height and age. The length of pharynx was associated with gender and age. Length of the vocal folds and distance from the valleculae to the vocal folds were significantly affected by gender (P < 0.05). These results suggest that age, gender and height have independent and interacting effects on the morphology of the pharynx and larynx. Three-dimensional imaging and morphometrics using 320-ADCT are powerful tools for efficiently and reliably observing and measuring the pharynx and larynx. © 2015 John Wiley & Sons Ltd.
Motion-aware temporal regularization for improved 4D cone-beam computed tomography
NASA Astrophysics Data System (ADS)
Mory, Cyril; Janssens, Guillaume; Rit, Simon
2016-09-01
Four-dimensional cone-beam computed tomography (4D-CBCT) of the free-breathing thorax is a valuable tool in image-guided radiation therapy of the thorax and the upper abdomen. It allows the determination of the position of a tumor throughout the breathing cycle, while only its mean position can be extracted from three-dimensional CBCT. The classical approaches are not fully satisfactory: respiration-correlated methods allow one to accurately locate high-contrast structures in any frame, but contain strong streak artifacts unless the acquisition is significantly slowed down. Motion-compensated methods can yield streak-free, but static, reconstructions. This work proposes a 4D-CBCT method that can be seen as a trade-off between respiration-correlated and motion-compensated reconstruction. It builds upon the existing reconstruction using spatial and temporal regularization (ROOSTER) and is called motion-aware ROOSTER (MA-ROOSTER). It performs temporal regularization along curved trajectories, following the motion estimated on a prior 4D CT scan. MA-ROOSTER does not involve motion-compensated forward and back projections: the input motion is used only during temporal regularization. MA-ROOSTER is compared to ROOSTER, motion-compensated Feldkamp-Davis-Kress (MC-FDK), and two respiration-correlated methods, on CBCT acquisitions of one physical phantom and two patients. It yields streak-free reconstructions, visually similar to MC-FDK, and robust information on tumor location throughout the breathing cycle. MA-ROOSTER also allows a variation of the lung tissue density during the breathing cycle, similar to that of planning CT, which is required for quantitative post-processing.
Kondo, Kosuke; Harada, Naoyuki; Masuda, Hiroyuki; Sugo, Nobuo; Terazono, Sayaka; Okonogi, Shinichi; Sakaeyama, Yuki; Fuchinoue, Yutaka; Ando, Syunpei; Fukushima, Daisuke; Nomoto, Jun; Nemoto, Masaaki
2016-06-01
Deep regions are not visible in three-dimensional (3D) printed rapid prototyping (RP) models prepared from opaque materials, which is not the case with translucent images. The objectives of this study were to develop an RP model in which a skull base tumor was simulated using mesh, and to investigate its usefulness for surgical simulations by evaluating the visibility of its deep regions. A 3D printer that employs binder jetting and is mainly used to prepare plaster models was used. RP models containing a solid tumor, no tumor, and a mesh tumor were prepared based on computed tomography, magnetic resonance imaging, and angiographic data for four cases of petroclival tumor. Twelve neurosurgeons graded the three types of RP model into the following four categories: 'clearly visible,' 'visible,' 'difficult to see,' and 'invisible,' based on the visibility of the internal carotid artery, basilar artery, and brain stem through a craniotomy performed via the combined transpetrosal approach. In addition, the 3D positional relationships between these structures and the tumor were assessed. The internal carotid artery, basilar artery, and brain stem and the positional relationships of these structures with the tumor were significantly more visible in the RP models with mesh tumors than in the RP models with solid or no tumors. The deep regions of PR models containing mesh skull base tumors were easy to visualize. This 3D printing-based method might be applicable to various surgical simulations.
Morphology and Mobility of the Reconstructed Basilar Joint of the Pollicized Index Finger.
Strugarek-Lecoanet, Clotilde; Chevrollier, Jérémie; Pauchard, Nicolas; Blum, Alain; Dap, François; Dautel, Gilles
2016-09-01
To evaluate outcome and function of the reconstructed basilar thumb joint after index finger pollicization in patients presenting congenital thumb deficiency. Plain radiographs and 4-dimensional dynamic volume computed tomography scan were used to evaluate the outcome of 23 pollicizations performed on 14 children between 1996 and 2009. The mean follow-up was 8 years. Patients performed continuous movements of thumb opposition during the imaging studies. Four-dimensional scan images made it possible to visualize mobility within the reconstructed joint. In 14 cases, union occurred in the metacarpal head/metacarpal base interface. In the 9 other cases, there was a nonunion at this interface. The reconstructed joint was mobile in 20 cases, including 3 in which there was also mobility at the site of the nonunion. In 3 cases in our series, mobility was present only at the site of the nonunion, between the base and the head of the second metacarpal. Remodeling and flattening out of the metacarpal head occurred in 16 of 23 cases. The transposed metacarpal head remained spherical in 7 cases. The reconstructed joint adapts, both morphologically and functionally, allowing movement on all 3 spatial planes. Existing mechanical constraints on the reconstructed joint may explain its remodeled appearance. Therapeutic IV. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
Visualization of subcutaneous insulin injections by x-ray computed tomography
NASA Astrophysics Data System (ADS)
Thomsen, M.; Poulsen, M.; Bech, M.; Velroyen, A.; Herzen, J.; Beckmann, F.; Feidenhans'l, R.; Pfeiffer, F.
2012-11-01
We report how the three-dimensional structure of subcutaneous injections of soluble insulin can be visualized by x-ray computed tomography using an iodine based contrast agent. The injections investigated are performed ex vivo in porcine adipose tissue. Full tomography scans carried out at a laboratory x-ray source with a total acquisition time of about 1 min yield CT-images with an effective pixel size of 109 × 109 μm2. The depots are segmented using a modified Chan-Vese algorithm and we are able to observe differences in the shape of the injection depot and the position of the depot in the skin among equally performed injections. To overcome the beam hardening artefacts, which affect the quantitative prediction of the volume injected, we additionally present results concerning the visualization of two injections using synchrotron radiation. The spatial concentration distribution of iodine is calculated to show the dilution of the insulin drug inside the depot. Characterisation of the shape of the depot and the spatial concentration profile of the injected fluid is important knowledge when improving the clinical formulation of an insulin drug, the performance of injection devices and when predicting the effect of the drug through biomedical simulations.
X-ray computed tomography applied to investigate ancient manuscripts
NASA Astrophysics Data System (ADS)
Bettuzzi, Matteo; Albertin, Fauzia; Brancaccio, Rosa; Casali, Franco; Pia Morigi, Maria; Peccenini, Eva
2017-03-01
I will describe in this paper the first results of a series of X-ray tomography applications, with different system setups, running on some ancient manuscripts containing iron-gall ink. The purpose is to verify the optimum measurement conditions with a laboratory instrumentation -that is also in fact portable- in order to recognize the text from the inside of the documents, without opening them. This becomes possible by exploiting the X-rays absorption contrast of iron-based ink and the three-dimensional reconstruction potential provided by computed tomography that overcomes problems that appear in simple radiograph practice. This work is part of a larger project of EPFL (Ecole Polytechnique Fédérale de Lausanne, Switzerland), the "Venice Time Machine" project (EPEL, Digital Heritage Venice, http://dhvenice.eu/, 2015) aimed at digitizing, transcribing and sharing in an open database all the information of the State Archives of Venice, exploiting traditional digitization technologies and innovative methods of acquisition. In this first measurement campaign I investigated a manuscript of the seventeenth century made of a folded sheet; a couple of unopened ancient wills kept in the State Archives in Venice and a handwritten book of several hundred pages of notes of Physics of the nineteenth century.
Connor, D M; Hallen, H D; Lalush, D S; Sumner, D R; Zhong, Z
2009-10-21
Diffraction-enhanced imaging (DEI) is an x-ray-based medical imaging modality that, when used in tomography mode (DECT), can generate a three-dimensional map of both the apparent absorption coefficient and the out-of-plane gradient of the index of refraction of the sample. DECT is known to have contrast gains over monochromatic synchrotron radiation CT (SRCT) for soft tissue structures. The goal of this experiment was to compare contrast-to-noise ratio (CNR) and resolution in images of human trabecular bone acquired using SRCT with images acquired using DECT. All images were acquired at the National Synchrotron Light Source (Upton, NY, USA) at beamline X15 A at an x-ray energy of 40 keV and the silicon [3 3 3] reflection. SRCT, apparent absorption DECT and refraction DECT slice images of the trabecular bone were created. The apparent absorption DECT images have significantly higher spatial resolution and CNR than the corresponding SRCT images. Thus, DECT will prove to be a useful tool for imaging applications in which high contrast and high spatial resolution are required for both soft tissue features and bone.
NASA Astrophysics Data System (ADS)
Hu, Jiangtao; Cao, Junxing; Wang, Huazhong; Wang, Xingjian; Jiang, Xudong
2017-12-01
First-arrival traveltime computation for quasi-P waves in transversely isotropic (TI) media is the key component of tomography and depth migration. It is appealing to use the fast marching method in isotropic media as it efficiently computes traveltime along an expanding wavefront. It uses the finite difference method to solve the eikonal equation. However, applying the fast marching method in anisotropic media faces challenges because the anisotropy introduces additional nonlinearity in the eikonal equation and solving this nonlinear eikonal equation with the finite difference method is challenging. To address this problem, we present a Fermat’s principle-based fast marching method to compute traveltime in two-dimensional TI media. This method is applicable in both vertical and tilted TI (VTI and TTI) media. It computes traveltime along an expanding wavefront using Fermat’s principle instead of the eikonal equation. Thus, it does not suffer from the nonlinearity of the eikonal equation in TI media. To compute traveltime using Fermat’s principle, the explicit expression of group velocity in TI media is required to describe the ray propagation. The moveout approximation is adopted to obtain the explicit expression of group velocity. Numerical examples on both VTI and TTI models show that the traveltime contour obtained by the proposed method matches well with the wavefront from the wave equation. This shows that the proposed method could be used in depth migration and tomography.
Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kashkooli, Ali Ghorbani; Amirfazli, Amir; Farhad, Siamak
For this, a new model that keeps all major advantages of the single-particle model of lithium-ion batteries (LIBs) and includes three-dimensional structure of the electrode was developed. Unlike the single spherical particle, this model considers a small volume element of an electrode, called the Representative Volume Element (RVE), which represent the real electrode structure. The advantages of using RVE as the model geometry was demonstrated for a typical LIB electrode consisting of nano-particle LiFePO 4 (LFP) active material. The three-dimensional morphology of the LFP electrode was reconstructed using a synchrotron X-ray nano-computed tomography at the Advanced Photon Source of themore » Argonne National. A 27 μm 3 cube from reconstructed structure was chosen as the RVE for the simulation purposes. The model was employed to predict the voltage curve in a half-cell during galvanostatic operations and validated with experimental data. The simulation results showed that the distribution of lithium inside the electrode microstructure is very different from the results obtained based on the single-particle model. The range of lithium concentration is found to be much greater, successfully illustrates the effect of microstructure heterogeneity.« less
Representative volume element model of lithium-ion battery electrodes based on X-ray nano-tomography
Kashkooli, Ali Ghorbani; Amirfazli, Amir; Farhad, Siamak; ...
2017-01-28
For this, a new model that keeps all major advantages of the single-particle model of lithium-ion batteries (LIBs) and includes three-dimensional structure of the electrode was developed. Unlike the single spherical particle, this model considers a small volume element of an electrode, called the Representative Volume Element (RVE), which represent the real electrode structure. The advantages of using RVE as the model geometry was demonstrated for a typical LIB electrode consisting of nano-particle LiFePO 4 (LFP) active material. The three-dimensional morphology of the LFP electrode was reconstructed using a synchrotron X-ray nano-computed tomography at the Advanced Photon Source of themore » Argonne National. A 27 μm 3 cube from reconstructed structure was chosen as the RVE for the simulation purposes. The model was employed to predict the voltage curve in a half-cell during galvanostatic operations and validated with experimental data. The simulation results showed that the distribution of lithium inside the electrode microstructure is very different from the results obtained based on the single-particle model. The range of lithium concentration is found to be much greater, successfully illustrates the effect of microstructure heterogeneity.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arinilhaq,; Widita, Rena
2014-09-30
Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arraysmore » are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.« less
NASA Astrophysics Data System (ADS)
Rahn, Helene; Alexiou, Christoph; Trahms, Lutz; Odenbach, Stefan
2014-06-01
X-ray computed tomography is nowadays used for a wide range of applications in medicine, science and technology. X-ray microcomputed tomography (XμCT) follows the same principles used for conventional medical CT scanners, but improves the spatial resolution to a few micrometers. We present an example of an application of X-ray microtomography, a study of 3-dimensional biodistribution, as along with the quantification of nanoparticle content in tumoral tissue after minimally invasive cancer therapy. One of these minimal invasive cancer treatments is magnetic drug targeting, where the magnetic nanoparticles are used as controllable drug carriers. The quantification is based on a calibration of the XμCT-equipment. The developed calibration procedure of the X-ray-μCT-equipment is based on a phantom system which allows the discrimination between the various gray values of the data set. These phantoms consist of a biological tissue substitute and magnetic nanoparticles. The phantoms have been studied with XμCT and have been examined magnetically. The obtained gray values and nanoparticle concentration lead to a calibration curve. This curve can be applied to tomographic data sets. Accordingly, this calibration enables a voxel-wise assignment of gray values in the digital tomographic data set to nanoparticle content. Thus, the calibration procedure enables a 3-dimensional study of nanoparticle distribution as well as concentration.
NASA Astrophysics Data System (ADS)
Yin, Xin; Liu, Aiping; Thornburg, Kent L.; Wang, Ruikang K.; Rugonyi, Sandra
2012-09-01
Recent advances in optical coherence tomography (OCT), and the development of image reconstruction algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart. To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manually extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability. Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from 4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable double-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos. The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further analysis of cardiac motion.
Gerritsen, M G; Willemink, M J; Pompe, E; van der Bruggen, T; van Rhenen, A; Lammers, J W J; Wessels, F; Sprengers, R W; de Jong, P A; Minnema, M C
2017-01-01
We performed a prospective study in patients with chemotherapy induced febrile neutropenia to investigate the diagnostic value of low-dose computed tomography compared to standard chest radiography. The aim was to compare both modalities for detection of pulmonary infections and to explore performance of low-dose computed tomography for early detection of invasive fungal disease. The low-dose computed tomography remained blinded during the study. A consensus diagnosis of the fever episode made by an expert panel was used as reference standard. We included 67 consecutive patients on the first day of febrile neutropenia. According to the consensus diagnosis 11 patients (16.4%) had pulmonary infections. Sensitivity, specificity, positive predictive value and negative predictive value were 36%, 93%, 50% and 88% for radiography, and 73%, 91%, 62% and 94% for low-dose computed tomography, respectively. An uncorrected McNemar showed no statistical difference (p = 0.197). Mean radiation dose for low-dose computed tomography was 0.24 mSv. Four out of 5 included patients diagnosed with invasive fungal disease had radiographic abnormalities suspect for invasive fungal disease on the low-dose computed tomography scan made on day 1 of fever, compared to none of the chest radiographs. We conclude that chest radiography has little value in the initial assessment of febrile neutropenia on day 1 for detection of pulmonary abnormalities. Low-dose computed tomography improves detection of pulmonary infiltrates and seems capable of detecting invasive fungal disease at a very early stage with a low radiation dose.
Pompe, E.; van der Bruggen, T.; van Rhenen, A.; Lammers, J. W. J.; Wessels, F.; Sprengers, R. W.; de Jong, P. A.; Minnema, M. C.
2017-01-01
We performed a prospective study in patients with chemotherapy induced febrile neutropenia to investigate the diagnostic value of low-dose computed tomography compared to standard chest radiography. The aim was to compare both modalities for detection of pulmonary infections and to explore performance of low-dose computed tomography for early detection of invasive fungal disease. The low-dose computed tomography remained blinded during the study. A consensus diagnosis of the fever episode made by an expert panel was used as reference standard. We included 67 consecutive patients on the first day of febrile neutropenia. According to the consensus diagnosis 11 patients (16.4%) had pulmonary infections. Sensitivity, specificity, positive predictive value and negative predictive value were 36%, 93%, 50% and 88% for radiography, and 73%, 91%, 62% and 94% for low-dose computed tomography, respectively. An uncorrected McNemar showed no statistical difference (p = 0.197). Mean radiation dose for low-dose computed tomography was 0.24 mSv. Four out of 5 included patients diagnosed with invasive fungal disease had radiographic abnormalities suspect for invasive fungal disease on the low-dose computed tomography scan made on day 1 of fever, compared to none of the chest radiographs. We conclude that chest radiography has little value in the initial assessment of febrile neutropenia on day 1 for detection of pulmonary abnormalities. Low-dose computed tomography improves detection of pulmonary infiltrates and seems capable of detecting invasive fungal disease at a very early stage with a low radiation dose. PMID:28235014
Fox, Anne-Marie V; Kedgley, Angela E; Lalone, Emily A; Johnson, James A; Athwal, George S; Jenkyn, Thomas R
2011-11-10
Standard, beaded radiostereometric analysis (RSA) and markerless RSA often use computed tomography (CT) scans to create three-dimensional (3D) bone models. However, ethical concerns exist due to risks associated with CT radiation exposure. Therefore, the aim of this study was to investigate the effect of decreasing CT dosage on RSA accuracy. Four cadaveric shoulder specimens were scanned using a normal-dose CT protocol and two low-dose protocols, where the dosage was decreased by 89% and 98%. 3D computer models of the humerus and scapula were created using each CT protocol. Bi-planar fluoroscopy was used to image five different static glenohumeral positions and two dynamic glenohumeral movements, of which a total of five static and four dynamic poses were selected for analysis. For standard RSA, negligible differences were found in bead (0.21±0.31mm) and bony landmark (2.31±1.90mm) locations when the CT dosage was decreased by 98% (p-values>0.167). For markerless RSA kinematic results, excellent agreement was found between the normal-dose and lowest-dose protocol, with all Spearman rank correlation coefficients greater than 0.95. Average root mean squared errors of 1.04±0.68mm and 2.42±0.81° were also found at this reduced dosage for static positions. In summary, CT dosage can be markedly reduced when performing shoulder RSA to minimize the risks of radiation exposure. Standard RSA accuracy was negligibly affected by the 98% CT dose reduction and for markerless RSA, the benefits of decreasing CT dosage to the subject outweigh the introduced errors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dhillon, A; Schneider, P; Kuhn, G; Reinwald, Y; White, L J; Levchuk, A; Rose, F R A J; Müller, R; Shakesheff, K M; Rahman, C V
2011-12-01
The mechanical behaviour of polymer scaffolds plays a vital role in their successful use in bone tissue engineering. The present study utilised novel sintered polymer scaffolds prepared using temperature-sensitive poly(DL-lactic acid-co-glycolic acid)/poly(ethylene glycol) particles. The microstructure of these scaffolds was monitored under compressive strain by image-guided failure assessment (IGFA), which combined synchrotron radiation computed tomography (SR CT) and in situ micro-compression. Three-dimensional CT data sets of scaffolds subjected to a strain rate of 0.01%/s illustrated particle movement within the scaffolds with no deformation or cracking. When compressed using a higher strain rate of 0.02%/s particle movement was more pronounced and cracks between sintered particles were observed. The results from this study demonstrate that IGFA based on simultaneous SR CT imaging and micro-compression testing is a useful tool for assessing structural and mechanical scaffold properties, leading to further insight into structure-function relationships in scaffolds for bone tissue engineering applications.
3D Printing of Plant Golgi Stacks from Their Electron Tomographic Models.
Mai, Keith Ka Ki; Kang, Madison J; Kang, Byung-Ho
2017-01-01
Three-dimensional (3D) printing is an effective tool for preparing tangible 3D models from computer visualizations to assist in scientific research and education. With the recent popularization of 3D printing processes, it is now possible for individual laboratories to convert their scientific data into a physical form suitable for presentation or teaching purposes. Electron tomography is an electron microscopy method by which 3D structures of subcellular organelles or macromolecular complexes are determined at nanometer-level resolutions. Electron tomography analyses have revealed the convoluted membrane architectures of Golgi stacks, chloroplasts, and mitochondria. But the intricacy of their 3D organizations is difficult to grasp from tomographic models illustrated on computer screens. Despite the rapid development of 3D printing technologies, production of organelle models based on experimental data with 3D printing has rarely been documented. In this chapter, we present a simple guide to creating 3D prints of electron tomographic models of plant Golgi stacks using the two most accessible 3D printing technologies.
Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.
Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa
2013-12-01
The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime scene.
NASA Astrophysics Data System (ADS)
Rahman, Ahmad Taufek Abdul; Farah Rosli, Nurul; Zain, Shafirah Mohd; Zin, Hafiz M.
2018-01-01
Radiotherapy delivery techniques for cancer treatment are becoming more complex and highly focused, to enable accurate radiation dose delivery to the cancerous tissue and minimum dose to the healthy tissue adjacent to tumour. Instrument to verify the complex dose delivery in radiotherapy such as optical computed tomography (OCT) measures the dose from a three-dimensional (3D) radiochromic dosimeter to ensure the accuracy of the radiotherapy beam delivery to the patient. OCT measures the optical density in radiochromic material that changes predictably upon exposure to radiotherapy beams. OCT systems have been developed using a photodiode and charged coupled device (CCD) as the detector. The existing OCT imaging systems have limitation in terms of the accuracy and the speed of the measurement. Advances in on-pixel intelligence CMOS image sensor (CIS) will be exploited in this work to replace current detector in OCT imaging systems. CIS is capable of on-pixel signal processing at a very fast imaging speed (over several hundred images per second) that will allow improvement in the 3D measurement of the optical density. The paper will review 3D radiochromic dosimeters and OCT systems developed and discuss how CMOS based OCT imaging will provide accurate and fast optical density measurements in 3D. The paper will also discuss the configuration of the CMOS based OCT developed in this work and how it may improve the existing OCT system.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Roth, D. J.; Cotton, R.; Studor, George F.; Christiansen, Eric; Young, P. C.
2011-01-01
This study utilizes microfocus x-ray computed tomography (CT) slice sets to model and characterize the damage locations and sizes in thermal protection system materials that underwent impact testing. ScanIP/FE software is used to visualize and process the slice sets, followed by mesh generation on the segmented volumetric rendering. Then, the local stress fields around several of the damaged regions are calculated for realistic mission profiles that subject the sample to extreme temperature and other severe environmental conditions. The resulting stress fields are used to quantify damage severity and make an assessment as to whether damage that did not penetrate to the base material can still result in catastrophic failure of the structure. It is expected that this study will demonstrate that finite element modeling based on an accurate three-dimensional rendered model from a series of CT slices is an essential tool to quantify the internal macroscopic defects and damage of a complex system made out of thermal protection material. Results obtained showing details of segmented images; three-dimensional volume-rendered models, finite element meshes generated, and the resulting thermomechanical stress state due to impact loading for the material are presented and discussed. Further, this study is conducted to exhibit certain high-caliber capabilities that the nondestructive evaluation (NDE) group at NASA Glenn Research Center can offer to assist in assessing the structural durability of such highly specialized materials so improvements in their performance and capacities to handle harsh operating conditions can be made.
Improved tomographic reconstructions using adaptive time-dependent intensity normalization.
Titarenko, Valeriy; Titarenko, Sofya; Withers, Philip J; De Carlo, Francesco; Xiao, Xianghui
2010-09-01
The first processing step in synchrotron-based micro-tomography is the normalization of the projection images against the background, also referred to as a white field. Owing to time-dependent variations in illumination and defects in detection sensitivity, the white field is different from the projection background. In this case standard normalization methods introduce ring and wave artefacts into the resulting three-dimensional reconstruction. In this paper the authors propose a new adaptive technique accounting for these variations and allowing one to obtain cleaner normalized data and to suppress ring and wave artefacts. The background is modelled by the product of two time-dependent terms representing the illumination and detection stages. These terms are written as unknown functions, one scaled and shifted along a fixed direction (describing the illumination term) and one translated by an unknown two-dimensional vector (describing the detection term). The proposed method is applied to two sets (a stem Salix variegata and a zebrafish Danio rerio) acquired at the parallel beam of the micro-tomography station 2-BM at the Advanced Photon Source showing significant reductions in both ring and wave artefacts. In principle the method could be used to correct for time-dependent phenomena that affect other tomographic imaging geometries such as cone beam laboratory X-ray computed tomography.
