Parallel, semiparallel, and serial processing of visual hyperacuity
NASA Astrophysics Data System (ADS)
Fahle, Manfred W.
1990-10-01
Humans can discriminate between certain elementary stimulus features in parallel, i.e., simultaneously over the visual field. I present evidence that, in man, vernier rnisalignments in the hyperacuity-range, i.e., below the photoreceptor diameter, can also be detected in parallel. This indicates that the visUal system performs some form of spatial interpolation beyond the photoreceptor spacing simultaneously over the visual field. Vernier offsets are detected in parallel even when orientation cues are masked: deviation from straightness is an elementary feature of visual perception. However, the identification process, that classifies each vernier in a stimulus as being offset to the right (versus to the left) is serial and has to scan the visual field sequentially if orientation cues are masked. Therefore, reaction times and thresholds in vernier acuity tasks increase with the number of verniers presented simultaneously if classification of different features is required. Furthermore, when approaching vernier threshold, simple vernier detection is no longer parallel but becomes partially serial, or semi-parallel.
Compressed Submanifold Multifactor Analysis.
Luu, Khoa; Savvides, Marios; Bui, Tien; Suen, Ching
2016-04-14
Although widely used, Multilinear PCA (MPCA), one of the leading multilinear analysis methods, still suffers from four major drawbacks. First, it is very sensitive to outliers and noise. Second, it is unable to cope with missing values. Third, it is computationally expensive since MPCA deals with large multi-dimensional datasets. Finally, it is unable to maintain the local geometrical structures due to the averaging process. This paper proposes a novel approach named Compressed Submanifold Multifactor Analysis (CSMA) to solve the four problems mentioned above. Our approach can deal with the problem of missing values and outliers via SVD-L1. The Random Projection method is used to obtain the fast low-rank approximation of a given multifactor dataset. In addition, it is able to preserve the geometry of the original data. Our CSMA method can be used efficiently for multiple purposes, e.g. noise and outlier removal, estimation of missing values, biometric applications. We show that CSMA method can achieve good results and is very efficient in the inpainting problem as compared to [1], [2]. Our method also achieves higher face recognition rates compared to LRTC, SPMA, MPCA and some other methods, i.e. PCA, LDA and LPP, on three challenging face databases, i.e. CMU-MPIE, CMU-PIE and Extended YALE-B.
Four Dimensional Trace Space Measurement
Hernandez, M.
2005-02-10
Future high energy colliders and FELs (Free Electron Lasers) such as the proposed LCLS (Linac Coherent Light Source) at SLAC require high brightness electron beams. In general a high brightness electron beam will contain a large number of electrons that occupy a short longitudinal duration, can be focused to a small transverse area while having small transverse divergences. Therefore the beam must have a high peak current and occupy small areas in transverse phase space and so have small transverse emittances. Additionally the beam should propagate at high energy and have a low energy spread to reduce chromatic effects. The requirements of the LCLS for example are pulses which contain 10{sup 10} electrons in a temporal duration of 10 ps FWHM with projected normalized transverse emittances of 1{pi} mm mrad[1]. Currently the most promising method of producing such a beam is the RF photoinjector. The GTF (Gun Test Facility) at SLAC was constructed to produce and characterize laser and electron beams which fulfill the LCLS requirements. Emittance measurements of the electron beam at the GTF contain evidence of strong coupling between the transverse dimensions of the beam. This thesis explores the effects of this coupling on the determination of the projected emittances of the electron beam. In the presence of such a coupling the projected normalized emittance is no longer a conserved quantity. The conserved quantity is the normalized full four dimensional phase space occupied by the beam. A method to determine the presence and evaluate the strength of the coupling in emittance measurements made in the laboratory is developed. A method to calculate the four dimensional volume the beam occupies in phase space using quantities available in the laboratory environment is also developed. Results of measurements made of the electron beam at the GTF that demonstrate these concepts are presented and discussed.
Four-Dimensional Graded Consciousness
Jonkisz, Jakub; Wierzchoń, Michał; Binder, Marek
2017-01-01
Both the multidimensional phenomenon and the polysemous notion of consciousness continue to prove resistant to consistent measurement and unambiguous definition. This is hardly surprising, given that there is no agreement even as regards the most fundamental issues they involve. One of the basic disagreements present in the continuing debate about consciousness pertains to its gradational nature. The general aim of this article is to show how consciousness might be graded and multidimensional at the same time. We therefore focus on the question of what it is, exactly, that is or could be graded in cases of consciousness, and how we can measure it. Ultimately, four different gradable aspects of consciousness will be described: quality, abstractness, complexity and usefulness, which belong to four different dimensions, these being understood, respectively, as phenomenal, semantic, physiological, and functional. Consequently, consciousness may be said to vary with respect to phenomenal quality, semantic abstraction, physiological complexity, and functional usefulness. It is hoped that such a four-dimensional approach will help to clarify and justify claims about the hierarchical nature of consciousness. The approach also proves explanatorily advantageous, as it enables us not only to draw attention to certain new and important differences in respect of subjective measures of awareness and to justify how a given creature may be ranked higher in one dimension of consciousness and lower in terms of another, but also allows for innovative explanations of a variety of well-known phenomena (amongst these, the interpretations of blindsight and locked-in syndrome will be briefly outlined here). Moreover, a 4D framework makes possible many predictions and hypotheses that may be experimentally tested (We point out a few such possibilities pertaining to interdimensional dependencies). PMID:28377738
Four-Dimensional Graded Consciousness.
Jonkisz, Jakub; Wierzchoń, Michał; Binder, Marek
2017-01-01
Both the multidimensional phenomenon and the polysemous notion of consciousness continue to prove resistant to consistent measurement and unambiguous definition. This is hardly surprising, given that there is no agreement even as regards the most fundamental issues they involve. One of the basic disagreements present in the continuing debate about consciousness pertains to its gradational nature. The general aim of this article is to show how consciousness might be graded and multidimensional at the same time. We therefore focus on the question of what it is, exactly, that is or could be graded in cases of consciousness, and how we can measure it. Ultimately, four different gradable aspects of consciousness will be described: quality, abstractness, complexity and usefulness, which belong to four different dimensions, these being understood, respectively, as phenomenal, semantic, physiological, and functional. Consequently, consciousness may be said to vary with respect to phenomenal quality, semantic abstraction, physiological complexity, and functional usefulness. It is hoped that such a four-dimensional approach will help to clarify and justify claims about the hierarchical nature of consciousness. The approach also proves explanatorily advantageous, as it enables us not only to draw attention to certain new and important differences in respect of subjective measures of awareness and to justify how a given creature may be ranked higher in one dimension of consciousness and lower in terms of another, but also allows for innovative explanations of a variety of well-known phenomena (amongst these, the interpretations of blindsight and locked-in syndrome will be briefly outlined here). Moreover, a 4D framework makes possible many predictions and hypotheses that may be experimentally tested (We point out a few such possibilities pertaining to interdimensional dependencies).
Holomorphic classification of four-dimensional surfaces in \\mathbb C^3
NASA Astrophysics Data System (ADS)
Beloshapka, V. K.; Ezhov, V. V.; Schmalz, G.
2008-06-01
We use the method of model surfaces to study real four-dimensional submanifolds of \\mathbb C^3. We prove that the dimension of the holomorphic symmetry group of any germ of an analytic four-dimensional manifold does not exceed 5 if this dimension is finite. (There are only two exceptional cases of infinite dimension.) The envelope of holomorphy of the model surface is calculated. We construct a normal form for arbitrary germs and use it to give a holomorphic classification of completely non-degenerate germs. It is shown that the existence of a completely non-degenerate CR-structure imposes strong restrictions on the topological structure of the manifold. In particular, the four-sphere S^4 admits no completely non-degenerate embedding into a three-dimensional complex manifold.
Three special classes of Wintgen ideal submanifolds
NASA Astrophysics Data System (ADS)
Xie, Zhenxiao
2017-04-01
Wintgen ideal submanifolds in space forms are those ones attaining equality pointwise in the so-called DDVV inequality which relates the scalar curvature, the mean curvature and the normal scalar curvature. In this paper, we investigate three special classes of Wintgen ideal submanifolds: the ones with constant mean curvature, the ones with constant scalar curvature and the ones with constant normal scalar curvature. Some characterization results are given.
Inequalities for scalar curvature of pseudo-Riemannian submanifolds
NASA Astrophysics Data System (ADS)
Tripathi, Mukut Mani; Gülbahar, Mehmet; Kılıç, Erol; Keleş, Sadık
2017-02-01
Some basic inequalities, involving the scalar curvature and the mean curvature, for a pseudo-Riemannian submanifold of a pseudo-Riemannian manifold are obtained. We also find inequalities for spacelike submanifolds. Equality cases are also discussed.
A four dimensional variational analysis experiment
NASA Technical Reports Server (NTRS)
Hoffman, R.
1981-01-01
A demonstration that the four dimensional variational analysis method using the governing equations as exact constraints can be successfully employed for a perfect model and for a simple, but nonlinear, system is presented. The method is stable in an assimilation cycle. The method reconstructs the unobservable variables; in the case demonstrated, no velocity data was observed. The analysis errors are much smaller than the observing system errors.
String breaking in four dimensional lattice QCD
Duncan, A.; Eichten, E.; Thacker, H.
2001-06-01
Virtual quark pair screening leads to breaking of the string between fundamental representation quarks in QCD. For unquenched four dimensional lattice QCD, this (so far elusive) phenomenon is studied using the recently developed truncated determinant algorithm (TDA). The dynamical configurations were generated on a 650 MHz PC. Quark eigenmodes up to 420 MeV are included exactly in these TDA studies performed at low quark mass on large coarse [but O(a{sup 2}) improved] lattices. A study of Wilson line correlators in Coulomb gauge extracted from an ensemble of 1000 two-flavor dynamical configurations reveals evidence for flattening of the string tension at distances R{approx}>1 fm.
Dual submanifolds in rational homology spheres
NASA Astrophysics Data System (ADS)
Fang, FuQuan
2017-09-01
Let $\\Sigma$ be a simply connected rational homology sphere. A pair of disjoint closed submanifolds $M_+, M_-$ in $\\Sigma$ are called dual to each other if the complement $\\Sigma - M_+$ strongly homotopy retracts onto $M_-$ or vice-versa. In this paper we will give a complete answer of which integral triples $(n; m_+, m_-)$ can appear, where $n=dim \\Sigma -1$, $m_+={codim}M_+ -1$ and $m_-={codim}M_- -1$.
{N}=3 four dimensional field theories
NASA Astrophysics Data System (ADS)
García-Etxebarria, Iñaki; Regalado, Diego
2016-03-01
We introduce a class of four dimensional field theories constructed by quotienting ordinary {N}=4 U(N ) SYM by particular combinations of R-symmetry and SL(2, ℤ) automorphisms. These theories appear naturally on the worldvolume of D3 branes probing terminal singularities in F-theory, where they can be thought of as non-perturbative generalizations of the O3 plane. We focus on cases preserving only 12 supercharges, where the quotient gives rise to theories with coupling fixed at a value of order one. These constructions possess an unconventional large N limit described by a non-trivial F-theory fibration with base AdS 5 × (S 5/ ℤ k ). Upon reduction on a circle the {N}=3 theories flow to well-known {N}=6 ABJM theories.
Four-dimensional visualization of rising microbubbles
Jung, Ji Won; Jeon, Hyung Min; Pyo, Jaeyeon; Lim, Jae-Hong; Weon, Byung Mook; Kohmura, Yoshiki; Ishikawa, Tetsuya; Je, Jung Ho
2014-01-01
Four-dimensional imaging, which indicates imaging in three spatial dimensions as a function of time, provides useful evidence to investigate the interactions of rising bubbles. However, this has been largely unexplored for microbubbles, mostly due to problems associated with strong light scattering and shallow depth of field in optical imaging. Here, tracking x-ray microtomography is used to visualize rising microbubbles in four dimensions. Bubbles are tracked by moving the cell to account for their rise velocity. The sizes, shapes, time-dependent positions, and velocities of individual rising microbubbles are clearly identified, despite substantial overlaps between bubbles in the field of view. Our tracking x-ray microtomography affords opportunities for understanding bubble-bubble (or particle) interactions at microscales – important in various fields such as microfluidics, biomechanics, and floatation. PMID:24866552
Four-dimensional unsubtraction with massive particles
NASA Astrophysics Data System (ADS)
Sborlini, Germán F. R.; Driencourt-Mangin, Félix; Rodrigo, Germán
2016-10-01
We extend the four-dimensional unsubtraction method, which is based on the loop-tree duality (LTD), to deal with processes involving heavy particles. The method allows to perform the summation over degenerate IR configurations directly at integrand level in such a way that NLO corrections can be implemented directly in four space-time dimensions. We define a general momentum mapping between the real and virtual kinematics that accounts properly for the quasi-collinear configurations, and leads to an smooth massless limit. We illustrate the method first with a scalar toy example, and then analyse the case of the decay of a scalar or vector boson into a pair of massive quarks. The results presented in this paper are suitable for the application of the method to any multipartonic process.
Quantum teleportation of four-dimensional qudits
Al-Amri, M.; Evers, Joerg; Zubairy, M. Suhail
2010-08-15
A protocol for the teleportation of arbitrary quantum states of four-dimensional qudits is presented. The qudit to be teleported is encoded in the combined state of two ensembles of atoms placed in a cavity at the sender's side. The receiver uses a similar setup, with his atoms prepared in a particular initial state. The teleportation protocol then consists of adiabatic mapping of the ensemble states onto photonic degrees of freedom, which are then directed onto a specific beam splitter and detection setup. For part of the measurement outcome, the qudit state is fully transferred to the receiver. Other detection events lead to partial teleportation or failed teleportation attempts. The interpretation of the different detection outcomes and possible ways of improving the full teleportation probability are discussed.
Chiral four-dimensional heterotic covariant lattices
NASA Astrophysics Data System (ADS)
Beye, Florian
2014-11-01
In the covariant lattice formalism, chiral four-dimensional heterotic string vacua are obtained from certain even self-dual lattices which completely decompose into a left-mover and a right-mover lattice. The main purpose of this work is to classify all right-mover lattices that can appear in such a chiral model, and to study the corresponding left-mover lattices using the theory of lattice genera. In particular, the Smith-Minkowski-Siegel mass formula is employed to calculate a lower bound on the number of left-mover lattices. Also, the known relationship between asymmetric orbifolds and covariant lattices is considered in the context of our classification.
Four-dimensional coherent electronic Raman spectroscopy
NASA Astrophysics Data System (ADS)
Harel, Elad
2017-04-01
The correlations between different quantum-mechanical degrees of freedom of molecular species dictate their chemical and physical properties. Generally, these correlations are reflected in the optical response of the system but in low-order or low-dimensionality measurement the signals are highly averaged. Here, we describe a novel four-dimensional coherent spectroscopic method that directly correlates within and between the manifold of electronic and vibrational states. The optical response theory is developed in terms of both resonant and non-resonant field-matter interactions. Using resonance to select coherences on specific electronic states creates opportunities to directly distinguish coherent dynamics on the ground and electronically excited potentials. Critically, this method is free from lower-order signals that have plagued other electronically non-resonant vibrational spectroscopies. The theory presented here compliments recent work on the experimental demonstration of the 4D spectroscopic method described. We highlight specific means by which non-trivial effects such as anharmonicity (diagonal and off-diagonal), mode-specific vibronic coupling, and curvature of the excited states manifest in different projections of the 4D spectrum.
Semi-invariant submanifolds of Golden Riemannian manifolds
NASA Astrophysics Data System (ADS)
Erdoǧan, Feyza Esra; Yıldırım, Cumali
2017-04-01
In this article we studied semi-invariant submanifolds of the Golden Riemannian manifold. We give integrability condition of the distributions and investigate the geometry of foliations. We also find necessary and sufficient conditions for a semi-invariant submanifold to be totally geodesic.
General flat four-dimensional world pictures and clock systems
NASA Technical Reports Server (NTRS)
Hsu, J. P.; Underwood, J. A.
1978-01-01
We explore the mathematical structure and the physical implications of a general four-dimensional symmetry framework which is consistent with the Poincare-Einstein principle of relativity for physical laws and with experiments. In particular, we discuss a four-dimensional framework in which all observers in different frames use one and the same grid of clocks. The general framework includes special relativity and a recently proposed new four-dimensional symmetry with a nonuniversal light speed as two special simple cases. The connection between the properties of light propagation and the convention concerning clock systems is also discussed, and is seen to be nonunique within the four-dimensional framework.
Splitting a simple homotopy equivalence along a submanifold with filtration
Bak, A; Muranov, Yu V
2008-06-30
A simple homotopy equivalence f:M{sup n}{yields}X{sup n} of manifolds splits along a submanifold Y subset of X if it is homotopic to a map that is a simple homotopy equivalence on the transversal preimage of the submanifold and on the complement of this preimage. The problem of splitting along a submanifold with filtration is a natural generalization of this problem. In this paper we define groups LSF{sub *} of obstructions to splitting along a submanifold with filtration and describe their properties. We apply the results obtained to the problem of the realization of surgery and splitting obstructions by maps of closed manifolds and consider several examples. Bibliography: 36 titles.
Disentangling the Cosmic Web with Lagrangian Submanifold
NASA Astrophysics Data System (ADS)
Shandarin, Sergei F.; Medvedev, Mikhail V.
2016-10-01
The Cosmic Web is a complicated highly-entangled geometrical object. Remarkably it has formed from practically Gaussian initial conditions, which may be regarded as the simplest departure from exactly uniform universe in purely deterministic mapping. The full complexity of the web is revealed neither in configuration no velocity spaces considered separately. It can be fully appreciated only in six-dimensional (6D) phase space. However, studies of the phase space is complicated by the fact that every projection of it on a three-dimensional (3D) space is multivalued and contained caustics. In addition phase space is not a metric space that complicates studies of geometry. We suggest to use Lagrangian submanifold i.e., x = x(q), where both x and q are 3D vectors instead of the phase space for studies the complexity of cosmic web in cosmological N-body dark matter simulations. Being fully equivalent in dynamical sense to the phase space it has an advantage of being a single valued and also metric space.
Marginally trapped submanifolds in generalized Robertson-Walker spacetimes
NASA Astrophysics Data System (ADS)
Alías, Luis J.; Cánovas, Verónica L.; Colares, A. Gervasio
2017-02-01
In this paper we consider codimension two marginally trapped submanifolds in the family of general Robertson-Walker spacetimes. In particular, we derive some rigidity results for this type of submanifolds which guarantee that, under appropriate hypothesis, the only ones are those contained in slices. We also derive some interesting non-existence results for weakly trapped submanifolds. In particular, we give applications to some cases of physical relevance such as the Einstein-de Sitter spacetime and certain open regions of de Sitter spacetime, including the so called steady state spacetime. Our results will be an application of the (finite) maximum principle for closed manifolds and, more generally, of the weak maximum principle for stochastically complete manifolds.
Spinorial representation of submanifolds in metric Lie groups
NASA Astrophysics Data System (ADS)
Bayard, Pierre; Roth, Julien; Zavala Jiménez, Berenice
2017-04-01
In this paper we give a spinorial representation of submanifolds of any dimension and codimension into Lie groups equipped with left invariant metrics. As applications, we get a spinorial proof of the Fundamental Theorem for submanifolds into Lie groups, we recover previously known representations of submanifolds in Rn and in the 3-dimensional Lie groups S3 and E(κ , τ) , and we get a new spinorial representation for surfaces in the 3-dimensional semi-direct products: this achieves the spinorial representations of surfaces in the 3-dimensional homogeneous spaces. We finally indicate how to recover a Weierstrass-type representation for CMC-surfaces in 3-dimensional metric Lie groups recently given by Meeks, Mira, Perez and Ros.
Hydrogen atom as a four-dimensional oscillator
Chen, A.C.
1980-08-01
A coordinate transformation which exhibits the rotational invariance of the hydrogen atom in four-dimensional Hilbert space is introduced. The coordinates are shown to be directly related to the spherical polar and parabolic coordinates in position space. With the use of the transformation, the Schroedinger equation for the hydrogen atom left-multiplied by 4r is transformed into one for a four-dimensional harmonic oscillator. Solutions are obtained and related to the hydrogenic wave functions. Group-theoretical implications of the transformation and its application to the hydrogen Stark problem are briefly discussed.
Variational four-dimensional analysis using quasi-geostrophic constraints
NASA Technical Reports Server (NTRS)
Derber, John C.
1987-01-01
A variational four-dimensional analysis technique using quasi-geostrophic models as constraints is examined using gridded fields as data. The analysis method uses a standard iterative nonlinear minimization technique to find the solution to the constraining forecast model which best fits the data as measured by a predefined functional. The minimization algorithm uses the derivative of the functional with respect to each of the initial condition values. This derivative vector is found by inserting the weighted differences between the model solution and the inserted data into a backwards integrating adjoint model. The four-dimensional analysis system was examined by applying it to fields created from a primitive equations model forecast and to fields created from satellite retrievals. The results show that the technique has several interesting characteristics not found in more traditional four-dimensional assimilation techniques. These features include a close fit of the model solution to the observations throughout the analysis interval and an insensitivity to the frequency of data insertion or the amount of data. The four-dimensional analysis technique is very versatile and can be extended to more complex problems with little theoretical difficulty.
Tori and Klein bottles in four-dimensional chaotic flows
NASA Astrophysics Data System (ADS)
Mindlin, G. B.; Solari, H. G.
1997-02-01
We have analyzed the local structure of the flow in the neighborhood of the unstable periodic orbits within the chaotic solution of a four-dimensional vector field. Surfaces within the invariant manifolds of the orbits are found and characterized: they are either Klein bottles or tori.
Semiclassical States Associated with Isotropic Submanifolds of Phase Space
NASA Astrophysics Data System (ADS)
Guillemin, V.; Uribe, A.; Wang, Z.
2016-12-01
We define classes of quantum states associated with isotropic submanifolds of cotangent bundles. The classes are stable under the action of semiclassical pseudo-differential operators and covariant under the action of semiclassical Fourier integral operators. We develop a symbol calculus for them; the symbols are symplectic spinors. We outline various applications.
Common time in a four-dimensional symmetry framework
NASA Technical Reports Server (NTRS)
Hsu, J. P.; Sherry, T. N.
1980-01-01
Following the ideas of Poincare, Reichenbach, and Grunbaum concerning the convention of setting up clock systems, clock systems and light propagation are analyzed within the framework of four-dimensional symmetry. It is possible to construct a new four-dimensional symmetry framework incorporating common time: observers in different inertial frames of reference use one and the same clock system, which is located in any one of the frames. Consequently, simultaneity has a meaning independent of position and independent of frame of reference. A further consequence is that the two-way speeds of light alone are isotropic in any frame. By the choice of clock system there will be one frame in which the one-way speed of light is isotropic. This frame can be arbitrarily chosen. The difference between one-way speeds and two-way speeds of light signals is considered in detail.
Manual control displays for a four-dimensional landing approach
NASA Technical Reports Server (NTRS)
Silverthorn, J. T.; Swaim, R. L.
1975-01-01
Six instrument rated pilots flew a STOL fixed base simulator to study the effectiveness of three displays for a four dimensional approach. The three examined displays were a digital readout of forward position error, a digital speed command, and an analog display showing forward position error and error prediction. A flight director was used in all conditions. All test runs were for a typical four dimensional approach in moderate turbulence that included a change in commanded ground speed, a change in flight path angle, and two standard rate sixty degree turns. Use of the digital forward position error display resulted in large overshoot in the forward position error. Some type of lead (rate or prediction information) was shown to be needed. The best overall performance was obtained using the speed command display. It was demonstrated that curved approaches can be flown with relative ease.
Going four-dimensional at a national laboratory
Stapp, D.C.; Thielman, J.; Gorst, W.
1990-10-01
The four-dimensional principle, as explained by Horton, is founded upon the notion that our senses and mind prefer dynamic, life-like images -- we understand and enjoy pictures better than words and raw data. Whenever we convert information to graphical images, we increase the number of readers, improve our chances of being understood, and increase the impact of our document. In this paper, we discuss our efforts to engage today's audience by applying the visual approach to our communication work at the Pacific Northwest Laboratory (PNL). Topics include: the increasing importance of visuals, the opportunity for editors to take a lead role in design and development of the visual elements, a discussion of how we work at PNL and how our efforts to incorporate the four-dimensional concept are going, along with some examples of successes, and efforts to speed up the process and a brief summary. 4 refs., 7 figs.
Finding four dimensional symplectic maps with reduced chaos: Preliminary results
Weishi Wan; Cary, J.R.; Shasharina, S.G.
1998-06-01
A method for finding integrable four-dimensional symplectic maps is outlined. The method relies on solving for parameter values at which the linear stability factors of the fixed points of the map have the values corresponding to integrability. This method is applied to accelerator lattices in order to increase dynamic aperture. Results show a increase of the dynamic aperture after correction, which implies the validity of the method.
Philosophy of gravity: Intuitions of four-dimensional curved spacetime
NASA Astrophysics Data System (ADS)
Chandler, Marthe
1994-04-01
General Relativity describes the universe as a four-dimensional spacetime manifold which is somehow ‘curved’. Accounts of curved spacetime often claim that most of us find it impossible to imagine four-dimensional spacetime, and so should not even try to do so. This paper examines the claim that the best description of the universe is counter-intuitive and suggests ways to re-educate our intuitions to make them compatible with what seems to be the best science around. The paper examines two world views, or pictures of the universe — the Aristotelian and the Newtonian — and argues that we have forgotten (or perhaps never realized) how much of an idealization the Newtonian world view actually is. For this reason we have come to believe that we can only ‘see’ the world in three spatial dimensions. The paper ends by describing an alternative idealization, or set of pictures, that would lead us to find the claim that the universe is a four-dimensional spacetime manifold ‘perfectly natural’.
Reduction of the codimension for lightlike isotropic submanifolds
NASA Astrophysics Data System (ADS)
Atindogbe, Cyriaque; Ezin, Jean-Pierre; Tossa, Joël
2002-05-01
We give a sufficient condition for a lightlike isotropic submanifold M, of dimension n, which is not totally geodesic in a semi-Riemannian manifold of constant curvature c and of dimension n+ p( n< p), to admit a reduction of codimension. We show that this condition is a necessary and sufficient condition on the first transversal space of M. There are basic and non-trivial differences from the Riemannian case, as developed by Dajczer et al. [Mathematics Lectures Series, Vol. 13, 1990], due to the degenerate metric on M. This result extends in some sense, the one in [J. Diff. Geom. 5 (1971) 333; Topology 25 (4) (1986) 541; Mathematics Lectures Series, Vol. 13, 1990] to lightlike isotropic submanifolds.
Spin(7)-Instantons, Cayley Submanifolds and Fueter Sections
NASA Astrophysics Data System (ADS)
Walpuski, Thomas
2017-05-01
We prove an existence theorem for Spin(7)-instantons, which are highly concentrated near a Cayley submanifold; thus giving a partial converse to Tian's foundational compactness theorem (Ann Math (2) 151(1):193-268, 2000). As an application, we show how to construct Spin(7)-instantons on Spin(7)-manifolds with suitable local K3 Cayley fibrations. This recovers an example constructed by Lewis (Spin(7) instantons, Ph.D. Thesis, 1998).
Four-dimensional characterization of a sheet-forming web
Sari-Sarraf, Hamed; Goddard, James S.
2003-04-22
A method and apparatus are provided by which a sheet-forming web may be characterized in four dimensions. Light images of the web are recorded at a point adjacent the initial stage of the web, for example, near the headbox in a paperforming operation. The images are digitized, and the resulting data is processed by novel algorithms to provide a four-dimensional measurement of the web. The measurements include two-dimensional spatial information, the intensity profile of the web, and the depth profile of the web. These measurements can be used to characterize the web, predict its properties and monitor production events, and to analyze and quantify headbox flow dynamics.
Four-dimensional optical manipulation of colloidal particles
NASA Astrophysics Data System (ADS)
Rodrigo, Peter John; Daria, Vincent Ricardo; Glückstad, Jesper
2005-02-01
We transform a TEM00 laser mode into multiple counterpropagating optical traps to achieve four-dimensional simultaneous manipulation of multiple particles. Efficient synthesis and dynamic control of the counterpropagating-beam traps is carried out via the generalized phase contrast method, and a spatial polarization-encoding scheme. Our experiments genuinely demonstrate real-time, interactive particle-position control for forming arbitrary volumetric constellations and complex three-dimensional trajectories of multiple particles. This opens up doors for cross-disciplinary cutting-edge research in various fields.
Four-dimensional imaging: the exploration of space and time.
Thomas, C F; White, J G
1998-04-01
The process of studying dynamic three-dimensional samples has a long history in biological research. Recent advances in hardware and software have made it easier to visualise and record interior detail from multiple focal planes of three-dimensional samples as they change over time (four-dimensional imaging). Once captured, it is possible to watch these events repeatedly and to analyse them in numerous ways. This article discusses the history of and the hardware necessary to perform 4D experiments, the various techniques that make 4D imaging possible, and the applications and various options for 4D-image analysis.
Four-dimensional black holes in Einsteinian cubic gravity
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Cano, Pablo A.
2016-12-01
We construct static and spherically symmetric generalizations of the Schwarzschild- and Reissner-Nordström-(anti-)de Sitter [RN-(A)dS] black-hole solutions in four-dimensional Einsteinian cubic gravity (ECG). The solutions are characterized by a single function which satisfies a nonlinear second-order differential equation. Interestingly, we are able to compute independently the Hawking temperature T , the Wald entropy S and the Abbott-Deser mass M of the solutions analytically as functions of the horizon radius and the ECG coupling constant λ . Using these we show that the first law of black-hole mechanics is exactly satisfied. Some of the solutions have positive specific heat, which makes them thermodynamically stable, even in the uncharged and asymptotically flat case. Further, we claim that, up to cubic order in curvature, ECG is the most general four-dimensional theory of gravity which allows for nontrivial generalizations of Schwarzschild- and RN-(A)dS characterized by a single function which reduce to the usual Einstein gravity solutions when the corresponding higher-order couplings are set to zero.
Four-dimensional maps of the human somatosensory system
Avanzini, Pietro; Abdollahi, Rouhollah O.; Sartori, Ivana; Caruana, Fausto; Pelliccia, Veronica; Casaceli, Giuseppe; Mai, Roberto; Lo Russo, Giorgio; Rizzolatti, Giacomo; Orban, Guy A.
2016-01-01
A fine-grained description of the spatiotemporal dynamics of human brain activity is a major goal of neuroscientific research. Limitations in spatial and temporal resolution of available noninvasive recording and imaging techniques have hindered so far the acquisition of precise, comprehensive four-dimensional maps of human neural activity. The present study combines anatomical and functional data from intracerebral recordings of nearly 100 patients, to generate highly resolved four-dimensional maps of human cortical processing of nonpainful somatosensory stimuli. These maps indicate that the human somatosensory system devoted to the hand encompasses a widespread network covering more than 10% of the cortical surface of both hemispheres. This network includes phasic components, centered on primary somatosensory cortex and neighboring motor, premotor, and inferior parietal regions, and tonic components, centered on opercular and insular areas, and involving human parietal rostroventral area and ventral medial-superior-temporal area. The technique described opens new avenues for investigating the neural basis of all levels of cortical processing in humans. PMID:26976579
Restricted Weyl invariance in four-dimensional curved spacetime
NASA Astrophysics Data System (ADS)
Edery, Ariel; Nakayama, Yu
2014-08-01
We discuss the physics of restricted Weyl invariance, a symmetry of dimensionless actions in four-dimensional curved space time. When we study a scalar field nonminimally coupled to gravity with Weyl(conformal) weight of -1 (i.e. scalar field with the usual two-derivative kinetic term), we find that dimensionless terms are either fully Weyl invariant or are Weyl invariant if the conformal factor Ω(x) obeys the condition gμν∇μ∇νΩ =0. We refer to the latter as restricted Weyl invariance. We show that all the dimensionless geometric terms such as R2, RμνRμν and RμνστRμνστ are restricted Weyl invariant. Restricted Weyl transformations possesses nice mathematical properties such as the existence of a composition and an inverse in four-dimensional space-time. We exemplify the distinction among rigid Weyl invariance, restricted Weyl invariance and the full Weyl invariance in dimensionless actions constructed out of scalar fields and vector fields with Weyl weight zero.
Restricted Weyl invariance in four-dimensional curved spacetime
NASA Astrophysics Data System (ADS)
Edery, Ariel; Nakayama, Yu
2016-03-01
We discuss the physics of restricted Weyl invariance, a symmetry of dimensionless actions in four dimensional curved space time. When we study a scalar field nonminimally coupled to gravity with Weyl(conformal) weight of - 1 (i.e. scalar field with the usual two-derivative kinetic term), we find that dimensionless terms are either fully Weyl invariant or are Weyl invariant if the conformal factor Ω (x) obeys the condition gμν∇μ∇ν Ω = 0 . We refer to the latter as restricted Weyl invariance. We show that all the dimensionless geometric terms such as R2, RμνRμν and RμνστRμνστ are restricted Weyl invariant. Restricted Weyl transformations possesses nice mathematical properties such as the existence of a composition and an inverse in four dimensional space-time. We exemplify the distinction among rigid Weyl invariance, restricted Weyl invariance and the full Weyl invariance in dimensionless actions constructed out of scalar fields and vector fields with Weyl weight zero.
Unravelling cardiovascular disease using four dimensional flow cardiovascular magnetic resonance.
Kamphuis, Vivian P; Westenberg, Jos J M; van der Palen, Roel L F; Blom, Nico A; de Roos, Albert; van der Geest, Rob; Elbaz, Mohammed S M; Roest, Arno A W
2016-11-25
Knowledge of normal and abnormal flow patterns in the human cardiovascular system increases our understanding of normal physiology and may help unravel the complex pathophysiological mechanisms leading to cardiovascular disease. Four-dimensional (4D) flow cardiovascular magnetic resonance (CMR) has emerged as a suitable technique that enables visualization of in vivo blood flow patterns and quantification of parameters that could potentially be of prognostic value in the disease process. In this review, current image processing tools that are used for comprehensive visualization and quantification of blood flow and energy distribution in the heart and great vessels will be discussed. Also, imaging biomarkers extracted from 4D flow CMR will be reviewed that have been shown to distinguish between normal and abnormal flow patterns. Furthermore, current applications of 4D flow CMR in the heart and great vessels will be discussed, showing its potential as an additional diagnostic modality which could aid in disease management and timing of surgical intervention.
Visualization of Four Dimensional Data on Virtual Globes
NASA Astrophysics Data System (ADS)
Swick, R.; Maurer, J.; Troisi, V.; Wang, I.
2006-12-01
The recent proliferation of virtual globes seems to have captured the public imagination to a degree seldom seen in the Earth Sciences. Virtual globes, such as Google Earth and World Winds, do such a fantastic job of rendering geolocated imagery on a 3D Earth it would be almost criminal not to take advantage. For just the cost of creating compatible imagery the scientific community can offer data visualization capabilities with features like zoom, variable transparency, overlays, etc... But for the climate change community 3D is not enough. To show change over time one needs 4D capabilities. Using 20-30 year time series data from the National Snow and Ice Data Center this presentation explores methods for incorporating four dimensional data into virtual globes.
Fast live simultaneous multiwavelength four-dimensional optical microscopy
Carlton, Peter M.; Boulanger, Jérôme; Kervrann, Charles; Sibarita, Jean-Baptiste; Salamero, Jean; Gordon-Messer, Susannah; Bressan, Debra; Haber, James E.; Haase, Sebastian; Shao, Lin; Winoto, Lukman; Matsuda, Atsushi; Kner, Peter; Uzawa, Satoru; Gustafsson, Mats; Kam, Zvi; Agard, David A.; Sedat, John W.
2010-01-01
Live fluorescence microscopy has the unique capability to probe dynamic processes, linking molecular components and their localization with function. A key goal of microscopy is to increase spatial and temporal resolution while simultaneously permitting identification of multiple specific components. We demonstrate a new microscope platform, OMX, that enables subsecond, multicolor four-dimensional data acquisition and also provides access to subdiffraction structured illumination imaging. Using this platform to image chromosome movement during a complete yeast cell cycle at one 3D image stack per second reveals an unexpected degree of photosensitivity of fluorophore-containing cells. To avoid perturbation of cell division, excitation levels had to be attenuated between 100 and 10,000× below the level normally used for imaging. We show that an image denoising algorithm that exploits redundancy in the image sequence over space and time allows recovery of biological information from the low light level noisy images while maintaining full cell viability with no fading. PMID:20705899
Four-dimensional Printing of Liquid Crystal Elastomers.
Ambulo, Cedric P; Burroughs, Julia J; Boothby, Jennifer M; Kim, Hyun; Shankar, M Ravi; Ware, Taylor H
2017-10-11
Three-dimensional structures capable of reversible changes in shape, i.e., four-dimensional-printed structures, may enable new generations of soft robotics, implantable medical devices, and consumer products. Here, thermally responsive liquid crystal elastomers (LCEs) are direct-write printed into 3D structures with a controlled molecular order. Molecular order is locally programmed by controlling the print path used to build the 3D object, and this order controls the stimulus response. Each aligned LCE filament undergoes 40% reversible contraction along the print direction on heating. By printing objects with controlled geometry and stimulus response, magnified shape transformations, for example, volumetric contractions or rapid, repetitive snap-through transitions, are realized.
Low-energy structure of four-dimensional superstrings
Zwirner, F.
1988-05-01
The N = 1, d = 4 supergravity theories derived as the low-energy limit of four-dimensional superstrings are discussed, focusing on the properties of their effective potentials. Gauge symmetry breaking is possible along several flat directions. A class of superpotential modifications is introduced, which describes supersymmetry breaking with vanishing cosmological constant and Str M{sup 2} = 0 at any minimum of the tree level potential. Under more restrictive assumptions, there are minima with broken supersymmetry at which also Str f(M{sup 2}) = 0 for any function f, so that the whole one-loop cosmological constant vanishes. This result is interpreted in terms of a new discrete boson-fermion symmetry, relating particles whose helicities differ by 3/2, e.g., the graviton and the dilatino.' 21 refs.
On holomorphic Riemannian geometry and submanifolds of Wick-related spaces
NASA Astrophysics Data System (ADS)
Pessers, Victor; Van der Veken, Joeri
2016-06-01
In this article we show how holomorphic Riemannian geometry can be used to relate certain submanifolds in one pseudo-Riemannian space to submanifolds with corresponding geometric properties in other spaces. In order to do so, we shall first rephrase and extend some background theory on holomorphic Riemannian manifolds, which is essential for the later application of the presented method.
Reduced dynamics and Lagrangian submanifolds of symplectic manifolds
NASA Astrophysics Data System (ADS)
García-Toraño Andrés, E.; Guzmán, E.; Marrero, J. C.; Mestdag, T.
2014-06-01
In this paper, we will see that the symplectic creed by Weinstein ‘everything is a Lagrangian submanifold’ also holds for Hamilton-Poincaré and Lagrange-Poincaré reduction. In fact, we show that solutions of the Hamilton-Poincaré equations and of the Lagrange-Poincaré equations are in one-to-one correspondence with distinguished curves in a Lagrangian submanifold of a symplectic manifold. For this purpose, we will combine the concept of a Tulczyjew triple with Marsden-Weinstein symplectic reduction.
Universality in four-dimensional random-field magnets
NASA Astrophysics Data System (ADS)
Fytas, Nikolaos G.; Theodorakis, Panagiotis E.
2015-08-01
We investigate the universality aspects of the four-dimensional random-field Ising model (RFIM) using numerical simulations at zero temperature. We consider two different, in terms of the field distribution, versions of the model, namely a Gaussian RFIM and an equal-weight trimodal RFIM. By implementing a computational approach that maps the ground-state of the system to the maximum-flow optimization problem of a network, we employ the most up-to-date version of the push-relabel algorithm and simulate large ensembles of disorder realizations of both models for a broad range of random-field values and system sizes. Using as finite-size measures the sample-to-sample fluctuations of the order parameter of the system, we propose, for both types of distributions, estimates of the critical field hc and the critical exponent ν of the correlation length, the latter suggesting that the two models in four dimensions share the same universality class.
Constraints on RG flow for four dimensional quantum field theories
NASA Astrophysics Data System (ADS)
Jack, I.; Osborn, H.
2014-06-01
The response of four dimensional quantum field theories to a Weyl rescaling of the metric in the presence of local couplings and which involve a, the coefficient of the Euler density in the energy momentum tensor trace on curved space, is reconsidered. Previous consistency conditions for the anomalous terms, which implicitly define a metric G on the space of couplings and give rise to gradient flow like equations for a, are derived taking into account the role of lower dimension operators. The results for infinitesimal Weyl rescaling are integrated to finite rescalings e2σ to a form which involves running couplings gσ and which interpolates between IR and UV fixed points. The results are also restricted to flat space where they give rise to broken conformal Ward identities. Expressions for the three loop Yukawa β-functions for a general scalar/fermion theory are obtained and the three loop contribution to the metric G for this theory is also calculated. These results are used to check the gradient flow equations to higher order than previously. It is shown that these are only valid when β→B, a modified β-function, and that the equations provide strong constraints on the detailed form of the three loop Yukawa β-function. N=1 supersymmetric Wess-Zumino theories are also considered as a special case. It is shown that the metric for the complex couplings in such theories may be restricted to a hermitian form.
Four dimensional deformable image registration using trajectory modeling
Castillo, Edward; Castillo, Richard; Martinez, Josue; Shenoy, Maithili; Guerrero, Thomas
2013-01-01
A four-dimensional deformable image registration (4D DIR) algorithm, referred to as 4D local trajectory modeling (4DLTM), is presented and applied to thoracic 4D computed tomography (4DCT) image sets. The theoretical framework on which this algorithm is built exploits the incremental continuity present in 4DCT component images to calculate a dense set of parameterized voxel trajectories through space as functions of time. The spatial accuracy of the 4DLTM algorithm is compared with an alternative registration approach in which component phase to phase (CPP) DIR is utilized to determine the full displacement between maximum inhale and exhale images. A publically available DIR reference database (http://www.dir-lab.com) is utilized for the spatial accuracy assessment. The database consists of ten 4DCT image sets and corresponding manually identified landmark points between the maximum phases. A subset of points are propagated through the expiratory 4DCT component images. Cubic polynomials were found to provide sufficient flexibility and spatial accuracy for describing the point trajectories through the expiratory phases. The resulting average spatial error between the maximum phases was 1.25 mm for the 4DLTM and 1.44 mm for the CPP. The 4DLTM method captures the long-range motion between 4DCT extremes with high spatial accuracy. PMID:20009196
A Four-Dimensional Probabilistic Atlas of the Human Brain
Mazziotta, John; Toga, Arthur; Evans, Alan; Fox, Peter; Lancaster, Jack; Zilles, Karl; Woods, Roger; Paus, Tomas; Simpson, Gregory; Pike, Bruce; Holmes, Colin; Collins, Louis; Thompson, Paul; MacDonald, David; Iacoboni, Marco; Schormann, Thorsten; Amunts, Katrin; Palomero-Gallagher, Nicola; Geyer, Stefan; Parsons, Larry; Narr, Katherine; Kabani, Noor; Le Goualher, Georges; Feidler, Jordan; Smith, Kenneth; Boomsma, Dorret; Pol, Hilleke Hulshoff; Cannon, Tyrone; Kawashima, Ryuta; Mazoyer, Bernard
2001-01-01
The authors describe the development of a four-dimensional atlas and reference system that includes both macroscopic and microscopic information on structure and function of the human brain in persons between the ages of 18 and 90 years. Given the presumed large but previously unquantified degree of structural and functional variance among normal persons in the human population, the basis for this atlas and reference system is probabilistic. Through the efforts of the International Consortium for Brain Mapping (ICBM), 7,000 subjects will be included in the initial phase of database and atlas development. For each subject, detailed demographic, clinical, behavioral, and imaging information is being collected. In addition, 5,800 subjects will contribute DNA for the purpose of determining genotype– phenotype–behavioral correlations. The process of developing the strategies, algorithms, data collection methods, validation approaches, database structures, and distribution of results is described in this report. Examples of applications of the approach are described for the normal brain in both adults and children as well as in patients with schizophrenia. This project should provide new insights into the relationship between microscopic and macroscopic structure and function in the human brain and should have important implications in basic neuroscience, clinical diagnostics, and cerebral disorders. PMID:11522763
Tomography of the ionosphere: Four-dimensional simulations
NASA Astrophysics Data System (ADS)
Howe, Bruce M.; Runciman, Kay; Secan, James A.
1998-01-01
Using a four-dimensional stochastic model of ionosphere perturbations, simulations are made of a tomography system based on data from the Global Positioning System and a low Earth-orbiting satellite. The perturbations are departures from a simple time-independent reference state. The spatial structure is parameterized in terms of empirical orthogonal functions (EOFs) in the vertical and spherical harmonics in the horizontal. The horizontal covariance structure is specified by variance and correlation length scales as functions of latitude and longitude. Time dependence is modeled as a first-order Markov process with a 6-hour timescale and white-noise forcing. A Sun-fixed coordinate system is used so that ionospheric features are more nearly steady in time. A Kaiman filter is used to objectively assimilate the simulated data into the simple time-dependent model. In addition to solving for the three-dimensional electron density field at each time step, the procedure solves for instrumental biases. The simulations show that the fractions of resolved variance for vertical EOF modes 1, 2, and 3 are 0.99, 0.93, and 0.73, respectively. The resolution of the vertically integrated total electron content is 0.99.
Computer system for four-dimensional transesophageal echocardiographic image reconstruction.
Duann, J R; Lin, S B; Hu, W C; Su, J L
1999-01-01
This paper presents a system for reconstructing a four-dimensional (4D) heart-beating image from transesophageal echocardiographic (TEE) data acquired with a rotational approach. The system consists of the necessary processing modules for two-dimensional (2D) echocardiogram reformation and 3D/4D-image reconstruction. These include the modules of image decoding, image re-coordinating, and three-dimensional (3D) volume rendering. The system is implemented under PC platform with Windows 95 operating system (with Intel Pentium-166 CPU, 64 MB RAM on board, and 2.0 GB hard disk capacity). It takes 6 min to reconstruct a 4D echocardiographic data set. The resultant 2D/3D/4D echocardiographic image provide the tools for investigating the phenomenon of heart beating, exploring the heart structure, and reformatting the 2D echocardiograms in an arbitrary plane. The functions provided by the system can be applied for further studies, such as 3D cardiac shape analysis, cardiac function measurement, and so forth.
Four dimensional reconstruction and analysis of plume images
NASA Astrophysics Data System (ADS)
Dhawan, Atam P.; Peck, Charles, III; Disimile, Peter
1991-05-01
A number of methods have been investigated and are under current investigation for monitoring the health of the Space Shuttle Main Engine (SSME). Plume emission analysis has recently emerged as a potential technique for correlating the emission characteristics with the health of an engine. In order to correlate the visual and spectral signatures of the plume emission with the characteristic health monitoring features of the engine, the plume emission data must be acquired, stored, and analyzed in a manner similar to flame emission spectroscopy. The characteristic visual and spectral signatures of the elements vaporized in exhaust plume along with the features related to their temperature, pressure, and velocity can be analyzed once the images of plume emission are effectively acquired, digitized, and stored on a computer. Since the emission image varies with respect to time at a specified planar location, four dimensional visual and spectral analysis need to be performed on the plume emission data. In order to achieve this objective, feasibility research was conducted to digitize, store, analyze, and visualize the images of a subsonic jet in a cross flow. The jet structure was made visible using a direct injection flow visualization technique. The results of time-history based three dimensional reconstruction of the cross sectional images corresponding to a specific planar location of the jet structure are presented. The experimental set-up to acquire such data is described and three dimensional displays of time-history based reconstructions of the jet structure are discussed.
Four-dimensional positron age-momentum correlation
NASA Astrophysics Data System (ADS)
Ackermann, Ulrich; Löwe, Benjamin; Dickmann, Marcel; Mitteneder, Johannes; Sperr, Peter; Egger, Werner; Reiner, Markus; Dollinger, Günther
2016-11-01
We have performed first four-dimensional age-momentum correlation (4D-AMOC) measurements at a pulsed high intensity positron micro beam and determined the absolute value of the three-dimensional momentum of the electrons annihilating with the positrons in coincidence with the positron age in the sample material. We operated two position sensitive detectors in coincidence to measure the annihilation radiation: a pixelated HPGe-detector and a microchannel plate image intensifier with a CeBr3 scintillator pixel array. The transversal momentum resolution of the 4D-AMOC setup was measured to be about 17 × 10-3 {m}0c (FWHM) and was circa 3.5 times larger than the longitudinal momentum resolution. The total time resolution was 540 ps (FWHM). We measured two samples: a gold foil and a carbon tape at a positron implantation energy of 2 keV. For each sample discrete electron momentum states and their respective positron lifetimes were extracted.
Invariant submanifold for series arrays of Josephson junctions.
Marvel, Seth A; Strogatz, Steven H
2009-03-01
We study the nonlinear dynamics of series arrays of Josephson junctions in the large-N limit, where N is the number of junctions in the array. The junctions are assumed to be identical, overdamped, driven by a constant bias current, and globally coupled through a common load. Previous simulations of such arrays revealed that their dynamics are remarkably simple, hinting at the presence of some hidden symmetry or other structure. These observations were later explained by the discovery of N-3 constants of motion, the choice of which confines the resulting flow in phase space to a low-dimensional invariant manifold. Here we show that the dimensionality can be reduced further by restricting attention to a special family of states recently identified by Ott and Antonsen. In geometric terms, the Ott-Antonsen ansatz corresponds to an invariant submanifold of dimension one less than that found earlier. We derive and analyze the flow on this submanifold for two special cases: an array with purely resistive loading and another with resistive-inductive-capacitive loading. Our results recover (and in some instances improve) earlier findings based on linearization arguments.
Four dimensional lidar imaging of the atmosphere (Invited)
NASA Astrophysics Data System (ADS)
Eloranta, E.
2010-12-01
High resolution four-dimensional depictions of atmospheric structure are needed for many atmospheric investigations. Scanning lidar offers the potential to provide high spatial and temporal resolution four-dimensional imaging of atmospheric structure. This paper will use data acquired with the University of Wisconsin Volume Imaging Lidar (VIL) to illustrate the potential of such measurements, describe the necessary lidar performance requirements , and provide measurement examples. The University of Wisconsin Volume imaging lidar acquired it's first data in the 1987 FIFE experiment and was operated in several deployments until it was mothballed after the 1997-98 Lake-ICE experiment. Although this data is old and the system is now obsolete, the data illustrates the power of the measurement approach and the system characteristics needed to acquire such data. The key challenge in acquiring useful 4-D scan is to provide high spatial resolution along with a scan repeat time short enough to maintain temporal coherence between successive images. This requires a high power transmitter, high pulse repetition rates, large optics, high quantum efficiency, good optical throughput and fast data acquisition. The VIL operated at a wavelength of 1064 nm, emitting an average power of 40 W at a repetition rate of 100 Hz. The receiver utilized 0.5 m diameter telescope with an avalanche photodiode detector that provides a quantum efficiency of ~35%. Operating at the fundamental Nd:YAG wavelength of 1064 rather than the more usual doubled 532 nm wavelength, avoided the loss of power and photon numbers involved in frequency doubling. It also allowed use of the high quantum efficiency of the avalanche photodiode in place of the the lower efficiency photomultiplier. Signal-to-noise calculations show that the combination of higher photon numbers and greater quantum efficiency more than maked up for the large dark current noise of the APD-amplifier combination. The high power and sensitivity
Four-dimensional flow magnetic resonance imaging in cirrhosis
Stankovic, Zoran
2016-01-01
Since its introduction in the 1970’s, magnetic resonance imaging (MRI) has become a standard imaging modality. With its broad and standardized application, it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging. In addition to sonography and computer tomography, MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases, for determining disease severity, and for assessing therapeutic success. MRI techniques have improved over the last few decades, revealing not just morphologic information, but functional information about perfusion, diffusion and hemodynamics as well. Four-dimensional (4D) flow MRI, a time-resolved phase contrast-MRI with three-dimensional (3D) anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body. The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest. Over the last few years, 4D flow MRI has been increasingly performed in the abdominal region. By applying different acceleration techniques, taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min. These new developments have encouraged a growing number of patient studies in the literature validating the technique’s potential for enhanced evaluation of blood flow parameters within the liver’s complex vascular system. The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition, data analysis, visualization and quantification. Furthermore, in this article we highlight its development, focussing on the clinical application of the technique. PMID:26755862
Coupled decomposition of four-dimensional NOESY spectra
Hiller, Sebastian; Ibraghimov, Ilghis; Wagner, Gerhard; Orekhov, Vladislav Y.
2009-01-01
Four-dimensional (4D) NOESY spectra provide unambiguous distance information at a resolution that can not be achieved in fewer dimensions and thus increase the quality of biomolecular structure determination substantially. Since the degree of chemical shift degeneracy increases with protein size, the use of 4D NOESY spectra is particularly important for large proteins. The potential high resolution in 4D spectra can not be achieved in a reasonable time with conventional acquisition routines that sample the Nyquist grid uniformly. It can however be obtained with non-uniform sampling of the data grid, but optimal processing of such data has not yet been established. Here we describe a processing method for a pair of sparsely sampled 4D NOESY spectra, a methyl–methyl and an amide–methyl NOESY, recorded on a perdeuterated protein with protonated isoleucine, leucine and valine methyl groups. The coupled multi-dimensional decomposition (Co-MDD) of these two spectra together with a 2D template spectrum results in a substantial increase in sensitivity, evidenced by 50–100% additional cross peaks, when compared to alternative processing schemes. At the same time, Co-MDD allows the use of low sparse levels of 10–15% of the full data grid for NOESY spectra. For the 283-residue integral human membrane protein VDAC-1, which has a rotational correlation time of about 70 ns in detergent micelles, the two 4D Co-MDD NOESYs yielded a total of 366 NOEs, resulting in 139 unambiguous upper limit distance constraints for the structure calculation. PMID:19737017
Model-based image reconstruction for four-dimensional PET
Li Tianfang; Thorndyke, Brian; Schreibmann, Eduard; Yang Yong; Xing Lei
2006-05-15
Positron emission tonography (PET) is useful in diagnosis and radiation treatment planning for a variety of cancers. For patients with cancers in thoracic or upper abdominal region, the respiratory motion produces large distortions in the tumor shape and size, affecting the accuracy in both diagnosis and treatment. Four-dimensional (4D) (gated) PET aims to reduce the motion artifacts and to provide accurate measurement of the tumor volume and the tracer concentration. A major issue in 4D PET is the lack of statistics. Since the collected photons are divided into several frames in the 4D PET scan, the quality of each reconstructed frame degrades as the number of frames increases. The increased noise in each frame heavily degrades the quantitative accuracy of the PET imaging. In this work, we propose a method to enhance the performance of 4D PET by developing a new technique of 4D PET reconstruction with incorporation of an organ motion model derived from 4D-CT images. The method is based on the well-known maximum-likelihood expectation-maximization (ML-EM) algorithm. During the processes of forward- and backward-projection in the ML-EM iterations, all projection data acquired at different phases are combined together to update the emission map with the aid of deformable model, the statistics is therefore greatly improved. The proposed algorithm was first evaluated with computer simulations using a mathematical dynamic phantom. Experiment with a moving physical phantom was then carried out to demonstrate the accuracy of the proposed method and the increase of signal-to-noise ratio over three-dimensional PET. Finally, the 4D PET reconstruction was applied to a patient case.
Semiautomated four-dimensional computed tomography segmentation using deformable models
Ragan, Dustin; Starkschall, George; McNutt, Todd; Kaus, Michael; Guerrero, Thomas; Stevens, Craig W.
2005-07-15
The purpose of this work is to demonstrate a proof of feasibility of the application of a commercial prototype deformable model algorithm to the problem of delineation of anatomic structures on four-dimensional (4D) computed tomography (CT) image data sets. We acquired a 4D CT image data set of a patient's thorax that consisted of three-dimensional (3D) image data sets from eight phases in the respiratory cycle. The contours of the right and left lungs, cord, heart, and esophagus were manually delineated on the end inspiration data set. An interactive deformable model algorithm, originally intended for deforming an atlas-based model surface to a 3D CT image data set, was applied in an automated fashion. Triangulations based on the contours generated on each phase were deformed to the CT data set on the succeeding phase to generate the contours on that phase. Deformation was propagated through the eight phases, and the contours obtained on the end inspiration data set were compared with the original manually delineated contours. Structures defined by high-density gradients, such as lungs, cord, and heart, were accurately reproduced, except in regions where other gradient boundaries may have confused the algorithm, such as near bronchi. The algorithm failed to accurately contour the esophagus, a soft-tissue structure completely surrounded by tissue of similar density, without manual interaction. This technique has the potential to facilitate contour delineation in 4D CT image data sets; and future evolution of the software is expected to improve the process.
Variability of Four-Dimensional Computed Tomography Patient Models
Sonke, Jan-Jakob
2008-02-01
Purpose: To quantify the interfractional variability in lung tumor trajectory and mean position during the course of radiation therapy. Methods and Materials: Repeat four-dimensional (4D) cone-beam computed tomography (CBCT) scans (median, nine scans/patient) routinely acquired during the course of treatment were analyzed for 56 patients with lung cancer. Tumor motion was assessed by using local rigid registration of a region of interest in the 3D planning CT to each phase in the 4D CBCT. Displacements of the mean tumor position relative to the planned position (baseline variations) were obtained by using time-weighted averaging of the motion curve. Results: The tumor trajectory shape was found to be stable interfractionally, with mean variability not exceeding 1 mm (1 SD) in each direction for the inhale and exhale phases. Interfractional baseline variations, however, were large, with 1.6- (left-right), 3.9- (cranial-caudal), and 2.8-mm (anterior-posterior) systematic variations (1 SD) and 1.2- (left-right), 2.4- (cranial-caudal) and 2.2-mm (anterior-posterior) random variations. Eliminating baseline variations by using soft-tissue guidance decreases planning target volume margins by approximately 50% compared with bony anatomy-driven protocols for conventional fractionation schemes. Conclusions: Systematic and random baseline variations constitute a substantial portion of the geometric variability present in the treatment of patients with lung cancer and require generous safety margins when relying on accurate setup/immobilization or bony anatomy-driven correction strategies. The 4D-CBCT has the ability to accurately monitor tumor trajectory shape and baseline variations and drive image-guided correction strategies that allows safe margin reduction.
Four-dimensional flow magnetic resonance imaging in cirrhosis.
Stankovic, Zoran
2016-01-07
Since its introduction in the 1970's, magnetic resonance imaging (MRI) has become a standard imaging modality. With its broad and standardized application, it is firmly established in the clinical routine and an essential element in cardiovascular and abdominal imaging. In addition to sonography and computer tomography, MRI is a valuable tool for diagnosing cardiovascular and abdominal diseases, for determining disease severity, and for assessing therapeutic success. MRI techniques have improved over the last few decades, revealing not just morphologic information, but functional information about perfusion, diffusion and hemodynamics as well. Four-dimensional (4D) flow MRI, a time-resolved phase contrast-MRI with three-dimensional (3D) anatomic coverage and velocity encoding along all three flow directions has been used to comprehensively assess complex cardiovascular hemodynamics in multiple regions of the body. The technique enables visualization of 3D blood flow patterns and retrospective quantification of blood flow parameters in a region of interest. Over the last few years, 4D flow MRI has been increasingly performed in the abdominal region. By applying different acceleration techniques, taking 4D flow MRI measurements has dropped to a reasonable scanning time of 8 to 12 min. These new developments have encouraged a growing number of patient studies in the literature validating the technique's potential for enhanced evaluation of blood flow parameters within the liver's complex vascular system. The purpose of this review article is to broaden our understanding of 4D flow MRI for the assessment of liver hemodynamics by providing insights into acquisition, data analysis, visualization and quantification. Furthermore, in this article we highlight its development, focussing on the clinical application of the technique.
Performance studies of four-dimensional cone beam computed tomography
NASA Astrophysics Data System (ADS)
Qi, Zhihua; Chen, Guang-Hong
2011-10-01
Four-dimensional cone beam computed tomography (4DCBCT) has been proposed to characterize the breathing motion of tumors before radiotherapy treatment. However, when the acquired cone beam projection data are retrospectively gated into several respiratory phases, the available data to reconstruct each phase is under-sampled and thus causes streaking artifacts in the reconstructed images. To solve the under-sampling problem and improve image quality in 4DCBCT, various methods have been developed. This paper presents performance studies of three different 4DCBCT methods based on different reconstruction algorithms. The aims of this paper are to study (1) the relationship between the accuracy of the extracted motion trajectories and the data acquisition time of a 4DCBCT scan and (2) the relationship between the accuracy of the extracted motion trajectories and the number of phase bins used to sort projection data. These aims will be applied to three different 4DCBCT methods: conventional filtered backprojection reconstruction (FBP), FBP with McKinnon-Bates correction (MB) and prior image constrained compressed sensing (PICCS) reconstruction. A hybrid phantom consisting of realistic chest anatomy and a moving elliptical object with known 3D motion trajectories was constructed by superimposing the analytical projection data of the moving object to the simulated projection data from a chest CT volume dataset. CBCT scans with gantry rotation times from 1 to 4 min were simulated, and the generated projection data were sorted into 5, 10 and 20 phase bins before different methods were used to reconstruct 4D images. The motion trajectories of the moving object were extracted using a fast free-form deformable registration algorithm. The root mean square errors (RMSE) of the extracted motion trajectories were evaluated for all simulated cases to quantitatively study the performance. The results demonstrate (1) longer acquisition times result in more accurate motion delineation
Energy aware path planning in complex four dimensional environments
NASA Astrophysics Data System (ADS)
Chakrabarty, Anjan
This dissertation addresses the problem of energy-aware path planning for small autonomous vehicles. While small autonomous vehicles can perform missions that are too risky (or infeasible) for larger vehicles, the missions are limited by the amount of energy that can be carried on board the vehicle. Path planning techniques that either minimize energy consumption or exploit energy available in the environment can thus increase range and endurance. Path planning is complicated by significant spatial (and potentially temporal) variations in the environment. While the main focus is on autonomous aircraft, this research also addresses autonomous ground vehicles. Range and endurance of small unmanned aerial vehicles (UAVs) can be greatly improved by utilizing energy from the atmosphere. Wind can be exploited to minimize energy consumption of a small UAV. But wind, like any other atmospheric component , is a space and time varying phenomenon. To effectively use wind for long range missions, both exploration and exploitation of wind is critical. This research presents a kinematics based tree algorithm which efficiently handles the four dimensional (three spatial and time) path planning problem. The Kinematic Tree algorithm provides a sequence of waypoints, airspeeds, heading and bank angle commands for each segment of the path. The planner is shown to be resolution complete and computationally efficient. Global optimality of the cost function cannot be claimed, as energy is gained from the atmosphere, making the cost function inadmissible. However the Kinematic Tree is shown to be optimal up to resolution if the cost function is admissible. Simulation results show the efficacy of this planning method for a glider in complex real wind data. Simulation results verify that the planner is able to extract energy from the atmosphere enabling long range missions. The Kinematic Tree planning framework, developed to minimize energy consumption of UAVs, is applied for path planning
Mirzoyan, V A
2008-04-30
A full local classification and a geometric description of normally flat minimal semi-Einstein submanifolds of Euclidean spaces having multiple principal curvature vectors and an integrable conullity distribution are presented. Bibliography: 30 titles.
Geometry of the submanifolds of SEXn. I. The C-nonholonomic frame of reference
NASA Astrophysics Data System (ADS)
Chung, Kyung Tae; So, Keum Sook; Lee, Jong Woo
1989-08-01
A connection which is both Einstein and semisymmetric is called an SE connection. A generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by g λμ through an SE connection is called an n-dimensional SE manifold and denoted by SEXn. This paper is the introductory part of a systematic study of the submanifolds of SEXn. It introduces a new concept of the C-nonholonomic frame of references in SEXn at points of its submanifold and deals with its consequences. The second part will deal with the generalized fundamental equations on an SE hypersubmanifold of SEXn. The third part will be devoted to the theory of parallelism in SEXn and in its submanifold. Finally, the last part will study the curvature theory in a submanifold of SEXn.
On the cylindricity of submanifolds containing a line in Minkowski space
Borisenko, A. A.
2014-07-31
We consider Finsler submanifolds in Minkowski spaces, and in particular, in Randers spaces. We give generalizations of the Toponogov and Cheeger-Gromoll theorems to the case of Randers spaces. Sufficient conditions are obtained for complete Finsler submanifolds in Minkowski spaces to be cylindrical. We also find conditions under which the convexity of a hypersurface in a Randers space implies that the flag curvature is positive. Bibliography: 17 titles. (paper)
Xie, Xiaofeng; Yu, Zhu Liang; Lu, Haiping; Gu, Zhenghui; Li, Yuanqing
2016-07-07
In motor imagery brain-computer interfaces (BCIs), the symmetric positive-definite (SPD) covariance matrices of electroencephalogram (EEG) signals carry important discriminative information. In this paper, we intend to classify motor imagery EEG signals by exploiting the fact that the space of SPD matrices endowed with Riemannian distance is a highdimensional Riemannian manifold. To alleviate the overfitting and heavy computation problems associated with conventional classification methods on high-dimensional manifold, we propose a framework for intrinsic sub-manifold learning from a high-dimensional Riemannian manifold. Considering a special case of SPD space, a simple yet efficient bilinear sub-manifold learning (BSML) algorithm is derived to learn the intrinsic submanifold by identifying a bilinear mapping that maximizes the preservation of the local geometry and global structure of the original manifold. Two BSML-based classification algorithms are further proposed to classify the data on a learned intrinsic sub-manifold. Experimental evaluation of the classification of EEG revealed that the BSML method extracts the intrinsic submanifold approximately 5 faster and with higher classification accuracy compared with competing algorithms. The BSML also exhibited strong robustness against a small training dataset, which often occurs in BCI studies.
Improving the Horizontal Transport in the Lower Troposphere with Four Dimensional Data Assimilation
The physical processes involved in air quality modeling are governed by dynamically-generated meteorological model fields. This research focuses on reducing the uncertainty in the horizontal transport in the lower troposphere by improving the four dimensional data assimilation (F...
Improving the Horizontal Transport in the Lower Troposphere with Four Dimensional Data Assimilation
The physical processes involved in air quality modeling are governed by dynamically-generated meteorological model fields. This research focuses on reducing the uncertainty in the horizontal transport in the lower troposphere by improving the four dimensional data assimilation (F...
Quantum secret sharing protocol based on four-dimensional three-particle entangled states
NASA Astrophysics Data System (ADS)
Xiang, Yi; Mo, Zhi Wen
2016-01-01
In this paper, we proposed a three-party quantum secret sharing (QSS) scheme using four-dimensional three-particle entangled states. In this QSS scheme, each agent can obtain a shadow of the secret key by performing single-particle measurements. Compared with the existing QSS protocol, this scheme has high efficiency and can resist the eavesdropping attack and entangle-measuring attack, which using three-particle entangled states are based on four-dimensional Hilbert space.
Lightlike hypersurfaces along spacelike submanifolds in anti-de Sitter space
Izumiya, Shyuichi
2015-11-15
Anti-de Sitter space is the Lorentzian space form with negative curvature. In this paper, we consider lightlike hypersurfaces along spacelike submanifolds in anti-de Sitter space with general codimension. In particular, we investigate the singularities of lightlike hypersurfaces as an application of the theory of Legendrian singularities.
NASA Astrophysics Data System (ADS)
Ali, Akram; Ozel, Cenap
It is known from [K. Yano and M. Kon, Structures on Manifolds (World Scientific, 1984)] that the integration of the Laplacian of a smooth function defined on a compact orientable Riemannian manifold without boundary vanishes with respect to the volume element. In this paper, we find out the some potential applications of this notion, and study the concept of warped product pointwise semi-slant submanifolds in cosymplectic manifolds as a generalization of contact CR-warped product submanifolds. Then, we prove the existence of warped product pointwise semi-slant submanifolds by their characterizations, and give an example supporting to this idea. Further, we obtain an interesting inequality in terms of the second fundamental form and the scalar curvature using Gauss equation and then, derive some applications of it with considering the equality case. We provide many trivial results for the warped product pointwise semi-slant submanifolds in cosymplectic space forms in various mathematical and physical terms such as Hessian, Hamiltonian and kinetic energy, and generalize the triviality results for contact CR-warped products as well.
Legendre submanifolds in contact manifolds as attractors and geometric nonequilibrium thermodynamics
Goto, Shin-itiro
2015-07-15
It has been proposed that equilibrium thermodynamics is described on Legendre submanifolds in contact geometry. It is shown in this paper that Legendre submanifolds embedded in a contact manifold can be expressed as attractors in phase space for a certain class of contact Hamiltonian vector fields. By giving a physical interpretation that points outside the Legendre submanifold can represent nonequilibrium states of thermodynamic variables, in addition to that points of a given Legendre submanifold can represent equilibrium states of the variables, this class of contact Hamiltonian vector fields is physically interpreted as a class of relaxation processes, in which thermodynamic variables achieve an equilibrium state from a nonequilibrium state through a time evolution, a typical nonequilibrium phenomenon. Geometric properties of such vector fields on contact manifolds are characterized after introducing a metric tensor field on a contact manifold. It is also shown that a contact manifold and a strictly convex function induce a lower dimensional dually flat space used in information geometry where a geometrization of equilibrium statistical mechanics is constructed. Legendre duality on contact manifolds is explicitly stated throughout.
Questions on universal constants and four-dimensional symmetry from a broad viewpoint. I
NASA Technical Reports Server (NTRS)
Hsu, J. P.
1983-01-01
It is demonstrated that there is a flexibility in clock synchronizations and that four-dimensional symmetry framework can be viewed broadly. The true universality of basic constants is discussed, considering a class of measurement processes based on the velocity = distance/time interval, which always yields some number when used by an observer. The four-dimensional symmetry framework based on common time for all observers is formulated, and related processes of measuring light speed are discussed. Invariant 'action functions' for physical laws in the new four-dimensional symmetry framework with the common time are established to discuss universal constants. Truly universal constants are demonstrated, and it is shown that physics in this new framework and in special relativity are equivalent as far as one-particle systems and the S-matrix in field theories are concerned.
Covariant Four-Dimensional Scattering Equations for the NN- πNNSystem
NASA Astrophysics Data System (ADS)
Phillips, D. R.; Afnan, I. R.
1996-04-01
We derive a set of coupled four-dimensional integral equations for theNN-πNNsystem using our modified version of the Taylor method of classification-of-diagrams. These equations are covariant, obey two- and three-body unitarity and contain subtraction terms which eliminate the double-counting present in some previous four-dimensionalNN-πNNequations. The equations are then recast into a from convenient for computation by grouping the subtraction terms together and obtaining a set of two-fragment scattering equations for the amplitudes of interest.
Experimental measurement of the four-dimensional coherence function for an undulator x-ray source.
Tran, C Q; Williams, G J; Roberts, A; Flewett, S; Peele, A G; Paterson, D; de Jonge, M D; Nugent, K A
2007-06-01
A full measurement of the four-dimensional coherence function from an undulator beam line is reported. The analysis is based on the observation that the data are consistent with a coherence function that is mathematically separable. The effective source size can be altered by changing the width of the exit slit, and the complete coherence function is presented for two settings. We find, to within experimental error, that the four-dimensional complex degree of coherence can be described as a real Gaussian function that depends only on the difference of the spatial coordinates.
Study on eigenvalue space of hyperchaotic canonical four-dimensional Chua's circuit
NASA Astrophysics Data System (ADS)
Li, Guan-Lin; Chen, Xi-You
2010-03-01
The eigenvalue space of the canonical four-dimensional Chua's circuit which can realize every eigenvalue for four-dimensional system is studied in this paper. First, the analytical relations between the circuit parameters and the eigenvalues of the system are established, and therefore all the circuit parameters can be determined explicitly by any given set of eigenvalues. Then, the eigenvalue space of the circuit is investigated in two cases by the nonlinear elements used. According to the types of the eigenvalues, some novel hyperchaotic attractors are presented. Further, the dynamic behaviours of the circuit are studied by the bifurcation diagrams and the Lyapunov spectra of the eigenvalues.
On metric geometry of conformal moduli spaces of four-dimensional superconformal theories
NASA Astrophysics Data System (ADS)
Asnin, Vadim
2010-09-01
Conformal moduli spaces of four-dimensional superconformal theories obtained by deformations of a superpotential are considered. These spaces possess a natural metric (a Zamolodchikov metric). This metric is shown to be Kahler. The proof is based on superconformal Ward identities.
Tensor Spherical and Pseudo-Spherical Harmonics in Four-Dimensional Spaces
NASA Astrophysics Data System (ADS)
Tomita, K.
1982-07-01
Explicit expressions for tensor spherical harmonics on the 3 sphere in the four-dimensional Euclidean space are derived, and extended to derive those for pseudo-spherical harmonics. They are useful for the analyses of large-scale perturbations in the Friedmann universe models.
Adding Four- Dimensional Data Assimilation (a.k.a. grid nudging) to MPAS
Adding four-dimensional data assimilation (a.k.a. grid nudging) to MPAS.The U.S. Environmental Protection Agency is investigating the use of MPAS as the meteorological driver for its next-generation air quality model. To function as such, MPAS needs to operate in a diagnostic mod...
Adding Four- Dimensional Data Assimilation (a.k.a. grid nudging) to MPAS
Adding four-dimensional data assimilation (a.k.a. grid nudging) to MPAS.The U.S. Environmental Protection Agency is investigating the use of MPAS as the meteorological driver for its next-generation air quality model. To function as such, MPAS needs to operate in a diagnostic mod...
Conceptualising Quality of School Life from Pupils' Perspectives: A Four-Dimensional Model
ERIC Educational Resources Information Center
Tangen, Reidun
2009-01-01
This paper presents a four-dimensional, dynamic model of pupils' subjective quality of school life. The model is based on the author's and colleagues' studies of experiences and perspectives of pupils in regular schools who have been assessed as having "special educational needs". The conceptualisation of quality of school life proposed…
Chiral symmetry breaking in quenched massive strong-coupling four-dimensional QED
Hawes, F.T. ); Williams, A.G. )
1995-03-15
We present results from a study of subtractive renormalization of the fermion propagator Dyson-Schwinger equation (DSE) in massive strong-coupling quenched four-dimensional QED. The results are compared for three different fermion-photon proper vertex [ital Ansa]$[ital uml---tze]: bare [gamma][sup [mu
Abedi-Fardad, J.; Rezaei-Aghdam, A.; Haghighatdoost, Gh.
2014-05-15
We construct integrable and superintegrable Hamiltonian systems using the realizations of four dimensional real Lie algebras as a symmetry of the system with the phase space R{sup 4} and R{sup 6}. Furthermore, we construct some integrable and superintegrable Hamiltonian systems for which the symmetry Lie group is also the phase space of the system.
Four-dimensional optical coherence tomography imaging of total liquid ventilated rats
NASA Astrophysics Data System (ADS)
Kirsten, Lars; Schnabel, Christian; Gaertner, Maria; Koch, Edmund
2013-06-01
Optical coherence tomography (OCT) can be utilized for the spatially and temporally resolved visualization of alveolar tissue and its dynamics in rodent models, which allows the investigation of lung dynamics on the microscopic scale of single alveoli. The findings could provide experimental input data for numerical simulations of lung tissue mechanics and could support the development of protective ventilation strategies. Real four-dimensional OCT imaging permits the acquisition of several OCT stacks within one single ventilation cycle. Thus, the entire four-dimensional information is directly obtained. Compared to conventional virtual four-dimensional OCT imaging, where the image acquisition is extended over many ventilation cycles and is triggered on pressure levels, real four-dimensional OCT is less vulnerable against motion artifacts and non-reproducible movement of the lung tissue over subsequent ventilation cycles, which widely reduces image artifacts. However, OCT imaging of alveolar tissue is affected by refraction and total internal reflection at air-tissue interfaces. Thus, only the first alveolar layer beneath the pleura is visible. To circumvent this effect, total liquid ventilation can be carried out to match the refractive indices of lung tissue and the breathing medium, which improves the visibility of the alveolar structure, the image quality and the penetration depth and provides the real structure of the alveolar tissue. In this study, a combination of four-dimensional OCT imaging with total liquid ventilation allowed the visualization of the alveolar structure in rat lung tissue benefiting from the improved depth range beneath the pleura and from the high spatial and temporal resolution.
Three- and four-dimensional ultrasound in fetal echocardiography: an up-to-date overview.
Adriaanse, B M E; van Vugt, J M G; Haak, M C
2016-09-01
Congenital heart diseases (CHD) are the most commonly overlooked lesions in prenatal screening programs. Real-time two-dimensional ultrasound (2DUS) is the conventionally used tool for fetal echocardiography. Although continuous improvements in the hardware and post-processing software have resulted in a good image quality even in late first trimester, 2DUS still has its limitations. Four-dimensional ultrasound with spatiotemporal image correlation (STIC) is an automated volume acquisition, recording a single three-dimensional (3D) volume throughout a complete cardiac cycle, which results in a four-dimensional (4D) volume. STIC has the potential to increase the detection rate of CHD. The aim of this study is to provide a practical overview of the possibilities and (dis)advantages of STIC. A review of literature and evaluation of the current status and clinical value of 3D/4D ultrasound in prenatal screening and diagnosis of congenital heart disease are presented.
SU-E-CAMPUS-T-03: Four-Dimensional Dose Distribution Measurement Using Plastic Scintillator
Hashimoto, M; Kozuka, T; Oguchi, M; Nishio, T; Haga, A; Hanada, T; Kabuki, S
2014-06-15
Purpose: To develop the detector for the four-dimensional dose distribution measurement. Methods: We made the prototype detector for four-dimensional dose distribution measurement using a cylindrical plastic scintillator (5 cm diameter) and a conical reflection grass. The plastic scintillator is used as a phantom. When the plastic scintillator is irradiated, the scintillation light was emitted according to absorbed dose distribution. The conical reflection grass was arranged to surround the plastic scintillator, which project to downstream the projection images of the scintillation light. Then, the projection image was reflected to 45 degree direction by flat reflection grass, and was recorded by camcorder. By reconstructing the three-dimensional dose distribution from the projection image recorded in each frame, we could obtain the four-dimensional dose distribution. First, we tested the characteristic according to the amount of emitted light. Then we compared of the light profile and the dose profile calculated with the radiotherapy treatment planning system. Results: The dose dependency of the amount of light showed linearity. The pixel detecting smaller amount of light had high sensitivity than the pixel detecting larger amount of light. However the difference of the sensitivity could be corrected from the amount of light detected in each pixel. Both of the depth light profile through the conical reflection grass and the depth dose profile showed the same attenuation in the region deeper than peak depth. In lateral direction, the difference of the both profiles was shown at outside field and penumbra region. We consider that the difference is occurred due to the scatter of the scintillation light in the plastic scintillator block. Conclusion: It was possible to obtain the amount of light corresponding to the absorbed dose distribution from the prototype detector. Four-dimensional dose distributions can be reconstructed with high accuracy by the correction of
Haunted Kaluza universe with four-dimensional Lorentzian flat, Kerr, and Taub NUT slices
NASA Astrophysics Data System (ADS)
Ivanov, Rossen I.; Prodanov, Emil M.
2005-03-01
The duality between the original Kaluza's theory and Klein's subsequent modification is duality between slicing and threading decomposition of the five-dimensional spacetime. The field equations of the original Kaluza's theory lead to the interpretation of the four-dimensional Lorentzian Kerr and Taub-NUT solutions as resulting from static electric and magnetic charges and dipoles in the presence of ghost matter and constant dilaton, which models Newton's constant.
Exact four-dimensional dyonic black holes and Bertotti-Robinson spacetimes in string theory
NASA Astrophysics Data System (ADS)
Lowe, David A.; Strominger, Andrew
1994-09-01
Conformal field theories corresponding to two-dimensional electrically charged black holes and to two-dimensional anti-de Sitter space with a covariantly constant electric field are simply constructed as SL(2,openR)/openZ Wess-Zumino-Witten coset models. Four-dimensional spacetime solutions are obtained by tensoring these two-dimensional theories with SU(2)/Z(m) coset models. These describe a family of dyonic black holes and the Bertotti-Robinson universe.
Four-Dimensional Screening Anti-Counterfeiting Pattern by Inkjet Printed Photonic Crystals.
Hou, Jue; Zhang, Huacheng; Su, Bin; Li, Mingzhu; Yang, Qiang; Jiang, Lei; Song, Yanlin
2016-10-06
A four-dimensional screening anti-counterfeiting QR code composed of differently shaped photonic crystal (PC) dots has been fabricated that could display four images depending on different lighting conditions. By controlling the rheology of poly(dimethylsiloxane) (PDMS), three kinds of PC dots could be sequentially integrated into one pattern using the layer-by-layer printing strategy. The information can be encoded and stored in shapes and read out by the difference in optical properties.
NASA Technical Reports Server (NTRS)
Hsu, J. P.
1979-01-01
General covariance and maximum four-dimensional Yang-Mills gauge symmetry lead to these results: (1) gravity is characterized by a dimensionless constant F of the order of 10 to the -19th; (2) the Newtonian force is always attractive; (3) space-time has a torsion; and (4) gravitational spin-force between two protons is about 10 to the 19th times stronger than the corresponding Newtonian force. A possible experimental test is discussed.
Breast cancer cells form primary tumors on ex vivo four-dimensional lung model.
Pence, Kristi A; Mishra, Dhruva K; Thrall, Michael; Dave, Bhuvanesh; Kim, Min P
2017-04-01
Breast cancer mortality is most common in cancer in women, and there are no ex vivo models that can capture the primary growth of tumor with fidelity to the in vivo tumor growth. In this study, we grew human breast cancer cell lines in an acellular lung matrix of the ex vivo four-dimensional lung model to determine if they form primary tumor and the extent to which they mimic the histology and characteristics of the human tumors. Rat lungs were harvested, decellularized, and placed in a bioreactor. To study the primary tumor growth, we seeded the lung via the trachea with human breast cancer cells SUM159, MCF7, or MDMB231 and perfused the pulmonary artery with oxygenated media. Lobectomies were performed and processed for hematoxylin and eosin, Ki-67, caspase-3, estrogen receptor, and progesterone receptor antibodies. All three cell lines grew in the ex vivo four-dimensional model and formed perfusable tumor nodules with similar histology and morphology as the primary tumors. SUM159 and MDAMB231 showed higher proliferation and apoptotic indices than MCF7. In addition, MCF7 retained its estrogen receptor and progesterone receptor positivity, whereas SUM159 and MDAMB 231 did not have any staining. Overall, our study showed that human breast cancer cells can be grown on the ex vivo four-dimensional lung model, which then form primary tumor nodules that mimic the morphology and histology of the original tumor. Copyright © 2016 Elsevier Inc. All rights reserved.
Supergravity backgrounds for four-dimensional maximally supersymmetric Yang-Mills
NASA Astrophysics Data System (ADS)
Maxfield, Travis
2017-02-01
In this note, we describe supersymmetric backgrounds for the four-dimensional maximally supersymmetric Yang-Mills theory. As an extension of the method of Festuccia and Seiberg to sixteen supercharges in four dimensions, we utilize the coupling of the gauge theory to maximally extended conformal supergravity. Included among the fields of the conformal supergravity multiplet is the complexified coupling parameter of the gauge theory; therefore, backgrounds with spacetime varying coupling — such as appear in F-theory and Janus configurations — are naturally included in this formalism. We demonstrate this with a few examples from past literature.
New supersymmetric black holes in four-dimensional N = 2 supergravity
NASA Astrophysics Data System (ADS)
Mandal, Taniya; Tripathy, Prasanta K.
2016-05-01
In this paper, we consider the four-dimensional N = 2 supergravity theory arising from the compactification of type IIA string theory on a Calabi-Yau manifold. We analyze the supersymmetric flow equations for static, spherically symmetric, single-centered black holes. These flow equations are solved by a set of algebraic equations involving the holomorphic sections and harmonic functions. We examine black hole configurations with D0-D4-D6 charge for which the most general solution of these algebraic equations are considered. Though the black hole solution is unique for a given value of the charges, we find new phases of the black hole solutions upon varying them.
Ultrafast core-loss spectroscopy in four-dimensional electron microscopy
van der Veen, Renske M.; Penfold, Thomas J.; Zewail, Ahmed H.
2015-01-01
We demonstrate ultrafast core-electron energy-loss spectroscopy in four-dimensional electron microscopy as an element-specific probe of nanoscale dynamics. We apply it to the study of photoexcited graphite with femtosecond and nanosecond resolutions. The transient core-loss spectra, in combination with ab initio molecular dynamics simulations, reveal the elongation of the carbon-carbon bonds, even though the overall behavior is a contraction of the crystal lattice. A prompt energy-gap shrinkage is observed on the picosecond time scale, which is caused by local bond length elongation and the direct renormalization of band energies due to temperature-dependent electron–phonon interactions. PMID:26798793
Connection between the hydrogen atom and the four-dimensional oscillator
Chen, A.C.; Kibler, M.
1985-06-01
The connection between the three-dimensional hydrogen atom and a four-dimensional harmonic oscillator (or equivalently a coupled pair of two-dimensional harmonic oscillators) subjected to a constraint condition is further explored. In particular, the role the constraint condition plays in determining the phase relationship between the pair of two-dimensional oscillators is examined. Furthermore, the connection is discussed in a group-theoretical context involving the Lie algebras of SO(4), SO(3,1), E(3), SO(4,2), and Sp(8,R).
Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry
NASA Technical Reports Server (NTRS)
Hsu, J. P.
1981-01-01
A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.
A four-dimensional model with the fermionic determinant exactly evaluated
NASA Astrophysics Data System (ADS)
Mignaco, J. A.; Rego Monteiro, M. A.
1986-07-01
A method is presented to compute the fermion determinant of some class of field theories. By this method the following results of the fermion determinant in two dimensions are easily recovered: (i) Schwinger model without reference to a particular gauge. (ii) QCD in the light-cone gauge. (iii) Gauge invariant result of QCD. The method is finally applied to give an analytical solution of the fermion determinant of a four-dimensional, non-abelian, Dirac-like theory with massless fermions interacting with an external vector field through a pseudo-vectorial coupling. Fellow of the Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq), Brazil.
Four-dimensional (4D) tracking of high-temperature microparticles
NASA Astrophysics Data System (ADS)
Wang, Zhehui; Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.
2016-11-01
High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.
Four-dimensional (4D) tracking of high-temperature microparticles
Wang, Zhehui; Liu, Qiuguang; Waganaar, Bill; Fontanese, John; James, David; Munsat, Tobin
2016-07-08
High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. As a result, velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.
Hoon Jung, Sang; Min Yoon, Sang; Ho Park, Sung; Cho, Byungchul; Won Park, Jae; Jung, Jinhong; Park, Jin-hong; Hoon Kim, Jong; Do Ahn, Seung
2013-01-15
Purpose: In order to evaluate the dosimetric impact of respiratory motion on the dose delivered to the target volume and critical organs during free-breathing radiotherapy, a four-dimensional dose was evaluated using deformable image registration (DIR). Methods: Four-dimensional computed tomography (4DCT) images were acquired for 11 patients who were treated for liver cancer. Internal target volume-based treatment planning and dose calculation (3D dose) were performed using the end-exhalation phase images. The four-dimensional dose (4D dose) was calculated based on DIR of all phase images from 4DCT to the planned image. Dosimetric parameters from the 4D dose, were calculated and compared with those from the 3D dose. Results: There was no significant change of the dosimetric parameters for gross tumor volume (p > 0.05). The increase D{sub mean} and generalized equivalent uniform dose (gEUD) for liver were by 3.1%{+-} 3.3% (p= 0.003) and 2.8%{+-} 3.3% (p= 0.008), respectively, and for duodenum, they were decreased by 15.7%{+-} 11.2% (p= 0.003) and 15.1%{+-} 11.0% (p= 0.003), respectively. The D{sub max} and gEUD for stomach was decreased by 5.3%{+-} 5.8% (p= 0.003) and 9.7%{+-} 8.7% (p= 0.003), respectively. The D{sub max} and gEUD for right kidney was decreased by 11.2%{+-} 16.2% (p= 0.003) and 14.9%{+-} 16.8% (p= 0.005), respectively. For left kidney, D{sub max} and gEUD were decreased by 11.4%{+-} 11.0% (p= 0.003) and 12.8%{+-} 12.1% (p= 0.005), respectively. The NTCP values for duodenum and stomach were decreased by 8.4%{+-} 5.8% (p= 0.003) and 17.2%{+-} 13.7% (p= 0.003), respectively. Conclusions: The four-dimensional dose with a more realistic dose calculation accounting for respiratory motion revealed no significant difference in target coverage and potentially significant change in the physical and biological dosimetric parameters in normal organs during free-breathing treatment.
An accessible four-dimensional treatment of Maxwell's equations in terms of differential forms
NASA Astrophysics Data System (ADS)
Sá, Lucas
2017-03-01
Maxwell’s equations are derived in terms of differential forms in the four-dimensional Minkowski representation, starting from the three-dimensional vector calculus differential version of these equations. Introducing all the mathematical and physical concepts needed (including the tool of differential forms), using only knowledge of elementary vector calculus and the local vector version of Maxwell’s equations, the equations are reduced to a simple and elegant set of two equations for a unified quantity, the electromagnetic field. The treatment should be accessible for students taking a first course on electromagnetism.
Four-dimensional quantum oscillator and magnetic monopole with U(1) dynamical group
NASA Astrophysics Data System (ADS)
Bakhshi, Z.; Panahi, H.; Golchehre, S. G.
2017-09-01
By using an appropriate transformation, it was shown that the quantum system of four-dimensional (4D) simple harmonic oscillator can describe the motion of a charged particle in the presence of a magnetic monopole field. It was shown that the Dirac magnetic monopole has the hidden algebra of U(1) symmetry and by reducing the dimensions of space, the U(1) × U(1) dynamical group for 4D harmonic oscillator quantum system was obtained. Using the group representation and based on explicit solution of the obtained differential equation, the spectrum of system was calculated.
NASA Technical Reports Server (NTRS)
Ghil, M.
1980-01-01
A unified theoretical approach to both the four-dimensional assimilation of asynoptic data and the initialization problem is attempted. This approach relies on the derivation of certain relationships between geopotential tendencies and tendencies of the horizontal velocity field in primitive-equation models of atmospheric flow. The approach is worked out and analyzed in detail for some simple barotropic models. Certain independent results of numerical experiments for the time-continuous assimilation of real asynoptic meteorological data into a complex, baroclinic weather prediction model are discussed in the context of the present approach. Tentative inferences are drawn for practical assimilation procedures.
Heat balance statistics derived from four-dimensional assimilations with a global circulation model
NASA Technical Reports Server (NTRS)
Schubert, S. D.; Herman, G. F.
1981-01-01
The reported investigation was conducted to develop a reliable procedure for obtaining the diabatic and vertical terms required for atmospheric heat balance studies. The method developed employs a four-dimensional assimilation mode in connection with the general circulation model of NASA's Goddard Laboratory for Atmospheric Sciences. The initial analysis was conducted with data obtained in connection with the 1976 Data Systems Test. On the basis of the results of the investigation, it appears possible to use the model's observationally constrained diagnostics to provide estimates of the global distribution of virtually all of the quantities which are needed to compute the atmosphere's heat and energy balance.
Four-dimensional (4D) tracking of high-temperature microparticles
Wang, Zhehui; Liu, Qiuguang; Waganaar, Bill; Fontanese, John; James, David; Munsat, Tobin
2016-07-08
High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. As a result, velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.
The violation of the no-hair conjecture in four-dimensional ungauged supergravity
NASA Astrophysics Data System (ADS)
Bueno, Pablo; Shahbazi, C. S.
2014-07-01
By choosing a particular, string-theory-inspired, special Kähler manifold, we are able to find an N=2 four-dimensional ungauged supergravity model that contains supersymmetric black hole solutions that violate the folk uniqueness theorems that are expected to hold in ungauged supergravity. The black hole solutions are regular in the sense that they have a positive mass and a unique physical singularity hidden by an event horizon. In contradistinction to most examples already known in the literature, we find our solutions in a theory without scalar potential, gaugings, or higher-order curvature terms.
Four-dimensional (4D) tracking of high-temperature microparticles
Wang, Zhehui Liu, Q.; Waganaar, W.; Fontanese, J.; James, D.; Munsat, T.
2016-11-15
High-speed tracking of hot and molten microparticles in motion provides rich information about burning plasmas in magnetic fusion. An exploding-wire apparatus is used to produce moving high-temperature metallic microparticles and to develop four-dimensional (4D) or time-resolved 3D particle tracking techniques. The pinhole camera model and algorithms developed for computer vision are used for scene calibration and 4D reconstructions. 3D positions and velocities are then derived for different microparticles. Velocity resolution approaches 0.1 m/s by using the local constant velocity approximation.
Gravitational matter-antimatter asymmetry and four-dimensional Yang-Mills gauge symmetry
NASA Technical Reports Server (NTRS)
Hsu, J. P.
1981-01-01
A formulation of gravity based on the maximum four-dimensional Yang-Mills gauge symmetry is studied. The theory predicts that the gravitational force inside matter (fermions) is different from that inside antimatter. This difference could lead to the cosmic separation of matter and antimatter in the evolution of the universe. Moreover, a new gravitational long-range spin-force between two fermions is predicted, in addition to the usual Newtonian force. The geometrical foundation of such a gravitational theory is the Riemann-Cartan geometry, in which there is a torsion. The results of the theory for weak fields are consistent with previous experiments.
Curvature-tuned electronic properties of bilayer graphene in an effective four-dimensional spacetime
NASA Astrophysics Data System (ADS)
Cariglia, Marco; Giambò, Roberto; Perali, Andrea
2017-06-01
We show that in A B stacked bilayer graphene low-energy excitations around the semimetallic points are described by massless, four-dimensional Dirac fermions. There is an effective reconstruction of the four-dimensional spacetime, including in particular the dimension perpendicular to the sheet, that arises dynamically from the physical graphene sheet and the interactions experienced by the carriers. The effective spacetime is the Eisenhart-Duval lift of the dynamics experienced by Galilei invariant Lévy-Leblond spin-1/2 particles near the Dirac points. We find that changing the intrinsic curvature of the bilayer sheet induces a change in the energy level of the electronic bands, switching from a conducting regime for negative curvature to an insulating one when curvature is positive. In particular, curving graphene bilayers allow opening or closing the energy gap between conduction and valence bands, a key effect for electronic devices. Thus, using curvature as a tunable parameter opens the way for the beginning of curvatronics in bilayer graphene.
High-speed registration of three- and four-dimensional medical images by using voxel similarity.
Shekhar, Raj; Zagrodsky, Vladimir; Castro-Pareja, Carlos R; Walimbe, Vivek; Jagadeesh, Jogikal M
2003-01-01
A generalized, accurate, automatic, retrospective method of image registration for three-dimensional images has been developed. The method is based on mutual information, a specific measure of voxel similarity, and is applicable to a wide range of imaging modalities and organs, rigid or deformable. A drawback of mutual information-based image registration is long execution times. To overcome the speed problem, low-cost, customized hardware to accelerate this computationally intensive task was developed. Individual hardware accelerator units (each, in principle, 25-fold faster than a comparable software implementation) can be concatenated to perform image registration at any user-desired speed. A first-generation prototype board with two processing units provided a 12- to 16-fold increase in speed. Enhancements for increasing the speed further are being developed. These advances have enabled many nontraditional applications of image registration and have made the traditional applications more efficient. Clinical applications include fusion of computed tomographic (CT), magnetic resonance, and positron emission tomographic (PET) images of the brain; fusion of whole-body CT and PET images; fusion of four-dimensional spatiotemporal ultrasonographic (US) and single photon emission CT images of the heart; and correction of misalignment between pre- and poststress four-dimensional US images. Copyright RSNA, 2003
Vick, G W
2000-01-01
The purpose of medical imaging technology in pediatric cardiology is to provide clear representations of the underlying anatomy and physiology of the cardiovascular system--representations that are easily understood and that facilitate clinical decision making. However, standard projective and tomographic imaging methods often yield results that are intelligible only to imaging specialists. Three- and four-dimensional reconstructions from projective and tomographic data sets are an alternative form of image display. Often, these reconstructions are more readily comprehensible as representations of the reality apparent in the operating room or the pathology laboratory than are the original data sets. Furthermore, viewing of these reconstructions is much more time efficient than viewing hundreds of separate tomographic images. Magnetic resonance imaging inherently provides three-, four-, and even higher dimensional data, and magnetic resonance data sets are commonly used to generate volumetric reconstructions. This review will focus on the practical application of magnetic resonance imaging to yield three- and four-dimensional reconstructions of pediatric cardiovascular disorders.
A novel four-dimensional analytical approach for analysis of complex samples.
Stephan, Susanne; Jakob, Cornelia; Hippler, Jörg; Schmitz, Oliver J
2016-05-01
A two-dimensional LC (2D-LC) method, based on the work of Erni and Frei in 1978, was developed and coupled to an ion mobility-high-resolution mass spectrometer (IM-MS), which enabled the separation of complex samples in four dimensions (2D-LC, ion mobility spectrometry (IMS), and mass spectrometry (MS)). This approach works as a continuous multiheart-cutting LC system, using a long modulation time of 4 min, which allows the complete transfer of most of the first - dimension peaks to the second - dimension column without fractionation, in comparison to comprehensive two-dimensional liquid chromatography. Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Ginkgo biloba shows the separation power of this four-dimensional separation method with a calculated total peak capacity of more than 8700. Furthermore, the advantage of ion mobility for characterizing unknown compounds by their collision cross section (CCS) and accurate mass in a non-target approach is shown for different matrices like plant extracts and coffee. Graphical abstract Principle of the four-dimensional separation.
Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram
NASA Astrophysics Data System (ADS)
Dafilis, Mathew P.; Frascoli, Federico; Cadusch, Peter J.; Liley, David T. J.
2013-06-01
The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.
Four dimensional chaos and intermittency in a mesoscopic model of the electroencephalogram.
Dafilis, Mathew P; Frascoli, Federico; Cadusch, Peter J; Liley, David T J
2013-06-01
The occurrence of so-called four dimensional chaos in dynamical systems represented by coupled, nonlinear, ordinary differential equations is rarely reported in the literature. In this paper, we present evidence that Liley's mesoscopic theory of the electroencephalogram (EEG), which has been used to describe brain activity in a variety of clinically relevant contexts, possesses a chaotic attractor with a Kaplan-Yorke dimension significantly larger than three. This accounts for simple, high order chaos for a physiologically admissible parameter set. Whilst the Lyapunov spectrum of the attractor has only one positive exponent, the contracting dimensions are such that the integer part of the Kaplan-Yorke dimension is three, thus giving rise to four dimensional chaos. A one-parameter bifurcation analysis with respect to the parameter corresponding to extracortical input is conducted, with results indicating that the origin of chaos is due to an inverse period doubling cascade. Hence, in the vicinity of the high order, strange attractor, the model is shown to display intermittent behavior, with random alternations between oscillatory and chaotic regimes. This phenomenon represents a possible dynamical justification of some of the typical features of clinically established EEG traces, which can arise in the case of burst suppression in anesthesia and epileptic encephalopathies in early infancy.
Current status of fetal neurodevelopmental assessment: Four-dimensional ultrasound study.
Hata, Toshiyuki
2016-10-01
With the latest advent of four-dimensional (4-D) ultrasound, fetal neurobehavioral or neurodevelopmental assessment can be easily and readily performed. Using this technique, typical fetal movements and behavioral patterns have become apparent in all three trimesters of pregnancy. In twin pregnancy, 4-D ultrasound facilitates the precise evaluation of inter-twin contact and intra-pair stimulation. New fetal neurobehavioral assessment tests, such as Kurjak's Antenatal Neurodevelopmental Test and the Fetal Observable Movement System, may reflect the normal and abnormal neurological development of the fetus, and will facilitate more precise assessments of fetal neurobehavior or neurodevelopment, and fetal brain and central nervous system functions. In this review article, I also discuss interesting topics regarding maternal and fetal stress, fetal pain, and fetal consciousness. Four-dimensional ultrasound has opened the door to new scientific fields, such as 'fetal neurology' and 'fetal psychology,' and fetal neurobehavioral science is at the dawn of a new era. Knowledge on fetal neurobehavior and neurodevelopment will be advanced through fetal behavioral research using this technique. © 2016 Japan Society of Obstetrics and Gynecology.
Four-dimensional modulation and coding: An alternate to frequency-reuse
NASA Technical Reports Server (NTRS)
Wilson, S. G.; Sleeper, H. A.
1983-01-01
Four dimensional modulation as a means of improving communication efficiency on the band-limited Gaussian channel, with the four dimensions of signal space constituted by phase orthogonal carriers (cos omega sub c t and sin omega sub c t) simultaneously on space orthogonal electromagnetic waves are discussed. "Frequency reuse' techniques use such polarization orthogonality to reuse the same frequency slot, but the modulation is not treated as four dimensional, rather a product of two-d modulations, e.g., QPSK. It is well known that, higher dimensionality signalling affords possible improvements in the power bandwidth sense. Four-D modulations based upon subsets of lattice-packings in four-D, which afford simplification of encoding and decoding are described. Sets of up to 1024 signals are constructed in four-D, providing a (Nyquist) spectral efficiency of up to 10 bps/Hz. Energy gains over the reuse technique are in the one to three dB range t equal bandwidth.
On Supersymmetric M-brane configurations with an R * 1,1 /Z2 submanifold
NASA Astrophysics Data System (ADS)
Ivashchuk, V. D.
2016-01-01
We obtain new examples of partially supersymmetric M-brane solutions defined on products of Ricci-flat manifolds, which contain two-dimensional Lorentzian submanifold R^{1,1}_{*}/Z_2 with one parallel spinor. The examples belong to the following configurations: M2, M5, M2-M5 and M5-M5. Among them a M2 solution with N =1/32 fractional number of preserved supersymmetries is presented. The examples with three M-branes were considered earlier in our paper with A.A. Golubtsova.
NASA Astrophysics Data System (ADS)
Shi, Jin
2017-05-01
Two-photon four-dimensional spatial modes partially entangled Dicke state can be compactly generated from six concurrent spontaneous parametric down-conversion processes by cascading poling domain structures in 5% MgO-doped poled lithium niobate bulk crystal. Entanglement concentration of the two-photon four-dimensional spatial modes partially entangled Dicke state can be realized by using quantum nondestructive detection of nonlinear Kerr medium, optical beam splitter, and quantum gate operation.
NASA Astrophysics Data System (ADS)
Abedi-Fardad, J.; Rezaei-Aghdam, A.; Haghighatdoost, Gh.
2017-01-01
We classify all four-dimensional real Lie bialgebras of symplectic type and obtain the classical r-matrices for these Lie bialgebras and Poisson structures on all the associated four-dimensional Poisson-Lie groups. We obtain some new integrable models where a Poisson-Lie group plays the role of the phase space and its dual Lie group plays the role of the symmetry group of the system.
NASA Astrophysics Data System (ADS)
Lopez, Andrew L., III; Wang, Shang; Larin, Kirill V.; Overbeek, Paul A.; Larina, Irina V.
2015-09-01
Efficient phenotyping of developmental defects in model organisms is critical for understanding the genetic specification of normal development and congenital abnormalities in humans. We previously reported that optical coherence tomography (OCT) combined with live embryo culture is a valuable tool for mouse embryo imaging and four-dimensional (4-D) cardiodynamic analysis; however, its capability for analysis of mouse mutants with cardiac phenotypes has not been previously explored. Here, we report 4-D (three-dimensional+time) OCT imaging and analysis of the embryonic heart in a Wdr19 mouse mutant, revealing a heart looping defect. Quantitative analysis of cardiac looping revealed a statistically significant difference between mutant and control embryos. Our results indicate that live 4-D OCT imaging provides a powerful phenotyping approach to characterize embryonic cardiac function in mouse models.
NASA Astrophysics Data System (ADS)
Suroso, Agus; Zen, Freddy P.; Hikmawan, Getbogi
2015-09-01
The energy conditions is a set of linear equations of energy density ρ and pressure p which ensure the the field(s) that we used in our model is physically "reasonable". We study the energy conditions for four dimensional nonminimal derivative coupling of scalar field and curvature tensor. Considering the scalar field as a perfect fluid, we find some constraint for the coupling constant ξ in order the energy conditions is satisfied or violated. We find that strong energy conditions (SEC) is violated if -1/9H2 ≤ ξ < 1/18H2. For de Sitter solution a ∝ eH0t for some constant H0, we find that while null, weak, and dominant energy conditions violated when ξ <-[12 H02(2 +9 H02) ] -1 . The accelerating universe is exist for the power law solution (a ∝ tp for constant p) if ξ < 0.
NASA Astrophysics Data System (ADS)
Man, Tianlong; Wan, Yuhong; Wu, Fan; Wang, Dayong
2015-11-01
We present a new method for the four-dimensional tracking of a spatially incoherent illuminated object. Self-interference digital holography is utilized for recording the hologram of the spatially incoherent illuminated object. Three-dimensional spatial coordinates encoded in the hologram are extracted by holographic reconstruction procedure and tracking algorithms, while the time information is reserved by the single-shot configuration. Applications of the holographic tracking methods are expanded to the incoherent imaging areas. Speckles and potential damage to the samples of the coherent illuminated tracking methods are overcome. Results on the quantitative tracking of three-dimensional spatial position over time are reported. In practical, living zebra fish larva is used to demonstrate one of the applications of the method.
On the integrability of four dimensional gauge theories in the omega background
NASA Astrophysics Data System (ADS)
Chen, Heng-Yu; Hsin, Po-Shen; Koroteev, Peter
2013-08-01
We continue to investigate the relationship between the infrared physics of supersymmetric gauge theories in four dimensions and various integrable models such as Gaudin, Calogero-Moser and quantum spin chains. We prove interesting dualities among some of these integrable systems by performing different, albeit equivalent, quantizations of the Seiberg-Witten curve of the four dimensional theory. We also discuss conformal field theories related to 4d gauge theories by the Alday-Gaiotto-Tachikawa (AGT) duality and the role of conformal blocks of those CFTs in the integrable systems. As a consequence, the equivalence of conformal blocks of rank two Toda and Novikov-Wess-Zumino-Witten (WZNW) theories on the torus with punctures is found.
Discrete gauge symmetries by Higgsing in four-dimensional F-theory compactifications
NASA Astrophysics Data System (ADS)
Mayrhofer, Christoph; Palti, Eran; Till, Oskar; Weigand, Timo
2014-12-01
We study F-theory compactifications to four dimensions that exhibit discrete gauge symmetries. Geometrically these arise by deforming elliptic fibrations with two sections to a genus-one fibration with a bi-section. From a four-dimensional field theory perspective they are remnant symmetries from a Higgsed U(1) gauge symmetry. We implement such symmetries in the presence of an additional SU(5) symmetry and associated matter fields, giving a geometric prescription for calculating the induced discrete charge for the matter curves and showing the absence of Yukawa couplings that are forbidden by this charge. We present a detailed map between the field theory and the geometry, including an identification of the Higgs field and the massless states before and after the Higgsing. Finally we show that the Higgsing of the U(1) induces a G-flux which precisely accounts for the change in the Calabi-Yau Euler number so as to leave the D3 tadpole invariant.
Nanomechanics and intermolecular forces of amyloid revealed by four-dimensional electron microscopy.
Fitzpatrick, Anthony W P; Vanacore, Giovanni M; Zewail, Ahmed H
2015-03-17
The amyloid state of polypeptides is a stable, highly organized structural form consisting of laterally associated β-sheet protofilaments that may be adopted as an alternative to the functional, native state. Identifying the balance of forces stabilizing amyloid is fundamental to understanding the wide accessibility of this state to peptides and proteins with unrelated primary sequences, various chain lengths, and widely differing native structures. Here, we use four-dimensional electron microscopy to demonstrate that the forces acting to stabilize amyloid at the atomic level are highly anisotropic, that an optimized interbackbone hydrogen-bonding network within β-sheets confers 20 times more rigidity on the structure than sequence-specific sidechain interactions between sheets, and that electrostatic attraction of protofilaments is only slightly stronger than these weak amphiphilic interactions. The potential biological relevance of the deposition of such a highly anisotropic biomaterial in vivo is discussed.
Portraying entanglement between molecular qubits with four-dimensional inelastic neutron scattering
Garlatti, E.; Guidi, T.; Ansbro, S.; Santini, P.; Amoretti, G.; Ollivier, J.; Mutka, H.; Timco, G.; Vitorica-Yrezabal, I. J.; Whitehead, G. F. S.; Winpenny, R. E. P.; Carretta, S.
2017-01-01
Entanglement is a crucial resource for quantum information processing and its detection and quantification is of paramount importance in many areas of current research. Weakly coupled molecular nanomagnets provide an ideal test bed for investigating entanglement between complex spin systems. However, entanglement in these systems has only been experimentally demonstrated rather indirectly by macroscopic techniques or by fitting trial model Hamiltonians to experimental data. Here we show that four-dimensional inelastic neutron scattering enables us to portray entanglement in weakly coupled molecular qubits and to quantify it. We exploit a prototype (Cr7Ni)2 supramolecular dimer as a benchmark to demonstrate the potential of this approach, which allows one to extract the concurrence in eigenstates of a dimer of molecular qubits without diagonalizing its full Hamiltonian. PMID:28216631
Four-dimensional motility tracking of biological cells by digital holographic microscopy
Yu, Xiao; Hong, Jisoo; Liu, Changgeng; Cross, Michael; Haynie, Donald T.; Kim, Myung K.
2014-01-01
Abstract. Three-dimensional profiling and tracking by digital holography microscopy (DHM) provide label-free and quantitative analysis of the characteristics and dynamic processes of objects, since DHM can record real-time data for microscale objects and produce a single hologram containing all the information about their three-dimensional structures. Here, we have utilized DHM to visualize suspended microspheres and microfibers in three dimensions, and record the four-dimensional trajectories of free-swimming cells in the absence of mechanical focus adjustment. The displacement of microfibers due to interactions with cells in three spatial dimensions has been measured as a function of time at subsecond and micrometer levels in a direct and straightforward manner. It has thus been shown that DHM is a highly efficient and versatile means for quantitative tracking and analysis of cell motility. PMID:24699632
Automated four-dimensional Monte Carlo workflow using log files and real-time motion monitoring
NASA Astrophysics Data System (ADS)
Sibolt, P.; Cronholm, R. O.; Heath, E.; Andersen, C. E.; Behrens, C. F.
2017-05-01
With emerging techniques for tracking and gating methods in radiotherapy of lung cancer patients, there is an increasing need for efficient four-dimensional Monte Carlo (4DMC) based quality assurance (QA). An automated and flexible workflow for 4DMC QA, based on the 4DdefDOSXYZnrc user code, has been developed in python. The workflow has been tested and verified using an in-house developed dosimetry system comprised of a dynamic thorax phantom constructed for plastic scintillator dosimetry. The workflow is directly compatible with any treatment planning system and can also be triggered by the appearance of linac log files. It has minimum user interaction and, with the use of linac log files, it provides a method for verification of the actually delivered dose in the patient geometry.
Portraying entanglement between molecular qubits with four-dimensional inelastic neutron scattering
NASA Astrophysics Data System (ADS)
Garlatti, E.; Guidi, T.; Ansbro, S.; Santini, P.; Amoretti, G.; Ollivier, J.; Mutka, H.; Timco, G.; Vitorica-Yrezabal, I. J.; Whitehead, G. F. S.; Winpenny, R. E. P.; Carretta, S.
2017-02-01
Entanglement is a crucial resource for quantum information processing and its detection and quantification is of paramount importance in many areas of current research. Weakly coupled molecular nanomagnets provide an ideal test bed for investigating entanglement between complex spin systems. However, entanglement in these systems has only been experimentally demonstrated rather indirectly by macroscopic techniques or by fitting trial model Hamiltonians to experimental data. Here we show that four-dimensional inelastic neutron scattering enables us to portray entanglement in weakly coupled molecular qubits and to quantify it. We exploit a prototype (Cr7Ni)2 supramolecular dimer as a benchmark to demonstrate the potential of this approach, which allows one to extract the concurrence in eigenstates of a dimer of molecular qubits without diagonalizing its full Hamiltonian.
New classes of bi-axially symmetric solutions to four-dimensional Vasiliev higher spin gravity
NASA Astrophysics Data System (ADS)
Sundell, Per; Yin, Yihao
2017-01-01
We present new infinite-dimensional spaces of bi-axially symmetric asymptotically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by modifications of the Ansatz used in arXiv:1107.1217, which gave rise to a Type-D solution space. The current Ansatz is based on internal semigroup algebras (without identity) generated by exponentials formed out of the bi-axial symmetry generators. After having switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS4 region, and the twistor space connection is smooth in twistor space over finite regions of spacetime. We provide evidence for that the linearized twistor space connection can be brought to Vasiliev gauge.
GeoViS-Relativistic ray tracing in four-dimensional spacetimes
NASA Astrophysics Data System (ADS)
Müller, Thomas
2014-08-01
The optical appearance of objects moving close to the speed of light or orbiting a black hole is of interest for educational purposes as well as for scientific modeling in special and general relativity. The standard approach to visualize such settings is ray tracing in four-dimensional spacetimes where the direction of the physical propagation of light is reversed. GeoViS implements this ray tracing principle making use of the Motion4D library that handles the spacetime metrics, the integration of geodesics, and the description of objects defined with respect to local reference frames. In combination with the GeodesicViewer, GeoViS might be a valuable tool for graduate students to get a deeper understanding in the visual effects of special and general relativity.
A reduced-order optimization strategy for four dimensional variational data assimilation
NASA Astrophysics Data System (ADS)
Hoteit, I.; Khol, A.; Stammer, D.; Heimbach, P.
2003-04-01
Four dimensional variational data assimilation methods remain expensive for operational oceanography. Every optimization step requires actually one forward and one backward integration of the numerical model, and the huge dimension of the system control vector makes the convergence of the optimization procedure very slow. In this study, an order reduction is applied to the control vector in order to speed up the convergence of the optimization. The reduction is based on an Empirical Orthogonal Functions (EOF) analysis. Some important features however can not be represented in the reduced space. We therefore propose to start the optimization in the reduced space and than continue in the full control space. The effectiveness of this strategy is demonstrated using a simple configuration of the MIT model over the North Atlantic ocean.
NASA Astrophysics Data System (ADS)
Lu, Wei; Song, Joo Hyun; Christensen, Gary E.; Parikh, Parag J.; Bradley, Jeffrey D.; Low, Daniel A.
2006-03-01
Respiratory motion is a significant source of error in conformal radiation therapy for the thorax and upper abdomen. Four-dimensional computed tomography (4D CT) has been proposed to reduce the uncertainty caused by internal respiratory organ motion. A 4D CT dataset is retrospectively reconstructed at various stages of a respiratory cycle. An important tool for 4D treatment planning is deformable image registration. An inverse consistent image registration is used to model lung motion from one respiratory stage to another during a breathing cycle. This diffeomorphic registration jointly estimates the forward and reverse transformations providing more accurate correspondence between two images. Registration results and modeled motions in the lung are shown for three example respiratory stages. The results demonstrate that the consistent image registration satisfactorily models the large motions in the lung, providing a useful tool for 4D planning and delivering.
A four-dimensional primitive equation model for coupled coastal-deep ocean studies
NASA Technical Reports Server (NTRS)
Haidvogel, D. B.
1981-01-01
A prototype four dimensional continental shelf/deep ocean model is described. In its present form, the model incorporates the effects of finite amplitude topography, advective nonlinearities, and variable stratification and rotation. The model can be forced either directly by imposed atmospheric windstress and surface pressure distributions, and energetic mean currents imposed by the exterior oceanic circulation; or indirectly by initial distributions of shoreward propagation mesoscale waves and eddies. To avoid concerns over the appropriate specification of 'open' boundary conditions on the cross-shelf and seaward model boundaries, a periodic channel geometry (oriented along-coast) is used. The model employs a traditional finite difference expansion in the cross-shelf direction, and a Fourier (periodic) representation in the long-shelf coordinate.
A new family of four-dimensional symplectic and integrable mappings
NASA Astrophysics Data System (ADS)
Capel, H. W.; Sahadevan, R.
2001-01-01
We investigate the generalisations of the Quispel, Roberts and Thompson (QRT) family of mappings in the plane leaving a rational quadratic expression invariant to the case of four variables. We assume invariance of the rational expression under a cyclic permutation of variables and we impose a symplectic structure with Poisson brackets of the Weyl type. All mappings satisfying these conditions are shown to be integrable either as four-dimensional mappings with two explicit integrals which are in involution with respect to the symplectic structure and which can also be inferred from the periodic reductions of the double-discrete versions of the modified Korteweg-deVries ( ΔΔMKdV) and sine-Gordon ( ΔΔsG) equations or by reduction to two-dimensional mappings with one integral of the symmetric QRT family.
Gronenborn, A.M.; Clore, G.M.
1994-12-01
Complete understanding of a protein`s function and mechanism of action can only be achieved with a knowledge of its three-dimensional structure at atomic resolution. At present, there are two methods available for determining such structures. The first method, which has been established for many years, is x-ray diffraction of protein single crystals. The second method has blossomed only in the last 5 years and is based on the application of nuclear magnetic resonance (NMR) spectroscopy to proteins in solution. This review paper describes three- and four-dimensional NMR methods applied to protein structure determination and was adapted from Clore and Gronenborn. The review focuses on the underlying principals and practice of multidimensional NMR and the structural information obtained.
NASA Astrophysics Data System (ADS)
Crawford, William J.; Smith, Polly J.; Milliff, Ralph F.; Fiechter, Jerome; Wikle, Christopher K.; Edwards, Christopher A.; Moore, Andrew M.
2016-12-01
A new approach is explored for computing estimates of the error covariance associated with the intrinsic errors of a numerical forecast model in regions characterized by upwelling and downwelling. The approach used is based on a combination of strong constraint data assimilation, twin model experiments, linear inverse modeling, and Bayesian hierarchical modeling. The resulting model error covariance estimates Q are applied to a model of the California Current System using weak constraint four-dimensional variational (4D-Var) data assimilation to compute estimates of the ocean circulation. The results of this study show that the estimates of Q derived following our approach lead to demonstrable improvements in the model circulation estimates and isolate regions where model errors are likely to be important and that have been independently identified in the same model in previously published work.
Four-dimensional computed tomography (4DCT): A review of the current status and applications.
Kwong, Yune; Mel, Alexandra Olimpia; Wheeler, Greg; Troupis, John M
2015-10-01
The applications of conventional computed tomography (CT) have been widely researched and implemented in clinical practice. A recent technological innovation in the field of CT is the emergence of four-dimensional computed tomography (4DCT), where a three-dimensional computed tomography volume containing a moving structure is imaged over a period of time, creating a dynamic volume data set. 4DCT has previously been mainly utilised in the setting of radiation therapy planning, but with the development of wide field of view CT, 4DCT has opened major avenues in the diagnostic arena. The aim of this study is to provide a comprehensive narrative review of the literature regarding the current clinical applications of 4DCT. The applications reviewed include both routine diagnostic usage as well as an appraisal of the current research literature. A systematic review of the studies related to 4DCT was conducted. The Medline database was searched using the MeSH subject heading 'Four-Dimensional Computed Tomography'. After excluding non-human and non-English papers, 2598 articles were found. Further exclusion criteria were applied, including date range (since wide field of view CT was introduced in 2007), and exclusion of technical/engineering/physics papers. Further filtration of papers included identification of Review papers. This process yielded 67 papers. Of these, exclusion of papers not specifically discussing 4DCT (cone beam, 4D models) yielded 38 papers. As part of the review, the technique for 4DCT is described, with perspectives as to how it has evolved and its benefits in different clinical indications.
Four-Dimensional Positron Emission Tomography: Implications for Dose Painting of High-Uptake Regions
Aristophanous, Michalis; Killoran, Joseph H.; Chen, Aileen B.; Berbeco, Ross I.
2011-07-01
Purpose: To investigate the behavior of tumor subvolumes of high [18F]-fluorodeoxyglucose (FDG) uptake as seen on clinical four-dimensional (4D) FDG-positron emission tomography (PET) scans. Methods and Materials: Four-dimensional FDG-PET/computed tomography scans from 13 patients taken before radiotherapy were available. The analysis was focused on regions of high uptake that are potential dose-painting targets. A total of 17 lesions (primary tumors and lymph nodes) were analyzed. On each one of the five phases of the 4D scan a classification algorithm was applied to obtain the region of highest uptake and segment the tumor volume. We looked at the behavior of both the high-uptake subvolume, called 'Boost,' and the segmented tumor volume, called 'Target.' We measured several quantities that characterize the Target and Boost volumes and quantified correlations between them. Results: The behavior of the Target could not always predict the behavior of the Boost. The shape deformation of the Boost regions was on average 133% higher than that of the Target. The gross to internal target volume expansion was on average 27.4% for the Target and 64% for the Boost, a statistically significant difference (p < 0.05). Finally, the inhale-to-exhale phase (20%) had the highest shape deformation for the Boost regions. Conclusions: A complex relationship between the measured quantities for the Boost and Target volumes is revealed. The results suggest that in cases in which advanced therapy techniques such as dose painting are being used, a close examination of the 4D PET scan should be performed.
Breathing-Synchronized Delivery: A Potential Four-Dimensional Tomotherapy Treatment Technique
Zhang Tiezhi . E-mail: tiezhi.zhang@beaumont.edu; Lu Weiguo; Olivera, Gustavo H.; Keller, Harry; Jeraj, Robert; Manon, Rafael; Mehta, Minesh; Mackie, Thomas R.; Paliwal, Bhudatt
2007-08-01
Purpose: To introduce a four-dimensional (4D) tomotherapy treatment technique with improved motion control and patient tolerance. Methods and Materials: Computed tomographic images at 10 breathing phases were acquired for treatment planning. The full exhalation phase was chosen as the planning phase, and the CT images at this phase were used as treatment-planning images. Region of interest delineation was the same as in traditional treatment planning, except that no breathing motion margin was used in clinical target volume-planning target volume expansion. The correlation between delivery and breathing phases was set assuming a constant gantry speed and a fixed breathing period. Deformable image registration yielded the deformation fields at each phase relative to the planning phase. With the delivery/breathing phase correlation and voxel displacements at each breathing phase, a 4D tomotherapy plan was obtained by incorporating the motion into inverse treatment plan optimization. A combined laser/spirometer breathing tracking system has been developed to monitor patient breathing. This system is able to produce stable and reproducible breathing signals representing tidal volume. Results: We compared the 4D tomotherapy treatment planning method with conventional tomotherapy on a static target. The results showed that 4D tomotherapy can achieve dose distributions on a moving target similar to those obtained with conventional delivery on a stationary target. Regular breathing motion is fully compensated by motion-incorporated breathing-synchronized delivery planning. Four-dimensional tomotherapy also has close to 100% duty cycle and does not prolong treatment time. Conclusion: Breathing-synchronized delivery is a feasible 4D tomotherapy treatment technique with improved motion control and patient tolerance.
Preventing Data Ambiguity in Infectious Diseases with Four-Dimensional and Personalized Evaluations
Iandiorio, Michelle J.; Fair, Jeanne M.; Chatzipanagiotou, Stylianos; Ioannidis, Anastasios; Trikka-Graphakos, Eleftheria; Charalampaki, Nikoletta; Sereti, Christina; Tegos, George P.; Hoogesteijn, Almira L.; Rivas, Ariel L.
2016-01-01
Background Diagnostic errors can occur, in infectious diseases, when anti-microbial immune responses involve several temporal scales. When responses span from nanosecond to week and larger temporal scales, any pre-selected temporal scale is likely to miss some (faster or slower) responses. Hoping to prevent diagnostic errors, a pilot study was conducted to evaluate a four-dimensional (4D) method that captures the complexity and dynamics of infectious diseases. Methods Leukocyte-microbial-temporal data were explored in canine and human (bacterial and/or viral) infections, with: (i) a non-structured approach, which measures leukocytes or microbes in isolation; and (ii) a structured method that assesses numerous combinations of interacting variables. Four alternatives of the structured method were tested: (i) a noise-reduction oriented version, which generates a single (one data point-wide) line of observations; (ii) a version that measures complex, three-dimensional (3D) data interactions; (iii) a non-numerical version that displays temporal data directionality (arrows that connect pairs of consecutive observations); and (iv) a full 4D (single line-, complexity-, directionality-based) version. Results In all studies, the non-structured approach revealed non-interpretable (ambiguous) data: observations numerically similar expressed different biological conditions, such as recovery and lack of recovery from infections. Ambiguity was also found when the data were structured as single lines. In contrast, two or more data subsets were distinguished and ambiguity was avoided when the data were structured as complex, 3D, single lines and, in addition, temporal data directionality was determined. The 4D method detected, even within one day, changes in immune profiles that occurred after antibiotics were prescribed. Conclusions Infectious disease data may be ambiguous. Four-dimensional methods may prevent ambiguity, providing earlier, in vivo, dynamic, complex, and
On-board four-dimensional digital tomosynthesis: first experimental results.
Maurer, Jacqueline; Godfrey, Devon; Wang, Zhiheng; Yin, Fang-Fang
2008-08-01
The purpose of this study is to propose four-dimensional digital tomosynthesis (4D-DTS) for on-board analysis of motion information in three dimensions. Images of a dynamic motion phantom were reconstructed using acquisition scan angles ranging from 20 degrees (DTS) to full 360 degrees cone-beam computed tomography (CBCT). Projection images were acquired using an on-board imager mounted on a clinical linear accelerator. Three-dimensional (3D) images of the moving target were reconstructed for various scan angles. 3D respiratory correlated phase images were also reconstructed. For phase-based image reconstructions, the trajectory of a radiopaque marker was tracked in projection space and used to retrospectively assign respiratory phases to projections. The projections were then sorted according phase and used to reconstruct motion correlated images. By using two sets of projections centered about anterior-posterior and lateral axes, this study demonstrates how phase resolved coronal and sagittal DTS images can be used to obtain 3D motion information. Motion artifacts in 4D-DTS phase images are compared with those present in four-dimensional CT (4DCT) images. Due to the nature of data acquisition for the two modalities, superior-inferior motion artifacts are suppressed to a greater extent in 4D-DTS images compared with 4DCT. Theoretical derivations and experimental results are presented to demonstrate how optimal selection of image acquisition parameters including the frequency of projection acquisition and the phase window depend on the respiratory period. Two methods for acquiring projections are discussed. Preliminary results indicate that 4D-DTS can be used to acquire valuable kinetic information of internal anatomy just prior to radiation treatment.
Aspects of compactifications and black holes in four-dimensional supergravity
NASA Astrophysics Data System (ADS)
Looijestijn, H. T.
2010-09-01
In the 20th century, theoretical physics has seen the development of General Relativity and the Standard Model of elementary particles. These theories describe, with great precision, gravity and all known matter, respectively. However, it is not possible to unite them into one, single theory. We need such a theory of quantum gravitation to study phenomena where both theories are important, such as black holes and the Big Bang. One of the leading candidates for a theory of quantum gravitation is string theory. The low-energy limit of string theory is called supergravity. This thesis studies some of the open questions in string theory, in the setting of four-dimensional supergravity. We first classify the fully supersymmetric solutions of gauged N=2 supergravity with arbitrary gaugings in the vector- and hypermultiplet sectors. We present several examples of such solutions and connect some of them to vacuum solutions of flux compactifications in string theory. The next chapter searches for black hole solutions, where the scalars in the theory are gauged. Next, we show how one can embed known black hole solutions trough spontaneous symmetry breaking. When searching for new solutions, we find solutions only in cases when the metric contains ripples and the vector multiplet scalars become ghost-like. We then show how one can obtain four-dimensional supergravities by a Scherk-Schwarz reduction of eleven-dimensional supergravity, and study its equivalence with a compactification on a seven-dimensional space. Finally, we study general aspects of NS5-brane instantons in relation to the stabilization of the volume modulus in Calabi-Yau compactifications of type II strings with fluxes, and their orientifold versions.
Evaluating the four-dimensional cone beam computed tomography with varying gantry rotation speed.
Yoganathan, S A; Maria Das, K J; Mohamed Ali, Shajahan; Agarwal, Arpita; Mishra, Surendra P; Kumar, Shaleen
2016-01-01
The purpose of this work was to evaluate the four-dimensional cone beam CT (4DCBCT) imaging with different gantry rotation speed. All the 4DCBCT image acquisitions were carried out in Elekta XVI Symmetry™ system (Elekta AB, Stockholm, Sweden). A dynamic thorax phantom with tumour mimicking inserts of diameter 1, 2 and 3 cm was programmed to simulate the respiratory motion (4 s) of the target. 4DCBCT images were acquired with different gantry rotation speeds (36°, 50°, 75°, 100°, 150° and 200° min(-1)). Owing to the technical limitation of 4DCBCT system, average cone beam CT (CBCT) images derived from the 10 phases of 4DCBCT were used for the internal target volume (ITV) contouring. ITVs obtained from average CBCT were compared with the four-dimensional CT (4DCT). In addition, the image quality of 4DCBCT was also evaluated for various gantry rotation speeds using Catphan(®) 600 (The Phantom Laboratory Inc., Salem, NY). Compared to 4DCT, the average CBCT underestimated the ITV. The ITV deviation increased with increasing gantry speed (-10.8% vs -17.8% for 36° and 200° min(-1) in 3-cm target) and decreasing target size (-17.8% vs -26.8% for target diameter 3 and 1 cm in 200° min(-1)). Similarly, the image quality indicators such as spatial resolution, contrast-to-noise ratio and uniformity also degraded with increasing gantry rotation speed. The impact of gantry rotation speed has to be considered when using 4DCBCT for ITV definition. The phantom study demonstrated that 4DCBCT with slow gantry rotation showed better image quality and less ITV deviation. Usually, the gantry rotation period of Elekta 4DCBCT system is kept constant at 4 min (50° min(-1)) for acquisition, and any attempt of decreasing/increasing the acquisition duration requires careful investigation. In this study, the 4DCBCT images with different gantry rotation speed were evaluated.
Evaluating the four-dimensional cone beam computed tomography with varying gantry rotation speed
Maria Das, K J; Mohamed Ali, Shajahan; Agarwal, Arpita; Mishra, Surendra P; Kumar, Shaleen
2016-01-01
Objective: The purpose of this work was to evaluate the four-dimensional cone beam CT (4DCBCT) imaging with different gantry rotation speed. Methods: All the 4DCBCT image acquisitions were carried out in Elekta XVI Symmetry™ system (Elekta AB, Stockholm, Sweden). A dynamic thorax phantom with tumour mimicking inserts of diameter 1, 2 and 3 cm was programmed to simulate the respiratory motion (4 s) of the target. 4DCBCT images were acquired with different gantry rotation speeds (36°, 50°, 75°, 100°, 150° and 200° min−1). Owing to the technical limitation of 4DCBCT system, average cone beam CT (CBCT) images derived from the 10 phases of 4DCBCT were used for the internal target volume (ITV) contouring. ITVs obtained from average CBCT were compared with the four-dimensional CT (4DCT). In addition, the image quality of 4DCBCT was also evaluated for various gantry rotation speeds using Catphan® 600 (The Phantom Laboratory Inc., Salem, NY). Results: Compared to 4DCT, the average CBCT underestimated the ITV. The ITV deviation increased with increasing gantry speed (−10.8% vs −17.8% for 36° and 200° min−1 in 3-cm target) and decreasing target size (−17.8% vs −26.8% for target diameter 3 and 1 cm in 200° min−1). Similarly, the image quality indicators such as spatial resolution, contrast-to-noise ratio and uniformity also degraded with increasing gantry rotation speed. Conclusion: The impact of gantry rotation speed has to be considered when using 4DCBCT for ITV definition. The phantom study demonstrated that 4DCBCT with slow gantry rotation showed better image quality and less ITV deviation. Advances in knowledge: Usually, the gantry rotation period of Elekta 4DCBCT system is kept constant at 4 min (50° min−1) for acquisition, and any attempt of decreasing/increasing the acquisition duration requires careful investigation. In this study, the 4DCBCT images with different gantry rotation speed were evaluated. PMID:26916281
Toward four-dimensional image-guided adaptive brachytherapy in locally recurrent endometrial cancer.