Lau, S F; Wolschrijn, C F; Hazewinkel, H A W; Siebelt, M; Voorhout, G
2013-09-01
Medial coronoid disease (MCD) encompasses lesions of the entire medial coronoid process (MCP), both of the articular cartilage and the subchondral bone. To detect the earliest signs of MCD, radiography and computed tomography were used to monitor the development of MCD in 14 Labrador retrievers, from 6 to 7 weeks of age until euthanasia. The definitive diagnosis of MCD was based on necropsy and micro-computed tomography findings. The frequency of MCD in the dogs studied was 50%. Radiographic findings did not provide evidence of MCD, ulnar subtrochlear sclerosis or blunting of the cranial edge of the MCP. Computed tomography was more sensitive (30.8%) than radiography (0%) in detecting early MCD, with the earliest signs detectable at 14 weeks of age. A combination of the necropsy and micro-computed tomography findings of the MCP showed that MCD was manifested as a lesion of only the subchondral bone in dogs <18 weeks of age. In all dogs (affected and unaffected), there was close contact between the base of the MCP and the proximal radial head in the congruent joints. Computed tomography and micro-computed tomography findings indicated that the lesions of MCD probably originated at the base of the MCP. Copyright © 2013 Elsevier Ltd. All rights reserved.
Herweh, Christian; Ringleb, Peter A; Rauch, Geraldine; Gerry, Steven; Behrens, Lars; Möhlenbruch, Markus; Gottorf, Rebecca; Richter, Daniel; Schieber, Simon; Nagel, Simon
2016-06-01
The Alberta Stroke Program Early CT score (ASPECTS) is an established 10-point quantitative topographic computed tomography scan score to assess early ischemic changes. We compared the performance of the e-ASPECTS software with those of stroke physicians at different professional levels. The baseline computed tomography scans of acute stroke patients, in whom computed tomography and diffusion-weighted imaging scans were obtained less than two hours apart, were retrospectively scored by e-ASPECTS as well as by three stroke experts and three neurology trainees blinded to any clinical information. The ground truth was defined as the ASPECTS on diffusion-weighted imaging scored by another two non-blinded independent experts on consensus basis. Sensitivity and specificity in an ASPECTS region-based and an ASPECTS score-based analysis as well as receiver-operating characteristic curves, Bland-Altman plots with mean score error, and Matthews correlation coefficients were calculated. Comparisons were made between the human scorers and e-ASPECTS with diffusion-weighted imaging being the ground truth. Two methods for clustered data were used to estimate sensitivity and specificity in the region-based analysis. In total, 34 patients were included and 680 (34 × 20) ASPECTS regions were scored. Mean time from onset to computed tomography was 172 ± 135 min and mean time difference between computed tomographyand magnetic resonance imaging was 41 ± 31 min. The region-based sensitivity (46.46% [CI: 30.8;62.1]) of e-ASPECTS was better than three trainees and one expert (p ≤ 0.01) and not statistically different from another two experts. Specificity (94.15% [CI: 91.7;96.6]) was lower than one expert and one trainee (p < 0.01) and not statistically different to the other four physicians. e-ASPECTS had the best Matthews correlation coefficient of 0.44 (experts: 0.38 ± 0.08 and trainees: 0.19 ± 0.05) and the lowest mean score error of 0.56 (experts: 1.44 ± 1.79 and trainees: 1.97 ± 2.12). e-ASPECTS showed a similar performance to that of stroke experts in the assessment of brain computed tomographys of acute ischemic stroke patients with the Alberta Stroke Program Early CT score method. © 2016 World Stroke Organization.
Projection matrix acquisition for cone-beam computed tomography iterative reconstruction
NASA Astrophysics Data System (ADS)
Yang, Fuqiang; Zhang, Dinghua; Huang, Kuidong; Shi, Wenlong; Zhang, Caixin; Gao, Zongzhao
2017-02-01
Projection matrix is an essential and time-consuming part in computed tomography (CT) iterative reconstruction. In this article a novel calculation algorithm of three-dimensional (3D) projection matrix is proposed to quickly acquire the matrix for cone-beam CT (CBCT). The CT data needed to be reconstructed is considered as consisting of the three orthogonal sets of equally spaced and parallel planes, rather than the individual voxels. After getting the intersections the rays with the surfaces of the voxels, the coordinate points and vertex is compared to obtain the index value that the ray traversed. Without considering ray-slope to voxel, it just need comparing the position of two points. Finally, the computer simulation is used to verify the effectiveness of the algorithm.
Prell, Daniel; Kyriakou, Yiannis; Beister, Marcel; Kalender, Willi A
2009-11-07
Metallic implants generate streak-like artifacts in flat-detector computed tomography (FD-CT) reconstructed volumetric images. This study presents a novel method for reducing these disturbing artifacts by inserting discarded information into the original rawdata using a three-step correction procedure and working directly with each detector element. Computation times are minimized by completely implementing the correction process on graphics processing units (GPUs). First, the original volume is corrected using a three-dimensional interpolation scheme in the rawdata domain, followed by a second reconstruction. This metal artifact-reduced volume is then segmented into three materials, i.e. air, soft-tissue and bone, using a threshold-based algorithm. Subsequently, a forward projection of the obtained tissue-class model substitutes the missing or corrupted attenuation values directly for each flat detector element that contains attenuation values corresponding to metal parts, followed by a final reconstruction. Experiments using tissue-equivalent phantoms showed a significant reduction of metal artifacts (deviations of CT values after correction compared to measurements without metallic inserts reduced typically to below 20 HU, differences in image noise to below 5 HU) caused by the implants and no significant resolution losses even in areas close to the inserts. To cover a variety of different cases, cadaver measurements and clinical images in the knee, head and spine region were used to investigate the effectiveness and applicability of our method. A comparison to a three-dimensional interpolation correction showed that the new approach outperformed interpolation schemes. Correction times are minimized, and initial and corrected images are made available at almost the same time (12.7 s for the initial reconstruction, 46.2 s for the final corrected image compared to 114.1 s and 355.1 s on central processing units (CPUs)).
Simultaneous K-edge subtraction tomography for tracing strontium using parametric X-ray radiation
NASA Astrophysics Data System (ADS)
Hayakawa, Y.; Hayakawa, K.; Kaneda, T.; Nogami, K.; Sakae, T.; Sakai, T.; Sato, I.; Takahashi, Y.; Tanaka, T.
2017-07-01
The X-ray source based on parametric X-ray radiation (PXR) has been regularly providing a coherent X-ray beam for application studies at Nihon University. Recently, three dimensional (3D) computed tomography (CT) has become one of the most important applications of the PXR source. The methodology referred to as K-edge subtraction (KES) imaging is a particularly successful application utilizing the energy selectivity of PXR. In order to demonstrate the applicability of PXR-KES, a simultaneous KES experiment for a specimen containing strontium was performed using a PXR beam having an energy near the Sr K-edge of 16.1 keV. As a result, the 3D distribution of Sr was obtained by subtraction between the two simultaneously acquired tomographic images.
Yu, Zhicong; Noo, Frédéric; Dennerlein, Frank; Wunderlich, Adam; Lauritsch, Günter; Hornegger, Joachim
2012-01-01
Mathematical phantoms are essential for the development and early-stage evaluation of image reconstruction algorithms in x-ray computed tomography (CT). This note offers tools for computer simulations using a two-dimensional (2D) phantom that models the central axial slice through the FORBILD head phantom. Introduced in 1999, in response to a need for a more robust test, the FORBILD head phantom is now seen by many as the gold standard. However, the simple Shepp-Logan phantom is still heavily used by researchers working on 2D image reconstruction. Universal acceptance of the FORBILD head phantom may have been prevented by its significantly-higher complexity: software that allows computer simulations with the Shepp-Logan phantom is not readily applicable to the FORBILD head phantom. The tools offered here address this problem. They are designed for use with Matlab®, as well as open-source variants, such as FreeMat and Octave, which are all widely used in both academia and industry. To get started, the interested user can simply copy and paste the codes from this PDF document into Matlab® M-files. PMID:22713335
Yu, Zhicong; Noo, Frédéric; Dennerlein, Frank; Wunderlich, Adam; Lauritsch, Günter; Hornegger, Joachim
2012-07-07
Mathematical phantoms are essential for the development and early stage evaluation of image reconstruction algorithms in x-ray computed tomography (CT). This note offers tools for computer simulations using a two-dimensional (2D) phantom that models the central axial slice through the FORBILD head phantom. Introduced in 1999, in response to a need for a more robust test, the FORBILD head phantom is now seen by many as the gold standard. However, the simple Shepp-Logan phantom is still heavily used by researchers working on 2D image reconstruction. Universal acceptance of the FORBILD head phantom may have been prevented by its significantly higher complexity: software that allows computer simulations with the Shepp-Logan phantom is not readily applicable to the FORBILD head phantom. The tools offered here address this problem. They are designed for use with Matlab®, as well as open-source variants, such as FreeMat and Octave, which are all widely used in both academia and industry. To get started, the interested user can simply copy and paste the codes from this PDF document into Matlab® M-files.
NASA Astrophysics Data System (ADS)
Li, Xun; Li, Xu; Zhu, Shanan; He, Bin
2009-05-01
Magnetoacoustic tomography with magnetic induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, a three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulae describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for the model calibration and evaluation of the corresponding acoustic field.
Li, Xun; Li, Xu; Zhu, Shanan; He, Bin
2010-01-01
Magnetoacoustic Tomography with Magnetic Induction (MAT-MI) is a recently proposed imaging modality to image the electrical impedance of biological tissue. It combines the good contrast of electrical impedance tomography with the high spatial resolution of sonography. In this paper, three-dimensional MAT-MI forward problem was investigated using the finite element method (FEM). The corresponding FEM formulas describing the forward problem are introduced. In the finite element analysis, magnetic induction in an object with conductivity values close to biological tissues was first carried out. The stimulating magnetic field was simulated as that generated from a three-dimensional coil. The corresponding acoustic source and field were then simulated. Computer simulation studies were conducted using both concentric and eccentric spherical conductivity models with different geometric specifications. In addition, the grid size for finite element analysis was evaluated for model calibration and evaluation of the corresponding acoustic field. PMID:19351978
Lung Cancer: Posttreatment Imaging: Radiation Therapy and Imaging Findings.
Benveniste, Marcelo F; Welsh, James; Viswanathan, Chitra; Shroff, Girish S; Betancourt Cuellar, Sonia L; Carter, Brett W; Marom, Edith M
2018-05-01
In this review, we discuss the different radiation delivery techniques available to treat non-small cell lung cancer, typical radiologic manifestations of conventional radiotherapy, and different patterns of lung injury and temporal evolution of the newer radiotherapy techniques. More sophisticated techniques include intensity-modulated radiotherapy, stereotactic body radiotherapy, proton therapy, and respiration-correlated computed tomography or 4-dimensional computed tomography for radiotherapy planning. Knowledge of the radiation treatment plan and technique, the completion date of radiotherapy, and the temporal evolution of radiation-induced lung injury is important to identify expected manifestations of radiation-induced lung injury and differentiate them from tumor recurrence or infection. Published by Elsevier Inc.
KIM, Jaehwan; EOM, Kidong; YOON, Hakyoung
2017-01-01
A 14-year-old dog weighing 4 kg presented with hypotension only in the right forelimb. Thoracic radiography revealed a round soft tissue opacity near the aortic arch and below the second thoracic vertebra on a lateral view. Three-dimensional computed tomography angiography clearly revealed stenosis and aneurysmal dilation of an aberrant right subclavian artery. Stenosis and aneurysm of an aberrant subclavian artery should be included as a differential diagnosis in dogs showing a round soft tissue opacity near the aortic arch and below the thoracic vertebra on the lateral thoracic radiograph. PMID:28496026
Kim, Jaehwan; Eom, Kidong; Yoon, Hakyoung
2017-06-16
A 14-year-old dog weighing 4 kg presented with hypotension only in the right forelimb. Thoracic radiography revealed a round soft tissue opacity near the aortic arch and below the second thoracic vertebra on a lateral view. Three-dimensional computed tomography angiography clearly revealed stenosis and aneurysmal dilation of an aberrant right subclavian artery. Stenosis and aneurysm of an aberrant subclavian artery should be included as a differential diagnosis in dogs showing a round soft tissue opacity near the aortic arch and below the thoracic vertebra on the lateral thoracic radiograph.
Lee, Kyung Eun; Lee, Seo Ho; Shin, Eun-Seok; Shim, Eun Bo
2017-06-26
Hemodynamic simulation for quantifying fractional flow reserve (FFR) is often performed in a patient-specific geometry of coronary arteries reconstructed from the images from various imaging modalities. Because optical coherence tomography (OCT) images can provide more precise vascular lumen geometry, regardless of stenotic severity, hemodynamic simulation based on OCT images may be effective. The aim of this study is to perform OCT-FFR simulations by coupling a 3D CFD model from geometrically correct OCT images with a LPM based on vessel lengths extracted from CAG data with clinical validations for the present method. To simulate coronary hemodynamics, we developed a fast and accurate method that combined a computational fluid dynamics (CFD) model of an OCT-based region of interest (ROI) with a lumped parameter model (LPM) of the coronary microvasculature and veins. Here, the LPM was based on vessel lengths extracted from coronary X-ray angiography (CAG) images. Based on a vessel length-based approach, we describe a theoretical formulation for the total resistance of the LPM from a three-dimensional (3D) CFD model of the ROI. To show the utility of this method, we present calculated examples of FFR from OCT images. To validate the OCT-based FFR calculation (OCT-FFR) clinically, we compared the computed OCT-FFR values for 17 vessels of 13 patients with clinically measured FFR (M-FFR) values. A novel formulation for the total resistance of LPM is introduced to accurately simulate a 3D CFD model of the ROI. The simulated FFR values compared well with clinically measured ones, showing the accuracy of the method. Moreover, the present method is fast in terms of computational time, enabling clinicians to provide solutions handled within the hospital.
NASA Astrophysics Data System (ADS)
Hieber, Simone E.; Khimchenko, Anna; Kelly, Christopher; Mariani, Luigi; Thalmann, Peter; Schulz, Georg; Schmitz, Rüdiger; Greving, Imke; Dominietto, Marco; Müller, Bert
2014-09-01
Hippocampal sclerosis is a common cause of epilepsy, whereby a neuronal cell loss of more than 50% cells is characteristic. If medication fails the best possible treatment is the extraction of the diseased organ. To analyze the microanatomy of the diseased tissue we scanned a human hippocampus extracted from an epilepsy patient. After the identification of degenerated tissue using magnetic resonance imaging the specimen was reduced in size to fit into a cylindrical container with a diameter of 6 mm. Using synchrotron radiation and grating interferometry we acquired micro computed tomography datasets of the specimen. The present study was one of the first successful phase tomography measurements at the imaging beamline P05 (operated by HZG at the PETRA III storage ring, DESY, Hamburg, Germany). Ring and streak artefacts were reduced by enhanced flat-field corrections, combined wavelet-Fourier filters and bilateral filtering. We improved the flat-field correction by the consideration of the correlation between the projections and the flat-field images. In the present study, the correlation that was based on mean squared differences and evaluated on manually determined reference regions leads to the best artefact reduction. A preliminary segmentation of the abnormal tissue reveals that a clinically relevant study requires the development of even more sophisticated artifact reduction tools or a phase contrast measurement of higher quality.
NASA Astrophysics Data System (ADS)
White, Robin T.; Wu, Alex; Najm, Marina; Orfino, Francesco P.; Dutta, Monica; Kjeang, Erik
2017-05-01
A four-dimensional visualization approach, featuring three dimensions in space and one dimension in time, is proposed to study local electrode degradation effects during voltage cycling in fuel cells. Non-invasive in situ micro X-ray computed tomography (XCT) with a custom fuel cell fixture is utilized to track the same cathode catalyst layer domain throughout various degradation times from beginning-of-life (BOL) to end-of-life (EOL). With this unique approach, new information regarding damage features and trends are revealed, including crack propagation and catalyst layer thinning being quantified by means of image processing and analysis methods. Degradation heterogeneities as a result of local environmental variations under land and channel are also explored, with a higher structural degradation rate under channels being observed. Density and compositional changes resulting from carbon corrosion and catalyst layer collapse and thinning are observed by changes in relative X-ray attenuation from BOL to EOL, which also indicate possible vulnerable regions where crack initiation and propagation may occur. Electrochemical diagnostics and morphological features observed by micro-XCT are correlated by additionally collecting effective catalyst surface area, double layer capacitance, and polarization curves prior to imaging at various stages of degradation.
Automated noninvasive classification of renal cancer on multiphase CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linguraru, Marius George; Wang, Shijun; Shah, Furhawn
2011-10-15
Purpose: To explore the added value of the shape of renal lesions for classifying renal neoplasms. To investigate the potential of computer-aided analysis of contrast-enhanced computed-tomography (CT) to quantify and classify renal lesions. Methods: A computer-aided clinical tool based on adaptive level sets was employed to analyze 125 renal lesions from contrast-enhanced abdominal CT studies of 43 patients. There were 47 cysts and 78 neoplasms: 22 Von Hippel-Lindau (VHL), 16 Birt-Hogg-Dube (BHD), 19 hereditary papillary renal carcinomas (HPRC), and 21 hereditary leiomyomatosis and renal cell cancers (HLRCC). The technique quantified the three-dimensional size and enhancement of lesions. Intrapatient and interphasemore » registration facilitated the study of lesion serial enhancement. The histograms of curvature-related features were used to classify the lesion types. The areas under the curve (AUC) were calculated for receiver operating characteristic curves. Results: Tumors were robustly segmented with 0.80 overlap (0.98 correlation) between manual and semi-automated quantifications. The method further identified morphological discrepancies between the types of lesions. The classification based on lesion appearance, enhancement and morphology between cysts and cancers showed AUC = 0.98; for BHD + VHL (solid cancers) vs. HPRC + HLRCC AUC = 0.99; for VHL vs. BHD AUC = 0.82; and for HPRC vs. HLRCC AUC = 0.84. All semi-automated classifications were statistically significant (p < 0.05) and superior to the analyses based solely on serial enhancement. Conclusions: The computer-aided clinical tool allowed the accurate quantification of cystic, solid, and mixed renal tumors. Cancer types were classified into four categories using their shape and enhancement. Comprehensive imaging biomarkers of renal neoplasms on abdominal CT may facilitate their noninvasive classification, guide clinical management, and monitor responses to drugs or interventions.« less
Miranda, Geraldo Elias; Wilkinson, Caroline; Roughley, Mark; Beaini, Thiago Leite; Melani, Rodolfo Francisco Haltenhoff
2018-01-01
Facial reconstruction is a technique that aims to reproduce the individual facial characteristics based on interpretation of the skull, with the objective of recognition leading to identification. The aim of this paper was to evaluate the accuracy and recognition level of three-dimensional (3D) computerized forensic craniofacial reconstruction (CCFR) performed in a blind test on open-source software using computed tomography (CT) data from live subjects. Four CCFRs were produced by one of the researchers, who was provided with information concerning the age, sex, and ethnic group of each subject. The CCFRs were produced using Blender® with 3D models obtained from the CT data and templates from the MakeHuman® program. The evaluation of accuracy was carried out in CloudCompare, by geometric comparison of the CCFR to the subject 3D face model (obtained from the CT data). A recognition level was performed using the Picasa® recognition tool with a frontal standardized photography, images of the subject CT face model and the CCFR. Soft-tissue depth and nose, ears and mouth were based on published data, observing Brazilian facial parameters. The results were presented from all the points that form the CCFR model, with an average for each comparison between 63% and 74% with a distance -2.5 ≤ x ≤ 2.5 mm from the skin surface. The average distances were 1.66 to 0.33 mm and greater distances were observed around the eyes, cheeks, mental and zygomatic regions. Two of the four CCFRs were correctly matched by the Picasa® tool. Free software programs are capable of producing 3D CCFRs with plausible levels of accuracy and recognition and therefore indicate their value for use in forensic applications.
Wilkinson, Caroline; Roughley, Mark; Beaini, Thiago Leite; Melani, Rodolfo Francisco Haltenhoff
2018-01-01
Facial reconstruction is a technique that aims to reproduce the individual facial characteristics based on interpretation of the skull, with the objective of recognition leading to identification. The aim of this paper was to evaluate the accuracy and recognition level of three-dimensional (3D) computerized forensic craniofacial reconstruction (CCFR) performed in a blind test on open-source software using computed tomography (CT) data from live subjects. Four CCFRs were produced by one of the researchers, who was provided with information concerning the age, sex, and ethnic group of each subject. The CCFRs were produced using Blender® with 3D models obtained from the CT data and templates from the MakeHuman® program. The evaluation of accuracy was carried out in CloudCompare, by geometric comparison of the CCFR to the subject 3D face model (obtained from the CT data). A recognition level was performed using the Picasa® recognition tool with a frontal standardized photography, images of the subject CT face model and the CCFR. Soft-tissue depth and nose, ears and mouth were based on published data, observing Brazilian facial parameters. The results were presented from all the points that form the CCFR model, with an average for each comparison between 63% and 74% with a distance -2.5 ≤ x ≤ 2.5 mm from the skin surface. The average distances were 1.66 to 0.33 mm and greater distances were observed around the eyes, cheeks, mental and zygomatic regions. Two of the four CCFRs were correctly matched by the Picasa® tool. Free software programs are capable of producing 3D CCFRs with plausible levels of accuracy and recognition and therefore indicate their value for use in forensic applications. PMID:29718983
Accurate position estimation methods based on electrical impedance tomography measurements
NASA Astrophysics Data System (ADS)
Vergara, Samuel; Sbarbaro, Daniel; Johansen, T. A.
2017-08-01
Electrical impedance tomography (EIT) is a technology that estimates the electrical properties of a body or a cross section. Its main advantages are its non-invasiveness, low cost and operation free of radiation. The estimation of the conductivity field leads to low resolution images compared with other technologies, and high computational cost. However, in many applications the target information lies in a low intrinsic dimensionality of the conductivity field. The estimation of this low-dimensional information is addressed in this work. It proposes optimization-based and data-driven approaches for estimating this low-dimensional information. The accuracy of the results obtained with these approaches depends on modelling and experimental conditions. Optimization approaches are sensitive to model discretization, type of cost function and searching algorithms. Data-driven methods are sensitive to the assumed model structure and the data set used for parameter estimation. The system configuration and experimental conditions, such as number of electrodes and signal-to-noise ratio (SNR), also have an impact on the results. In order to illustrate the effects of all these factors, the position estimation of a circular anomaly is addressed. Optimization methods based on weighted error cost functions and derivate-free optimization algorithms provided the best results. Data-driven approaches based on linear models provided, in this case, good estimates, but the use of nonlinear models enhanced the estimation accuracy. The results obtained by optimization-based algorithms were less sensitive to experimental conditions, such as number of electrodes and SNR, than data-driven approaches. Position estimation mean squared errors for simulation and experimental conditions were more than twice for the optimization-based approaches compared with the data-driven ones. The experimental position estimation mean squared error of the data-driven models using a 16-electrode setup was less than 0.05% of the tomograph radius value. These results demonstrate that the proposed approaches can estimate an object’s position accurately based on EIT measurements if enough process information is available for training or modelling. Since they do not require complex calculations it is possible to use them in real-time applications without requiring high-performance computers.
The virtual craniofacial patient: 3D jaw modeling and animation.
Enciso, Reyes; Memon, Ahmed; Fidaleo, Douglas A; Neumann, Ulrich; Mah, James
2003-01-01
In this paper, we present new developments in the area of 3D human jaw modeling and animation. CT (Computed Tomography) scans have traditionally been used to evaluate patients with dental implants, assess tumors, cysts, fractures and surgical procedures. More recently this data has been utilized to generate models. Researchers have reported semi-automatic techniques to segment and model the human jaw from CT images and manually segment the jaw from MRI images. Recently opto-electronic and ultrasonic-based systems (JMA from Zebris) have been developed to record mandibular position and movement. In this research project we introduce: (1) automatic patient-specific three-dimensional jaw modeling from CT data and (2) three-dimensional jaw motion simulation using jaw tracking data from the JMA system (Zebris).
Growth oscillation in larger foraminifera.