Fokdal, Lars; Ørtoft, Gitte; Hansen, Estrid S; Røhl, Lisbeth; Pedersen, Erik Morre; Tanderup, Kari; Lindegaard, Jacob Christian
2014-01-01
To evaluate clinical outcome and feasibility of a four-dimensional image-guided adaptive brachytherapy concept in patients with locally recurrent endometrial cancer. Forty-three patients with locally recurrent endometrial cancer were included. Treatment consisted of conformal external beam radiotherapy followed by a boost using pulsed-dose-rate brachytherapy (BT). Large tumors were treated with MRI-guided interstitial BT. Small tumors were treated with CT-guided intracavitary BT. The planning aim (total external beam radiotherapy and BT) for high-risk clinical target volume was D90 > 80 Gy, whereas constraints for organs at risk were D2cc ≤ 90 Gy for bladder and D2cc ≤ 70 Gy for rectum, sigmoid, and bowel in terms of equivalent dose in 2 Gy fractions. Median high-risk clinical target volume was 18 cm(3) (range, 0-91). D90 was 82 Gy (range, 77-88). D2cc to bladder, rectum, and sigmoid were 67 Gy (range, 50-81), 67 Gy (range, 51-77), and 55 Gy (range, 44-68), respectively. Median followup was 30 months (6-88). Two-year local control rate was 92% (standard error [SE], 5). Disease-free survival rate and overall survival rate was 59% (SE, 8) and 78% (SE, 7), respectively. Patients with low- to intermediate-risk for recurrence had a 2-year disease-free survival rate of 72% (SE, 9) compared with 42% (SE, 12) in patients with high risk for recurrence (p = 0.04). Late morbidity Grade 3 was recorded in 5 (12%) patients. Four-dimensional image-guided adaptive brachytherapy is feasible in locally recurrent endometrial cancer. Local control rate is good. Systemic control remains a problem in patients with high risk for recurrence. Copyright © 2014 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.
Leter, Edward M. . E-mail: emleter@hotmail.com; Cademartiri, Filippo; Levendag, Peter C.; Flohr, Thomas; Stam, Henk; Nowak, Peter J.
2005-07-01
Purpose: We used four-dimensional multislice spiral computed tomography (MSCT) to determine respiratory lung-tumor motion and compared this strategy to common clinical practice in conformal radiotherapy treatment-planning imaging. Methods and Materials: The entire lung volume of 10 consecutive patients with 14 lung metastases were scanned by a 16-slice MSCT. During the scans, patients were instructed to breathe through a spirometer that was connected to a laptop computer. For each patient, 10 stacks of 1.5-mm slices, equally distributed throughout the respiratory cycle, were reconstructed from the acquired MSCT data. The lung tumors were manually contoured in each data set. For each patient, the tumor-volume contours of all data sets were copied to 1 data set, which allowed determination of the volume that encompassed all 10 lung-tumor positions (i.e., the tumor-traversed volume [TTV]) during the respiratory cycle. The TTV was compared with the 10 tumor volumes contoured for each patient, to which an empiric respiratory-motion margin was added. The latter target volumes were designated internal-motion included tumor volume (IMITV). Results: The TTV measurements were significantly smaller than the reference IMITV measurements (5.2 {+-} 10.2 cm{sup 3} and 10.1 {+-} 13.7 cm{sup 3}, respectively). All 10 IMITVs for 2 of the 4 tumors in 1 subject completely encompassed the TTV. All 10 IMITVs for 3 tumors in 2 patients did not show overlap with up to 35% of the corresponding TTV. The 10 IMITVs for the remaining tumors either completely encompassed the corresponding TTV or did not show overlap with up to 26% of the corresponding TTV. Conclusions: We found that individualized determination of respiratory lung-tumor motion by four-dimensional respiratory-gated MSCT represents a better and simple strategy to incorporate periodic physiologic motion compared with a generalized approach. The former strategy can, therefore, improve common and state-of-the-art clinical practice
Four-dimensional reconstruction of cultural heritage sites based on photogrammetry and clustering
NASA Astrophysics Data System (ADS)
Voulodimos, Athanasios; Doulamis, Nikolaos; Fritsch, Dieter; Makantasis, Konstantinos; Doulamis, Anastasios; Klein, Michael
2017-01-01
A system designed and developed for the three-dimensional (3-D) reconstruction of cultural heritage (CH) assets is presented. Two basic approaches are presented. The first one, resulting in an "approximate" 3-D model, uses images retrieved in online multimedia collections; it employs a clustering-based technique to perform content-based filtering and eliminate outliers that significantly reduce the performance of 3-D reconstruction frameworks. The second one is based on input image data acquired through terrestrial laser scanning, as well as close range and airborne photogrammetry; it follows a sophisticated multistep strategy, which leads to a "precise" 3-D model. Furthermore, the concept of change history maps is proposed to address the computational limitations involved in four-dimensional (4-D) modeling, i.e., capturing 3-D models of a CH landmark or site at different time instances. The system also comprises a presentation viewer, which manages the display of the multifaceted CH content collected and created. The described methods have been successfully applied and evaluated in challenging real-world scenarios, including the 4-D reconstruction of the historic Market Square of the German city of Calw in the context of the 4-D-CH-World EU project.
An inventory of four-dimensional data sets for the earth sciences
NASA Technical Reports Server (NTRS)
Gregory, Terri
1989-01-01
The wide variety of data available to the diligent researcher and the myriad paths to obtaining it are emphasized. This inventory is an attempt to make accessible much of the four-dimensional data available in the world. In this quick-look catalog are listed separate data sets (Data Sets sections), sources of data including centers and large data bases (Sources section), and some data expected to be available in the future (Future Data section). In the Data Sets section, individual data sets are arranged alphabetically by institution, with those archived in the U.S.A. listed first, followed by those found elsewhere. The Sources section includes large data bases, centers, and directories. Sources are arranged alphabetically by country. This section is followed by a Future Data section which is a collection of data sets, experiments, and other future developments of which we are cognizant. A collection of further information and order blanks provided by some of the archiving institutions are presented in the appendix.
NASA Astrophysics Data System (ADS)
Lee, Louis; Ma, Yunzhi; Ye, Yinyu; Xing, Lei
2009-07-01
Four-dimensional computed tomography (4DCT) offers an extra dimension of 'time' on the three-dimensional patient model with which we can incorporate target motion in radiation treatment (RT) planning and delivery in various ways such as in the concept of internal target volume, in gated treatment or in target tracking. However, for all these methodologies, different phases are essentially considered as non-interconnected independent phases for the purpose of optimization, in other words, the 'time' dimension has yet to be incorporated explicitly in the optimization algorithm and fully exploited. In this note, we have formulated a new 4D inverse planning technique that treats all the phases in the 4DCT as one single entity in the optimization. The optimization is formulated as a quadratic problem for disciplined convex programming that enables the problem to be analyzed and solved efficiently. In the proof-of-principle examples illustrated, we show that the temporal information of the spatial relation of the target and organs at risk could be 'exchanged' amongst different phases so that an appropriate weighting of dose deposition could be allocated to each phase, thus enabling a treatment with a tight target margin and a full duty cycle otherwise not achievable by either of the aforementioned methodologies. Yet there are practical issues to be solved in the 4D RT planning and delivery. The 4D concept in the optimization we have formulated here does provide insight on how the 'time' dimension can be exploited in the 4D optimization process.
Meairs, S; Beyer, J; Hennerici, M
2000-02-01
Although recent studies have demonstrated the potential value of compounded data for improvement in signal-to-noise ratio and speckle contrast for three-dimensional (3-D) ultrasonography, clinical applications are lacking. We investigated the potential of six degrees-of-freedom (6-DOF) scanhead position and orientation measurement (POM) devices for registration of in vivo multiplanar, irregularly sampled ultrasound (US) images to a regular 3-D volume space. The results demonstrate that accurate spatial and temporal registration of four-dimensional (4-D) US data can be achieved using a 6-DOF scanhead tracking system. For reconstruction of arbitrary, irregularly sampled US data, we introduce a technique based upon a weighted, ellipsoid Gaussian convolution kernel. Volume renderings of 3-D and 4-D compounded in vivo US data are presented. The results, although restricted to the field of cerebrovascular disease, will be of value to other applications of 3-D sonography, particularly those in which compounding of data through irregular sampling may provide superior information on tissue or vessel structure.
Spatially isotropic four-dimensional imaging with dual-view plane illumination microscopy
Wu, Yicong; Wawrzusin, Peter; Senseney, Justin; Fischer, Robert S; Christensen, Ryan; Santella, Anthony; York, Andrew G; Winter, Peter W; Waterman, Clare M; Bao, Zhirong; Colón-Ramos, Daniel A; McAuliffe, Matthew; Shroff, Hari
2014-01-01
Optimal four-dimensional imaging requires high spatial resolution in all dimensions, high speed and minimal photobleaching and damage. We developed a dual-view, plane illumination microscope with improved spatiotemporal resolution by switching illumination and detection between two perpendicular objectives in an alternating duty cycle. Computationally fusing the resulting volumetric views provides an isotropic resolution of 330 nm. As the sample is stationary and only two views are required, we achieve an imaging speed of 200 images/s (i.e., 0.5 s for a 50-plane volume). Unlike spinning-disk confocal or Bessel beam methods, which illuminate the sample outside the focal plane, we maintain high spatiotemporal resolution over hundreds of volumes with negligible photobleaching. To illustrate the ability of our method to study biological systems that require high-speed volumetric visualization and/or low photobleaching, we describe microtubule tracking in live cells, nuclear imaging over 14 h during nematode embryogenesis and imaging of neural wiring during Caenorhabditis elegans brain development over 5 h. PMID:24108093
Two-Dimensional Lattice for Four-Dimensional N = 4 Supersymmetric Yang-Mills
NASA Astrophysics Data System (ADS)
Hanada, M.; Matsuura, S.; Sugino, F.
2011-10-01
We construct a lattice formulation of a mass-deformed two-dimensional N = (8,8) super Yang-Mills theory with preserving two supercharges exactly. Gauge fields are represented by compact unitary link variables, and the exact supercharges on the lattice are nilpotent up to gauge transformations and SU(2)_R rotations. Due to the mass deformation, the lattice model is free from the vacuum degeneracy problem, which was encountered in earlier approaches, and flat directions of scalar fields are stabilized giving discrete minima representing fuzzy S^2. Around the trivial minimum, quantum continuum theory is obtained with no tuning, which serves a nonperturbative construction of the IIA matrix string theory. Moreover, around the minimum of k-coincident fuzzy spheres, four-dimensional N = 4 U(k) super Yang-Mills theory with two commutative and two noncommutative directions emerges. In this theory, sixteen supersymmetries are broken by the mass deformation to two. Assuming the breaking is soft, we give a scenario leading to undeformed N = 4 super Yang-Mills on R^4 without any fine tuning. As an evidence for the validity of the assumption, some computation of 1-loop radiative corrections is presented.
A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications
NASA Astrophysics Data System (ADS)
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2016-04-01
Hyperspectral imaging has proven significance in bio-imaging applications and it has the ability to capture up to several hundred images of different wavelengths offering relevant spectral signatures. To use hyperspectral imaging for in vivo monitoring and diagnosis of the internal body cavities, a snapshot hyperspectral video-endoscope is required. However, such reported systems provide only about 50 wavelengths. We have developed a four-dimensional snapshot hyperspectral video-endoscope with a spectral range of 400-1000 nm, which can detect 756 wavelengths for imaging, significantly more than such systems. Capturing the three-dimensional datacube sequentially gives the fourth dimension. All these are achieved through a flexible two-dimensional to one-dimensional fiber bundle. The potential of this custom designed and fabricated compact biomedical probe is demonstrated by imaging phantom tissue samples in reflectance and fluorescence imaging modalities. It is envisaged that this novel concept and developed probe will contribute significantly towards diagnostic in vivo biomedical imaging in the near future.
A Four-Dimensional Computed Tomography Analysis of Multiorgan Abdominal Motion
Hallman, Joshua L.; Mori, Shinichiro; Sharp, Gregory C.; Lu, Hsiao-Ming; Hong, Theodore S.; Chen, George T.Y.
2012-05-01
Purpose: To characterize and quantify multiorgan respiration-induced motion in the abdomen in liver and pancreatic cancer patients. Methods and Materials: Four-dimensional computed tomography scans were acquired for 18 patients treated for abdominal tumors. Contours of multiple abdominal organs were drawn by the radiation oncologist at one respiratory phase; these contours were propagated to other respiratory phases by deformable registration. Three-dimensional organ models were generated from the resulting contours at each phase. Motions of the bounding box and center of mass were extracted and analyzed for the clinical target volume and organs at risk. Results: On average, the center of mass motion for liver clinical target volumes was 9.7 mm (SD 5 mm) in the superior-inferior direction, with a range of 3 to 18 mm; for pancreatic tumors, the average was 5 mm (SD 1 mm) m with a range of 3 to 7 mm. Abdominal organs move in unison, but with varying amplitudes. Gating near exhale (T40-T60) reduces the range of motion by a factor of {approx}10. Conclusion: We have used deformable registration to calculate the trajectories of abdominal organs in four dimensions, based on center of mass and bounding box motion metrics. Our results are compared with previously reported studies. Possible reasons for differences are discussed.
Morphogenesis of an extended phenotype: four-dimensional ant nest architecture
Minter, Nicholas J.; Franks, Nigel R.; Robson Brown, Katharine A.
2012-01-01
Animals produce a variety of structures to modify their environments adaptively. Such structures represent extended phenotypes whose development is rarely studied. To begin to rectify this, we used micro-computed tomography (CT) scanning and time-series experiments to obtain the first high-resolution dataset on the four-dimensional growth of ant nests. We show that extrinsic features within the environment, such as the presence of planes between layers of sediment, influence the architecture of Lasius flavus nests, with ants excavating horizontal tunnels along such planes. Intrinsically, the dimensions of the tunnels are associated with individual colonies, the dynamics of excavation can be explained by negative feedback and the angular distribution of tunnels is probably a result of local competition among tunnels for miners. The architecture and dynamics of ant nest excavation therefore result from local interactions of ants with one another and templates inherent in the environment. The influence of the environment on the form of structures has been documented across both biotic and abiotic domains. Our study opens up the utility of CT scanning as a technique for observing the morphogenesis of such structures. PMID:21849386
A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2016-01-01
Hyperspectral imaging has proven significance in bio-imaging applications and it has the ability to capture up to several hundred images of different wavelengths offering relevant spectral signatures. To use hyperspectral imaging for in vivo monitoring and diagnosis of the internal body cavities, a snapshot hyperspectral video-endoscope is required. However, such reported systems provide only about 50 wavelengths. We have developed a four-dimensional snapshot hyperspectral video-endoscope with a spectral range of 400–1000 nm, which can detect 756 wavelengths for imaging, significantly more than such systems. Capturing the three-dimensional datacube sequentially gives the fourth dimension. All these are achieved through a flexible two-dimensional to one-dimensional fiber bundle. The potential of this custom designed and fabricated compact biomedical probe is demonstrated by imaging phantom tissue samples in reflectance and fluorescence imaging modalities. It is envisaged that this novel concept and developed probe will contribute significantly towards diagnostic in vivo biomedical imaging in the near future. PMID:27044607
Four-Dimensional Ultrafast Electron Microscopy: Insights into an Emerging Technique.
Adhikari, Aniruddha; Eliason, Jeffrey K; Sun, Jingya; Bose, Riya; Flannigan, David J; Mohammed, Omar F
2017-01-11
Four-dimensional ultrafast electron microscopy (4D-UEM) is a novel analytical technique that aims to fulfill the long-held dream of researchers to investigate materials at extremely short spatial and temporal resolutions by integrating the excellent spatial resolution of electron microscopes with the temporal resolution of ultrafast femtosecond laser-based spectroscopy. The ingenious use of pulsed photoelectrons to probe surfaces and volumes of materials enables time-resolved snapshots of the dynamics to be captured in a way hitherto impossible by other conventional techniques. The flexibility of 4D-UEM lies in the fact that it can be used in both the scanning (S-UEM) and transmission (UEM) modes depending upon the type of electron microscope involved. While UEM can be employed to monitor elementary structural changes and phase transitions in samples using real-space mapping, diffraction, electron energy-loss spectroscopy, and tomography, S-UEM is well suited to map ultrafast dynamical events on materials surfaces in space and time. This review provides an overview of the unique features that distinguish these techniques and also illustrates the applications of both S-UEM and UEM to a multitude of problems relevant to materials science and chemistry.
Towards a coupled ocean-wave-atmosphere four dimensional data assimilation system
NASA Astrophysics Data System (ADS)
Ngodock, Hans; Carrier, Matthew; Amerault, Clark; Campbell, Timothy; Holt, Teddy; Xu, Liang; Rowley, Clark
2015-04-01
Individual 4dvar systems have been developed at the Naval Research Laboratory (NRL) for the ocean model (Navy coastal ocean model, NCOM), the wave model (simulating waves in the nearshore, SWAN) and the atmospheric component of the coupled ocean-atmosphere mesoscale prediction system (COAMPS). Although the three models within COAPMS are coupled in the forward integration, the initialization of each model is done separately. The coupled system forecast is hindered, however, by the lack of a fully coupled and dynamically balanced ocean-atmosphere analysis. A recent work by Ngodock and Carrier (2013) has highlighted this shortcoming with the NCOM-4DVAR, showing that while the NCOM-4DVAR is able to adjust the ocean state properly, the resulting ocean forecast degrades quickly due to the fact that the atmospheric state has not also been adjusted relative to the ocean observations. Likewise, . Currently, the coupled model is initialized using separate analyses for the ocean and atmosphere that do not account for observations in the adjacent fluid. The lack of a coupled analysis produces shocks in the coupled model in the form of gravity waves that degrade the information gained through DA and increase the error in the coupled forecast. The goal of this presentation is to describe ongoing developments at NRL in building a fully coupled ocean-wave-atmosphere four-dimensional variational (4dvar) data assimilation system using the Earth System Modeling Framework (ESMF).
N = 1 supersymmetric indices and the four-dimensional A-model
NASA Astrophysics Data System (ADS)
Closset, Cyril; Kim, Heeyeon; Willett, Brian
2017-08-01
We compute the supersymmetric partition function of N = 1 supersymmetric gauge theories with an R-symmetry on M_4\\cong M_{g,p}× {S}^1 , a principal elliptic fiber bundle of degree p over a genus- g Riemann surface, Σ g . Equivalently, we compute the generalized supersymmetric index I_{M}{_{g,p}, with the supersymmetric three-manifold M_{g,p} as the spatial slice. The ordinary N = 1 supersymmetric index on the round three-sphere is recovered as a special case. We approach this computation from the point of view of a topological A-model for the abelianized gauge fields on the base Σ g . This A-model — or A-twisted two-dimensional N = (2 , 2) gauge theory — encodes all the information about the generalized indices, which are viewed as expectations values of some canonically-defined surface defects wrapped on T 2 inside Σ g × T 2. Being defined by compactification on the torus, the A-model also enjoys natural modular properties, governed by the four-dimensional 't Hooft anomalies. As an application of our results, we provide new tests of Seiberg duality. We also present a new evaluation formula for the three-sphere index as a sum over two-dimensional vacua.
Pasricha, Neel Dave; Bhullar, Paramjit Kaur; Shieh, Christine; Viehland, Christian; Carrasco-Zevallos, Oscar Mijail; Keller, Brenton; Izatt, Joseph Adam; Toth, Cynthia Ann; Challa, Pratap; Kuo, Anthony Nanlin
2017-01-01
We report the first use of swept-source microscope-integrated optical coherence tomography (SS-MIOCT) capable of live four-dimensional (4D) (three-dimensional across time) imaging intraoperatively to directly visualize tube shunt placement and trabeculectomy surgeries in two patients with severe open-angle glaucoma and elevated intraocular pressure (IOP) that was not adequately managed by medical intervention or prior surgery. We performed tube shunt placement and trabeculectomy surgery and used SS-MIOCT to visualize and record surgical steps that benefitted from the enhanced visualization. In the case of tube shunt placement, SS-MIOCT successfully visualized the scleral tunneling, tube shunt positioning in the anterior chamber, and tube shunt suturing. For the trabeculectomy, SS-MIOCT successfully visualized the scleral flap creation, sclerotomy, and iridectomy. Postoperatively, both patients did well, with IOPs decreasing to the target goal. We found the benefit of SS-MIOCT was greatest in surgical steps requiring depth-based assessments. This technology has the potential to improve clinical outcomes. PMID:28300743
Subject-specific four-dimensional liver motion modeling based on registration of dynamic MRI
Noorda, Yolanda H.; Bartels, Lambertus W.; Viergever, Max A.; Pluim, Josien P.W.
2016-01-01
Abstract. Magnetic resonance-guided high intensity focused ultrasound treatment of the liver is a promising noninvasive technique for ablation of liver lesions. For the technique to be used in clinical practice, however, the issue of liver motion needs to be addressed. A subject-specific four-dimensional liver motion model is presented that is created based on registration of dynamically acquired magnetic resonance data. This model can be used for predicting the tumor motion trajectory for treatment planning and to indicate the tumor position for treatment guidance. The performance of the model was evaluated on a dynamic scan series that was not used to build the model. The method achieved an average Dice coefficient of 0.93 between the predicted and actual liver profiles and an average vessel misalignment of 3.0 mm. The model performed robustly, with a small variation in the results per subject. The results demonstrate the potential of the model to be used for MRI-guided treatment of liver lesions. Furthermore, the model can possibly be applied in other image-guided therapies, for instance radiotherapy of the liver. PMID:27493981
Nicolao, Lucas; Parisi, Giorgio; Ricci-Tersenghi, Federico
2014-03-01
The study of the low temperature phase of spin glass models by means of Monte Carlo simulations is a challenging task, because of the very slow dynamics and the severe finite-size effects they show. By exploiting at the best the capabilities of standard modern CPUs (especially the streaming single instruction, multiple data extensions), we have been able to simulate the four-dimensional Edwards-Anderson model with Gaussian couplings up to sizes L=70 and for times long enough to accurately measure the asymptotic behavior. By quenching systems of different sizes to the critical temperature and to temperatures in the whole low temperature phase, we have been able to identify the regime where finite-size effects are negligible: ξ(t)≲L/7. Our estimates for the dynamical exponent (z≃1/T) and for the replicon exponent (α≃1.0 and T independent), that controls the decay of the spatial correlation in the zero overlap sector, are consistent with the replica symmetry breaking theory, but the latter differs from the theoretically conjectured value.
Solutions to Yang-Mills Equations on Four-Dimensional de Sitter Space
NASA Astrophysics Data System (ADS)
Ivanova, Tatiana A.; Lechtenfeld, Olaf; Popov, Alexander D.
2017-08-01
We consider pure SU(2) Yang-Mills theory on four-dimensional de Sitter space dS4 and construct a smooth and spatially homogeneous magnetic solution to the Yang-Mills equations. Slicing dS4 as R ×S3, via an SU(2)-equivariant ansatz, we reduce the Yang-Mills equations to ordinary matrix differential equations and further to Newtonian dynamics in a double-well potential. Its local maximum yields a Yang-Mills solution whose color-magnetic field at time τ ∈R is given by B˜a=-1/2 Ia/(R2cosh2τ ), where Ia for a =1 , 2, 3 are the SU(2) generators and R is the de Sitter radius. At any moment, this spatially homogeneous configuration has finite energy, but its action is also finite and of the value -1/2 j (j +1 )(2 j +1 )π3 in a spin-j representation. Similarly, the double-well bounce produces a family of homogeneous finite-action electric-magnetic solutions with the same energy. There is a continuum of other solutions whose energy and action extend down to zero.
Langner, Ulrich W.; Keall, Paul J.
2010-03-15
Purpose: To quantify the magnitude and frequency of artifacts in simulated four-dimensional computed tomography (4D CT) images using three real-time acquisition methods- direction-dependent displacement acquisition, simultaneous displacement and phase acquisition, and simultaneous displacement and velocity acquisition- and to compare these methods with commonly used retrospective phase sorting. Methods and Materials: Image acquisition for the four 4D CT methods was simulated with different displacement and velocity tolerances for spheres with radii of 0.5 cm, 1.5 cm, and 2.5 cm, using 58 patient-measured tumors and respiratory motion traces. The magnitude and frequency of artifacts, CT doses, and acquisition times were computed for each method. Results: The mean artifact magnitude was 50% smaller for the three real-time methods than for retrospective phase sorting. The dose was {approx}50% lower, but the acquisition time was 20% to 100% longer for the real-time methods than for retrospective phase sorting. Conclusions: Real-time acquisition methods can reduce the frequency and magnitude of artifacts in 4D CT images, as well as the imaging dose, but they increase the image acquisition time. The results suggest that direction-dependent displacement acquisition is the preferred real-time 4D CT acquisition method, because on average, the lowest dose is delivered to the patient and the acquisition time is the shortest for the resulting number and magnitude of artifacts.
A four-dimensional snapshot hyperspectral video-endoscope for bio-imaging applications.
Lim, Hoong-Ta; Murukeshan, Vadakke Matham
2016-04-05
Hyperspectral imaging has proven significance in bio-imaging applications and it has the ability to capture up to several hundred images of different wavelengths offering relevant spectral signatures. To use hyperspectral imaging for in vivo monitoring and diagnosis of the internal body cavities, a snapshot hyperspectral video-endoscope is required. However, such reported systems provide only about 50 wavelengths. We have developed a four-dimensional snapshot hyperspectral video-endoscope with a spectral range of 400-1000 nm, which can detect 756 wavelengths for imaging, significantly more than such systems. Capturing the three-dimensional datacube sequentially gives the fourth dimension. All these are achieved through a flexible two-dimensional to one-dimensional fiber bundle. The potential of this custom designed and fabricated compact biomedical probe is demonstrated by imaging phantom tissue samples in reflectance and fluorescence imaging modalities. It is envisaged that this novel concept and developed probe will contribute significantly towards diagnostic in vivo biomedical imaging in the near future.
Spatial heterogeneity of four-dimensional relative pressure fields in the human left ventricle.
Eriksson, Jonatan; Bolger, Ann F; Carlhäll, Carl-Johan; Ebbers, Tino
2015-12-01
To assess the spatial heterogeneity of the four-dimensional (4D) relative pressure fields in the healthy human left ventricle (LV) and provide reference data for normal LV relative pressure. Twelve healthy subjects underwent a cardiac MRI examination where 4D flow and morphological data were acquired. The latter data were segmented and used to define the borders of the LV for computation of relative pressure fields using the pressure Poisson equation. The LV lumen was divided into 17 pie-shaped segments. In the normal left ventricle, the relative pressure in the apical segments was significantly higher relative to the basal segments (P < 0.0005) along both the anteroseptal and inferolateral sides after the peaks of early (E-wave) and late (A-wave) diastolic filling. The basal anteroseptal segment showed significantly lower median pressure than the opposite basal inferolateral segment during both E-wave (P < 0.0005) and A-wave (P = 0.0024). Relative pressure in the left ventricle is heterogeneous. During diastole, the main pressure differences in the LV occur along the basal-apical axis. However, pressure differences were also found in the short axis direction and may reflect important aspects of atrioventricular coupling. Additionally, this study provides reference data on LV pressure dynamics for a group of healthy subjects. © 2014 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Franke, Philipp; Elbern, Hendrik
2016-04-01
Estimating volcanic ash emissions is a very challenging task due to limited monitoring capacities of the ash plume and nonlinear processes in the atmosphere, which renders application of source strength and injection height estimations difficult. Most models, which estimate volcanic ash emissions, make strong simplifications of the dispersion of volcanic ash and corresponding atmospheric processes. The objective of this work is to estimate volcanic ash emissions and simulate the ensuing dispersion applying a full chemistry transport model in a hybrid approach by using its adjoint as well as an ensemble of model runs to quantify forecast uncertainties. Therefore, the four dimensional variational data assimilation version of the EURAD-IM chemistry transport model is extended to include a Sequential Importance Resampling Smoother (SIRS), introducing novel weighting and resampling strategies. In the main SIRS step the ensemble members exchange high rated emission patterns while rejecting emission patterns with low value for the forecast. The emission profiles of the ensemble members are perturbed afterwards to guarantee different emissions for all ensemble members. First identical twin experiments show the ability of the system to estimate the temporal and vertical distribution of volcanic ash emissions. The 4D-var data assimilation algorithm of the new system additionally provides quantitative emission estimation.
Ding, Peishan; Wu, Huimei; Fang, Lei; Wu, Ming; Liu, Rongyu
2014-07-01
During infection, recruited phagocytes transmigrate across the epithelium to remove the pathogens deposited on the airway surface. However, it is difficult to directly observe cellular behaviors (e.g., transmigration) in single-cell layer cultures or in live animals. Combining a three-dimensional (3D) cell coculture model mimicking airway infection with time-lapse confocal imaging as a four-dimensional technique allowed us to image the behaviors of macrophages in 3D over time. The airway infection model was moved to a glass-bottomed dish for live-cell imaging by confocal laser scanning microscopy. Using time-lapse confocal imaging, we recorded macrophages transmigrating across the polyethylene terephthalate (PET) membrane of the inserts through the 5-μm pores in the PET membrane. Macrophages on the apical side of the insert exhibited essentially three types of movements, one of which was transmigrating across the epithelial cell monolayer and arriving at the surface of monolayer. We found that adding Staphylococcus aureus to the model increased the transmigration index but not the transmigration time of the macrophages. Only in the presence of S. aureus were the macrophages able to transmigrate across the epithelial cell monolayer. Apical-to-basal transmigration of macrophages was visualized dynamically. We also imaged the macrophages phagocytizing S. aureus deposited on the surface of the monolayer in the airway infection model. This work provides a useful tool to study the cellular behaviors of immune cells spatially and temporally during infection.
Affine group representation formalism for four-dimensional, Lorentzian, quantum gravity
NASA Astrophysics Data System (ADS)
Chou, Ching-Yi; Ita, Eyo E.; Soo, Chopin
2013-03-01
Within the context of the Ashtekar variables, the Hamiltonian constraint of four-dimensional pure general relativity with cosmological constant, Λ, is re-expressed as an affine algebra with the commutator of the imaginary part of the Chern-Simons functional, Q, and the positive-definite volume element. This demonstrates that the affine algebra quantization program of Klauder can indeed be applicable to the full Lorentzian signature theory of quantum gravity with non-vanishing cosmological constant, and it facilitates the construction of solutions to all of the constraints. Unitary, irreducible representations of the affine group exhibit a natural Hilbert space structure, and coherent states and other physical states can be generated from a fiducial state. It is also intriguing that formulation of the Hamiltonian constraint or the Wheeler-DeWitt equation as an affine algebra requires a non-vanishing cosmological constant, and a fundamental uncertainty relation of the form {Δ{V}/{< {V}> }Δ {Q}≥ 2π Λ L^2_{Planck} (wherein V is the total volume) may apply to all physical states of quantum gravity.
Simulations of four-dimensional simplicial quantum gravity as dynamical triangulation
Agishtein, M.E.; Migdal, A.A. )
1992-04-20
In this paper, Four-Dimensional Simplicial Quantum Gravity is simulated using the dynamical triangulation approach. The authors studied simplicial manifolds of spherical topology and found the critical line for the cosmological constant as a function of the gravitational one, separating the phases of opened and closed Universe. When the bare cosmological constant approaches this line from above, the four-volume grows: the authors reached about 5 {times} 10{sup 4} simplexes, which proved to be sufficient for the statistical limit of infinite volume. However, for the genuine continuum theory of gravity, the parameters of the lattice model should be further adjusted to reach the second order phase transition point, where the correlation length grows to infinity. The authors varied the gravitational constant, and they found the first order phase transition, similar to the one found in three-dimensional model, except in 4D the fluctuations are rather large at the transition point, so that this is close to the second order phase transition. The average curvature in cutoff units is large and positive in one phase (gravity), and small negative in another (antigravity). The authors studied the fractal geometry of both phases, using the heavy particle propagator to define the geodesic map, as well as with the old approach using the shortest lattice paths.
Lee, Louis; Ma, Yunzhi; Ye, Yinyu; Xing, Lei
2009-07-07
Four-dimensional computed tomography (4DCT) offers an extra dimension of 'time' on the three-dimensional patient model with which we can incorporate target motion in radiation treatment (RT) planning and delivery in various ways such as in the concept of internal target volume, in gated treatment or in target tracking. However, for all these methodologies, different phases are essentially considered as non-interconnected independent phases for the purpose of optimization, in other words, the 'time' dimension has yet to be incorporated explicitly in the optimization algorithm and fully exploited. In this note, we have formulated a new 4D inverse planning technique that treats all the phases in the 4DCT as one single entity in the optimization. The optimization is formulated as a quadratic problem for disciplined convex programming that enables the problem to be analyzed and solved efficiently. In the proof-of-principle examples illustrated, we show that the temporal information of the spatial relation of the target and organs at risk could be 'exchanged' amongst different phases so that an appropriate weighting of dose deposition could be allocated to each phase, thus enabling a treatment with a tight target margin and a full duty cycle otherwise not achievable by either of the aforementioned methodologies. Yet there are practical issues to be solved in the 4D RT planning and delivery. The 4D concept in the optimization we have formulated here does provide insight on how the 'time' dimension can be exploited in the 4D optimization process.
A four-dimensional virtual hand brain-machine interface using active dimension selection
NASA Astrophysics Data System (ADS)
Rouse, Adam G.
2016-06-01
Objective. Brain-machine interfaces (BMI) traditionally rely on a fixed, linear transformation from neural signals to an output state-space. In this study, the assumption that a BMI must control a fixed, orthogonal basis set was challenged and a novel active dimension selection (ADS) decoder was explored. Approach. ADS utilizes a two stage decoder by using neural signals to both (i) select an active dimension being controlled and (ii) control the velocity along the selected dimension. ADS decoding was tested in a monkey using 16 single units from premotor and primary motor cortex to successfully control a virtual hand avatar to move to eight different postures. Main results. Following training with the ADS decoder to control 2, 3, and then 4 dimensions, each emulating a grasp shape of the hand, performance reached 93% correct with a bit rate of 2.4 bits s-1 for eight targets. Selection of eight targets using ADS control was more efficient, as measured by bit rate, than either full four-dimensional control or computer assisted one-dimensional control. Significance. ADS decoding allows a user to quickly and efficiently select different hand postures. This novel decoding scheme represents a potential method to reduce the complexity of high-dimension BMI control of the hand.
Ehrhardt, David; Haller, George
2017-01-01
In a nonlinear oscillatory system, spectral submanifolds (SSMs) are the smoothest invariant manifolds tangent to linear modal subspaces of an equilibrium. Amplitude–frequency plots of the dynamics on SSMs provide the classic backbone curves sought in experimental nonlinear model identification. We develop here, a methodology to compute analytically both the shape of SSMs and their corresponding backbone curves from a data-assimilating model fitted to experimental vibration signals. This model identification utilizes Taken’s delay-embedding theorem, as well as a least square fit to the Taylor expansion of the sampling map associated with that embedding. The SSMs are then constructed for the sampling map using the parametrization method for invariant manifolds, which assumes that the manifold is an embedding of, rather than a graph over, a spectral subspace. Using examples of both synthetic and real experimental data, we demonstrate that this approach reproduces backbone curves with high accuracy. PMID:28690402
NASA Astrophysics Data System (ADS)
Szalai, Robert; Ehrhardt, David; Haller, George
2017-06-01
In a nonlinear oscillatory system, spectral submanifolds (SSMs) are the smoothest invariant manifolds tangent to linear modal subspaces of an equilibrium. Amplitude-frequency plots of the dynamics on SSMs provide the classic backbone curves sought in experimental nonlinear model identification. We develop here, a methodology to compute analytically both the shape of SSMs and their corresponding backbone curves from a data-assimilating model fitted to experimental vibration signals. This model identification utilizes Taken's delay-embedding theorem, as well as a least square fit to the Taylor expansion of the sampling map associated with that embedding. The SSMs are then constructed for the sampling map using the parametrization method for invariant manifolds, which assumes that the manifold is an embedding of, rather than a graph over, a spectral subspace. Using examples of both synthetic and real experimental data, we demonstrate that this approach reproduces backbone curves with high accuracy.
Slow gantry rotation acquisition technique for on-board four-dimensional digital tomosynthesis
Maurer, Jacqueline; Pan Tinsu; Yin, Fang-Fang
2010-02-15
Purpose: Four-dimensional cone-beam computed tomography (4D CBCT) has been investigated for motion imaging in the radiotherapy treatment room. The drawbacks of 4D CBCT are long scan times and high imaging doses. The aims of this study were to develop and investigate a slow gantry rotation acquisition protocol for four-dimensional digital tomosynthesis (4D DTS) as a faster, lower dose alternative to 4D CBCT. Methods: This technique was implemented using an On-Board Imager kV imaging system (Varian Medical Systems, Palo Alto, CA) mounted on the gantry of a linear accelerator. The general procedure for 4D DTS imaging using slow gantry rotation acquisition consists of the following steps: (1) acquire projections over a limited gantry rotation angle in a single motion with constant frame rate and gantry rotation speed; (2) generate a respiratory signal and temporally match projection images with appropriate points from the respiratory signal; (3) use the respiratory signal to assign phases to each of the projection images; (4) sort projection images into phase bins; and (5) reconstruct phase images. Phantom studies were conducted to validate theoretically derived relationships between acquisition and respiratory parameters. Optimization of acquisition parameters was then conducted by simulating lung scans using patient data. Lung tumors with approximate volumes ranging from 0.12 to 1.53 cm{sup 3} were studied. Results: A protocol for slow gantry rotation 4D DTS was presented. Equations were derived to express relationships between acquisition parameters (frame rate, phase window, and angular intervals between projections), respiratory cycle durations, and resulting acquisition times and numbers of projections. The phantom studies validated the relationships, and the patient studies resulted in determinations of appropriate acquisition parameters. The phase window must be set according to clinical goals. For 10% phase windows, we found that appropriate frame rates
On correlated sources of uncertainty in four dimensional computed tomography data sets.
Ehler, Eric D; Tome, Wolfgang A
2010-06-01
The purpose of this work is to estimate the degree of uncertainty inherent to a given four dimensional computed tomography (4D-CT) imaging modality and to test for interaction of the investigated factors (i.e., object displacement, velocity, and the period of motion) when determining the object motion coordinates, motion envelope, and the confomality in which it can be defined within a time based data series. A motion phantom consisting of four glass spheres imbedded in low density foam on a one dimensional moving platform was used to investigate the interaction of uncertainty factors in motion trajectory that could be used in comparison of trajectory definition, motion envelope definition and conformality in an optimal 4D-CT imaging environment. The motion platform allowed for a highly defined motion trajectory that could be as the ground truth in the comparison with observed motion in 4D-CT data sets. 4D-CT data sets were acquired for 9 different motion patterns. Multifactor analysis of variance (ANOVA) was performed where the factors considered were the phantom maximum velocity, object volume, and the image intensity used to delineate the high density objects. No statistical significance was found for three factor interaction for definition of the motion trajectory, motion envelope, or Dice Similarity Coefficient (DSC) conformality. Two factor interactions were found to be statistically significant for the DSC for the interactions of 1) object volume and the HU threshold used for delineation and 2) the object velocity and object volume. Moreover, a statistically significant single factor direct proportionality was observed between the maximum velocity and the mean tracking error. In this work multiple factors impacting on the uncertainty in 4D data sets have been considered and some statistically significant two-factor interactions have been identified. Therefore, the detailed evaluation of errors and uncertainties in 4D imaging modalities is recommended in
NASA Astrophysics Data System (ADS)
Saito, A.; Akiya, Y.; Yoshida, D.; Odagi, Y.; Yoshikawa, M.; Tsugawa, T.; Takahashi, M.; Kumano, Y.; Iwasaki, S.
2010-12-01
We have developed a four-dimensional display system of the Earth and planets to use in schools, science centers, and research institutes. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. The system is named Dagik Earth, and educational programs using Dagik Earth have been developed for schools and science centers. Three dimensional displays can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. There are several systems for the three-dimensional presentation of the Earth, such as Science on a sphere by NOAA, and Geocosmos by Miraikan, Japan. Comparing these systems, the advantage of Dagik Earth is portability and affordability. The system uses ordinary PC and PC projector. Only a spherical screen is the special equipment of Dagik Earth. Therefore Dagik Earth is easy to use in classrooms. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in an attractive way of presentation. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented. Its future plan will also be discussed.
Evaluation of Bogus Vortex Techniques with Four-Dimensional Variational Data Assimilation
NASA Technical Reports Server (NTRS)
Pu, Zhao-Xia; Braun, Scott A.
2000-01-01
The effectiveness of techniques for creating "bogus" vortices in numerical simulations of hurricanes is examined by using the Penn State/NCAR nonhydrostatic mesoscale model (MM5) and its adjoint system. A series of four-dimensional variational data assimilation (4-D VAR) experiments is conducted to generate an initial vortex for Hurricane Georges (1998) in the Atlantic Ocean by assimilating bogus sea-level pressure and surface wind information into the mesoscale numerical model. Several different strategies are tested for improving the vortex representation. The initial vortices produced by the 4-D VAR technique are able to reproduce many of the structural features of mature hurricanes. The vortices also result in significant improvements to the hurricane forecasts in terms of both intensity and track. In particular, with assimilation of only bogus sea-level pressure information, the response in the wind field is contained largely within the divergent component, with strong convergence leading to strong upward motion near the center. Although the intensity of the initial vortex seems to be well represented, a dramatic spin down of the storm occurs within the first 6 h of the forecast. With assimilation of bogus surface wind data only, an expected dominance of the rotational component of the wind field is generated, but the minimum pressure is adjusted inadequately compared to the actual hurricane minimum pressure. Only when both the bogus surface pressure and wind information are assimilated together does the model produce a vortex that represents the actual intensity of the hurricane and results in significant improvements to forecasts of both hurricane intensity and track.
Impact of four-dimensional data assimilation (FDDA) on urban climate analysis
NASA Astrophysics Data System (ADS)
Pan, Linlin; Liu, Yubao; Liu, Yuewei; Li, Lei; Jiang, Yin; Cheng, Will; Roux, Gregory
2015-12-01
This study investigates the impact of four-dimensional data assimilation (FDDA) on urban climate analysis, which employs the NCAR (National Center for Atmospheric Research) WRF (the weather research and forecasting model) based on climate FDDA (CFDDA) technology to develop an urban-scale microclimatology database for the Shenzhen area, a rapidly developing metropolitan located along the southern coast of China, where uniquely high-density observations, including ultrahigh-resolution surface AWS (automatic weather station) network, radio sounding, wind profilers, radiometers, and other weather observation platforms, have been installed. CFDDA is an innovative dynamical downscaling regional climate analysis system that assimilates diverse regional observations; and has been employed to produce a 5 year multiscale high-resolution microclimate analysis by assimilating high-density observations at Shenzhen area. The CFDDA system was configured with four nested-grid domains at grid sizes of 27, 9, 3, and 1 km, respectively. This research evaluates the impact of assimilating high-resolution observation data on reproducing the refining features of urban-scale circulations. Two experiments were conducted with a 5 year run using CFSR (climate forecast system reanalysis) as boundary and initial conditions: one with CFDDA and the other without. The comparisons of these two experiments with observations indicate that CFDDA greatly reduces the model analysis error and is able to realistically analyze the microscale features such as urban-rural-coastal circulation, land/sea breezes, and local-hilly terrain thermal circulations. It is demonstrated that the urbanization can produce 2.5 k differences in 2 m temperatures, delays/speeds up the land/sea breeze development, and interacts with local mountain-valley circulations.
Chiral four-dimensional F-theory compactifications with SU(5) and multiple U(1)-factors
NASA Astrophysics Data System (ADS)
Cvetič, Mirjam; Grassi, Antonella; Klevers, Denis; Piragua, Hernan
2014-04-01
We develop geometric techniques to determine the spectrum and the chiral indices of matter multiplets for four-dimensional F-theory compactifications on elliptic Calabi-Yau fourfolds with rank two Mordell-Weil group. The general elliptic fiber is the Calabi-Yau onefold in dP 2. We classify its resolved elliptic fibrations over a general base B. The study of singularities of these fibrations leads to explicit matter representations, that we determine both for U(1) × U(1) and SU(5) × U(1) × U(1) constructions. We determine for the first time certain matter curves and surfaces using techniques involving prime ideals. The vertical cohomology ring of these fourfolds is calculated for both cases and general formulas for the Euler numbers are derived. Explicit calculations are presented for a specific base B = ℙ3. We determine the general G 4-flux that belongs to of the resolved Calabi-Yau fourfolds. As a by-product, we derive for the first time all conditions on G 4-flux in general F-theory compactifications with a non-holomorphic zero section. These conditions have to be formulated after a circle reduction in terms of Chern-Simons terms on the 3D Coulomb branch and invoke M-theory/F-theory duality. New Chern-Simons terms are generated by Kaluza-Klein states of the circle compactification. We explicitly perform the relevant field theory computations, that yield non-vanishing results precisely for fourfolds with a non-holomorphic zero section. Taking into account the new Chern-Simons terms, all 4D matter chiralities are determined via 3D M-theory/F-theory duality. We independently check these chiralities using the subset of matter surfaces we determined. The presented techniques are general and do not rely on toric data.
Four-dimensional cone-beam computed tomography using an on-board imager.
Li, Tianfang; Xing, Lei; Munro, Peter; McGuinness, Christopher; Chao, Ming; Yang, Yong; Loo, Bill; Koong, Albert
2006-10-01
On-board cone-beam computed tomography (CBCT) has recently become available to provide volumetric information of a patient in the treatment position, and holds promises for improved target localization and irradiation dose verification. The design of currently available on-board CBCT, however, is far from optimal. Its quality is adversely influenced by many factors, such as scatter, beam hardening, and intra-scanning organ motion. In this work we quantitatively study the influence of organ motion on CBCT imaging and investigate a strategy to acquire high quality phase-resolved [four-dimensional (4D)] CBCT images based on phase binning of the CBCT projection data. An efficient and robust method for binning CBCT data according to the patient's respiratory phase derived in the projection space was developed. The phase-binned projections were reconstructed using the conventional Feldkamp algorithm to yield 4D CBCT images. Both phantom and patient studies were carried out to validate the technique and to optimize the 4D CBCT data acquisition protocol. Several factors that are important to the clinical implementation of the technique, such as the image quality, scanning time, number of projections, and radiation dose, were analyzed for various scanning schemes. The general references drawn from this study are: (i) reliable phase binning of CBCT projections is accomplishable with the aid of external or internal marker and simple analysis of its trace in the projection space, and (ii) artifact-free 4D CBCT images can be obtained without increasing the patient radiation dose as compared to the current 3D CBCT scan.
Robust principal component analysis-based four-dimensional computed tomography.
Gao, Hao; Cai, Jian-Feng; Shen, Zuowei; Zhao, Hongkai
2011-06-07
The purpose of this paper for four-dimensional (4D) computed tomography (CT) is threefold. (1) A new spatiotemporal model is presented from the matrix perspective with the row dimension in space and the column dimension in time, namely the robust PCA (principal component analysis)-based 4D CT model. That is, instead of viewing the 4D object as a temporal collection of three-dimensional (3D) images and looking for local coherence in time or space independently, we perceive it as a mixture of low-rank matrix and sparse matrix to explore the maximum temporal coherence of the spatial structure among phases. Here the low-rank matrix corresponds to the 'background' or reference state, which is stationary over time or similar in structure; the sparse matrix stands for the 'motion' or time-varying component, e.g., heart motion in cardiac imaging, which is often either approximately sparse itself or can be sparsified in the proper basis. Besides 4D CT, this robust PCA-based 4D CT model should be applicable in other imaging problems for motion reduction or/and change detection with the least amount of data, such as multi-energy CT, cardiac MRI, and hyperspectral imaging. (2) A dynamic strategy for data acquisition, i.e. a temporally spiral scheme, is proposed that can potentially maintain similar reconstruction accuracy with far fewer projections of the data. The key point of this dynamic scheme is to reduce the total number of measurements, and hence the radiation dose, by acquiring complementary data in different phases while reducing redundant measurements of the common background structure. (3) An accurate, efficient, yet simple-to-implement algorithm based on the split Bregman method is developed for solving the model problem with sparse representation in tight frames.
Miao, Shida; Zhu, Wei; Castro, Nathan J; Leng, Jinsong; Zhang, Lijie Grace
2016-10-01
The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term "4D printing" refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from -8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at -18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and development of
Improvement in banding artefacts in four-dimensional computed tomography for radiotherapy planning
NASA Astrophysics Data System (ADS)
Mori, Shinichiro; Endo, Masahiro; Asakura, Hiroshi
2006-10-01
Respiratory-gated CT (RGCT) and four-dimensional CT (4DCT) scan techniques cover consecutive segments of the respiratory cycle. However, motion artefacts may occur in fast respiratory phases such as mid-inhalation and -exhalation. CT imaging involves the use of a number of x-ray tube positions for each couch position. We investigated the fundamental nature of motion artefacts using a constant-velocity moving phantom in motion in the CT plane or perpendicular to the CT plane, and in pigs to simulate a human model. Artefacts and movement distance were evaluated in a moving phantom and artificially ventilated pigs with a 256-multi-detector row CT (256MDCT). The phantom moved in the CT plane or perpendicular to the CT plane with a constant velocity. Backprojection used variable initial backprojection angles (IBAs). The phantom length for motion perpendicular to the CT plane was independent of IBA but was represented by phantom diameter plus the distance of movement per gantry rotation. In contrast, that for the motion in the CT plane was dependent on IBA, as represented by phantom diameter plus the distance of movement per rotation for IBA perpendicular to the phantom movement direction, and phantom diameter plus half the distance of movement per gantry rotation for other IBAs. Results for volumetric CT images with different IBAs showed the presence of banding artefacts. Similar findings were seen in artificially ventilated pigs. Motion artefacts are unavoidable in both conventional CT and 256MDCT. Banding artefacts will be improved if the same IBAs at each couch position are accounted for during image reconstruction. This improvement will be beneficial in respiratory gated and 4D radiation therapies.
Stewart, Richard S.; Kiss, Ilona M.; Wilkinson, Robert S.
2014-01-01
Four-dimensional (4D) light imaging has been used to study behavior of small structures within motor nerve terminals of the thin transversus abdominis muscle of the garter snake. Raw data comprises time-lapse sequences of 3D z-stacks. Each stack contains 4-20 images acquired with epifluorescence optics at focal planes separated by 400-1,500 nm. Steps in the acquisition of image stacks, such as adjustment of focus, switching of excitation wavelengths, and operation of the digital camera, are automated as much as possible to maximize image rate and minimize tissue damage from light exposure. After acquisition, a set of image stacks is deconvolved to improve spatial resolution, converted to the desired 3D format, and used to create a 4D "movie" that is suitable for variety of computer-based analyses, depending upon the experimental data sought. One application is study of the dynamic behavior of two classes of endosomes found in nerve terminals-macroendosomes (MEs) and acidic endosomes (AEs)-whose sizes (200-800 nm for both types) are at or near the diffraction limit. Access to 3D information at each time point provides several advantages over conventional time-lapse imaging. In particular, size and velocity of movement of structures can be quantified over time without loss of sharp focus. Examples of data from 4D imaging reveal that MEs approach the plasma membrane and disappear, suggesting that they are exocytosed rather than simply moving vertically away from a single plane of focus. Also revealed is putative fusion of MEs and AEs, by visualization of overlap between the two dye-containing structures as viewed in each three orthogonal projections. PMID:24799002
Novel Assessment of Renal Motion in Children as Measured via Four-Dimensional Computed Tomography
Pai Panandiker, Atmaram S.; Sharma, Shelly; Naik, Mihir H.; Wu, Shengjie; Hua, Chiaho; Beltran, Chris; Krasin, Matthew J.; Merchant, Thomas E.
2012-04-01
Objectives: Abdominal intensity-modulated radiation therapy and proton therapy require quantification of target and organ motion to optimize localization and treatment. Although addressed in adults, there is no available literature on this issue in pediatric patients. We assessed physiologic renal motion in pediatric patients. Methods and Materials: Twenty free-breathing pediatric patients at a median age of 8 years (range, 2-18 years) with intra-abdominal tumors underwent computed tomography simulation and four-dimensional computed tomography acquisition (slice thickness, 3 mm). Kidneys and diaphragms were contoured during eight phases of respiration to estimate center-of-mass motion. We quantified center of kidney mass mobility vectors in three dimensions: anteroposterior (AP), mediolateral (ML), and superoinferior (SI). Results: Kidney motion decreases linearly with decreasing age and height. The 95% confidence interval for the averaged minima and maxima of renal motion in children younger than 9 years was 5-9 mm in the ML direction, 4-11 mm in the AP direction, and 12-25 mm in the SI dimension for both kidneys. In children older than 9 years, the same confidence interval reveals a widening range of motion that was 5-16 mm in the ML direction, 6-17 mm in the AP direction, and 21-52 mm in the SI direction. Although not statistically significant, renal motion correlated with diaphragm motion in older patients. The correlation between diaphragm motion and body mass index was borderline (r = 0.52, p = 0.0816) in younger patients. Conclusions: Renal motion is age and height dependent. Measuring diaphragmatic motion alone does not reliably quantify pediatric renal motion. Renal motion in young children ranges from 5 to 25 mm in orientation-specific directions. The vectors of motion range from 5 to 52 mm in older children. These preliminary data represent novel analyses of pediatric intra-abdominal organ motion.
NASA Astrophysics Data System (ADS)
Power, Christopher; Gerhard, Jason I.; Karaoulis, Marios; Tsourlos, Panagiotis; Giannopoulos, Antonios
2014-07-01
Practical, non-invasive tools do not currently exist for mapping the remediation of dense non-aqueous phase liquids (DNAPLs). Electrical resistivity tomography (ERT) exhibits significant potential but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites. This study explores the effectiveness of recently developed four-dimensional (4D, i.e., 3D space plus time) time-lapse surface ERT to monitor DNAPL source zone remediation. A laboratory experiment demonstrated the approach for mapping a changing NAPL distribution over time. A recently developed DNAPL-ERT numerical model was then employed to independently simulate the experiment, providing confidence that the DNAPL-ERT model is a reliable tool for simulating real systems. The numerical model was then used to evaluate the potential for this approach at the field scale. Four DNAPL source zones, exhibiting a range of complexity, were initially simulated, followed by modeled time-lapse ERT monitoring of complete DNAPL remediation by enhanced dissolution. 4D ERT inversion provided estimates of the regions of the source zone experiencing mass reduction with time. Results show that 4D time-lapse ERT has significant potential to map both the outline and the center of mass of the evolving treated portion of the source zone to within a few meters in each direction. In addition, the technique can provide a reasonable, albeit conservative, estimate of the DNAPL volume remediated with time: 25% underestimation in the upper 2 m and up to 50% underestimation at late time between 2 and 4 m depth. The technique is less reliable for identifying cleanup of DNAPL stringers outside the main DNAPL body. Overall, this study demonstrates that 4D time-lapse ERT has potential for mapping where and how quickly DNAPL mass changes in real time during site remediation.
Muon borehole detector development for use in four-dimensional tomographic density monitoring
NASA Astrophysics Data System (ADS)
Flygare, Joshua
The increase of CO2 concentrations in the atmosphere and the correlated temperature rise has initiated research into methods of carbon sequestration. One promising possibility is to store CO2 in subsurface reservoirs of porous rock. After injection, the monitoring of the injected CO2 is of paramount importance because the CO2 plume, if escaped, poses health and environmental risks. Traditionally, seismic reflection methods are the chosen method of determining changes in the reservoir density due to CO2 injection, but this is expensive and not continuous. A potential and promising alternative is to use cosmic muon tomography to determine density changes in the reservoir over a period of time. The work I have completed was the development of a muon detector that will be capable of being deployed in boreholes and perform long-term tomography of the reservoir of interest. The detector has the required dimensions, an angular resolution of approximately 2 degrees, and is robust enough to survive the caustic nature of the fluids in boreholes, as well as temperature and pressure fluctuations. The detector design is based on polystyrene scintillating rods arrayed in alternating layers. The layers, as arranged, can provide four-dimensional (4D) tomographic data to detect small changes in density at depths up to approximately 2 kilometers. Geant4, a Monte Carlo simulation code, was used to develop and optimize the detector design. Additionally, I developed a method of determining the muon flux at depth, including CO2 saturation changes in subsurface reservoirs. Preliminary experiments were performed at Pacific Northwest National Laboratory. This thesis will show the simulations I performed to determine the angular resolution and background discrimination required of the detector, the experiments to determine light transport through the polystyrene scintillating rods and fibers, and the method developed to predict muon flux changes at depth expected after injection.
Miao, Shida; Zhu, Wei; Castro, Nathan J.; Leng, Jinsong
2016-01-01
The objective of this study was to four-dimensional (4D) print novel biomimetic gradient tissue scaffolds with highly biocompatible naturally derived smart polymers. The term “4D printing” refers to the inherent smart shape transformation of fabricated constructs when implanted minimally invasively for seamless and dynamic integration. For this purpose, a series of novel shape memory polymers with excellent biocompatibility and tunable shape changing effects were synthesized and cured in the presence of three-dimensional printed sacrificial molds, which were subsequently dissolved to create controllable and graded porosity within the scaffold. Surface morphology, thermal, mechanical, and biocompatible properties as well as shape memory effects of the synthesized smart polymers and resultant porous scaffolds were characterized. Fourier transform infrared spectroscopy and gel content analysis confirmed the formation of chemical crosslinking by reacting polycaprolactone triol and castor oil with multi-isocyanate groups. Differential scanning calorimetry revealed an adjustable glass transition temperature in a range from −8°C to 35°C. Uniaxial compression testing indicated that the obtained polymers, possessing a highly crosslinked interpenetrating polymeric networks, have similar compressive modulus to polycaprolactone. Shape memory tests revealed that the smart polymers display finely tunable recovery speed and exhibit greater than 92% shape fixing at −18°C or 0°C and full shape recovery at physiological temperature. Scanning electron microscopy analysis of fabricated scaffolds revealed a graded microporous structure, which mimics the nonuniform distribution of porosity found within natural tissues. With polycaprolactone serving as a control, human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and differentiation greatly increased on our novel smart polymers. The current work will significantly advance the future design and
Four-dimensional computed tomographic analysis of esophageal mobility during normal respiration
Dieleman, Edith; Senan, Suresh . E-mail: s.senan@vumc.nl; Vincent, Andrew; Lagerwaard, Frank J.; Slotman, Ben J.; Soernsen de Koste, John R. van
2007-03-01
Background: Chemo-radiotherapy for thoracic tumors can result in high-grade radiation esophagitis. Treatment planning to reduce esophageal irradiation requires organ motion to be accounted for. In this study, esophageal mobility was assessed using four-dimensional computed tomography (4DCT). Methods and Materials: Thoracic 4DCT scans were acquired on a 16-slice CT scanner in 29 patients. The outer esophageal wall was contoured in two extreme phases of respiration in 9 patients with nonesophageal malignancies. The displacement of the center of contour was measured at 2-cm intervals. In 20 additional patients with Stage I lung cancer, the esophagus was contoured in all 10 phases of each 4DCT at five defined anatomic levels. Both approaches were then applied to 4DCT scans of 4 patients who each had two repeat scans performed. A linear mixed effects model was constructed with fixed effects: measurement direction, measurement type, and measurement location along the cranio-caudal axis. Results: Measurement location and direction were significant descriptive parameters (Wald F-tests, p < 0.001), and the interaction term between the two was significant (p = 0.02). Medio-lateral mobility exceeded dorso-ventral mobility in the lower half of the esophagus but was of a similar magnitude in the upper half. Margins that would have incorporated all movement in medio-lateral and dorso-ventral directions were 5 mm proximally, 7 mm and 6 mm respectively in the mid-esophagus, and 9 mm and 8 mm respectively in the distal esophagus. Conclusions: The distal esophagus shows more mobility. Margins for mobility that can encompass all movement were derived for use in treatment planning, particularly for stereotactic radiotherapy.
Yaremko, Brian P.; Guerrero, Thomas M. McAleer, Mary F.; Bucci, M. Kara; Noyola-Martinez, Josue M.S.; Nguyen, Linda T. C.; Balter, Peter A.; Guerra, Rudy; Komaki, Ritsuko; Liao Zhongxing
2008-01-01
Purpose: To investigate the motion characteristics of distal esophagus cancer primary tumors using four-dimensional computed tomography (4D CT). Methods and Materials: Thirty-one consecutive patients treated for esophagus cancer who received respiratory-gated 4D CT imaging for treatment planning were selected. Deformable image registration was used to map the full expiratory motion gross tumor volume (GTV) to the full-inspiratory CT image, allowing quantitative assessment of each voxel's displacement. These displacements were correlated with patient tumor and respiratory characteristics. Results: The mean (SE) tidal volume was 608 (73) mL. The mean GTV volume was 64.3 (10.7) mL on expiration and 64.1 (10.7) mL on inspiration (no significant difference). The mean tumor motion in the x-direction was 0.13 (0.006) cm (average of absolute values), in the y-direction 0.23 (0.01) cm (anteriorly), and in the z-direction 0.71 (0.02) cm (inferiorly). Tumor motion correlated with tidal volume. Comparison of tumor motion above vs. below the diaphragm was significant for the average net displacement (p = 0.014), motion below the diaphragm was greater than above. From the cumulative distribution 95% of the tumors moved less than 0.80 cm radially and 1.75 cm inferiorly. Conclusions: Primary esophagus tumor motion was evaluated with 4D CT. According to the results of this study, when 4D CT is not available, a radial margin of 0.8 cm and axial margin of {+-}1.8 cm would provide tumor motion coverage for 95% of the cases in our study population.
Choi, Kihwan; Fahimian, Benjamin P; Li, Tianfang; Suh, Tae-Suk; Lei, Xing
2013-01-01
In four-dimensional (4D) cone-beam computed tomography (CBCT), there is a spatio-temporal tradeoff that currently limits the accuracy. The aim of this study is to develop a Bregman iteration based formalism for high quality 4D CBCT image reconstruction from a limited number of low-dose projections. The 4D CBCT problem is first divided into multiple 3D CBCT subproblems by grouping the projection images corresponding to the phases. To maximally utilize the information from the under-sampled projection data, a compressed sensing (CS) method with Bregman iterations is employed for solving each subproblem. We formulate an unconstrained optimization problem based on least-square criterion regularized by total-variation. The least-square criterion reflects the inconsistency between the measured and the estimated line integrals. Furthermore, the unconstrained problem is updated and solved repeatedly by Bregman iterations. The performance of the proposed algorithm is demonstrated through a series of simulation studies and phantom experiments, and the results are compared to those of previously implemented compressed sensing technique using other gradient-based methods as well as conventional filtered back-projection (FBP) results. The simulation and experimental studies have shown that artifact suppressed images can be obtained with as small as 41 projections per phase, which is adequate for clinical 4D CBCT reconstruction. With such small number of projections, the conventional FDK failed to yield meaningful 4D CBCT images, and CS technique using conjugate gradient was not able to recover sharp edges. The proposed method significantly reduces the radiation dose and scanning time to achieve the high quality images compared to the 4D CBCT imaging based on the conventional FDK technique and the existing CS techniques.
Chen, Bing; Hu, Yong; Liu, Jin; Cao, An-Ning; Ye, Lu-Xi; Zeng, Zhao-Chong
2017-06-01
To evaluate the respiratory motion of adrenal gland metastases in three-dimensional directions using four-dimensional computed tomography (4DCT) images. From January 2013 to May 2016, 12 patients with adrenal gland metastases were included in this study. They all underwent 4DCT scans to assess respiratory motion of adrenal gland metastases in free breathing state. The 4DCT images were sorted into 10 image series according to the respiratory phase from the end inspiration to the end expiration, and then transferred to FocalSim workstation. All gross tumor volumes (GTVs) of adrenal gland metastases were drawn by a single physician and confirmed by a second. Relative coordinates of adrenal gland metastases were automatically generated to calculate adrenal gland metastases motion in different axial directions. The average respiratory motion of adrenal gland metastases in left-right (LR), cranial-caudal (CC), anterior-posterior (AP), 3-dimensional (3D) vector directions was 3.4±2.2mm, 9.5±5.5mm, 3.8±2.0mm and 11.3±5.3mm, respectively. The ratios were 58.6%±11.4% and 63.2%±12.5% when the volumes of GTVIn0% and GTV In100% were compared with volume of IGTV10phase. The volume ratio of IGTV10phase to GTV3D was 1.73±0.48. Adrenal gland metastasis is a respiration-induced moving target, and an internal target volume boundary should be provided when designing the treatment plan. The CC motion of adrenal gland metastasis is predominant and >5mm, thus motion management strategies are recommended for patients undergoing external radiotherapy for adrenal gland metastasis. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.
A Four-Dimensional CT-Based Evaluation of Techniques for Gastric Irradiation
Geld, Ylanga G. van; Senan, Suresh; Soernsen de Koste, John R. van; Verbakel, Wilko F.A.R.; Slotman, Ben J.; Lagerwaard, Frank J.