Briguglio, Antonino; Hohenegger, Johann
2014-01-01
This work shows the potential for applying three-dimensional biometry to studying cell growth in larger benthic foraminifera. The volume of each test chamber was measured from the three-dimensional model obtained by means of computed tomography. Analyses of cell growth based on the sequence of chamber volumes revealed constant and significant oscillations for all investigated specimens, characterized by periods of approximately 15, 30, 90, and 360 days. Possible explanations for these periods are connected to tides, lunar cycles, and seasonality. The potential to record environmental oscillations or fluctuations during the lifetime of larger foraminifera is pivotal for reconstructing short-term paleoenvironmental variations or for gaining insight into the influence of tides or tidal current on the shallow-water benthic fauna in both recent and fossil environments.
Bayesian seismic tomography by parallel interacting Markov chains
NASA Astrophysics Data System (ADS)
Gesret, Alexandrine; Bottero, Alexis; Romary, Thomas; Noble, Mark; Desassis, Nicolas
2014-05-01
The velocity field estimated by first arrival traveltime tomography is commonly used as a starting point for further seismological, mineralogical, tectonic or similar analysis. In order to interpret quantitatively the results, the tomography uncertainty values as well as their spatial distribution are required. The estimated velocity model is obtained through inverse modeling by minimizing an objective function that compares observed and computed traveltimes. This step is often performed by gradient-based optimization algorithms. The major drawback of such local optimization schemes, beyond the possibility of being trapped in a local minimum, is that they do not account for the multiple possible solutions of the inverse problem. They are therefore unable to assess the uncertainties linked to the solution. Within a Bayesian (probabilistic) framework, solving the tomography inverse problem aims at estimating the posterior probability density function of velocity model using a global sampling algorithm. Markov chains Monte-Carlo (MCMC) methods are known to produce samples of virtually any distribution. In such a Bayesian inversion, the total number of simulations we can afford is highly related to the computational cost of the forward model. Although fast algorithms have been recently developed for computing first arrival traveltimes of seismic waves, the complete browsing of the posterior distribution of velocity model is hardly performed, especially when it is high dimensional and/or multimodal. In the latter case, the chain may even stay stuck in one of the modes. In order to improve the mixing properties of classical single MCMC, we propose to make interact several Markov chains at different temperatures. This method can make efficient use of large CPU clusters, without increasing the global computational cost with respect to classical MCMC and is therefore particularly suited for Bayesian inversion. The exchanges between the chains allow a precise sampling of the high probability zones of the model space while avoiding the chains to end stuck in a probability maximum. This approach supplies thus a robust way to analyze the tomography imaging uncertainties. The interacting MCMC approach is illustrated on two synthetic examples of tomography of calibration shots such as encountered in induced microseismic studies. On the second application, a wavelet based model parameterization is presented that allows to significantly reduce the dimension of the problem, making thus the algorithm efficient even for a complex velocity model.
Yamamoto, Shingo; Tanooka, Masao; Ando, Kumiko; Yamano, Toshiko; Ishikura, Reiichi; Nojima, Michio; Hirota, Shozo; Shima, Hiroki
2009-12-01
To evaluate the diagnostic accuracy of computed tomography (CT)-based imaging methods for assessing renal vascular anatomy, imaging studies, including standard axial CT, three-dimensional volume-rendered CT (3DVR-CT), and a 3DVR-CT movie, were performed on 30 patients who underwent laparoscopic donor nephrectomy (10 right side, 20 left side) for predicting the location of the renal arteries and renal, adrenal, gonadal, and lumbar veins. These findings were compared with videos obtained during the operation. Two of 37 renal arteries observed intraoperatively were missed by standard axial CT and 3DVR-CT, whereas all arteries were identified by the 3DVR-CT movie. Two of 36 renal veins were missed by standard axial CT and 3DVR-CT, whereas 1 was missed by the 3DVR-CT movie. In 20 left renal hilar anatomical structures, 20 adrenal, 20 gonadal, and 22 lumbar veins were observed during the operation. Preoperatively, the standard axial CT, 3DVR-CT, and 3DVR-CT movie detected 11, 19, and 20 adrenal veins; 13, 14, and 19 gonadal veins; and 6, 11, and 15 lumbar veins, respectively. Overall, of 135 renal vascular structures, the standard axial CT, 3DVR-CT, and 3DVR-CT movie accurately detected 99 (73.3%), 113 (83.7%), and 126 (93.3%) vessels, respectively, which indicated that the 3DVR-CT movie demonstrated a significantly higher detection rate than other CT-based imaging methods (P < 0.05). The 3DVR-CT movie accurately provides essential information about the renal vascular anatomy before laparoscopic donor nephrectomy.
Maret, Delphine; Peters, Ove A; Galibourg, Antoine; Dumoncel, Jean; Esclassan, Rémi; Kahn, Jean-Luc; Sixou, Michel; Telmon, Norbert
2014-09-01
Cone-beam computed tomography (CBCT) data are, in principle, metrically exact. However, clinicians need to consider the precision of measurements of dental morphology as well as other hard tissue structures. CBCT spatial resolution, and thus image reconstruction quality, is restricted by the acquisition voxel size. The aim of this study was to assess geometric discrepancies among 3-dimensional CBCT reconstructions relative to the micro-CT reference. A total of 37 permanent teeth from 9 mandibles were scanned with CBCT 9500 and 9000 3D and micro-CT. After semiautomatic segmentation, reconstructions were obtained from CBCT acquisitions (voxel sizes 76, 200, and 300 μm) and from micro-CT (voxel size 41 μm). All reconstructions were positioned in the same plane by image registration. The topography of the geometric discrepancies was displayed by using a color map allowing the maximum differences to be located. The maximum differences were mainly found at the cervical margins and on the cusp tips or incisal edges. Geometric reconstruction discrepancies were significant at 300-μm resolution (P = .01, Wilcoxon test). To study hard tissue morphology, CBCT acquisitions require voxel sizes smaller than 300 μm. This experimental study will have to be complemented by studies in vivo that consider the conditions of clinical practice. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Hieber, Simone E.; Bikis, Christos; Khimchenko, Anna; Schulz, Georg; Deyhle, Hans; Thalmann, Peter; Chicherova, Natalia; Rack, Alexander; Zdora, Marie-Christine; Zanette, Irene; Schweighauser, Gabriel; Hench, Jürgen; Müller, Bert
2016-10-01
Cell visualization and counting plays a crucial role in biological and medical research including the study of neurodegenerative diseases. The neuronal cell loss is typically determined to measure the extent of the disease. Its characterization is challenging because the cell density and size already differs by more than three orders of magnitude in a healthy cerebellum. Cell visualization is commonly performed by histology and fluorescence microscopy. These techniques are limited to resolve complex microstructures in the third dimension. Phase- contrast tomography has been proven to provide sufficient contrast in the three-dimensional imaging of soft tissue down to the cell level and, therefore, offers the basis for the three-dimensional segmentation. Within this context, a human cerebellum sample was embedded in paraffin and measured in local phase-contrast mode at the beamline ID19 (ESRF, Grenoble, France) and the Diamond Manchester Imaging Branchline I13-2 (Diamond Light Source, Didcot, UK). After the application of Frangi-based filtering the data showed sufficient contrast to automatically identify the Purkinje cells and to quantify their density to 177 cells per mm3 within the volume of interest. Moreover, brain layers were segmented in a region of interest based on edge detection. Subsequently performed histological analysis validated the presence of the cells, which required a mapping from the two- dimensional histological slices to the three-dimensional tomogram. The methodology can also be applied to further tissue types and shows potential for the computational tissue analysis in health and disease.
Susceptibility weighted imaging: differentiating between calcification and hemosiderin*
Barbosa, Jeam Haroldo Oliveira; Santos, Antonio Carlos; Salmon, Carlos Ernesto Garrido
2015-01-01
Objective To present a detailed explanation on the processing of magnetic susceptibility weighted imaging (SWI), demonstrating the effects of echo time and sensitive mask on the differentiation between calcification and hemosiderin. Materials and Methods Computed tomography and magnetic resonance (magnitude and phase) images of six patients (age range 41– 54 years; four men) were retrospectively selected. The SWI images processing was performed using the Matlab’s own routine. Results Four out of the six patients showed calcifications at computed tomography images and their SWI images demonstrated hyperintense signal at the calcification regions. The other patients did not show any calcifications at computed tomography, and SWI revealed the presence of hemosiderin deposits with hypointense signal. Conclusion The selection of echo time and of the mask may change all the information on SWI images, and compromise the diagnostic reliability. Amongst the possible masks, the authors highlight that the sigmoid mask allows for contrasting calcifications and hemosiderin on a single SWI image. PMID:25987750
Langova, V; Mutsaers, A J; Phillips, B; Straw, R
2004-11-01
To determine the efficacy and toxicity of chemotherapy in the treatment of canine nasal tumours. Retrospective clinical study Eight dogs with histologically confirmed nasal tumours were staged by means of complete blood count, serum biochemical analysis, cytological analysis of fine needle aspirate of the regional lymph nodes, thoracic radiographs and computed tomography scan of the nasal cavity. All dogs were treated with alternating doses of doxorubicin, carboplatin and oral piroxicam. All dogs were monitored for side effects of chemotherapy and evaluated for response to treatment by computed tomography scan of the nasal cavity after the first four treatments. Complete remission was achieved in four dogs, partial remission occurred in two dogs and two had stable disease on the basis of computed tomography evaluation. There was resolution of clinical signs after one to two doses of chemotherapy in all dogs. This chemotherapy protocol was efficacious and well tolerated in this series of eight cases of canine nasal tumours.
Gao, Nuo; Zhu, Shan-an; He, Bin
2005-01-01
We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach. Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model. Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245±0.0068 and 8.9997%±0.0084%, for hemorrhagic stroke, and 0.6748±0.0197 and 8.8986%±0.0089%, for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans. PMID:15822161
Dual-Energy Computed Tomography in Cardiothoracic Vascular Imaging.
De Santis, Domenico; Eid, Marwen; De Cecco, Carlo N; Jacobs, Brian E; Albrecht, Moritz H; Varga-Szemes, Akos; Tesche, Christian; Caruso, Damiano; Laghi, Andrea; Schoepf, Uwe Joseph
2018-07-01
Dual energy computed tomography is becoming increasingly widespread in clinical practice. It can expand on the traditional density-based data achievable with single energy computed tomography by adding novel applications to help reach a more accurate diagnosis. The implementation of this technology in cardiothoracic vascular imaging allows for improved image contrast, metal artifact reduction, generation of virtual unenhanced images, virtual calcium subtraction techniques, cardiac and pulmonary perfusion evaluation, and plaque characterization. The improved diagnostic performance afforded by dual energy computed tomography is not associated with an increased radiation dose. This review provides an overview of dual energy computed tomography cardiothoracic vascular applications. Copyright © 2018 Elsevier Inc. All rights reserved.
Office-Based Three-Dimensional Printing Workflow for Craniomaxillofacial Fracture Repair.
Elegbede, Adekunle; Diaconu, Silviu C; McNichols, Colton H L; Seu, Michelle; Rasko, Yvonne M; Grant, Michael P; Nam, Arthur J
2018-03-08
Three-dimensional printing of patient-specific models is being used in various aspects of craniomaxillofacial reconstruction. Printing is typically outsourced to off-site vendors, with the main disadvantages being increased costs and time for production. Office-based 3-dimensional printing has been proposed as a means to reduce costs and delays, but remains largely underused because of the perception among surgeons that it is futuristic, highly technical, and prohibitively expensive. The goal of this report is to demonstrate the feasibility and ease of incorporating in-office 3-dimensional printing into the standard workflow for facial fracture repair.Patients with complex mandible fractures requiring open repair were identified. Open-source software was used to create virtual 3-dimensional skeletal models of the, initial injury pattern, and then the ideally reduced fractures based on preoperative computed tomography (CT) scan images. The virtual 3-dimensional skeletal models were then printed in our office using a commercially available 3-dimensional printer and bioplastic filament. The 3-dimensional skeletal models were used as templates to bend and shape titanium plates that were subsequently used for intraoperative fixation.Average print time was 6 hours. Excluding the 1-time cost of the 3-dimensional printer of $2500, roughly the cost of a single commercially produced model, the average material cost to print 1 model mandible was $4.30. Postoperative CT imaging demonstrated precise, predicted reduction in all patients.Office-based 3-dimensional printing of skeletal models can be routinely used in repair of facial fractures in an efficient and cost-effective manner.
NASA Astrophysics Data System (ADS)
Zhang, Chao; Yao, Huajian; Liu, Qinya; Zhang, Ping; Yuan, Yanhua O.; Feng, Jikun; Fang, Lihua
2018-01-01
We present a 2-D ambient noise adjoint tomography technique for a linear array with a significant reduction in computational cost and show its application to an array in North China. We first convert the observed data for 3-D media, i.e., surface-wave empirical Green's functions (EGFs) to the reconstructed EGFs (REGFs) for 2-D media using a 3-D/2-D transformation scheme. Different from the conventional steps of measuring phase dispersion, this technology refines 2-D shear wave speeds along the profile directly from REGFs. With an initial model based on traditional ambient noise tomography, adjoint tomography updates the model by minimizing the frequency-dependent Rayleigh wave traveltime delays between the REGFs and synthetic Green functions calculated by the spectral-element method. The multitaper traveltime difference measurement is applied in four-period bands: 20-35 s, 15-30 s, 10-20 s, and 6-15 s. The recovered model shows detailed crustal structures including pronounced low-velocity anomalies in the lower crust and a gradual crust-mantle transition zone beneath the northern Trans-North China Orogen, which suggest the possible intense thermo-chemical interactions between mantle-derived upwelling melts and the lower crust, probably associated with the magmatic underplating during the Mesozoic to Cenozoic evolution of this region. To our knowledge, it is the first time that ambient noise adjoint tomography is implemented for a 2-D medium. Compared with the intensive computational cost and storage requirement of 3-D adjoint tomography, this method offers a computationally efficient and inexpensive alternative to imaging fine-scale crustal structures beneath linear arrays.
2011-01-01
Background Diagnosis of extracardiac intrathoracic vascular anomalies is of clinical importance, but remains challenging. Traditional imaging modalities, such as radiography, echocardiography, and angiography, are inherently limited by the difficulties of a 2-dimensional approach to a 3-dimensional object. We postulated that accurate characterization of malformations of the aorta would benefit from 3-dimensional assessment. Therefore, multidetector-row computed tomography (MDCT) was chosen as a 3-dimensional, new, and noninvasive imaging technique. The purpose of this study was to evaluate patients with 2 common diseases of the intrathoracic aorta, either patent ductus arteriosus or vascular ring anomaly, by contrast-enhanced 64-row computed tomography. Results Electrocardiography (ECG)-gated and thoracic nongated MDCT images were reviewed in identified cases of either a patent ductus arteriosus or vascular ring anomaly. Ductal size and morphology were determined in 6 dogs that underwent ECG-gated MDCT. Vascular ring anomalies were characterized in 7 dogs and 3 cats by ECG-gated MDCT or by a nongated thoracic standard protocol. Cardiac ECG-gated MDCT clearly displayed the morphology, length, and caliber of the patent ductus arteriosus in 6 affected dogs. Persistent right aortic arch was identified in 10 animals, 8 of which showed a coexisting aberrant left subclavian artery. A mild dilation of the proximal portion of the aberrant subclavian artery near its origin of the aorta was present in 4 dogs, and a diverticulum analogous to the human Kommerell's diverticulum was present in 2 cats. Conclusions Contrast-enhanced MDCT imaging of thoracic anomalies gives valuable information about the exact aortic arch configuration. Furthermore, MDCT was able to characterize the vascular branching patterns in dogs and cats with a persistent right aortic arch and the morphology and size of the patent ductus arteriosus in affected dogs. This additional information can be of help with regard to improved diagnoses of thoracic anomalies and the planning of surgical interventions. PMID:21943366
Entanglement-Based Machine Learning on a Quantum Computer
NASA Astrophysics Data System (ADS)
Cai, X.-D.; Wu, D.; Su, Z.-E.; Chen, M.-C.; Wang, X.-L.; Li, Li; Liu, N.-L.; Lu, C.-Y.; Pan, J.-W.
2015-03-01
Machine learning, a branch of artificial intelligence, learns from previous experience to optimize performance, which is ubiquitous in various fields such as computer sciences, financial analysis, robotics, and bioinformatics. A challenge is that machine learning with the rapidly growing "big data" could become intractable for classical computers. Recently, quantum machine learning algorithms [Lloyd, Mohseni, and Rebentrost, arXiv.1307.0411] were proposed which could offer an exponential speedup over classical algorithms. Here, we report the first experimental entanglement-based classification of two-, four-, and eight-dimensional vectors to different clusters using a small-scale photonic quantum computer, which are then used to implement supervised and unsupervised machine learning. The results demonstrate the working principle of using quantum computers to manipulate and classify high-dimensional vectors, the core mathematical routine in machine learning. The method can, in principle, be scaled to larger numbers of qubits, and may provide a new route to accelerate machine learning.
Computational techniques to enable visualizing shapes of objects of extra spatial dimensions
NASA Astrophysics Data System (ADS)
Black, Don Vaughn, II
Envisioning extra dimensions beyond the three of common experience is a daunting challenge for three dimensional observers. Intuition relies on experience gained in a three dimensional environment. Gaining experience with virtual four dimensional objects and virtual three manifolds in four-space on a personal computer may provide the basis for an intuitive grasp of four dimensions. In order to enable such a capability for ourselves, it is first necessary to devise and implement a computationally tractable method to visualize, explore, and manipulate objects of dimension beyond three on the personal computer. A technology is described in this dissertation to convert a representation of higher dimensional models into a format that may be displayed in realtime on graphics cards available on many off-the-shelf personal computers. As a result, an opportunity has been created to experience the shape of four dimensional objects on the desktop computer. The ultimate goal has been to provide the user a tangible and memorable experience with mathematical models of four dimensional objects such that the user can see the model from any user selected vantage point. By use of a 4D GUI, an arbitrary convex hull or 3D silhouette of the 4D model can be rotated, panned, scrolled, and zoomed until a suitable dimensionally reduced view or Aspect is obtained. The 4D GUI then allows the user to manipulate a 3-flat hyperplane cutting tool to slice the model at an arbitrary orientation and position to extract or "pluck" an embedded 3D slice or "aspect" from the embedding four-space. This plucked 3D aspect can be viewed from all angles via a conventional 3D viewer using three multiple POV viewports, and optionally exported to a third party CAD viewer for further manipulation. Plucking and Manipulating the Aspect provides a tangible experience for the end-user in the same manner as any 3D Computer Aided Design viewing and manipulation tool does for the engineer or a 3D video game provides for the nascent student.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kanoun, Salim, E-mail: Salim.kanoun@gmail.com; LE2I UMR6306, Centre national de la recherche scientifique, Arts et Métiers, Université Bourgogne Franche-Comté, Dijon; MRI Unit, Centre Hospitalier Régional Universitaire, Hôpital François Mitterrand, Dijon
Purpose: To compare the diagnostic performance of {sup 18}F-fluorocholine positron emission tomography/computed tomography (FCH-PET/CT), multiparametric prostate magnetic resonance imaging (mpMRI), and a combination of both techniques for the detection of local recurrence of prostate cancer initially treated by radiation therapy. Methods and Materials: This was a retrospective, single-institution study of 32 patients with suspected prostate cancer recurrence who underwent both FCH-PET/CT and 3T mpMRI within 3 months of one another for the detection of recurrence. All included patients had to be cleared for metastatic recurrence. The reference procedure was systematic 3-dimensional (3D)-transperineal prostate biopsy for the final assessment of local recurrence.more » Both imaging modalities were analyzed by 2 experienced readers blinded to clinical data. The analysis was made per-patient and per-segment using a 4-segment model. Results: The median prostate-specific antigen value at the time of imaging was 2.92 ng/mL. The mean prostate-specific antigen doubling time was 14 months. Of the 32 patients, 31 had a positive 3D-transperineal mapping biopsy for a local relapse. On a patient-based analysis, the detection rate was 71% (22 of 31) for mpMRI and 74% (23 of 31) for FCH-PET/CT. On a segment-based analysis, the sensitivity and specificity were, respectively, 32% and 87% for mpMRI, 34% and 87% for FCH-PET/CT, and 43% and 83% for the combined analysis of both techniques. Accuracy was 64%, 65%, and 66%, respectively. The interobserver agreement was κ = 0.92 for FCH-PET/CT and κ = 0.74 for mpMRI. Conclusions: Both mpMRI and FCH-PET/CT show limited sensitivity but good specificity for the detection of local cancer recurrence after radiation therapy, when compared with 3D-transperineal mapping biopsy. Prostate biopsy still seems to be mandatory to diagnose local relapse and select patients who could benefit from local salvage therapy.« less
Fractal Dimensionality of Pore and Grain Volume of a Siliciclastic Marine Sand
NASA Astrophysics Data System (ADS)
Reed, A. H.; Pandey, R. B.; Lavoie, D. L.
Three-dimensional (3D) spatial distributions of pore and grain volumes were determined from high-resolution computer tomography (CT) images of resin-impregnated marine sands. Using a linear gradient extrapolation method, cubic three-dimensional samples were constructed from two-dimensional CT images. Image porosity (0.37) was found to be consistent with the estimate of porosity by water weight loss technique (0.36). Scaling of the pore volume (Vp) with the linear size (L), V~LD provides the fractal dimensionalities of the pore volume (D=2.74+/-0.02) and grain volume (D=2.90+/-0.02) typical for sedimentary materials.
Sonnaert, Maarten; Kerckhofs, Greet; Papantoniou, Ioannis; Van Vlierberghe, Sandra; Boterberg, Veerle; Dubruel, Peter; Luyten, Frank P; Schrooten, Jan; Geris, Liesbet
2015-01-01
To progress the fields of tissue engineering (TE) and regenerative medicine, development of quantitative methods for non-invasive three dimensional characterization of engineered constructs (i.e. cells/tissue combined with scaffolds) becomes essential. In this study, we have defined the most optimal staining conditions for contrast-enhanced nanofocus computed tomography for three dimensional visualization and quantitative analysis of in vitro engineered neo-tissue (i.e. extracellular matrix containing cells) in perfusion bioreactor-developed Ti6Al4V constructs. A fractional factorial 'design of experiments' approach was used to elucidate the influence of the staining time and concentration of two contrast agents (Hexabrix and phosphotungstic acid) and the neo-tissue volume on the image contrast and dataset quality. Additionally, the neo-tissue shrinkage that was induced by phosphotungstic acid staining was quantified to determine the operating window within which this contrast agent can be accurately applied. For Hexabrix the staining concentration was the main parameter influencing image contrast and dataset quality. Using phosphotungstic acid the staining concentration had a significant influence on the image contrast while both staining concentration and neo-tissue volume had an influence on the dataset quality. The use of high concentrations of phosphotungstic acid did however introduce significant shrinkage of the neo-tissue indicating that, despite sub-optimal image contrast, low concentrations of this staining agent should be used to enable quantitative analysis. To conclude, design of experiments allowed us to define the most optimal staining conditions for contrast-enhanced nanofocus computed tomography to be used as a routine screening tool of neo-tissue formation in Ti6Al4V constructs, transforming it into a robust three dimensional quality control methodology.
Morgalla, Matthias; Fortunato, Marcos; Azam, Ala; Tatagiba, Marcos; Lepski, Guillherme
2016-07-01
The assessment of the functionality of intrathecal drug delivery (IDD) systems remains difficult and time-consuming. Catheter-related problems are still very common, and sometimes difficult to diagnose. The aim of the present study is to investigate the accuracy of high-resolution three-dimensional computed tomography (CT) in order to detect catheter-related pump dysfunction. An observational, retrospective investigation. Academic medical center in Germany. We used high-resolution three dimensional (3D) computed tomography with volume rendering technique (VRT) or fluoroscopy and conventional axial-CT to assess IDD-related complications in 51 patients from our institution who had IDD systems implanted for the treatment of chronic pain or spasticity. Twelve patients (23.5%) presented a total of 22 complications. The main type of complication in our series was catheter-related (50%), followed by pump failure, infection, and inappropriate refilling. Fluoroscopy and conventional CT were used in 12 cases. High-resolution 3D CT VRT scan was used in 35 instances with suspected yet unclear complications. Using 3D-CT (VRT) the sensitivity was 58.93% - 100% (CI 95%) and the specificity 87.54% - 100% (CI 95%).The positive predictive value was 58.93% - 100% (CI 95%) and the negative predictive value: 87.54% - 100% (CI 95%).Fluoroscopy and axial CT as a combined diagnostic tool had a sensitivity of 8.3% - 91.7% (CI 95%) and a specificity of 62.9% - 100% (CI 95%). The positive predictive value was 19.29% - 100% (CI 95%) and the negative predictive value: 44.43% - 96.89% (CI 95%). This study is limited by its observational design and the small number of cases. High-resolution 3D CT VRT is a non- invasive method that can identify IDD-related complications with more precision than axial CT and fluoroscopy.