2007-11-01
Purpose: To evaluate three-dimensional conformal (3D-CRT), intensity-modulated (IMRT) and respiration-gated radiotherapy (RGRT) techniques for gastric irradiation for target coverage and minimization of renal doses. All techniques were four-dimensional (4D)-CT based, incorporating the intrafractional mobility of the target volume and organs at risk (OAR). Methods and Materials: The stomach, duodenal C-loop, and OAR (kidneys, liver, and heart) were contoured in all 10 phases of planning 4D-CT scans for five patients who underwent abdominal radiotherapy. Planning target volumes (PTVs) encompassing all positions of the stomach (PTV{sub allphases}) were generated. Three respiratory phases for RGRT in inspiration and expiration were identified, and corresponding PTV{sub inspiration} and PTV{sub expiration} and OAR volumes were created. Landmark-based fields recommended for the Radiation Therapy Oncology Group (RTOG) 99-04 study protocol were simulated to assess PTV coverage. IMRT and 3D-CRT planning with and without additional RGRT planning were performed for all PTVs, and corresponding dose volume histograms were analyzed. Results: Use of landmark-based fields did not result in full geometric coverage of the PTV{sub allphases} in any patient. IMRT significantly reduced mean renal doses compared with 3D-CRT (15.0 Gy {+-} 0.9 Gy vs. 20.1 Gy {+-} 9.3 Gy and 16.6 Gy {+-} 1.5 Gy vs. 32.6 Gy {+-} 7.1 Gy for the left and right kidneys, respectively; p = 0.04). No significant increase in renal sparing was seen when adding RGRT to either 3D-CRT or IMRT. Tolerance doses to the other OAR were not exceeded. Conclusions: Individualized field margins are essential for gastric irradiation. IMRT plans significantly reduce renal doses, but the benefits of RGRT in gastric irradiation appear to be limited.
Power, Christopher; Gerhard, Jason I; Karaoulis, Marios; Tsourlos, Panagiotis; Giannopoulos, Antonios
2014-07-01
Practical, non-invasive tools do not currently exist for mapping the remediation of dense non-aqueous phase liquids (DNAPLs). Electrical resistivity tomography (ERT) exhibits significant potential but has not yet become a practitioner's tool due to challenges in interpreting the survey results at real sites. This study explores the effectiveness of recently developed four-dimensional (4D, i.e., 3D space plus time) time-lapse surface ERT to monitor DNAPL source zone remediation. A laboratory experiment demonstrated the approach for mapping a changing NAPL distribution over time. A recently developed DNAPL-ERT numerical model was then employed to independently simulate the experiment, providing confidence that the DNAPL-ERT model is a reliable tool for simulating real systems. The numerical model was then used to evaluate the potential for this approach at the field scale. Four DNAPL source zones, exhibiting a range of complexity, were initially simulated, followed by modeled time-lapse ERT monitoring of complete DNAPL remediation by enhanced dissolution. 4D ERT inversion provided estimates of the regions of the source zone experiencing mass reduction with time. Results show that 4D time-lapse ERT has significant potential to map both the outline and the center of mass of the evolving treated portion of the source zone to within a few meters in each direction. In addition, the technique can provide a reasonable, albeit conservative, estimate of the DNAPL volume remediated with time: 25% underestimation in the upper 2m and up to 50% underestimation at late time between 2 and 4m depth. The technique is less reliable for identifying cleanup of DNAPL stringers outside the main DNAPL body. Overall, this study demonstrates that 4D time-lapse ERT has potential for mapping where and how quickly DNAPL mass changes in real time during site remediation. Copyright © 2014 Elsevier B.V. All rights reserved.
Stable de Sitter vacua in four-dimensional supergravity originating from five dimensions
Oegetbil, O.
2008-11-15
The five-dimensional stable de Sitter ground states in N=2 supergravity obtained by gauging SO(1,1) symmetry of the real symmetric scalar manifold (in particular, a generic Jordan family manifold of the vector multiplets) simultaneously with a subgroup R{sub s} of the R-symmetry group descend to four-dimensional de Sitter ground states under certain conditions. First, the holomorphic section in four dimensions has to be chosen carefully by using the symplectic freedom in four dimensions; second, a group contraction is necessary to bring the potential into a desired form. Under these conditions, stable de Sitter vacua can be obtained in dimensionally reduced theories (from 5D to 4D) if the semidirect product of SO(1,1) with R{sup (1,1)} together with a simultaneous R{sub s} is gauged. We review the stable de Sitter vacua in four dimensions found in earlier literature for N=2 Yang-Mills Einstein supergravity with the SO(2,1)xR{sub s} gauge group in a symplectic basis that comes naturally after dimensional reduction. Although this particular gauge group does not descend directly from five dimensions, we show that its contraction does. Hence, two different theories overlap in certain limits. Examples of stable de Sitter vacua are given for the cases: (i) R{sub s}=U(1){sub R}, (ii) R{sub s}=SU(2){sub R}, and (iii) N=2 Yang-Mills/Einstein supergravity theory coupled to a universal hypermultiplet. We conclude with a discussion regarding the extension of our results to supergravity theories with more general homogeneous scalar manifolds.
Four-dimensional data assimilation applied to photochemical air quality modeling is used to suggest adjustments to the emissions inventory of the Atlanta, Georgia metropolitan area. In this approach, a three-dimensional air quality model, coupled with direct sensitivity analys...
Four-dimensional data assimilation applied to photochemical air quality modeling is used to suggest adjustments to the emissions inventory of the Atlanta, Georgia metropolitan area. In this approach, a three-dimensional air quality model, coupled with direct sensitivity analys...
Do Human Fetuses Anticipate Self-Oriented Actions? A Study by Four-Dimensional (4D) Ultrasonography
ERIC Educational Resources Information Center
Myowa-Yamakoshi, Masako; Takeshita, Hideko
2006-01-01
Using four-dimensional (4D) ultrasonography, arm and hand movements toward the face were examined in 27 human fetuses at 19 to 35 weeks of gestation, thereby enabling the continuous monitoring of their faces and other surface features such as the extremities. More than half of the observed arm movements resulted in the hand touching the mouth…
Grinberg, H.; Maranon, J.; Vucetich, H.
1983-01-15
The Kustaanheimo--Stiefel transformation together with the well-known expansion of the kernel of an isotropic harmonic oscillator is used to generate the atomic orbitals of the nonrelativistic hydrogen atom in a four-dimensional Riemann space through the path integral formalism. Group theoretical implications of the present problem are briefly discussed.
Do Human Fetuses Anticipate Self-Oriented Actions? A Study by Four-Dimensional (4D) Ultrasonography
ERIC Educational Resources Information Center
Myowa-Yamakoshi, Masako; Takeshita, Hideko
2006-01-01
Using four-dimensional (4D) ultrasonography, arm and hand movements toward the face were examined in 27 human fetuses at 19 to 35 weeks of gestation, thereby enabling the continuous monitoring of their faces and other surface features such as the extremities. More than half of the observed arm movements resulted in the hand touching the mouth…
Anciaux, Henri; Godoy, Yamile
2015-02-15
We give local, explicit representation formulas for n-dimensional spacelike submanifolds which are marginally trapped in the Minkowski space ℝ{sub 1}{sup n+2}, the de Sitter space dS{sup n+2}, the anti-de Sitter space AdS{sup n+2} and the Lorentzian products S{sup n+1} × ℝ and ℍ{sup n+1} × ℝ of the sphere and the hyperbolic space by the real line.
Improved and robust detection of cell nuclei from four dimensional fluorescence images.
Bashar, Md Khayrul; Yamagata, Kazuo; Kobayashi, Tetsuya J
2014-01-01
Segmentation-free direct methods are quite efficient for automated nuclei extraction from high dimensional images. A few such methods do exist but most of them do not ensure algorithmic robustness to parameter and noise variations. In this research, we propose a method based on multiscale adaptive filtering for efficient and robust detection of nuclei centroids from four dimensional (4D) fluorescence images. A temporal feedback mechanism is employed between the enhancement and the initial detection steps of a typical direct method. We estimate the minimum and maximum nuclei diameters from the previous frame and feed back them as filter lengths for multiscale enhancement of the current frame. A radial intensity-gradient function is optimized at positions of initial centroids to estimate all nuclei diameters. This procedure continues for processing subsequent images in the sequence. Above mechanism thus ensures proper enhancement by automated estimation of major parameters. This brings robustness and safeguards the system against additive noises and effects from wrong parameters. Later, the method and its single-scale variant are simplified for further reduction of parameters. The proposed method is then extended for nuclei volume segmentation. The same optimization technique is applied to final centroid positions of the enhanced image and the estimated diameters are projected onto the binary candidate regions to segment nuclei volumes.Our method is finally integrated with a simple sequential tracking approach to establish nuclear trajectories in the 4D space. Experimental evaluations with five image-sequences (each having 271 3D sequential images) corresponding to five different mouse embryos show promising performances of our methods in terms of nuclear detection, segmentation, and tracking. A detail analysis with a sub-sequence of 101 3D images from an embryo reveals that the proposed method can improve the nuclei detection accuracy by 9% over the previous methods
Dose and Position Measurements using a Novel Four-Dimensional In Vivo Dosimetry System
NASA Astrophysics Data System (ADS)
Cherpak, Amanda
This work presents a comprehensive characterization of the dosimetric and position measurement characteristics as well as clinical implementation of a novel four-dimensional in vivo dosimetry system, RADPOS. Preliminary dose and position measurements were first conducted to evaluate any deviation from known characteristics of metal-oxide semiconductor field-effect transistors, MOSFETs, and electromagnetic positioning systems when they are used alone. The system was then combined with a deformable tissue equivalent lung phantom to simulate respiratory-induced tumour motion and lung deformation and to evaluate the potential use of the system as an effective quality assurance tool for 4D conformal radiotherapy. The final phase of testing involved using the RADPOS 4D in vivo dosimetry system in two different clinical trials. The first involved characterizing the breathing patterns of lung cancer patients throughout the course of treatment and measuring inter-fraction variations in skin dose. Within this framework, the feasibility of general use of the RADPOS system on patients during daily treatment fractions was also assessed. The second trial involved a modified RADPOS detector that contained a MOSFET array, allowing for dose measurements at five different points. This detector was used to measure dose and position in the prostatic urethra throughout seed implantation for transperineal interstitial permanent prostate brachytherapy. It has been found that the dosimetric response is similar to that of a microMOSFET, when used alone, aside from a slightly higher variation in angular response. Position measurements can be obtained with an uncertainty of +/- 2 mm when the detector remains within a specific optimal volume with respect to the magnetic field transmitter and when interfering metal objects are kept at least 200 mm away. Combining the RADPOS system with a deformable lung equivalent phantom allowed for efficient quality assurance of 4D radiation therapy, as
Interfractional Reproducibility in Pancreatic Position Based on Four-Dimensional Computed Tomography
Shiinoki, Takehiro; Shibuya, Keiko; Nakamura, Mitsuhiro; Nakamura, Akira; Matsuo, Yukinori; Nakata, Manabu; Sawada, Akira; Mizowaki, Takashi; Itoh, Akio; Hiraoka, Masahiro
2011-08-01
Purpose: To assess the interfractional positional variation of the pancreas using four-dimensional computed tomography (4D-CT) and to determine the suitable phase of respiration for dose delivery methods to account for pancreatic tumor motion. Methods and Materials: Fifteen patients with pancreatic cancer were enrolled in this study. For each patient, 4D-CT scans were performed at CT simulation and three times during the course of treatment. Regions of interest were set to the intrapancreatic bile ducts as a surrogate for pancreatic position. The centroids of the regions of interest were calculated at end-inhalation and end-exhalation of the respiration phase. The ranges of respiratory motion and interfractional positional variation were evaluated in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions. Results: The medians of respiratory motion were 1.1 mm (range, 0.0-9.8 mm), 1.5 mm (range, 0.0-7.0 mm), and 5.0 mm (range, 0.0-12.5 mm) in the LR, AP, and SI directions, respectively. The means {+-} SDs of the interfractional positional variation at end-inhalation were 0.9 {+-} 5.1 mm (range, -9.2 to 15.6 mm), -1.9 {+-} 3.9 mm (range, -12.8 to 6.4 mm), and -1.3 {+-} 6.9 mm (range, -15.0 to 13.7 mm) and those at end-exhalation were 0.0 {+-} 3.1 mm (range, -7.0 to 5.3 mm), -1.2 {+-} 3.9 mm (range, -11.2 to 6.7 mm), and 0.1 {+-} 3.2 mm (range, -9.9 to 5.1 mm) in the LR, AP, and SI directions, respectively. The SDs of the interfractional positional variation in the LR and SI directions were significantly larger at end-inhalation than at end-exhalation (LR, p < 0.001; SI, p < 0.001). Conclusions: The ranges of respiratory motion during the course of treatment and the interfractional positional variation were not negligible. The interfractional positional reproducibility was higher at end-exhalation than at end-inhalation under free breathing.
High-quality four-dimensional cone-beam CT by deforming prior images
NASA Astrophysics Data System (ADS)
Wang, Jing; Gu, Xuejun
2013-01-01
Due to a limited number of projections at each phase, severe view aliasing artifacts are present in four-dimensional cone beam computed tomography (4D-CBCT) when reconstruction is performed using conventional algorithms. In this work, we aim to obtain high-quality 4D-CBCT of lung cancer patients in radiation therapy by deforming the planning CT. The deformation vector fields (DVF) to deform the planning CT are estimated through matching the forward projection of the deformed prior image and measured on-treatment CBCT projection. The estimation of the DVF is formulated as an unconstrained optimization problem, where the objective function to be minimized is the sum of the squared difference between the forward projection of the deformed planning CT and the measured 4D-CBCT projection. A nonlinear conjugate gradient method is used to solve the DVF. As the number of the variables in the DVF is much greater than the number of measurements, the solution to such a highly ill-posed problem is very sensitive to the initials during the optimization process. To improve the estimation accuracy of DVF, we proposed a new strategy to obtain better initials for the optimization. In this strategy, 4D-CBCT is first reconstructed by total variation minimization. Demons deformable registration is performed to register the planning CT and the 4D-CBCT reconstructed by total variation minimization. The resulted DVF from demons registration is then used as the initial parameters in the optimization process. A 4D nonuniform rotational B-spline-based cardiac-torso (NCAT) phantom and a patient 4D-CBCT are used to evaluate the algorithm. Image quality of 4D-CBCT is substantially improved by using the proposed strategy in both NCAT phantom and patient studies. The proposed method has the potential to improve the temporal resolution of 4D-CBCT. Improved 4D-CBCT can better characterize the motion of lung tumors and will be a valuable tool for image-guided adaptive radiation therapy.
Park, Justin C; Kim, Jin Sung; Park, Sung Ho; Webster, Matthew J; Lee, Soyoung; Song, William Y; Han, Youngyih
2014-01-01
To evaluate respiratory motion of a patient by generating four-dimensional digital tomosynthesis (4D DTS), extracting respiratory signal from patients' on-board projection data, and ensuring the feasibility of 4D DTS as a localization tool for the targets which have respiratory movement. Four patients with lung and liver cancer were included to verify the feasibility of 4D-DTS with an on-board imager. CBCT acquisition (650-670 projections) was used to reconstruct 4D DTS images and the breath signal of the patients was generated by extracting the motion of diaphragm during data acquisition. Based on the extracted signal, the projection data was divided into four phases: peak-exhale phase, mid-inhale phase, peak-inhale phase, and mid-exhale phase. The binned projection data was then used to generate 4D DTS, where the total scan angle was assigned as ±22.5° from rotation center, centered on 0° and 180° for coronal "half-fan" 4D DTS, and 90° and 270° for sagittal "half-fan" 4D DTS. The result was then compared with 4D CBCT which we have also generated with the same phase distribution. The motion of the diaphragm was evident from the 4D DTS results for peak-exhale, mid-inhale, peak-inhale and mid-exhale phase assignment which was absent in 3D DTS. Compared to the result of 4D CBCT, the view aliasing effect due to arbitrary angle reconstruction was less severe. In addition, the severity of metal artifacts, the image distortion due to presence of metal, was less than that of the 4D CBCT results. We have implemented on-board 4D DTS on patients data to visualize the movement of anatomy due to respiratory motion. The results indicate that 4D-DTS could be a promising alternative to 4D CBCT for acquiring the respiratory motion of internal organs just prior to radiotherapy treatment.
Park, Justin C.; Kim, Jin Sung; Park, Sung Ho; Webster, Matthew J.; Lee, Soyoung; Song, William Y.; Han, Youngyih
2014-01-01
Purpose To evaluate respiratory motion of a patient by generating four-dimensional digital tomosynthesis (4D DTS), extracting respiratory signal from patients' on-board projection data, and ensuring the feasibility of 4D DTS as a localization tool for the targets which have respiratory movement. Methods and Materials Four patients with lung and liver cancer were included to verify the feasibility of 4D-DTS with an on-board imager. CBCT acquisition (650–670 projections) was used to reconstruct 4D DTS images and the breath signal of the patients was generated by extracting the motion of diaphragm during data acquisition. Based on the extracted signal, the projection data was divided into four phases: peak-exhale phase, mid-inhale phase, peak-inhale phase, and mid-exhale phase. The binned projection data was then used to generate 4D DTS, where the total scan angle was assigned as ±22.5° from rotation center, centered on 0° and 180° for coronal “half-fan” 4D DTS, and 90° and 270° for sagittal “half-fan” 4D DTS. The result was then compared with 4D CBCT which we have also generated with the same phase distribution. Results The motion of the diaphragm was evident from the 4D DTS results for peak-exhale, mid-inhale, peak-inhale and mid-exhale phase assignment which was absent in 3D DTS. Compared to the result of 4D CBCT, the view aliasing effect due to arbitrary angle reconstruction was less severe. In addition, the severity of metal artifacts, the image distortion due to presence of metal, was less than that of the 4D CBCT results. Conclusion We have implemented on-board 4D DTS on patients data to visualize the movement of anatomy due to respiratory motion. The results indicate that 4D-DTS could be a promising alternative to 4D CBCT for acquiring the respiratory motion of internal organs just prior to radiotherapy treatment. PMID:25541710
Improved and Robust Detection of Cell Nuclei from Four Dimensional Fluorescence Images
Bashar, Md. Khayrul; Yamagata, Kazuo; Kobayashi, Tetsuya J.
2014-01-01
Segmentation-free direct methods are quite efficient for automated nuclei extraction from high dimensional images. A few such methods do exist but most of them do not ensure algorithmic robustness to parameter and noise variations. In this research, we propose a method based on multiscale adaptive filtering for efficient and robust detection of nuclei centroids from four dimensional (4D) fluorescence images. A temporal feedback mechanism is employed between the enhancement and the initial detection steps of a typical direct method. We estimate the minimum and maximum nuclei diameters from the previous frame and feed back them as filter lengths for multiscale enhancement of the current frame. A radial intensity-gradient function is optimized at positions of initial centroids to estimate all nuclei diameters. This procedure continues for processing subsequent images in the sequence. Above mechanism thus ensures proper enhancement by automated estimation of major parameters. This brings robustness and safeguards the system against additive noises and effects from wrong parameters. Later, the method and its single-scale variant are simplified for further reduction of parameters. The proposed method is then extended for nuclei volume segmentation. The same optimization technique is applied to final centroid positions of the enhanced image and the estimated diameters are projected onto the binary candidate regions to segment nuclei volumes.Our method is finally integrated with a simple sequential tracking approach to establish nuclear trajectories in the 4D space. Experimental evaluations with five image-sequences (each having 271 3D sequential images) corresponding to five different mouse embryos show promising performances of our methods in terms of nuclear detection, segmentation, and tracking. A detail analysis with a sub-sequence of 101 3D images from an embryo reveals that the proposed method can improve the nuclei detection accuracy by 9 over the previous methods
Four-dimensional ensemble variational data assimilation and the unstable subspace
NASA Astrophysics Data System (ADS)
Bocquet, Marc; Carrassi, Alberto
2017-04-01
The performance of (ensemble) Kalman filters used for data assimilation in the geosciences critically depends on the dynamical properties of the evolution model. A key aspect, emphasized in the seminal work of Anna Trevisan and co-authors, is that the error covariance matrix is asymptotically supported by the unstable-neutral subspace only, i.e. it is spanned by the backward Lyapunov vectors with non- negative exponents. The analytic proof of such a property for the Kalman filter error covariance has been recently given, and in particular that of its confinement to the unstable-neutral subspace. In this paper, we first generalize those results to the case of the Kalman smoother in a linear, Gaussian and perfect model scenario. We also provide square-root formulae for the filter and smoother that make the connection with ensemble formulations of the Kalman filter and smoother, where the span of the error covariance is described in terms of the ensemble deviations from the mean. We then discuss how this neat picture is modified when the dynamics are nonlinear and chaotic, and for which analytic results are precluded or difficult to obtain. A numerical investigation is carried out to study the approximate confinement of the anomalies for both a deterministic ensemble Kalman filter (EnKF) and a four-dimensional ensemble variational method, the iterative ensemble Kalman smoother (IEnKS), in a perfect model scenario. The confinement is characterized using geometrical angles that determine the relative position of the anomalies with respect to the unstable-neutral subspace. The alignment of the anomalies and of the unstable-neutral subspace is more pronounced when observation precision or frequency, as well as the data assimilation window length for the IEnKS, are increased. This leads to the increase of the data assimilation accuracy and shows that, under perfect model assumptions, spanning the full unstable-neutral subspace is sufficient to achieve satisfactorily
Four dimensional variational assimilation of in-situ and remote-sensing aerosol data
NASA Astrophysics Data System (ADS)
Nieradzik, L. P.; Elbern, H.
2012-04-01
Aerosols play an increasingly important role in atmospheric modelling. They have a strong influence on the radiative transfer balance and a significant impact on human health. Their origin is various and so are its effects. Most of the measurement sites in Europe account for an integrated aerosol load PMx (Particulate Matter of less than x μm in diameter) which does not give any qualitative information on the composition of the aerosol. Since very different constituents contribute to PMx, like e.g. mineral dust derived from desert storms or sea salt, it is necessary to make aerosol forecasts not only of load, but also type resolved. The method of four dimensional variational data assimilation (4Dvar) is a widely known technique to enhance forecast skills of CTMs (Chemistry-Transport-Models) by ingesting in-situ and, especially, remote-sensing measurements. The EURAD-IM (EURopean Air pollution Dispersion - Inverse Model), containing a full adjoint gas-phase model, has been expanded with an adjoint of the MADE (Modal Aerosol Dynamics model for Europe) to optimise initial and boundary values for aerosols using 4Dvar. A forward and an adjoint radiative transfer model is driven by the EURAD-IM as mapping between BLAOT (Boundary Layer Aerosol Optical Thickness) and internal aerosol species. Furthermore, its condensation scheme has been bypassed by an HDMR (High-Dimensional-Model-Representation) to ensure differentiability. In this study both in-situ measured PMx as well as satellite retrieved aerosol optical thicknesses have been assimilated and the effect on forecast performance has been investigated. The source of BLAOT is the aerosol retrieval system SYNAER (SYNergetic AErosol Retrieval) from DLR-DFD that retrieves AOT by making use of both AATSR/SCIAMACHY and AVHRR/GOME-2 data respectively. Its strengths are a large spatial coverage, near real-time availability, and the classification of five intrinsic aerosol species, namely water-solubles, water-insolubles, soot
NASA Astrophysics Data System (ADS)
Nieradzik, Lars Peter; Elbern, Hendrik
2010-05-01
Aerosols play an increasingly important role in atmospheric modelling. They have a strong influence on the radiative transfer balance and a significant impact on human health. Their origin is various and so are its effects. Most of the measurement sites in Europe only account for an integrated aerosol load PMx (Particulate Matter of less than x μm in diameter) which does not give any qualitative information on the composition of the aerosol. Since very different constituents like mineral dust derived from desert storms and sea salt contribute to PMx it is necessary to make aerosol forcasts not only of load, but also type resolved. The source of information chosen for this study is the aerosol retrieval system SYNAER (SYNergetic AErosol Retrieval) from DLR-DFD that retrieves BLAOT (Boundary Layer Aerosol Optical Thickness) making use of both AATSR/SCIAMACHY and AVHRR/GOME-2 data respectively. Its strengths are a large spatial coverage, near real-time availability, and the classification of five intrinsic aerosol species, namely water-solubles, water-insolubles, soot, sea salt, and mineral dust which are furthermore size resolved in terms of modes. A widely known technique to enhance forecast skills of CTMs (Chemistry-Transport-Models) by ingesting in-situ and, especially, remote-sensing measurements is the method of four dimensional variational data assimilation (4Dvar). The EURAD-IM (EURopean Air pollution Dispersion - Inverse Model), containing a full adjoint gas-phase model, has been expanded with an adjoint of the MADE (Modal Aerosol Dynamics model for Europe) to optimise initial and boundary values for aerosols using 4Dvar. A forward and an adjoint radiative transfer model is driven by the EURAD-IM as mapping between BLAOT and internal aerosol species. Furthermore, its condensation scheme has been bypassed by an HDMR (High-Dimensional-Model-Representation) to ensure differentiability, and a time saving online NMC-module for the generation of the background
GPU-based four-dimensional general-relativistic ray tracing
NASA Astrophysics Data System (ADS)
Kuchelmeister, Daniel; Müller, Thomas; Ament, Marco; Wunner, Günter; Weiskopf, Daniel
2012-10-01
This paper presents a new general-relativistic ray tracer that enables image synthesis on an interactive basis by exploiting the performance of graphics processing units (GPUs). The application is capable of visualizing the distortion of the stellar background as well as trajectories of moving astronomical objects orbiting a compact mass. Its source code includes metric definitions for the Schwarzschild and Kerr spacetimes that can be easily extended to other metric definitions, relying on its object-oriented design. The basic functionality features a scene description interface based on the scripting language Lua, real-time image output, and the ability to edit almost every parameter at runtime. The ray tracing code itself is implemented for parallel execution on the GPU using NVidia's Compute Unified Device Architecture (CUDA), which leads to performance improvement of an order of magnitude compared to a single CPU and makes the application competitive with small CPU cluster architectures. Program summary Program title: GpuRay4D Catalog identifier: AEMV_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEMV_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 73649 No. of bytes in distributed program, including test data, etc.: 1334251 Distribution format: tar.gz Programming language: C++, CUDA. Computer: Linux platforms with a NVidia CUDA enabled GPU (Compute Capability 1.3 or higher), C++ compiler, NVCC (The CUDA Compiler Driver). Operating system: Linux. RAM: 2 GB Classification: 1.5. External routines: OpenGL Utility Toolkit development files, NVidia CUDA Toolkit 3.2, Lua5.2 Nature of problem: Ray tracing in four-dimensional Lorentzian spacetimes. Solution method: Numerical integration of light rays, GPU-based parallel programming using CUDA, 3D
NASA Astrophysics Data System (ADS)
Cao, Yanhua; Zhu, Jiang; Navon, I. M.; Luo, Zhendong
2007-04-01
Four-dimensional variational data assimilation (4DVAR) is a powerful tool for data assimilation in meteorology and oceanography. However, a major hurdle in use of 4DVAR for realistic general circulation models is the dimension of the control space (generally equal to the size of the model state variable and typically of order 107-108) and the high computational cost in computing the cost function and its gradient that require integration model and its adjoint model.In this paper, we propose a 4DVAR approach based on proper orthogonal decomposition (POD). POD is an efficient way to carry out reduced order modelling by identifying the few most energetic modes in a sequence of snapshots from a time-dependent system, and providing a means of obtaining a low-dimensional description of the system's dynamics. The POD-based 4DVAR not only reduces the dimension of control space, but also reduces the size of dynamical model, both in dramatic ways. The novelty of our approach also consists in the inclusion of adaptability, applied when in the process of iterative control the new control variables depart significantly from the ones on which the POD model was based upon. In addition, these approaches also allow to conveniently constructing the adjoint model.The proposed POD-based 4DVAR methods are tested and demonstrated using a reduced gravity wave ocean model in Pacific domain in the context of identical twin data assimilation experiments. A comparison with data assimilation experiments in the full model space shows that with an appropriate selection of the basis functions the optimization in the POD space is able to provide accurate results at a reduced computational cost. The POD-based 4DVAR methods have the potential to approximate the performance of full order 4DVAR with less than 1/100 computer time of the full order 4DVAR. The HFTN (Hessian-free truncated-Newton)algorithm benefits most from the order reduction (see (Int. J. Numer. Meth. Fluids, in press)) since
Gonçalves, Luís F.; Espinoza, Jimmy; Romero, Roberto; Kusanovic, Juan Pedro; Swope, Betsy; Nien, Jyh Kae; Erez, Offer; Soto, Eleazar; Treadwell, Marjorie C.
2006-01-01
Objective The objective of this study was to investigate the feasibility of examining the fetal heart with Tomographic Ultrasound Imaging (TUI) using four-dimensional (4D) volume datasets acquired with spatiotemporal image correlation (STIC). Material and Methods One hundred and ninety-five fetuses underwent 4D ultrasonography (US) of the fetal heart with STIC. Volume datasets were acquired with B-mode (n=195) and color Doppler imaging (CDI) (n=168), and were reviewed offline using TUI, a new display modality that automatically slices 3D/4D volume datasets, providing simultaneous visualization of up to eight parallel planes in a single screen. Visualization rates for standard transverse planes used to examine the fetal heart were calculated and compared for volumes acquired with B-mode or CDI. Diagnoses by TUI were compared to postnatal diagnoses. Results 1) The four- and five-chamber and the three-vessel and trachea views were visualized in 97.4% (190/195), 88.2% (172/195), and 79.5% (142/195), respectively, of the volume datasets acquired with B-mode; 2) these views were visualized in 98.2% (165/168), 97.0% (163/168), and 83.6% (145/168), respectively, of the volume datasets acquired with CDI; 3) CDI contributed additional diagnostic information to 12.5% (21/168), 14.2% (24/168) and 10.1% (17/168) of the four- and five-chamber and the three-vessel and trachea views; 4) cardiac anomalies other than isolated ventricular septal defects were identified by TUI in 16 of 195 fetuses (8.2%) and, among these, CDI provided additional diagnostic information in 5 (31.3%); 5) the sensitivity, specificity, positive- and negative-predictive values of TUI to diagnose congenital heart disease in cases where both B-mode and CDI volume datasets were acquired prenatally were 92.9%, 98.8%, 92.9% and 98.8%, respectively. Conclusion Standard transverse planes commonly used to examine the fetal heart can be automatically displayed with TUI in the majority of fetuses undergoing 4D US
Gonçalves, Luís F; Espinoza, Jimmy; Romero, Roberto; Kusanovic, Juan Pedro; Swope, Betsy; Nien, Jyh Kae; Erez, Offer; Soto, Eleazar; Treadwell, Marjorie C
2006-01-01
The objective of this study was to investigate the feasibility of examining the fetal heart with Tomographic Ultrasound Imaging (TUI) using four-dimensional (4D) volume datasets acquired with spatiotemporal image correlation (STIC). One hundred and ninety-five fetuses underwent 4D ultrasonography (US) of the fetal heart with STIC. Volume datasets were acquired with B-mode (n=195) and color Doppler imaging (CDI) (n=168), and were reviewed offline using TUI, a new display modality that automatically slices 3D/4D volume datasets, providing simultaneous visualization of up to eight parallel planes in a single screen. Visualization rates for standard transverse planes used to examine the fetal heart were calculated and compared for volumes acquired with B-mode or CDI. Diagnoses by TUI were compared to postnatal diagnoses. (1) The four- and five-chamber views and the three-vessel and trachea view were visualized in 97.4% (190/195), 88.2% (172/195), and 79.5% (142/195), respectively, of the volume datasets acquired with B-mode; (2) these views were visualized in 98.2% (165/168), 97.0% (163/168), and 83.6% (145/168), respectively, of the volume datasets acquired with CDI; (3) CDI contributed additional diagnostic information to 12.5% (21/168), 14.2% (24/168) and 10.1% (17/168) of the four- and five-chamber and the three-vessel and trachea views; (4) cardiac anomalies other than isolated ventricular septal defects were identified by TUI in 16 of 195 fetuses (8.2%) and, among these, CDI provided additional diagnostic information in 5 (31.3%); (5) the sensitivity, specificity, positive- and negative-predictive values of TUI to diagnose congenital heart disease in cases where both B-mode and CDI volume datasets were acquired prenatally were 92.9%, 98.8%, 92.9% and 98.8%, respectively. Standard transverse planes commonly used to examine the fetal heart can be automatically displayed with TUI in the majority of fetuses undergoing 4D US with STIC. Due to the retrospective nature
Target-specific optimization of four-dimensional cone beam computed tomography
Ahmad, Moiz; Pan Tinsu
2012-09-15
Purpose: Under-sampling artifacts are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) and may compromise evaluation of target motion. Several studies have addressed scan parameter selection for minimizing under-sampling artifacts; however, the role of the target characteristics in scan parameter selection has not been investigated. In this work, the authors evaluated 4D-CBCT performance by assessing the accuracy of target motion measurements for various target sizes and motions. The results may serve as patient-specific guidelines for scan parameters selection in 4D-CBCT. Methods: The authors acquired 4D-CBCT scans of a moving phantom consisting of six water-filled sphere targets of sizes 10-37 mm, using various scan times ranging from 30 s to 3 min., setting the motion to 3-s and 6-s periods. The authors used automatic image registration to extract the target motion trajectories and evaluated these measurements for various target sizes and motions over various combinations of scan parameters including scan time, detector configuration, number of respiration phases, and reconstruction filters. Results: The most important object parameter to 4D-CBCT performance was the period of motion. Measurements for the 6-s motion were always systematically less accurate than measurements for the 3-s motion for 34 of 36 objects of various sizes and periods of motion. The 6-s motion required a greater scan time than the 3-s motion for equivalent measurement accuracy. The second most influential parameter was the target size. For the 3-s period of motion, objects larger than 13 mm were tracked with sub-millimeter accuracy with a 1-min scan time. For the 6-s period of motion, objects larger than 22-mm were tracked with sub-millimeter accuracy with a 1.5-min scan time. For all sizes and motions, temporal blurring was observed when the number of phases was fewer than 8. Offset detector configuration provided the same performance as centered detector except
Dioptric power: its nature and its representation in three- and four-dimensional space.
Harris, W F
1997-06-01
Dioptric power expressed in the familiar three-component form of sphere, cylinder, and axis is unsuited to mathematical and statistical treatments; there is a particular class of power that cannot be represented in the familiar form; and it is possible that sphere, cylinder, and axis will prove inadequate in future clinical and research applications in optometry and ophthalmology. Dioptric power expressed as the four-component dioptric power matrix, however, overcomes these shortcomings. The intention in this paper is to provide a definitive statement on the nature, function, and mathematical representation of dioptric power in terms of the matrix and within the limitations of paraxial or linear optics. The approach is universal in the sense that its point of departure is not power of the familiar form (that is, of thin systems) but of systems in general (thick or thin). Familiar types of power are then seen within the context of power in general. Dioptric power is defined, for systems that may be thick and astigmatic, in terms of the ray transfer matrix. A functional definition is presented for dioptric power and its components: it defines the additive contribution of incident position to emergent direction of a ray passing through the system. For systems that are thin (or thin-equivalent) it becomes possible to describe an alternative and more familiar function; for such systems dioptric power can be regarded as the increase in reduced surface curvature of a wavefront brought about by the system as the wavefront passes through it. The curvital and torsional components of the power are explored in some detail. Dioptric power, at its most general, defines a four-dimensional inner product space called dioptric power space. The familiar types of power define a three-dimensional subspace called symmetric dioptric power space. For completeness a one-dimensional antisymmetric power space is also defined: it is orthogonal in four dimensions to symmetric dioptric power
Four-dimensional seismic analysis of the Hibernia oil field, Grand Banks, Canada
NASA Astrophysics Data System (ADS)
Wright, Richard James
2004-12-01
The seismic reflection method, traditionally a geologic structural imaging tool, is increasingly being utilized for petroleum reservoir monitoring purposes. Time-lapse, or four dimensional (4D) seismic reservoir monitoring is the process by which repeated 3D seismic surveys are acquired over a common area during the production of a petroleum reservoir in an effort to spatially image production related changes. While if successful, this seismic method can have a significant impact on an oil field's development plan, the sometimes subtle nature of the 4D seismic signals restricts the universal application of 4D seismic methods in all reservoirs and operating environments. To examine the potential use of 4D seismic on Canada's Grand Banks, this thesis conducts a 4D seismic analysis of the Hibernia oil field---the first example of 4D seismic technology on the Grand Banks. Due to a challenging environment (seismic and reservoir) at Hibernia for 4D seismic success, rock physics modeling predicts a subtle 4D seismic response for areas of both water and gas injection. To equalize the 4D seismic datasets, specialized poststack cross equalization including a volume event warping process is applied to two 3D post stack seismic datasets from the Hibernia oil field, a pre-production "legacy" survey acquired in 1991, and a 2001 survey. The cross equalization processing improves the repeatability of non-reservoir events fieldwide and enhances reservoir anomalies in some areas of the field. While the data contains a fair degree of noise, 4D seismic anomalies above the noise level can be imaged in areas of both water and gas injection. Through interpretation, some of these anomalies are shown to be consistent with modeled responses to water and gas injection. In addition, there is evidence that some of the seismic anomalies may be due to pore pressure changes in the reservoir. The results of the Hibernia 4D seismic analysis are then used as background for a feasibility analysis for
High-quality four-dimensional cone-beam CT by deforming prior images.
Wang, Jing; Gu, Xuejun
2013-01-21
Due to a limited number of projections at each phase, severe view aliasing artifacts are present in four-dimensional cone beam computed tomography (4D-CBCT) when reconstruction is performed using conventional algorithms. In this work, we aim to obtain high-quality 4D-CBCT of lung cancer patients in radiation therapy by deforming the planning CT. The deformation vector fields (DVF) to deform the planning CT are estimated through matching the forward projection of the deformed prior image and measured on-treatment CBCT projection. The estimation of the DVF is formulated as an unconstrained optimization problem, where the objective function to be minimized is the sum of the squared difference between the forward projection of the deformed planning CT and the measured 4D-CBCT projection. A nonlinear conjugate gradient method is used to solve the DVF. As the number of the variables in the DVF is much greater than the number of measurements, the solution to such a highly ill-posed problem is very sensitive to the initials during the optimization process. To improve the estimation accuracy of DVF, we proposed a new strategy to obtain better initials for the optimization. In this strategy, 4D-CBCT is first reconstructed by total variation minimization. Demons deformable registration is performed to register the planning CT and the 4D-CBCT reconstructed by total variation minimization. The resulted DVF from demons registration is then used as the initial parameters in the optimization process. A 4D nonuniform rotational B-spline-based cardiac-torso (NCAT) phantom and a patient 4D-CBCT are used to evaluate the algorithm. Image quality of 4D-CBCT is substantially improved by using the proposed strategy in both NCAT phantom and patient studies. The proposed method has the potential to improve the temporal resolution of 4D-CBCT. Improved 4D-CBCT can better characterize the motion of lung tumors and will be a valuable tool for image-guided adaptive radiation therapy.
de Beurs, Derek P; Terluin, Berend; Verhaak, Peter F
2017-01-01
Background Efficient screening questionnaires are useful in general practice. Computerized adaptive testing (CAT) is a method to improve the efficiency of questionnaires, as only the items that are particularly informative for a certain responder are dynamically selected. Objective The objective of this study was to test whether CAT could improve the efficiency of the Four-Dimensional Symptom Questionnaire (4DSQ), a frequently used self-report questionnaire designed to assess common psychosocial problems in general practice. Methods A simulation study was conducted using a sample of Dutch patients visiting a general practitioner (GP) with psychological problems (n=379). Responders completed a paper-and-pencil version of the 50-item 4DSQ and a psychometric evaluation was performed to check if the data agreed with item response theory (IRT) assumptions. Next, a CAT simulation was performed for each of the four 4DSQ scales (distress, depression, anxiety, and somatization), based on the given responses as if they had been collected through CAT. The following two stopping rules were applied for the administration of items: (1) stop if measurement precision is below a predefined level, or (2) stop if more than half of the items of the subscale are administered. Results In general, the items of each of the four scales agreed with IRT assumptions. Application of the first stopping rule reduced the length of the questionnaire by 38% (from 50 to 31 items on average). When the second stopping rule was also applied, the total number of items could be reduced by 56% (from 50 to 22 items on average). Conclusions CAT seems useful for improving the efficiency of the 4DSQ by 56% without losing a considerable amount of measurement precision. The CAT version of the 4DSQ may be useful as part of an online assessment to investigate the severity of mental health problems of patients visiting a GP. This simulation study is the first step needed for the development a CAT version of the 4
Finite-size scaling relations for a four-dimensional Ising model on Creutz cellular automatons
NASA Astrophysics Data System (ADS)
Merdan, Z.; Güzelsoy, E.
2011-06-01
The four-dimensional Ising model is simulated on Creutz cellular automatons using finite lattices with linear dimensions 4 ≤ L ≤ 8. The temperature variations and finite-size scaling plots of the specific heat and the Binder parameter verify the theoretically predicted expression near the infinite lattice critical temperature for 7, 14, and 21 independent simulations. Approximate values for the critical temperature of the infinite lattice of Tc(∞) = 6.6965(35), 6.6961(30), 6.6960(12), 6.6800(3), 6.6801(2), 6.6802(1) and 6.6925(22) (without the logarithmic factor), 6.6921(22) (without the logarithmic factor), 6.6909(2) (without the logarithmic factor), 6.6822(13) (with the logarithmic factor), 6.6819(11) (with the logarithmic factor), and 6.6808(8) (with the logarithmic factor) are obtained from the intersection points of the specific heat curves, the Binder parameter curves, and straight line fits of specific heat maxima for 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the results, 6.6802(1) and 6.6808(8), are in very good agreement with the results of a series expansion of Tc(∞), 6.6817(15) and 6.6802(2), the dynamic Monte Carlo value Tc(∞) = 6.6803(1), the cluster Monte Carlo value Tc(∞) = 6.680(1), and the Monte Carlo value using the Metropolis-Wolff cluster algorithm Tc(∞) = 6.6802632 ± 5 . 10-5. The average values calculated for the critical exponent of the specific heat are α =- 0.0402(15), - 0.0393(12), - 0.0391(11) with 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the result, α =- 0.0391(11), agrees with the series expansions result, α =- 0.12 ± 0.03 and the Monte Carlo result using the Metropolis-Wolff cluster algorithm, α ≥ 0 ± 0.04. However, α =- 0.0391(11) is inconsistent with the renormalization group prediction of α = 0.
NASA Astrophysics Data System (ADS)
O'Brien, Ricky T.; Cooper, Benjamin J.; Kipritidis, John; Shieh, Chun-Chien; Keall, Paul J.
2014-02-01
Four dimensional cone beam computed tomography (4DCBCT) images suffer from angular under sampling and bunching of projections due to a lack of feedback between the respiratory signal and the acquisition system. To address this problem, respiratory motion guided 4DCBCT (RMG-4DCBCT) regulates the gantry velocity and projection time interval, in response to the patient’s respiratory signal, with the aim of acquiring evenly spaced projections in a number of phase or displacement bins during the respiratory cycle. Our previous study of RMG-4DCBCT was limited to sinusoidal breathing traces. Here we expand on that work to provide a practical algorithm for the case of real patient breathing data. We give a complete description of RMG-4DCBCT including full details on how to implement the algorithms to determine when to move the gantry and when to acquire projections in response to the patient’s respiratory signal. We simulate a realistic working RMG-4DCBCT system using 112 breathing traces from 24 lung cancer patients. Acquisition used phase-based binning and parameter settings typically used on commercial 4DCBCT systems (4 min acquisition time, 1200 projections across 10 respiratory bins), with the acceleration and velocity constraints of current generation linear accelerators. We quantified streaking artefacts and image noise for conventional and RMG-4DCBCT methods by reconstructing projection data selected from an oversampled set of Catphan phantom projections. RMG-4DCBCT allows us to optimally trade-off image quality, acquisition time and image dose. For example, for the same image quality and acquisition time as conventional 4DCBCT approximately half the imaging dose is needed. Alternatively, for the same imaging dose, the image quality as measured by the signal to noise ratio, is improved by 63% on average. C-arm cone beam computed tomography systems, with an acceleration up to 200°/s2, a velocity up to 100°/s and the acquisition of 80 projections per second
Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method
Jia, Xun; Tian, Zhen; Lou, Yifei; Sonke, Jan-Jakob; Jiang, Steve B.
2012-01-01
Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward–backward splitting algorithm and a Gauss–Jacobi iteration method are employed to solve the problems. The algorithms implementation
NASA Astrophysics Data System (ADS)
Nehrkorn, T.; Modica, G. D.; Cerniglia, M.; Ruggiero, F. H.; Michalakes, J. G.; Zou, X.
2001-05-01
The MM5 four-dimensional variational analysis system (4DVAR) is being updated to allow its efficient execution on parallel distributed memory computers. The previous version of the MM5 4DVAR system (Zou et al. 1998 [3]) is coded for single processor computer architectures and its nonlinear, tangent-linear, and adjoint components are based on version 1 of the MM5. In order to take advantage of the parallelization mechanisms (Michalakes 2000 [2]) already in place for the latest release (Version 3.4) of the MM5 nonlinear model (NLM), the existing (Version 1) tangent linear (TLM) and adjoint model codes are also being updated to Version 3.4. We are using the Tangent Linear and Adjoint Model Compiler (TAMC; Giering and Kaminski 1988 [1]) in this process. The TAMC is a source-to-source translator that generates Fortran code for the TLM or adjoint from the Fortran code of the NLM. While it would be possible to incorporate the TAMC as part of a pre-compilation process--thus requiring the maintenance of the NLM code only--this would require that the NLM code first be modified as needed to result in the correct TLM and adjoint code output by TAMC. For the development of the MM5 adjoint, we have chosen instead to use TAMC as a development tool only, and separately maintain the TLM and adjoint versions of the model code. This approach makes it possible to minimize changes to the MM5 code as supported by NCAR. The TLM and adjoint are tested for correctness, using the standard comparison of the TLM and finite difference gradients to check for correctness of the former, and the definition of the adjoint to check for consistency of the TLM and adjoint. This testing is performed for individual subroutines (unit testing) as well as the complete model integration (unit integration testing), with objective functions designed to test different parts of the model state vector. Testing can be done for the entire model domain, or for selected model grid points. Finally, the TLM and
Systematic evaluation of lung tumor motion using four-dimensional computed tomography.
Sarudis, Sebastian; Karlsson Hauer, Anna; Nyman, Jan; Bäck, Anna
2017-04-01
Respiratory-induced lung tumor motion may decrease robustness and outcome of radiation therapy (RT) if not accounted for. This study provides detailed information on the motion distribution of lung tumors for a group of 126 patients treated with stereotactic body RT. Four-dimensional computed tomography scans were reviewed to assess lung tumor motion. The tumor motion was determined by the center of mass shift based on a rigid registration of the breathing phases containing the largest positional differences in the inferior-superior (IS), left-right (LR), and anterior-posterior (AP) directions. The patients were divided into subgroups depending on tumor diameter (φ < 2.0 cm, 2.0 ≤ φ ≤ 5.0 cm, φ > 5.0 cm) and tumor location within the lung (upper, middle, or lower lobe). The observed motion distributions were evaluated for each group separately to assess the dependence on tumor size and location. For each tumor size, the motion pattern in each direction (IS, LR, and AP) was analyzed for every tumor moving >5 mm. Sinusoidal trigonometric functions were fitted to the measured data using the least mean square method to determine which type of function best describes the motion pattern. Tumor volumes between 1.6 and 52.3 cm(3) were evaluated. Mann-Whitney statistical tests were used for statistical analyses. The mean amplitude for the tumors in this study was 1.5 mm (LR), 2.5 mm (AP), and 6.9 mm (IS) while the maximum amplitude was 11.0 mm (LR), 9.0 mm (AP), and 53.0 mm (IS). In total, 95% of the tumors moved ≤20 mm in the IS direction, ≤3 mm in the LR direction, and ≤6 mm in the AP direction. The observed motion distributions showed no statistically significant correlation with tumor size or location within the lung except for motion in the IS direction, where the mean and maximum amplitudes significantly increased for tumors located in the middle and lower parts of the lung. The motion pattern of a tumor in
Liu, Yilin; Yin, Fang-Fang; Cai, Jing; Chen, Nan-kuei; Chu, Mei-Lan
2015-02-15
Purpose: Current four dimensional magnetic resonance imaging (4D-MRI) techniques lack sufficient temporal/spatial resolution and consistent tumor contrast. To overcome these limitations, this study presents the development and initial evaluation of a new strategy for 4D-MRI which is based on retrospective k-space reordering. Methods: We simulated a k-space reordered 4D-MRI on a 4D digital extended cardiac-torso (XCAT) human phantom. A 2D echo planar imaging MRI sequence [frame rate (F) = 0.448 Hz; image resolution (R) = 256 × 256; number of k-space segments (N{sub KS}) = 4] with sequential image acquisition mode was assumed for the simulation. Image quality of the simulated “4D-MRI” acquired from the XCAT phantom was qualitatively evaluated, and tumor motion trajectories were compared to input signals. In particular, mean absolute amplitude differences (D) and cross correlation coefficients (CC) were calculated. Furthermore, to evaluate the data sufficient condition for the new 4D-MRI technique, a comprehensive simulation study was performed using 30 cancer patients’ respiratory profiles to study the relationships between data completeness (C{sub p}) and a number of impacting factors: the number of repeated scans (N{sub R}), number of slices (N{sub S}), number of respiratory phase bins (N{sub P}), N{sub KS}, F, R, and initial respiratory phase at image acquisition (P{sub 0}). As a proof-of-concept, we implemented the proposed k-space reordering 4D-MRI technique on a T2-weighted fast spin echo MR sequence and tested it on a healthy volunteer. Results: The simulated 4D-MRI acquired from the XCAT phantom matched closely to the original XCAT images. Tumor motion trajectories measured from the simulated 4D-MRI matched well with input signals (D = 0.83 and 0.83 mm, and CC = 0.998 and 0.992 in superior–inferior and anterior–posterior directions, respectively). The relationship between C{sub p} and N{sub R} was found best represented by an exponential function
Four-dimensional cone beam CT reconstruction and enhancement using a temporal nonlocal means method
Jia Xun; Tian Zhen; Lou Yifei; Sonke, Jan-Jakob; Jiang, Steve B.
2012-09-15
Purpose: Four-dimensional cone beam computed tomography (4D-CBCT) has been developed to provide respiratory phase-resolved volumetric imaging in image guided radiation therapy. Conventionally, it is reconstructed by first sorting the x-ray projections into multiple respiratory phase bins according to a breathing signal extracted either from the projection images or some external surrogates, and then reconstructing a 3D CBCT image in each phase bin independently using FDK algorithm. This method requires adequate number of projections for each phase, which can be achieved using a low gantry rotation or multiple gantry rotations. Inadequate number of projections in each phase bin results in low quality 4D-CBCT images with obvious streaking artifacts. 4D-CBCT images at different breathing phases share a lot of redundant information, because they represent the same anatomy captured at slightly different temporal points. Taking this redundancy along the temporal dimension into account can in principle facilitate the reconstruction in the situation of inadequate number of projection images. In this work, the authors propose two novel 4D-CBCT algorithms: an iterative reconstruction algorithm and an enhancement algorithm, utilizing a temporal nonlocal means (TNLM) method. Methods: The authors define a TNLM energy term for a given set of 4D-CBCT images. Minimization of this term favors those 4D-CBCT images such that any anatomical features at one spatial point at one phase can be found in a nearby spatial point at neighboring phases. 4D-CBCT reconstruction is achieved by minimizing a total energy containing a data fidelity term and the TNLM energy term. As for the image enhancement, 4D-CBCT images generated by the FDK algorithm are enhanced by minimizing the TNLM function while keeping the enhanced images close to the FDK results. A forward-backward splitting algorithm and a Gauss-Jacobi iteration method are employed to solve the problems. The algorithms implementation on
T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting
Liu, Yilin; Yin, Fang-Fang; Cai, Jing; Czito, Brian G.; Bashir, Mustafa R.
2015-08-15
Purpose: T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. Methods: A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2–3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundant images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (N{sub R}) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between N{sub R} and the following factors: number of slices (N{sub S}), number of 4D-MRI respiratory bins (N{sub B}), and starting phase at image acquisition (P{sub 0}). To validate the authors’ technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were involved
T2-weighted four dimensional magnetic resonance imaging with result-driven phase sorting.
Liu, Yilin; Yin, Fang-Fang; Czito, Brian G; Bashir, Mustafa R; Cai, Jing
2015-08-01
T2-weighted MRI provides excellent tumor-to-tissue contrast for target volume delineation in radiation therapy treatment planning. This study aims at developing a novel T2-weighted retrospective four dimensional magnetic resonance imaging (4D-MRI) phase sorting technique for imaging organ/tumor respiratory motion. A 2D fast T2-weighted half-Fourier acquisition single-shot turbo spin-echo MR sequence was used for image acquisition of 4D-MRI, with a frame rate of 2-3 frames/s. Respiratory motion was measured using an external breathing monitoring device. A phase sorting method was developed to sort the images by their corresponding respiratory phases. Besides, a result-driven strategy was applied to effectively utilize redundant images in the case when multiple images were allocated to a bin. This strategy, selecting the image with minimal amplitude error, will generate the most representative 4D-MRI. Since we are using a different image acquisition mode for 4D imaging (the sequential image acquisition scheme) with the conventionally used cine or helical image acquisition scheme, the 4D dataset sufficient condition was not obviously and directly predictable. An important challenge of the proposed technique was to determine the number of repeated scans (NR) required to obtain sufficient phase information at each slice position. To tackle this challenge, the authors first conducted computer simulations using real-time position management respiratory signals of the 29 cancer patients under an IRB-approved retrospective study to derive the relationships between NR and the following factors: number of slices (NS), number of 4D-MRI respiratory bins (NB), and starting phase at image acquisition (P0). To validate the authors' technique, 4D-MRI acquisition and reconstruction were simulated on a 4D digital extended cardiac-torso (XCAT) human phantom using simulation derived parameters. Twelve healthy volunteers were involved in an IRB-approved study to investigate the
Physical performance evaluation of a 256-slice CT-scanner for four-dimensional imaging.
Mori, Shinichiro; Endo, Masahiro; Tsunoo, Takanori; Kandatsu, Susumu; Tanada, Shuji; Aradate, Hiroshi; Saito, Yasuo; Miyazaki, Hiroaki; Satoh, Kazumasa; Matsushita, Satoshi; Kusakabe, Masahiro
2004-06-01
We have developed a prototype 256-slice CT-scanner for four-dimensional (4D) imaging that employs continuous rotations of a cone-beam. Since a cone-beam scan along a circular orbit does not collect a complete set of data to make an exact reconstruction of a volume [three-dimensional (3D) image], it might cause disadvantages or artifacts. To examine effects of the cone-beam data collection on image quality, we have evaluated physical performance of the prototype 256-slice CT-scanner with 0.5 mm slices and compared it to that of a 16-slice CT-scanner with 0.75 mm slices. As a result, we found that image noise, uniformity, and high contrast detectability were independent of z coordinate. A Feldkamp artifact was observed in distortion measurements. Full width at half maximum (FWHM) of slice sensitivity profiles (SSP) increased with z coordinate though it seemed to be caused by other reasons than incompleteness of data. With regard to low contrast detectability, smaller objects were detected more clearly at the midplane (z = 0 mm) than at z = 40 mm, though circular-band like artifacts affected detection. The comparison between the 16-slice and the 256-slice scanners showed better performance for the 16-slice scanner regarding the SSP, low contrast detectability, and distortion. The inferiorities of the 256-slice scanner in other than distortion measurement (Feldkamp artifact) seemed to be partly caused by the prototype nature of the scanner and should be improved in the future scanner. The image noise, uniformity, and high contrast detectability were almost identical for both CTs. The 256-slice scanner was superior to the 16-slice scanner regarding the PSF, though it was caused by the smaller transverse beam width of the 256-slice scanner. In order to compare both scanners comprehensively in terms of exposure dose, noise, slice thickness, and transverse spatial resolution, K=Dsigma2ha3 was calculated, where D was exposure dose (CT dose index), sigma was magnitude of
Four-dimensional optical multiband-OFDM for beyond 1.4 Tb/s serial optical transmission.
Djordjevic, Ivan; Batshon, Hussam G; Xu, Lei; Wang, Ting
2011-01-17
We propose a four-dimensional (4D) coded multiband-OFDM scheme suitable for beyond 1.4 Tb/s serial optical transport. The proposed scheme organizes the N-dimensional (ND) signal constellation points in the form of signal matrix; employs 2D-inverse FFT and 2D-FFT to perform modulation and demodulation, respectively; and exploits both orthogonal polarizations. This scheme can fully exploit advantages of OFDM to deal with chromatic dispersion, PMD and PDL effects; and multidimensional signal constellations to improve OSNR sensitivity of conventional optical OFDM. The improvement of 4D-OFDM over corresponding polarization-multiplexed QAM (with the same number of constellation points) ranges from 1.79 dB for 16 signal constellation point-four-dimensional-OFDM (16-4D-OFDM) up to 4.53 dB for 128-4D-OFDM.
Petrera, Matteo; Suris, Yuri B
2017-02-01
We give a construction of completely integrable four-dimensional Hamiltonian systems with cubic Hamilton functions. Applying to the corresponding pairs of commuting quadratic Hamiltonian vector fields the so called Kahan-Hirota-Kimura discretization scheme, we arrive at pairs of birational four-dimensional maps. We show that these maps are symplectic with respect to a symplectic structure that is a perturbation of the standard symplectic structure on [Formula: see text], and possess two independent integrals of motion, which are perturbations of the original Hamilton functions and which are in involution with respect to the perturbed symplectic structure. Thus, these maps are completely integrable in the Liouville-Arnold sense. Moreover, under a suitable normalization of the original pairs of vector fields, the pairs of maps commute and share the invariant symplectic structure and the two integrals of motion.
NASA Astrophysics Data System (ADS)
Sarlette, Alain; Rouchon, Pierre
2017-06-01
This paper studies the stochastic differential equation (SDE) associated with a two-level quantum system (qubit) subject to Hamiltonian evolution as well as unmonitored and monitored decoherence channels. The latter imply a stochastic evolution of the quantum state (density operator), whose associated probability distribution we characterize. We first show that for two sets of typical experimental settings, corresponding either to weak quantum non-demolition measurements or to weak fluorescence measurements, the three Bloch coordinates of the qubit remain confined to a deterministically evolving surface or curve inside the Bloch sphere. We explicitly solve the deterministic evolution, and we provide a closed-form expression for the probability distribution on this surface or curve. Then we relate the existence in general of such deterministically evolving submanifolds to an accessibility question of control theory, which can be answered with an explicit algebraic criterion on the SDE. This allows us to show that, for a qubit, the above two sets of weak measurements are essentially the only ones featuring deterministic surfaces or curves.
NASA Astrophysics Data System (ADS)
Perelomov, A. M.
2005-12-01
The goal of this letter is to give an elementary approach to the solution of Euler-Frahm equations for the Manakov four-dimensional case. For this, we use the Kötter approach and some results from the original papers by Schottky, Weber and Caspary. We hope that such an approach will be useful for the solution of the problem of an n-dimensional top.
NASA Technical Reports Server (NTRS)
Makivic, Miloje S.
1996-01-01
This is the final technical report for the project entitled: "High-Performance Computing and Four-Dimensional Data Assimilation: The Impact on Future and Current Problems", funded at NPAC by the DAO at NASA/GSFC. First, the motivation for the project is given in the introductory section, followed by the executive summary of major accomplishments and the list of project-related publications. Detailed analysis and description of research results is given in subsequent chapters and in the Appendix.
Namati, Eman; Warger, William C.; Unglert, Carolin I.; Eckert, Jocelyn E.; Hostens, Jeroen; Bouma, Brett E.; Tearney, Guillermo J.
2013-01-01
Pulmonary alveoli have been studied for many years, yet no unifying hypothesis exists for their dynamic mechanics during respiration due to their miniature size (100-300 μm dimater in humans) and constant motion, which prevent standard imaging techniques from visualizing four-dimensional dynamics of individual alveoli in vivo. Here we report a new platform to image the first layer of air-filled subpleural alveoli through the use of a lightweight optical frequency domain imaging (OFDI) probe that can be placed upon the pleura to move with the lung over the complete range of respiratory motion. This device enables in-vivo acquisition of four-dimensional microscopic images of alveolar airspaces (alveoli and ducts), within the same field of view, during continuous ventilation without restricting the motion or modifying the structure of the alveoli. Results from an exploratory study including three live swine suggest that subpleural alveolar air spaces are best fit with a uniform expansion (r 2 = 0.98) over a recruitment model (r 2 = 0.72). Simultaneously, however, the percentage change in volume shows heterogeneous alveolar expansion within just a 1 mm x 1 mm field of view. These results signify the importance of four-dimensional imaging tools, such as the device presented here. Quantification of the dynamic response of the lung during ventilation may help create more accurate modeling techniques and move toward a more complete understanding of alveolar mechanics. PMID:24298409
A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view
NASA Astrophysics Data System (ADS)
Li, Guang; Cohen, Patrice; Xie, Huchen; Low, Daniel; Li, Diana; Rimner, Andreas
2012-11-01
To investigate the feasibility of four-dimensional radiotherapy (4DRT) planning from a tumor-tracking beam's eye view (ttBEV) with reliable gross tumor volume (GTV) delineation, realistic normal tissue representation, high planning accuracy and low clinical workload, we propose and validate a novel 4D conformal planning strategy based on a synthesized 3.5D computed tomographic (3.5DCT) image with a motion-compensated tumor. To recreate patient anatomy from a ttBEV in the moving tumor coordinate system for 4DRT planning (or 4D planning), the centers of delineated GTVs in all phase CT images of 4DCT were aligned, and then the aligned CTs were averaged to produce a new 3.5DCT image. This GTV-motion-compensated CT contains a motionless target (with motion artifacts minimized) and motion-blurred normal tissues (with a realistic temporal density average). Semi-automatic threshold-based segmentation of the tumor, lung and body was applied, while manual delineation was used for other organs at risk (OARs). To validate this 3.5DCT-based 4D planning strategy, five patients with peripheral lung lesions of small size (<5 cm3) and large motion range (1.2-3.5 cm) were retrospectively studied for stereotactic body radiotherapy (SBRT) using 3D conformal radiotherapy planning tools. The 3.5DCT-based 4D plan (3.5DCT plan) with 9-10 conformal beams was compared with the 4DCT-based 4D plan (4DCT plan). The 4DCT plan was derived from multiple 3D plans based on all phase CT images, each of which used the same conformal beam configuration but with an isocenter shift to aim at the moving tumor and a minor beam aperture and weighting adjustment to maintain plan conformality. The dose-volume histogram (DVH) of the 4DCT plan was created with two methods: one is an integrated DVH (iDVH4D), which is defined as the temporal average of all 3D-phase-plan DVHs, and the other (DVH4D) is based on the dose distribution in a reference phase CT image by dose warping from all phase plans using the
A novel four-dimensional radiotherapy planning strategy from a tumor-tracking beam's eye view.
Li, Guang; Cohen, Patrice; Xie, Huchen; Low, Daniel; Li, Diana; Rimner, Andreas
2012-11-21
To investigate the feasibility of four-dimensional radiotherapy (4DRT) planning from a tumor-tracking beam's eye view (ttBEV) with reliable gross tumor volume (GTV) delineation, realistic normal tissue representation, high planning accuracy and low clinical workload, we propose and validate a novel 4D conformal planning strategy based on a synthesized 3.5D computed tomographic (3.5DCT) image with a motion-compensated tumor. To recreate patient anatomy from a ttBEV in the moving tumor coordinate system for 4DRT planning (or 4D planning), the centers of delineated GTVs in all phase CT images of 4DCT were aligned, and then the aligned CTs were averaged to produce a new 3.5DCT image. This GTV-motion-compensated CT contains a motionless target (with motion artifacts minimized) and motion-blurred normal tissues (with a realistic temporal density average). Semi-automatic threshold-based segmentation of the tumor, lung and body was applied, while manual delineation was used for other organs at risk (OARs). To validate this 3.5DCT-based 4D planning strategy, five patients with peripheral lung lesions of small size (<5 cm(3)) and large motion range (1.2-3.5 cm) were retrospectively studied for stereotactic body radiotherapy (SBRT) using 3D conformal radiotherapy planning tools. The 3.5DCT-based 4D plan (3.5DCT plan) with 9-10 conformal beams was compared with the 4DCT-based 4D plan (4DCT plan). The 4DCT plan was derived from multiple 3D plans based on all phase CT images, each of which used the same conformal beam configuration but with an isocenter shift to aim at the moving tumor and a minor beam aperture and weighting adjustment to maintain plan conformality. The dose-volume histogram (DVH) of the 4DCT plan was created with two methods: one is an integrated DVH (iDVH(4D)), which is defined as the temporal average of all 3D-phase-plan DVHs, and the other (DVH(4D)) is based on the dose distribution in a reference phase CT image by dose warping from all phase plans using
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Lee, Deok Hee; Yang, Dong Hyun; Kim, Namkug
2016-01-01
Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions.
Why is the World four-dimensional? Hermann Weyl’s 1955 argument and the topology of causation
NASA Astrophysics Data System (ADS)
De Bianchi, Silvia
2017-08-01
This paper approaches the question of space dimensionality by discussing a neglected argument proposed by Hermann Weyl in 1955. In Why is the World Four-Dimensional? (1955), Weyl offered a different argument from the one generally attributed to him and presented in Raum-Zeit-Materie. In the first sections of the paper, this new argument and its features are spelled-out, and in the last section, I shall develop some useful remarks on the concept of topology of causation that can still inform our reflection on the dimensionality of the world.
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Lee, Sang Joon; Kim, Young-Hak; Lee, Deok Hee
2016-01-01
Recent improvements have been made to the use of time-resolved, three-dimensional phase-contrast (PC) magnetic resonance imaging (MRI), which is also named four-dimensional (4D) PC-MRI or 4D flow MRI, in the investigation of spatial and temporal variations in hemodynamic features in cardiovascular blood flow. The present article reviews the principle and analytical procedures of 4D PC-MRI. Various fluid dynamic biomarkers for possible clinical usage are also described, including wall shear stress, turbulent kinetic energy, and relative pressure. Lastly, this article provides an overview of the clinical applications of 4D PC-MRI in various cardiovascular regions. PMID:27390537
NASA Technical Reports Server (NTRS)
Lax, F. M.