The assessment of virtual reality for human anatomy instruction
NASA Technical Reports Server (NTRS)
Benn, Karen P.
1994-01-01
This research project seeks to meet the objective of science training by developing, assessing, and validating virtual reality as a human anatomy training medium. In ideal situations, anatomic models, computer-based instruction, and cadaver dissection are utilized to augment the traditional methods of instruction. At many institutions, lack of financial resources limits anatomy instruction to textbooks and lectures. However, human anatomy is three dimensional, unlike the one dimensional depiction found in textbooks and the two dimensional depiction found on the computer. Virtual reality is a breakthrough technology that allows one to step through the computer screen into a three dimensional world. This technology offers many opportunities to enhance science education. Therefore, a virtual testing environment of the abdominopelvic region of a human cadaver was created to study the placement of body parts within the nine anatomical divisions of the abdominopelvic region and the four abdominal quadrants.
NASA Astrophysics Data System (ADS)
Jermyn, Michael; Ghadyani, Hamid; Mastanduno, Michael A.; Turner, Wes; Davis, Scott C.; Dehghani, Hamid; Pogue, Brian W.
2013-08-01
Multimodal approaches that combine near-infrared (NIR) and conventional imaging modalities have been shown to improve optical parameter estimation dramatically and thus represent a prevailing trend in NIR imaging. These approaches typically involve applying anatomical templates from magnetic resonance imaging/computed tomography/ultrasound images to guide the recovery of optical parameters. However, merging these data sets using current technology requires multiple software packages, substantial expertise, significant time-commitment, and often results in unacceptably poor mesh quality for optical image reconstruction, a reality that represents a significant roadblock for translational research of multimodal NIR imaging. This work addresses these challenges directly by introducing automated digital imaging and communications in medicine image stack segmentation and a new one-click three-dimensional mesh generator optimized for multimodal NIR imaging, and combining these capabilities into a single software package (available for free download) with a streamlined workflow. Image processing time and mesh quality benchmarks were examined for four common multimodal NIR use-cases (breast, brain, pancreas, and small animal) and were compared to a commercial image processing package. Applying these tools resulted in a fivefold decrease in image processing time and 62% improvement in minimum mesh quality, in the absence of extra mesh postprocessing. These capabilities represent a significant step toward enabling translational multimodal NIR research for both expert and nonexpert users in an open-source platform.
Vampola, Tomáš; Horáček, Jaromír; Laukkanen, Anne-Maria; Švec, Jan G
2015-04-01
Resonance frequencies of the vocal tract have traditionally been modelled using one-dimensional models. These cannot accurately represent the events in the frequency region of the formant cluster around 2.5-4.5 kHz, however. Here, the vocal tract resonance frequencies and their mode shapes are studied using a three-dimensional finite element model obtained from computed tomography measurements of a subject phonating on vowel [a:]. Instead of the traditional five, up to eight resonance frequencies of the vocal tract were found below the prominent antiresonance around 4.7 kHz. The three extra resonances were found to correspond to modes which were axially asymmetric and involved the piriform sinuses, valleculae, and transverse vibrations in the oral cavity. The results therefore suggest that the phenomenon of speaker's and singer's formant clustering may be more complex than originally thought.
Advancements to the planogram frequency–distance rebinning algorithm
Champley, Kyle M; Raylman, Raymond R; Kinahan, Paul E
2010-01-01
In this paper we consider the task of image reconstruction in positron emission tomography (PET) with the planogram frequency–distance rebinning (PFDR) algorithm. The PFDR algorithm is a rebinning algorithm for PET systems with panel detectors. The algorithm is derived in the planogram coordinate system which is a native data format for PET systems with panel detectors. A rebinning algorithm averages over the redundant four-dimensional set of PET data to produce a three-dimensional set of data. Images can be reconstructed from this rebinned three-dimensional set of data. This process enables one to reconstruct PET images more quickly than reconstructing directly from the four-dimensional PET data. The PFDR algorithm is an approximate rebinning algorithm. We show that implementing the PFDR algorithm followed by the (ramp) filtered backprojection (FBP) algorithm in linogram coordinates from multiple views reconstructs a filtered version of our image. We develop an explicit formula for this filter which can be used to achieve exact reconstruction by means of a modified FBP algorithm applied to the stack of rebinned linograms and can also be used to quantify the errors introduced by the PFDR algorithm. This filter is similar to the filter in the planogram filtered backprojection algorithm derived by Brasse et al. The planogram filtered backprojection and exact reconstruction with the PFDR algorithm require complete projections which can be completed with a reprojection algorithm. The PFDR algorithm is similar to the rebinning algorithm developed by Kao et al. By expressing the PFDR algorithm in detector coordinates, we provide a comparative analysis between the two algorithms. Numerical experiments using both simulated data and measured data from a positron emission mammography/tomography (PEM/PET) system are performed. Images are reconstructed by PFDR+FBP (PFDR followed by 2D FBP reconstruction), PFDRX (PFDR followed by the modified FBP algorithm for exact reconstruction) and planogram filtered backprojection image reconstruction algorithms. We show that the PFDRX algorithm produces images that are nearly as accurate as images reconstructed with the planogram filtered backprojection algorithm and more accurate than images reconstructed with the PFDR+FBP algorithm. Both the PFDR+FBP and PFDRX algorithms provide a dramatic improvement in computation time over the planogram filtered backprojection algorithm. PMID:20436790
Chen, Wen Hao; Yang, Sam Y. S.; Xiao, Ti Qiao; Mayo, Sherry C.; Wang, Yu Dan; Wang, Hai Peng
2014-01-01
Quantifying three-dimensional spatial distributions of pores and material compositions in samples is a key materials characterization challenge, particularly in samples where compositions are distributed across a range of length scales, and where such compositions have similar X-ray absorption properties, such as in coal. Consequently, obtaining detailed information within sub-regions of a multi-length-scale sample by conventional approaches may not provide the resolution and level of detail one might desire. Herein, an approach for quantitative high-definition determination of material compositions from X-ray local computed tomography combined with a data-constrained modelling method is proposed. The approach is capable of dramatically improving the spatial resolution and enabling finer details within a region of interest of a sample larger than the field of view to be revealed than by using conventional techniques. A coal sample containing distributions of porosity and several mineral compositions is employed to demonstrate the approach. The optimal experimental parameters are pre-analyzed. The quantitative results demonstrated that the approach can reveal significantly finer details of compositional distributions in the sample region of interest. The elevated spatial resolution is crucial for coal-bed methane reservoir evaluation and understanding the transformation of the minerals during coal processing. The method is generic and can be applied for three-dimensional compositional characterization of other materials. PMID:24763649
Kim, Yeun; Perinpanayagam, Hiran; Lee, Jong-Ki; Yoo, Yeon-Jee; Oh, Soram; Gu, Yu; Lee, Seung-Pyo; Chang, Seok Woo; Lee, Woocheol; Baek, Seung-Ho; Zhu, Qiang; Kum, Kee-Yeon
2015-08-01
Micro-computed tomography (MCT) with alternative image reformatting techniques shows complex and detailed root canal anatomy. This study compared two-dimensional (2D) and 3D MCT image reformatting with standard tooth clearing for studying mandibular first molar mesial root canal morphology. Extracted human mandibular first molar mesial roots (n=31) were scanned by MCT (Skyscan 1172). 2D thin-slab minimum intensity projection (TS-MinIP) and 3D volume rendered images were constructed. The same teeth were then processed by clearing and staining. For each root, images obtained from clearing, 2D, 3D and combined 2D and 3D techniques were examined independently by four endodontists and categorized according to Vertucci's classification. Fine anatomical structures such as accessory canals, intercanal communications and loops were also identified. Agreement among the four techniques for Vertucci's classification was 45.2% (14/31). The most frequent were Vertucci's type IV and then type II, although many had complex configurations that were non-classifiable. Generally, complex canal systems were more clearly visible in MCT images than with standard clearing and staining. Fine anatomical structures such as intercanal communications, accessory canals and loops were mostly detected with a combination of 2D TS-MinIP and 3D volume-rendering MCT images. Canal configurations and fine anatomic structures were more clearly observed in the combined 2D and 3D MCT images than the clearing technique. The frequency of non-classifiable configurations demonstrated the complexity of mandibular first molar mesial root canal anatomy.
Robust membrane detection based on tensor voting for electron tomography.
Martinez-Sanchez, Antonio; Garcia, Inmaculada; Asano, Shoh; Lucic, Vladan; Fernandez, Jose-Jesus
2014-04-01
Electron tomography enables three-dimensional (3D) visualization and analysis of the subcellular architecture at a resolution of a few nanometers. Segmentation of structural components present in 3D images (tomograms) is often necessary for their interpretation. However, it is severely hampered by a number of factors that are inherent to electron tomography (e.g. noise, low contrast, distortion). Thus, there is a need for new and improved computational methods to facilitate this challenging task. In this work, we present a new method for membrane segmentation that is based on anisotropic propagation of the local structural information using the tensor voting algorithm. The local structure at each voxel is then refined according to the information received from other voxels. Because voxels belonging to the same membrane have coherent structural information, the underlying global structure is strengthened. In this way, local information is easily integrated at a global scale to yield segmented structures. This method performs well under low signal-to-noise ratio typically found in tomograms of vitrified samples under cryo-tomography conditions and can bridge gaps present on membranes. The performance of the method is demonstrated by applications to tomograms of different biological samples and by quantitative comparison with standard template matching procedure. Copyright © 2014 Elsevier Inc. All rights reserved.
Byun, Ha Young; Shin, Heesuk; Lee, Eun Shin; Kong, Min Sik; Lee, Seung Hun
2016-01-01
Objective To assess the intra-rater and inter-rater reliability for measuring femoral anteversion angle (FAA) by a radiographic method using three-dimensional computed tomography reconstruction (3D-CT). Methods The study included 82 children who presented with intoeing gait. 3D-CT data taken between 2006 and 2014 were retrospectively reviewed. FAA was measured by 3D-CT. FAA is defined as the angle between the long axis of the femur neck and condylar axis of the distal femur. FAA measurement was performed twice at both lower extremities by each rater. The intra-rater and inter-rater reliability were calculated by intraclass correlation coefficient (ICC). Results One hundred and sixty-four lower limbs of 82 children (31 boys and 51 girls, 6.3±3.2 years old) were included. The ICCs of intra-rater measurement for the angle of femoral neck axis (NA) were 0.89 for rater A and 0.96 for rater B, and those of condylar axis (CA) were 0.99 for rater A and 0.99 for rater B, respectively. The ICC of inter-rater measurement for the angle of NA was 0.89 and that of CA was 0.92. By each rater, the ICCs of the intrarater measurement for FAA were 0.97 for rater A and 0.95 for rater B, respectively and the ICC of the inter-rater measurement for FAA was 0.89. Conclusion The 3D-CT measures for FAA are reliable within individual raters and between different raters. The 3D-CT measures of FAA can be a useful method for accurate diagnosis and follow-up of femoral anteversion. PMID:27152273
Investigating different computed tomography techniques for internal target volume definition.
Yoganathan, S A; Maria Das, K J; Subramanian, V Siva; Raj, D Gowtham; Agarwal, Arpita; Kumar, Shaleen
2017-01-01
The aim of this work was to evaluate the various computed tomography (CT) techniques such as fast CT, slow CT, breath-hold (BH) CT, full-fan cone beam CT (FF-CBCT), half-fan CBCT (HF-CBCT), and average CT for delineation of internal target volume (ITV). In addition, these ITVs were compared against four-dimensional CT (4DCT) ITVs. Three-dimensional target motion was simulated using dynamic thorax phantom with target insert of diameter 3 cm for ten respiration data. CT images were acquired using a commercially available multislice CT scanner, and the CBCT images were acquired using On-Board-Imager. Average CT was generated by averaging 10 phases of 4DCT. ITVs were delineated for each CT by contouring the volume of the target ball; 4DCT ITVs were generated by merging all 10 phases target volumes. Incase of BH-CT, ITV was derived by boolean of CT phases 0%, 50%, and fast CT target volumes. ITVs determined by all CT and CBCT scans were significantly smaller (P < 0.05) than the 4DCT ITV, whereas there was no significant difference between average CT and 4DCT ITVs (P = 0.17). Fast CT had the maximum deviation (-46.1% ± 20.9%) followed by slow CT (-34.3% ± 11.0%) and FF-CBCT scans (-26.3% ± 8.7%). However, HF-CBCT scans (-12.9% ± 4.4%) and BH-CT scans (-11.1% ± 8.5%) resulted in almost similar deviation. On the contrary, average CT had the least deviation (-4.7% ± 9.8%). When comparing with 4DCT, all the CT techniques underestimated ITV. In the absence of 4DCT, the HF-CBCT target volumes with appropriate margin may be a reasonable approach for defining the ITV.
NASA Astrophysics Data System (ADS)
Ansari, Muhammad Ahsan; Zai, Sammer; Moon, Young Shik
2017-01-01
Manual analysis of the bulk data generated by computed tomography angiography (CTA) is time consuming, and interpretation of such data requires previous knowledge and expertise of the radiologist. Therefore, an automatic method that can isolate the coronary arteries from a given CTA dataset is required. We present an automatic yet effective segmentation method to delineate the coronary arteries from a three-dimensional CTA data cloud. Instead of a region growing process, which is usually time consuming and prone to leakages, the method is based on the optimal thresholding, which is applied globally on the Hessian-based vesselness measure in a localized way (slice by slice) to track the coronaries carefully to their distal ends. Moreover, to make the process automatic, we detect the aorta using the Hough transform technique. The proposed segmentation method is independent of the starting point to initiate its process and is fast in the sense that coronary arteries are obtained without any preprocessing or postprocessing steps. We used 12 real clinical datasets to show the efficiency and accuracy of the presented method. Experimental results reveal that the proposed method achieves 95% average accuracy.
Automated breast segmentation in ultrasound computer tomography SAFT images
NASA Astrophysics Data System (ADS)
Hopp, T.; You, W.; Zapf, M.; Tan, W. Y.; Gemmeke, H.; Ruiter, N. V.
2017-03-01
Ultrasound Computer Tomography (USCT) is a promising new imaging system for breast cancer diagnosis. An essential step before further processing is to remove the water background from the reconstructed images. In this paper we present a fully-automated image segmentation method based on three-dimensional active contours. The active contour method is extended by applying gradient vector flow and encoding the USCT aperture characteristics as additional weighting terms. A surface detection algorithm based on a ray model is developed to initialize the active contour, which is iteratively deformed to capture the breast outline in USCT reflection images. The evaluation with synthetic data showed that the method is able to cope with noisy images, and is not influenced by the position of the breast and the presence of scattering objects within the breast. The proposed method was applied to 14 in-vivo images resulting in an average surface deviation from a manual segmentation of 2.7 mm. We conclude that automated segmentation of USCT reflection images is feasible and produces results comparable to a manual segmentation. By applying the proposed method, reproducible segmentation results can be obtained without manual interaction by an expert.
NASA Astrophysics Data System (ADS)
Cânjǎu, Silvana; Todea, Carmen; Sinescu, Cosmin; Negrutiu, Meda L.; Duma, Virgil; Mǎnescu, Adrian; Topalǎ, Florin I.; Podoleanu, Adrian Gh.
2013-06-01
The efforts aimed at early diagnosis of oral cancer should be prioritized towards developing a new screening instrument, based on optical coherence tomography (OCT), to be used directly intraorally, able to perform a fast, real time, 3D and non-invasive diagnosis of oral malignancies. The first step in this direction would be to optimize the OCT image interpretation of oral tissues. Therefore we propose plastination as a tissue preparation method that better preserves three-dimensional structure for study by new optical imaging techniques. The OCT and the synchrotron radiation computed microtomography (micro-CT) were employed for tissue sample analyze. For validating the OCT results we used the gold standard diagnostic procedure for any suspicious lesion - histopathology. This is a preliminary study of comparing features provided by OCT and Micro-CT. In the conditions of the present study, OCT proves to be a highly promising imaging modality. The use of x-ray based topographic imaging of small biological samples has been limited by the low intrinsic x-ray absorption of non-mineralized tissue and the lack of established contrast agents. Plastination can be used to enhance optical imagies of oral soft tissue samples.
NASA Astrophysics Data System (ADS)
Dziadowiec, Iwona; Beckmann, Felix; Schulz, Georg; Deyhle, Hans; Müller, Bert
2014-09-01
In a dental office, every day X rays of teeth within the oral cavity are obtained. Caries induces a mineral loss and, therefore, becomes visible by reduced X-ray absorption. The detailed spatial distribution of the mineral loss, however, is inaccessible in conventional dental radiology, since the dose for such studies is intolerable. As a consequence, such measurements can only be performed after tooth extraction. We have taken advantage of synchrotron radiation-based micro computed tomography to characterize a human tooth with a rather small, natural caries lesion and an artificially induced lesion provoked by acidic etching. Both halves of the tooth were separately visualized from 2400 radiographs recorded at the beam line P07 / PETRA III (HASYLAB at DESY, Hamburg, Germany) with an asymmetric rotation axis at photon energy of 45 keV. Because of the setup, one finds an energy shift in the horizontal plane, to be corrected. After the appropriate three-dimensional registration of the data with the ones of the same crown using the better accessible phoenix nanotom® m of General Electric, Wunstorf, Germany, one can determine the joint histogram, which enable to calibrate the system with the conventional X-ray source.
Hybrid setup for micro- and nano-computed tomography in the hard X-ray range
NASA Astrophysics Data System (ADS)
Fella, Christian; Balles, Andreas; Hanke, Randolf; Last, Arndt; Zabler, Simon
2017-12-01
With increasing miniaturization in industry and medical technology, non-destructive testing techniques are an area of ever-increasing importance. In this framework, X-ray microscopy offers an efficient tool for the analysis, understanding, and quality assurance of microscopic samples, in particular as it allows reconstructing three-dimensional data sets of the whole sample's volume via computed tomography (CT). The following article describes a compact X-ray microscope in the hard X-ray regime around 9 keV, based on a highly brilliant liquid-metal-jet source. In comparison to commercially available instruments, it is a hybrid that works in two different modes. The first one is a micro-CT mode without optics, which uses a high-resolution detector to allow scans of samples in the millimeter range with a resolution of 1 μm. The second mode is a microscope, which contains an X-ray optical element to magnify the sample and allows resolving 150 nm features. Changing between the modes is possible without moving the sample. Thus, the instrument represents an important step towards establishing high-resolution laboratory-based multi-mode X-ray microscopy as a standard investigation method.
Ali, Amir Monir
2018-01-01
The aim of the study was to evaluate the commercially available orthopedic metal artifact reduction (OMAR) technique in postoperative three-dimensional computed tomography (3DCT) reconstruction studies after spinal instrumentation and to investigate its clinical application. One hundred and twenty (120) patients with spinal metallic implants were included in the study. All had 3DCT reconstruction examinations using the OMAR software after obtaining the informed consents and approval of the Institution Ethical Committee. The degree of the artifacts, the related muscular density, the clearness of intermuscular fat planes, and definition of the adjacent vertebrae were qualitatively evaluated. The diagnostic satisfaction and quality of the 3D reconstruction images were thoroughly assessed. The majority (96.7%) of 3DCT reconstruction images performed were considered satisfactory to excellent for diagnosis. Only 3.3% of the reconstructed images had rendered unacceptable diagnostic quality. OMAR can effectively reduce metallic artifacts in patients with spinal instrumentation with highly diagnostic 3DCT reconstruction images.
Dimensional Changes of Fresh Sockets With Reactive Soft Tissue Preservation: A Cone Beam CT Study.
Crespi, Roberto; Capparé, Paolo; Crespi, Giovanni; Gastaldi, Giorgio; Gherlone, Enrico Felice
2017-06-01
The aim of this study was to assess dimensional changes of the fresh sockets grafted with collagen sheets and maintenance of reactive soft tissue, using cone beam computed tomography (CBCT). Tooth extractions were performed with maximum preservation of the alveolar housing, reactive soft tissue was left into the sockets and collagen sheets filled bone defects. Cone beam computed tomography were performed before and 3 months after extractions. One hundred forty-five teeth, 60 monoradiculars and 85 molars, were extracted. In total, 269 alveoli were evaluated. In Group A, not statistically significant differences were found between monoradiculars, whereas statistically significant differences (P < 0.05) were found between molars, both for mesial and distal alveoli. In Group B, not statistically significant differences were found between maxillary and mandibular bone changes values (P > 0.05) for all types of teeth. This study reported an atraumatic tooth extraction, reactive soft tissue left in situ, and grafted collagen sponge may be helpful to reduce fresh socket collapse after extraction procedures.
Analysis of micro computed tomography images; a look inside historic enamelled metal objects
NASA Astrophysics Data System (ADS)
van der Linden, Veerle; van de Casteele, Elke; Thomas, Mienke Simon; de Vos, Annemie; Janssen, Elsje; Janssens, Koen
2010-02-01
In this study the usefulness of micro-Computed Tomography (µ-CT) for the in-depth analysis of enamelled metal objects was tested. Usually investigations of enamelled metal artefacts are restricted to non-destructive surface analysis or analysis of cross sections after destructive sampling. Radiography, a commonly used technique in the field of cultural heritage studies, is limited to providing two-dimensional information about a three-dimensional object (Lang and Middleton, Radiography of Cultural Material, pp. 60-61, Elsevier-Butterworth-Heinemann, Amsterdam-Stoneham-London, 2005). Obtaining virtual slices and information about the internal structure of these objects was made possible by CT analysis. With this technique the underlying metal work was studied without removing the decorative enamel layer. Moreover visible defects such as cracks were measured in both width and depth and as of yet invisible defects and weaker areas are visualised. All these features are of great interest to restorers and conservators as they allow a view inside these objects without so much as touching them.
X-ray computed tomography for additive manufacturing: a review
NASA Astrophysics Data System (ADS)
Thompson, A.; Maskery, I.; Leach, R. K.
2016-07-01
In this review, the use of x-ray computed tomography (XCT) is examined, identifying the requirement for volumetric dimensional measurements in industrial verification of additively manufactured (AM) parts. The XCT technology and AM processes are summarised, and their historical use is documented. The use of XCT and AM as tools for medical reverse engineering is discussed, and the transition of XCT from a tool used solely for imaging to a vital metrological instrument is documented. The current states of the combined technologies are then examined in detail, separated into porosity measurements and general dimensional measurements. In the conclusions of this review, the limitation of resolution on improvement of porosity measurements and the lack of research regarding the measurement of surface texture are identified as the primary barriers to ongoing adoption of XCT in AM. The limitations of both AM and XCT regarding slow speeds and high costs, when compared to other manufacturing and measurement techniques, are also noted as general barriers to continued adoption of XCT and AM.
Quantitative 3D reconstruction of airway and pulmonary vascular trees using HRCT
NASA Astrophysics Data System (ADS)
Wood, Susan A.; Hoford, John D.; Hoffman, Eric A.; Zerhouni, Elias A.; Mitzner, Wayne A.
1993-07-01
Accurate quantitative measurements of airway and vascular dimensions are essential to evaluate function in the normal and diseased lung. In this report, a novel method is described for three-dimensional extraction and analysis of pulmonary tree structures using data from High Resolution Computed Tomography (HRCT). Serially scanned two-dimensional slices of the lower left lobe of isolated dog lungs were stacked to create a volume of data. Airway and vascular trees were three-dimensionally extracted using a three dimensional seeded region growing algorithm based on difference in CT number between wall and lumen. To obtain quantitative data, we reduced each tree to its central axis. From the central axis, branch length is measured as the distance between two successive branch points, branch angle is measured as the angle produced by two daughter branches, and cross sectional area is measured from a plane perpendicular to the central axis point. Data derived from these methods can be used to localize and quantify structural differences both during changing physiologic conditions and in pathologic lungs.