1975-01-01
A time-controlled navigation system applicable to the descent phase of flight for airline transport aircraft was developed and simulated. The design incorporates the linear discrete-time sampled-data version of the linearized continuous-time system describing the aircraft's aerodynamics. Using optimal linear quadratic control techniques, an optimal deterministic control regulator which is implementable on an airborne computer is designed. The navigation controller assists the pilot in complying with assigned times of arrival along a four-dimensional flight path in the presence of wind disturbances. The strategic air traffic control concept is also described, followed by the design of a strategic control descent path. A strategy for determining possible times of arrival at specified waypoints along the descent path and for generating the corresponding route-time profiles that are within the performance capabilities of the aircraft is presented. Using a mathematical model of the Boeing 707-320B aircraft along with a Boeing 707 cockpit simulator interfaced with an Adage AGT-30 digital computer, a real-time simulation of the complete aircraft aerodynamics was achieved. The strategic four-dimensional navigation controller for longitudinal dynamics was tested on the nonlinear aircraft model in the presence of 15, 30, and 45 knot head-winds. The results indicate that the controller preserved the desired accuracy and precision of a time-controlled aircraft navigation system.
NASA Astrophysics Data System (ADS)
Kruglikov, B. S.; Morozov, O. I.
2016-09-01
We find a Bäcklund transformation between the four-dimensional Martínez Alonso-Shabat and Ferapontov-Khusnutdinova equations. We also discuss an integrable deformation of the Martínez Alonso-Shabat equation.
The four-dimensional data assimilation (FDDA) technique in the Weather Research and Forecasting (WRF) meteorological model has recently undergone an important update from the original version. Previous evaluation results have demonstrated that the updated FDDA approach in WRF pr...
The four-dimensional data assimilation (FDDA) technique in the Weather Research and Forecasting (WRF) meteorological model has recently undergone an important update from the original version. Previous evaluation results have demonstrated that the updated FDDA approach in WRF pr...
NASA Astrophysics Data System (ADS)
Koike, T.; Pathmathevan, M.; Li, X.
2001-12-01
The main objective of this scheme is to produce a regular, physically consistent four-dimensional representation of the land surface hydrological parameters from a heterogeneous array of in-situ instruments, which sample imperfectly and irregularly in space and time, by combining satellite remote sensing data. This paper mainly describes the implementation and application of advanced four-dimensional data assimilation algorithm for land surface hydrological parameters, especially soil moisture and temperature. This algorithm minimizes the penalty function, which is produced by remotely sensed passive microwave observations of brightness temperature or its dimensionless products such as Polarization Index (PI) and Index of Soil Wetness (ISW), and the numerically predicted results by a modified simple biosphere model (Sib2) with randomly generated initial stage. The application and validation was carried out for GAME-Tibet mesoscale experimental region by using satellite data and IOP (intensive observation period) fieldwork data, obtained in May-September 1998. The modified Land Surface Scheme Sib2 was used as a model operator to estimate soil moisture and temperature profiles at experimental site. These profiles can be produced by above Sib2 scheme during the freeze-thaw cycle period also. From the TRMM (Tropical Rainfall Measuring Mission) Microwave Instrument (TMI), the brightness temperature observations at different frequencies and different polarizations were utilized in this study. In above four-dimensional soil moisture and temperature assimilation scheme the forward (radiative transfer) model was used as an observation operator to estimate the surface brightness temperature from soil moisture and temperature profiles. As an important point of our assimilation algorithm, we used an annealing schedule with random generation of the state vector for minimizing the penalty function, instead of using usual ad-joint models. This scheme works very well. Finally, the
Mihalef, Viorel; Ionasec, Razvan Ioan; Sharma, Puneet; Georgescu, Bogdan; Voigt, Ingmar; Suehling, Michael; Comaniciu, Dorin
2011-01-01
There is a growing need for patient-specific and holistic modelling of the heart to support comprehensive disease assessment and intervention planning as well as prediction of therapeutic outcomes. We propose a patient-specific model of the whole human heart, which integrates morphology, dynamics and haemodynamic parameters at the organ level. The modelled cardiac structures are robustly estimated from four-dimensional cardiac computed tomography (CT), including all four chambers and valves as well as the ascending aorta and pulmonary artery. The patient-specific geometry serves as an input to a three-dimensional Navier–Stokes solver that derives realistic haemodynamics, constrained by the local anatomy, along the entire heart cycle. We evaluated our framework with various heart pathologies and the results correlate with relevant literature reports. PMID:22670200
NASA Astrophysics Data System (ADS)
Kizilirmak, Ganimet Mülazımoğlu
2015-12-01
The four-dimensional Ising model is simulated on the Creutz cellular automaton (CCA) near the infinite-lattice critical temperature for the lattice with the linear dimension 4 ⩽ L ⩽ 22. The temperature dependence of Binder parameter ( g L) are analyzed for the lattice with the linear dimension 4 ⩽ L ⩽ 22. In this study conducted highly detailed, two different types of behavior were determined as a result of varying linear lattice dimension. The infinite lattice critical temperatures are obtained to be T c = 6.6845 ± 0.0005 in interval 4 ⩽ L ⩽ 12 and T c = 6.6807 ± 0.0024 in interval 14 ⩽ L ⩽ 22. The finite and infinite lattice critical exponents for the order parameter, the magnetic susceptibility and the specific heat are computed from the results of simulations by using finite-size scaling relations. Critical linear lattice size have been identified as L = 14.
NASA Astrophysics Data System (ADS)
Suparmi, A.; Cari, C.; Deta, U. A.; Handhika, J.
2016-11-01
The non-relativistic energies and wave functions of extended hyperbolic Scarf I plus separable non-central shape invariant potential in four dimensions are investigated using Supersymmetric Quantum Mechanics (SUSY QM) Approach. The three dimensional separable non-central shape invariant angular potential consists of trigonometric Scarf II, Manning Rosen and Poschl-Teller potentials. The four dimensional Schrodinger equation with separable shape invariant non-central potential is reduced into four one dimensional Schrodinger equations through variable separation method. By using SUSY QM, the non-relativistic energies and radial wave functions are obtained from radial Schrodinger equation, the orbital quantum numbers and angular wave functions are obtained from angular Schrodinger equations. The extended potential means there is perturbation terms in potential and cause the decrease in energy spectra of Scarf I potential.
Solving the four-dimensional NN-πNN equations for scalars below the meson-production threshold
NASA Astrophysics Data System (ADS)
Phillips, D. R.; Afnan, I. R.
1996-10-01
The four-dimensional NN-πNN equations are adapted to the case of scalar particles with a φ2σ interaction Lagrangian and solved for energies below the σ-production threshold. This is achieved in the approximation where φσ scattering is dominated by the s-channel φ-pole term. The importance of the removal of double counting is investigated and a detailed comparison of the results of a covariant coupled-channel formulation and the Bethe-Salpeter equation in the ladder and ladder plus crossed-box approximations is presented. A brief discussion of the extension of the method to energies above the σ-production threshold is given.
NASA Astrophysics Data System (ADS)
Shaw, Jeremy A.; Daescu, Dacian N.
2017-08-01
This article presents the mathematical framework to evaluate the sensitivity of a forecast error aspect to the input parameters of a weak-constraint four-dimensional variational data assimilation system (w4D-Var DAS), extending the established theory from strong-constraint 4D-Var. Emphasis is placed on the derivation of the equations for evaluating the forecast sensitivity to parameters in the DAS representation of the model error statistics, including bias, standard deviation, and correlation structure. A novel adjoint-based procedure for adaptive tuning of the specified model error covariance matrix is introduced. Results from numerical convergence tests establish the validity of the model error sensitivity equations. Preliminary experiments providing a proof-of-concept are performed using the Lorenz multi-scale model to illustrate the theoretical concepts and potential benefits for practical applications.
Shahani, Ashwin J; Begum Gulsoy, E; Gibbs, John W; Fife, Julie L; Voorhees, Peter W
2014-10-06
Phase contrast X-ray tomography (PCT) enables the study of systems consisting of elements with similar atomic numbers. Processing datasets acquired using PCT is nontrivial because of the low-pass characteristics of the commonly used single-image phase retrieval algorithm. In this study, we introduce an image processing methodology that simultaneously utilizes both phase and attenuation components of an image obtained at a single detector distance. This novel method, combined with regularized Perona-Malik filter and bias-corrected fuzzy C-means algorithm, allows for automated segmentation of data acquired through four-dimensional PCT. Using this integrated approach, the three-dimensional coarsening morphology of an Aluminum-29.9 wt% Silicon alloy can be analyzed.
NASA Astrophysics Data System (ADS)
Gao, Chuan; Wu, Xinrong; Zhang, Rong-Hua
2016-07-01
A four-dimensional variational (4D-Var) data assimilation method is implemented in an improved intermediate coupled model (ICM) of the tropical Pacific. A twin experiment is designed to evaluate the impact of the 4D-Var data assimilation algorithm on ENSO analysis and prediction based on the ICM. The model error is assumed to arise only from the parameter uncertainty. The "observation" of the SST anomaly, which is sampled from a "truth" model simulation that takes default parameter values and has Gaussian noise added, is directly assimilated into the assimilation model with its parameters set erroneously. Results show that 4D-Var effectively reduces the error of ENSO analysis and therefore improves the prediction skill of ENSO events compared with the non-assimilation case. These results provide a promising way for the ICM to achieve better real-time ENSO prediction.
NASA Technical Reports Server (NTRS)
Hsu, J. P.
1983-01-01
The foundation of the quantum field theory is changed by introducing a new universal probability principle into field operators: one single inherent and invariant probability distribution P(/k/) is postulated for boson and fermion field oscillators. This can be accomplished only when one treats the four-dimensional symmetry from a broad viewpoint. Special relativity is too restrictive to allow such a universal probability principle. A radical length, R, appears in physics through the probability distribution P(/k/). The force between two point particles vanishes when their relative distance tends to zero. This appears to be a general property for all forces and resembles the property of asymptotic freedom. The usual infinities in vacuum fluctuations and in local interactions, however complicated they may be, are all removed from quantum field theories. In appendix A a simple finite and unitary theory of unified electroweak interactions is discussed without assuming Higgs scalar bosons.
NASA Astrophysics Data System (ADS)
Kuperstein, S.; Sonnenschein, J.
2004-11-01
We study certain properties of the low energy regime of a theory which resembles four dimensional YM theory in the framework of a non-critical holographic gravity dual. We use for the latter the near extremal AdS6 non-critical SUGRA. We extract the glueball spectra that associates with the fluctuations of the dilaton, one form and the graviton and compare the results to those of the critical near extremal D4 model and lattice simulations. We show an area law behavior for the Wilson loop and screening for the 't Hooft loop. The Luscher term is found to be -(3π/24L). We derive the Regge trajectories of glueballs associated with the spinning folded string configurations.
NASA Technical Reports Server (NTRS)
Hsu, J. P.
1983-01-01
The foundation of the quantum field theory is changed by introducing a new universal probability principle into field operators: one single inherent and invariant probability distribution P(/k/) is postulated for boson and fermion field oscillators. This can be accomplished only when one treats the four-dimensional symmetry from a broad viewpoint. Special relativity is too restrictive to allow such a universal probability principle. A radical length, R, appears in physics through the probability distribution P(/k/). The force between two point particles vanishes when their relative distance tends to zero. This appears to be a general property for all forces and resembles the property of asymptotic freedom. The usual infinities in vacuum fluctuations and in local interactions, however complicated they may be, are all removed from quantum field theories. In appendix A a simple finite and unitary theory of unified electroweak interactions is discussed without assuming Higgs scalar bosons.
Goldstein, Seth D.; Ford, Eric C.; Duhon, Mario; McNutt, Todd; Wong, John; Herman, Joseph M.
2010-02-01
Purpose: Respiratory-induced excursions of locally advanced pancreatic adenocarcinoma could affect dose delivery. This study quantified tumor motion and evaluated standard treatment margins. Methods and Materials: Respiratory-correlated four-dimensional computed tomography images were obtained on 30 patients with locally advanced pancreatic adenocarcinoma; 15 of whom underwent repeat scanning before cone-down treatment. Treatment planning software was used to contour the gross tumor volume (GTV), bilateral kidneys, and biliary stent. Excursions were calculated according to the centroid of the contoured volumes. Results: The mean +- standard deviation GTV excursion in the superoinferior (SI) direction was 0.55 +- 0.23 cm; an expansion of 1.0 cm adequately accounted for the GTV motion in 97% of locally advanced pancreatic adenocarcinoma patients. Motion GTVs were generated and resulted in a 25% average volume increase compared with the static GTV. Of the 30 patients, 17 had biliary stents. The mean SI stent excursion was 0.84 +- 0.32 cm, significantly greater than the GTV motion. The xiphoid process moved an average of 0.35 +- 0.12 cm, significantly less than the GTV. The mean SI motion of the left and right kidneys was 0.65 +- 0.27 cm and 0.77 +- 0.30 cm, respectively. At repeat scanning, no significant changes were seen in the mean GTV size (p = .8) or excursion (p = .3). Conclusion: These data suggest that an asymmetric expansion of 1.0, 0.7, and 0.6 cm along the respective SI, anteroposterior, and medial-lateral directions is recommended if a respiratory-correlated four-dimensional computed tomography scan is not available to evaluate the tumor motion during treatment planning. Surrogates of tumor motion, such as biliary stents or external markers, should be used with caution.
NASA Astrophysics Data System (ADS)
Saito, A.; Tsugawa, T.; Nagayama, S.; Iwasaki, S.; Odagi, Y.; Kumano, Y.; Yoshikawa, M.; Akiya, Y.; Takahashi, M.
2011-12-01
We are developing educational and public outreach programs of the earth and planetary science data using a four-dimensional digital globe system, Dagik Earth. Dagik Earth is a simple and affordable four dimensional (three dimension in space and one dimension in time) presentation system of the earth and planetary scientific results. It can display the Earth and planets in three-dimensional way without glasses, and the time variation of the scientific data can be displayed on the Earth and planets image. It is easier to handle and lower cost than similar systems such as Geocosmos by Miraikan museum, Japan and Science On a Sphere by NOAA. At first it was developed as a presentation tool for public outreach programs in universities and research institutes by earth scientists. And now it is used in classrooms of schools and science museums collaboration with school teachers and museum curators. The three dimensional display can show the Earth and planets in exact form without any distortion, which cannot be achieved with two-dimensional display. Furthermore it can provide a sense of reality. Several educational programs have been developed and carried out in high schools, junior high schools, elementary schools and science centers. Several research institutes have used Dagik Earth in their public outreach programs to demonstrate their novel scientific results to public in universities, research institutes and science cafe events. A community of users and developers of Dagik Earth is being formed in Japan. In the presentation, the outline of Dagik Earth and the educational programs using Dagik Earth will be presented.
NASA Astrophysics Data System (ADS)
Yamamoto, Tokihiro; Kabus, Sven; Klinder, Tobias; Lorenz, Cristian; von Berg, Jens; Blaffert, Thomas; Loo, Billy W., Jr.; Keall, Paul J.
2011-04-01
A pulmonary ventilation imaging technique based on four-dimensional (4D) computed tomography (CT) has advantages over existing techniques. However, physiologically accurate 4D-CT ventilation imaging has not been achieved in patients. The purpose of this study was to evaluate 4D-CT ventilation imaging by correlating ventilation with emphysema. Emphysematous lung regions are less ventilated and can be used as surrogates for low ventilation. We tested the hypothesis: 4D-CT ventilation in emphysematous lung regions is significantly lower than in non-emphysematous regions. Four-dimensional CT ventilation images were created for 12 patients with emphysematous lung regions as observed on CT, using a total of four combinations of two deformable image registration (DIR) algorithms: surface-based (DIRsur) and volumetric (DIRvol), and two metrics: Hounsfield unit (HU) change (VHU) and Jacobian determinant of deformation (VJac), yielding four ventilation image sets per patient. Emphysematous lung regions were detected by density masking. We tested our hypothesis using the one-tailed t-test. Visually, different DIR algorithms and metrics yielded spatially variant 4D-CT ventilation images. The mean ventilation values in emphysematous lung regions were consistently lower than in non-emphysematous regions for all the combinations of DIR algorithms and metrics. VHU resulted in statistically significant differences for both DIRsur (0.14 ± 0.14 versus 0.29 ± 0.16, p = 0.01) and DIRvol (0.13 ± 0.13 versus 0.27 ± 0.15, p < 0.01). However, VJac resulted in non-significant differences for both DIRsur (0.15 ± 0.07 versus 0.17 ± 0.08, p = 0.20) and DIRvol (0.17 ± 0.08 versus 0.19 ± 0.09, p = 0.30). This study demonstrated the strong correlation between the HU-based 4D-CT ventilation and emphysema, which indicates the potential for HU-based 4D-CT ventilation imaging to achieve high physiologic accuracy. A further study is needed to confirm these results.
Ahmad, Moiz; Balter, Peter; Pan, Tinsu
2011-01-01
Purpose: Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4–6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. Methods: The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Results: Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3–8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB
Ahmad, Moiz; Balter, Peter; Pan, Tinsu
2011-10-15
Purpose: Data sufficiency are a major problem in four-dimensional cone-beam computed tomography (4D-CBCT) on linear accelerator-integrated scanners for image-guided radiotherapy. Scan times must be in the range of 4-6 min to avoid undersampling artifacts. Various image reconstruction algorithms have been proposed to accommodate undersampled data acquisitions, but these algorithms are computationally expensive, may require long reconstruction times, and may require algorithm parameters to be optimized. The authors present a novel reconstruction method, 4D volume-of-interest (4D-VOI) reconstruction which suppresses undersampling artifacts and resolves lung tumor motion for undersampled 1-min scans. The 4D-VOI reconstruction is much less computationally expensive than other 4D-CBCT algorithms. Methods: The 4D-VOI method uses respiration-correlated projection data to reconstruct a four-dimensional (4D) image inside a VOI containing the moving tumor, and uncorrelated projection data to reconstruct a three-dimensional (3D) image outside the VOI. Anatomical motion is resolved inside the VOI and blurred outside the VOI. The authors acquired a 1-min. scan of an anthropomorphic chest phantom containing a moving water-filled sphere. The authors also used previously acquired 1-min scans for two lung cancer patients who had received CBCT-guided radiation therapy. The same raw data were used to test and compare the 4D-VOI reconstruction with the standard 4D reconstruction and the McKinnon-Bates (MB) reconstruction algorithms. Results: Both the 4D-VOI and the MB reconstructions suppress nearly all the streak artifacts compared with the standard 4D reconstruction, but the 4D-VOI has 3-8 times greater contrast-to-noise ratio than the MB reconstruction. In the dynamic chest phantom study, the 4D-VOI and the standard 4D reconstructions both resolved a moving sphere with an 18 mm displacement. The 4D-VOI reconstruction shows a motion blur of only 3 mm, whereas the MB reconstruction
NASA Astrophysics Data System (ADS)
Eslamizadeh, H.
2017-02-01
Evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity for the excited compound nuclei {}168{{Y}}{{b}}, {}172{{Y}}{{b}}, {}178{{W}} and {}227{{P}}{{a}} produced in fusion reactions have been calculated in the framework of the modified statistical model and multidimensional dynamical model. In the dynamical calculations, the dynamics of fission of excited nuclei has been studied by solving three- and four-dimensional Langevin equations with dissipation generated through the chaos-weighted wall and window friction formula. Three collective shape coordinates plus the projection of total spin of the compound nucleus to the symmetry axis, K, were considered in the four-dimensional dynamical model. A non-constant dissipation coefficient of K, {γ }k, was applied in the four-dimensional dynamical calculations. A comparison of the results of the three- and four-dimensional dynamical models with the experimental data showed that the results of the four-dimensional dynamical model for the evaporation residue cross section, fission probability, anisotropy of fission fragment angular distribution, mass and energy distributions of fission fragments and the pre-scission neutron multiplicity are in better agreement with the experimental data. It was also shown that the modified statistical model can reproduce the above-mentioned experimental data by choosing appropriate values of the temperature coefficient of the effective potential, λ , and the scaling factor of the fission-barrier height, {r}s.
Schneider, Robert J; Perrin, Douglas P; Vasilyev, Nikolay V; Marx, Gerald R; del Nido, Pedro J; Howe, Robert D
2012-02-01
Measurement of the shape and motion of the mitral valve annulus has proven useful in a number of applications, including pathology diagnosis and mitral valve modeling. Current methods to delineate the annulus from four-dimensional (4D) ultrasound, however, either require extensive overhead or user-interaction, become inaccurate as they accumulate tracking error, or they do not account for annular shape or motion. This paper presents a new 4D annulus segmentation method to account for these deficiencies. The method builds on a previously published three-dimensional (3D) annulus segmentation algorithm that accurately and robustly segments the mitral annulus in a frame with a closed valve. In the 4D method, a valve state predictor determines when the valve is closed. Subsequently, the 3D annulus segmentation algorithm finds the annulus in those frames. For frames with an open valve, a constrained optical flow algorithm is used to the track the annulus. The only inputs to the algorithm are the selection of one frame with a closed valve and one user-specified point near the valve, neither of which needs to be precise. The accuracy of the tracking method is shown by comparing the tracking results to manual segmentations made by a group of experts, where an average RMS difference of 1.67±0.63mm was found across 30 tracked frames.
NASA Astrophysics Data System (ADS)
Merdan, Ziya; Kürkçü, Cihan; Öztürk, Mustafa K.
2014-12-01
The four-dimensional ferromagnetic Ising model in external magnetic field is simulated on the Creutz cellular automaton algorithm using finite-size lattices with linear dimension 4 ≤ L ≤ 8. The critical temperature value of infinite lattice, Tc χ ( ∞ ) = 6 , 680 (1) obtained for h = 0 agrees well with the values T c ( ∞ ) ≈ 6.68 obtained previously using different methods. Moreover, h = 0.00025 in our work also agrees with all the results obtained from h = 0 in the literature. However, there are no works for h ≠ 0 in the literature. The value of the field critical exponent (δ = 3.0136(3)) is in good agreement with δ = 3 which is obtained from scaling law of Widom. In spite of the finite-size scaling relations of | M L ( t ) | and χ L ( t ) for 0 ≤ h ≤ 0.001 are verified; however, in the cases of 0.0025 ≤ h ≤ 0.1 they are not verified.
NASA Astrophysics Data System (ADS)
Mhabary, Ziv; Levi, Ofer; Small, Eran; Stern, Adrian
2016-07-01
This paper presents an efficient method for computing a stack of images digitally focused at various lengths from a four-dimensional light field (LF). The main contribution of this work is a fast and algebraically exact method that does not require interpolation in the frequency or spatial domains as alternative methods do. The proposed imaging operator combines two-dimensional (2-D) fast Fourier transform with 2-D fractional Fourier transform and has computational complexity of O(N log N), where N is the number of pixels in the LF tesseract of dimension N=nx×ny×nu×nv. The whole method consists of unitary vector-based operations; therefore, parallel implementation is easy and can contribute additional speed up. While current state of the art methods suffer from inherent tradeoff between the reconstruction quality and computational complexity, the proposed method benefits of both low-computational complexity and high-reconstruction quality. We also offer a solution for refocusing at distances that are not included in the reconstructed images stack. For such a case, we provide a modified version of our method, which is also algebraically exact and has lower computational complexity than other exact methods.
Carrasco-Zevallos, Oscar M.; Keller, Brenton; Viehland, Christian; Shen, Liangbo; Seider, Michael I.; Izatt, Joseph A.; Toth, Cynthia A.
2016-01-01
Magnification of the surgical field using the operating microscope facilitated profound innovations in retinal surgery in the 1970s, such as pars plana vitrectomy. Although surgical instrumentation and illumination techniques are continually developing, the operating microscope for vitreoretinal procedures has remained essentially unchanged and currently limits the surgeon's depth perception and assessment of subtle microanatomy. Optical coherence tomography (OCT) has revolutionized clinical management of retinal pathology, and its introduction into the operating suite may have a similar impact on surgical visualization and treatment. In this article, we review the evolution of OCT for retinal surgery, from perioperative analysis to live volumetric (four-dimensional, 4D) image-guided surgery. We begin by briefly addressing the benefits and limitations of the operating microscope, the progression of OCT technology, and OCT applications in clinical/perioperative retinal imaging. Next, we review intraoperative OCT (iOCT) applications using handheld probes during surgical pauses, two-dimensional (2D) microscope-integrated OCT (MIOCT) of live surgery, and volumetric MIOCT of live surgery. The iOCT discussion focuses on technological advancements, applications during human retinal surgery, translational difficulties and limitations, and future directions. PMID:27409495
NASA Astrophysics Data System (ADS)
Zhang, Honghai; Walker, Nicholas; Mitchell, Steven C.; Thomas, Matthew; Wahle, Andreas; Scholz, Thomas; Sonka, Milan
2006-03-01
Conventional analysis of cardiac ventricular magnetic resonance images is performed using short axis images and does not guarantee completeness and consistency of the ventricle coverage. In this paper, a four-dimensional (4D, 3D+time) left and right ventricle statistical shape model was generated from the combination of the long axis and short axis images. Iterative mutual intensity registration and interpolation were used to merge the long axis and short axis images into isotropic 4D images and simultaneously correct existing breathing artifact. Distance-based shape interpolation and approximation were used to generate complete ventricle shapes from the long axis and short axis manual segmentations. Landmarks were automatically generated and propagated to 4D data samples using rigid alignment, distance-based merging, and B-spline transform. Principal component analysis (PCA) was used in model creation and analysis. The two strongest modes of the shape model captured the most important shape feature of Tetralogy of Fallot (TOF) patients, right ventricle enlargement. Classification of cardiac images into classes of normal and TOF subjects performed on 3D and 4D models showed 100% classification correctness rates for both normal and TOF subjects using k-Nearest Neighbor (k=1 or 3) classifier and the two strongest shape modes.
NASA Astrophysics Data System (ADS)
Zhang, Honghai; Thomas, Matthew T.; Walker, Nicholas E.; Stolpen, Alan H.; Wahle, Andreas; Scholz, Thomas D.; Sonka, Milan
2007-03-01
Conventional analysis of cardiac ventricular function from magnetic resonance images is typically relying on short axis image information only. Usually, two cardiac phases of the cardiac cycle are analyzed- the end-diastole and end-systole. Unfortunately, the short axis ventricular coverage is incomplete and inconsistent due to the lack of image information about the ventricular apex and base. In routine clinical images, this information is only available in long axis image planes. Additionally, the standard ventricular function indices such as ejection fraction are only based on a limited temporal information and therefore do not fully describe the four-dimensional (4D, 3D+time) nature of the heart's motion. We report a novel approach in which the long and short axis image data are fused to correct for respiratory motion and form a spatio-temporal 4D data sequence with cubic voxels. To automatically segment left and right cardiac ventricles, a 4D active appearance model was built. Applying the method to cardiac segmentation of tetralogy of Fallot (TOF) and normal hearts, our method achieved mostly subvoxel signed surface positioning errors of 0.2+/-1.1 voxels for normal left ventricle, 0.6+/-1.5 voxels for normal right ventricle, 0.5+/-2.1 voxels for TOF left ventricle, and 1.3+/-2.6 voxels for TOF right ventricle. Using the computer segmentation results, the cardiac shape and motion indices and volume-time curves were derived as novel indices describing the ventricular function in 4D.
Ha, Hojin; Kim, Guk Bae; Kweon, Jihoon; Kim, Young-Hak; Kim, Namkug; Yang, Dong Hyun; Lee, Sang Joon
2016-05-01
The present study aims to improve precision of four-dimensional (4D) phase-contrast (PC) MRI technique by using multiple velocity encoding (VENC) parameters. The 3D flow fields in an in vitro stenosis phantom and an in vivo ascending aorta were determined using a 4D PC-MRI sequence with multiple VENC values. The velocity field obtained for large VENC was combined with that from small VENC, unless velocity data were lost by phase aliasing and phase dispersion. Noise levels of the combined velocity fields were compared with the increasing overlapping number of VENC parameters. The phantom measurement showed that the multi-VENC acquisition reduced the noise levels in radial and axial velocities (> 24 cm/s at VENC = 300 cm/s) down to 0.80 ± 0.45 cm/s and 5.60 ± 2.63 cm/s, respectively. This increased the velocity-to-noise ratio (VNR) by approximately two-fold to six-fold depending on the locations. As a result, the multi-VENC measurement could visualize the low-velocity recirculating flows more clearly. The multi-VENC measurement of 4D PC-MRI sequence increased the VNR distribution by reducing velocity noise. The improved VNR can be beneficial for investigating blood flow structures in a flow field with a high velocity dynamic range. © 2015 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Chai, Xiu-Li; Gan, Zhi-Hua; Lu, Yang; Zhang, Miao-Hui; Chen, Yi-Ran
2016-10-01
Recently, many image encryption algorithms based on chaos have been proposed. Most of the previous algorithms encrypt components R, G, and B of color images independently and neglect the high correlation between them. In the paper, a novel color image encryption algorithm is introduced. The 24 bit planes of components R, G, and B of the color plain image are obtained and recombined into 4 compound bit planes, and this can make the three components affect each other. A four-dimensional (4D) memristive hyperchaotic system generates the pseudorandom key streams and its initial values come from the SHA 256 hash value of the color plain image. The compound bit planes and key streams are confused according to the principles of genetic recombination, then confusion and diffusion as a union are applied to the bit planes, and the color cipher image is obtained. Experimental results and security analyses demonstrate that the proposed algorithm is secure and effective so that it may be adopted for secure communication. Project supported by the National Natural Science Foundation of China (Grant Nos. 61203094 and 61305042), the Natural Science Foundation of the United States (Grant Nos. CNS-1253424 and ECCS-1202225), the Science and Technology Foundation of Henan Province, China (Grant No. 152102210048), the Foundation and Frontier Project of Henan Province, China (Grant No. 162300410196), the Natural Science Foundation of Educational Committee of Henan Province, China (Grant No. 14A413015), and the Research Foundation of Henan University, China (Grant No. xxjc20140006).
Lee, Youngone; Kang, Gungwon; Kim, Hyeong-Chan; Lee, Jungjai
2011-10-15
We investigate string or branelike solutions for four-dimensional vacuum Einstein equations in the presence of a cosmological constant. For the case of negative cosmological constant, the Banados-Teitelboim-Zanelli black string is the only warped stringlike solution. The general solutions for nonwarped branelike configurations are found and they are characterized by the Arnowitt-Deser-Misner mass density and two tensions. Interestingly, the sum of these tensions is equal to the minus of the mass density. Other than the well-known black string and soliton spacetimes, all the static solutions possess naked singularities. The time-dependent solutions can be regarded as the anti-de Sitter extension of the well-known Kasner solutions. The speciality of those static regular solutions and the implication of singular solutions are also discussed in the context of cylindrical matter collapse. For the case of positive cosmological constant, the Kasner-de Sitter spacetime appears as time-dependent solutions and all static solutions are found to be naked singular.
Yu, Jesang; Choi, Ji Hoon; Ma, Sun Young; Jeung, Tae Sig
2015-01-01
Purpose To compare audio-only biofeedback to conventional audiovisual biofeedback for regulating patients' respiration during four-dimensional radiotherapy, limiting damage to healthy surrounding tissues caused by organ movement. Materials and Methods Six healthy volunteers were assisted by audiovisual or audio-only biofeedback systems to regulate their respirations. Volunteers breathed through a mask developed for this study by following computer-generated guiding curves displayed on a screen, combined with instructional sounds. They then performed breathing following instructional sounds only. The guiding signals and the volunteers' respiratory signals were logged at 20 samples per second. Results The standard deviations between the guiding and respiratory curves for the audiovisual and audio-only biofeedback systems were 21.55% and 23.19%, respectively; the average correlation coefficients were 0.9778 and 0.9756, respectively. The regularities between audiovisual and audio-only biofeedback for six volunteers' respirations were same statistically from the paired t-test. Conclusion The difference between the audiovisual and audio-only biofeedback methods was not significant. Audio-only biofeedback has many advantages, as patients do not require a mask and can quickly adapt to this method in the clinic. PMID:26484309
Hansen, Vibeke N; Fast, Martin F; Nill, Simeon; McDonald, Fiona; Ahmed, Merina; Thomas, Karen; McNair, Helen A
2016-01-01
Objective: To evaluate three image acquisition presets for four-dimensional cone beam CT (CBCT) to identify an optimal preset for lung tumour image quality while minimizing dose and acquisition time. Methods: Nine patients undergoing radical conventionally fractionated radiotherapy for lung cancer had verification CBCTs acquired using three presets: Preset 1 on Day 1 (11 mGy dose, 240 s acquisition time), Preset 2 on Day 2 (9 mGy dose, 133 s acquisition time) and Preset 3 on Day 3 (9 mGy dose, 67 s acquisition time). The clarity of the tumour and other thoracic structures, and the acceptability of the match, were retrospectively graded by visual grading analysis (VGA). Logistic regression was used to identify the most appropriate preset and any factors that might influence the result. Results: Presets 1 and 2 met a clinical requirement of 75% of structures to be rated “Clear” or above and 75% of matches to be rated “Acceptable” or above. Clarity is significantly affected by preset, patient, observer and structure. Match acceptability is significantly affected by preset. Conclusion: The application of VGA in this initial study enabled a provisional selection of an optimal preset (Preset 2) to be made. Advances in knowledge: This was the first application of VGA to the investigation of presets for CBCT. PMID:27109735
Wang, Xiaodong; Li, Fenjie; Song, Gaoguang; Guo, Shuai; Liu, Hui; Chen, Guoqiang; Li, Zhili
2012-01-01
The major challenge of “protein complexomics” is to separate intact protein complexes or interactional proteins without dissociation or denaturation from complex biological samples and to characterize structural subunits of protein complexes. To address these issues, we developed a novel approach termed “broad-spectrum four-dimensional orthogonal electrophoresis (BS4-DE) system,” which is composed of a nondenaturing part I and denaturing part II. Here we developed a mild acidic-native-PAGE to constitute part I, together with native-thin-layer-IEF and basic-native-PAGE, widening the range of BS4-DE system application for extremely basic proteins with the range of pI from about 8 to 11 (there are obviously 1000 kinds of proteins in this interval), and also speculated on the mechanism of separating. We first proposed ammonium hydroxide-ultrasonic protein extractive strategy as a seamless connection between part I and part II, and also speculated on the extractive mechanism. More than 4000 protein complexes could be theoretically solved by this system. Using this approach, we focus on blood rich in protein complexes which make it challenging to sera/plasma proteome study. Our results indicated that the BS4-DE system could be applied to blood protein complexomics investigation, providing a comprehensively feasible approach for disease proteomics. PMID:22375076
Cao, Gaolong; Sun, Shuaishuai; Li, Zhongwen; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2015-02-12
Recent advances in the four-dimensional ultrafast transmission electron microscope (4D-UTEM) with combined spatial and temporal resolutions have made it possible to directly visualize structural dynamics of materials at the atomic level. Herein, we report on our development on a 4D-UTEM which can be operated properly on either the photo-emission or the thermionic mode. We demonstrate its ability to obtain sequences of snapshots with high spatial and temporal resolutions in the study of lattice dynamics of the multi-walled carbon nanotubes (MWCNTs). This investigation provides an atomic level description of remarkable anisotropic lattice dynamics at the picosecond timescales. Moreover, our UTEM measurements clearly reveal that distinguishable lattice relaxations appear in intra-tubular sheets on an ultrafast timescale of a few picoseconds and after then an evident lattice expansion along the radial direction. These anisotropic behaviors in the MWCNTs are considered arising from the variety of chemical bonding, i.e. the weak van der Waals bonding between the tubular planes and the strong covalent sp(2)-hybridized bonds in the tubular sheets.
NASA Astrophysics Data System (ADS)
Cao, Gaolong; Sun, Shuaishuai; Li, Zhongwen; Tian, Huanfang; Yang, Huaixin; Li, Jianqi
2015-02-01
Recent advances in the four-dimensional ultrafast transmission electron microscope (4D-UTEM) with combined spatial and temporal resolutions have made it possible to directly visualize structural dynamics of materials at the atomic level. Herein, we report on our development on a 4D-UTEM which can be operated properly on either the photo-emission or the thermionic mode. We demonstrate its ability to obtain sequences of snapshots with high spatial and temporal resolutions in the study of lattice dynamics of the multi-walled carbon nanotubes (MWCNTs). This investigation provides an atomic level description of remarkable anisotropic lattice dynamics at the picosecond timescales. Moreover, our UTEM measurements clearly reveal that distinguishable lattice relaxations appear in intra-tubular sheets on an ultrafast timescale of a few picoseconds and after then an evident lattice expansion along the radial direction. These anisotropic behaviors in the MWCNTs are considered arising from the variety of chemical bonding, i.e. the weak van der Waals bonding between the tubular planes and the strong covalent sp2-hybridized bonds in the tubular sheets.
NASA Astrophysics Data System (ADS)
Salisbury, Donald; Renn, Jürgen; Sundermeyer, Kurt
2016-02-01
Classical background independence is reflected in Lagrangian general relativity through covariance under the full diffeomorphism group. We show how this independence can be maintained in a Hamilton-Jacobi approach that does not accord special privilege to any geometric structure. Intrinsic space-time curvature-based coordinates grant equal status to all geometric backgrounds. They play an essential role as a starting point for inequivalent semiclassical quantizations. The scheme calls into question Wheeler’s geometrodynamical approach and the associated Wheeler-DeWitt equation in which 3-metrics are featured geometrical objects. The formalism deals with variables that are manifestly invariant under the full diffeomorphism group. Yet, perhaps paradoxically, the liberty in selecting intrinsic coordinates is precisely as broad as is the original diffeomorphism freedom. We show how various ideas from the past five decades concerning the true degrees of freedom of general relativity can be interpreted in light of this new constrained Hamiltonian description. In particular, we show how the Kuchař multi-fingered time approach can be understood as a means of introducing full four-dimensional diffeomorphism invariants. Every choice of new phase space variables yields new Einstein-Hamilton-Jacobi constraining relations, and corresponding intrinsic Schrödinger equations. We show how to implement this freedom by canonical transformation of the intrinsic Hamiltonian. We also reinterpret and rectify significant work by Dittrich on the construction of “Dirac observables.”
NASA Astrophysics Data System (ADS)
Luo, Yuan; Tan, Meng-Chwan; Vasko, Petr; Zhao, Qin
2017-05-01
We perform a series of dimensional reductions of the 6d, \\mathcal{N} = (2, 0) SCFT on S 2 × Σ × I × S 1 down to 2d on Σ. The reductions are performed in three steps: (i) a reduction on S 1 (accompanied by a topological twist along Σ) leading to a supersymmetric Yang-Mills theory on S 2 × Σ × I, (ii) a further reduction on S 2 resulting in a complex Chern-Simons theory defined on Σ × I, with the real part of the complex Chern-Simons level being zero, and the imaginary part being proportional to the ratio of the radii of S 2 and S 1, and (iii) a final reduction to the boundary modes of complex Chern-Simons theory with the Nahm pole boundary condition at both ends of the interval I, which gives rise to a complex Toda CFT on the Riemann surface Σ. As the reduction of the 6d theory on Σ would give rise to an \\mathcal{N} = 2 supersymmetric theory on S 2 × I × S 1, our results imply a 4d-2d duality between four-dimensional \\mathcal{N} = 2 supersymmetric theory with boundary and two-dimensional complex Toda theory.
The quest for four-dimensional imaging in plant cell biology: it's just a matter of time
Domozych, David S.
2012-01-01
Background Analysis of plant cell dynamics over time, or four-dimensional imaging (4-DI), represents a major goal of plant science. The ability to resolve structures in the third dimension within the cell or tissue during developmental events or in response to environmental or experimental stresses (i.e. 4-DI) is critical to our understanding of gene expression, post-expression modulations of macromolecules and sub-cellular system interactions. Scope Microscopy-based technologies have been profoundly integral to this type of investigation, and new and refined microscopy technologies now allow for the visualization of cell dynamics with unprecedented resolution, contrast and experimental versatility. However, certain realities of light and electron microscopy, choice of specimen and specimen preparation techniques limit the scope of readily attaining 4-DI. Today, the plant microscopist must use a combinatorial strategy whereby multiple microscopy-based investigations are used. Modern fluorescence, confocal laser scanning, transmission electron and scanning electron microscopy provide effective conduits for synthesizing data detailing live cell dynamics and highly resolved snapshots of specific cell structures that will ultimately lead to 4-DI. This review provides a synopsis of such technologies available. PMID:22628381
Yin, Xin; Liu, Aiping; Thornburg, Kent L; Wang, Ruikang K; Rugonyi, Sandra
2012-09-01
Recent advances in optical coherence tomography (OCT), and the development of image reconstruction algorithms, enabled four-dimensional (4-D) (three-dimensional imaging over time) imaging of the embryonic heart. To further analyze and quantify the dynamics of cardiac beating, segmentation procedures that can extract the shape of the heart and its motion are needed. Most previous studies analyzed cardiac image sequences using manually extracted shapes and measurements. However, this is time consuming and subject to inter-operator variability. Automated or semi-automated analyses of 4-D cardiac OCT images, although very desirable, are also extremely challenging. This work proposes a robust algorithm to semi automatically detect and track cardiac tissue layers from 4-D OCT images of early (tubular) embryonic hearts. Our algorithm uses a two-dimensional (2-D) deformable double-line model (DLM) to detect target cardiac tissues. The detection algorithm uses a maximum-likelihood estimator and was successfully applied to 4-D in vivo OCT images of the heart outflow tract of day three chicken embryos. The extracted shapes captured the dynamics of the chick embryonic heart outflow tract wall, enabling further analysis of cardiac motion.
Real-time volume rendering of four-dimensional images based on three-dimensional texture mapping.
Hwang, J; Kim, J S; Kim, J S; Kim, I Y; Kim, S I
2001-06-01
A four-dimensional (4-D) image consists of three-dimensional (3-D) volume data that varies with time. It is used to express a deforming or moving object in virtual surgery or 4-D ultrasound. It is difficult to obtain 4-D images by conventional ray-casting or shear-warp factorization methods because of their time-consuming rendering process and the pre-processing stage necessary whenever the volume data are changed. Even when 3-D texture mapping is used, repeated volume loading is time-consuming in 4-D image rendering. In this study, we propose a method to reduce data loading time using coherence between currently loaded volume and previously loaded volume in order to achieve real-time rendering based on 3-D texture mapping. Volume data are divided into small bricks and each brick being loaded is tested for similarity to one that was already loaded in memory. If the brick passes the test, it is defined as 3-D texture by OpenGL functions. Later, the texture slices of the brick are mapped into polygons and blended by OpenGL blending functions. All bricks undergo this test. Using continuous deforming, 50 volumes are rendered in interactive time with SGI ONYX. Realtime volume rendering based on 3-D texture mapping is currently available for personal computers.
Chae, Michael P; Hunter-Smith, David J; De-Silva, Inoka; Tham, Stephen; Spychal, Robert T; Rozen, Warren Matthew
2015-07-01
Over the last decade, image-guided production of three-dimensional (3D) haptic biomodels, or rapid prototyping (RP), has transformed the way surgeons conduct preoperative planning. In contrast to earlier RP techniques such as stereolithography, 3D printing has introduced fast, affordable office-based manufacturing. We introduce the concept of 4D printing for the first time by introducing time as the fourth dimension to 3D printing. The bones of the thumb ray are 3D printed during various movements to demonstrate four-dimensional (4D) printing. Principles and validation studies are presented here. 4D computed tomography was performed using "single volume acquisition" technology to reduce the exposure to radiation. Three representative scans of each thumb movement (i.e., abduction, opposition, and key pinch) were selected and then models were fabricated using a 3D printer. For validation, the angle between the first and the second metacarpals from the 4D imaging data and the 4D-printed model was recorded and compared. We demonstrate how 4D printing accurately depicts the transition in the position of metacarpals during thumb movement. With a fourth dimension of time, 4D printing delivers complex spatiotemporal anatomical details effortlessly and may substantially improve preoperative planning. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.
Yu, Jesang; Choi, Ji Hoon; Ma, Sun Young; Jeung, Tae Sig; Lim, Sangwook
2015-09-01
To compare audio-only biofeedback to conventional audiovisual biofeedback for regulating patients' respiration during four-dimensional radiotherapy, limiting damage to healthy surrounding tissues caused by organ movement. Six healthy volunteers were assisted by audiovisual or audio-only biofeedback systems to regulate their respirations. Volunteers breathed through a mask developed for this study by following computer-generated guiding curves displayed on a screen, combined with instructional sounds. They then performed breathing following instructional sounds only. The guiding signals and the volunteers' respiratory signals were logged at 20 samples per second. The standard deviations between the guiding and respiratory curves for the audiovisual and audio-only biofeedback systems were 21.55% and 23.19%, respectively; the average correlation coefficients were 0.9778 and 0.9756, respectively. The regularities between audiovisual and audio-only biofeedback for six volunteers' respirations were same statistically from the paired t-test. The difference between the audiovisual and audio-only biofeedback methods was not significant. Audio-only biofeedback has many advantages, as patients do not require a mask and can quickly adapt to this method in the clinic.
Four-dimensional flow-sensitive MRI of the thoracic aorta: 12- versus 32-channel coil arrays.
Stalder, Aurélien F; Dong, Zhiyuan; Yang, Qi; Bock, Jelena; Hennig, Jürgen; Markl, Michael; Li, Kuncheng
2012-01-01
To evaluate the performance of four-dimensional (4D) flow-sensitive MRI in the thoracic aorta using 12- and 32-channel coils and parallel imaging. 4D flow-sensitive MRI was performed in the thoracic aorta of 11 healthy volunteers at 3 Tesla (T) using different coils and parallel imaging (GRAPPA) accelerations (R): (i) 12-channel coil, R = 2; (ii) 12-channel coil, R = 3; (iii) 32-channel coil, R = 3. The quantitative analysis included SNR, residual velocity divergence and length and curvature of traces (streamlines and pathlines) as used for 3D flow visualization. In addition, semi-quantitative image grading was performed to assess quality of phase-contrast angiography and 3D flow visualization. Parallel imaging with an acceleration factor R = 3 allowed to save 19.5 ± 5% measurement time compared with R = 2 (14.2 ± 2.4 min). Acquisition using 12 channels with R = 2 and 32 channels with R = 3 produced data with significantly (P < 0.05) higher quality compared with 12 channels and R = 3. There was no significant difference between 12 channels with R = 2 and 32 channels with R = 3 but for the depiction of supra-aortic branches where the 32-channel coil proved superior. Using 32-channel coils is beneficial for 4D flow-sensitive MRI of the thoracic aorta and can allow for a reduction of total scan time while maintaining overall image quality. Copyright © 2011 Wiley Periodicals, Inc.
Liu, Jing; Redmond, Michael J; Brodsky, Ethan K; Alexander, Andrew L; Lu, Aiming; Thornton, Francis J; Schulte, Michael J; Grist, Thomas M; Pipe, James G; Block, Walter F
2006-02-01
Time-resolved contrast-enhanced magnetic resonance (MR) angiography (CE-MRA) has gained in popularity relative to X-ray Digital Subtraction Angiography because it provides three-dimensional (3-D) spatial resolution and it is less invasive. We have previously presented methods that improve temporal resolution in CE-MRA while providing high spatial resolution by employing an undersampled 3-D projection (3D PR) trajectory. The increased coverage and isotropic resolution of the 3D PR acquisition simplify visualization of the vasculature from any perspective. We present a new algorithm to develop a set of time-resolved 3-D image volumes by preferentially weighting the 3D PR data according to its acquisition time. An iterative algorithm computes a series of density compensation functions for a regridding reconstruction, one for each time frame, that exploit the variable sampling density in 3D PR. The iterative weighting procedure simplifies the calculation of appropriate density compensation for arbitrary sampling patterns, which improve sampling efficiency and, thus, signal-to-noise ratio and contrast-to-noise ratio, since it is does not require a closed-form calculation based on geometry. Current medical workstations can display these large four-dimensional studies, however, interactive cine animation of the data is only possible at significantly degraded resolution. Therefore, we also present a method for interactive visualization using powerful graphics cards and distributed processing. Results from volunteer and patient studies demonstrate the advantages of dynamic imaging with high spatial resolution.
Shekhar, Raj; Zagrodsky, Vladimir
2003-12-01
Four-dimensional (4-D) imaging to capture the three-dimensional (3-D) structure and motion of the heart in real time is an emerging trend. We present here our method of interactive multiplanar reformatting (MPR), i.e., the ability to visualize any chosen anatomical cross section of 4-D cardiac images and to change its orientation smoothly while maintaining the original heart motion. Continuous animation to show the time-varying 3-D geometry of the heart and smooth dynamic manipulation of the reformatted planes, as well as large image size (100-300 MB), make MPR challenging. Our solution exploits the hardware acceleration of 3-D texture mapping capability of high-end commercial PC graphics boards. Customization of volume subdivision and caching concepts to periodic cardiac data allows us to use this hardware effectively and efficiently. We are able to visualize and smoothly interact with real-time 3-D ultrasound cardiac images at the desired frame rate (25 Hz). The developed methods are applicable to MPR of one or more 3-D and 4-D medical images, including 4-D cardiac images collected in a gated fashion.
Sitnik, Robert; Witkowski, Marcin
2008-01-01
Four-dimensional (4D) (3D+time) measurement systems make it possible today to measure objects while moving and deforming. One of the fields where 4D systems prove themselves useful is medicine--particularly orthopedics and neural sciences--where measurement results may be used to estimate dynamic parameters of a patient's movement. Relatively new in 4D, optical full-field shape measurement systems capture more data than standard marker-based systems and open new ways for clinical diagnosis. However, before this is possible, the appropriate 4D data processing and analysis methods need to be developed. We present a new data analysis path for 4D data input as well as new shape parameters describing local features of a surface. The developed shape parameters are easier and quicker to calculate than standard surface parameters, such as curvatures, but they give results that are very similar to the latter. The presented 4D data analysis path allows characteristic areas on the body, so-called anatomical landmarks, to be located and traces them in time along the measurement sequence. We also present the general concepts and describe selected steps of the developed 4D data analysis path. The algorithms were implemented and tested on real and computer-generated data representing the surface of lower limbs. Finally, we give sample processing and analysis results.
NASA Astrophysics Data System (ADS)
Zupanski, Dušanka
1993-10-01
A tangent linear and an adjoint of the large-scale precipitation and the cumulus convection processes in the National Meteorological Center's NMC/ETA regional forecast model are developed. The effects of discontinuities in the Betts Miller cumulus convection scheme are examined and applicability of derivative minimization methods in four-dimensional variational (4D VAR) data assimilation is considered. It is demonstrated that discontinuities present in the control Betts Miller cumulus convection scheme increase linearization errors to a large extent and have adverse effects on 4D VAR data assimilation. In the experiments performed, discontinuities in the cumulus convection scheme have the most serious effect in low layers. These problems can be reduced by modifying the scheme to make it more continuous in low layers. Positive effects of inclusion of cumulus convection in 4D VAR data assimilation are found in upper layers, especially in humidity fields. The "observations" used are optimal interpolation analyses of temperature, surface pressure, wind and specific humidity. By inclusion of other data, more closely related to the convective processes, such as precipitation and clouds, more benefits should be expected. Even with the difficulties caused by discontinuities, derivative minimization techniques appear to work for the data assimilation problems. In order to get more general conclusions, more experiments are needed with different synoptic situations. The inclusion of other important physical processes such as radiation, surface friction and turbulence in the forecast and the corresponding adjoint models could alter the results since they may reinforce the effects of discontinuities.
Cai, Jing; Chang, Zheng; Wang, Zhiheng; Paul Segars, William; Yin, Fang-Fang
2011-01-01
Purpose: Four-dimensional computed tomography (4D-CT) has been widely used in radiation therapy to assess patient-specific breathing motion for determining individual safety margins. However, it has two major drawbacks: low soft-tissue contrast and an excessive imaging dose to the patient. This research aimed to develop a clinically feasible four-dimensional magnetic resonance imaging (4D-MRI) technique to overcome these limitations. Methods: The proposed 4D-MRI technique was achieved by continuously acquiring axial images throughout the breathing cycle using fast 2D cine-MR imaging, and then retrospectively sorting the images by respiratory phase. The key component of the technique was the use of body area (BA) of the axial MR images as an internal respiratory surrogate to extract the breathing signal. The validation of the BA surrogate was performed using 4D-CT images of 12 cancer patients by comparing the respiratory phases determined using the BA method to those determined clinically using the Real-time position management (RPM) system. The feasibility of the 4D-MRI technique was tested on a dynamic motion phantom, the 4D extended Cardiac Torso (XCAT) digital phantom, and two healthy human subjects. Results: Respiratory phases determined from the BA matched closely to those determined from the RPM: mean (±SD) difference in phase: −3.9% (±6.4%); mean (±SD) absolute difference in phase: 10.40% (±3.3%); mean (±SD) correlation coefficient: 0.93 (±0.04). In the motion phantom study, 4D-MRI clearly showed the sinusoidal motion of the phantom; image artifacts observed were minimal to none. Motion trajectories measured from 4D-MRI and 2D cine-MRI (used as a reference) matched excellently: the mean (±SD) absolute difference in motion amplitude: −0.3 (±0.5) mm. In the 4D-XCAT phantom study, the simulated “4D-MRI” images showed good consistency with the original 4D-XCAT phantom images. The motion trajectory of the hypothesized “tumor” matched
Zhang Peng; Hugo, Geoffrey D.; Yan Di
2008-11-15
Purpose: Real-time target tracking (RT-TT) and four-dimensional inverse planning (4D-IP) are two potential methods to manage respiratory target motion. In this study, we evaluated each method using the cumulative dose-volume criteria in lung cancer radiotherapy. Methods and Materials: Respiration-correlated computed tomography scans were acquired for 4 patients. Deformable image registration was applied to generate a displacement mapping for each phase image of the respiration-correlated computed tomography images. First, the dose distribution for the organs of interest obtained from an idealized RT-TT technique was evaluated, assuming perfect knowledge of organ motion and beam tracking. Inverse planning was performed on each phase image separately. The treatment dose to the organs of interest was then accumulated from the optimized plans. Second, 4D-IP was performed using the probability density function of respiratory motion. The beam arrangement, prescription dose, and objectives were consistent in both planning methods. The dose-volume and equivalent uniform dose in the target volume, lung, heart, and spinal cord were used for the evaluation. Results: The cumulative dose in the target was similar for both techniques. The equivalent uniform dose of the lung, heart, and spinal cord was 4.6 {+-} 2.2, 11 {+-} 4.4, and 11 {+-} 6.6 Gy for RT-TT with a 0-mm target margin, 5.2 {+-} 3.1, 12 {+-} 5.9, and 12 {+-} 7.8 Gy for RT-TT with a 2-mm target margin, and 5.3 {+-} 2.3, 11.9 {+-} 5.0, and 12 {+-} 5.6 Gy for 4D-IP, respectively. Conclusion: The results of our study have shown that 4D-IP can achieve plans similar to those achieved by RT-TT. Considering clinical implementation, 4D-IP could be a more reliable and practical method to manage patient respiration-induced motion.
Yamamoto, Tokihiro; Kabus, Sven; Berg, Jens von; Lorenz, Cristian; Keall, Paul J.
2011-01-01
Purpose: To quantify the dosimetric impact of four-dimensional computed tomography (4D-CT) pulmonary ventilation imaging-based functional treatment planning that avoids high-functional lung regions. Methods and Materials: 4D-CT ventilation images were created from 15 non-small-cell lung cancer patients using deformable image registration and quantitative analysis of the resultant displacement vector field. For each patient, anatomic and functional plans were created for intensity-modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT). Consistent beam angles and dose-volume constraints were used for all cases. The plans with Radiation Therapy Oncology Group (RTOG) 0617-defined major deviations were modified until clinically acceptable. Functional planning spared the high-functional lung, and anatomic planning treated the lungs as uniformly functional. We quantified the impact of functional planning compared with anatomic planning using the two- or one-tailed t test. Results: Functional planning led to significant reductions in the high-functional lung dose, without significantly increasing other critical organ doses, but at the expense of significantly degraded the planning target volume (PTV) conformity and homogeneity. The average reduction in the high-functional lung mean dose was 1.8 Gy for IMRT (p < .001) and 2.0 Gy for VMAT (p < .001). Significantly larger changes occurred in the metrics for patients with a larger amount of high-functional lung adjacent to the PTV. Conclusion: The results of the present study have demonstrated the impact of 4D-CT ventilation imaging-based functional planning for IMRT and VMAT for the first time. Our findings indicate the potential of functional planning in lung functional avoidance for both IMRT and VMAT, particularly for patients who have high-functional lung adjacent to the PTV.
Arvidsson, Per M; Töger, Johannes; Heiberg, Einar; Carlsson, Marcus; Arheden, Håkan
2013-05-15
Kinetic energy (KE) of atrial blood has been postulated as a possible contributor to ventricular filling. Therefore, we aimed to quantify the left (LA) and right (RA) atrial blood KE using cardiac magnetic resonance (CMR). Fifteen healthy volunteers underwent CMR at 3 T, including a four-dimensional phase-contrast flow sequence. Mean LA KE was lower than RA KE (1.1 ± 0.1 vs. 1.7 ± 0.1 mJ, P < 0.01). Three KE peaks were seen in both atria: one in ventricular systole, one during early ventricular diastole, and one during atrial contraction. The systolic LA peak was significantly smaller than the RA peak (P < 0.001), and the early diastolic LA peak was larger than the RA peak (P < 0.05). Rotational flow contained 46 ± 7% of total KE and conserved energy better than nonrotational flow did. The KE increase in early diastole was higher in the LA (P < 0.001). Systolic KE correlated with the combination of atrial volume and systolic velocity of the atrioventricular plane displacement (r(2) = 0.57 for LA and r(2) = 0.64 for RA). Early diastolic KE of the LA correlated with left ventricle (LV) mass (r(2) = 0.28), however, no such correlation was found in the right heart. This suggests that LA KE increases during early ventricular diastole due to LV elastic recoil, indicating that LV filling is dependent on diastolic suction. Right ventricle (RV) relaxation does not seem to contribute to atrial KE. Instead, RA KE generated during ventricular systole may be conserved in a hydraulic "flywheel" and transferred to the RV through helical flow, which may contribute to RV filling.
Jin, Peng; Hulshof, Maarten C C M; de Jong, Rianne; van Hooft, Jeanin E; Bel, Arjan; Alderliesten, Tanja
2016-03-01
Respiration-induced tumor motion is an important geometrical uncertainty in esophageal cancer radiation therapy. The aim of this study was to quantify this motion using fiducial markers and four-dimensional computed tomography (4DCT). Twenty esophageal cancer patients underwent endoscopy-guided marker implantation in the tumor volume and 4DCT acquisition. The 4DCT data were sorted into 10 breathing phases and the end-of-inhalation phase was selected as reference. We quantified for each visible marker (n=60) the motion in each phase and derived the peak-to-peak motion magnitude throughout the breathing cycle. The motion was quantified and analyzed for four different regions and in three orthogonal directions. The median(interquartile range) of the peak-to-peak magnitudes of the respiration-induced marker motion (left-right/anterior-posterior/cranial-caudal) was 1.5(0.5)/1.6(0.5)/2.9(1.4) mm for the proximal esophagus (n=6), 1.5(1.4)/1.4(1.3)/3.7(2.6) mm for the middle esophagus (n=12), 2.6(1.3)/3.3(1.8)/5.4(2.9) mm for the distal esophagus (n=25), and 3.7(2.1)/5.3(1.8)/8.2(3.1) mm for the proximal stomach (n=17). The variations in the results between the three directions, four regions, and patients suggest the need of individualized region-dependent anisotropic internal margins. Therefore, we recommend using markers with 4DCT to patient-specifically adapt the internal target volume (ITV). Without 4DCT, 3DCTs at the end-of-inhalation and end-of-exhalation phases could be alternatively applied for ITV individualization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Aden, Abdirahman; Anthony, Arthi; Brigi, Carel; Merchant, Muhammad Sabih; Siraj, Huda; Tomlins, Peter H.
2017-07-01
Dental enamel mineral loss is multifactorial and is consequently explored using a variety of in vitro models. Important factors include the presence of acidic pH and its specific ionic composition, which can both influence lesion characteristics. Optical coherence tomography (OCT) has been demonstrated as a promising tool for studying dental enamel demineralization. However, OCT-based characterization and comparison of demineralization model dynamics are challenging without a consistent experimental environment. Therefore, an automated four-dimensional OCT system was integrated with a multispecimen flow cell to measure and compare the optical properties of subsurface enamel demineralization in different models. This configuration was entirely automated, thus mitigating any need to disturb the specimens and ensuring spatial registration of OCT image volumes at multiple time points. Twelve bovine enamel disks were divided equally among three model groups. The model demineralization solutions were citric acid (pH 3.8), acetic acid (pH 4.0), and acetic acid with added calcium and phosphate (pH 4.4). Bovine specimens were exposed to the solution continuously for 48 h. Three-dimensional OCT data were obtained automatically from each specimen at a minimum of 1-h intervals from the same location within each specimen. Lesion dynamics were measured in terms of the depth below the surface to which the lesion extended and the attenuation coefficient. The net loss of surface enamel was also measured for comparison. Similarities between the dynamics of each model were observed, although there were also distinct characteristic differences. Notably, the attenuation coefficients showed a systematic offset and temporal shift with respect to the different models. Furthermore, the lesion depth curves displayed a discontinuous increase several hours after the initial acid challenge. This work demonstrated the capability of OCT to distinguish between different enamel demineralization
OBrien, R; Shieh, C; Kipritidis, J; Keall, P
2014-06-15
Purpose: Four dimensional cone beam computed tomography (4DCBCT) is an emerging image guidance strategy but it can suffer from poor image quality. To avoid repeating scans it is beneficial to make the best use of the imaging data obtained. For conventional 4DCBCT the location and size of respiratory bins is fixed and projections are allocated to the respiratory bin within which it falls. Strictly adhering to this rule is unnecessary and can compromise image quality. In this study we optimize the size and location of respiratory bins and allow projections to be sourced from adjacent phases of the respiratory cycle. Methods: A mathematical optimization framework using mixed integer quadratic programming has been developed that determines when to source projections from adjacent respiratory bins and optimizes the size and location of the bins. The method, which we will call projection sharing, runs in under 2 seconds of CPU time. Five 4DCBCT datasets of stage III-IV lung cancer patients were used to test the algorithm. The standard deviation of the angular separation between projections (SD-A) and the standard deviation in the volume of the reconstructed fiducial gold coil (SD-V) were used as proxies to measure streaking artefacts and motion blur respectively. Results: The SD-A using displacement binning and projection sharing was 30%–50% smaller than conventional phase based binning and 59%–76% smaller than conventional displacement binning indicating more uniformly spaced projections and fewer streaking artefacts. The SD-V was 20–90% smaller when using projection sharing than using conventional phase based binning suggesting more uniform marker segmentation and less motion blur. Conclusion: Image quality was visibly and significantly improved with projection sharing. Projection sharing does not require any modifications to existing hardware and offers a more robust replacement to phase based binning, or, an option if phase based reconstruction is not of a
Development of a four-dimensional image-guided radiotherapy system with a gimbaled X-ray head
Kamino, Yuichiro . E-mail: daisaku_horiuchi@mhi.co.jp; Takayama, Kenji; Kokubo, Masaki; Narita, Yuichiro; Hirai, Etsuro; Kawawda, Noriyuki; Mizowaki, Takashi; Nagata, Yasushi; Nishidai, Takehiro; Hiraoka, Masahiro
2006-09-01
Purpose: To develop and evaluate a new four-dimensional image-guided radiotherapy system, which enables precise setup, real-time tumor tracking, and pursuit irradiation. Methods and Materials: The system has an innovative gimbaled X-ray head that enables small-angle ({+-}2.4{sup o}) rotations (pan and tilt) along the two orthogonal gimbals. This design provides for both accurate beam positioning at the isocenter by actively compensating for mechanical distortion and quick pursuit of the target. The X-ray head is composed of an ultralight C-band linear accelerator and a multileaf collimator. The gimbaled X-ray head is mounted on a rigid O-ring structure with an on-board imaging subsystem composed of two sets of kilovoltage X-ray tubes and flat panel detectors, which provides a pair of radiographs, cone beam computed tomography images useful for image guided setup, and real-time fluoroscopic monitoring for pursuit irradiation. Results: The root mean square accuracy of the static beam positioning was 0.1 mm for 360{sup o} of O-ring rotation. The dynamic beam response and positioning accuracy was {+-}0.6 mm for a 0.75 Hz, 40-mm stroke and {+-}0.4 mm for a 2.0 Hz, 8-mm stroke. The quality of the images was encouraging for using the tomography-based setup. Fluoroscopic images were sufficient for monitoring and tracking lung tumors. Conclusions: Key functions and capabilities of our new system are very promising for precise image-guided setup and for tracking and pursuit irradiation of a moving target.
Patel, Abhijit A.; Wolfgang, John A.; Niemierko, Andrzej; Hong, Theodore S.; Yock, Torunn; Choi, Noah C.
2009-05-01
Purpose: To evaluate the respiratory motion of primary esophageal cancers and pathologic celiac-region lymph nodes using time-resolved four-dimensional computed tomography (4D CT). Methods and Materials: Respiration-synchronized 4D CT scans were obtained to quantify the motion of primary tumors located in the proximal, mid-, or distal thoracic esophagus, as well as any involved celiac-region lymph nodes. Respiratory motion was measured in the superior-inferior (SI), anterior-posterior (AP), and left-right (LR) directions and was analyzed for correlation with anatomic location. Recommended margin expansions were determined for both primary and nodal targets. Results: Thirty patients underwent 4D CT scans at Massachusetts General Hospital for planned curative treatment of esophageal cancer. Measurements of respiratory tumor motion were obtained for 1 proximal, 4 mid-, and 25 distal esophageal tumors, as well as 12 involved celiac-region lymph nodes. The mean (SD) peak-to-peak displacements of all primary tumors in the SI, AP, and LR dimensions were 0.80 (0.45) cm, 0.28 (0.20) cm, and 0.22 (0.23) cm, respectively. Distal tumors were found to have significantly greater SI and AP motion than proximal or mid-esophageal tumors. The mean (SD) SI, AP, and LR peak-to-peak displacements of the celiac-region lymph nodes were 0.92 (0.56) cm, 0.46 (0.27) cm, and 0.19 (0.26) cm, respectively. Conclusions: Margins of 1.5 cm SI, 0.75 cm AP, and 0.75 cm LR would account for respiratory tumor motion of >95% of esophageal primary tumors in the dataset. All celiac-region lymph nodes would be adequately covered with SI, AP, and LR margins of 2.25 cm, 1.0 cm, and 0.75 cm, respectively.