Kim, Sang-Rok; Lee, Kyung-Min; Cho, Jin-Hyoung; Hwang, Hyeon-Shik
2016-04-01
An anatomical relationship between the hard and soft tissues of the face is mandatory for facial reconstruction. The purpose of this study was to investigate the positions of the eyeball and canthi three-dimensionally from the relationships between the facial hard and soft tissues using cone-beam computed tomography (CBCT). CBCT scan data of 100 living subjects were used to obtain the measurements of facial hard and soft tissues. Stepwise multiple regression analyses were carried out using the hard tissue measurements in the orbit, nasal bone, nasal cavity and maxillary canine to predict the most probable positions of the eyeball and canthi within the orbit. Orbital width, orbital height, and orbital depth were strong predictors of the eyeball and canthi position. Intercanine width was also a predictor of the mediolateral position of the eyeball. Statistically significant regression models for the positions of the eyeball and canthi could be derived from the measurements of orbit and maxillary canine. These results suggest that CBCT data can be useful in predicting the positions of the eyeball and canthi three-dimensionally. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Komini Babu, Siddharth; Mohamed, Alexander I.; Whitacre, Jay F.; Litster, Shawn
2015-06-01
This paper presents the use of nanometer scale resolution X-ray computed tomography (nano-CT) in the three-dimensional (3D) imaging of a Li-ion battery cathode, including the separate volumes of active material, binder plus conductive additive, and pore. The different high and low atomic number (Z) materials are distinguished by sequentially imaging the lithium cobalt oxide electrode in absorption and then Zernike phase contrast modes. Morphological parameters of the active material and the additives are extracted from the 3D reconstructions, including the distribution of contact areas between the additives and the active material. This method could provide a better understanding of the electric current distribution and structural integrity of battery electrodes, as well as provide detailed geometries for computational models.
Pham, D; Hardcastle, N; Foroudi, F; Kron, T; Bressel, M; Hilder, B; Chesson, B; Oates, R; Montgomery, R; Ball, D; Siva, S
2016-09-01
In technically advanced multicentre clinical trials, participating centres can benefit from a credentialing programme before participating in the trial. Education of staff in participating centres is an important aspect of a successful clinical trial. In the multicentre study of fractionated versus single fraction stereotactic ablative body radiotherapy in lung oligometastases (TROG 13.01), knowledge transfer of stereotactic ablative body radiotherapy techniques to the local multidisciplinary team is intended as part of the credentialing process. In this study, a web-based learning platform was developed to provide education and training for the multidisciplinary trial teams at geographically distinct sites. A web-based platform using eLearning software consisting of seven training modules was developed. These modules were based on extracranial stereotactic theory covering the following discrete modules: Clinical background; Planning technique and evaluation; Planning optimisation; Four-dimensional computed tomography simulation; Patient-specific quality assurance; Cone beam computed tomography and image guidance; Contouring organs at risk. Radiation oncologists, medical physicists and radiation therapists from hospitals in Australia and New Zealand were invited to participate in this study. Each discipline was enrolled into a subset of modules (core modules) and was evaluated before and after completing each module. The effectiveness of the eLearning training will be evaluated based on (i) knowledge retention after participation in the web-based training and (ii) confidence evaluation after participation in the training. Evaluation consisted of a knowledge test and confidence evaluation using a Likert scale. In total, 130 participants were enrolled into the eLearning programme: 81 radiation therapists (62.3%), 27 medical physicists (20.8%) and 22 radiation oncologists (16.9%). There was an average absolute improvement of 14% in test score (P < 0.001) after learning. This score improvement compared with initial testing was also observed in the long-term testing (>4 weeks) after completing the modules (P < 0.001). For most there was significant increase in confidence (P < 0.001) after completing all the modules. Copyright © 2016 The Royal College of Radiologists. Published by Elsevier Ltd. All rights reserved.
Role of computed tomography angiography in detection and staging of small bowel carcinoid tumors
Bonekamp, David; Raman, Siva P; Horton, Karen M; Fishman, Elliot K
2015-01-01
Small-bowel carcinoid tumors are the most common form (42%) of gastrointestinal carcinoids, which by themselves comprise 70% of neuroendocrine tumors. Although primary small bowel neoplasms are overall rare (3%-6% of all gastrointestinal neoplasms), carcinoids still represent the second most common (20%-30%) primary small-bowel malignancy after small bowel adenocarcinoma. Their imaging evaluation is often challenging. State-of-the-art high-resolution multiphasic computed tomography together with advanced postprocessing methods provides an excellent tool for their depiction. The manifold interactive parameter choices however require knowledge of when to use which technique. Here, we discuss the imaging appearance and evaluation of duodenal, jejunal and ileal carcinoid tumors, including the imaging features of the primary tumor, locoregional mesenteric nodal metastases, and distant metastatic disease. A protocol for optimal lesion detection is presented, including the use of computed tomography enterography, volume acquisition, computed tomography angiography and three-dimensional mapping. Imaging findings are illustrated with a series of challenging cases which illustrate the spectrum of possible disease in the small bowel and mesentery, the range of possible appearances in the bowel itself on multiphase data and extraluminal findings such as the desmoplastic reaction in mesentery and hypervascular liver metastases. Typical imaging pitfalls and pearls are illustrated. PMID:26435774
NASA Technical Reports Server (NTRS)
Dulikravich, D. S.
1982-01-01
A fast computer program, GRID3C, was developed to generate multilevel three dimensional, C type, periodic, boundary conforming grids for the calculation of realistic turbomachinery and propeller flow fields. The technique is based on two analytic functions that conformally map a cascade of semi-infinite slits to a cascade of doubly infinite strips on different Riemann sheets. Up to four consecutively refined three dimensional grids are automatically generated and permanently stored on four different computer tapes. Grid nonorthogonality is introduced by a separate coordinate shearing and stretching performed in each of three coordinate directions. The grids are easily clustered closer to the blade surface, the trailing and leading edges and the hub or shroud regions by changing appropriate input parameters. Hub and duct (or outer free boundary) have different axisymmetric shapes. A vortex sheet of arbitrary thickness emanating smoothly from the blade trailing edge is generated automatically by GRID3C. Blade cross sectional shape, chord length, twist angle, sweep angle, and dihedral angle can vary in an arbitrary smooth fashion in the spanwise direction.
Comparison of digital intraoral scanners by single-image capture system and full-color movie system.
Yamamoto, Meguru; Kataoka, Yu; Manabe, Atsufumi
2017-01-01
The use of dental computer-aided design/computer-aided manufacturing (CAD/CAM) restoration is rapidly increasing. This study was performed to evaluate the marginal and internal cement thickness and the adhesive gap of internal cavities comprising CAD/CAM materials using two digital impression acquisition methods and micro-computed tomography. Images obtained by a single-image acquisition system (Bluecam Ver. 4.0) and a full-color video acquisition system (Omnicam Ver. 4.2) were divided into the BL and OM groups, respectively. Silicone impressions were prepared from an ISO-standard metal mold, and CEREC Stone BC and New Fuji Rock IMP were used to create working models (n=20) in the BL and OM groups (n=10 per group), respectively. Individual inlays were designed in a conventional manner using designated software, and all restorations were prepared using CEREC inLab MC XL. These were assembled with the corresponding working models used for measurement, and the level of fit was examined by three-dimensional analysis based on micro-computed tomography. Significant differences in the marginal and internal cement thickness and adhesive gap spacing were found between the OM and BL groups. The full-color movie capture system appears to be a more optimal restoration system than the single-image capture system.
Narayanan, Harish; Viana, Fabiano F; Smith, Julian A; Roumeliotis, Nicholas K; Troupis, Christopher J; Crossett, Marcus P; Troupis, John M
2015-10-01
Repeat cardiac surgeries are well known to have higher rates of complications, one of the important reasons being injuries associated with re-do sternotomy. Routine imaging with CT can help to minimise this risk by pre-operatively assessing the anatomical relation between the sternum and the underlying cardiovascular structures, but is limited by its inability to determine the presence and severity of functional tethering and adhesions between these structures. However, with the evolution of wide area detector MD CT scanners, it is possible to assess the presence of tethering using the dynamic four-dimensional CT (4D CT) imaging technique. Nineteen patients undergoing re-do cardiac surgery were pre-operatively imaged using dynamic 4D CT during regulated respiration. The datasets were assessed in cine mode for presence of differential motion between sternum and underlying cardiovascular structures which indicates lack of significant tethering. Overall, there was excellent correlation between preoperative imaging and intraoperative findings. The technique enabled our surgeons to meticulously plan the procedures and to avoid re-entry related injuries. Our initial experience shows that dynamic 4D CT is useful in risk stratification prior to re-do sternotomy by determining the presence or absence of tethering between sternum and underlying structures based on assessment of differential motion. Furthermore we determined the technique to be superior to non-dynamic assessment of retrocardiac tethering. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.
Registration of clinical volumes to beams-eye-view images for real-time tracking
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bryant, Jonathan H.; Rottmann, Joerg; Lewis, John H.
2014-12-15
Purpose: The authors combine the registration of 2D beam’s eye view (BEV) images and 3D planning computed tomography (CT) images, with relative, markerless tumor tracking to provide automatic absolute tracking of physician defined volumes such as the gross tumor volume (GTV). Methods: During treatment of lung SBRT cases, BEV images were continuously acquired with an electronic portal imaging device (EPID) operating in cine mode. For absolute registration of physician-defined volumes, an intensity based 2D/3D registration to the planning CT was performed using the end-of-exhale (EoE) phase of the four dimensional computed tomography (4DCT). The volume was converted from Hounsfield unitsmore » into electron density by a calibration curve and digitally reconstructed radiographs (DRRs) were generated for each beam geometry. Using normalized cross correlation between the DRR and an EoE BEV image, the best in-plane rigid transformation was found. The transformation was applied to physician-defined contours in the planning CT, mapping them into the EPID image domain. A robust multiregion method of relative markerless lung tumor tracking quantified deviations from the EoE position. Results: The success of 2D/3D registration was demonstrated at the EoE breathing phase. By registering at this phase and then employing a separate technique for relative tracking, the authors are able to successfully track target volumes in the BEV images throughout the entire treatment delivery. Conclusions: Through the combination of EPID/4DCT registration and relative tracking, a necessary step toward the clinical implementation of BEV tracking has been completed. The knowledge of tumor volumes relative to the treatment field is important for future applications like real-time motion management, adaptive radiotherapy, and delivered dose calculations.« less
NASA Astrophysics Data System (ADS)
Bormann, Therese; de Wild, Michael; Beckmann, Felix; Müller, Bert
2013-04-01
NiTi is promising for the use as bone scaffold, because the pseudoelasticity or the one- and two-way shape memory effect in the physiological window can mechanically stimulate the adherent cells. Such stimuli can enhance osseointegration and might reduce stress shielding associated with load bearing implants. The present study is based on the additive manufacturing technique of selective laser melting (SLM) to fabricate three-dimensional NiTi scaffolds. We demonstrate that the morphology of the scaffolds can be quantified using synchrotron radiation-based micro computed tomography (SRμCT) and sophisticated registration software. Comparing the CAD file with the SLM scaffolds, quality factors are derived. With respect to the CAD file, the overlap corresponds to (92.5 +/- 0.6) %. (7.4 +/- 0.42) % of material was missing and (48.9 +/- 2.3) % of excess material found. This means that the actual scaffold is less porous than expected, a fact that has to be considered for the scaffold design. In order to quantify the shape memory effect during the shape recovery process, we acquired radiographs rotating an initially deformed scaffold in angular steps of 0.2 degree during controlled heating. The continuously acquired radiographs were combined to tomography data, showing that the quality factors evolved with temperature as the scaffold height, measured by conventional thermo-mechanical analysis. Furthermore, the data comprise the presence of compressive and tensile local strains in the three-dimensional scaffolds to be compared with the physiological situation.
de Dumast, Priscille; Mirabel, Clément; Cevidanes, Lucia; Ruellas, Antonio; Yatabe, Marilia; Ioshida, Marcos; Ribera, Nina Tubau; Michoud, Loic; Gomes, Liliane; Huang, Chao; Zhu, Hongtu; Muniz, Luciana; Shoukri, Brandon; Paniagua, Beatriz; Styner, Martin; Pieper, Steve; Budin, Francois; Vimort, Jean-Baptiste; Pascal, Laura; Prieto, Juan Carlos
2018-07-01
The purpose of this study is to describe the methodological innovations of a web-based system for storage, integration and computation of biomedical data, using a training imaging dataset to remotely compute a deep neural network classifier of temporomandibular joint osteoarthritis (TMJOA). This study imaging dataset consisted of three-dimensional (3D) surface meshes of mandibular condyles constructed from cone beam computed tomography (CBCT) scans. The training dataset consisted of 259 condyles, 105 from control subjects and 154 from patients with diagnosis of TMJ OA. For the image analysis classification, 34 right and left condyles from 17 patients (39.9 ± 11.7 years), who experienced signs and symptoms of the disease for less than 5 years, were included as the testing dataset. For the integrative statistical model of clinical, biological and imaging markers, the sample consisted of the same 17 test OA subjects and 17 age and sex matched control subjects (39.4 ± 15.4 years), who did not show any sign or symptom of OA. For these 34 subjects, a standardized clinical questionnaire, blood and saliva samples were also collected. The technological methodologies in this study include a deep neural network classifier of 3D condylar morphology (ShapeVariationAnalyzer, SVA), and a flexible web-based system for data storage, computation and integration (DSCI) of high dimensional imaging, clinical, and biological data. The DSCI system trained and tested the neural network, indicating 5 stages of structural degenerative changes in condylar morphology in the TMJ with 91% close agreement between the clinician consensus and the SVA classifier. The DSCI remotely ran with a novel application of a statistical analysis, the Multivariate Functional Shape Data Analysis, that computed high dimensional correlations between shape 3D coordinates, clinical pain levels and levels of biological markers, and then graphically displayed the computation results. The findings of this study demonstrate a comprehensive phenotypic characterization of TMJ health and disease at clinical, imaging and biological levels, using novel flexible and versatile open-source tools for a web-based system that provides advanced shape statistical analysis and a neural network based classification of temporomandibular joint osteoarthritis. Published by Elsevier Ltd.
Role of Cone Beam Computed Tomography in Diagnosis and Treatment Planning in Dentistry: An Update.
Shukla, Sagrika; Chug, Ashi; Afrashtehfar, Kelvin I
2017-11-01
Accurate diagnosis and treatment planning are the backbone of any medical therapy; for this reason, cone beam computed tomography (CBCT) was introduced and has been widely used. CBCT technology provides a three-dimensional image viewing, enabling exact location and extent of lesions or any anatomical region. For the very same reason, CBCT can not only be used for surgical fields but also for fields such as endodontics, prosthodontics, and orthodontics for appropriate treatment planning and effective dental care. The aim and clinical significance of this review are to update dental clinicians on the CBCT applications in each dental specialty for an appropriate diagnosis and more predictable treatment.
NASA Astrophysics Data System (ADS)
Hu, Long; Tao, Guoquan; Liu, Zhenguo; Wang, Yibo; Ya, Jixuan
2018-04-01
The influence of yarn squeezing effect on the geometric morphology and mechanical property of the three dimensional full five directional (3DF5D) braided composites is explored. Spatial path and cross-section shape of the yarns in the braided structure are characterized based on the micro computed tomography (micro CT) scanning images. The yarn distortion due to the squeezing effect is discussed and mathematical morphology of the yarn geometry is established. A new repeated unit cell (RUC) model of 3DF5D braided composites considering yarn squeezing effect is developed. Based on this model, mechanical properties of 3DF5D braided composites are analyzed. Good agreement is obtained between the predicted and experiment results. Moreover, the stress distribution of the new RUC model are compared with original RUC model, showing that the squeezing effect significantly increases the stress concentration level of the axial yarns.
HeinzelCluster: accelerated reconstruction for FORE and OSEM3D.
Vollmar, S; Michel, C; Treffert, J T; Newport, D F; Casey, M; Knöss, C; Wienhard, K; Liu, X; Defrise, M; Heiss, W D
2002-08-07
Using iterative three-dimensional (3D) reconstruction techniques for reconstruction of positron emission tomography (PET) is not feasible on most single-processor machines due to the excessive computing time needed, especially so for the large sinogram sizes of our high-resolution research tomograph (HRRT). In our first approach to speed up reconstruction time we transform the 3D scan into the format of a two-dimensional (2D) scan with sinograms that can be reconstructed independently using Fourier rebinning (FORE) and a fast 2D reconstruction method. On our dedicated reconstruction cluster (seven four-processor systems, Intel PIII@700 MHz, switched fast ethernet and Myrinet, Windows NT Server), we process these 2D sinograms in parallel. We have achieved a speedup > 23 using 26 processors and also compared results for different communication methods (RPC, Syngo, Myrinet GM). The other approach is to parallelize OSEM3D (implementation of C Michel), which has produced the best results for HRRT data so far and is more suitable for an adequate treatment of the sinogram gaps that result from the detector geometry of the HRRT. We have implemented two levels of parallelization for four dedicated cluster (a shared memory fine-grain level on each node utilizing all four processors and a coarse-grain level allowing for 15 nodes) reducing the time for one core iteration from over 7 h to about 35 min.
Micro-computed tomography pore-scale study of flow in porous media: Effect of voxel resolution
NASA Astrophysics Data System (ADS)
Shah, S. M.; Gray, F.; Crawshaw, J. P.; Boek, E. S.
2016-09-01
A fundamental understanding of flow in porous media at the pore-scale is necessary to be able to upscale average displacement processes from core to reservoir scale. The study of fluid flow in porous media at the pore-scale consists of two key procedures: Imaging - reconstruction of three-dimensional (3D) pore space images; and modelling such as with single and two-phase flow simulations with Lattice-Boltzmann (LB) or Pore-Network (PN) Modelling. Here we analyse pore-scale results to predict petrophysical properties such as porosity, single-phase permeability and multi-phase properties at different length scales. The fundamental issue is to understand the image resolution dependency of transport properties, in order to up-scale the flow physics from pore to core scale. In this work, we use a high resolution micro-computed tomography (micro-CT) scanner to image and reconstruct three dimensional pore-scale images of five sandstones (Bentheimer, Berea, Clashach, Doddington and Stainton) and five complex carbonates (Ketton, Estaillades, Middle Eastern sample 3, Middle Eastern sample 5 and Indiana Limestone 1) at four different voxel resolutions (4.4 μm, 6.2 μm, 8.3 μm and 10.2 μm), scanning the same physical field of view. Implementing three phase segmentation (macro-pore phase, intermediate phase and grain phase) on pore-scale images helps to understand the importance of connected macro-porosity in the fluid flow for the samples studied. We then compute the petrophysical properties for all the samples using PN and LB simulations in order to study the influence of voxel resolution on petrophysical properties. We then introduce a numerical coarsening scheme which is used to coarsen a high voxel resolution image (4.4 μm) to lower resolutions (6.2 μm, 8.3 μm and 10.2 μm) and study the impact of coarsening data on macroscopic and multi-phase properties. Numerical coarsening of high resolution data is found to be superior to using a lower resolution scan because it avoids the problem of partial volume effects and reduces the scaling effect by preserving the pore-space properties influencing the transport properties. This is evidently compared in this study by predicting several pore network properties such as number of pores and throats, average pore and throat radius and coordination number for both scan based analysis and numerical coarsened data.
Jia, Xiaoyang; Chen, Yanxi; Qiang, Minfei; Zhang, Kun; Li, Haobo; Jiang, Yuchen; Zhang, Yijie
2016-07-15
Accurate comprehension of the normal humeral morphology is crucial for anatomical reconstruction in shoulder arthroplasty. However, traditional morphological measurements for humerus were mainly based on cadaver and radiography. The purpose of this study was to provide a series of precise and repeatable parameters of the normal proximal humerus for arthroplasty, based on the three-dimensional (3-D) measurements. Radiographic and 3-D computed tomography (CT) measurements of the proximal humerus were performed in a sample of 120 consecutive adults. Sex differences, two image modalities differences, and correlations of the parameters were evaluated. Intra- and inter-observer reproducibility was evaluated using intraclass correlation coefficients (ICCs). In the male group, all parameters except the neck-shaft angle of humerus, based on 3-D CT images, were greater than those in the female group (P < 0.05). All variables were significantly different between two image modalities (P < 0.05). In 3-D CT measurement, all parameters expect neck-shaft angle had correlation with each other (P < 0.001), particularly between two diameters of the humeral head (r = 0.907). All parameters in the 3-D CT measurement had excellent reproducibility (ICC range, 0.878 to 0.936) that was higher than those in the radiographs (ICC range, 0.741 to 0.858). The present study suggested that 3-D CT was more reproducible than plain radiography in the assessment of morphology of the normal proximal humerus. Therefore, this reproducible modality could be utilized in the preoperative planning. Our data could serve as an effective guideline for humeral component selection and improve the design of shoulder prosthesis.
NASA Astrophysics Data System (ADS)
van Oosterom, Matthias Nathanaël; Engelen, Myrthe Adriana; van den Berg, Nynke Sjoerdtje; KleinJan, Gijs Hendrik; van der Poel, Henk Gerrit; Wendler, Thomas; van de Velde, Cornelis Jan Hadde; Navab, Nassir; van Leeuwen, Fijs Willem Bernhard
2016-08-01
Robot-assisted laparoscopic surgery is becoming an established technique for prostatectomy and is increasingly being explored for other types of cancer. Linking intraoperative imaging techniques, such as fluorescence guidance, with the three-dimensional insights provided by preoperative imaging remains a challenge. Navigation technologies may provide a solution, especially when directly linked to both the robotic setup and the fluorescence laparoscope. We evaluated the feasibility of such a setup. Preoperative single-photon emission computed tomography/X-ray computed tomography (SPECT/CT) or intraoperative freehand SPECT (fhSPECT) scans were used to navigate an optically tracked robot-integrated fluorescence laparoscope via an augmented reality overlay in the laparoscopic video feed. The navigation accuracy was evaluated in soft tissue phantoms, followed by studies in a human-like torso phantom. Navigation accuracies found for SPECT/CT-based navigation were 2.25 mm (coronal) and 2.08 mm (sagittal). For fhSPECT-based navigation, these were 1.92 mm (coronal) and 2.83 mm (sagittal). All errors remained below the <1-cm detection limit for fluorescence imaging, allowing refinement of the navigation process using fluorescence findings. The phantom experiments performed suggest that SPECT-based navigation of the robot-integrated fluorescence laparoscope is feasible and may aid fluorescence-guided surgery procedures.
A fast 4D cone beam CT reconstruction method based on the OSC-TV algorithm.
Mascolo-Fortin, Julia; Matenine, Dmitri; Archambault, Louis; Després, Philippe
2018-01-01
Four-dimensional cone beam computed tomography allows for temporally resolved imaging with useful applications in radiotherapy, but raises particular challenges in terms of image quality and computation time. The purpose of this work is to develop a fast and accurate 4D algorithm by adapting a GPU-accelerated ordered subsets convex algorithm (OSC), combined with the total variation minimization regularization technique (TV). Different initialization schemes were studied to adapt the OSC-TV algorithm to 4D reconstruction: each respiratory phase was initialized either with a 3D reconstruction or a blank image. Reconstruction algorithms were tested on a dynamic numerical phantom and on a clinical dataset. 4D iterations were implemented for a cluster of 8 GPUs. All developed methods allowed for an adequate visualization of the respiratory movement and compared favorably to the McKinnon-Bates and adaptive steepest descent projection onto convex sets algorithms, while the 4D reconstructions initialized from a prior 3D reconstruction led to better overall image quality. The most suitable adaptation of OSC-TV to 4D CBCT was found to be a combination of a prior FDK reconstruction and a 4D OSC-TV reconstruction with a reconstruction time of 4.5 minutes. This relatively short reconstruction time could facilitate a clinical use.
Qian, Zeng-Hui; Feng, Xu; Li, Yang; Tang, Ke
2018-01-01
Studying the three-dimensional (3D) anatomy of the cavernous sinus is essential for treating lesions in this region with skull base surgeries. Cadaver dissection is a conventional method that has insurmountable flaws with regard to understanding spatial anatomy. The authors' research aimed to build an image model of the cavernous sinus region in a virtual reality system to precisely, individually and objectively elucidate the complete and local stereo-anatomy. Computed tomography and magnetic resonance imaging scans were performed on 5 adult cadaver heads. Latex mixed with contrast agent was injected into the arterial system and then into the venous system. Computed tomography scans were performed again following the 2 injections. Magnetic resonance imaging scans were performed again after the cranial nerves were exposed. Image data were input into a virtual reality system to establish a model of the cavernous sinus. Observation results of the image models were compared with those of the cadaver heads. Visualization of the cavernous sinus region models built using the virtual reality system was good for all the cadavers. High resolutions were achieved for the images of different tissues. The observed results were consistent with those of the cadaver head. The spatial architecture and modality of the cavernous sinus were clearly displayed in the 3D model by rotating the model and conveniently changing its transparency. A 3D virtual reality model of the cavernous sinus region is helpful for globally and objectively understanding anatomy. The observation procedure was accurate, convenient, noninvasive, and time and specimen saving.