TH-A-19A-10: Fast Four Dimensional Monte Carlo Dose Computations for Proton Therapy of Lung Cancer
Mirkovic, D; Titt, U; Mohan, R; Yepes, P
2014-06-15
Purpose: To develop and validate a fast and accurate four dimensional (4D) Monte Carlo (MC) dose computation system for proton therapy of lung cancer and other thoracic and abdominal malignancies in which the delivered dose distributions can be affected by respiratory motion of the patient. Methods: A 4D computer tomography (CT) scan for a lung cancer patient treated with protons in our clinic was used to create a time dependent patient model using our in-house, MCNPX-based Monte Carlo system (“MC{sup 2}”). The beam line configurations for two passively scattered proton beams used in the actual treatment were extracted from the clinical treatment plan and a set of input files was created automatically using MC{sup 2}. A full MC simulation of the beam line was computed using MCNPX and a set of phase space files for each beam was collected at the distal surface of the range compensator. The particles from these phase space files were transported through the 10 voxelized patient models corresponding to the 10 phases of the breathing cycle in the 4DCT, using MCNPX and an accelerated (fast) MC code called “FDC”, developed by us and which is based on the track repeating algorithm. The accuracy of the fast algorithm was assessed by comparing the two time dependent dose distributions. Results: The error of less than 1% in 100% of the voxels in all phases of the breathing cycle was achieved using this method with a speedup of more than 1000 times. Conclusion: The proposed method, which uses full MC to simulate the beam line and the accelerated MC code FDC for the time consuming particle transport inside the complex, time dependent, geometry of the patient shows excellent accuracy together with an extraordinary speed.
NASA Astrophysics Data System (ADS)
Peng, G. S.; Hou, C. Y.; Rife, D. L.; Dattore, R.
2014-12-01
Wind energy cost models incur inaccuracies from uncertainty in ambient wind measurements and estimates. This inhibits the best possible investment in wind energy infrastructure and management systems. High-resolution temporal and spatial wind data needed for wind availability analysis—usually created with regional-scale models—have traditionally been proprietary and costly to obtain. Freely available global model data suffers from either lower spatial or temporal resolution, or both. Low spatial resolution fails to realistically represent wind speeds in complex terrain. Low temporal resolution fails to capture the full diurnal cycle of wind behavior. The NCAR Global Climate Four-Dimensional Data Assimilation (CFDDA) Hourly 40 km Reanalysis was developed in 2009-2010 by the Research Applications Laboratory (RAL) to provide the most accurate boundary layer wind estimates available at that time. CFDDA used 28 sigma levels, with 19 between the surface and 700 hPa, a four-fold improvement over the contemporary NWP models. The dataset spans 21 years, 1985-2005, providing hourly atmospheric parameters, including winds, on 28 vertical levels on a global 40 km grid. This presentation will introduce the modeling and assimilation strategy, highlight the available data content including the parameter set, and review the data access options available from the RDA. CFDDA project partners, Defense Threat Reduction Agency (DTRA), NCAR RAL and NCAR Mesoscale & Microscale Meteorology (MMM) divisions are offering this dataset to the public for free with minor restrictions. NCAR Research Data Archive (RDA), hosted by the Computational and Information Systems Laboratory, provides data support. It is available at http://rda.ucar.edu/datasets/ds604.0/
NASA Astrophysics Data System (ADS)
Nadtochy, P. N.; Ryabov, E. G.; Cheredov, A. V.; Adeev, G. D.
2016-10-01
A stochastic approach based on four-dimensional Langevin fission dynamics is applied to the calculation of a wide set of experimental observables of excited compound nuclei from 199Pb to 248Cf formed in reactions induced by heavy ions. In the model under investigation, the tilting degree of freedom ( K coordinate) representing the projection of the total angular momentum onto the symmetry axis of the nucleus is taken into account in addition to three collective shape coordinates introduced on the basis of {c,h,α} parametrization. The evolution of the K coordinate is described by means of the Langevin equation in the overdamped regime. The friction tensor for the shape collective coordinates is calculated under the assumption of the modified version of the one-body dissipation mechanism, where the reduction coefficient ks of the contribution from the "wall" formula is introduced. The calculations are performed both for the constant values of the coefficient ks and for the coordinate-dependent reduction coefficient ks(q) which is found on the basis of the "chaos-weighted wall formula". Different possibilities of the deformation-dependent dissipation coefficient (γK) for the K coordinate are investigated. The presented results demonstrate that an impact of the ks and γK parameters on the calculated observable fission characteristics can be selectively probed. It was found that it is possible to describe the experimental data consistently with the deformation-dependent γK(q) coefficient for shapes featuring a neck, which predicts quite small values of γK=0.0077 (MeV zs)-1/2 and constant γK=0.1-0.4 (MeV zs)-1/2 for compact shapes featuring no neck.
NASA Astrophysics Data System (ADS)
Avolio, E.; Federico, S.; Sempreviva, A. M.; Calidonna, C. R.; de Leo, L.; Bellecci, C.
2010-09-01
A four-dimensional data assimilation (FDDA) scheme based on a Newtonian relaxation (or "nudging") was tested using observational asynoptic data available at a coastal site in the Central Mediterranean peninsula of Calabria, in South Italy. Since nudging is performed toward observations, the technique is referred to as "observational data assimilation (ODA)" and it was incorporated into a tailored version of the Regional Atmospheric Modeling System (RAMS). This version of RAMS was run at high spatial horizontal resolution (1km), with the purpose of investigating the improvements of the model performance obtained by the assimilation. Wind profiler, sodar and surface meteorological station measurements were considered. In particular, we assimilated vertical wind profiles from the sodar and wind profiler, and wind, temperature and specific humidity from the surface meteorological station. All instruments are installed and operated routinely at the experimental field of the ISAC/CNR-CRATI located at 600 m from the Tyrrhenian coastline. A second station, located few kilometres to the NE of the experimental field, is considered as independent verification. The RAMS meteorological fields, simulated with and without data assimilation, were evaluated and compared for selected case studies in the summer 2008; several experiments were performed for each case (assimilation for the entire simulation time, and for different time windows). The results show that the assimilation of wind and/or temperature data, both throughout the simulation time (continuous FDDA) and for a 12h time window (forecasting configuration), produces improvements of the model performance. Improvements are substantial (50% error reduction) in the case of continuous FDDA, while they are reduced in the case of forecasting configuration (5% to 20% error reduction, depending on cases). The obtained meteorological fields are finalised as input into air quality and agro-meteorological models, and also for
Gui Minzhi; Feng Yuanming; Yi Byongyong; Dhople, Anil Arvind; Yu, Cedric
2010-05-15
Purpose: Planning for the delivery of intensity-modulated radiation therapy (IMRT) to a moving target, referred to as four-dimensional (4D) IMRT planning, is a crucial step for achieving the treatment objectives for sites that move during treatment delivery. The authors proposed a simplistic method that accounts for both rigid and nonrigid respiration-induced target motion based on 4D computed tomography (4DCT) data sets. Methods: A set of MLC apertures and weights was first optimized on a reference phase of a 4DCT data set. At each beam angle, the apertures were morphed from the reference phase to each of the remaining phases according to the relative shape changes in the beam's eye view of the target. Three different planning schemes were evaluated for two lung cases and one pancreas patient: (1) Individually optimizing each breathing phase; (2) optimizing the reference phase and shifting the optimized apertures to other breathing phases based on a rigid-body image registration; and (3) optimizing the reference phase and deforming the optimized apertures to the other phases based on the deformation and translation of target contours. Planning results using scheme 1 serves as the ''gold standard'' for plan quality assessment; scheme 2 is the method previously proposed in the literature; and scheme 3 is the method the authors proposed in this article. The optimization results were compared between the three schemes for all three cases. Results: The proposed scheme 3 is comparable to scheme 1 in plan quality, and provides improved target coverage and conformity with similar normal tissue dose compared with scheme 2. Conclusions: Direct aperture deformation method for 4D IMRT planning improves upon methods that only consider rigid-body motion and achieves a plan quality close to that optimized for each of the phases.
Wang, Wei; Li, Jianbin; Zhang, Yingjie; Shao, Qian; Xu, Min; Guo, Bing; Shang, Dongping
2016-01-01
To investigate the correlation of gross tumor volume (GTV) motion with the structure of interest (SOI) motion and volume variation for middle and distal esophageal cancers using four-dimensional computed tomography (4DCT). Thirty-three patients with middle or distal esophageal carcinoma underwent 4DCT simulation scan during free breathing. All image sets were registered with 0% phase, and the GTV, apex of diaphragm, lung, and heart were delineated on each phase of the 4DCT data. The position of GTV and SOI was identified in all 4DCT phases, and the volume of lung and heart was also achieved. The phase relationship between the GTV and SOI was estimated through Pearson's correlation test. The mean peak-to-peak displacement of all primary tumors in the lateral (LR), anteroposterior (AP), and superoinferior (SI) directions was 0.13 cm, 0.20 cm, and 0.30 cm, respectively. The SI peak-to-peak motion of the GTV was defined as the greatest magnitude of motion. The displacement of GTV correlated well with heart in three dimensions and significantly associated with bilateral lung in LR and SI directions. A significant correlation was found between the GTV and apex of the diaphragm in SI direction (r left=0.918 and r right=0.928). A significant inverse correlation was found between GTV motion and varying lung volume, but the correlation was not significant with heart (r LR=-0.530, r AP=-0.531, and r SI=-0.588) during respiratory cycle. For middle and distal esophageal cancers, GTV should expand asymmetric internal margins. The primary tumor motion has quite good correlation with diaphragm, heart, and lung.
Castillo-Chará, J; McIntosh, A L; Wang, Z; Lucchese, R R; Bevan, J W
2004-06-08
Supersonic jet investigations of the (HBr)(2) dimer have been carried out using a tunable diode laser spectrometer to provide accurate data for comparison with results from a four-dimensional (4-D) ab initio potential energy surface (PES). The near-infrared nu(1) (+/-), nu(2) (+/-), and (nu(1)+nu(4))(-) bands of (H (79)Br)(2), (H (79)Br-H (81)Br), and (H (81)Br)(2) isotopomers have been recorded in the range 2500-2600 cm(-1) using a CW slit jet expansion with an upgraded near-infrared diode laser spectrometer. The 4-D PES has been calculated for (HBr)(2) using second-order Møller-Plesset perturbation theory with an augmented and polarized 6-311G basis set. The potential is characterized by a global minimum occurring at the H bond structure with the distance between the center of masses (CM) of the monomer being R(CM)=4.10 A with angles theta(A)=10 degrees, theta(B)=100 degrees and a well depth of 692.2 cm(-1), theta(A) is the angle the HBr bond of monomer A makes with the vector from the CM of A to the CM of B, and theta(B) is the corresponding angle monomer B makes with the same CM-CM vector. The barrier for the H interchange occurs at the closed C(2h) structure for which R(CM)=4.07 A, theta(A)=45 degrees, theta(B)=135 degrees, and the barrier height is 73.9 cm(-1). The PES was fitted using a linear-least squares method and the rovibrational energy levels of the complex were calculated by a split pseudospectral method. The spectroscopic data provide accurate molecular parameters for the dimer that are then compared with the results predicted on the basis of the 4-D ab initio PES.
A four-dimensional motion field atlas of the tongue from tagged and cine magnetic resonance imaging
NASA Astrophysics Data System (ADS)
Xing, Fangxu; Prince, Jerry L.; Stone, Maureen; Wedeen, Van J.; El Fakhri, Georges; Woo, Jonghye
2017-02-01
Representation of human tongue motion using three-dimensional vector fields over time can be used to better understand tongue function during speech, swallowing, and other lingual behaviors. To characterize the inter-subject variability of the tongue's shape and motion of a population carrying out one of these functions it is desirable to build a statistical model of the four-dimensional (4D) tongue. In this paper, we propose a method to construct a spatio-temporal atlas of tongue motion using magnetic resonance (MR) images acquired from fourteen healthy human subjects. First, cine MR images revealing the anatomical features of the tongue are used to construct a 4D intensity image atlas. Second, tagged MR images acquired to capture internal motion are used to compute a dense motion field at each time frame using a phase-based motion tracking method. Third, motion fields from each subject are pulled back to the cine atlas space using the deformation fields computed during the cine atlas construction. Finally, a spatio-temporal motion field atlas is created to show a sequence of mean motion fields and their inter-subject variation. The quality of the atlas was evaluated by deforming cine images in the atlas space. Comparison between deformed and original cine images showed high correspondence. The proposed method provides a quantitative representation to observe the commonality and variability of the tongue motion field for the first time, and shows potential in evaluation of common properties such as strains and other tensors based on motion fields.
Ruben, J D; Seeley, A; Panettieri, V; Ackerly, T
2016-01-01
To investigate variation in tumour breathing motion (TBM) between the planning four-dimensional computed tomograph (4DCT) and treatment itself for primary or secondary lung tumours undergoing stereotactic ablative radiotherapy (SABR). Sixteen consecutive patients underwent planning 4DCT at least 1 week after implantation of a fiducial marker. The maximal extent of breathing motion of the intra-tumoural fiducial was measured at 4DCT and again at delivery of each SABR fraction on the linac using stereoscopic kilovoltage imaging. Displacements of the fiducial beyond planned limits were measured in three dimensions and represented as vectors. Variation in breathing motion between the planning 4DCT and treatment, and between individual SABR fractions was analysed. Although TBM at treatment exceeded planned tumour motion limits for at least part of the course for all patients, 31% of patients remained consistently within 1 mm, 50% within 2 mm and 69% consistently within 3 mm of planned parameters. However, 19% of patients experienced TBM variation 5 mm or more beyond planned limits for at least one fraction. For all patients, the median displacement vector at treatment beyond the planned motion envelope was 1.0 mm (mean 2.0 mm, range 0-12.7 mm). Variation in TBM at treatment from 4DCT correlated neither with the magnitude of TBM at 4DCT nor with planning target volume size (rs = 0.13, P = 0.62; rs = 0.02, P = 0.94, respectively). Nor was TBM variation related to tumour type or lobar position (P = 0.35, P = 0.06, respectively). Inter-fraction TBM variation was modest, with an average standard deviation of 1.7 mm (0.3-8.7 mm). TBM variation between 4DCT and treatment and between SABR fractions was modest for most patients. However, 19% of patients experienced significant TBM variation that could be clinically relevant for those most severely affected. It seems prudent to carry out on-couch assessment of TBM at each SABR fraction to identify such patients who might benefit
NASA Astrophysics Data System (ADS)
Naji, J.
2016-01-01
In this paper, we considered new solutions for four-dimensional asymptotically AdS black holes with scalar hair and discuss about Hawking temperature in the context of dark energy by using the tunneling method. We obtain modification of the Hawking temperature due to presence of the dark energy.
2013-06-01
Implementation of the WRF Four-Dimensional Data Assimilation Method of Observation Nudging for Use as an ARL Weather Running Estimate-Nowcast...Method of Observation Nudging for Use as an ARL Weather Running Estimate-Nowcast Robert Dumais, Steve Kirby, and Robert Flanigan Computational and...Information Sciences Directorate, ARL Approved for public release; distribution is unlimited
NASA Astrophysics Data System (ADS)
Liu, Y.; Warner, T.; Wu, W.; Chen, F.; Boehnert, J.; Frehlich, R.; Swerdlin, S.
2008-12-01
Accurate high-resolution weather analyses and forecasts are very important for wind energy production and management. A Real-Time Four Dimensional Data Assimilation (RTFDDA) and forecasting system has been developed at NCAR to address meteorological needs for estimating wind- energy generation through downscaling with nested grids. The RTFDDA system is built around the Penn State/NCAR Mesoscale Model version 5 (MM5) and the Weather Research and Forecasting (WRF) model. It is capable of continuously collecting and ingesting diverse synoptic and asynoptic weather observations from conventional and unconventional platforms, and provides continuous 4-D synthetic weather analyses, nowcasts and short-term forecasts for mesoscale regions. Operational RTFDDA systems have been implemented at seven US Army test ranges and also have supported tens of other applications in military, public and private sectors in the last seven years, providing rapidly updated, multi-scale weather analyses and forecasts with the fine-mesh domain having 0.5 - 3 km grid increments. The observational data ingested by the system includes WMO standard upper-air and surface reports, wind profilers, satellite cloud-drift winds, commercial aircraft reports, all available mesonet data, radar observations, and any special instruments that report temperature, winds and moistures. Recently, the system has been expanded to include several new modeling and data assimilation capabilities that are highly valuable for wind energy applications: a) Ensemble RTFDDA, which is a multi-model, mesoscale data analysis and forecasting system that samples uncertainties in the major components of RTFDDA and predicts the uncertainties in the weather forecasts by performing an ensemble of RTFDDA analyses and forecasts; b) LES (Large Eddy Simulation) modeling, which is nested down from the RTFDDA mesoscale data assimilation and forecasts to LES models with grid sizes of ~100 m for wind farm regions using GIS 30-m resolution
Four-dimensional variational inversion of black carbon emissions during ARCTAS-CARB with WRFDA-Chem
NASA Astrophysics Data System (ADS)
Guerrette, Jonathan J.; Henze, Daven K.
2017-06-01
Biomass burning emissions of atmospheric aerosols, including black carbon, are growing due to increased global drought, and comprise a large source of uncertainty in regional climate and air quality studies. We develop and apply new incremental four-dimensional variational (4D-Var) capabilities in WRFDA-Chem to find optimal spatially and temporally distributed biomass burning (BB) and anthropogenic black carbon (BC) aerosol emissions. The constraints are provided by aircraft BC concentrations from the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites in collaboration with the California Air Resources Board (ARCTAS-CARB) field campaign and surface BC concentrations from the Interagency Monitoring of PROtected Visual Environment (IMPROVE) network on 22, 23, and 24 June 2008. We consider three BB inventories, including Fire INventory from NCAR (FINN) v1.0 and v1.5 and Quick Fire Emissions Database (QFED) v2.4r8. On 22 June, aircraft observations are able to reduce the spread between a customized QFED inventory and FINNv1.0 from a factor of 3. 5 ( × 3. 5) to only × 2. 1. On 23 and 24 June, the spread is reduced from × 3. 4 to × 1. 4. The posterior corrections to emissions are heterogeneous in time and space, and exhibit similar spatial patterns of sign for both inventories. The posterior diurnal BB patterns indicate that multiple daily emission peaks might be warranted in specific regions of California. The US EPA's 2005 National Emissions Inventory (NEI05) is used as the anthropogenic prior. On 23 and 24 June, the coastal California posterior is reduced by × 2, where highway sources dominate, while inland sources are increased near Barstow by × 5. Relative BB emission variances are reduced from the prior by up to 35 % in grid cells close to aircraft flight paths and by up to 60 % for fires near surface measurements. Anthropogenic variance reduction is as high as 40 % and is similarly limited to sources close to observations. We
Park, Justin C.; Kim, Jin Sung; Park, Sung Ho; Liu, Zhaowei; Song, Bongyong; Song, William Y.
2013-12-15
Purpose: Utilization of respiratory correlated four-dimensional cone-beam computed tomography (4DCBCT) has enabled verification of internal target motion and volume immediately prior to treatment. However, with current standard CBCT scan, 4DCBCT poses challenge for reconstruction due to the fact that multiple phase binning leads to insufficient number of projection data to reconstruct and thus cause streaking artifacts. The purpose of this study is to develop a novel 4DCBCT reconstruction algorithm framework called motion-map constrained image reconstruction (MCIR), that allows reconstruction of high quality and high phase resolution 4DCBCT images with no more than the imaging dose as well as projections used in a standard free breathing 3DCBCT (FB-3DCBCT) scan.Methods: The unknown 4DCBCT volume at each phase was mathematically modeled as a combination of FB-3DCBCT and phase-specific update vector which has an associated motion-map matrix. The motion-map matrix, which is the key innovation of the MCIR algorithm, was defined as the matrix that distinguishes voxels that are moving from stationary ones. This 4DCBCT model was then reconstructed with compressed sensing (CS) reconstruction framework such that the voxels with high motion would be aggressively updated by the phase-wise sorted projections and the voxels with less motion would be minimally updated to preserve the FB-3DCBCT. To evaluate the performance of our proposed MCIR algorithm, we evaluated both numerical phantoms and a lung cancer patient. The results were then compared with the (1) clinical FB-3DCBCT reconstructed using the FDK, (2) 4DCBCT reconstructed using the FDK, and (3) 4DCBCT reconstructed using the well-known prior image constrained compressed sensing (PICCS).Results: Examination of the MCIR algorithm showed that high phase-resolved 4DCBCT with sets of up to 20 phases using a typical FB-3DCBCT scan could be reconstructed without compromising the image quality. Moreover, in comparison with
Shieh, Chun-Chien; Kipritidis, John; O’Brien, Ricky T; Cooper, Benjamin J; Kuncic, Zdenka; Keall, Paul J
2015-01-01
Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp-Davis-Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan, and was compared to FDK, ASD-POCS, and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. For the patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing anatomical details compared to ASD-POCS, and
Mathew, Lindsay; Wheatley, Andrew; Castillo, Richard; Castillo, Edward; Rodrigues, George; Guerrero, Thomas; Parraga, Grace
2012-12-01
Pulmonary functional imaging using four-dimensional x-ray computed tomographic (4DCT) imaging and hyperpolarized (3)He magnetic resonance imaging (MRI) provides regional lung function estimates in patients with lung cancer in whom pulmonary function measurements are typically dominated by tumor burden. The aim of this study was to evaluate the quantitative spatial relationship between 4DCT and hyperpolarized (3)He MRI ventilation maps. Eleven patients with lung cancer provided written informed consent to 4DCT imaging and MRI performed within 11 ± 14 days. Hyperpolarized (3)He MRI was acquired in breath-hold after inhalation from functional residual capacity of 1 L hyperpolarized (3)He, whereas 4DCT imaging was acquired over a single tidal breath of room air. For hyperpolarized (3)He MRI, the percentage ventilated volume was generated using semiautomated segmentation; for 4DCT imaging, pulmonary function maps were generated using the correspondence between identical tissue elements at inspiratory and expiratory phases to generate percentage ventilated volume. After accounting for differences in image acquisition lung volumes ((3)He MRI: 1.9 ± 0.5 L ipsilateral, 2.3 ± 0.7 L contralateral; 4DCT imaging: 1.2 ± 0.3 L ipsilateral, 1.3 ± 0.4 L contralateral), there was no significant difference in percentage ventilated volume between hyperpolarized (3)He MRI (72 ± 11% ipsilateral, 79 ± 12% contralateral) and 4DCT imaging (74 ± 3% ipsilateral, 75 ± 4% contralateral). Spatial correspondence between 4DCT and (3)He MRI ventilation was evaluated using the Dice similarity coefficient index (ipsilateral, 86 ± 12%; contralateral, 88 ± 12%). Despite rather large differences in image acquisition breathing maneuvers, good spatial and significant quantitative agreement was observed for ventilation maps on hyperpolarized (3)He MRI and 4DCT imaging, suggesting that pulmonary regions with good lung function are similar between modalities in this small group of patients with
NASA Astrophysics Data System (ADS)
Taylor, Bryan Keith
Scope and method of study. The context and nature of self-efficacy beliefs provides a vector upon which to explore science instructors' perceptions of their own competence, self beliefs, and beliefs concerning their students as a function of ethnicity (Pajares, 1996). Currently, available cross-sectional data that concomitantly compares efficacy for environmental and general science curricula among instructors with contrasting class ethnicity distributions (CED) (minority vs. non-minority) is diminutive. Here, a modified research instrument that incorporates the Environmental Education Efficacy Belief Instrument (Sia, 1992), the Science Teaching Efficacy Beliefs Instrument (Riggs & Enochs, 1990), and factors 2 & 3 from the Ohio State Teacher Efficacy Scale (Tschannen-Moran & Hoy, 2001) is employed to create a bi-disciplinary four dimensional assessment that measures personal teacher efficacy (PTE), outcome expectancy (OE), classroom management (CM), and student engagement (SE). Instructors' willingness to, and utilization of, practical instruction to reinforce science learning is also assessed. Findings and conclusions. Overall, efficacy levels for environmental and general science curriculum among instructors with high minority CED (n=22) were consistently lower than that of instructors with high non-minority CED (n = 18); consistently diminished efficacy levels were evidenced upon analysis of CED and all independent variables analyzed. While all four dimensions of efficacy were consistently low for instructors with high minority CED, markedly low mean CM and SE responses were evidenced. A link exists between teacher self-efficacy and the conditions present that impinge on the successful completion of work goals (Metz, 1978). Many studies have examined the lowered-level of minority involvement in environmental careers, issues, and concerns (Taylor, 1989). While all science instructors were willing to utilize outdoor classrooms, markedly lower outdoor classroom
NASA Astrophysics Data System (ADS)
Shieh, Chun-Chien; Kipritidis, John; O'Brien, Ricky T.; Cooper, Benjamin J.; Kuncic, Zdenka; Keall, Paul J.
2015-01-01
Total-variation (TV) minimization reconstructions can significantly reduce noise and streaks in thoracic four-dimensional cone-beam computed tomography (4D CBCT) images compared to the Feldkamp-Davis-Kress (FDK) algorithm currently used in practice. TV minimization reconstructions are, however, prone to over-smoothing anatomical details and are also computationally inefficient. The aim of this study is to demonstrate a proof of concept that these disadvantages can be overcome by incorporating the general knowledge of the thoracic anatomy via anatomy segmentation into the reconstruction. The proposed method, referred as the anatomical-adaptive image regularization (AAIR) method, utilizes the adaptive-steepest-descent projection-onto-convex-sets (ASD-POCS) framework, but introduces an additional anatomy segmentation step in every iteration. The anatomy segmentation information is implemented in the reconstruction using a heuristic approach to adaptively suppress over-smoothing at anatomical structures of interest. The performance of AAIR depends on parameters describing the weighting of the anatomy segmentation prior and segmentation threshold values. A sensitivity study revealed that the reconstruction outcome is not sensitive to these parameters as long as they are chosen within a suitable range. AAIR was validated using a digital phantom and a patient scan and was compared to FDK, ASD-POCS and the prior image constrained compressed sensing (PICCS) method. For the phantom case, AAIR reconstruction was quantitatively shown to be the most accurate as indicated by the mean absolute difference and the structural similarity index. For the patient case, AAIR resulted in the highest signal-to-noise ratio (i.e. the lowest level of noise and streaking) and the highest contrast-to-noise ratios for the tumor and the bony anatomy (i.e. the best visibility of anatomical details). Overall, AAIR was much less prone to over-smoothing anatomical details compared to ASD-POCS and did
SU-C-207-01: Four-Dimensional Inverse Geometry Computed Tomography: Concept and Its Validation
Kim, K; Kim, D; Kim, T; Kang, S; Cho, M; Shin, D; Suh, T
2015-06-15
Purpose: In past few years, the inverse geometry computed tomography (IGCT) system has been developed to overcome shortcomings of a conventional computed tomography (CT) system such as scatter problem induced from large detector size and cone-beam artifact. In this study, we intend to present a concept of a four-dimensional (4D) IGCT system that has positive aspects above all with temporal resolution for dynamic studies and reduction of motion artifact. Methods: Contrary to conventional CT system, projection data at a certain angle in IGCT was a group of fractionated narrow cone-beam projection data, projection group (PG), acquired from multi-source array which have extremely short time gap of sequential operation between each of sources. At this, for 4D IGCT imaging, time-related data acquisition parameters were determined by combining multi-source scanning time for collecting one PG with conventional 4D CBCT data acquisition sequence. Over a gantry rotation, acquired PGs from multi-source array were tagged time and angle for 4D image reconstruction. Acquired PGs were sorted into 10 phase and image reconstructions were independently performed at each phase. Image reconstruction algorithm based upon filtered-backprojection was used in this study. Results: The 4D IGCT had uniform image without cone-beam artifact on the contrary to 4D CBCT image. In addition, the 4D IGCT images of each phase had no significant artifact induced from motion compared with 3D CT. Conclusion: The 4D IGCT image seems to give relatively accurate dynamic information of patient anatomy based on the results were more endurable than 3D CT about motion artifact. From this, it will be useful for dynamic study and respiratory-correlated radiation therapy. This work was supported by the Industrial R&D program of MOTIE/KEIT [10048997, Development of the core technology for integrated therapy devices based on real-time MRI guided tumor tracking] and the Mid-career Researcher Program (2014R1A2A1A
NASA Astrophysics Data System (ADS)
Keall, P. J.; Siebers, J. V.; Joshi, S.; Mohan, R.
2004-08-01
Four-dimensional (4D) radiotherapy is the explicit inclusion of the temporal changes in anatomy during the imaging, planning and delivery of radiotherapy. Temporal anatomic changes can occur for many reasons, though the focus of the current investigation was respiration motion for lung tumours. The aims of the current research were first to develop a 4D Monte Carlo methodology and second to apply this technique to an existing 4D treatment plan. A 4D CT scan consisting of a series of 3D CT image sets acquired at different respiratory phases was used. Deformable image registration was performed to map each CT set from the end-inhale respiration phase to the CT image sets corresponding with subsequent respiration phases. This deformable registration allowed the contours drawn on the end-inhale CT to be automatically drawn on the other respiratory phase CT image sets. A treatment plan was created on the end-inhale CT image set and then automatically created on each of the 3D CT image sets corresponding with subsequent respiration phases, based on the beam arrangement and dose prescription in the end-inhale plan. Dose calculation using Monte Carlo was simultaneously performed on each of the N (=8) 3D image sets with 1/N fewer particles per calculation than for a 3D plan. The dose distribution from each respiratory phase CT image set was mapped back to the end-inhale CT image set for analysis. This use of deformable image registration to merge all the statistically noisy dose distributions back onto one CT image set effectively yielded a 4D Monte Carlo calculation with a statistical uncertainty equivalent to a 3D calculation, with a similar calculation time for the 3D and 4D methods. Monte Carlo as a dose calculation tool for 4D radiotherapy planning has two advantages: (1) higher accuracy for calculation in electronic disequilibrium conditions, such as those encountered during lung radiotherapy, and (2) if deformable image registration is used, the calculation time for
Sarrut, David; Boldea, Vlad; Miguet, Serge; Ginestet, Chantal
2006-03-15
Purpose: We propose to simulate an artificial four-dimensional (4-D) CT image of the thorax during breathing. It is performed by deformable registration of two CT scans acquired at inhale and exhale breath-hold. Materials and methods: Breath-hold images were acquired with the ABC (Active Breathing Coordinator) system. Dense deformable registrations were performed. The method was a minimization of the sum of squared differences (SSD) using an approximated second-order gradient. Gaussian and linear-elastic vector field regularizations were compared. A new preprocessing step, called a priori lung density modification (APLDM), was proposed to take into account lung density changes due to inspiration. It consisted of modulating the lung densities in one image according to the densities in the other, in order to make them comparable. Simulated 4-D images were then built by vector field interpolation and image resampling of the two initial CT images. A variation in the lung density was taken into account to generate intermediate artificial CT images. The Jacobian of the deformation was used to compute voxel values in Hounsfield units. The accuracy of the deformable registration was assessed by the spatial correspondence of anatomic landmarks located by experts. Results: APLDM produced statistically significantly better results than the reference method (registration without APLDM preprocessing). The mean (and standard deviation) of distances between automatically found landmark positions and landmarks set by experts were 2.7(1.1) mm with APLDM, and 6.3(3.8) mm without. Interexpert variability was 2.3(1.2) mm. The differences between Gaussian and linear elastic regularizations were not statistically significant. In the second experiment using 4-D images, the mean difference between automatic and manual landmark positions for intermediate CT images was 2.6(2.0) mm. Conclusion: The generation of 4-D CT images by deformable registration of inhale and exhale CT images is
Wang, Wei; Li, Jianbin; Zhang, Yingjie; Shao, Qian; Xu, Min; Fan, Tingyong; Wang, Jinzhi
2016-01-01
To investigate the definition of planning target volumes (PTVs) based on four-dimensional computed tomography (4DCT) compared with conventional PTV definition and PTV definition using asymmetrical margins for thoracic primary esophageal cancer. Forty-three patients with esophageal cancer underwent 3DCT and 4DCT simulation scans during free breathing. The motions of primary tumors located in the proximal (group A), middle (group B), and distal (group C) thoracic esophagus were obtained from the 4DCT scans. PTV3D was defined on 3DCT using the tumor motion measured based on 4DCT, PTV conventional (PTVconv) was defined on 3DCT by adding a 1.0 cm margin to the clinical target volume, and PTV4D was defined as the union of the target volumes contoured on the ten phases of the 4DCT images. The centroid positions, volumetric differences, and dice similarity coefficients were evaluated for all PTVs. The median centroid shifts between PTV3D and PTV4D and between PTVconv and PTV4D in all three dimensions were <0.3 cm for the three groups. The median size ratios of PTV4D to PTV3D were 0.80, 0.88, and 0.71, and PTV4D to PTVconv were 0.67, 0.73, and 0.76 (χ (2)=-3.18, -2.98, and -3.06; P=0.001, 0.003, and 0.002) for groups A, B, and C, respectively. The dice similarity coefficients were 0.87, 0.90, and 0.81 between PTV4D and PTV3D and 0.80, 0.84, and 0.83 between PTV4D and PTVconv (χ (2) =-3.18, -2.98, and -3.06; P=0.001, 0.003, and 0.002) for groups A, B, and C, respectively. The difference between the degree of inclusion of PTV4D in PTV3D and that of PTV4D in PTVconv was <2% for all groups. Compared with PTVconv, the amount of irradiated normal tissue for PTV3D was decreased by 11.81% and 11.86% in groups A and B, respectively, but was increased by 2.93% in group C. For proximal and middle esophageal cancer, 3DCT-based PTV using asymmetrical margins provides good coverage of PTV4D; however, for distal esophageal cancer, 3DCT-based PTV using conventional margins provides ideal
Kipritidis, John Keall, Paul J.; Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey
2015-03-15
Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r{sup -}{sub Inter
Kipritidis, John; Hugo, Geoffrey; Weiss, Elisabeth; Williamson, Jeffrey; Keall, Paul J.
2015-01-01
Purpose: Adaptive ventilation guided radiation therapy could minimize the irradiation of healthy lung based on repeat lung ventilation imaging (VI) during treatment. However the efficacy of adaptive ventilation guidance requires that interfraction (e.g., week-to-week), ventilation changes are not washed out by intrafraction (e.g., pre- and postfraction) changes, for example, due to patient breathing variability. The authors hypothesize that patients undergoing lung cancer radiation therapy exhibit larger interfraction ventilation changes compared to intrafraction function changes. To test this, the authors perform the first comparison of interfraction and intrafraction lung VI pairs using four-dimensional cone beam CT ventilation imaging (4D-CBCT VI), a novel technique for functional lung imaging. Methods: The authors analyzed a total of 215 4D-CBCT scans acquired for 19 locally advanced non-small cell lung cancer (LA-NSCLC) patients over 4–6 weeks of radiation therapy. This set of 215 scans was sorted into 56 interfraction pairs (including first day scans and each of treatment weeks 2, 4, and 6) and 78 intrafraction pairs (including pre/postfraction scans on the same-day), with some scans appearing in both sets. VIs were obtained from the Jacobian determinant of the transform between the 4D-CBCT end-exhale and end-inhale images after deformable image registration. All VIs were deformably registered to their corresponding planning CT and normalized to account for differences in breathing effort, thus facilitating image comparison in terms of (i) voxelwise Spearman correlations, (ii) mean image differences, and (iii) gamma pass rates for all interfraction and intrafraction VI pairs. For the side of the lung ipsilateral to the tumor, we applied two-sided t-tests to determine whether interfraction VI pairs were more different than intrafraction VI pairs. Results: The (mean ± standard deviation) Spearman correlation for interfraction VI pairs was r¯Inter=0.52±0
Yoon, Jihyung; Jung, Jae Won; Kim, Jong Oh; Yi, Byong Yong; Yeo, Inhwan
2016-07-01
A method is proposed to reconstruct a four-dimensional (4D) dose distribution using phase matching of measured cine images to precalculated images of electronic portal imaging device (EPID). (1) A phantom, designed to simulate a tumor in lung (a polystyrene block with a 3 cm diameter embedded in cork), was placed on a sinusoidally moving platform with an amplitude of 1 cm and a period of 4 s. Ten-phase 4D computed tomography (CT) images of the phantom were acquired. A planning target volume (PTV) was created by adding a margin of 1 cm around the internal target volume of the tumor. (2) Three beams were designed, which included a static beam, a theoretical dynamic beam, and a planning-optimized dynamic beam (PODB). While the theoretical beam was made by manually programming a simplistic sliding leaf motion, the planning-optimized beam was obtained from treatment planning. From the three beams, three-dimensional (3D) doses on the phantom were calculated; 4D dose was calculated by means of the ten phase images (integrated over phases afterward); serving as "reference" images, phase-specific EPID dose images under the lung phantom were also calculated for each of the ten phases. (3) Cine EPID images were acquired while the beams were irradiated to the moving phantom. (4) Each cine image was phase-matched to a phase-specific CT image at which common irradiation occurred by intercomparing the cine image with the reference images. (5) Each cine image was used to reconstruct dose in the phase-matched CT image, and the reconstructed doses were summed over all phases. (6) The summation was compared with forwardly calculated 4D and 3D dose distributions. Accounting for realistic situations, intratreatment breathing irregularity was simulated by assuming an amplitude of 0.5 cm for the phantom during a portion of breathing trace in which the phase matching could not be performed. Intertreatment breathing irregularity between the time of treatment and the time of planning CT was
Ezhil, Muthuveni Choi, Bum; Starkschall, George; Bucci, M. Kara; Vedam, Sastry; Balter, Peter
2008-05-01
Purpose: To compare three different methods of propagating the gross tumor volume (GTV) through the respiratory phases that constitute a four-dimensional computed tomography image data set. Methods and Materials: Four-dimensional computed tomography data sets of 20 patients who had undergone definitive hypofractionated radiotherapy to the lung were acquired. The GTV regions of interest (ROIs) were manually delineated on each phase of the four-dimensional computed tomography data set. The ROI from the end-expiration phase was propagated to the remaining nine phases of respiration using the following three techniques: (1) rigid-image registration using in-house software, (2) rigid image registration using research software from a commercial radiotherapy planning system vendor, and (3) rigid-image registration followed by deformable adaptation originally intended for organ-at-risk delineation using the same software. The internal GTVs generated from the various propagation methods were compared with the manual internal GTV using the normalized Dice similarity coefficient (DSC) index. Results: The normalized DSC index of 1.01 {+-} 0.06 (SD) for rigid propagation using the in-house software program was identical to the normalized DSC index of 1.01 {+-} 0.06 for rigid propagation achieved with the vendor's research software. Adaptive propagation yielded poorer results, with a normalized DSC index of 0.89 {+-} 0.10 (paired t test, p <0.001). Conclusion: Propagation of the GTV ROIs through the respiratory phases using rigid- body registration is an acceptable method within a 1-mm margin of uncertainty. The adaptive organ-at-risk propagation method was not applicable to propagating GTV ROIs, resulting in an unacceptable reduction of the volume and distortion of the ROIs.
Deng, Yan; Peng, Long; Liu, Yuan-Yuan; Yin, Li-Xue; Li, Chun-Mei; Wang, Yi; Rao, Li
2017-07-28
The aim of this prospective study was to assess the diagnosis value of four-dimensional echocardiography area strain (AS) combined with exercise stress echocardiography to evaluate left ventricular regional systolic function in patients with mild single vessel coronary artery stenosis. Based on treadmill exercise load status, two-dimensional conventional echocardiography and four-dimensional echocardiography area strain were performed on patients suspected coronary artery disease before coronary angiogram. Thirty patients (case group) with mild left anterior descending coronary artery stenosis (stenosis <50%) and thirty gender- and age-matched patients (control group) without coronary artery stenosis according to the coronary angiogram results were prospectively enrolled. All the patients had no left ventricular regional wall motion abnormality in two-dimensional echocardiography at rest and exercise stress. There was no significant difference in the 16 segmental systolic peak AS at rest between two groups. After exercise stress, the peak systolic ASrest-stress at mid anterior wall (-7.00%±10.90% vs 2.80%±23.69%) and mid anterolateral wall (-4.40%±18.81% vs 8.80%±19.16%) were decreased, while increased at basal inferolateral wall (14.00%±19.27% vs -5.60%±15.94%) in case group compared with control group (P<.05). In patients with mild single vessel coronary artery stenosis, the area strain was decreased at involved segments, while compensatory increased at noninvolved segments after exercise stress. Four-dimensional echocardiography area strain combined with exercise stress echocardiography could sensitively find left ventricular regional systolic function abnormality in patients with mild single vessel coronary artery stenosis, and locate stenosis coronary artery accordingly. © 2017, Wiley Periodicals, Inc.
Hongmei, Wu; Ying, Zhang; Ailu, Cai; Wei, Sun
2012-05-01
To evaluate the role of four-dimensional (4D) ultrasound with B-flow imaging and spatiotemporal image correlation (STIC) in the evaluation of normal fetal heart and congenital heart disease during pregnancy. Volume data sets of the fetal heart were acquired with automated transverse and longitudinal sweeps of the anterior chest wall. We studied 31 normal fetuses and 28 fetuses with congenital heart disease (6 with double-outlet right ventricle, 5 with complete transposition of great arteries, 8 with tetralogy of Fallot, 3 with right aortic arch, 2 with persistent left superior vena cava, 3 with truncus arteriosus communis, and 1 with interruption of aortic arch) at gestation ages ranging from 18 to 39 weeks using transabdominal 4D B-flow sonography with STIC (4D BF-STIC). Four-dimensional BF-STIC demonstrated dynamic angiographic features in both normal and abnormal fetal hearts. Four-dimensional BF-STIC images could not be obtained in two normal fetuses at 18.9 and 35.6 weeks because of the high fetal heart rate and inappropriate fetal position. Of the other 29 fetuses all extracardiac vessels such as aorta, pulmonary artery, ductus arteriosus, inferior vena cava, and ductus venosus could be detected on reconstructed images. In seven normal cases, a 4D image was recorded to allow simultaneous visualization of all four pulmonary veins. In the 28 fetuses with cardiac anomalies, 4D sonography with B-flow imaging and STIC detected the "digital casts" of the outflow tracts, great arteries, and veins draining into the heart. These results demonstrate spatial relationship among these structures which provide important anatomical information. Four-dimensional BF-STIC provides a means of real time three-dimensional evaluation of fetal extracardiac hemodynamics in the second and third trimesters. This novel technique assists in the evaluation of fetal cardiac hemodynamics and may play an important role in future fetal cardiac research and in the identification of anatomical
Wang, Shang; Lakomy, David S; Garcia, Monica D; Lopez, Andrew L; Larin, Kirill V; Larina, Irina V
2016-08-01
Detailed volumetric measurement of hemodynamics in early developing mammalian heart can provide great insights for improved understanding of normal cardiogenesis and management of congenital cardiac disease. In this study, Doppler optical coherence tomography is performed in live mouse embryo culture to obtain the first four-dimensional high-resolution reconstruction and quantitative analysis of hemodynamic features in the mouse embryonic heart. This provides a powerful approach to investigate biomechanical regulation of early mammalian cardiogenesis. Further details can be found in the article by Shang Wang et al. on pp. 837-847. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Floberg, J. M.; Holden, J. E.
2013-02-01
We introduce a method for denoising dynamic PET data, spatio-temporal expectation-maximization (STEM) filtering, that combines four-dimensional Gaussian filtering with EM deconvolution. The initial Gaussian filter suppresses noise at a broad range of spatial and temporal frequencies and EM deconvolution quickly restores the frequencies most important to the signal. We aim to demonstrate that STEM filtering can improve variance in both individual time frames and in parametric images without introducing significant bias. We evaluate STEM filtering with a dynamic phantom study, and with simulated and human dynamic PET studies of a tracer with reversible binding behaviour, [C-11]raclopride, and a tracer with irreversible binding behaviour, [F-18]FDOPA. STEM filtering is compared to a number of established three and four-dimensional denoising methods. STEM filtering provides substantial improvements in variance in both individual time frames and in parametric images generated with a number of kinetic analysis techniques while introducing little bias. STEM filtering does bias early frames, but this does not affect quantitative parameter estimates. STEM filtering is shown to be superior to the other simple denoising methods studied. STEM filtering is a simple and effective denoising method that could be valuable for a wide range of dynamic PET applications.
NASA Astrophysics Data System (ADS)
Poterjoy, J.; Zhang, F.
2014-12-01
Two advanced four-dimensional ensemble data assimilation systems are applied for studying the genesis of Hurricane Karl (2010) using conventional observations and measurements collected during the Pre-Depression Investigation of Cloud Systems in the Tropics (PREDICT) field campaign. Both methods combine strategies from four-dimensional variational (4DVar) and Ensemble Kalman filter (EnKF) data assimilation techniques that have been developed for the Weather Research and Forecasting model. The first method, denoted E4DVar, operates in a manner similar to the traditional 4DVar data assimilation system, but with hybrid climate/ensemble background errors. The second method, denoted 4DEnVar, uses an ensemble of nonlinear model trajectories to replace the function of tangent linear and adjoint model operators in 4DVar, thus improving the parallelization of the data assimilation. Simulations initialized from E4DVar and 4DEnVar analyses provide track, genesis and intensity forecasts for Karl that are more accurate than an ensemble hybrid data assimilation method based on 3DVar (E3DVar). The two 4-D data assimilation methods are applied for studying Karl's genesis, while comparing their theoretical advantages and disadvantages for an application where the system dynamics evolve quickly in time, and are constrained by an unusually high number of in situ observations.
Hadizadeh, Dariusch R; von Falkenhausen, Marcus; Gieseke, Jürgen; Meyer, Bernhard; Urbach, Horst; Hoogeveen, Romhild; Schild, Hans H; Willinek, Winfried A
2008-01-01
To prospectively test the hypothesis that subsecond-temporal-resolution four-dimensional (4D) contrast material-enhanced magnetic resonance (MR) angiography at 3.0 T enables the same Spetzler-Martin classification (nidus size, venous drainage, eloquence) of cerebral arteriovenous malformation (AVM) as that at digital subtraction angiography (DSA). Institutional ethics committee approval and written informed consent were obtained. In a prospective intraindividual comparative study, 18 consecutive patients with cerebral AVM (nine men, nine women; mean age, 41.9 years +/- 14.0 [standard deviation]; range, 23-69 years) were examined with 4D contrast-enhanced MR angiography and DSA. Four-dimensional contrast-enhanced MR angiography combined randomly segmented central k-space ordering, keyhole imaging, sensitivity encoding, and half-Fourier imaging, which yielded a total acceleration factor of 60. Fifty dynamic scans were obtained every 608 msec at an acquired spatial resolution of 1.1 x 1.4 x 1.1 mm. Four-dimensional contrast-enhanced MR angiograms were independently reviewed by one neuroradiologist and one neurosurgeon according to Spetzler-Martin classification, overall diagnostic quality, and level of confidence. Kendall W coefficients of concordance (K) were computed to compare reader assessment of image quality, level of confidence, and Spetzler-Martin classification by using 4D contrast-enhanced MR angiography and to compare Spetzler-Martin classification as determined with DSA with that at 4D contrast-enhanced MR angiography. Spetzler-Martin classification of cerebral AVM at 4D contrast-enhanced MR angiography and at DSA matched in 18 of 18 patients for both readers, which yielded 100% interobserver agreement (K = 1). Image quality of 4D contrast-enhanced MR angiography was judged to be at least adequate for diagnosis in all patients by both readers. In three of 18 patients, DSA depicted additional arterial feeders of cerebral AVM. Subsecond-temporal-resolution 4
NASA Technical Reports Server (NTRS)
Wang, Wei; Warner, Thomas T.
1988-01-01
The Penn State/NCAR mesoscale model was used to study special static-initialization (SI) and dynamic-initialization (DI) techniques designed to improve short-range quantitative precipitation forecasts (QPFs), as applied to the heavy convective rainfall that occurred in Texas, Oklahoma, and Kansas during the May 9-10, 1979 SESAMY IV study period. In the DI procedure, two types of four-dimensional data assimilation (FDDA) procedures were used to incorporate data during a 12-h preforecast period, one using the Newtonian relaxation, the other using latent-heat forcing. It was found that combined use of either the preforecast or in-forecast latent-heat forcing with the Newtonian relaxation produced an improved forecast (relative to a conventional forecast procedure) of rainfall intensity compared to the use of the Newtonian relaxation alone. The use of the experimental SI with prescribed latent heating during the first forecast hour produced greatly improved rainfall rates.
Cheng, Wei-Tso; Chen, Huan-Wen; Su, I-Hao; Fang, Ji-Tseng; Kuo, Han-Pin; Huang, Chien-Da
2015-12-01
Patients with asthma may also have vocal cord dysfunction (VCD), which leads to poor control of the asthma. Once patients are diagnosed with difficult-to-treat asthma with poor control, VCD should be excluded or treated accordingly. The gold standard for diagnosis of VCD is to perform a laryngoscopy. However, this procedure is invasive and may not be suitable for patients with difficult-to-treat asthma. Four-dimensional (4D) dynamic volume computed tomography (CT) is a noninvasive method for quantification of laryngeal movement, and can serve as an alternative for the diagnosis of VCD. Herein, we present a series of five cases with difficult-to-treat asthma patients who were diagnosed with VCD by 4D dynamic volume CT. Clinicians should be alert to the possibility of VCD when poor control is noted in patients with asthma. Early diagnosis by noninvasive 4D dynamic volume CT can decrease excessive doses of inhaled corticosteroids.
NASA Astrophysics Data System (ADS)
Si, Wen; Si, Jianguo
2017-05-01
By developing two KAM theorems, in this paper, we show that two classes of quasi-periodically forced four-dimensional nonlinear systems with degenerate equilibrium point, a reversible system and a non-conservative system, admit a response solution under small perturbations. For the degenerate reversible system, applying special structure of unperturbed nonlinear term and Herman method, we successfully control the shift of equilibrium point, which is difficult in view of the degenerate linear term. For the degenerate non-conservative system, KAM method is brought into force even in completely degenerate case because of the restrictions on the smallness and average of perturbation. Moreover, arithmetic condition on the frequency is assumed to satisfy the Brjuno-Rüssmann's non-resonant condition. By the Pöschel-Rüssmann KAM method, we prove that these two kinds of perturbed systems can be reduced to a suitable normal form with zero as equilibrium point by a quasi-periodic transformation.
NASA Technical Reports Server (NTRS)
Wang, Wei; Warner, Thomas T.
1988-01-01
The Penn State/NCAR mesoscale model was used to study special static-initialization (SI) and dynamic-initialization (DI) techniques designed to improve short-range quantitative precipitation forecasts (QPFs), as applied to the heavy convective rainfall that occurred in Texas, Oklahoma, and Kansas during the May 9-10, 1979 SESAMY IV study period. In the DI procedure, two types of four-dimensional data assimilation (FDDA) procedures were used to incorporate data during a 12-h preforecast period, one using the Newtonian relaxation, the other using latent-heat forcing. It was found that combined use of either the preforecast or in-forecast latent-heat forcing with the Newtonian relaxation produced an improved forecast (relative to a conventional forecast procedure) of rainfall intensity compared to the use of the Newtonian relaxation alone. The use of the experimental SI with prescribed latent heating during the first forecast hour produced greatly improved rainfall rates.
Suzuki, Naoki; Hattori, Asaki; Hashizume, Makoto
2016-01-01
We constructed a four dimensional human model that is able to visualize the structure of a whole human body, including the inner structures, in real-time to allow us to analyze human dynamic changes in the temporal, spatial and quantitative domains. To verify whether our model was generating changes according to real human body dynamics, we measured a participant's skin expansion and compared it to that of the model conducted under the same body movement. We also made a contribution to the field of orthopedics, as we were able to devise a display method that enables the observer to more easily observe the changes made in the complex skeletal muscle system during body movements, which in the past were difficult to visualize.
Wang He; Garden, Adam S.; Zhang Lifei; Wei Xiong; Ahamad, Anesa; Kuban, Deborah A.; Komaki, Ritsuko; O'Daniel, Jennifer; Zhang Yongbin; Mohan, Radhe; Dong Lei
2008-09-01
Purpose: Auto-propagation of anatomic regions of interest from the planning computed tomography (CT) scan to the daily CT is an essential step in image-guided adaptive radiotherapy. The goal of this study was to quantitatively evaluate the performance of the algorithm in typical clinical applications. Methods and Materials: We had previously adopted an image intensity-based deformable registration algorithm to find the correspondence between two images. In the present study, the regions of interest delineated on the planning CT image were mapped onto daily CT or four-dimensional CT images using the same transformation. Postprocessing methods, such as boundary smoothing and modification, were used to enhance the robustness of the algorithm. Auto-propagated contours for 8 head-and-neck cancer patients with a total of 100 repeat CT scans, 1 prostate patient with 24 repeat CT scans, and 9 lung cancer patients with a total of 90 four-dimensional CT images were evaluated against physician-drawn contours and physician-modified deformed contours using the volume overlap index and mean absolute surface-to-surface distance. Results: The deformed contours were reasonably well matched with the daily anatomy on the repeat CT images. The volume overlap index and mean absolute surface-to-surface distance was 83% and 1.3 mm, respectively, compared with the independently drawn contours. Better agreement (>97% and <0.4 mm) was achieved if the physician was only asked to correct the deformed contours. The algorithm was also robust in the presence of random noise in the image. Conclusion: The deformable algorithm might be an effective method to propagate the planning regions of interest to subsequent CT images of changed anatomy, although a final review by physicians is highly recommended.
Peng, Ruan; Xie, Hong-Ning; Du, Liu; Shi, Hui-Juan; Zheng, Ju; Zhu, Yun-Xiao
2012-10-01
To determine whether the use of 4-dimensional (4D) sonography with spatiotemporal image correlation (STIC) and tomographic ultrasound imaging (TUI) can provide additional information with respect to 2-dimensional (2D) echocardiography in the prenatal diagnosis of anomalous pulmonary venous connections. The study population consisted of 10 cases that were initially suspected to have total or partial anomalous pulmonary venous connections by prenatal 2D echocardiography between January 2008 and April 2011. All 10 cases were further examined and analyzed by 4D sonography with STIC-TUI. Detailed postnatal surgery or autopsy was performed on all 10 fetuses. Total anomalous pulmonary venous connections were found in 5 cases, and a partial connection was diagnosed in 1 fetus postnatally. The remaining 4 cases were confirmed to have normal pulmonary venous connections. Four of the 5 fetuses with anomalous pulmonary venous connections had an additional major cardiac defect; 1 fetus had an isolated connection. Anomalous drainage was supracardiac to the superior vena cava in 2 cases, cardiac to the coronary sinus in 3, and partially infracardiac to the portal vein in remaining case. The pulmonary venous connections were completely and correctly visualized with 2D echocardiography in 2 of the 10 cases, partially identified in 4, and not distinguished completely in 4. Four-dimensional sonography imaging with STIC-TUI clearly visualized the connections in 9 of the 10 cases, and the remaining case was partially identified. Four-dimensional sonography with STIC-TUI facilitates visualization of pulmonary venous connections, thus supplying additional information with respect to 2D echocardiography in the prenatal diagnosis of anomalous pulmonary venous connections.
Heinzerling, John H.; Anderson, John F.; Papiez, Lech; Boike, Thomas; Chien, Stanley; Zhang, Geoffrey; Abdulrahman, Ramzi; Timmerman, Robert
2008-04-01
Purpose: To investigate the effectiveness of different abdominal compression levels on tumor and organ motion during stereotactic body radiotherapy of lower lobe lung and liver tumors using four-dimensional (4D)-CT scan analysis. Methods and Materials: Three 4D-CT scans were acquired for 10 patients first using with no compression and then compared with two different levels of abdominal compression. The position of the tumor and various organs were defined at the peak inspiratory and expiratory phases and compared to determine the maximum motion. Results: Mean ({+-}SD) medium compression force (MC) and high compression force (HC) were 47.6 {+-} 16.0 N and 90.7 {+-} 27.1 N, respectively. Mean overall tumor motion was 13.6 mm (2{sigma} [2 sigma] 11.5-15.6), 8.3 mm (2{sigma} 6.0-10.5), and 7.2 mm (2{sigma} 5.4-9.0) for no compression, MC, and HC, respectively. A significant difference in the control of both superior-inferior (SI) and overall motion of tumors was seen with the application of MC and HC when compared with no compression (p < 0.0001 for both). High compression force improved SI and overall tumor motion compared with MC, but this was only significant for SI motion (p = 0.04 and p = 0.06). Significant control of organ motion was only seen in the pancreas (p = 0.01). Conclusions: Four-dimensional CT shows significant control of both lower lobe lung and liver tumors using abdominal compression. High levels of compression improve SI tumor motion when compared with MC.
Four-Dimensional Golden Search
Fenimore, Edward E.
2015-02-25
The Golden search technique is a method to search a multiple-dimension space to find the minimum. It basically subdivides the possible ranges of parameters until it brackets, to within an arbitrarily small distance, the minimum. It has the advantages that (1) the function to be minimized can be non-linear, (2) it does not require derivatives of the function, (3) the convergence criterion does not depend on the magnitude of the function. Thus, if the function is a goodness of fit parameter such as chi-square, the convergence does not depend on the noise being correctly estimated or the function correctly following the chi-square statistic. And, (4) the convergence criterion does not depend on the shape of the function. Thus, long shallow surfaces can be searched without the problem of premature convergence. As with many methods, the Golden search technique can be confused by surfaces with multiple minima.
Four-dimensional electron microscopy.
Zewail, Ahmed H
2010-04-09
The discovery of the electron over a century ago and the realization of its dual character have given birth to one of the two most powerful imaging instruments: the electron microscope. The electron microscope's ability to resolve three-dimensional (3D) structures on the atomic scale is continuing to affect different fields, including materials science and biology. In this Review, we highlight recent developments and inventions made by introducing the fourth dimension of time in electron microscopy. Today, ultrafast electron microscopy (4D UEM) enables a resolution that is 10 orders of magnitude better than that of conventional microscopes, which are limited by the video-camera rate of recording. After presenting the central concept involved, that of single-electron stroboscopic imaging, we discuss prototypical applications, which include the visualization of complex structures when unfolding on different length and time scales. The developed UEM variant techniques are several, and here we illucidate convergent-beam and near-field imaging, as well as tomography and scanning-pulse microscopy. We conclude with current explorations in imaging of nanomaterials and biostructures and an outlook on possible future directions in space-time, 4D electron microscopy.
Chan, Mark K H; Kwong, Dora L W; Law, Gilbert M L; Tam, Eric; Tong, Anthony; Lee, Venus; Ng, Sherry C Y
2013-07-08
Advanced image-guided stereotatic body lung radiotherapy techniques using volumetric-modulated arc radiotherapy (VMAT) with four-dimensional cone-beam computed tomography (4D CBCT) and CyberKnife with real-time target tracking have been clinically implemented by different authors. However, dosimetric comparisons between these techniques are lacking. In this study, 4D CT scans of 14 patients were used to create VMAT and CyberKnife treatment plans using 4D dose calculations. The GTV and the organs at risk (OARs) were defined on the end-exhale images for CyberKnife planning and were then deformed to the midventilation images (MidV) for VMAT optimization. Direct 4D Monte Carlo dose optimizations were performed for CyberKnife (4D(CK)). Four-dimensional dose calculations were also applied to VMAT plans to generate the 4D dose distributions (4D(VMAT)) on the exhale images for direct comparisons with the 4D(CK) plans. 4D(CK) and 4D(VMAT) showed comparable target conformity (1.31 ± 0.13 vs. 1.39 ± 0.24, p = 0.05). GTV mean doses were significantly higher with 4D(CK). Statistical differences of dose volume metrics were not observed in the majority of OARs studied, except for esophagus, with 4D(VMAT) yielding marginally higher D1% than 4D(CK). The normal tissue volumes receiving 80%, 50%, and 30% of the prescription dose (V80%, V50%, and V30%) were higher with 4D(VMAT), whereas 4D(CK) yielded slightly higher V10% in posterior lesions than 4D(VMAT). VMAT resulted in much less monitor units and therefore greater delivery efficiency than CyberKnife. In general, it was possible to produce dosimetrically acceptable plans with both techniques. The selection of treatment modality should consider the dosimetric results as well as the patient's tolerance of the treatment process specific to the SBRT technique.
Bharat, Shyam; Fisher, Ted G; Varghese, Tomy; Hall, Timothy J; Jiang, Jingfeng; Madsen, Ernest L; Zagzebski, James A; Lee, Fred T
2008-08-01
Because ablation therapy alters the elastic modulus of tissues, emerging strain imaging methods may enable clinicians for the first time to have readily available, cost-effective, real-time guidance to identify the location and boundaries of thermal lesions. Electrode displacement elastography is a method of strain imaging tailored specifically to ultrasound-guided electrode-based ablative therapies (e.g., radio-frequency ablation). Here tissue deformation is achieved by applying minute perturbations to the unconstrained end of the treatment electrode, resulting in localized motion around the end of the electrode embedded in tissue. In this article, we present a method for three-dimensional (3D) elastographic reconstruction from volumetric data acquired using the C7F2 fourSight four-dimensional ultrasound transducer, provided by Siemens Medical Solutions USA, Inc. (Issaquah, WA, USA). Lesion reconstruction is demonstrated for a spherical inclusion centered in a tissue-mimicking phantom, which simulates a thermal lesion embedded in a normal tissue background. Elastographic reconstruction is also performed for a thermal lesion created in vitro in canine liver using radio-frequency ablation. Postprocessing is done on the acquired raw radio-frequency data to form surface-rendered 3D elastograms of the inclusion. Elastographic volume estimates of the inclusion compare reasonably well with the actual known inclusion volume, with 3D electrode displacement elastography slightly underestimating the true inclusion volume.
Remmert, G; Biederer, J; Lohberger, F; Fabel, M; Hartmann, G H
2007-09-21
A method of four-dimensional (4D) magnetic resonance imaging (MRI) has been implemented and evaluated. It consists of retrospective sorting and slice stacking of two-dimensional (2D) images using an external signal for motion monitoring of the object to be imaged. The presented method aims to determine the tumour trajectories based on a signal that is appropriate for monitoring the movement of the target volume during radiotherapy such that the radiation delivery can be adapted to the movement. For evaluation of the 4D-MRI method, it has been applied to a dynamic lung phantom, which exhibits periodic respiratory movement of a porcine heart-lung explant with artificial pulmonary nodules. Anatomic changes of the lung phantom caused by respiratory motion have been quantified, revealing hysteresis. The results demonstrate the feasibility of the presented method of 4D-MRI. In particular, it enables the determination of trajectories of periodically moving objects with an uncertainty in the order of 1 mm.
Czachowski, Sławomir; Terluin, Berend; Izdebski, Adam; Izdebski, Paweł
2012-10-01
The original Dutch Four-Dimensional Symptom Questionnaire (4DSQ), which measures distress, depression, anxiety and somatization, has been translated into Polish with the aim of providing primary health care with a good screening instrument for the detection of the most prevalent mental health problems (anxiety, somatization, depression and distress). To check if the Polish version is cross-culturally valid so that the scores of Polish subjects can be compared with the scores of Dutch subjects and the Dutch cut-off points can be used in Polish subjects. 4DSQ data were collected from a mixed sample of students and primary care attendees. The Polish data were compared with the 4DSQ data of a matched sample of Dutch students and primary care attendees. Two methods of differential item functioning (DIF) analysis, ordinal logistic regression and generalized Mantel-Haenszel, were used to detect items with DIF, and linear regression analysis was used to estimate the scale-level impact of DIF. Four items showing DIF were detected in the distress scale, one in the somatization scale and one in the anxiety scale. The DIF in distress caused Polish subjects with moderate scores to score circa 1 point less than their Dutch counterparts. The results of the DIF analyses suggest that the Polish 4DSQ measures the same constructs as the Dutch 4DSQ and that the Dutch norms can be used for the Polish subjects, except for distress: the first cut-off point should be one point lower.
Tebbe, Brigitte B M; Terluin, Berend; Koelewijn, Joke M
2013-06-01
the Four-Dimensional Symptom Questionnaire (4DSQ) is a validated self-report questionnaire, developed for general practice to assess the level of distress, somatization, depression and anxiety among patients. This study evaluated the validity of this instrument for midwifery practice by differential item functioning analysis. cross-sectional. the focal group consisted of clients of 15 primary care midwifery practices in The Netherlands (n=478). The reference group consisted of Dutch female primary care patients, matched for age (n=478). Differential item functioning (DIF) was assessed by ordinal regression and the Mantel Haenszel method. The impact of DIF was measured by linear regression. The depression scale was free of DIF. The somatization, distress and anxiety scale contained items with DIF. Because of DIF, pregnant and postpartum women had on average 1-2 points lower predicted scores on the somatization scale and 1 point lower scores on the anxiety scale. On the distress scale the midwifery group had 1-2 higher predicted scores. the 4DSQ is a valid instrument for casefinding of psychological disease in midwifery practice, provided cut-off scores of the distress, anxiety and somatization scale be adapted. Copyright © 2012 Elsevier Ltd. All rights reserved.
Sun, Jingya; Melnikov, Vasily A; Khan, Jafar I; Mohammed, Omar F
2015-10-01
In the fields of photocatalysis and photovoltaics, ultrafast dynamical processes, including carrier trapping and recombination on material surfaces, are among the key factors that determine the overall energy conversion efficiency. A precise knowledge of these dynamical events on the nanometer (nm) and femtosecond (fs) scales was not accessible until recently. The only way to access such fundamental processes fully is to map the surface dynamics selectively in real space and time. In this study, we establish a second generation of four-dimensional scanning ultrafast electron microscopy (4D S-UEM) and demonstrate the ability to record time-resolved images (snapshots) of material surfaces with 650 fs and ∼5 nm temporal and spatial resolutions, respectively. In this method, the surface of a specimen is excited by a clocking optical pulse and imaged using a pulsed primary electron beam as a probe pulse, generating secondary electrons (SEs), which are emitted from the surface of the specimen in a manner that is sensitive to the local electron/hole density. This method provides direct and controllable information regarding surface dynamics. We clearly demonstrate how the surface morphology, grains, defects, and nanostructured features can significantly impact the overall dynamical processes on the surface of photoactive-materials. In addition, the ability to access two regimes of dynamical probing in a single experiment and the energy loss of SEs in semiconductor-nanoscale materials will also be discussed.