Bayesian reconstruction and use of anatomical a priori information for emission tomography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowsher, J.E.; Johnson, V.E.; Turkington, T.G.
1996-10-01
A Bayesian method is presented for simultaneously segmenting and reconstructing emission computed tomography (ECT) images and for incorporating high-resolution, anatomical information into those reconstructions. The anatomical information is often available from other imaging modalities such as computed tomography (CT) or magnetic resonance imaging (MRI). The Bayesian procedure models the ECT radiopharmaceutical distribution as consisting of regions, such that radiopharmaceutical activity is similar throughout each region. It estimates the number of regions, the mean activity of each region, and the region classification and mean activity of each voxel. Anatomical information is incorporated by assigning higher prior probabilities to ECT segmentations inmore » which each ECT region stays within a single anatomical region. This approach is effective because anatomical tissue type often strongly influences radiopharmaceutical uptake. The Bayesian procedure is evaluated using physically acquired single-photon emission computed tomography (SPECT) projection data and MRI for the three-dimensional (3-D) Hoffman brain phantom. A clinically realistic count level is used. A cold lesion within the brain phantom is created during the SPECT scan but not during the MRI to demonstrate that the estimation procedure can detect ECT structure that is not present anatomically.« less
Single photon emission computed tomography and oth selected computer topics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Frey, G.D.
1981-07-01
This book, the proceedings of a meeting in January 1980, contains 21 papers. Thirteen are devoted to aspects of emission tomography, four to nuclear cardiology, and five to other topics. The initial set of papers consists of reviews of the single photon emission tomography process. These include transverse axial tomography using scintillation cameras and other devices, longitudinal section tomography, and pin-hole and slant-hole systems. These reviews are generally well done, but as might be expected, lack any coherence from paper to paper. The papers on nuclear cardiology include several of Fourier analysis in nuclear cardiology and one on shunt quantification.more » Other clinical papers are on quantifying Tc-99m glucoheptonate uptake in the brain and on iron-59 retention studies. A general criticism of the book is the poor quality of photographic reproductions.« less
Estimation of Noise Properties for TV-regularized Image Reconstruction in Computed Tomography
Sánchez, Adrian A.
2016-01-01
A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR. PMID:26308968
Estimation of noise properties for TV-regularized image reconstruction in computed tomography.
Sánchez, Adrian A
2015-09-21
A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128 × 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.
Estimation of noise properties for TV-regularized image reconstruction in computed tomography
NASA Astrophysics Data System (ADS)
Sánchez, Adrian A.
2015-09-01
A method for predicting the image covariance resulting from total-variation-penalized iterative image reconstruction (TV-penalized IIR) is presented and demonstrated in a variety of contexts. The method is validated against the sample covariance from statistical noise realizations for a small image using a variety of comparison metrics. Potential applications for the covariance approximation include investigation of image properties such as object- and signal-dependence of noise, and noise stationarity. These applications are demonstrated, along with the construction of image pixel variance maps for two-dimensional 128× 128 pixel images. Methods for extending the proposed covariance approximation to larger images and improving computational efficiency are discussed. Future work will apply the developed methodology to the construction of task-based image quality metrics such as the Hotelling observer detectability for TV-based IIR.
NASA Astrophysics Data System (ADS)
Brenders, A. J.; Pratt, R. G.
2007-01-01
We provide a series of numerical experiments designed to test waveform tomography under (i) a reduction in the number of input data frequency components (`efficient' waveform tomography), (ii) sparse spatial subsampling of the input data and (iii) an increase in the minimum data frequency used. These results extend the waveform tomography results of a companion paper, using the same third-party, 2-D, wide-angle, synthetic viscoelastic seismic data, computed in a crustal geology model 250 km long and 40 km deep, with heterogeneous P-velocity, S-velocity, density and Q-factor structure. Accurate velocity models were obtained using efficient waveform tomography and only four carefully selected frequency components of the input data: 0.8, 1.7, 3.6 and 7.0 Hz. This strategy avoids the spectral redundancy present in `full' waveform tomography, and yields results that are comparable with those in the companion paper for an 88 per cent decrease in total computational cost. Because we use acoustic waveform tomography, the results further justify the use of the acoustic wave equation in calculating P-wave velocity models from viscoelastic data. The effect of using sparse survey geometries with efficient waveform tomography were investigated for both increased receiver spacing, and increased source spacing. Sampling theory formally requires spatial sampling at maximum interval of one half-wavelength (2.5 km at 0.8 Hz): For data with receivers every 0.9 km (conforming to this criterion), artefacts in the tomographic images were still minimal when the source spacing was as large as 7.6 km (three times the theoretical maximum). Larger source spacings led to an unacceptable degradation of the results. When increasing the starting frequency, image quality was progressively degraded. Acceptable image quality within the central portion of the model was nevertheless achieved using starting frequencies up to 3.0 Hz. At 3.0 Hz the maximum theoretical sample interval is reduced to 0.67 km due to the decreased wavelengths; the available sources were spaced every 5.0 km (more than seven times the theoretical maximum), and receivers were spaced every 0.9 km (1.3 times the theoretical maximum). Higher starting frequencies than 3.0 Hz again led to unacceptable degradation of the results.
Comprehensive Digital Imaging Network Project At Georgetown University Hospital
NASA Astrophysics Data System (ADS)
Mun, Seong K.; Stauffer, Douglas; Zeman, Robert; Benson, Harold; Wang, Paul; Allman, Robert
1987-10-01
The radiology practice is going through rapid changes due to the introduction of state-of-the-art computed based technologies. For the last twenty years we have witnessed the introduction of many new medical diagnostic imaging systems such as x-ray computed tomo-graphy, digital subtraction angiography (DSA), computerized nuclear medicine, single pho-ton emission computed tomography (SPECT), positron emission tomography (PET) and more re-cently, computerized digital radiography and nuclear magnetic resonance imaging (MRI). Other than the imaging systems, there has been a steady introduction of computed based information systems for radiology departments and hospitals.
NASA Astrophysics Data System (ADS)
Tracy, Saoirse R.; Daly, Keith R.; Sturrock, Craig J.; Crout, Neil M. J.; Mooney, Sacha J.; Roose, Tiina
2016-07-01
In response to the comment raised by Zhang et al. (2016, doi: 10.1002/2015WR018432) we explore the differences in average velocity computed using slip and no-slip boundary conditions at the air water interface. We consider a porous medium in which the air phase acts to impede the movement of water rather than to lubricate it, a case closer to the observed distribution of water in our CT images. We find that, whilst the slip boundary condition may be a more accurate approximation, in cases where the air phase is seen to impede water movement the differences between the two approaches are negligible.
Computational high-resolution optical imaging of the living human retina
NASA Astrophysics Data System (ADS)
Shemonski, Nathan D.; South, Fredrick A.; Liu, Yuan-Zhi; Adie, Steven G.; Scott Carney, P.; Boppart, Stephen A.
2015-07-01
High-resolution in vivo imaging is of great importance for the fields of biology and medicine. The introduction of hardware-based adaptive optics (HAO) has pushed the limits of optical imaging, enabling high-resolution near diffraction-limited imaging of previously unresolvable structures. In ophthalmology, when combined with optical coherence tomography, HAO has enabled a detailed three-dimensional visualization of photoreceptor distributions and individual nerve fibre bundles in the living human retina. However, the introduction of HAO hardware and supporting software adds considerable complexity and cost to an imaging system, limiting the number of researchers and medical professionals who could benefit from the technology. Here we demonstrate a fully automated computational approach that enables high-resolution in vivo ophthalmic imaging without the need for HAO. The results demonstrate that computational methods in coherent microscopy are applicable in highly dynamic living systems.
NASA Astrophysics Data System (ADS)
Liu, Lu; Kamm, Paul; García-Moreno, Francisco; Banhart, John; Pasini, Damiano
2017-10-01
This paper examines three-dimensional metallic lattices with regular octet and rhombicuboctahedron units fabricated with geometric imperfections via Selective Laser Sintering. We use X-ray computed tomography to capture morphology, location, and distribution of process-induced defects with the aim of studying their role in the elastic response, damage initiation, and failure evolution under quasi-static compression. Testing results from in-situ compression tomography show that each lattice exhibits a distinct failure mechanism that is governed not only by cell topology but also by geometric defects induced by additive manufacturing. Extracted from X-ray tomography images, the statistical distributions of three sets of defects, namely strut waviness, strut thickness variation, and strut oversizing, are used to develop numerical models of statistically representative lattices with imperfect geometry. Elastic and failure responses are predicted within 10% agreement from the experimental data. In addition, a computational study is presented to shed light into the relationship between the amplitude of selected defects and the reduction of elastic properties compared to their nominal values. The evolution of failure mechanisms is also explained with respect to strut oversizing, a parameter that can critically cause failure mode transitions that are not visible in defect-free lattices.
NASA Astrophysics Data System (ADS)
Okawa, Shinpei; Hirasawa, Takeshi; Kushibiki, Toshihiro; Ishihara, Miya
2017-12-01
Quantitative photoacoustic tomography (QPAT) employing a light propagation model will play an important role in medical diagnoses by quantifying the concentration of hemoglobin or a contrast agent. However, QPAT by the light propagation model with the three-dimensional (3D) radiative transfer equation (RTE) requires a huge computational load in the iterative forward calculations involved in the updating process to reconstruct the absorption coefficient. The approximations of the light propagation improve the efficiency of the image reconstruction for the QPAT. In this study, we compared the 3D/two-dimensional (2D) photon diffusion equation (PDE) approximating 3D RTE with the Monte Carlo simulation based on 3D RTE. Then, the errors in a 2D PDE-based linearized image reconstruction caused by the approximations were quantitatively demonstrated and discussed in the numerical simulations. It was clearly observed that the approximations affected the reconstructed absorption coefficient. The 2D PDE-based linearized algorithm succeeded in the image reconstruction of the region with a large absorption coefficient in the 3D phantom. The value reconstructed in the phantom experiment agreed with that in the numerical simulation, so that it was validated that the numerical simulation of the image reconstruction predicted the relationship between the true absorption coefficient of the target in the 3D medium and the reconstructed value with the 2D PDE-based linearized algorithm. Moreover, the the true absorption coefficient in 3D medium was estimated from the 2D reconstructed image on the basis of the prediction by the numerical simulation. The estimation was successful in the phantom experiment, although some limitations were revealed.
Carrasco-Zevallos, Oscar M; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Seider, Michael I; Izatt, Joseph A; Toth, Cynthia A
2016-07-01
Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions.
Carrasco-Zevallos, Oscar M.; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Seider, Michael I.; Izatt, Joseph A.; Toth, Cynthia A.
2016-01-01
Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions. PMID:27409495
Three-dimensional holographic display of ultrasound computed tomograms
NASA Astrophysics Data System (ADS)
Andre, Michael P.; Janee, Helmar S.; Ysrael, Mariana Z.; Hodler, Jeurg; Olson, Linda K.; Leopold, George R.; Schulz, Raymond
1997-05-01
Breast ultrasound is a valuable adjunct to mammography but is limited by a very small field of view, particularly with high-resolution transducers necessary for breast diagnosis. We have been developing an ultrasound system based on a diffraction tomography method that provides slices through the breast on a large 20-cm diameter circular field of view. Eight to fifteen images are typically produced in sequential coronal planes from the nipple to the chest wall with either 0.25 or 0.5 mm pixels. As a means to simplify the interpretation of this large set of images, we report experience with 3D life-sized displays of the entire breast of human volunteers using a digital holographic technique. The compound 3D holographic images are produced from the digital image matrix, recorded on 14 X 17 inch transparency and projected on a special white-light viewbox. Holographic visualization of the entire breast has proved to be the preferred method for 3D display of ultrasound computed tomography images. It provides a unique perspective on breast anatomy and may prove useful for biopsy guidance and surgical planning.
Chen, Shuo; Liu, Xiao-jing; Li, Zi-li; Liang, Cheng; Wang, Xiao-xia; Fu, Kai-yuan; Yi, Biao
2015-08-18
To evaluate the effect of orthognathic surgery on condylar morphology changes by comparing three-dimension surface reconstructions of condyles using cone-beam computed tomography (CBCT) data. In the study, 18 patients with mandible retrognathism deformities were included and CBCT data of 36 temporomandibular joints were collected before surgery and 12 months after surgery. Condyles were reconstructed and superimposed pre- and post-operatively to compare the changes of condylar surfaces. One-sample t test and χ2 test were performed for the analysis of three-dimension metric measurement and condylar head remodeling signs. P<0.05 was considered significant. The root-mean-square (RMS) of condylar surface changes before and after the surgery was (0.37±0.11) mm, which was significant statistically (P<0.05). The distribution of condylar remodeling signs showed significant difference (P<0.05). Bone resorption occurred predominantly in the posterior area of condylar head and bone formation occurred mainly in the anterior area. Three-dimension superimposition method based on CBCT data showed that condylar morphology had undergone remodeling after mandibular advancement.
Applied anatomic site study of palatal anchorage implants using cone beam computed tomography.
Lai, Ren-fa; Zou, Hui; Kong, Wei-dong; Lin, Wei
2010-06-01
The purpose of this study was to conduct quantitative research on bone height and bone mineral density of palatal implant sites for implantation, and to provide reference sites for safe and stable palatal implants. Three-dimensional reformatting images were reconstructed by cone beam computed tomography (CBCT) in 34 patients, aged 18 to 35 years, using EZ Implant software. Bone height was measured at 20 sites of interest on the palate. Bone mineral density was measured at the 10 sites with the highest implantation rate, classified using K-mean cluster analysis based on bone height and bone mineral density. According to the cluster analysis, 10 sites were classified into three clusters. Significant differences in bone height and bone mineral density were detected between these three clusters (P<0.05). The greatest bone height was obtained in cluster 2, followed by cluster 1 and cluster 3. The highest bone mineral density was found in cluster 3, followed by cluster 1 and cluster 2. CBCT plays an important role in pre-surgical treatment planning. CBCT is helpful in identifying safe and stable implantation sites for palatal anchorage.
Rai, Arpita; Acharya, Ashith B; Naikmasur, Venkatesh G
2016-01-01
Age estimation of living or deceased individuals is an important aspect of forensic sciences. Conventionally, pulp-to-tooth area ratio (PTR) measured from periapical radiographs have been utilized as a nondestructive method of age estimation. Cone-beam computed tomography (CBCT) is a new method to acquire three-dimensional images of the teeth in living individuals. The present study investigated age estimation based on PTR of the maxillary canines measured in three planes obtained from CBCT image data. Sixty subjects aged 20-85 years were included in the study. For each tooth, mid-sagittal, mid-coronal, and three axial sections-cementoenamel junction (CEJ), one-fourth root level from CEJ, and mid-root-were assessed. PTR was calculated using AutoCAD software after outlining the pulp and tooth. All statistical analyses were performed using an SPSS 17.0 software program. Linear regression analysis showed that only PTR in axial plane at CEJ had significant age correlation ( r = 0.32; P < 0.05). This is probably because of clearer demarcation of pulp and tooth outline at this level.
Computed tomography image-guided surgery in complex acetabular fractures.
Brown, G A; Willis, M C; Firoozbakhsh, K; Barmada, A; Tessman, C L; Montgomery, A
2000-01-01
Eleven complex acetabular fractures in 10 patients were treated by open reduction with internal fixation incorporating computed tomography image guided software intraoperatively. Each of the implants placed under image guidance was found to be accurate and without penetration of the pelvis or joint space. The setup time for the system was minimal. Accuracy in the range of 1 mm was found when registration was precise (eight cases) and was in the range of 3.5 mm when registration was only approximate (three cases). Added benefits included reduced intraoperative fluoroscopic time, less need for more extensive dissection, and obviation of additional surgical approaches in some cases. Compared with a series of similar fractures treated before this image guided series, the reduction in operative time was significant. For patients with complex anterior and posterior combined fractures, the average operation times with and without application of three-dimensional imaging technique were, respectively, 5 hours 15 minutes and 6 hours 14 minutes, revealing 16% less operative time for those who had surgery using image guidance. In the single column fracture group, the operation time for those with three-dimensional imaging application, was 2 hours 58 minutes and for those with traditional surgery, 3 hours 42 minutes, indicating 20% less operative time for those with imaging modality. Intraoperative computed tomography guided imagery was found to be an accurate and suitable method for use in the operative treatment of complex acetabular fractures with substantial displacement.
NASA Astrophysics Data System (ADS)
Kinoshita, Shunichi; Eder, Wolfgang; Woeger, Julia; Hohenegger, Johann; Briguglio, Antonino; Ferrandez-Canadell, Carles
2015-04-01
Symbiont-bearing larger benthic Foraminifera (LBF) are long-living marine (at least 1 year), single-celled organisms with complex calcium carbonate shells. Their morphology has been intensively studied since the middle of the nineteenth century. This led to a broad spectrum of taxonomic results, important from biostratigraphy to ecology in shallow water tropical to warm temperate marine palaeo-environments. However, it was necessary for the traditional investigation methods to cut or destruct specimens for analysing the taxonomically important inner structures. X-ray micro-computed tomography (microCT) is one of the newest techniques used in morphological studies. The greatest advantage is the non-destructive acquisition of inner structures. Furthermore, the running improve of microCT scanners' hard- and software provides high resolution and short time scans well-suited for LBF. Three-dimensional imaging techniques allow to select and extract each chamber and to measure easily its volume, surface and several form parameters used for morphometric analyses. Thus, 3-dimensional visualisation of LBF-tests is a very big step forward from traditional morphology based on 2-dimensional data. The quantification of chamber form is a great opportunity to tackle LBF structures, architectures and the bauplan geometry. The micrometric digital resolution is the only way to solve many controversies in phylogeny and evolutionary trends of LBF. For the present study we used micro-computed tomography to easily investigate the chamber number of every specimen from statistically representative part of populations to estimate population dynamics. Samples of living individuals are collected at monthly intervals from fixed locations. Specific preparation allows to scan up to 35 specimens per scan within 2 hours and to obtain the complete digital dataset for each specimen of the population. MicroCT enables thus a fast and precise count of all chambers built by the foraminifer from its birth until the time of collection and to extract selected chambers for further studies. The variation in chamber number during the sampling period (in this study limited at 15 months) will allow the estimation of the mean chamber building rate for each investigated species. However, a number of morphological aberrations within the population can be observed: often multiple proloculi are present; their orientation to the equatorial plane (or planes) respectively the spatial position of the foramina between proloculus (or proloculi) to the reniform deuteroloculi, the geometry of septa and septula and their variation trough ontogeny and several other ontogenetic variation need further attention. Many new insights into the biology of living and fossil LBF will be obtained when the three dimensional morphology of the complete foraminiferal shell is raised to the population level.
Bhatti, Aftab A; Chugtai, Aamir; Haslam, Philip; Talbot, David; Rix, David A; Soomro, Naeem A
2005-11-01
To prospectively compare the accuracy of multislice spiral computed tomographic angiography (CTA) and magnetic resonance angiography (MRA) in evaluating the renal vascular anatomy in potential living renal donors. Thirty-one donors underwent multislice spiral CTA and gadolinium-enhanced MRA. In addition to axial images, multiplanar reconstruction and maximum intensity projections were used to display the renal vascular anatomy. Twenty-four donors had a left laparoscopic donor nephrectomy (LDN), whereas seven had right open donor nephrectomy (ODN); LDN was only considered if the renal vascular anatomy was favourable on the left. CTA and MRA images were analysed by two radiologists independently. The radiological and surgical findings were correlated after the surgery. CTA showed 33 arteries and 32 veins (100% sensitivity) whereas MRA showed 32 arteries and 31 veins (97% sensitivity). CTA detected all five accessory renal arteries whereas MRA only detected one. CTA also identified all three accessory renal veins whereas MRA identified two. CTA had a sensitivity of 97% and 47% for left lumbar and left gonadal veins, whereas MRA had a sensitivity of 74% and 46%, respectively. Multislice spiral CTA with three-dimensional reconstruction was more accurate than MRA for both renal arterial and venous anatomy.
The Mundrabilla Meteorite in Three-Dimensions
NASA Technical Reports Server (NTRS)
Gillies, D. C.; Carpenter, P. K.; Engel, H. P.
2003-01-01
Computed tomography (CT) using gamma radiation has revealed the interior structure of the anomalous iron meteorite, Mundrabilla. This meteorite is composed of 25 volume percent of iron sulfide with the remainder being iron-nickel. Both phases have been shown to be contiguous, and three dimensional models have been constructed using rapid prototyping techniques.
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.
2003-01-01
Most reverse engineering approaches involve imaging or digitizing an object and then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. The rapid prototyping technique builds high-quality physical prototypes directly from computer-aided design files. This fundamental technique for interpreting and interacting with large data sets is being used here via Velocity2 (an integrated image-processing software, ref. 1) using computed tomography (CT) data to produce a prototype three-dimensional test specimen model for analyses. A study at the NASA Glenn Research Center proposes to use these capabilities to conduct a combined nondestructive evaluation (NDE) and finite element analysis (FEA) to screen pretest and posttest structural anomalies in structural components. A tensile specimen made of silicon nitrite (Si3N4) ceramic matrix composite was considered to evaluate structural durability and deformity. Ceramic matrix composites are being sought as candidate materials to replace nickel-base superalloys for turbine engine applications. They have the unique characteristics of being able to withstand higher operating temperatures and harsh combustion environments. In addition, their low densities relative to metals help reduce component mass (ref. 2). Detailed three-dimensional volume rendering of the tensile test specimen was successfully carried out with Velocity2 (ref. 1) using two-dimensional images that were generated via computed tomography. Subsequent, three-dimensional finite element analyses were performed, and the results obtained were compared with those predicted by NDE-based calculations and experimental tests. It was shown that Velocity2 software can be used to render a three-dimensional object from a series of CT scan images with a minimum level of complexity. The analytical results (ref. 3) show that the high-stress regions correlated well with the damage sites identified by the CT scans and the experimental data. Furthermore, modeling of the voids collected via NDE offered an analytical advantage that resulted in more accurate assessments of the material s structural strength. The top figure shows a CT scan image of the specimen test section illustrating various hidden structural entities in the material and an optical image of the test specimen considered in this study. The bottom figure represents the stress response predicted from the finite element analyses (ref .3 ) for a selected CT slice where it clearly illustrates the correspondence of the high stress risers due to voids in the material with those predicted by the NDE. This study is continuing, and efforts are concentrated on improving the modeling capabilities to imitate the structural anomalies as detected.
Nogueira, Mariana A; Abreu, Pedro H; Martins, Pedro; Machado, Penousal; Duarte, Hugo; Santos, João
2017-02-13
Positron Emission Tomography - Computed Tomography (PET/CT) imaging is the basis for the evaluation of response-to-treatment of several oncological diseases. In practice, such evaluation is manually performed by specialists, which is rather complex and time-consuming. Evaluation measures have been proposed, but with questionable reliability. The usage of before and after-treatment image descriptors of the lesions for treatment response evaluation is still a territory to be explored. In this project, Artificial Neural Network approaches were implemented to automatically assess treatment response of patients suffering from neuroendocrine tumors and Hodgkyn lymphoma, based on image features extracted from PET/CT. The results show that the considered set of features allows for the achievement of very high classification performances, especially when data is properly balanced. After synthetic data generation and PCA-based dimensionality reduction to only two components, LVQNN assured classification accuracies of 100%, 100%, 96.3% and 100% regarding the 4 response-to-treatment classes.
N = 1 supersymmetric indices and the four-dimensional A-model
NASA Astrophysics Data System (ADS)
Closset, Cyril; Kim, Heeyeon; Willett, Brian
2017-08-01
We compute the supersymmetric partition function of N = 1 supersymmetric gauge theories with an R-symmetry on M_4\\cong M_{g,p}× {S}^1 , a principal elliptic fiber bundle of degree p over a genus- g Riemann surface, Σ g . Equivalently, we compute the generalized supersymmetric index I_{M}{_{g,p}, with the supersymmetric three-manifold M_{g,p} as the spatial slice. The ordinary N = 1 supersymmetric index on the round three-sphere is recovered as a special case. We approach this computation from the point of view of a topological A-model for the abelianized gauge fields on the base Σ g . This A-model — or A-twisted two-dimensional N = (2 , 2) gauge theory — encodes all the information about the generalized indices, which are viewed as expectations values of some canonically-defined surface defects wrapped on T 2 inside Σ g × T 2. Being defined by compactification on the torus, the A-model also enjoys natural modular properties, governed by the four-dimensional 't Hooft anomalies. As an application of our results, we provide new tests of Seiberg duality. We also present a new evaluation formula for the three-sphere index as a sum over two-dimensional vacua.