NASA Astrophysics Data System (ADS)
Remmert, G.; Biederer, J.; Lohberger, F.; Fabel, M.; Hartmann, G. H.
2007-09-01
A method of four-dimensional (4D) magnetic resonance imaging (MRI) has been implemented and evaluated. It consists of retrospective sorting and slice stacking of two-dimensional (2D) images using an external signal for motion monitoring of the object to be imaged. The presented method aims to determine the tumour trajectories based on a signal that is appropriate for monitoring the movement of the target volume during radiotherapy such that the radiation delivery can be adapted to the movement. For evaluation of the 4D-MRI method, it has been applied to a dynamic lung phantom, which exhibits periodic respiratory movement of a porcine heart-lung explant with artificial pulmonary nodules. Anatomic changes of the lung phantom caused by respiratory motion have been quantified, revealing hysteresis. The results demonstrate the feasibility of the presented method of 4D-MRI. In particular, it enables the determination of trajectories of periodically moving objects with an uncertainty in the order of 1 mm.
Uribe, Sergio; Beerbaum, Philipp; Sørensen, Thomas Sangild; Rasmusson, Allan; Razavi, Reza; Schaeffter, Tobias
2009-10-01
Four-dimensional (4D) flow imaging has been used to study flow patterns and pathophysiology, usually focused on specific thoracic vessels and cardiac chambers. Whole-heart 4D flow at high measurement accuracy covering the entire thoracic cardiovascular system would be desirable to simplify and improve hemodynamic assessment. This has been a challenge because compensation of respiratory motion is difficult to achieve, but it is paramount to limit artifacts and improve accuracy. In this work we propose a self-gating technique for respiratory motion-compensation integrated into a whole-heart 4D flow acquisition that overcomes these challenges. Flow components are measured in all three directions for each pixel over the complete cardiac cycle, and 1D volume projections are obtained at certain time intervals for respiratory gating in real time during the acquisition. The technique was tested in 15 volunteers, in which stroke volumes (SVs) in the great arteries showed excellent agreement with standard 2D phase-contrast (PC) scans. In contrast, nongated 4D flow with two averages had substantial disagreement with 2D flow. Applied to patients with congenital cardiac left-to-right shunting, the precision of flux data was highly beneficial. The methodology presented here has the potential to allow a complete study of flow pathophysiology of the thoracic cardiovascular system from a single free-breathing scan. (c) 2009 Wiley-Liss, Inc.
de Jong, Johanna P; Kluijtmans, Leo; van Amerongen, Martinus J; Prokop, Mathias; Boogaarts, Hieronymus D; Meijer, Frederick J A
2017-09-01
Spontaneous intracerebral hemorrhage may arise from underlying abnormalities, including aneurysms. Computed tomography angiography (CTA) is widely used for the detection of possible underlying causes, which is important because it may have immediate therapeutic consequences. In addition, CTA is used to detect the so-called spot sign, indicating active hemorrhage, which carries a worse prognosis. However, CTA is a snapshot in time. Four-dimensional (4D) CTA is a dynamic type of imaging and has emerged as a valuable imaging technique for different neurovascular disorders. Two patients with intracerebral hemorrhage both showed an assumed spot sign on CTA, suggesting active hemorrhage. Additional 4D-CTA showed true active hemorrhage in one patient and a distal intracranial aneurysm in the other. This aneurysm was initially falsely interpreted as a spot sign on conventional CTA. Our case findings show how 4D-CTA can discern active bleeding from aneurysmal hemorrhage in cases with hemorrhagic stroke. This finding proves the additional value of this relatively new technique, because the detected underlying disorders have different therapeutic consequences in the acute setting. Copyright © 2017 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Happel, Christoph M.; Thommes, Jan; Thrane, Lars; Männer, Jörg; Ortmaier, Tobias; Heimann, Bodo; Yelbuz, Talat Mesud
2011-09-01
We introduce a new method of rotational image acquisition for four-dimensional (4D) optical coherence tomography (OCT) of beating embryonic chick hearts. The rotational axis and the central A-scan of the OCT are identical. An out-of-phase image sequence covering multiple heartbeats is acquired at every angle of an incremental rotation of the deflection mirrors of the OCT system. Image acquisition is accomplished after a rotation of 180°. Comparison of a displayed live M-mode of the central A-scan with a reference M-mode allows instant detection of translational movements of the embryo. For calculation of 4D data sets, we apply an image-based retrospective gating algorithm using the phase information of the common central A-scan present in all acquired images. This leads to cylindrical three-dimensional data sets for every time step of the cardiac cycle that can be used for 4D visualization. We demonstrate this approach and provide a video of a beating Hamburger and Hamilton stage 16 embryonic chick heart generated from a 4D OCT data set using rotational image acquisition.
Yang, Cungeng; Deng, Weiran; Alagappan, Vijayanand; Wald, Lawrence L.; Stenger, V. Andrew
2011-01-01
Susceptibility artifacts and B1+ inhomogeneity are major limitations in high field MRI. Parallel transmission methods are promising for reducing artifacts in high field applications. In particular, three-dimensional RF pulses have been shown to be useful for reducing B1+ inhomogeneity using multiple transmitters due to their ability to spatially shape the slice profile. Recently, two-dimensional spectral-spatial pulses have been demonstrated to be effective for reducing the signal loss susceptibility artifact by incorporating a frequency dependent through-plane phase correction. We present the use of four-dimensional spectral-spatial RF pulses for simultaneous B1+ and through-plane signal loss susceptibility artifact compensation. The method is demonstrated with simulations and in T2*-weighted human brain images at 3T using a four-channel parallel transmission system. Parallel transmission was used to reduce the in-plane excitation resolution to improve the slice-selection resolution between two different pulse designs. Both pulses were observed to improve B1+ homogeneity and reduce the signal loss artifact in multiple slice locations and several human volunteers. PMID:20577982
Yang, Cungeng; Deng, Weiran; Alagappan, Vijayanand; Wald, Lawrence L; Stenger, V Andrew
2010-07-01
Susceptibility artifacts and excitation radiofrequency field B(1)+ inhomogeneity are major limitations in high-field MRI. Parallel transmission methods are promising for reducing artifacts in high-field applications. In particular, three-dimensional RF pulses have been shown to be useful for reducing B(1)+ inhomogeneity using multiple transmitters due to their ability to spatially shape the slice profile. Recently, two-dimensional spectral-spatial pulses have been demonstrated to be effective for reducing the signal loss susceptibility artifact by incorporating a frequency-dependent through-plane phase correction. We present the use of four-dimensional spectral-spatial RF pulses for simultaneous B(1)+ and through-plane signal loss susceptibility artifact compensation. The method is demonstrated with simulations and in T(2)*-weighted human brain images at 3 T, using a four-channel parallel transmission system. Parallel transmission was used to reduce the in-plane excitation resolution to improve the slice-selection resolution between two different pulse designs. Both pulses were observed to improve B(1)+ homogeneity and reduce the signal loss artifact in multiple slice locations and several human volunteers. (c) 2010 Wiley-Liss, Inc.
Haitao, L.; Dajun, Y.; Kaifa, W.; Xiuwu, B.; Jiansen, S.; Zongchen, Y.
2005-01-01
Summary The aim of this study was to explore the spatiotemporal development of cerebral oedema in the early stage of severe burn (50% TBSA, third degree), using a four-dimensional (4D) mathematical model. Twenty-six male mongrel dogs were randomly divided into control and 6, 12, 18, and 24 post-burn hour (PBH) groups. The manifestation of magnetic resonance imaging (MRI) and histopathology, changes of brain water content, and intracranial pressure were observed in each group respectively. A 4D mathematical model was established on the basis of the results of MRI scanning. Two turning points (6 and 18 PBH) and three phases of pathological change were displayed by the 4D mathematical model of cerebral oedema in the early stage of severe burn. The first phase was in the subclinical period, and effective treatment should therefore be performed as quickly as possible in order to prevent deterioration of post-burn cerebral oedema. The second phase (6-18 PBH), with pathological characteristics of cytotoxic cerebral oedema, was in the apoptosis period. The third stage (18-24 PBH) was the danger period of cerebral oedema. Intracranial pressure increased rapidly owing to the limitation of the cranial cavity. As a result, cerebral hernia could easily occur. An S-shape curve in the pathological process of cerebral oedema occurred in the early post-burn stage following severe burn. PMID:21990986
Haitao, L; Dajun, Y; Kaifa, W; Xiuwu, B; Jiansen, S; Zongchen, Y
2005-06-30
The aim of this study was to explore the spatiotemporal development of cerebral oedema in the early stage of severe burn (50% TBSA, third degree), using a four-dimensional (4D) mathematical model. Twenty-six male mongrel dogs were randomly divided into control and 6, 12, 18, and 24 post-burn hour (PBH) groups. The manifestation of magnetic resonance imaging (MRI) and histopathology, changes of brain water content, and intracranial pressure were observed in each group respectively. A 4D mathematical model was established on the basis of the results of MRI scanning. Two turning points (6 and 18 PBH) and three phases of pathological change were displayed by the 4D mathematical model of cerebral oedema in the early stage of severe burn. The first phase was in the subclinical period, and effective treatment should therefore be performed as quickly as possible in order to prevent deterioration of post-burn cerebral oedema. The second phase (6-18 PBH), with pathological characteristics of cytotoxic cerebral oedema, was in the apoptosis period. The third stage (18-24 PBH) was the danger period of cerebral oedema. Intracranial pressure increased rapidly owing to the limitation of the cranial cavity. As a result, cerebral hernia could easily occur. An S-shape curve in the pathological process of cerebral oedema occurred in the early post-burn stage following severe burn.
Moy, F J; Lowry, D F; Matsumura, P; Dahlquist, F W; Krywko, J E; Domaille, P J
1994-09-06
NMR spectroscopy has been used to study recombinant Escherichia coli CheY, a 128-residue protein involved in regulating bacterial chemotaxis. Heteronuclear three- and four-dimensional (3D and 4D) experiments have provided sequence-specific resonance assignments and quantitation of short-, medium-, and long-range distance restraints from nuclear Overhauser enhancement (NOE) intensities. These distance restraints were further supplemented with measurements of three-bond scalar coupling constants to define the local dihedral angles, and with the identification of amide protons undergoing slow solvent exchange from which hydrogen-bonding patterns were identified. The current model structure shows the same global fold of CheY as existing X-ray structures (Volz & Matsumura, 1991; Stock et al. 1993) with a (beta/alpha)5 motif of five parallel beta-strands at the central core surrounded by three alpha-helices on one face and with two on the opposite side. Heteronuclear 15N-1H relaxation experiments are interpreted to show portions of the protein structure in the Mg2+ binding loop are ill-defined because of slow motion (chemical exchange) on the NMR time scale. Moreover, the presence of Mg2+ disrupts the salt bridge between the highly conserved Lys-109 and Asp-57, the site of phosphorylation.
NASA Astrophysics Data System (ADS)
Chen, Xingchao; Zhao, Kun; Sun, Juanzhen; Zhou, Bowen; Lee, Wen-Chau
2016-10-01
This paper examines how assimilating surface observations can improve the analysis and forecast ability of a fourdimensional Variational Doppler Radar Analysis System (VDRAS). Observed surface temperature and winds are assimilated together with radar radial velocity and reflectivity into a convection-permitting model using the VDRAS four-dimensional variational (4DVAR) data assimilation system. A squall-line case observed during a field campaign is selected to investigate the performance of the technique. A single observation experiment shows that assimilating surface observations can influence the analyzed fields in both the horizontal and vertical directions. The surface-based cold pool, divergence and gust front of the squall line are all strengthened through the assimilation of the single surface observation. Three experiments—assimilating radar data only, assimilating radar data with surface data blended in a mesoscale background, and assimilating both radar and surface observations with a 4DVAR cost function—are conducted to examine the impact of the surface data assimilation. Independent surface and wind profiler observations are used for verification. The result shows that the analysis and forecast are improved when surface observations are assimilated in addition to radar observations. It is also shown that the additional surface data can help improve the analysis and forecast at low levels. Surface and low-level features of the squall line—including the surface warm inflow, cold pool, gust front, and low-level wind—are much closer to the observations after assimilating the surface data in VDRAS.
Osuji, Leo C; Ayolagha, G; Obute, G C; Ohabuike, H C
2007-09-01
Four-dimensional (4D) seismic exploration, an improved geophysical technique for hydrocarbon-data acquisition, was applied for the first time in the Nembe Creek prospect area of Nigeria. The affected soils were slightly alkaline in situ when wet (pH 7.2), but extremely acidic when dry (pH 3.0). The organic carbon content (4.6-26.8%) and other physicochemical properties of soils and water (N, P, and heavy-metal contents, etc.) were higher than the baseline values obtained in 2001 before seismic profiling. Most values also exceeded the baseline compliance standards of the Department of Petroleum Resources (DPR), the World Health Organization (WHO), and the Federal Environmental Protection Agency (FEPA). Rehabilitation of the affected areas was achieved by stabilizing the mangrove floor by liming and appropriate application of nutrients, followed by replanting the cut seismic lines over a distance of 1,372 km with different mangrove species, including juvenile Rhizophora racemosa, R. mangle, and Avicennia species, which were transferred from nursery points. Quicker post-operational intervention is recommended for future 4D surveys, because the time lag between the end of seismic activity and post-impact investigation is critical in determining the relationship between activity and impact: the longer the intervening period, the more mooted the interaction.
Happel, Christoph M.; Thommes, Jan; Thrane, Lars; Männer, Jörg; Ortmaier, Tobias; Heimann, Bodo; Yelbuz, Talat Mesud
2011-01-01
We introduce a new method of rotational image acquisition for four-dimensional (4D) optical coherence tomography (OCT) of beating embryonic chick hearts. The rotational axis and the central A-scan of the OCT are identical. An out-of-phase image sequence covering multiple heartbeats is acquired at every angle of an incremental rotation of the deflection mirrors of the OCT system. Image acquisition is accomplished after a rotation of 180°. Comparison of a displayed live M-mode of the central A-scan with a reference M-mode allows instant detection of translational movements of the embryo. For calculation of 4D data sets, we apply an image-based retrospective gating algorithm using the phase information of the common central A-scan present in all acquired images. This leads to cylindrical three-dimensional data sets for every time step of the cardiac cycle that can be used for 4D visualization. We demonstrate this approach and provide a video of a beating Hamburger and Hamilton stage 16 embryonic chick heart generated from a 4D OCT data set using rotational image acquisition. PMID:21950921
NASA Astrophysics Data System (ADS)
Mowrey, R. C.; Kroes, G. J.; Wiesenekker, G.; Baerends, E. J.
1997-03-01
The reaction of H2 on Cu(100) is investigated using a four-dimensional (4D) quantum dynamical fixed-site model to assess the influence of molecular rotation on dissociation over the most reactive (the bridge) site. The potential energy surface (PES) is a fit to the results of density functional calculations performed using a generalized gradient approximation treating a Cu slab with a periodic overlayer of H2. Dissociation probabilities for molecules with "helicoptering'' (mj=j) and "cartwheeling'' (mj=0) rotational motions are here found to be comparable because of the strong corrugation in the azimuthal coordinate. The calculations indicate that reaction is accompanied by significant rotationally inelastic scattering. Surprisingly, vibrational excitation is also found to be an efficient process in collisions with the reactive bridge site. In these collisions, the molecular axis is tilted away from the orientation parallel from the surface. Considering the approximate nature of the 4D model used, the calculated reaction probabilities are in good agreement with experiment, indicating that the PES that was used is accurate.
Clore, G.M.; Kay, L.E.; Bax, A.; Gronenborn, A.M. )
1991-01-01
A four-dimensional {sup 13}C/{sup 13}C-edited NOESY experiment is described which dramatically improves the resolution of protein NMR spectra and enables the straightforward assignment of nuclear Overhauser effects involving aliphatic and/or aromatic protons in larger proteins. The experiment is demonstrated for uniformly (>95{percent}) {sup 13}C-labeled interleukin 1{beta}, a protein of 153 residues and 17.4 kDa, which plays a key role in the immune response. NOEs between aliphatic and/or aromatic protons are first spread out into a third dimension by the {sup 13}C chemical shift of the carbon atom attached to the originating proton and subsequently into a fourth dimension by the {sup 13}C chemical shift of the carbon atom attached to the destination proton. Thus, each NOE cross peak is labeled by four chemical shifts. By this means, ambiguities in the assignment of NOEs that arise from chemical shift overlap and degeneracy are completely removed. Further, NOEs between protons with the same chemical shifts can readily be detected providing their attached carbon atoms have different {sup 13}C chemical shifts. The design of the pulse sequence requires special care to minimize the level of artifacts arising from undesired coherence transfer pathways, and in particular those associated with diagonal peaks which correspond to magnetization that has not been transferred from one proton to another. The 4D {sup 13}C/{sup 13}C-edited NOESY experiment is characterized by high sensitivity as the through-bond transfer steps involve the large {sup 1}J{sub CH} (130 Hz) couplings, and it is possible to obtain high-quality spectra on 1-2 mM samples of {sup 13}C-labeled protein in as little as 3 days. This experiment should open up the application of protein structure determination by NMR to a large number of medium-sized proteins (150-300 residues) of biological interest.
Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki
2015-03-01
A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The mean±standard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.25±4.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment. Copyright © 2014 Elsevier Ltd. All rights reserved.
2014-01-01
Background Anxiety scales may help primary care physicians to detect specific anxiety disorders among the many emotionally distressed patients presenting in primary care. The anxiety scale of the Four-Dimensional Symptom Questionnaire (4DSQ) consists of an admixture of symptoms of specific anxiety disorders. The research questions were: (1) Is the anxiety scale unidimensional or multidimensional? (2) To what extent does the anxiety scale detect specific DSM-IV anxiety disorders? (3) Which cut-off points are suitable to rule out or to rule in (which) anxiety disorders? Methods We analyzed 5 primary care datasets with standardized psychiatric diagnoses and 4DSQ scores. Unidimensionality was assessed through confirmatory factor analysis (CFA). We examined mean scores and anxiety score distributions per disorder. Receiver operating characteristic (ROC) analysis was used to determine optimal cut-off points. Results Total n was 969. CFA supported unidimensionality. The anxiety scale performed slightly better in detecting patients with panic disorder, agoraphobia, social phobia, obsessive compulsive disorder (OCD) and post traumatic stress disorder (PTSD) than patients with generalized anxiety disorder (GAD) and specific phobia. ROC-analysis suggested that ≥4 was the optimal cut-off point to rule out and ≥10 the cut-off point to rule in anxiety disorders. Conclusions The 4DSQ anxiety scale measures a common trait of pathological anxiety that is characteristic of anxiety disorders, in particular panic disorder, agoraphobia, social phobia, OCD and PTSD. The anxiety score detects the latter anxiety disorders to a slightly greater extent than GAD and specific phobia, without being able to distinguish between the different anxiety disorder types. The cut-off points ≥4 and ≥10 can be used to separate distressed patients in three groups with a relatively low, moderate and high probability of having one or more anxiety disorders. PMID:24761829
Arnautov, V S; Reyhart, D V; Smulevich, A B; Yakhno, N N; Terluin, B; Zakharova, E K; Andryushchenko, A V; Parfenov, V A; Zamergrad, M V; Romanov, D V
2015-12-12
The four-dimensional symptom questionnaire (4DSQ) is an originally Dutch self-report questionnaire that has been developed in primary care to distinguish non-specific general distress from depression, anxiety and somatization. In order to produce the appropriate translated Russian version the process of linguistic validation has been initiated. This process has been done according to the "Linguistic Validation Manual for Health Outcome Assessments" developed by MAPI institute. To produce the appropriate Russian version of the 4DSQ that is conceptually and linguistically equivalent to the original questionnaire. The original Dutch version of the 4DSQ was translated by one translator into Russian. The validated English version of the 4DSQ was translated by another translator into Russian without mutual consultation. The consensus version was created based on two translated versions. After that the back translation was performed to Dutch, some changes were implemented to the consensus Russian version and the second target version was developed based on these results. The second target version was sent to an appropriate group of reviewers. Based on their comments, the second target version was updated. After wards this version was tested in patients during cognitive interview. The study protocol was approved by the Independent Interdisciplinary Ethics Committee on Ethical Review for Clinical Studies, and in compliance with the Helsinki Declaration and ICH-GCP guidelines and local regulations. Enrolled patients provided written informed consent. After the process of forward and backward translation, consultant and developer's comments, clinicians and cognitive review the final version of Russian 4DSQ was developed for assessment of distress, depression, anxiety and somatization. The Russian 4DSQ as a result of translation procedures and cognitive interviews linguistically corresponds to the original Dutch 4DSQ and could be assessed in psychometric validation for the
Edjlali, Myriam; Roca, Pauline; Rabrait, Cécile; Trystram, Denis; Rodriguez-Régent, Christine; Johnson, Kevin M; Wieben, Oliver; Turski, Patrick; Meder, Jean-François; Naggara, Olivier; Oppenheim, Catherine
2014-01-01
To assess the feasibility of a selective flow-tracking cartographic procedure applied to four-dimensional (4D) flow imaging and to demonstrate its usefulness in the characterization of dural arteriovenous fistulas (DAVFs). Institutional review board approval was obtained, and all patients provided written informed consent. Eight patients (nine DAVFs) underwent 3.0-T magnetic resonance (MR) imaging and digital subtraction angiography (DSA). Imaging examinations were performed within 24 hours of each other. 4D flow MR imaging was performed by using a 4D radial phase-contrast vastly undersampled isotropic projection reconstruction pulse sequence with an isotropic spatial resolution of 0.86 mm (5 minutes 35 seconds). Two radiologists independently reviewed images from MR flow-tracking cartography and reported the location of arterial feeder vessels and the venous drainage type and classified DAVFs according to the risk of rupture (Cognard classification). These results were compared with those at DSA. Quadratic weighted κ statistics with their 95% confidence intervals (CIs) were used to test intermodality agreement in the identification of arterial feeder vessels, draining veins, and Cognard classification. Interreader agreement for shunt location on MR images was perfect (κ = 1), with good-to-excellent interreader agreement for arterial feeder vessel identification (κ = 0.97; 95% CI = 0.92, 1.0), and matched in all cases with shunt location defined at DSA. There was good-to-excellent agreement between MR cartography and DSA in the definition of the main feeding arteries (κ = 0.92; 95% CI = 0.83, 1.0), presence of retrograde flow in dural sinuses (κ = 1), presence of retrograde cortical venous drainage (κ = 1), presence of venous ectasia (κ = 1), and final Cognard classification of DAVFs (κ = 1, standard error = 0.35). MR selective flow-tracking cartography enabled the noninvasive characterization of cranial DAVFs. © RSNA, 2013.
Yamashita, Hideomi; Okuma, Kae; Tada, Keiichiro; Shiraishi, Kenshiro; Takahashi, Wataru; Shibata-Mobayashi, Shino; Sakumi, Akira; Saotome, Naoya; Haga, Akihiro; Onoe, Tsuyoshi; Ino, Kenji; Akahane, Masaaki; Ohtomo, Kuni; Nakagawa, Keiichi
2012-10-01
Purpose: To study the three-dimensional movement of internal tumor bed fiducial and breast skin markers, using 320-multislice computed tomography (CT); and to analyze intrafractional errors for breast cancer patients undergoing breast irradiation. Methods and Materials: This study examined 280 markers on the skin of the breast (200 markers) and on the primary tumor bed (80 markers) of 20 patients treated by external-beam photon radiotherapy. Motion assessment was analyzed in 41 respiratory phases during 20 s of cine CT in the radiotherapy position. To assess intrafractional errors resulting from respiratory motion, four-dimensional CT scans were acquired for 20 patients. Results: Motion in the anterior-posterior (A/P) and superior-inferior (S/I) directions showed a strong correlation (|r| > 0.7) with the respiratory curve for most markers (79% and 70%, respectively). The average marker displacements between maximum and minimum value during 20 s for the 200 breast skin metal markers were 1.1 {+-} 0.3 mm, 2.1 {+-} 0.6 mm, and 1.6 {+-} 0.4 mm in the left-right, A/P, and S/I directions, respectively. For the 80 tumor bed clips, displacements were 0.9 {+-} 0.2 mm in left-right, 1.7 {+-} 0.5 mm in A/P, and 1.1 {+-} 0.3 mm in S/I. There was no significant difference in the motion between breast quadrant regions or between the primary site and the other regions. Conclusions: Motion in primary breast tumors was evaluated with 320-multislice CT. Very little change was detected during individual radiation treatment fractions.
Jang, Seong Soon; Huh, Gil Ja; Park, Suk Young; Yang, Po Song; Cho, EunYoun
2015-01-01
Background An evaluation of the usefulness of target delineation based only on the two extreme phases of a four-dimensional computed tomography (4D CT) scan in lung stereotactic body radiation therapy (SBRT). Methods Seventeen patients treated with SBRT via 4D CT scans for lung cancer were retrospectively enrolled. Volumetric and geometric analyses were performed for the internal target volumes (ITVs) and planning target volumes (PTVs) generated using different respiratory phases (all phases and 2 extreme phases) and setup margins (3 mm and 5 mm). Results As the setup margins were added to the ITVs, the overlap percentage between the PTVs based on all phases and the two extreme phases increased (85.1% for ITVs, 89.8% for PTVs_3 mm, and 91.3% for PTVs_5 mm), and there were no differences according to the tumor parameters, such as the gross tumor volume and 3D mobility. The missing-volume differences for ITVs derived from cone-beam CT images also decreased, with values of 5.3% between ITVs, 0.5% between PTVs_3 mm, and 0.2% between PTVs_5 mm. Compared with the plan based on all phases and a 3 mm margin, the average lung-dose differences found for the PTV based on the two extreme phases and a 5 mm margin were 0.41 Gy for the mean lung dose and 0.93% for V20. Conclusions Regardless of tumor characteristics, PTV construction based only on the two extreme phases and a 5 mm setup margin may be a useful tool for reducing the clinical workload involved in target delineation in SBRT for lung cancer. PMID:26273368
Lim, H K; Choi, C G; Kim, S M; Kim, J L; Lee, D H; Kim, S J; Suh, D C
2012-01-01
Objective To evaluate the diagnostic accuracy of four-dimensional MR angiography (4D-MRA) at 3.0 T for detecting residual arteriovenous malformations (AVMs) after Gamma Knife® (Elekta Instrument AB, Stockholm, Sweden) radiosurgery (GKRS). Methods We assessed 36 angiographically confirmed AVMs in 36 patients who had been treated with GKRS. 4D-MRA was performed after GKRS and the time intervals were 39.4±26.0 months [mean±standard deviation (SD)]. 4D-MRA was obtained at 3.0 T after contrast injection, with a measured voxel size of 1×1×1 mm and a temporal resolution of 1.1 s (13 patients) or a voxel size of 1×1×2 mm and a temporal resolution of 0.98 s (23 patients). X-ray angiography was performed as the standard reference within 53±47 days (mean±SD) after MRA. To determine a residual AVM, the 4D-MRA results were independently reviewed by two readers blinded to the X-ray angiography results. We evaluated diagnostic sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of 4D-MRA for detection of a residual AVM. Results A residual AVM was identified in 13 patients (13/36, 36%) on X-ray angiography. According to Readers 1 and 2, 4D-MRA had a sensitivity of 79.6% and 64.3%, a specificity of 90.9% and 100%, a PPV of 84.6% and 100% and an NPV of 90% and 81.5%, respectively, and a diagnostic accuracy of 86.1% for Readers 1 and 2, for detecting residual AVMs after GKRS. Conclusion The diagnostic accuracy of 4D-MRA at 3.0 T seems high, but there is still the possibility of further improving the spatiotemporal resolution of this technique. PMID:22294705
Mohammed, Nasiruddin; Kestin, Larry; Grills, Inga; Shah, Chirag; Glide-Hurst, Carri; Yan, Di; Ionascu, Dan
2012-03-15
Purpose: To investigate the impact of primary tumor and involved lymph node (LN) geometry (centroid, shape, volume) on internal target volume (ITV) throughout treatment for locally advanced non-small cell lung cancer using weekly four-dimensional computed tomography (4DCT). Methods and Materials: Eleven patients with advanced non-small cell lung cancer were treated using image-guided radiotherapy with acquisition of weekly 10-Phase 4DCTs (n = 51). Initial ITV was based on planning 4DCT. Master-ITV incorporated target geometry across the entire treatment (all 4DCTs). Geographic miss was defined as the % Master-ITV positioned outside of the initial planning ITV after registration is complete. Registration strategies considered were bony (B), primary tumor soft tissue alone (T), and registration based on primary tumor and involved LNs (T{sub L}N). Results: The % geographic miss for the primary tumor, mediastinal, and hilar lymph nodes based on each registration strategy were (1) B: 30%, 30%, 30%; (2) T: 21%, 40%, 36%; and (3) T{sub L}N: 26%, 26%, 27%. Mean geographic expansions to encompass 100% of the primary tumor and involved LNs were 1.2 {+-} 0.7 cm and 0.8 {+-} 0.3 cm, respectively, for B and T{sub L}N. Primary and involved LN expansions were 0.7 {+-} 0.5 cm and 1.1 {+-} 0.5 cm for T. Conclusion: T is best for solitary targets. When treatments include primary tumor and LNs, B and T{sub L}N provide more comprehensive geographic coverage. We have identified high % geographic miss when considering multiple registration strategies. The dosimetric implications are the subject of future study.
Chao, M; Lo, Y; Yuan, Y; Sheu, R; Rosenzweig, K
2014-06-01
Purpose: To develop a tumor motion model from four-dimensional computed tomography (4DCT) of thoracic patients and demonstrate its impact on 4D radiation therapy simulation. Methods: A regional deformable image registration algorithm was introduced to extract tumor motion out of patient's breathing cycle. The gross target volume (GTV) was manually delineated on a selected phase of 4DCT and a subregion with 10mm margin supplemented to the GTV was created on the Eclipse treatment planning system (Varian Medical Systems, Palo Alto, CA). Together with 4DCT the structures were exported into an inhouse research platform. A free form B-Spline deformable registration was carried out to map the subregion to other respiratory phases. The displacement vector fields were employed to propagate GTV contours with which the center of mass (CoM) of the GTV was computed for each breathing phase of 4DCT. The resultant GTV motion and its volumetric shape are utilized to facilitate 4D treatment planning. Five lung cancer patients undergoing stereotactic body radiation therapy were enrolled and their 4DCT sets were included in the study. Results: Application of the algorithm to five thoracic patients indicates that clinically satisfactory outcomes were achievable with a spatial accuracy better than 2mm for GTV contour propagation between adjacent phases, and 3mm between opposite phases. The GTV CoM was found to be in the range of 2.0mm through 2.5cm, depending upon the tumor location. Compared to the traditional whole image based registration, the computation of the regional model was found to be an order of magnitude more efficient. Conclusion: A regional deformable registration model was implemented to extract tumor motion. It will have widespread application in 4D radiation treatment planning in the future to maximally utilize the available spatial-tempo information.
Malinowski, Kathleen T.; Pantarotto, Jason R.; Senan, Suresh
2010-08-01
Purpose: To investigate the feasibility of modeling Stage III lung cancer tumor and node positions from anatomical surrogates. Methods and Materials: To localize their centroids, the primary tumor and lymph nodes from 16 Stage III lung cancer patients were contoured in 10 equal-phase planning four-dimensional (4D) computed tomography (CT) image sets. The centroids of anatomical respiratory surrogates (carina, xyphoid, nipples, mid-sternum) in each image set were also localized. The correlations between target and surrogate positions were determined, and ordinary least-squares (OLS) and partial least-squares (PLS) regression models based on a subset of respiratory phases (three to eight randomly selected) were created to predict the target positions in the remaining images. The three-phase image sets that provided the best predictive information were used to create models based on either the carina alone or all surrogates. Results: The surrogate most correlated with target motion varied widely. Depending on the number of phases used to build the models, mean OLS and PLS errors were 1.0 to 1.4 mm and 0.8 to 1.0 mm, respectively. Models trained on the 0%, 40%, and 80% respiration phases had mean ({+-} standard deviation) PLS errors of 0.8 {+-} 0.5 mm and 1.1 {+-} 1.1 mm for models based on all surrogates and carina alone, respectively. For target coordinates with motion >5 mm, the mean three-phase PLS error based on all surrogates was 1.1 mm. Conclusions: Our results establish the feasibility of inferring primary tumor and nodal motion from anatomical surrogates in 4D CT scans of Stage III lung cancer. Using inferential modeling to decrease the processing time of 4D CT scans may facilitate incorporation of patient-specific treatment margins.
Geld, Ylanga G. van der; Triest, Baukelien van; Verbakel, Wilko; Soernsen de Koste, John R. van; Senan, Suresh; Slotman, Ben J.; Lagerwaard, Frank J.
2008-11-15
Purpose: To compare conformal radiotherapy (CRT), intensity-modulated radiotherapy (IMRT), and respiration-gated radiotherapy (RGRT) planning techniques for pancreatic cancer. All target volumes were determined using four-dimensional computed tomography scans (4D CT). Methods and Materials: The pancreatic tumor and enlarged regional lymph nodes were contoured on all 10 phases of a planning 4D CT scan for 10 patients, and the planning target volumes (PTV{sub allphases}) were generated. Three consecutive respiratory phases for RGRT delivery in both inspiration and expiration were identified, and the corresponding PTVs (PTV{sub inspiration} and PTV{sub expiration}) and organ at risk volumes created. Treatment plans using CRT and IMRT, with and without RGRT, were created for each PTV. Results: Compared with the CRT plans, IMRT significantly reduced the mean volume of right kidney exposed to 20 Gy from 27.7% {+-} 17.7% to 16.0% {+-} 18.2% (standard deviation) (p < 0.01), but this was not achieved for the left kidney (11.1% {+-} 14.2% to 5.7% {+-} 6.5%; p = 0.1). The IMRT plans also reduced the mean gastric, hepatic, and small bowel doses (p < 0.01). No additional reductions in the dose to the kidneys or other organs at risk were seen when RGRT plans were combined with either CRT or IMRT, and the findings for RGRT in end-expiration and end-inspiration were similar. Conclusion: 4D CT-based IMRT plans for pancreatic tumors significantly reduced the radiation doses to the right kidney, liver, stomach, and small bowel compared with CRT plans. The additional dosimetric benefits from RGRT appear limited in this setting.
Zhang Xiaodong; Zhao Kuaile; Guerrero, Thomas M.; Mcguire, Sean E.; Yaremko, Brian; Komaki, Ritsuko; Cox, James D.; Hui Zhouguang; Li Yupeng; Newhauser, Wayne D.; Mohan, Radhe; Liao Zhongxing
2008-09-01
Purpose: To compare three-dimensional (3D) and four-dimensional (4D) computed tomography (CT)-based treatment plans for proton therapy or intensity-modulated radiation therapy (IMRT) for esophageal cancer in terms of doses to the lung, heart, and spinal cord and variations in target coverage and normal tissue sparing. Methods and Materials: The IMRT and proton plans for 15 patients with distal esophageal cancer were designed from the 3D average CT scans and then recalculated on 10 4D CT data sets. Dosimetric data were compared for tumor coverage and normal tissue sparing. Results: Compared with IMRT, median lung volumes exposed to 5, 10, and 20 Gy and mean lung dose were reduced by 35.6%, 20.5%, 5.8%, and 5.1 Gy for a two-beam proton plan and by 17.4%, 8.4%, 5%, and 2.9 Gy for a three-beam proton plan. The greater lung sparing in the two-beam proton plan was achieved at the expense of less conformity to the target (conformity index [CI], 1.99) and greater irradiation of the heart (heart-V40, 41.8%) compared with the IMRT plan(CI, 1.55, heart-V40, 35.7%) or the three-beam proton plan (CI, 1.46, heart-V40, 27.7%). Target coverage differed by more than 2% between the 3D and 4D plans for patients with substantial diaphragm motion in the three-beam proton and IMRT plans. The difference in spinal cord maximum dose between 3D and 4D plans could exceed 5 Gy for the proton plans partly owing to variations in stomach gas filling. Conclusions: Proton therapy provided significantly better sparing of lung than did IMRT. Diaphragm motion and stomach gas-filling must be considered in evaluating target coverage and cord doses.
NASA Astrophysics Data System (ADS)
Zhao, Ying; Wang, Bin; Ji, Zhongzhen; Liang, Xudong; Deng, Guo; Zhang, Xin
2005-07-01
In this study, an attempt to improve typhoon forecasts is made by incorporating three-dimensional Advanced Microwave Sounding Unit-A (AMSU-A) retrieved wind and temperature and the central sea level pressure of cyclones from typhoon reports or bogus surface low data into initial conditions, on the basis of the Fifth-Generation National Center for Atmospheric Research/Pennsylvania State University Mesoscale Model (MM5) four-dimensional variational data assimilation (4DVar) system with a full-physics adjoint model. All the above-mentioned data are found to be useful for improvement of typhoon forecasts in this mesoscale data assimilation experiment. The comparison tests showed the following results: (1) The assimilation of the satellite-retrieved data was found to have a positive impact on the typhoon track forecast, but the landing position error is ˜150 km. (2) The assimilation of both the satellite-retrieved data and moving information of the typhoon center dramatically improved the track forecast and captured the recurvature and landfall. The mean track error during the 72-hour forecast is 69 km. The predicted typhoon intensity, however, is much weaker than that from observations. (3) The assimilation of both the satellite-retrieved data and the bogus surface low data improved the intensity and track forecasts more significantly than the assimilation of only bogus surface low data (bogus data assimilation) did. The mean errors during the 72-hour forecast are 2.6 hPa for the minimum sea level pressure and 87 km for track position. However, the forecasted landing time is ˜6 hours earlier than the observed one.
Mori, Shinichiro; Kanematsu, Nobuyuki; Asakura, Hiroshi; Sharp, Gregory C.; Kumagai, Motoki; Dobashi, Suguru; Nakajima, Mio; Yamamoto, Naoyoshi; Kandatsu, Susumu; Baba, Masayuki
2011-06-01
Purpose: We compared four-dimensional (4D) layer-stacking and conventional carbon ion beam distribution in the treatment of lung cancer between ungated and gated respiratory strategies using 4DCT data sets. Methods and Materials: Twenty lung patients underwent 4DCT imaging under free-breathing conditions. Using planning target volumes (PTVs) at respective respiratory phases, two types of compensating bolus were designed, a full single respiratory cycle for the ungated strategy and an approximately 30% duty cycle for the exhalation-gated strategy. Beams were delivered to the PTVs for the ungated and gated strategies, PTV(ungated) and PTV(gated), respectively, which were calculated by combining the respective PTV(Tn)s by layer-stacking and conventional irradiation. Carbon ion beam dose distribution was calculated as a function of respiratory phase by applying a compensating bolus to 4DCT. Accumulated dose distributions were calculated by applying deformable registration. Results: With the ungated strategy, accumulated dose distributions were satisfactorily provided to the PTV, with D95 values for layer-stacking and conventional irradiation of 94.0% and 96.2%, respectively. V20 for the lung and Dmax for the spinal cord were lower with layer-stacking than with conventional irradiation, whereas Dmax for the skin (14.1 GyE) was significantly lower (21.9 GyE). In addition, dose conformation to the GTV/PTV with layer-stacking irradiation was better with the gated than with the ungated strategy. Conclusions: Gated layer-stacking irradiation allows the delivery of a carbon ion beam to a moving target without significant degradation of dose conformity or the development of hot spots.
Guckenberger, Matthias Wilbert, Juergen; Krieger, Thomas; Richter, Anne; Baier, Kurt; Flentje, Michael
2009-06-01
Purpose: To evaluate the accuracy of direct reconstruction of mid-ventilation and peak-phase four-dimensional (4D) computed tomography (CT) frames based on the external breathing signal. Methods and Materials: For 11 patients with 15 pulmonary targets, a respiration-correlated CT study (4D CT) was acquired for treatment planning. After retrospective time-based sorting of raw projection data and reconstruction of eight CT frames equally distributed over the breathing cycle, mean tumor position (P{sub mean}), mid-ventilation frame, and breathing motion were evaluated based on the internal tumor trajectory. Analysis of the external breathing signal (pressure sensor around abdomen) with amplitude-based sorting of projections was performed for direct reconstruction of the mid-ventilation frame and frames at peak phases of the breathing cycle. Results: On the basis of the eight 4D CT frames equally spaced in time, tumor motion was largest in the craniocaudal direction, with 12 {+-} 7 mm on average. Tumor motion between the two frames reconstructed at peak phases was not different in the craniocaudal and anterior-posterior directions but was systematically smaller in the left-right direction by 1 mm on average. The 3-dimensional distance between P{sub mean} and the tumor position in the mid-ventilation frame based on the internal tumor trajectory was 1.2 {+-} 1 mm. Reconstruction of the mid-ventilation frame at the mean amplitude position of the external breathing signal resulted in tumor positions 2.0 {+-} 1.1 mm distant from P{sub mean}. Breathing-induced motion artifacts in mid-ventilation frames caused negligible changes in tumor volume and shape. Conclusions: Direct reconstruction of the mid-ventilation frame and frames at peak phases based on the external breathing signal was reliable. This makes the reconstruction of only three 4D CT frames sufficient for application of the mid-ventilation technique in clinical practice.
Terluin, Berend; Smits, Niels; Miedema, Baukje
2014-12-01
Translations of questionnaires need to be carefully validated to assure that the translation measures the same construct(s) as the original questionnaire. The four-dimensional symptom questionnaire (4DSQ) is a Dutch self-report questionnaire measuring distress, depression, anxiety and somatization. To evaluate the equivalence of the English version of the 4DSQ. 4DSQ data of English and Dutch speaking general practice attendees were analysed and compared. The English speaking group consisted of 205 attendees, aged 18-64 years, in general practice, in Canada whereas the Dutch group consisted of 302 general practice attendees in the Netherlands. Differential item functioning (DIF) analysis was conducted using the Mantel-Haenszel method and ordinal logistic regression. Differential test functioning (DTF; i.e., the scale impact of DIF) was evaluated using linear regression analysis. DIF was detected in 2/16 distress items, 2/6 depression items, 2/12 anxiety items, and 1/16 somatization items. With respect to mean scale scores, the impact of DIF on the scale level was negligible for all scales. On the anxiety scale DIF caused the English speaking patients with moderate to severe anxiety to score about one point lower than Dutch patients with the same anxiety level. The English 4DSQ measures the same constructs like the original Dutch 4DSQ. The distress, depression and somatization scales can employ the same cut-off points as the corresponding Dutch scales. However, cut-off points of the English 4DSQ anxiety scale should be lowered by one point to retain the same meaning as the Dutch anxiety cut-off points.
Yamashita, Hideomi; Okuma, Kae; Tada, Keiichiro; Shiraishi, Kenshiro; Takahashi, Wataru; Shibata-Mobayashi, Shino; Sakumi, Akira; Saotome, Naoya; Haga, Akihiro; Onoe, Tsuyoshi; Ino, Kenji; Akahane, Masaaki; Ohtomo, Kuni; Nakagawa, Keiichi
2012-10-01
To study the three-dimensional movement of internal tumor bed fiducial and breast skin markers, using 320-multislice computed tomography (CT); and to analyze intrafractional errors for breast cancer patients undergoing breast irradiation. This study examined 280 markers on the skin of the breast (200 markers) and on the primary tumor bed (80 markers) of 20 patients treated by external-beam photon radiotherapy. Motion assessment was analyzed in 41 respiratory phases during 20 s of cine CT in the radiotherapy position. To assess intrafractional errors resulting from respiratory motion, four-dimensional CT scans were acquired for 20 patients. Motion in the anterior-posterior (A/P) and superior-inferior (S/I) directions showed a strong correlation (|r| > 0.7) with the respiratory curve for most markers (79% and 70%, respectively). The average marker displacements between maximum and minimum value during 20 s for the 200 breast skin metal markers were 1.1 ± 0.3 mm, 2.1 ± 0.6 mm, and 1.6 ± 0.4 mm in the left-right, A/P, and S/I directions, respectively. For the 80 tumor bed clips, displacements were 0.9 ± 0.2 mm in left-right, 1.7 ± 0.5 mm in A/P, and 1.1 ± 0.3 mm in S/I. There was no significant difference in the motion between breast quadrant regions or between the primary site and the other regions. Motion in primary breast tumors was evaluated with 320-multislice CT. Very little change was detected during individual radiation treatment fractions. Copyright © 2012 Elsevier Inc. All rights reserved.
Wong, Yong Foo; Kulsing, Chadin; Marriott, Philip J
2017-05-16
A novel hybrid online enantioselective four-dimensional dynamic GC (e4D-DGC) approach to study reversible molecular interconversion through specific isolation of a diastereo and enantiopure oxime, 2-phenylpropanaldehyde oxime, from prior multidimensional separation, is described. It incorporates a pre-enantioseparation step that applies comprehensive two-dimensional GC (GC × GC), prior to multiple microfluidic (Deans) switching for selection of components of a diastereomeric (E,Z) and enantiomeric (R,S) oxime into a third reactor column where isomerization occurs. This is followed by E/Z separation in a fourth analytical column. The enantioselective first dimension ((1)Denant) yields enantioseparation of E(R), Z(R), E(S), and Z(S) isomers, with a characteristic interconversion zone between the E and Z isomers. However, these are contaminated with underlying stereoisomers. Selected separation regions were then modulated and separated using a second dimension ((2)D) column via GC × GC, resolving the interfering stereoisomers. Individual pure enantiomers were then selectively heart-cut from within the 2D separation space, cryofocused, then eluted on a (3)D reactor column for E ⇌ Z isomerization under controlled oven temperature and flow. Heart-cuts taken over the resulting interconversion distribution were cryotrapped at the inlet of a (4)D column, on which achiral separation allows precise quantification of each E and Z isomer of the enantiomer. From peak areas and isomerization time, the forward and backward rate constants (kE→Z and kZ→E) were determined. The described methodology is suited to other configurationally labile molecules (for instance, hydrazones and imines), which exhibit isomerization, and can be used to isolate individual compounds from multicomponent samples, without requiring pure compound synthesis, or complex mathematical models or in-silico simulations.
NASA Astrophysics Data System (ADS)
Nakamoto, T.; Arimura, H.; Hirose, T. A.; Ohga, S.; Umezu, Y.; Nakamura, Y.; Honda, H.; Sasaki, T.
2017-03-01
The goal of our study was to develop a computational framework for reconstruction of four-dimensional computed tomography (4D-CT) images during treatment time using electronic portal imaging device (EPID) images based on a dynamic 2D/3D registration. The 4D-CT images during treatment time ("treatment" 4D-CT images) were reconstructed by performing an affine transformation-based dynamic 2D/3D registration between dynamic clinical portal dose images (PDIs) derived from the EPID images with planning CT images through planning PDIs for all frames. Elements of the affine transformation matrices (transformation parameters) were optimized using a Levenberg-Marquardt (LM) algorithm so that the planning PDIs could be similar to the dynamic clinical PDIs for all frames. Initial transformation parameters in each frame should be determined for finding optimum transformation parameters in the LM algorithm. In this study, the optimum transformation parameters in a frame employed as the initial transformation parameters for optimizing the transformation parameter in the consecutive frame. Gamma pass rates (3 mm/3%) were calculated for evaluating a similarity of the dose distributions between the dynamic clinical PDIs and "treatment" PDIs, which were calculated from "treatment" 4D-CT images, for all frames. The framework was applied to eight lung cancer patients who were treated with stereotactic body radiation therapy (SBRT). A mean of the average gamma pass rates between the dynamic clinical PDIs and the "treatment" PDIs for all frames was 98.3+/-1.2% for eight cases. In conclusion, the proposed framework makes it possible to dynamically monitor patients' movement during treatment time.
Harsolia, Asif; Hugo, Geoffrey D.; Kestin, Larry L. Grills, Inga S.; Yan Di
2008-02-01
Purpose: This study compares multiple planning techniques designed to improve accuracy while allowing reduced planning target volume (PTV) margins though image-guided radiotherapy (IGRT) with four-dimensional (4D) cone-beam computed tomography (CBCT). Methods and Materials: Free-breathing planning and 4D-CBCT scans were obtained in 8 patients with lung tumors. Four plans were generated for each patient: 3D-conformal, 4D-union, 4D-offline adaptive with a single correction (offline ART), and 4D-online adaptive with daily correction (online ART). For the 4D-union plan, the union of gross tumor volumes from all phases of the 4D-CBCT was created with a 5-mm expansion applied for setup uncertainty. For offline and online ART, the gross tumor volume was delineated at the mean position of tumor motion from the 4D-CBCT. The PTV margins were calculated from the random components of tumor motion and setup uncertainty. Results: Adaptive IGRT techniques provided better PTV coverage with less irradiated normal tissues. Compared with 3D plans, mean relative decreases in PTV volumes were 15%, 39%, and 44% using 4D-union, offline ART, and online ART planning techniques, respectively. This resulted in mean lung volume receiving {>=} 20Gy (V20) relative decreases of 21%, 23%, and 31% and mean lung dose relative decreases of 16%, 26%, and 31% for the 4D-union, 4D-offline ART, and 4D-online ART, respectively. Conclusions: Adaptive IGRT using CBCT is feasible for the treatment of patients with lung tumors and significantly decreases PTV volume and dose to normal tissues, allowing for the possibility of dose escalation. All analyzed 4D planning strategies resulted in improvements over 3D plans, with 4D-online ART appearing optimal.
Berg, Philipp; Stucht, Daniel; Janiga, Gábor; Beuing, Oliver; Speck, Oliver; Thévenin, Dominique
2014-04-01
Computational fluid dynamics (CFD) opens up multiple opportunities to investigate the hemodynamics of the human vascular system. However, due to numerous assumptions the acceptance of CFD among physicians is still limited in practice and validation through comparison is mandatory. Time-dependent quantitative phase-contrast magnetic resonance imaging PC-MRI measurements in a healthy volunteer and two intracranial aneurysms were carried out at 3 and 7 Tesla. Based on the acquired images, three-dimensional (3D) models of the aneurysms were reconstructed and used for the numerical simulations. Flow information from the MR measurements were applied as boundary conditions. The four-dimensional (4D) velocity fields obtained by CFD and MRI were qualitatively as well as quantitatively compared including cut planes and vector analyses. For all cases a high similarity of the velocity patterns was observed. Additionally, the quantitative analysis revealed a good agreement between CFD and MRI. Deviations were caused by minor differences between the reconstructed vessel models and the actual lumen. The comparisons between diastole and systole indicate that relative differences between MRI and CFD are intensified with increasing velocity. The findings of this study lead to the conclusion that CFD and MRI agree well in predicting intracranial velocities when realistic geometries and boundary conditions are provided. Due to the considerably higher temporal and spatial resolution of CFD compared to MRI, complex flow patterns can be further investigated in order to evaluate their role with respect to aneurysm formation or rupture. Nevertheless, special care is required regarding the vessel reconstruction since the geometry has a major impact on the subsequent numerical results.
Shimohigashi, Yoshinobu; Araki, Fujio; Maruyama, Masato; Nakaguchi, Yuji; Nakato, Kengo; Nagasue, Nozomu; Kai, Yudai
2015-01-01
Our purpose in this study was to evaluate the performance of four-dimensional computed tomography (4D-CBCT) and to optimize the acquisition parameters. We evaluated the relationship between the acquisition parameters of 4D-CBCT and the accuracy of the target motion trajectory using a dynamic thorax phantom. The target motion was created three dimensionally using target sizes of 2 and 3 cm, respiratory cycles of 4 and 8 s, and amplitudes of 1 and 2 cm. The 4D-CBCT data were acquired under two detector configurations: "small mode" and "medium mode". The projection data acquired with scan times ranging from 1 to 4 min were sorted into 2, 5, 10, and 15 phase bins. The accuracy of the measured target motion trajectories was evaluated by means of the root mean square error (RMSE) from the setup values. For the respiratory cycle of 4 s, the measured trajectories were within 2 mm of the setup values for all acquisition times and target sizes. Similarly, the errors for the respiratory cycle of 8 s were <4 mm. When we used 10 or more phase bins, the measured trajectory errors were within 2 mm of the setup values. The trajectory errors for the two detector configurations showed similar trends. The acquisition times for achieving an RMSE of 1 mm for target sizes of 2 and 3 cm were 2 and 1 min, respectively, for respiratory cycles of 4 s. The results obtained in this study enable optimization of the acquisition parameters for target size, respiratory cycle, and desired measurement accuracy.
Kono, Atsushi K.; Tani, Wakiko; Suehiro, Erina; Negi, Noriyuki; Takahashi, Satoru; Sugimura, Kazuro
2016-01-01
Backgrounds. This study examines the hypothesis that four-dimensional noise reduction (4DNR) with short interval times reduces noise in cardiac computed tomography (CCT) using “padding” phases. Furthermore, the capability of reducing the reduction dose in CCT using this post-processing technique was assessed. Methods. Using base and quarter radiation doses for CCT (456 and 114 mAs/rot with 120 kVp), a static phantom was scanned ten times with retrospective electrocardiogram gating, and 4DNR with short interval times (50 ms) was performed using a post-processing technique. Differences in the computed tomography (CT) attenuation, contrast-to-noise ratio (CNR) and spatial resolution with modulation transfer function in each dose image obtained with and without 4DNR were assessed by conducting a Tukey–Kramer’s test and non-inferiority test. Results. For the base dose, by using 4DNR, the CNR was improved from 1.18 ± 0.15 to 2.08 ± 0.20 (P = 0.001), while the CT attenuation and spatial resolution of the image of 4DNR did not were significantly inferior to those of reference image (P < 0.001). CNRs of the quarter-dose image in 4DNR also improved to 1.28 ± 0.11, and were not inferior to those of the non-4DNR images of the base dose (P < 0.001). Conclusions. 4DNR with short interval times significantly reduced noise. Furthermore, applying this method to CCT would have the potential of reducing the radiation dose by 75%, while maintaining a similar image noise level. PMID:26893966
Irvine, D M; Cole, A J; Hanna, G G; McGarry, C K
2015-01-01
Objective: The aim of this study was to identify sources of anatomical misrepresentation owing to the location of camera mounting, tumour motion velocity and image processing artefacts in order to optimize the four-dimensional CT (4DCT) scan protocol and improve geometrical–temporal accuracy. Methods: A phantom with an imaging insert was driven with a sinusoidal superior–inferior motion of varying amplitude and period for 4DCT scanning. The length of a high-density cube within the insert was measured using treatment planning software to determine the accuracy of its spatial representation. Scan parameters were varied, including the tube rotation period and the cine time between reconstructed images. A CT image quality phantom was used to measure various image quality signatures under the scan parameters tested. Results: No significant difference in spatial accuracy was found for 4DCT scans carried out using the wall- or couch-mounted camera for sinusoidal target motion. Greater spatial accuracy was found for 4DCT scans carried out using a tube rotation speed of 0.5 s rather than 1.0 s. The reduction in image quality when using a faster rotation speed was not enough to require an increase in patient dose. Conclusion: The 4DCT accuracy may be increased by optimizing scan parameters, including choosing faster tube rotation speeds. Peak misidentification in the recorded breathing trace may lead to spatial artefacts, and this risk can be reduced by using a couch-mounted infrared camera. Advances in knowledge: This study explicitly shows that 4DCT scan accuracy is improved by scanning with a faster CT tube rotation speed. PMID:25470359
Deng, Zixin; Pang, Jianing; Yang, Wensha; Yue, Yong; Sharif, Behzad; Tuli, Richard; Li, Debiao; Fraass, Benedick; Fan, Zhaoyang
2016-04-01
To develop a four-dimensional MRI (4D-MRI) technique to characterize the average respiratory tumor motion for abdominal radiotherapy planning. A continuous spoiled gradient echo sequence was implemented with 3D radial trajectory and 1D self-gating for respiratory motion detection. Data were retrospectively sorted into different respiratory phases based on their temporal locations within a respiratory cycle, and each phase was reconstructed by means of a self-calibrating CG-SENSE program. Motion phantom, healthy volunteer and patient studies were performed to validate the respiratory motion detected by the proposed method against that from a 2D real-time protocol. The proposed method successfully visualized the respiratory motion in phantom and human subjects. The 4D-MRI and real-time 2D-MRI yielded comparable superior-inferior (SI) motion amplitudes (intraclass correlation = 0.935) with up-to one pixel mean absolute differences in SI displacements over 10 phases and high cross-correlation between phase-resolved displacements (phantom: 0.985; human: 0.937-0.985). Comparable anterior-posterior and left-right displacements of the tumor or gold fiducial between 4D and real-time 2D-MRI were also observed in the two patients, and the hysteresis effect was shown in their 3D trajectories. We demonstrated the feasibility of the proposed 4D-MRI technique to characterize abdominal respiratory motion, which may provide valuable information for radiotherapy planning. © 2015 Wiley Periodicals, Inc.
Xun, D.M.; Liu, Q.H.; Zhu, X.M.
2013-11-15
A generalization of Dirac’s canonical quantization scheme for a system with second-class constraints is proposed, in which the fundamental commutation relations are constituted by all commutators between positions, momenta and Hamiltonian, so they are simultaneously quantized in a self-consistent manner, rather than by those between merely positions and momenta which leads to ambiguous forms of the Hamiltonian and the momenta. The application of the generalized scheme to the quantum motion on a torus leads to a remarkable result: the quantum theory is inconsistent if built up in an intrinsic geometric manner, whereas it becomes consistent within an extrinsic examination of the torus as a submanifold in three dimensional flat space with the use of the Cartesian coordinate system. The geometric momentum and potential are then reasonably reproduced. -- Highlights: •A generalization of Dirac’s canonical quantization is proposed for a system with second-class constraints. •Quantum motion on torus surface is explicitly treated to show how Schrödinger formalism is complementary to the Dirac one. •The embedding effect in quantum mechanics is originated from the quantization.
Terluin, Berend; Smits, Niels; Brouwers, Evelien P M; de Vet, Henrica C W
2016-09-15
The Four-Dimensional Symptom Questionnaire (4DSQ) is a self-report questionnaire measuring distress, depression, anxiety and somatization with separate scales. The 4DSQ has extensively been validated in clinical samples, especially from primary care settings. Information about measurement properties and normative data in the general population was lacking. In a Dutch general population sample we examined the 4DSQ scales' structure, the scales' reliability and measurement invariance with respect to gender, age and education, the scales' score distributions across demographic categories, and normative data. 4DSQ data were collected in a representative Dutch Internet panel. Confirmatory factor analysis was used to examine the scales' structure. Reliability was examined by Cronbach's alpha, and coefficients omega-total and omega-hierarchical. Differential item functioning (DIF) analysis was used to evaluate measurement invariance across gender, age and education. The total response rate was 82.4 % (n = 5273/6399). The depression scale proved to be unidimensional. The other scales were best represented as bifactor models consisting of a large general factor and one or more smaller specific factors. The general factors accounted for more than 95 % of the reliable variance of the scales. Reliability was high (≥0.85) by all estimates. The distress-, depression- and anxiety scales were invariant across gender, age and education. The somatization scale demonstrated some lack of measurement invariance as a result of decreased thresholds for some of the items in young people (16-24 years) and increased thresholds in elderly people (65+ years). The somatization scale was invariant regarding gender and education. The 4DSQ scores varied significantly across demographic categories, but the explained variance was small (<6 %). Normative data were generated for gender and age categories. Approximately 17 % of the participants scored above average on de distress scale
Kamino, Yuichiro; Miura, Sadao; Kokubo, Masaki; Yamashita, Ichiro; Hirai, Etsuro; Hiraoka, Masahiro; Ishikawa, Junzo
2007-05-01
We are developing a four-dimensional image-guided radiotherapy system with a gimbaled x-ray head. It is capable of pursuing irradiation and delivering irradiation precisely with the help of an agile moving x-ray head on the gimbals. Requirements for the accelerator guide were established, system design was developed, and detailed design was conducted. An accelerator guide was manufactured and basic beam performance and leakage radiation from the accelerator guide were evaluated at a low pulse repetition rate. The accelerator guide including the electron gun is 38 cm long and weighs about 10 kg. The length of the accelerating structure is 24.4 cm. The accelerating structure is a standing wave type and is composed of the axial-coupled injector section and the side-coupled acceleration cavity section. The injector section is composed of one prebuncher cavity, one buncher cavity, one side-coupled half cavity, and two axial coupling cavities. The acceleration cavity section is composed of eight side-coupled nose reentrant cavities and eight coupling cavities. The electron gun is a diode-type gun with a cerium hexaboride (CeB6) direct heating cathode. The accelerator guide can be operated without any magnetic focusing device. Output beam current was 75 mA with a transmission efficiency of 58%, and the average energy was 5.24 MeV. Beam energy was distributed from 4.95 to 5.6 MeV. The beam profile, measured 88 mm from the beam output hole on the axis of the accelerator guide, was 0.7 mm X 0.9 mm full width at half maximum (FWHM) width. The beam loading line was 5.925 (MeV)-Ib (mA) X 0.00808 (MeV/mA), where Ib is output beam current. The maximum radiation leakage of the accelerator guide at 100 cm from the axis of the accelerator guide was calculated as 0.33 cGy/min at the rated x-ray output of 500 cGy/min from the measured value. This leakage requires no radiation shielding for the accelerator guide itself per IEC 60601-2-1.
Shimohigashi, Yoshinobu; Toya, Ryo; Saito, Tetsuo; Ikeda, Osamu; Maruyama, Masato; Yonemura, Keisuke; Nakaguchi, Yuji; Kai, Yudai; Yamashita, Yasuyuki; Oya, Natsuo; Araki, Fujio
2017-03-23
For stereotactic body radiation therapy (SBRT) of liver tumors, tumor motion induced by respiration must be taken into account in planning and treatment. We evaluated whether liver tumor motion at the planning simulation represents liver tumor motion during SBRT, and estimated inter- and intrafractional tumor motion changes in patients undergoing liver SBRT. Ten patients underwent four-dimensional cone-beam computed tomography (4D-CBCT) image-guided liver SBRT with abdominal compression (AC) and fiducial markers. 4D-CBCT was performed to evaluate liver tumor motion at the planning simulation, pre-, and post-SBRT. The translational distances at the center position of the fiducial markers from all 10 phases on the 4D-CBCT images were measured as the extent of the liver tumor motion in the left-right (LR), anterior-posterior (AP), and superior-inferior (SI) directions. Pearson correlation coefficients were calculated to evaluate the correlation between liver tumor motion of the planning simulation and the mean liver tumor motion of the pre-SBRT. Inter- and intrafractional liver tumor motion changes were measured based on the 4D-CBCT of planning simulation, pre-, and post-SBRT. Significant inter- and intrafractional changes in liver tumor motion were defined as a change of >3 mm. The mean (± SD) liver tumor motion of the planning simulation 4D-CBCT was 1.7 ± 0.8 mm, 2.4 ± 2.2 mm, and 5.3 ± 3.3 mm, in the LR, AP, and SI directions, respectively. Those of the pre-SBRT 4D-CBCT were 1.2 ± 0.7 mm, 2.3 ± 2.3 mm, and 4.5 ± 3.8 mm, in the LR, AP, and SI directions, respectively. There was a strong significant correlation between liver tumor motion of the planning simulation and pre-SBRT in the LR (R = 0.7, P < 0.01), AP (R = 0.9, P < 0.01), and SI (R = 0.9, P < 0.01) directions. Significant inter- and intrafractional liver tumor motion changes occurred in 10 and 2% of treatment fractions, respectively. Liver tumor
Kang, S; Kim, D; Kim, T; Kim, K; Cho, M; Shin, D; Suh, T; Kim, S; Park, S
2015-06-15
Purpose: Respiratory motion in thoracic and abdominal region could lead to significant underdosing of target and increased dose to healthy tissues. The aim of this study is to evaluate the dosimetric effect of respiratory motion in conventional 3D dose by comparing 4D deformable dose in liver stereotactic body radiotherapy (SBRT). Methods: Five patients who had previously treated liver SBRT were included in this study. Four-dimensional computed tomography (4DCT) images with 10 phases for all patients were acquired on multi-slice CT scanner (Siemens, Somatom definition). Conventional 3D planning was performed using the average intensity projection (AIP) images. 4D dose accumulation was calculated by summation of dose distribution for all phase images of 4DCT using deformable image registration (DIR) . The target volume and normal organs dose were evaluated with the 4D dose and compared with those from 3D dose. And also, Index of achievement (IOA) which assesses the consistency between planned dose and prescription dose was used to compare target dose distribution between 3D and 4D dose. Results: Although the 3D dose calculation considered the moving target coverage, significant differences of various dosimetric parameters between 4D and 3D dose were observed in normal organs and PTV. The conventional 3D dose overestimated dose to PTV, however, there was no significant difference for GTV. The average difference of IOA which become ‘1’ in an ideal case was 3.2% in PTV. The average difference of liver and duodenum was 5% and 16% respectively. Conclusion: 4D dose accumulation which can provide dosimetric effect of respiratory motion has a possibility to predict the more accurate delivered dose to target and normal organs and improve treatment accuracy. This work was supported by the Radiation Technology R&D program (No. 2013M2A2A7043498) and the Mid-career Researcher Program (2014R1A2A1A10050270) through the National Research Foundation of Korea funded by the
Guo, B; Li, J B; Wang, W; Xu, M; Shao, Q; Liu, T H
2017-04-23
Objective: To investigate the potential dosimetric benefits of four-dimensional computed tomography (4DCT) compared to three-dimensional CT (3DCT) in the planning of radiotherapy for external-beam partial breast irradiation (EB-PBI). Methods: Three-DCT and 4DCT scan sets were acquired for 20 patients who underwent EB-PBI. For each patient a conventional 3D conformal plan (3D-CRT) was generated based on end-inhalation phase (EI). The treatment plan based on the 4DCT EI phase images was copied and applied to the end-exhalation phase (EE) and 3DCT images (defined as EB-PBI(EI), EB-PBI(EE), EB-PBI(3D), respectively). Results: The median volumes of the tumour bed based on 3DCT, EI and EE were 20.99 cm(3,) 19.28 cm(3,) and 18.78 cm(3,) respectively. The tumour bed volume based on 3DCT was significantly greater than that of EI and EE volumes (P<0.05). The planning target volumes (PTV) coverage of EB-PBI(3D), EB-PBI(EI) and EB-PBI(EE) were 96.85%, 97.51%, 97.03%, respectively. The planning target volume (PTV) coverage of EB-PBI(3D) was significantly less than that of EB-PBI(EI) and EB-PBI(EE) (P<0.05). The median homogeneity indexs (HI) based on 3DCT, EI and EE were 0.13, 0.13, 0.13, respectively. The median conformal indexs (CI) based on 3DCT, EI and EE were 0.68, 0.69, 0.68, respectively. The median mean doses (D(mean)) based on 3DCT, EI and EE were 36.20 Gy, 36.20 Gy, 36.22 Gy, respectively. However there were no significant differences in the homogeneity index, conformity index and the mean dose of PTV between the three treatment plans (P>0.05). The EB-PBI(3D) plan resulted in the largest organs at risk dose (P<0.05). Conclusion: There was a significant benefit when using 4DCT to plan 3D-CRT for EB-PBI with regard to reduced non-target organ exposure, and might result in poor dose coverage when the PTV is determined using 3DCT.