Pulmonary tumor measurements from x-ray computed tomography in one, two, and three dimensions.
Villemaire, Lauren; Owrangi, Amir M; Etemad-Rezai, Roya; Wilson, Laura; O'Riordan, Elaine; Keller, Harry; Driscoll, Brandon; Bauman, Glenn; Fenster, Aaron; Parraga, Grace
2011-11-01
We evaluated the accuracy and reproducibility of three-dimensional (3D) measurements of lung phantoms and patient tumors from x-ray computed tomography (CT) and compared these to one-dimensional (1D) and two-dimensional (2D) measurements. CT images of three spherical and three irregularly shaped tumor phantoms were evaluated by three observers who performed five repeated measurements. Additionally, three observers manually segmented 29 patient lung tumors five times each. Follow-up imaging was performed for 23 tumors and response criteria were compared. For a single subject, imaging was performed on nine occasions over 2 years to evaluate multidimensional tumor response. To evaluate measurement accuracy, we compared imaging measurements to ground truth using analysis of variance. For estimates of precision, intraobserver and interobserver coefficients of variation and intraclass correlations (ICC) were used. Linear regression and Pearson correlations were used to evaluate agreement and tumor response was descriptively compared. For spherical shaped phantoms, all measurements were highly accurate, but for irregularly shaped phantoms, only 3D measurements were in high agreement with ground truth measurements. All phantom and patient measurements showed high intra- and interobserver reproducibility (ICC >0.900). Over a 2-year period for a single patient, there was disagreement between tumor response classifications based on 3D measurements and those generated using 1D and 2D measurements. Tumor volume measurements were highly reproducible and accurate for irregular, spherical phantoms and patient tumors with nonuniform dimensions. Response classifications obtained from multidimensional measurements suggest that 3D measurements provide higher sensitivity to tumor response. Copyright © 2011 AUR. Published by Elsevier Inc. All rights reserved.
Abbara, Suhny; Blanke, Philipp; Maroules, Christopher D; Cheezum, Michael; Choi, Andrew D; Han, B Kelly; Marwan, Mohamed; Naoum, Chris; Norgaard, Bjarne L; Rubinshtein, Ronen; Schoenhagen, Paul; Villines, Todd; Leipsic, Jonathon
In response to recent technological advancements in acquisition techniques as well as a growing body of evidence regarding the optimal performance of coronary computed tomography angiography (coronary CTA), the Society of Cardiovascular Computed Tomography Guidelines Committee has produced this update to its previously established 2009 "Guidelines for the Performance of Coronary CTA" (1). The purpose of this document is to provide standards meant to ensure reliable practice methods and quality outcomes based on the best available data in order to improve the diagnostic care of patients. Society of Cardiovascular Computed Tomography Guidelines for the Interpretation is published separately (2). The Society of Cardiovascular Computed Tomography Guidelines Committee ensures compliance with all existing standards for the declaration of conflict of interest by all authors and reviewers for the purpose ofclarity and transparency. Copyright © 2016 Society of Cardiovascular Computed Tomography. All rights reserved.
Song, Hongning; Zhou, Qing; Zhang, Lan; Deng, Qing; Wang, Yijia; Hu, Bo; Tan, Tuantuan; Chen, Jinling; Pan, Yiteng; He, Fazhi
2017-01-01
Abstract The novel 3-dimensional printing (3DP) technique has shown its ability to assist personalized cardiac intervention therapy. This study aimed to determine the feasibility of 3D-printed left atrial appendage (LAA) models based on 3D transesophageal echocardiography (3D TEE) data and their application value in treating LAA occlusions. Eighteen patients with transcatheter LAA occlusion, and preprocedure 3D TEE and cardiac computed tomography were enrolled. 3D TEE volumetric data of the LAA were acquired and postprocessed for 3DP. Two types of 3D models of the LAA (ie, hard chamber model and flexible wall model) were printed by a 3D printer. The morphological classification and lobe identification of the LAA were assessed by the 3D chamber model, and LAA dimensions were measured via the 3D wall model. Additionally, a simulation operative rehearsal was performed on the 3D models in cases of challenging LAA morphology for the purpose of understanding the interactions between the device and the model. Three-dimensional TEE volumetric data of the LAA were successfully reprocessed and printed as 3D LAA chamber models and 3D LAA wall models in all patients. The consistency of the morphological classifications of the LAA based on 3D models and cardiac computed tomography was 0.92 (P < .01). The differences between the LAA ostium dimensions and depth measured using the 3D models were not significant from those measured on 3D TEE (P > .05). A simulation occlusion was successfully performed on the 3D model of the 2 challenging cases and compared with the real procedure. The echocardiographic 3DP technique is feasible and accurate in reflecting the spatial morphology of the LAA, which may be promising for the personalized planning of transcatheter LAA occlusion. PMID:28930824
Extreme hydronephrosis due to uretropelvic junction obstruction in infant (case report).
Krzemień, Grażyna; Szmigielska, Agnieszka; Bombiński, Przemysław; Barczuk, Marzena; Biejat, Agnieszka; Warchoł, Stanisław; Dudek-Warchoł, Teresa
2016-01-01
Hydronephrosis is the one of the most common congenital abnormalities of urinary tract. The left kidney is more commonly affected than the right side and is more common in males. To determine the role of ultrasonography, renal dynamic scintigraphy and lowerdose computed tomography urography in preoperative diagnostic workup of infant with extreme hydronephrosis. We presented the boy with antenatally diagnosed hydronephrosis. In serial, postnatal ultrasonography, renal scintigraphy and computed tomography urography we observed slightly declining function in the dilated kidney and increasing pelvic dilatation. Pyeloplasty was performed at the age of four months with good result. Results of ultrasonography and renal dynamic scintigraphy in child with extreme hydronephrosis can be difficult to asses, therefore before the surgical procedure a lower-dose computed tomography urography should be performed.
Imaging in anatomy: a comparison of imaging techniques in embalmed human cadavers
2013-01-01
Background A large variety of imaging techniques is an integral part of modern medicine. Introducing radiological imaging techniques into the dissection course serves as a basis for improved learning of anatomy and multidisciplinary learning in pre-clinical medical education. Methods Four different imaging techniques (ultrasound, radiography, computed tomography, and magnetic resonance imaging) were performed in embalmed human body donors to analyse possibilities and limitations of the respective techniques in this peculiar setting. Results The quality of ultrasound and radiography images was poor, images of computed tomography and magnetic resonance imaging were of good quality. Conclusion Computed tomography and magnetic resonance imaging have a superior image quality in comparison to ultrasound and radiography and offer suitable methods for imaging embalmed human cadavers as a valuable addition to the dissection course. PMID:24156510
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cover, Keith S.; Lagerwaard, Frank J.; Senan, Suresh
2006-03-01
Purpose: Four-dimensional computerized tomography scans (4DCT) enable intrafractional motion to be determined. Because more than 1500 images can be generated with each 4DCT study, tools for efficient data visualization and evaluation are needed. We describe the use of color intensity projections (CIP) for visualizing mobility. Methods: Four-dimensional computerized tomography images of each patient slice were combined into a CIP composite image. Pixels largely unchanged over the component images appear unchanged in the CIP image. However, pixels whose intensity changes over the phases of the 4DCT appear in the CIP image as colored pixels, and the hue encodes the percentage ofmore » time the tissue was in each location. CIPs of 18 patients were used to study tumor and surrogate markers, namely the diaphragm and an abdominal marker block. Results: Color intensity projections permitted mobility of high-contrast features to be quickly visualized and measured. In three selected expiratory phases ('gating phases') that were reviewed in the sagittal plane, gating would have reduced mean tumor mobility from 6.3 {+-} 2.0 mm to 1.4 {+-} 0.5 mm. Residual tumor mobility in gating phases better correlated with residual mobility of the marker block than that of the diaphragm. Conclusion: CIPs permit immediate visualization of mobility in 4DCT images and simplify the selection of appropriate surrogates for gated radiotherapy.« less
Microstructure of cotton fibrous assemblies based on computed tomography
NASA Astrophysics Data System (ADS)
Jing, Hui; Yu, Weidong
2017-12-01
This paper describes for the first time the analysis of inner microstructure of cotton fibrous assemblies using computed tomography. Microstructure parameters such as packing density, fractal dimension as well as porosity including open porosity, closed porosity and total porosity are calculated based on 2D data from computed tomography. Values of packing density and fractal dimension are stable in random oriented fibrous assemblies, and there exists a satisfactory approximate linear relationship between them. Moreover, poles analysis indicates that porosity represents the tightness of fibrous assemblies and open poles are main existence.
Berg, Britt-Isabelle; Dagassan-Berndt, Dorothea; Goldblum, David; Kunz, Christoph
2015-04-01
The aim of this study was to investigate the feasibility and effectiveness of cone-beam computed tomography (CBCT) in the planning, assessment, and follow-up for osteo-odonto-keratoprosthesis (OOKP). Six OOKP patients received a CBCT scan. CBCT scans were performed before and/or between ∼5 and 504 months after the primary OOKP intervention. Preoperative and postoperative results of the CBCT were assessed, regarding the available teeth and to assess the loss of bone in 1 patient, respectively. Resorption of the osteo-odonto-lamina was measured and graded. Five different measurements (I-V) were performed in the coronal and transversal views of CBCT. Four CBCT scans were performed preoperatively and 4 postoperatively. The follow-up time of the patients is between ∼1 to 528 months. Visualization of the potential donor teeth resulted in accurate 3-dimensional visualization of the tooth-lamina-bone complex. CBCT was found to help in the preoperative decision-making process (diameter of optical implant) and in enabling accurate postoperative evaluation of the bone volume and resorption zones of the OOKP. Loss of bone could be measured in a precise range and showed in the completed cases an average loss of 20.2%. The use of CBCT simplifies the preoperative decision making and ordering process. It also helps in determining the postoperative structure and resorption of the prosthesis.
ART 3.5D: an algorithm to label arteries and veins from three-dimensional angiography.
Barra, Beatrice; De Momi, Elena; Ferrigno, Giancarlo; Pero, Guglielmo; Cardinale, Francesco; Baselli, Giuseppe
2016-10-01
Preoperative three-dimensional (3-D) visualization of brain vasculature by digital subtraction angiography from computerized tomography (CT) in neurosurgery is gaining more and more importance, since vessels are the primary landmarks both for organs at risk and for navigation. Surgical embolization of cerebral aneurysms and arteriovenous malformations, epilepsy surgery, and stereoelectroencephalography are a few examples. Contrast-enhanced cone-beam computed tomography (CE-CBCT) represents a powerful facility, since it is capable of acquiring images in the operation room, shortly before surgery. However, standard 3-D reconstructions do not provide a direct distinction between arteries and veins, which is of utmost importance and is left to the surgeon's inference so far. Pioneering attempts by true four-dimensional (4-D) CT perfusion scans were already described, though at the expense of longer acquisition protocols, higher dosages, and sensible resolution losses. Hence, space is open to approaches attempting to recover the contrast dynamics from standard CE-CBCT, on the basis of anomalies overlooked in the standard 3-D approach. This paper aims at presenting algebraic reconstruction technique (ART) 3.5D, a method that overcomes the clinical limitations of 4-D CT, from standard 3-D CE-CBCT scans. The strategy works on the 3-D angiography, previously segmented in the standard way, and reprocesses the dynamics hidden in the raw data to recover an approximate dynamics in each segmented voxel. Next, a classification algorithm labels the angiographic voxels and artery or vein. Numerical simulations were performed on a digital phantom of a simplified 3-D vasculature with contrast transit. CE-CBCT projections were simulated and used for ART 3.5D testing. We achieved up to 90% classification accuracy in simulations, proving the feasibility of the presented approach for dynamic information recovery for arteries and veins segmentation.
Longo, F; Nicetto, T; Banzato, T; Savio, G; Drigo, M; Meneghello, R; Concheri, G; Isola, M
2018-02-01
The aim of this ex vivo study was to test a novel three-dimensional (3D) automated computer-aided design (CAD) method (aCAD) for the computation of femoral angles in dogs from 3D reconstructions of computed tomography (CT) images. The repeatability and reproducibility of three manual radiography, manual CT reconstructions and the aCAD method for the measurement of three femoral angles were evaluated: (1) anatomical lateral distal femoral angle (aLDFA); (2) femoral neck angle (FNA); and (3) femoral torsion angle (FTA). Femoral angles of 22 femurs obtained from 16 cadavers were measured by three blinded observers. Measurements were repeated three times by each observer for each diagnostic technique. Femoral angle measurements were analysed using a mixed effects linear model for repeated measures to determine the levels of intra-observer agreement (repeatability) and inter-observer agreement (reproducibility). Repeatability and reproducibility of measurements using the aCAD method were excellent (intra-class coefficients, ICCs≥0.98) for all three angles assessed. Manual radiography and CT exhibited excellent agreement for the aLDFA measurement (ICCs≥0.90). However, FNA repeatability and reproducibility were poor (ICCs<0.8), whereas FTA measurement showed slightly higher ICCs values, except for the radiographic reproducibility, which was poor (ICCs<0.8). The computation of the 3D aCAD method provided the highest repeatability and reproducibility among the tested methodologies. Copyright © 2017 Elsevier Ltd. All rights reserved.
Choe, Regine; Konecky, Soren D.; Corlu, Alper; Lee, Kijoon; Durduran, Turgut; Busch, David R.; Pathak, Saurav; Czerniecki, Brian J.; Tchou, Julia; Fraker, Douglas L.; DeMichele, Angela; Chance, Britton; Arridge, Simon R.; Schweiger, Martin; Culver, Joseph P.; Schnall, Mitchell D.; Putt, Mary E.; Rosen, Mark A.; Yodh, Arjun G.
2009-01-01
We have developed a novel parallel-plate diffuse optical tomography (DOT) system for three-dimensional in vivo imaging of human breast tumor based on large optical data sets. Images of oxy-, deoxy-, total-hemoglobin concentration, blood oxygen saturation, and tissue scattering were reconstructed. Tumor margins were derived using the optical data with guidance from radiology reports and Magnetic Resonance Imaging. Tumor-to-normal ratios of these endogenous physiological parameters and an optical index were computed for 51 biopsy-proven lesions from 47 subjects. Malignant cancers (N=41) showed statistically significant higher total hemoglobin, oxy-hemoglobin concentration, and scattering compared to normal tissue. Furthermore, malignant lesions exhibited a two-fold average increase in optical index. The influence of core biopsy on DOT results was also explored; the difference between the malignant group measured before core biopsy and the group measured more than one week after core biopsy was not significant. Benign tumors (N=10) did not exhibit statistical significance in the tumor-to-normal ratios of any parameter. Optical index and tumor-to-normal ratios of total hemoglobin, oxy-hemoglobin concentration, and scattering exhibited high area under the receiver operating characteristic curve values from 0.90 to 0.99, suggesting good discriminatory power. The data demonstrate that benign and malignant lesions can be distinguished by quantitative three-dimensional DOT. PMID:19405750
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le, Huy Q.; Ducote, Justin L.; Molloi, Sabee
2010-03-15
Purpose: Although x-ray projection mammography has been very effective in early detection of breast cancer, its utility is reduced in the detection of small lesions that are occult or in dense breasts. One drawback is that the inherent superposition of parenchymal structures makes visualization of small lesions difficult. Breast computed tomography using flat-panel detectors has been developed to address this limitation by producing three-dimensional data while at the same time providing more comfort to the patients by eliminating breast compression. Flat panels are charge integrating detectors and therefore lack energy resolution capability. Recent advances in solid state semiconductor x-ray detectormore » materials and associated electronics allow the investigation of x-ray imaging systems that use a photon counting and energy discriminating detector, which is the subject of this article. Methods: A small field-of-view computed tomography (CT) system that uses CdZnTe (CZT) photon counting detector was compared to one that uses a flat-panel detector for different imaging tasks in breast imaging. The benefits afforded by the CZT detector in the energy weighting modes were investigated. Two types of energy weighting methods were studied: Projection based and image based. Simulation and phantom studies were performed with a 2.5 cm polymethyl methacrylate (PMMA) cylinder filled with iodine and calcium contrast objects. Simulation was also performed on a 10 cm breast specimen. Results: The contrast-to-noise ratio improvements as compared to flat-panel detectors were 1.30 and 1.28 (projection based) and 1.35 and 1.25 (image based) for iodine over PMMA and hydroxylapatite over PMMA, respectively. Corresponding simulation values were 1.81 and 1.48 (projection based) and 1.85 and 1.48 (image based). Dose reductions using the CZT detector were 52.05% and 49.45% for iodine and hydroxyapatite imaging, respectively. Image-based weighting was also found to have the least beam hardening effect. Conclusions: The results showed that a CT system using an energy resolving detector reduces the dose to the patient while maintaining image quality for various breast imaging tasks.« less
Fundamentals of cone beam computed tomography for a prosthodontist
John, George Puthenpurayil; Joy, Tatu Elenjickal; Mathew, Justin; Kumar, Vinod R. B.
2015-01-01
Cone beam computed tomography (CBCT, also referred to as C-arm computed tomography [CT], cone beam volume CT, or flat panel CT) is a medical imaging technique of X-ray CT where the X-rays are divergent, forming a cone.[1] CBCT systems have been designed for imaging hard tissues of the maxillofacial region. CBCT is capable of providing sub-millimeter resolution in images of high diagnostic quality, with short scanning times (10–70 s) and radiation dosages reportedly up to 15–100 times lower than those of conventional CT scans. Increasing availability of this technology provides the dental clinician with an imaging modality capable of providing a three-dimensional representation of the maxillofacial skeleton with minimal distortion. The aim of this article is to sensitize the Prosthodontist to CBCT technology, provide an overview of currently available maxillofacial CBCT systems and review the specific application of various CBCT display modes to clinical Prosthodontic practice. A MEDLINE search for relevant articles in this specific area of interest was conducted. The selected articles were critically reviewed and the data acquired were systematically compiled. PMID:26929479
Quantitative features in the computed tomography of healthy lungs.
Fromson, B H; Denison, D M
1988-01-01
This study set out to determine whether quantitative features of lung computed tomography scans could be identified that would lead to a tightly defined normal range for use in assessing patients. Fourteen normal subjects with apparently healthy lungs were studied. A technique was developed for rapid and automatic extraction of lung field data from the computed tomography scans. The Hounsfield unit histograms were constructed and, when normalised for predicted lung volumes, shown to be consistent in shape for all the subjects. A three dimensional presentation of the data in the form of a "net plot" was devised, and from this a logarithmic relationship between the area of each lung slice and its mean density was derived (r = 0.9, n = 545, p less than 0.0001). The residual density, calculated as the difference between measured density and density predicted from the relationship with area, was shown to be normally distributed with a mean of 0 and a standard deviation of 25 Hounsfield units (chi 2 test: p less than 0.05). A presentation combining this residual density with the net plot is described. PMID:3353883
Yoshimine, Shin-Ichiro; Nishihara, Kazuhide; Nozoe, Etsuro; Yoshimine, Masako; Nakamura, Norifumi
2012-12-01
This study evaluated the anatomical characteristics of the maxillary premolars and molars and the maxillary sinus using cone beam computed tomography (CBCT) for dental implant treatment. Ten linear items and 1 angular item on 30 sites in 30 patients were measured on 3-dimensional computed tomography images using CBCT. The vertical relationship between the maxillary sinus and the maxillary molars was classified into 5 categories. The horizontal thickness of the buccal alveolar bone was thinnest on the maxillary first premolars, and the horizontal thickness of the palatal alveolar bone was thickest on the maxillary second molars. Type II was most common on the maxillary first molars. The internal angle at the maxillary premolars was significantly greater than that at the maxillary molars. The internal angle and vertical distance between the apex of the roots and the maxillary sinus floor showed a positive correlation on the maxillary first premolars (P = 0.003). For the selection of an appropriate approach on dental implant treatment, the evaluation of maxillary premolars and molars using of CBCT can be recommended.
NASA Astrophysics Data System (ADS)
Adabi, Saba; Conforto, Silvia; Hosseinzadeh, Matin; Noe, Shahryar; Daveluy, Steven; Mehregan, Darius; Nasiriavanaki, Mohammadreza
2017-02-01
Optical Coherence Tomography (OCT) offers real-time high-resolution three-dimensional images of tissue microstructures. In this study, we used OCT skin images acquired from ten volunteers, neither of whom had any skin conditions addressing the features of their anatomic location. OCT segmented images are analyzed based on their optical properties (attenuation coefficient) and textural image features e.g., contrast, correlation, homogeneity, energy, entropy, etc. Utilizing the information and referring to their clinical insight, we aim to make a comprehensive computational model for the healthy skin. The derived parameters represent the OCT microstructural morphology and might provide biological information for generating an atlas of normal skin from different anatomic sites of human skin and may allow for identification of cell microstructural changes in cancer patients. We then compared the parameters of healthy samples with those of abnormal skin and classified them using a linear Support Vector Machines (SVM) with 82% accuracy.
High-resolution x-ray tomography using laboratory sources
NASA Astrophysics Data System (ADS)
Tkachuk, Andrei; Feser, Michael; Cui, Hongtao; Duewer, Fred; Chang, Hauyee; Yun, Wenbing
2006-08-01
X-ray computed tomography (XCT) is a powerful nondestructive 3D imaging technique, which enables the visualization of the three dimensional structure of complex, optically opaque samples. High resolution XCT using Fresnel zone plate lenses has been confined in the past to synchrotron radiation centers due to the need for a bright and intense source of x-rays. This confinement severely limits the availability and accessibility of x-ray microscopes and the wide proliferation of this methodology. We are describing a sub-50nm resolution XCT system operating at 8 keV in absorption and Zernike phase contrast mode based on a commercially available laboratory x-ray source. The system utilizes high-efficiency Fresnel zone plates with an outermost zone width of 35 nm and 700 nm structure height resulting in a current spatial resolution better than 50 nm. In addition to the technical description of the system and specifications, we present application examples in the semiconductor field.
Wang, Su-zhen; Li, Jian-bin; Zhang, Ying-jie; Li, Feng-xiang; Wang, Wei; Liu, Tong-hai
2012-09-01
To measure the intrafraction displacement of the mediastinal metastatic lymph nodes of non-small cell lung cancer (NSCLC) based on four-dimensional computed tomography (4D-CT), and to provide the basis for the internal margin of metastatic mediastinal lymph nodes. Twenty-four NSCLC patients with mediastinal metastatic lymph nodes confirmed by contrast enhanced CT (short axis diameter ≥ 1 cm) were included in this study. 4D-CT simulation was carried out during free breathing and 10 image sets were acquired. The mediastinal metastatic lymph nodes and the dome of ipsilateral diaphragma were separately delineated on the CT images of 10 phases of breath cycle, and the lymph nodes were grouped as the upper, middle and lower mediastinal groups depending on the mediastinal station. Then the displacements of the lymph nodes in the left-right, anterior-posterior, superior-inferior directions and the 3-dimensional vector were measured. The differences of displacement in three directions for the same group of metastatic lymph nodes and in the same direction for different groups of metastatic lymph nodes were compared. The correlation between the displacement of ipsilateral diaphragma and mediastinal lymph nodes was analyzed in superior-inferior direction. The displacements in left-right, anterior-posterior and superior-inferior directions were (2.24 ± 1.55) mm, (1.87 ± 0.92) mm and (3.28 ± 2.59) mm for the total (53) mediastinal lymph nodes, respectively. The vectors were (4.70 ± 2.66) mm, (3.87 ± 2.45) mm, (4.97 ± 2.75) mm and (5.23 ± 2.67) mm for the total, upper, middle and lower mediastinal lymph nodes, respectively. For the upper mediastinal lymph nodes, the displacements in left-right, anterior-posterior and superior-inferior directions showed no significant difference between each other (P > 0.05). For the middle mediastinal lymph nodes, the displacements merely in anterior-posterior and superior-inferior directions showed significant difference (P = 0.005), while the displacements were not significantly different in the left-right and anterior-posterior, left-right and superior-inferior directions (P > 0.05). The displacements of the total and the lower mediastinal lymph nodes in left-right and superior-inferior, or anterior-posterior and superior-inferior directions were significantly different (P < 0.05), but was not significantly different in left-right and anterior-posterior directions (P > 0.05). The displacements of different group of mediastinal lymph nodes in a single direction or vector showed no significant difference (P > 0.05). In the superior-inferior direction, the correlation between the displacements of ipsilateral diaphragma and mediastinal lymph nodes were not statistically significant (P > 0.05). During free breathing, the differences between the intrafractional displacement of mediastinal metastatic lymph nodes in the same direction and its station were not statistically significant. The displacements of the total mediastinal metastatic lymph nodes in the superior-inferior direction were greater than that in the left-right and anterior-posterior directions, especially for the middle and lower mediastinal metastatic lymph nodes. There was no significant correlation between the displacements of ipsilateral diaphragma and the mediastinal metastatic lymph nodes in the superior-inferior direction, so it was unreasonable to estimate and predict the displacement of mediastinal metastatic lymph nodes by the displacement of ipsilateral diaphragma.
The female knee: anatomic variations.
Conley, Sheryl; Rosenberg, Aaron; Crowninshield, Roy
2007-01-01
Traditional knee implants have been designed "down the middle,"based on the combined average size and shape of male and female knee anatomy.Sex-based research in the field of orthopaedics has led to new understanding of the anatomic differences between the sexes and the associated implications for women undergoing total knee arthroplasty. Through the use of a comprehensive bone morphology atlas that utilizes novel three-dimensional computed tomography analysis technology, significant anatomic differences have been documented in the shape and size of female knees compared with male knees. This research identifies three notable anatomic differences in the female population: a less prominent anterior condyle, an increased Q angle, and a reduced medial-lateral:anterior-posterior aspect ratio.
Three-Dimensional Printing in Orthopedic Surgery.
Eltorai, Adam E M; Nguyen, Eric; Daniels, Alan H
2015-11-01
Three-dimensional (3D) printing is emerging as a clinically promising technology for rapid prototyping of surgically implantable products. With this commercially available technology, computed tomography or magnetic resonance images can be used to create graspable objects from 3D reconstructed images. Models can enhance patients' understanding of their pathology and surgeon preoperative planning. Customized implants and casts can be made to match an individual's anatomy. This review outlines 3D printing, its current applications in orthopedics, and promising future directions. Copyright 2015, SLACK Incorporated.
An overview of contemporary nuclear cardiology.
Lewin, Howard C; Sciammarella, Maria G; Watters, Thomas A; Alexander, Herbert G
2004-01-01
Myocardial perfusion single photon emission computed tomography (SPECT) is a widely utilized noninvasive imaging modality for the diagnosis, prognosis, and risk stratification of coronary artery disease. It is clearly superior to the traditional planar technique in terms of imaging contrast and consequent diagnostic and prognostic yield. The strength of SPECT images is largely derived from the three-dimensional, volumetric nature of its image. Thus, this modality permits three-dimensional assessment and quantitation of the perfused myocardium and functional assessment through electrocardiographic gating of the perfusion images.
Watanabe, Yoichi; Warmington, Leighton; Gopishankar, N
2017-01-01
Accurate dose measurement tools are needed to evaluate the radiation dose delivered to patients by using modern and sophisticated radiation therapy techniques. However, the adequate tools which enable us to directly measure the dose distributions in three-dimensional (3D) space are not commonly available. One such 3D dose measurement device is the polymer-based dosimeter, which changes the material property in response to radiation. These are available in the gel form as polymer gel dosimeter (PGD) and ferrous gel dosimeter (FGD) and in the solid form as solid plastic dosimeter (SPD). Those are made of a continuous uniform medium which polymerizes upon irradiation. Hence, the intrinsic spatial resolution of those dosimeters is very high, and it is only limited by the method by which one converts the dose information recorded by the medium to the absorbed dose. The current standard methods of the dose quantification are magnetic resonance imaging, optical computed tomography, and X-ray computed tomography. In particular, magnetic resonance imaging is well established as a method for obtaining clinically relevant dosimetric data by PGD and FGD. Despite the likely possibility of doing 3D dosimetry by PGD, FGD or SPD, the tools are still lacking wider usages for clinical applications. In this review article, we summarize the current status of PGD, FGD, and SPD and discuss the issue faced by these for wider acceptance in radiation oncology clinic and propose some directions for future development. PMID:28396725
A simple three-dimensional stent for proper placement of mini-implant
2013-01-01
Background This paper deals with the fabrication of a three-dimensional stent which is simple in design but provides an accurate placement of a mini-implant in three planes of space, namely, sagittal (root proximity), vertical (attached gingiva/alveolar mucosa) and transverse (angulation). Findings The stent is made of 0.018 × 0.025 in. stainless steel archwire which consists of a ‘u loop’ angulated at 20°, a vertical limb, a horizontal limb and a stop. The angulation of the ‘u’ helps in the placement of the mini-implant at 70° to the long axis of the tooth. The vertical height is determined such that the mini-implant is placed at the mucogingival junction. The mini-implant is placed with the aid of the stent, and its angulation and proximity to the adjacent roots are checked with a cone beam computed tomography image. The cone beam computed tomography image showed the mini-implant at an angle of 70° to the long axis of the tooth. There is no contact between mini-implant and the roots of the adjacent teeth. Conclusion This stent is simple, easy to fabricate, cost-effective, and provides ease of insertion/removal, and three-dimensional orientation of the mini-implant. PMID:24326158
NASA Astrophysics Data System (ADS)
Miller, M.; Miller, E.; Liu, J.; Lund, R. M.; McKinley, J. P.
2012-12-01
X-ray computed tomography (CT), scanning electron microscopy (SEM), electron microprobe analysis (EMP), and computational image analysis are mature technologies used in many disciplines. Cross-discipline combination of these imaging and image-analysis technologies is the focus of this research, which uses laboratory and light-source resources in an iterative approach. The objective is to produce images across length scales, taking advantage of instrumentation that is optimized for each scale, and to unify them into a single compositional reconstruction. Initially, CT images will be collected using both x-ray absorption and differential phase contrast modes. The imaged sample will then be physically sectioned and the exposed surfaces imaged and characterized via SEM/EMP. The voxel slice corresponding to the physical sample surface will be isolated computationally, and the volumetric data will be combined with two-dimensional SEM images along CT image planes. This registration step will take advantage of the similarity between the X-ray absorption (CT) and backscattered electron (SEM) coefficients (both proportional to average atomic number in the interrogated volume) as well as the images' mutual information. Elemental and solid-phase distributions on the exposed surfaces, co-registered with SEM images, will be mapped using EMP. The solid-phase distribution will be propagated into three-dimensional space using computational methods relying on the estimation of compositional distributions derived from the CT data. If necessary, solid-phase and pore-space boundaries will be resolved using X-ray differential phase contrast tomography, x-ray fluorescence tomography, and absorption-edge microtomography at a light-source facility. Computational methods will be developed to register and model images collected over varying scales and data types. Image resolution, physically and dynamically, is qualitatively different for the electron microscopy and CT methodologies. Routine CT images are resolved at 10-20 μm, while SEM images are resolved at 10-20 nm; grayscale values vary according to collection time and instrument sensitivity; and compositional sensitivities via EMP vary in interrogation volume and scale. We have so far successfully registered SEM imagery within a multimode tomographic volume and have used standard methods to isolate pore space within the volume. We are developing a three-dimensional solid-phase identification and registration method that is constrained by bulk-sample X-ray diffraction Rietveld refinements. The results of this project will prove useful in fields that require the fine-scale definition of solid-phase distributions and relationships, and could replace more inefficient methods for making these estimations.
Stieger-Vanegas, S M; Senthirajah, S K J; Nemanic, S; Baltzer, W; Warnock, J; Bobe, G
2015-01-01
The purpose of our study was (1) to determine whether four-view radiography of the pelvis is as reliable and accurate as computed tomography (CT) in diagnosing sacral and pelvic fractures, in addition to coxofemoral and sacroiliac joint subluxation or luxation, and (2) to evaluate the effect of the amount of training in reading diagnostic imaging studies on the accuracy of diagnosing sacral and pelvic fractures in dogs. Sacral and pelvic fractures were created in 11 canine cadavers using a lateral impactor. In all cadavers, frog-legged ventro-dorsal, lateral, right and left ventro-45°-medial to dorsolateral oblique frog leg ("rollover 45-degree view") radiographs and a CT of the pelvis were obtained. Two radiologists, two surgeons and two veterinary students classified fractures using a confidence scale and noted the duration of evaluation for each imaging modality and case. The imaging results were compared to gross dissection. All evaluators required significantly more time to analyse CT images compared to radiographic images. Sacral and pelvic fractures, specifically those of the sacral body, ischiatic table, and the pubic bone, were more accurately diagnosed using CT compared to radiography. Fractures of the acetabulum and iliac body were diagnosed with similar accuracy (at least 86%) using either modality. Computed tomography is a better method for detecting canine sacral and some pelvic fractures compared to radiography. Computed tomography provided an accuracy of close to 100% in persons trained in evaluating CT images.
Li, Xiumei; Shi, Zhenshan; You, Ruixiong; Li, Yueming; Cao, Dairong; Lin, Renjie; Huang, Xinming
The purpose of this study was to retrospectively review the computed tomography (CT) and clinicopathological characteristics of inflammatory pseudotumor (IPT)-like follicular dendritic cell sarcoma (FDCS) of the spleen in 5 patients. Clinical, pathologic, and CT imaging findings of 5 patients with IPT-like FDCS of the spleen were reviewed and analyzed. Computed tomography imaging and pathologic features were compared. Abdominal unenhanced CT revealed a well-defined hypodense mass in the spleen with complex internal architecture with focal necrosis and/or speckle-strip calcification. On postcontrast CT, slightly delayed enhancement was observed in 5 cases. Four patients had a normalized spleen. The fourth patient had lung metastasis. The fifth patient had 2 relatively small lesions as well as metastases to the spine. Computed tomography imaging features of IPT-like FDCS of the spleen are distinctly different from other hypovascular splenic neoplasm; however, the definitive diagnosis requires further confirmation with needle biopsy or surgery. Inflammatory pseudotumor-like FDCS of the spleen should be suggested by using the CT imaging features of the splenic mass with evidence of metastatic disease.
Three-dimensional reciprocal space x-ray coherent scattering tomography of two-dimensional object.
Zhu, Zheyuan; Pang, Shuo
2018-04-01
X-ray coherent scattering tomography is a powerful tool in discriminating biological tissues and bio-compatible materials. Conventional x-ray scattering tomography framework can only resolve isotropic scattering profile under the assumption that the material is amorphous or in powder form, which is not true especially for biological samples with orientation-dependent structure. Previous tomography schemes based on x-ray coherent scattering failed to preserve the scattering pattern from samples with preferred orientations, or required elaborated data acquisition scheme, which could limit its application in practical settings. Here, we demonstrate a simple imaging modality to preserve the anisotropic scattering signal in three-dimensional reciprocal (momentum transfer) space of a two-dimensional sample layer. By incorporating detector movement along the direction of x-ray beam, combined with a tomographic data acquisition scheme, we match the five dimensions of the measurements with the five dimensions (three in momentum transfer domain, and two in spatial domain) of the object. We employed a collimated pencil beam of a table-top copper-anode x-ray tube, along with a panel detector to investigate the feasibility of our method. We have demonstrated x-ray coherent scattering tomographic imaging at a spatial resolution ~2 mm and momentum transfer resolution 0.01 Å -1 for the rotation-invariant scattering direction. For any arbitrary, non-rotation-invariant direction, the same spatial and momentum transfer resolution can be achieved based on the spatial information from the rotation-invariant direction. The reconstructed scattering profile of each pixel from the experiment is consistent with the x-ray diffraction profile of each material. The three-dimensional scattering pattern recovered from the measurement reveals the partially ordered molecular structure of Teflon wrap in our sample. We extend the applicability of conventional x-ray coherent scattering tomography to the reconstruction of two-dimensional samples with anisotropic scattering profile by introducing additional degree of freedom on the detector. The presented method has the potential to achieve low-cost, high-specificity material discrimination based on x-ray coherent scattering. © 2018 American Association of Physicists in Medicine.
NASA Astrophysics Data System (ADS)
Lu, J.; Wakai, K.; Takahashi, S.; Shimizu, S.
2000-06-01
The algorithm which takes into account the effect of refraction of sound wave paths for acoustic computer tomography (CT) is developed. Incorporating the algorithm of refraction into ordinary CT algorithms which are based on Fourier transformation is very difficult. In this paper, the least-squares method, which is capable of considering the refraction effect, is employed to reconstruct the two-dimensional temperature distribution. The refraction effect is solved by writing a set of differential equations which is derived from Fermat's theorem and the calculus of variations. It is impossible to carry out refraction analysis and the reconstruction of temperature distribution simultaneously, so the problem is solved using the iteration method. The measurement field is assumed to take the shape of a circle and 16 speakers, also serving as the receivers, are set around it isometrically. The algorithm is checked through computer simulation with various kinds of temperature distributions. It is shown that the present method which takes into account the algorithm of the refraction effect can reconstruct temperature distributions with much greater accuracy than can methods which do not include the refraction effect.
Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil*
da Silva, Rogério Matias Vidal; Pinezi, Juliana Castro Dourado; Macedo, Luiz Eduardo Andrade; Souza, Divanízia do Nascimento
2014-01-01
Objective To assess the current situation of high-dose-rate (HDR) brachytherapy for cancer of the cervix in Brazil, regarding apparatuses, planning methods, prescription, fractionation schedule and evaluation of dose in organs at risk. Materials and Methods In the period between March/2012 and May/2013, a multiple choice questionnaire was developed and sent to 89 Brazilian hospitals which perform HDR brachytherapy. Results Sixty-one services answered the questionnaire. All regions of the country experienced a sharp increase in the number of HDR brachytherapy services in the period from 2001 to 2013. As regards planning, although a three-dimensional planning software was available in 91% of the centers, conventional radiography was mentioned by 92% of the respondents as their routine imaging method for such a purpose. Approximately 35% of respondents said that brachytherapy sessions are performed after teletherapy. The scheme of four 7 Gy intracavitary insertions was mentioned as the most frequently practiced. Conclusion The authors observed that professionals have difficulty accessing adjuvant three-dimensional planning tools such as computed tomography and magnetic resonance imaging. PMID:25741073
Titanium template for scaphoid reconstruction.
Haefeli, M; Schaefer, D J; Schumacher, R; Müller-Gerbl, M; Honigmann, P
2015-06-01
Reconstruction of a non-united scaphoid with a humpback deformity involves resection of the non-union followed by bone grafting and fixation of the fragments. Intraoperative control of the reconstruction is difficult owing to the complex three-dimensional shape of the scaphoid and the other carpal bones overlying the scaphoid on lateral radiographs. We developed a titanium template that fits exactly to the surfaces of the proximal and distal scaphoid poles to define their position relative to each other after resection of the non-union. The templates were designed on three-dimensional computed tomography reconstructions and manufactured using selective laser melting technology. Ten conserved human wrists were used to simulate the reconstruction. The achieved precision measured as the deviation of the surface of the reconstructed scaphoid from its virtual counterpart was good in five cases (maximal difference 1.5 mm), moderate in one case (maximal difference 3 mm) and inadequate in four cases (difference more than 3 mm). The main problems were attributed to the template design and can be avoided by improved pre-operative planning, as shown in a clinical case. © The Author(s) 2014.
Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.
Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo
2017-06-01
Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.
Chen, Jin; Venugopal, Vivek; Intes, Xavier
2011-01-01
Time-resolved fluorescence optical tomography allows 3-dimensional localization of multiple fluorophores based on lifetime contrast while providing a unique data set for improved resolution. However, to employ the full fluorescence time measurements, a light propagation model that accurately simulates weakly diffused and multiple scattered photons is required. In this article, we derive a computationally efficient Monte Carlo based method to compute time-gated fluorescence Jacobians for the simultaneous imaging of two fluorophores with lifetime contrast. The Monte Carlo based formulation is validated on a synthetic murine model simulating the uptake in the kidneys of two distinct fluorophores with lifetime contrast. Experimentally, the method is validated using capillaries filled with 2.5nmol of ICG and IRDye™800CW respectively embedded in a diffuse media mimicking the average optical properties of mice. Combining multiple time gates in one inverse problem allows the simultaneous reconstruction of multiple fluorophores with increased resolution and minimal crosstalk using the proposed formulation. PMID:21483610
D'iachkova, G V; Mitina, Iu L
2007-01-01
Based on the data of computed tomography, radiography and densitometry in 39 patients the authors describe in detail the signs of osteonecrosis and sequestration of different localization and extension.
NASA Astrophysics Data System (ADS)
Zhang, Lei; Lei, Dongsheng; Smith, Jessica M.; Zhang, Meng; Tong, Huimin; Zhang, Xing; Lu, Zhuoyang; Liu, Jiankang; Alivisatos, A. Paul; Ren, Gang
2016-03-01
DNA base pairing has been used for many years to direct the arrangement of inorganic nanocrystals into small groupings and arrays with tailored optical and electrical properties. The control of DNA-mediated assembly depends crucially on a better understanding of three-dimensional structure of DNA-nanocrystal-hybridized building blocks. Existing techniques do not allow for structural determination of these flexible and heterogeneous samples. Here we report cryo-electron microscopy and negative-staining electron tomography approaches to image, and three-dimensionally reconstruct a single DNA-nanogold conjugate, an 84-bp double-stranded DNA with two 5-nm nanogold particles for potential substrates in plasmon-coupling experiments. By individual-particle electron tomography reconstruction, we obtain 14 density maps at ~2-nm resolution. Using these maps as constraints, we derive 14 conformations of dsDNA by molecular dynamics simulations. The conformational variation is consistent with that from liquid solution, suggesting that individual-particle electron tomography could be an expected approach to study DNA-assembling and flexible protein structure and dynamics.
Role of virtual bronchoscopy in children with a vegetable foreign body in the tracheobronchial tree.
Behera, G; Tripathy, N; Maru, Y K; Mundra, R K; Gupta, Y; Lodha, M
2014-12-01
Multidetector computed tomography virtual bronchoscopy is a non-invasive diagnostic tool which provides a three-dimensional view of the tracheobronchial airway. This study aimed to evaluate the usefulness of virtual bronchoscopy in cases of vegetable foreign body aspiration in children. The medical records of patients with a history of foreign body aspiration from August 2006 to August 2010 were reviewed. Data were collected regarding their clinical presentation and chest X-ray, virtual bronchoscopy and rigid bronchoscopy findings. Cases of metallic and other non-vegetable foreign bodies were excluded from the analysis. Patients with multidetector computed tomography virtual bronchoscopy showing features of vegetable foreign body were included in the analysis. For each patient, virtual bronchoscopy findings were reviewed and compared with those of rigid bronchoscopy. A total of 60 patients; all children ranging from 1 month to 8 years of age, were included. The mean age at presentation was 2.01 years. Rigid bronchoscopy confirmed the results of multidetector computed tomography virtual bronchoscopy (i.e. presence of foreign body, site of lodgement, and size and shape) in 59 patients. In the remaining case, a vegetable foreign body identified by virtual bronchoscopy was revealed by rigid bronchoscopy to be a thick mucus plug. Thus, the positive predictive value of virtual bronchoscopy was 98.3 per cent. Multidetector computed tomography virtual bronchoscopy is a sensitive and specific diagnostic tool for identifying radiolucent vegetable foreign bodies in the tracheobronchial tree. It can also provide a useful pre-operative road map for rigid bronchoscopy. Patients suspected of having an airway foreign body or chronic unexplained respiratory symptoms should undergo multidetector computed tomography virtual bronchoscopy to rule out a vegetable foreign body in the tracheobronchial tree and avoid general anaesthesia and invasive rigid bronchoscopy.
Two dimensional CT analysis has allowed the quantification of biologically derived structures (tubes and tunnels) within benthic sediments. The percent tube and tunnel area (PTTA) and the sediment bulk density (SXA) resulting from these activities have been shown be to highly cor...
Park, W S; Kim, K D; Shin, H K; Lee, S H
2007-01-01
Metal Artifact still remains one of the main drawbacks in craniofacial Three-Dimensional Computed Tomography (3D CT). In this study, we tried to test the efficacy of additional silicone dental impression materials as a "tooth shield" for the reduction of metal artifact caused by metal restorations and orthodontic appliances. 6 phantoms with 4 teeth were prepared for this in vitro study. Orthodontic bracket, bands and amalgam restorations were placed in each tooth to reproduce various intraoral conditions. Standardized silicone shields were fabricated and placed around the teeth. CT image acquisition was performed with and without silicone shields. Maximum value, mean, and standard deviation of Hounsfield Units (HU) were compared with the presence of silicone shields. In every situation, metal artifacts were reduced in quality and quantity when silicone shields are used. Amalgam restoration made most serious metal artifact. Silicone shields made by dental impression material might be effective way to reduce the metal artifact caused by dental restoration and orthodontic appliances. This will help more excellent 3D image from 3D CT in craniofacial area.
NASA Astrophysics Data System (ADS)
Mitchell, T. M.; Backeberg, N. R.; Iacoviello, F.; Rittner, M.; Jones, A. P.; Wheeler, J.; Day, R.; Vermeesch, P.; Shearing, P. R.; Striolo, A.
2017-12-01
The permeability of shales is important, because it controls where oil and gas resources can migrate to and where in the Earth hydrocarbons are ultimately stored. Shales have a well-known anisotropic directional permeability that is inherited from the depositional layering of sedimentary laminations, where the highest permeability is measured parallel to laminations and the lowest permeability is perpendicular to laminations. We combine state of the art laboratory permeability experiments with high-resolution X-ray computed tomography and for the first time can quantify the three-dimensional interconnected pathways through a rock that define the anisotropic behaviour of shales. Experiments record a physical anisotropy in permeability of one to two orders of magnitude. Two- and three-dimensional analyses of micro- and nano-scale X-ray computed tomography illuminate that the directional anisotropy is fundamentally controlled by the bulk rock mineral geometry, which determines the finite length (or tortuosity) of the interconnected pathways through the porous/permeable phases in shales. Understanding the mineral-scale control on permeability will allow for better estimations of the extent of recoverable reserves in shale gas plays globally.
Kimura, Ibuki; Araki, Ryota; Yoshizato, Toshiyuki; Miyamoto, Shingo
2015-10-01
We present a case of osteogenesis imperfecta (OI) type 2A in which a natural course in utero was observed from 23 weeks' gestation to term. At 23 weeks' gestation, a sonographic examination showed a cloverleaf skull-like head, a narrow thorax, and marked shortening of the long bones with bowing of the femurs and humeri. Follow-up examinations showed that the cloverleaf skull-like head was not evident at 28 weeks' gestation. Discontinuity of the ribs and femurs was observed at 26 and 30 weeks' gestation, respectively. This finding suggested bone fractures, which were confirmed by three-dimensional computed tomography at 32 weeks' gestation. Ultrasonographic findings of bones, including the long bones and calvarium, changed with advancing gestation during the second trimester. Characteristic features of OI type 2A were evident during the late second to early third trimesters. Repeated ultrasonographic examinations together with three-dimensional computed tomography are necessary for the definitive diagnosis of OI type 2A in the second trimester.
Anthropometry of the Human Scaphoid Waist by Three-Dimensional Computed Tomography.
Smith, Jennifer; Hofmeister, Eric P; Renninger, Christopher; Kroonen, Leo T
2015-01-01
Published measurements for the scaphoid are scarce. The purpose of this study is to define anthropometric norms for the waist of the scaphoid to assist in optimizing bone graft quantity and implant use. Computed tomography images of the wrist were reviewed by three surgeons. Anthropometric data were gathered, including the scaphoid waist diameter in two dimensions and the scaphoid waist volume. Each study was measured twice, allowing for determination of inter- and intraobserver reliability. Forty-three studies were examined (23 female and 20 male). Average measurements of the scaphoid waist were 11.28 ± 0.26 mm in the sagittal plane and 8.70 ± 0.17 mm in the coronal plane, and the waist volume was 715 ± 33.0 mm3. Specific measures of the narrowest portion of the scaphoid are provided by this study. Measurements of the scaphoid waist through the use of three-dimensional imaging are an accurate method with good inter- and intraobserver reliability. The measurements obtained from this study can be applied to guide graft and implant selection for treatment of scaphoid waist fractures and nonunions.