Yoon, J; Jung, J; Yi, B; Kim, J; Yeo, I
2015-06-15
Purpose: To test a method to reconstruct a four-dimensional (4D) dose distribution using the correlation of pre-calculated 4D electronic portal imaging device (EPID) images and measured cine-EPID images. Methods: 1. A phantom designed to simulate a tumor in lung (a polystyrene block with 3.0 cm diameter embedded in cork) was placed on a sinusoidally moving platform with 2 cm amplitude and 4 sec/cycle. Ten-phase 4D CT images were acquired for treatment planning and dose reconstruction. A 6MV photon beam was irradiated on the phantom with static (field size=5×8.5 cm{sup 2}) and dynamic fields (sliding windows, 10×10 cm{sup 2}, X1 MLC closing in parallel with the tumor movement). 2. 4D and 3D doses were calculated forwardly on PTV (1 cm margin). 3. Dose images on EPID under the fields were calculated for 10 phases. 4. Cine EPID images were acquired during irradiation. 5. Their acquisition times were correlated to the phases of the phantom at which irradiation occurred by inter-comparing calculated “reference” EPID images with measured images (2D gamma comparison). For the dynamic beam, the tumor was hidden under MLCs during a portion of irradiation time; the correlation performed when the tumor was visible was extrapolated. 6. Dose for each phase was reconstructed on the 4D CT images and summed over all phases. The summation was compared with forwardly calculated 4D and 3D dose distributions. Monte Carlo methods were used for all calculations. Results: For the open and dynamic beams, the 4D reconstructed doses showed the pass rates of 92.7 % and 100 %, respectively, at the isocenter plane given 3% / 3 mm criteria. The better agreement of the dynamic beam was from its dose gradient which blurred the otherwise sharp difference between forward and reconstructed doses. This also contributed slightly better agreement in DVH of PTV. Conclusion: The feasibility of 4D reconstruction was demonstrated.
Kipritidis, J; Keall, P; Hugo, G; Weiss, E; Williamson, J
2014-06-15
Purpose: Four-dimensional cone beam CT ventilation imaging (4D-CBCT VI) is a novel functional lung imaging modality requiring validation. We hypothesize that 4D-CBCT VI satisfies a necessary condition for validity: that intrafraction variations (e.g. due to poor 4D-CBCT image quality) are substantially different to interfraction variations (e.g. due to changes in underlying function). We perform the first comparison of intrafraction (pre/post fraction) and interfraction (week-to-week) 4D-CBCT VIs for locally advanced non small cell lung cancer (LA NSCLC) patients undergoing radiation therapy. Methods: A total of 215 4D-CBCT scans were acquired for 19 LA NSCLC patients over 4-6 weeks of radiation therapy, including 75 pairs of pre-/post-fraction scans on the same day. 4D-CBCT VIs were obtained by applying state-of-the-art, B-spline deformable image registration to obtain the Jacobian determinant of deformation between the end-exhale and end-inhale phases. All VIs were deformably registered to the corresponding first day scan, normalized between the 10th and 90th percentile values and cropped to the ipsilateral lung only. Intrafraction variations were assessed by computing the mean and standard deviation of voxel-wise differences between all same-day pairs of pre-/post-fraction VIs. Interfraction differences were computed between first-day VIs and treatment weeks 2, 4 and 6 for all 19 patients. We tested the hypothesis by comparing cumulative distribution functions (CDFs) of intrafraction and interfraction ventilation differences using two-sided Kolmogorov-Smirnov goodness-of-fit tests. Results: The (mean ± std. dev.) of intrafraction differences was (−0.007 ± 0.079). Interfraction differences for weeks 2, 4 and 6 were (−0.035 ± 0.103), (−0.006 ± 0.094) and (−0.019 ± 0.127) respectively. For week 2, the changes in CDFs for intrafraction and interfraction differences approached statistical significance (p=0.099). Conclusion: We have shown that 4D-CBCT VI
Yang, Wensha; Fan, Zhaoyang; Tuli, Richard; Deng, Zixin; Pang, Jianing; Wachsman, Ashley; Reznik, Robert; Sandler, Howard; Li, Debiao; Fraass, Benedick A.
2015-01-01
Purpose Dynamic magnetic resonance imaging (MRI) has been used to characterize internal organ motion but real time acquisition is typically limited to 2 dimensions. Methods have been developed to reconstruct four dimensional MRI (4D-MRI) based on time-stamped 2D images or 2D K-space data. These methods suffer from anisotropic resolution and rebinning artifacts. We applied a novel self-gating K-space sorted 4D-MRI (SG-KS-4D-MRI) method to overcome these limitations and to monitor pancreatic tumor motion. Methods and Material Ten patients were imaged using 4D-CT, cine 2D-MRI and the SG-KS-4D-MRI, which is a spoiled gradient recalled echo (GRE) sequence with 3D radial-sampling K-space projections and 1D projection-based self-gating. Tumor volumes were defined on all phases in both 4D-MRI and 4D-CT and then compared. Results An isotropic resolution of 1.56 mm was achieved in the SG-KS-4D-MRI images, which showed superior soft tissue contrast to 4D-CT and appeared to be free of visible rebinning artifacts. The tumor motion trajectory cross-correlations between SG-KS-4D-MRI and cine 2D-MRI in SI, AP and ML directions were 0.93±0.03, 0.83±0.10 and 0.74±0.18, respectively. The tumor motion trajectories cross-correlations between SG-KS-4D-MRI and 4D-CT in SI, AP and ML directions were 0.91±0.06, 0.72±0.16 and 0.44±0.24, respectively. The average standard deviation of GTV volume (GTV_σ) calculated from the ten breathing phases were 0.81 cc and 1.02 cc for SG-KS-4D-MRI and 4D-CT (p=0.012). Conclusions A novel SG-KS-4D-MRI acquisition method capable of reconstructing rebinning artifact free high resolution 4D-MRI images was used to quantify pancreas tumor motion. The resultant pancreatic tumor motion trajectories agreed well with 2D-cine-MRI and 4D-CT. The pancreatic tumor volumes shown in the different phases for the SG-KS-4D-MRI were statistically significantly more consistent than those in the 4D-CT. PMID:26452571
Nakazawa-Tanaka, Nana; Miyahara, Katsumi; Fujiwara, Naho; Urao, Masahiko; Akazawa, Chihiro; Yamataka, Atsuyuki
2016-01-01
The behavior of enteric neural crest-derived cells (ENCC) during enteric nervous system (ENS) development is being gradually understood with the introduction of live-cell imaging. However, many of the analyses to date are two-dimensional and the precise multidirectional migration of ENCC has been challenging to interpret. Mice lacking the endothelin-B receptor gene, Ednrb (-/-) mice, are widely used as a model for Hirschsprung's disease (HD). We have recently developed a Sox10 transgenic (Tg) mouse to visualize ENCC with enhanced green fluorescent protein (Venus). By breeding these two models, we have created a Venus-positive, Sox10 Tg mouse with a deletion of the Ednrb gene, Sox10-Venus(+)/Ednrb (-/-) mouse, to investigate the ENS in HD. The aim of this study was to investigate the behavior of migrating ENCC in the hindgut of the Sox10-Venus(+)/Ednrb (-/-) mouse using three-dimensional and four-dimensional image analysis software. To compare the ENCC behavior when the wavefront of ENCC reaches the mid-hindgut between HD mouse and control, we harvested the fetal hindguts of Sox10-Venus(+)/Ednrb (-/-) mice on embryonic day 15.5 (E15.5) and Sox10-Venus(+)/Ednrb (+/+) mice on E12.5, which was used as control. Dissected hindguts were cultured for 360 min and the time-lapse images were obtained using a confocal laser-scanning microscope. Each ENCC at the wavefront was tracked after adjusting the longitudinal axis of the gut to the Y axis and analyzed using Imaris software. Track displacement (TD)-Y indicates ENCC advancement in a rostral-caudal direction. TD-X and TD-Z indicate ENCC advancement perpendicular to the rostral-caudal axis. Mean TD-Y was 34.56 µm in HD, but 63.48 µm in controls. TD-Y/TD-XZ was not significantly different in both groups. However, the mean track speeds were significantly decreased in HD (72.87 µm/h) compared to controls (248.29 µm/h). Our results showed that the track speed of ENCC advancement was markedly decreased in the HD mice
Tebbe, Brigitte B M; Terluin, Berend; van Poppel, Mireille N M
2016-09-01
the Four-Dimensional Symptom Questionnaire (4DSQ) measures four dimensions of common psychopathology: distress, depression, anxiety and somatization. The instrument is developed and validated for general practice. A previous validation study of the 4DSQ for midwifery practice indicated that pregnant women respond differently to the items of the 4DSQ. This phenomenon is called item bias. The present study is a followup validation study in which pregnant women were followed up until one year post partum, to assess pregnancy-related item bias. cohort study with repeated measurements. the research group consisted of participants of the Mom@Work study, a study concerning mental health in a group of 574 working pregnant women and young mothers, recruited between 2004 and 2006. Measurements in the research group took place at 33 weeks of pregnancy and post partum at 7, 13, 25 and 52 weeks. The comparison group consisted of female general practice patients, matched for age (N=835). pregnancy-related item bias was assessed by two methods of differential item functioning (DIF) analysis: ordinal logistic regression (OLR) and the Mantel-Haenszel (MH) method. The impact of item bias on total scale scores was estimated by linear regression. Impact of item bias was found in the somatization-, distress- and anxiety scales of the 4DSQ across the perinatal period up until 13 weeks post partum. The depression scale remained free of item bias. pregnant and postpartum women responded differently to the 4DSQ than the women in the comparison group up until 13 weeks post partum. Pregnancy-related item bias lead to overestimation of distress and underestimation of somatization and anxiety. The depression scale was free of bias. The 4DSQ is a valid tool for case-finding and assessment of psychological conditions in the perinatal period, provided cut-off points are adapted up until 13 weeks post partum. Validation of generic questionnaires is recommended before using them in the perinatal
Taguenang, J; Algan, O; Ahmad, S; Ali, I
2014-06-01
Purpose: To investigate quantitatively the variations in dose-distributions induced by motion by measurements and modeling. A four-dimensional (4D) motion model of dose distributions that accounts for different motion parameters was developed. Methods: Variations in dose distributions induced by sinusoidal phantom motion were measured using a multiple-diode-array-detector (MapCheck2). MapCheck2 was mounted on a mobile platform that moves with adjustable calibrated motion patterns in the superior-inferior direction. Various plans including open and intensity-modulated fields were used to irradiate MapCheck2. A motion model was developed to predict spatial and temporal variations in the dose-distributions and dependence on the motion parameters using pencil-beam spread-out superposition function. This model used the superposition of pencil-beams weighted with a probability function extracted from the motion trajectory. The model was verified with measured dose-distributions obtained from MapCheck2. Results: Dose-distribution varied considerably with motion where in the regions between isocenter and 50% isodose-line, dose decreased with increase of the motion amplitude. Dose levels increased with increase in the motion amplitude in the region beyond 50% isodose-line. When the range of motion (ROM=twice amplitude) was smaller than the field length both central axis dose and the 50% isodose-line did not change with variation of motion amplitude and remained equal to the dose of stationary phantom. As ROM became larger than the field length, the dose level decreased at central axis dose and 50% isodose-line. Motion frequency and phase did not affect the dose distributions which were delivered over an extended time longer than few motion cycles, however, they played an important role for doses delivered with high-dose-rates within one motion cycle . Conclusion: A 4D-dose motion model was developed to predict and correct variations in dose distributions induced by one
Lu, Weiguo; Ruchala, Kenneth J; Chen, Ming-Li; Chen, Quan; Olivera, Gustavo H
2006-09-21
Real-time knowledge of intra-fraction motion, such as respiration, is essential for four-dimensional (4D) radiotherapy. Surrogate-based and internal-fiducial-based methods may suffer from one or many drawbacks such as false correlation, being invasive, delivering extra patient radiation, and requiring complicated hardware and software development and implementation. In this paper we develop a simple non-surrogate, non-invasive method to monitor respiratory motion during radiotherapy treatments in real time. This method directly utilizes the treatment beam and thus imposes no additional radiation to the patient. The method requires a pre-treatment 4DCT and a real-time detector system. The method combines off-line processes with on-line processes. The off-line processes include 4DCT imaging and pre-calculating detector signals at each phase of the 4DCT based on the planned fluence map and the detector response function. The on-line processes include measuring detector signal from the treatment beam, and correlating the measured detector signal with the pre-calculated signals. The respiration phase is determined as the position of peak correlation. We tested our method with extensive simulations based on a TomoTherapy machine and a 4DCT of a lung cancer patient. Three types of simulations were implemented to mimic the clinical situations. Each type of simulation used three different TomoTherapy delivery sinograms, each with 800 to 1000 projections, as input fluences. Three arbitrary breathing patterns were simulated and two dose levels, 2 Gy/fraction and 2 cGy/fraction, were used for simulations to study the robustness of this method against detector quantum noise. The algorithm was used to determine the breathing phases and this result was compared with the simulated breathing patterns. For the 2 Gy/fraction simulations, the respiration phases were accurately determined within one phase error in real time for most projections of the treatment, except for a few
Negahdar, M; Loo, B; Maxim, P
2015-06-15
Purpose: Elasticity may distinguish malignant from benign pulmonary nodules. To compare determining of malignant pulmonary nodule (MPN) elasticity from four dimensional computed tomography (4D CT) images versus inhale/exhale breath-hold CT images. Methods: We analyzed phase 00 and 50 of 4D CT and deep inhale and natural exhale of breath-hold CT images of 30 MPN treated with stereotactic ablative radiotherapy (SABR). The radius of the smallest MPN was 0.3 cm while the biggest one was 2.1 cm. An intensity based deformable image registration (DIR) workflow was applied to the 4D CT and breath-hold images to determine the volumes of the MPNs and a 1 cm ring of surrounding lung tissue (ring) in each state. Next, an elasticity parameter was derived by calculating the ratio of the volume changes of MPN (exhale:inhale or phase50:phase00) to that of a 1 cm ring of lung tissue surrounding the MPN. The proposed formulation of elasticity enables us to compare volume changes of two different MPN in two different locations of lung. Results: The calculated volume ratio of MPNs from 4D CT (phase50:phase00) and breath-hold images (exhale:inhale) was 1.00±0.23 and 0.95±0.11, respectively. It shows the stiffness of MPN and comparably bigger volume changes of MPN in breath-hold images because of the deeper degree of inhalation. The calculated elasticity of MPNs from 4D CT and breath-hold images was 1.12±0.22 and 1.23±0.26, respectively. For five patients who have had two MPN in their lung, calculated elasticity of tumor A and tumor B follows same trend in both 4D CT and breath-hold images. Conclusion: We showed that 4D CT and breath-hold images are comparable in the ability to calculate the elasticity of MPN. This study has been supported by Department of Defense LCRP 2011 #W81XWH-12-1-0286.
Terluin, Berend; van Marwijk, Harm WJ; Adèr, Herman J; de Vet, Henrica CW; Penninx, Brenda WJH; Hermens, Marleen LM; van Boeijen, Christine A; van Balkom, Anton JLM; van der Klink, Jac JL; Stalman, Wim AB
2006-01-01
Background The Four-Dimensional Symptom Questionnaire (4DSQ) is a self-report questionnaire that has been developed in primary care to distinguish non-specific general distress from depression, anxiety and somatization. The purpose of this paper is to evaluate its criterion and construct validity. Methods Data from 10 different primary care studies have been used. Criterion validity was assessed by comparing the 4DSQ scores with clinical diagnoses, the GPs' diagnosis of any psychosocial problem for Distress, standardised psychiatric diagnoses for Depression and Anxiety, and GPs' suspicion of somatization for Somatization. ROC analyses and logistic regression analyses were used to examine the associations. Construct validity was evaluated by investigating the inter-correlations between the scales, the factorial structure, the associations with other symptom questionnaires, and the associations with stress, personality and social functioning. The factorial structure of the 4DSQ was assessed through confirmatory factor analysis (CFA). The associations with other questionnaires were assessed with Pearson correlations and regression analyses. Results Regarding criterion validity, the Distress scale was associated with any psychosocial diagnosis (area under the ROC curve [AUC] 0.79), the Depression scale was associated with major depression (AUC = 0.83), the Anxiety scale was associated with anxiety disorder (AUC = 0.66), and the Somatization scale was associated with the GPs' suspicion of somatization (AUC = 0.65). Regarding the construct validity, the 4DSQ scales appeared to have considerable inter-correlations (r = 0.35-0.71). However, 30–40% of the variance of each scale was unique for that scale. CFA confirmed the 4-factor structure with a comparative fit index (CFI) of 0.92. The 4DSQ scales correlated with most other questionnaires measuring corresponding constructs. However, the 4DSQ Distress scale appeared to correlate with some other depression scales more
Cai, Jing; Read, Paul W; Sheng, Ke
2008-11-01
Composite images such as average intensity projection (AIP) and maximum intensity projection (MIP) derived from four-dimensional computed tomography (4D-CT) images are commonly used in radiation therapy for treating lung and abdominal tumors. It has been reported that the quality of 4D-CT images is influenced by the patient respiratory variability, which can be assessed by the standard deviation of the peak and valley of the respiratory trajectory. Subsequently, the resultant MIP underestimates the actual tumor motion extent. As a more general application, AIP comprises not only the tumor motion extent but also the probability that the tumor is present. AIP generated from 4D-CT can also be affected by the respiratory variability. To quantitate the accuracy of AIP and develop clinically relevant parameters for determining suitability of the 4D-CT study for AIP-based treatment planning, real time sagittal dynamic magnetic resonance imaging (dMRI) was used as the basis for generating simulated 4D-CT. Five-minute MRI scans were performed on seven healthy volunteers and eight lung tumor patients. In addition, images of circular phantoms with diameter 1, 3, or 5 cm were generated by software to simulate lung tumors. Motion patterns determined by dMRI images were reproduced by the software generated phantoms. Resorted dMRI using a 4D-CT acquisition method (RedCAM) based on phantom or patient images was reconstructed by simulating the imaging rebinning processes. AIP images and the corresponding color intensity projection (CIP) images were reconstructed from RedCAM and the full set of dMRI for comparison. AIP similarity indicated by the Dice index between RedCAM and dMRI was calculated and correlated with respiratory variability (v) and tumor size (s). The similarity of percentile intrafractional motion target area (IMTA), defined by the area that the tumor presented for a given percentage of time, and MIP-to-percentile IMTA similarity as a function of percentile were also
Garg, Pankaj; Westenberg, Jos J M; van den Boogaard, Pieter J; Swoboda, Peter P; Aziz, Rahoz; Foley, James R J; Fent, Graham J; Tyl, F G J; Coratella, L; ElBaz, Mohammed S M; van der Geest, R J; Higgins, David M; Greenwood, John P; Plein, Sven
2017-05-04
To validate three widely-used acceleration methods in four-dimensional (4D) flow cardiac MR; segmented 4D-spoiled-gradient-echo (4D-SPGR), 4D-echo-planar-imaging (4D-EPI), and 4D-k-t Broad-use Linear Acquisition Speed-up Technique (4D-k-t BLAST). Acceleration methods were investigated in static/pulsatile phantoms and 25 volunteers on 1.5 Tesla MR systems. In phantoms, flow was quantified by 2D phase-contrast (PC), the three 4D flow methods and the time-beaker flow measurements. The later was used as the reference method. Peak velocity and flow assessment was done by means of all sequences. For peak velocity assessment 2D PC was used as the reference method. For flow assessment, consistency between mitral inflow and aortic outflow was investigated for all pulse-sequences. Visual grading of image quality/artifacts was performed on a four-point-scale (0 = no artifacts; 3 = nonevaluable). For the pulsatile phantom experiments, the mean error for 2D PC = 1.0 ± 1.1%, 4D-SPGR = 4.9 ± 1.3%, 4D-EPI = 7.6 ± 1.3% and 4D-k-t BLAST = 4.4 ± 1.9%. In vivo, acquisition time was shortest for 4D-EPI (4D-EPI = 8 ± 2 min versus 4D-SPGR = 9 ± 3 min, P < 0.05 and 4D-k-t BLAST = 9 ± 3 min, P = 0.29). 4D-EPI and 4D-k-t BLAST had minimal artifacts, while for 4D-SPGR, 40% of aortic valve/mitral valve (AV/MV) assessments scored 3 (nonevaluable). Peak velocity assessment using 4D-EPI demonstrated best correlation to 2D PC (AV:r = 0.78, P < 0.001; MV:r = 0.71, P < 0.001). Coefficient of variability (CV) for net forward flow (NFF) volume was least for 4D-EPI (7%) (2D PC:11%, 4D-SPGR: 29%, 4D-k-t BLAST: 30%, respectively). In phantom, all 4D flow techniques demonstrated mean error of less than 8%. 4D-EPI demonstrated the least susceptibility to artifacts, good image quality, modest agreement with the current reference standard for peak intra-cardiac velocities and the highest consistency of intra
Clements, N.; Kron, T.; Roxby, P.; Franich, R.; Dunn, L.; Aarons, Y.; Chesson, B.; Siva, S.; Duplan, D.; Ball, D.
2013-02-15
Purpose: Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. Methods: A Perspex thorax phantom was used to simulate a patient. Three wooden 'lung' inserts with embedded Perspex 'lesions' were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. Results: When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to true ITVs
Clements, N; Kron, T; Franich, R; Dunn, L; Roxby, P; Aarons, Y; Chesson, B; Siva, S; Duplan, D; Ball, D
2013-02-01
Stereotactic lung radiotherapy is complicated by tumor motion from patient respiration. Four-dimensional CT (4DCT) imaging is a motion compensation method used in treatment planning to generate a maximum intensity projection (MIP) internal target volume (ITV). Image guided radiotherapy during treatment may involve acquiring a volumetric cone-beam CT (CBCT) image and visually aligning the tumor to the planning 4DCT MIP ITV contour. Moving targets imaged with CBCT can appear blurred and currently there are no studies reporting on the effect that irregular breathing patterns have on CBCT volumes and their alignment to 4DCT MIP ITV contours. The objective of this work was therefore to image a phantom moving with irregular breathing patterns to determine whether any configurations resulted in errors in volume contouring or alignment. A Perspex thorax phantom was used to simulate a patient. Three wooden "lung" inserts with embedded Perspex "lesions" were moved up to 4 cm with computer-generated motion patterns, and up to 1 cm with patient-specific breathing patterns. The phantom was imaged on 4DCT and CBCT with the same acquisition settings used for stereotactic lung patients in the clinic and the volumes on all phantom images were contoured. This project assessed the volumes for qualitative and quantitative changes including volume, length of the volume, and errors in alignment between CBCT volumes and 4DCT MIP ITV contours. When motion was introduced 4DCT and CBCT volumes were reduced by up to 20% and 30% and shortened by up to 7 and 11 mm, respectively, indicating that volume was being under-represented at the extremes of motion. Banding artifacts were present in 4DCT MIP images, while CBCT volumes were largely reduced in contrast. When variable amplitudes from patient traces were used and CBCT ITVs were compared to 4DCT MIP ITVs there was a distinct trend in reduced ITV with increasing amplitude that was not seen when compared to true ITVs. Breathing patterns with a
Liu, Y; Yin, F; Czito, B; Bashir, M; Palta, M; Cai, J; Zhong, X; Dale, B
2015-06-15
Purpose: Diffusion-weighted imaging(DWI) has been shown to have superior tumor-to-tissue contrast for cancer detection.This study aims at developing and evaluating a four dimensional DWI(4D-DWI) technique using retrospective sorting method for imaging respiratory motion for radiotherapy planning,and evaluate its effect on Apparent Diffusion Coefficient(ADC) measurement. Materials/Methods: Image acquisition was performed by repeatedly imaging a volume of interest using a multi-slice single-shot 2D-DWI sequence in the axial planes and cine MRI(served as reference) using FIESTA sequence.Each 2D-DWI image were acquired in xyz-diffusion-directions with a high b-value(b=500s/mm2).The respiratory motion was simultaneously recorded using bellows.Retrospective sorting was applied in each direction to reconstruct 4D-DWI.The technique was evaluated using a computer simulated 4D-digital human phantom(XCAT),a motion phantom and a healthy volunteer under an IRB-approved study.Motion trajectories of regions-of-interests(ROI) were extracted from 4D-DWI and compared with reference.The mean motion trajectory amplitude differences(D) between the two was calculated.To quantitatively analyze the motion artifacts,XCAT were controlled to simulate regular motion and the motions of 10 liver cancer patients.4D-DWI,free-breathing DWI(FB- DWI) were reconstructed.Tumor volume difference(VD) of each phase of 4D-DWI and FB-DWI from the input static tumor were calculated.Furthermore, ADC was measured for each phase of 4D-DWI and FB-DWI data,and mean tumor ADC values(M-ADC) were calculated.Mean M-ADC over all 4D-DWI phases was compared with M-ADC calculated from FB-DWI. Results: 4D-DWI of XCAT,the motion phantom and the healthy volunteer demonstrated the respiratory motion clearly.ROI D values were 1.9mm,1.7mm and 2.0mm,respectively.For motion artifacts analysis,XCAT 4D-DWI images show much less motion artifacts compare to FB-DWI.Mean VD for 4D-WDI and FB-DWI were 8.5±1.4% and 108±15
NASA Astrophysics Data System (ADS)
Hennig, Carsten; Schmatz, Stefan
2004-07-01
Time-independent quantum scattering calculations have been carried out on the Walden inversion SN2 reaction Cl-+CH3Cl'(v1,v2,v3)→ClCH3(v1',v2',v3')+Cl'-. The two C-Cl stretching modes (quantum numbers v3 and v3') and the totally symmetric internal modes of the methyl group (C-H stretching vibration, v1 and v1', and inversion bending vibration, v2 and v2') are treated explicitly. A four-dimensional coupled cluster potential energy surface is employed. The scattering problem is formulated in hyperspherical coordinates using the exact Hamiltonian and exploiting the full symmetry of the problem. Converged state-selected reaction probabilities and product distributions have been calculated up to 6100 cm-1 above the vibrational ground state of CH3Cl, i.e., up to initial vibrational excitation (2,0,0). In order to extract all scattering resonances, the energetic grid was chosen to be very fine, partly down to a resolution of 10-12 cm-1. Up to 2500 cm-1 translational energy, initial excitation of the umbrella bending vibration, (0,1,0), is more efficient for reaction than exciting the C-Cl stretching mode, (0,0,1). The combined excitation of both vibrations results in a synergic effect, i.e., a considerably higher reaction probability than expected from the sum of both independent excitations, even higher than (0,0,2) up to 1500 cm-1 translational energy. Product distributions show that the umbrella mode is strongly coupled to the C-Cl stretching mode and cannot be treated as a spectator mode. The reaction probability rises almost linearly with increasing initial excitation of the umbrella bending mode. The effect with respect to the C-Cl stretch is five times larger for more than two quanta in this mode, and in agreement with previous work saturation is found. Exciting the high-frequency C-H stretching mode, (1,0,0), yields a large increase for small energies [more than two orders of magnitude larger than (0,0,0)], while for translational energies higher than 2000 cm-1
Forkert, Nils Daniel; Schmitt, Peter; Dohrmann, Torsten; Schroeder, Maria; Magnus, Tim; Kluge, Stefan; Weiler-Normann, Christina; Bi, Xiaoming; Fiehler, Jens; Sedlacik, Jan
2016-01-01
Background and Purpose Conventional magnetic resonance imaging (MRI) of patients with hemolytic uremic syndrome (HUS) and neurological symptoms performed during an epidemic outbreak of Escherichia coli O104:H4 in Northern Europe has previously shown pathological changes in only approximately 50% of patients. In contrast, susceptibility-weighted imaging (SWI) revealed a loss of venous contrast in a large number of patients. We hypothesized that this observation may be due to an increase in cerebral blood flow (CBF) and aimed to identify a plausible cause. Materials and Methods Baseline 1.5T MRI scans of 36 patients (female, 26; male, 10; mean age, 38.2±19.3 years) were evaluated. Venous contrast was rated on standard SWI minimum intensity projections. A prototype four-dimensional (time resolved) magnetic resonance angiography (4D MRA) assessed cerebral hemodynamics by global time-to-peak (TTP), as a surrogate marker for CBF. Clinical parameters studied were hemoglobin, hematocrit, creatinine, urea levels, blood pressure, heart rate, and end-tidal CO2. Results SWI venous contrast was abnormally low in 33 of 36 patients. TTP ranged from 3.7 to 10.2 frames (mean, 7.9 ± 1.4). Hemoglobin at the time of MRI (n = 35) was decreased in all patients (range, 5.0 to 12.6 g/dL; mean, 8.2 ± 1.4); hematocrit (n = 33) was abnormally low in all but a single patient (range, 14.3 to 37.2%; mean, 23.7 ± 4.2). Creatinine was abnormally high in 30 of 36 patients (83%) (range, 0.8 to 9.7; mean, 3.7 ± 2.2). SWI venous contrast correlated significantly with hemoglobin (r = 0.52, P = 0.0015), hematocrit (r = 0.65, P < 0.001), and TTP (r = 0.35, P = 0.036). No correlation of SWI with blood pressure, heart rate, end-tidal CO2, creatinine, and urea level was observed. Findings suggest that the loss of venous contrast is related to an increase in CBF secondary to severe anemia related to HUS. SWI contrast of patients with pathological conventional MRI findings was significantly lower
NASA Astrophysics Data System (ADS)
He, Shanshan; Chen, Dong; Li, Ya; Feng, Eryin; Huang, Wuying
2016-11-01
In this paper, a four-dimensional potential energy surface (PES) for the Ne-D2O complex is constructed theoretically. The calculations are carried out at CCSD(T) level with large basis sets augmented with mid-bond functions. The PES includes explicit dependence on the ν2 symmetric bending coordinate Q2 of the D2O molecule. Two vibrationally averaged potentials in the ground and first excited bending states are obtained respectively. Using these two potentials we calculate the bound states of the complexes. The theoretical rovibrational transition frequencies for three bands: П(111,ν2 = 1)←Σ000, Σ(111,ν2 = 1)←Σ000 and n = 1, Σ(000,ν2 = 1)←Σ000 are predicted and generally in good agreement with the experimental observed values.
Four-dimensional CDT with toroidal topology
NASA Astrophysics Data System (ADS)
Ambjørn, J.; Gizbert-Studnicki, J.; Görlich, A.; Grosvenor, K.; Jurkiewicz, J.
2017-09-01
3 + 1 dimensional Causal Dynamical Triangulations (CDT) describe a quantum theory of fluctuating geometries without the introduction of a background geometry. If the topology of space is constrained to be that of a three-dimensional torus we show that the system will fluctuate around a dynamically formed background geometry which can be understood from a simple minisuperspace action which contains both a classical part and a quantum part. We determine this action by integrating out degrees of freedom in the full model, as well as by transfer matrix methods.
Four-Dimensional Spatial Reasoning in Humans
ERIC Educational Resources Information Center
Aflalo, T. N.; Graziano, M. S. A.
2008-01-01
Human subjects practiced navigation in a virtual, computer-generated maze that contained 4 spatial dimensions rather than the usual 3. The subjects were able to learn the spatial geometry of the 4-dimensional maze as measured by their ability to perform path integration, a standard test of spatial ability. They were able to travel down a winding…
Multidirectional four-dimensional shape measurement system
NASA Astrophysics Data System (ADS)
Lenar, Janusz; Sitnik, Robert; Witkowski, Marcin
2012-03-01
Currently, a lot of different scanning techniques are used for 3D imaging of human body. Most of existing systems are based on static registration of internal structures using MRI or CT techniques as well as 3D scanning of outer surface of human body by laser triangulation or structured light methods. On the other hand there is an existing mature 4D method based on tracking in time the position of retro-reflective markers attached to human body. There are two main drawbacks of this solution: markers are attached to skin (no real skeleton movement is registered) and it gives (x, y, z, t) coordinates only in those points (not for the whole surface). In this paper we present a novel multidirectional structured light measurement system that is capable of measuring 3D shape of human body surface with frequency reaching 60Hz. The developed system consists of two spectrally separated and hardware-synchronized 4D measurement heads. The principle of the measurement is based on single frame analysis. Projected frame is composed from sine-modulated intensity pattern and a special stripe allowing absolute phase measurement. Several different geometrical set-ups will be proposed depending on type of movements that are to be registered.
Four-dimensional analysis of stomatognathic function.
Terajima, Masahiko; Endo, Mizuki; Aoki, Yoshimitsu; Yuuda, Kyouko; Hayasaki, Haruaki; Goto, Tazuko K; Tokumori, Kenji; Nakasima, Akihiko
2008-08-01
Many researchers have attempted to clarify the complex relationships between stomatognathic function and craniofacial morphology. Most studies investigated the trajectories of incisal or condylar points and measured temporomandibular morphology projected onto 2-dimensional radiographic films. Although these methods provided valuable information, their diagnostic capabilities were limited. We introduce a new 4-dimensional (4D) analysis of stomatognathic function that combines the 3-dimensional (3D) computed tomography of the cranium and mandible, dental surface imaging with a noncontact 3D laser scanner, and mandibular movement data recorded with a 6 degrees of freedom jaw-movement analyzer. This method performs dynamic and precise simulations that can analyze and display condyle to fossa distances and occlusal contacts during mandibular function. These comprehensive relationships can be analyzed and displayed not only at intercuspal position, but also at any mandibular position during functional movements. We believe that our 4D analyzing system will be useful for diagnosing temporomandibular disorders of patients with jaw deformities and other malocclusions.
Four-dimensional spatial reasoning in humans.
Aflalo, T N; Graziano, M S A
2008-10-01
Human subjects practiced navigation in a virtual, computer-generated maze that contained 4 spatial dimensions rather than the usual 3. The subjects were able to learn the spatial geometry of the 4-dimensional maze as measured by their ability to perform path integration, a standard test of spatial ability. They were able to travel down a winding corridor to its end and then point back accurately toward the occluded origin. One interpretation is that the brain substrate for spatial navigation is not a built-in map of the 3-dimensional world. Instead it may be better described as a set of general rules for manipulating spatial information that can be applied with practice to a diversity of spatial frameworks.
Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo; Kishi, Kazuma; Dobashi, Suguru; Yamamoto, Takaya; Umezawa, Rei; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi
2016-06-01
To evaluate four-dimensional computed tomography (4D-CT)-derived pulmonary ventilation by comparing with (81m)Kr-gas ventilation (VRI). We also proposed two methods to improve the functional accuracy of 4D-CT ventilation images and evaluated these methods. Eleven lung cancer patients with 4D-CT and VRI were analyzed. Hounsfield unit-based (VHU) and a Jacobian-based (VJac) 4D-CT ventilation images were calculated. They were evaluated by voxel-by-voxel spearman's rank correlation coefficient (r) between 4D-CT ventilation and VRI images. After applying an averaging ventilation method and a slope calculating method, correlations were also calculated. 4D-CT ventilation showed the high correlation to VRI (r=0.875 with VHU). An averaging method brought significantly higher (p=0.012) correlations to nuclear medicine images with VHU. The improvement was not significant (p=0.619) with VJac. Slope calculating method improved the correlation with VHU and slightly worsened the correlation with VJac. The averaging method we proposed might be useful to improve 4D-CT ventilation images. We found good agreement between 4D-CT ventilation and nuclear medicine ventilation, indicating the high physiologic accuracy of 4D-CT ventilation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Nakamoto, T; Arimura, H; Nakamura, K; Honda, H; Hirata, H; Shioyama, Y; Hirose, TA; Umezu, Y; Nakamura, Y
2015-06-15
Purpose: The aim of this study was to develop a computational framework for monitoring four-dimensional (4D) dose distributions during treatment time based on a 2D/3D registration with adaptive transformation parameters (ATPs) in lung stereotactic body radiotherapy (SBRT). Methods: The 4D dose distributions during the SBRT were calculated by applying a pencil beam convolution (PBC) algorithm to simulated 4D-computed tomography (CT) images during treatment time (hereinafter referred to as “treatment” 4D-CT images). The “treatment” 4D-CT images were derived by deforming 3D planning CT images by using transformation parameters so that 2D planning portal dose images (PDIs) can resemble 2D dynamic clinical PDIs in each frame, which were derived from electronic portal imaging device (EPID) images. The transformation parameters were optimized by the Levenberg- Marquardt (LM) algorithm. The optimized transformation parameters in a certain frame were adaptively employed as initial transformation parameters for optimization of the parameters in the consecutive frame. Gamma pass rates (3mm/3%) between dynamic clinical PDIs and dynamic “treatment” PDIs derived from the “treatment” 4D-CT images were measured for comparing the proposed frameworks without and with the ATPs. These proposed frameworks were applied to the EPID dynamic images (40 frames) of two patients with lung cancer, who underwent the SBRT. Results: Gamma pass rates without and with the ATPs were 83.01±4.42% and 89.31±3.18% on average, respectively (p<0.05). Moreover, percentage errors between prescribed doses and estimated doses at an isocenter by the proposed frameworks without and with the ATPs were 10.67±5.66% and 6.34±0.47% on average, respectively (p<0.05). Conclusion: The proposed framework with ATPs could be useful to ensure the quality of the SBRT by monitoring 4D dose distributions during treatment time.
NASA Astrophysics Data System (ADS)
Merdan, Z.; Güzelsoy, E.
2012-05-01
The four-dimensional Ising model is simulated on the Creutz cellular automaton using finite-size lattices with linear dimension 4≤ L≤8. The exponents in the finite-size scaling relations for the order parameter and the magnetic susceptibility at the finite-lattice critical temperature are computed to be β=0.49(7), β=0.49(5), β=0.50(1) and γ=1.04(4), γ=1.03(4), γ=1.02(4) for 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the obtained results are consistent with the renormalization group predictions of β=0.5 and γ=1. The values for the critical temperature of the infinite lattice T c (∞)=6.6788(65), T c (∞)=6.6798(69), T c (∞)=6.6802(70) are obtained from the straight-line fit of the magnetic susceptibility maxima using 4≤ L≤8 for 7, 14, and 21 independent simulations, respectively. As the number of independent simulations increases, the obtained results are in very good agreement with the series expansion results of T c (∞)=6.6817(15), T c (∞)=6.6802(2), the dynamic Monte Carlo result of T c (∞)=6.6803(1), the cluster Monte Carlo result of T c (∞)=6.680(1) and the Monte Carlo using Metropolis and Wolff-cluster algorithm result of T c (∞)=6.6802632±5×10-5.
Peters, Kenneth E.; Magoon, Leslie B.; Lampe, Carolyn; Scheirer, Allegra Hosford; Lillis, Paul G.; Gautier, Donald L.
2008-01-01
A calibrated numerical model depicts the geometry and three-dimensional (3-D) evolution of petroleum systems through time (4-D) in a 249 x 309 km (155 x 192 mi) area covering all of the San Joaquin Basin Province of California. Model input includes 3-D structural and stratigraphic data for key horizons and maps of unit thickness, lithology, paleobathymetry, heat flow, original total organic carbon, and original Rock-Eval pyrolysis hydrogen index for each source rock. The four principal petroleum source rocks in the basin are the Miocene Antelope shale of Graham and Williams (1985; hereafter referred to as Antelope shale), the Eocene Kreyenhagen Formation, the Eocene Tumey formation of Atwill (1935; hereafter referred to as Tumey formation), and the Cretaceous to Paleocene Moreno Formation. Due to limited Rock-Eval/total organic carbon data, the Tumey formation was modeled using constant values of original total organic carbon and original hydrogen index. Maps of original total organic carbon and original hydrogen index were created for the other three source rocks. The Antelope shale was modeled using Type IIS kerogen kinetics, whereas Type II kinetics were used for the other source rocks. Four-dimensional modeling and geologic field evidence indicate that maximum burial of the three principal Cenozoic source rocks occurred in latest Pliocene to Holocene time. For example, a 1-D extraction of burial history from the 4-D model in the Tejon depocenter shows that the bottom of the Antelope shale source rock began expulsion (10 percent transformation ratio) about 4.6 Ma and reached peak expulsion (50 percent transformation ratio) about 3.6 Ma. Except on the west flank of the basin, where steep dips in outcrop and seismic data indicate substantial uplift, little or no section has been eroded. Most petroleum migration occurred during late Cenozoic time in distinct stratigraphic intervals along east-west pathways from pods of active petroleum source rock in the Tejon and
Four-dimensional coronary morphology and computational hemodynamics
NASA Astrophysics Data System (ADS)
Wahle, Andreas; Mitchell, Steven C.; Ramaswamy, Sharan D.; Chandran, Krishnan B.; Sonka, Milan
2001-07-01
Conventional reconstructions from intravascular ultrasound (IVUS) stack the frames as acquired during the pullback of the catheter to form a straight three-dimensional volume, thus neglecting the vessel curvature and merging images from different heart phases. We are developing a comprehensive system for fusion of the IVUS data with the pullback path as determined from x-ray angiography, to create a geometrically accurate 4-D (3-D plus time) model of the coronary vasculature as basis for computational hemodynamics. The overall goal of our work is to correlate shear stress with plaque thickness. The IVUS data are obtained in a single pullback using an automated pullback device; the frames are afterwards assigned to their respective heart phases based upon the ECG signal. A set of 3-D models is reconstructed by fusion of IVUS and angiographic data corresponding to the same ECG-gated heart phase; methods of computational fluid dynamics (CFD) are applied to obtain important hemodynamic data. Combining these models yields the final 4-D reconstruction. Visualization is performed using the platform-independent VRML standard for a user-friendly manipulation of the scene. An extension for virtual angioscopy allows an easy assessment of the vessel features within their local context. Validation was successfully performed both in-vitro and in-vivo.
Mass formulae of four-dimensional dilaton black holes
NASA Astrophysics Data System (ADS)
Okai, Tadashi
1994-02-01
Integral and differential mass formulae of 4-dimensional stationary and axisymmetric Einstein-Maxwell-dilaton systems are derived. The total mass (energy) of these systems are expressed in terms of other physical quantities such as electric charge of the black hole suitably modified due to the existence of the dilaton field. It is shown that when we vary slightly the fields (metric of the spacetime $g_{\\mu\
Four-dimensional MR cardiovascular imaging: method and applications.
Christodoulou, Anthony G; Zhao, Bo; Zhang, Haosen; Ho, Chien; Liang, Zhi-Pei
2011-01-01
Magnetic resonance imaging (MRI) has long been recognized as a powerful tool for cardiovascular imaging because of its unique potential to measure blood flow, cardiac wall motion and tissue properties jointly. However, many clinical applications of cardiac MRI have been limited by low imaging speed. Three-dimensional cardiovascular MRI in real-time, or 4D cardiovascular MRI without cardiac and respiratory gating or triggering, remains an important technological goal of the MR cardiovascular research community. In this paper, we present a novel technique to achieve 4D cardiovascular MR imaging in unprecedented spatiotemporal resolution. This breakthrough is made possible through a creative use of sparse sampling theory and parallel imaging with phased array coils and a novel implementation of data acquisition and image reconstruction. We have successfully used the technique to perform 4D cardiovascular imaging on rats, achieving 0.65 mm × 0.65 mm × 0.31 mm spatial resolution with a frame rate of 67 fps. This capability enables simultaneous imaging of cardiac motion, respiratory motion, and first-pass myocardial perfusion. This in turn allows multiple cardiac assessments including measurement of ejection fraction, cardiac output, and myocardial blood flow in a single experiment. We believe that the proposed technique can open up many important applications of cardiovascular imaging and have significant impact on the field.
Four-dimensional Localization and the Iterative Ensemble Kalman Smoother
NASA Astrophysics Data System (ADS)
Bocquet, M.
2015-12-01
The iterative ensemble Kalman smoother (IEnKS) is a data assimilation method meant for efficiently tracking the state ofnonlinear geophysical models. It combines an ensemble of model states to estimate the errors similarly to the ensemblesquare root Kalman filter, with a 4D-variational analysis performed within the ensemble space. As such it belongs tothe class of ensemble variational methods. Recently introduced 4DEnVar or the 4D-LETKF can be seen as particular casesof the scheme. The IEnKS was shown to outperform 4D-Var, the ensemble Kalman filter (EnKF) and smoother, with low-ordermodels in all investigated dynamical regimes. Like any ensemble method, it could require the use of localization of theanalysis when the state space dimension is high. However, localization for the IEnKS is not as straightforward as forthe EnKF. Indeed, localization needs to be defined across time, and it needs to be as much as possible consistent withthe dynamical flow within the data assimilation variational window. We show that a Liouville equation governs the timeevolution of the localization operator, which is linked to the evolution of the error correlations. It is argued thatits time integration strongly depends on the forecast dynamics. Using either covariance localization or domainlocalization, we propose and test several localization strategies meant to address the issue: (i) a constant and uniformlocalization, (ii) the propagation through the window of a restricted set of dominant modes of the error covariancematrix, (iii) the approximate propagation of the localization operator using model covariant local domains. Theseschemes are illustrated on the one-dimensional Lorenz 40-variable model.
Electro-Anatomical Four-Dimensional Mapping of Ventricular Tachycardia
2007-11-02
pulmonary vein (PV) region reported ulterior stenosis . Anatomic reconstruction by CT has helped understand the frequency of occurrence and effects of PV... stenosis [1]. Our group presented that the bi-atrial activation sequence became well understood when cardiac activity data and anatomic information...through the Aortic Valve, and of deploying the ICE catheter into the LV transseptally via the IVC, through the Fossa Ovalis and through the Mitral
Four-dimensional evaluation of regional air quality models
We present highlights of the results obtained in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3). Activities in AQMEII3 were focused on evaluating the performance of global, hemispheric and regional modeling systems over Europe and North Ame...
Route planning in a four-dimensional environment
NASA Technical Reports Server (NTRS)
Slack, M. G.; Miller, D. P.
1987-01-01
Robots must be able to function in the real world. The real world involves processes and agents that move independently of the actions of the robot, sometimes in an unpredictable manner. A real-time integrated route planning and spatial representation system for planning routes through dynamic domains is presented. The system will find the safest most efficient route through space-time as described by a set of user defined evaluation functions. Because the route planning algorthims is highly parallel and can run on an SIMD machine in O(p) time (p is the length of a path), the system will find real-time paths through unpredictable domains when used in an incremental mode. Spatial representation, an SIMD algorithm for route planning in a dynamic domain, and results from an implementation on a traditional computer architecture are discussed.
Four-Dimensional Quantum Hall Effect with Ultracold Atoms.
Price, H M; Zilberberg, O; Ozawa, T; Carusotto, I; Goldman, N
2015-11-06
We propose a realistic scheme to detect the 4D quantum Hall effect using ultracold atoms. Based on contemporary technology, motion along a synthetic fourth dimension can be accomplished through controlled transitions between internal states of atoms arranged in a 3D optical lattice. From a semiclassical analysis, we identify the linear and nonlinear quantized current responses of our 4D model, relating these to the topology of the Bloch bands. We then propose experimental protocols, based on current or center-of-mass-drift measurements, to extract the topological second Chern number. Our proposal sets the stage for the exploration of novel topological phases in higher dimensions.
Four-dimensional worldwide atmospheric models: ANYPT and ANYRG
NASA Technical Reports Server (NTRS)
Johnson, D.; Brown, C.; Spiegler, D.; Fowler, M.
1975-01-01
Computer programs read magnetic-tape data bases and computer meteorological profiles for any position, time, and height (from zero to 25 km). System assists in analyses of distortion of information obtained from aircraft-mounted or spacecraft-mounted electromagnetic sensors.
Four-dimensional evaluation of regional air quality models
We present highlights of the results obtained in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3). Activities in AQMEII3 were focused on evaluating the performance of global, hemispheric and regional modeling systems over Europe and North Ame...
Observational Needs for Four-Dimensional Air Quality Characterization
Surface-based monitoring programs provide the foundation for associating air pollution and causal effects in human health studies, and they support the development of air quality standards and the preparation of emission reduction strategies. While surface oriented networks remai...
Dynamic four-dimensional microscope system with automated background leveling
NASA Astrophysics Data System (ADS)
Goldstein, Goldie; Creath, Katherine
2012-09-01
This paper describes recent advances in developing an automatic background leveling algorithm for a new, novel interference microscope system and presents images and data of live biological samples. The specially designed optical system enables instantaneous 4-dimensional video measurements of dynamic motions within and among live cells without the need for contrast agents. "Label-free" measurements of biological objects in reflection using harmless light levels are possible without the need for scanning and vibration isolation. This instrument utilizes a pixelated phase mask enabling simultaneous measurement of multiple interference patterns taking advantage of the polarization properties of light enabling phase image movies in real time at video rates to track dynamic motions and volumetric changes. Optical thickness data are derived from phase images. This data is processed with an automatic background leveling routine which separates the objects from the background by thresholding the calculated gradient magnitude of the optical thickness data. Low-order Zernike surfaces are fit to the unmasked background pixels and the resulting background shape is removed. This method effectively eliminates background shape for datasets containing both large and small objects. By applying this method to many sequential frames, it results in all the frames having the same mean background value across all frames which is essential for quantitatively montoring time-dependent processes.
Feasibility of four-dimensional conformal planning for robotic radiosurgery
Schlaefer, A.; Fisseler, J.; Dieterich, S.; Shiomi, H.; Cleary, K.; Schweikard, A.
2005-12-15
Organ motion can have a severe impact on the dose delivered by radiation therapy, and different procedures have been developed to address its effects. Conventional techniques include breath hold methods and gating. A different approach is the compensation for target motion by moving the treatment beams synchronously. Practical results have been reported for robot based radiosurgery, where a linear accelerator mounted on a robotic arm delivers the dose. However, not all organs move in the same way, which results in a relative motion of the beams with respect to the body and the tissues in the proximity of the tumor. This relative motion can severely effect the dose delivered to critical structures. We propose a method to incorporate motion in the treatment planning for robotic radiosurgery to avoid potential overdosing of organs surrounding the target. The method takes into account the motion of all considered volumes, which is discretized for dose calculations. Similarly, the beam motion is taken into account and the aggregated dose coefficient over all discrete steps is used for planning. We simulated the treatment of a moving target with three different planning methods. First, we computed beam weights based on a 3D planning situation and simulated treatment with organ motion and the beams moving synchronously to the target. Second, beam weights were computed by the 4D planning method incorporating the organ and beam motion and treatment was simulated for beams moving synchronously to the target. Third, the beam weights were determined by the 4D planning method with the beams fixed during planning and simulation. For comparison we also give results for the 3D treatment plan if there was no organ motion and when the plan is delivered by fixed beams in the presence of organ motion. The results indicate that the new 4D method is preferable and can further improve the overall conformality of motion compensated robotic radiosurgery.
Observational Needs for Four-Dimensional Air Quality Characterization
Surface-based monitoring programs provide the foundation for associating air pollution and causal effects in human health studies, and they support the development of air quality standards and the preparation of emission reduction strategies. While surface oriented networks remai...
Proposal of a four-dimensional model of social response.
Nail, P R; MacDonald, G; Levy, D A
2000-05-01
Descriptive models of social response attempt to identify the conceptual dimensions necessary to define and distinguish various types of influence. Building on previous approaches, the authors propose a new response model and demonstrate that a minimum of 4 dimensions is necessary to adequately provide for such influence phenomena as conformity, minority influence, compliance, contagion, independence, and anticonformity in a single model. In addition, the proposed model suggests 5 potential types of response that have not been previously identified. These new types suggest directions for future research and theoretical development. Selected empirical evidence is reviewed in support of the validity and integrative power of the proposed model.
Four-dimensional multi-site photolysis of caged neurotransmitters
Go, Mary Ann; To, Minh-Son; Stricker, Christian; Redman, Stephen; Bachor, Hans-A.; Stuart, Greg J.; Daria, Vincent R.
2013-01-01
Neurons receive thousands of synaptic inputs that are distributed in space and time. The systematic study of how neurons process these inputs requires a technique to stimulate multiple yet highly targeted points of interest along the neuron's dendritic tree. Three-dimensional multi-focal patterns produced via holographic projection combined with two-photon photolysis of caged compounds can provide for highly localized release of neurotransmitters within each diffraction-limited focus, and in this way emulate simultaneous synaptic inputs to the neuron. However, this technique so far cannot achieve time-dependent stimulation patterns due to fundamental limitations of the hologram-encoding device and other factors that affect the consistency of controlled synaptic stimulation. Here, we report an advanced technique that enables the design and application of arbitrary spatio-temporal photostimulation patterns that resemble physiological synaptic inputs. By combining holographic projection with a programmable high-speed light-switching array, we have overcome temporal limitations with holographic projection, allowing us to mimic distributed activation of synaptic inputs leading to action potential generation. Our experiments uniquely demonstrate multi-site two-photon glutamate uncaging in three dimensions with submillisecond temporal resolution. Implementing this approach opens up new prospects for studying neuronal synaptic integration in four dimensions. PMID:24348330
Photon gating in four-dimensional ultrafast electron microscopy.
Hassan, Mohammed T; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H
2015-10-20
Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon-electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a "single" light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a "second" optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM.
Photon gating in four-dimensional ultrafast electron microscopy
Hassan, Mohammed T.; Liu, Haihua; Baskin, John Spencer; Zewail, Ahmed H.
2015-01-01
Ultrafast electron microscopy (UEM) is a pivotal tool for imaging of nanoscale structural dynamics with subparticle resolution on the time scale of atomic motion. Photon-induced near-field electron microscopy (PINEM), a key UEM technique, involves the detection of electrons that have gained energy from a femtosecond optical pulse via photon–electron coupling on nanostructures. PINEM has been applied in various fields of study, from materials science to biological imaging, exploiting the unique spatial, energy, and temporal characteristics of the PINEM electrons gained by interaction with a “single” light pulse. The further potential of photon-gated PINEM electrons in probing ultrafast dynamics of matter and the optical gating of electrons by invoking a “second” optical pulse has previously been proposed and examined theoretically in our group. Here, we experimentally demonstrate this photon-gating technique, and, through diffraction, visualize the phase transition dynamics in vanadium dioxide nanoparticles. With optical gating of PINEM electrons, imaging temporal resolution was improved by a factor of 3 or better, being limited only by the optical pulse widths. This work enables the combination of the high spatial resolution of electron microscopy and the ultrafast temporal response of the optical pulses, which provides a promising approach to attain the resolution of few femtoseconds and attoseconds in UEM. PMID:26438835
Philosophy of Gravity: Intuitions of Four-Dimensional Curved Spacetime.
ERIC Educational Resources Information Center
Chandler, Marthe
1994-01-01
Argues people have forgotten how much of an idealization the Newtonian world view actually is. For this reason, people have come to believe that we can only "see" the world in three spatial dimensions. Describes an alternative idealization, or set of pictures, that would lead to find the claim that the universe is a four-dimensional…
Four-dimensional Lorentzian Holst action with topological terms
NASA Astrophysics Data System (ADS)
Rezende, Danilo Jimenez; Perez, Alejandro
2009-03-01
We study the Hamiltonian formulation of the general first order action of general relativity compatible with local Lorentz invariance and background independence. The most general simplectic structure (compatible with diffeomorphism invariance and local Lorentz transformations) is obtained by adding to the Holst action the Pontriagin, Euler, and Nieh-Yan invariants with independent coupling constants. We perform a detailed canonical analysis of this general formulation (in the time gauge) exploring the structure of the phase space in terms of connection variables. We explain the relationship of these topological terms and the effect of large SU(2) gauge transformations in quantum theories of gravity defined in terms of the Ashtekar-Barbero connection.
New four-dimensional integrals by Mellin-Barnes transform
Allendes, Pedro; Guerrero, Natanael; Kondrashuk, Igor; Notte Cuello, Eduardo A.
2010-05-15
This paper is devoted to the calculation of a special class of integrals by Mellin-Barnes transform. It contains double integrals in the position space in d=4-2{epsilon} dimensions, where {epsilon} is parameter of dimensional regularization. These integrals contribute to the effective action of the N=4 supersymmetric Yang-Mills theory. The integrand is a fraction in which the numerator is the logarithm of the ratio of space-time intervals, and the denominator is the product of powers of space-time intervals. According to the method developed in the previous papers, in order to make use of the uniqueness technique for one of two integrations, we shift exponents in powers in the denominator of integrands by some multiples of {epsilon}. As the next step, the second integration in the position space is done by Mellin-Barnes transform. For normalizing procedure, we reproduce first the known result obtained earlier by Gegenbauer polynomial technique. Then, we make another shift of exponents in powers in the denominator to create the logarithm in the numerator as the derivative with respect to the shift parameter {delta}. We show that the technique of work with the contour of the integral modified in this way by using Mellin-Barnes transform repeats the technique of work with the contour of the integral without such a modification. In particular, all the operations with a shift of contour of integration over complex variables of twofold Mellin-Barnes transform are the same as before the {delta} modification of indices, and even the poles of residues coincide. This confirms the observation made in the previous papers that in the position space all the Green's function of N=4 supersymmetric Yang-Mills theory can be expressed in terms of Usyukina-Davydychev functions.
Free energy of a four-dimensional chiral bag
De Francia, M.; Falomir, H.; Santangelo, E.M. )
1992-03-15
Through the application of mathematical methods developed in a recent paper, we obtain a closed expression for the chiral correction to the free energy of a bag, due to the presence of the external pionic field in a hedgehog configuration. Low- and high-temperature developments are given and, in particular, the zero-temperature limit is shown to be consistent with previous evaluations of the Casimir energy. The subject of renormalization is also discussed.
String theory, supergravity and four-dimensional field theories
NASA Astrophysics Data System (ADS)
Burrington, Benjamin A.
In this dissertation I present some of the basic computations in string theory and supergravity with an eye for their use in AdS/CFT. I then go on to present several investigations centering around the framework of dualities between gauge theory and gravity systems. In chapters 2, 3, and 4 we consider several 10D solutions. Chapter 2 deals with the inclusion of D7 branes in a D3 brane background, which amounts to adding fundamental matter in the gauge theory dual. We consider including the gravitational backreaction of the D7 branes in these solutions. In chapter 3, we consider modifications to the 6D space transverse to a stack of D3 branes. The 6D spaces that we consider are cones over the so called Y p,q geometries. We consider a geometric deformation for each of these spaces which explicitly breaks a U(1) isometry. In chapter 4, the leading Regge behavior string states are examined. We calculate the effective coupling of such string states to the five form and metric in a flat space background, and obtain an effective Lagrangian. Using this Lagrangian, we examine the energy, spin and angular momentum of these states in the AdS 5 x S5 background which is then compared to the semiclassical analysis of the literature. In chapters 5 and 6, we turn to discussions of the AdS5 factor. The Karch Randall scenario, a brane world scenario based oil AdS4 slices of AdS5 naturally suggests considering transparent boundary conditions for the field theory in AdS4. In chapter 5 we show that with these boundary conditions, a mass is induced for the graviphoton, and that this mass is in the correct proportion to the graviton mass (studied in the literature) to preserve supersymmetry. In chapter 6 we examine black hole solutions in AdS5. The presence of the black hole breaks some of the global supersymmetries (present in pure AdS5) which we use to generate the superpartners to these black holes. Using boundary counter term techniques, we find the mass, angular momentum, and charge of these superpartners and use this to determine the representation of the AdS5 superalgebra that these black holes belong to. In chapter 7 and 8 we turn to the field theory side of AdS/CFT. Here, we consider certain discrete symmetries of these field theories. The discrete symmetries are dual to the number operators for certain wrapped branes. We find that the generators for these discrete symmetries do not commute. This feature of wrapped branes was uncovered in the literature for the field theory dual to S5/Z3 . In addition to generalizing this to certain classes of Yp,q geometries in chapter 7, we also find that the non conformal case admits a centrally extended Heisenberg group structure in chapter 8.
Visualization of Surfaces in Four-Dimensional Space
1990-03-01
constraints for offset surfaces ....... and Voronoi surfaces [3, 8, 15]. For inspection and understanding of the properties related to geometry, pictures are...in iZ a and )Z2 and the pitch of the front clipping plane. All these quantities are with respect to the (x6, y6, z6, w6)-coordinate system. 4...Figure 8 also shows how, by using the tilted front clipping plane, some hidden details can be revealed. See also [11] for a visualization of 4D rotation
Four dimensional reconstruction and analysis of plume images
NASA Astrophysics Data System (ADS)
Dhawan, Atam P.; Disimile, Peter J.; Peck, Charles, III
Results of a time-history based three-dimensional reconstruction of cross-sectional images corresponding to a specific planar location of the jet structure are reported. The experimental set-up is described, and three-dimensional displays of time-history based reconstruction of the jet structure are presented. Future developments in image analysis, quantification and interpretation, and flow visualization of rocket engine plume images are expected to provide a tool for correlating engine diagnostic features with visible flow structures.
Four Dimensional Evolution of Grains and Interfaces in Materials
NASA Astrophysics Data System (ADS)
Johnson, Anthony E.
A phase-field model has been developed to study the effect of triple junction (TJ) mobility on 2-D grain growth kinetics. For low TJ mobility the average grain size increases linearly in time, followed by a transition to classical parabolic kinetics as the average grain size increases. The distribution of grain boundary curvature is examined. In the low TJ mobility simulations the distribution has a peak at zero curvature and approaches the grain boundary mobility limited steady-state distribution at larger sizes. Even for extremely low TJ mobility, a small fraction of the grain boundary length has nonzero curvature and thus a lack of self-similarity is observed for all TJ-limited simulations. Furthermore, a forward projection technique has been developed for 3D reconstruction of x-ray diffraction contrast tomography (DCT) data. A diffraction pattern is simulated for each grain and a Monte Carlo algorithm minimizes the energy cost function, which is related to the difference between the simulated and experimental diffraction patterns. The result is a grain map that is 17% more space-filling than algebraic reconstruction. A similar algorithm was developed to consider all grains at once, looping through several orientations for each undefined voxel and choosing an optimal orientation. This method, tested on a strontium titanate sample, results in space-filling and smooth junctions. The single-grain forward projection algorithm was used to reconstruct data from an ex-situ DCT grain growth experiment, in which 7 timesteps during grain growth of a high-purity aluminum wire were collected. Abnormal grain growth occurred on the surface; large cube-texture grains absorbed the small random-texture grains. Higher-angle boundaries have been shown to move more rapidly relative to low-angle boundaries. Finally, 4D solid-liquid dendritic structures were analyzed. An algorithm was created to automatically find pinching events caused by Rayleigh instabilities. Pinch-off diameters were calculated as a function of time; the average pinching rates match theoretical values within 6%. The shape of the pinching events approaches a self-similar shape and scales with t1/3. This approach to the self-similar shape occurs regardless of the initial conditions and is theoretically a universal phenomenon for Rayleigh instabilities.
Four-dimensional imaging of moisture dynamics during landslide reactivation
NASA Astrophysics Data System (ADS)
Uhlemann, Sebastian; Chambers, Jonathan; Wilkinson, Paul; Maurer, Hansruedi; Merritt, Andrew; Meldrum, Philip; Kuras, Oliver; Gunn, David; Smith, Alister; Dijkstra, Tom
2017-01-01
Landslides pose significant risks to communities and infrastructure, and mitigating these risks relies on understanding landslide causes and triggering processes. It has been shown that geophysical surveys can significantly contribute to the characterization of unstable slopes. However, hydrological processes can be temporally and spatially heterogeneous, requiring their related properties to be monitored over time. Geoelectrical monitoring can provide temporal and volumetric distributions of electrical resistivity, which are directly related to moisture content. To date, studies demonstrating this capability have been restricted to 2-D sections, which are insufficient to capture the full degree of spatial heterogeneity. This study is the first to employ 4-D (i.e., 3-D time lapse) resistivity imaging on an active landslide, providing long-term data (3 years) highlighting the evolution of moisture content prior to landslide reactivation and showing its decline post reactivation. Crucially, the time-lapse inversion methodology employed here incorporates movements of the electrodes on the unstable surface. Although seasonal characteristics dominate the shallow moisture dynamics during the first 2 years with surficial drying in summer and wetting in winter, in the months preceding reactivation, moisture content increased by more than 45% throughout the slope. This is in agreement with independent data showing a significant rise in piezometric heads and shallow soil moisture contents as a result of prolonged and intense rainfall. Based on these results, remediation measures could be designed and early-warning systems implemented. Thus, resistivity monitoring that can allow for moving electrodes provides a new means for the effective mitigation of landslide risk.
From the Hensen net toward four-dimensional biological oceanography
NASA Astrophysics Data System (ADS)
Wiebe, Peter H.; Benfield, Mark C.
2003-01-01
The development of quantitative zooplankton collecting systems began with Hensen (1887 Berichte der Kommssion wissenschaftlichen Untersuchung der deutschen Meere in Kiel5, 1-107; 1895 Ergebnisse der Plankton-Expedition der Humbolt-Stiftung. Kiel and Leipzig: Lipsius and Tischer ). Non-opening closing nets, opening closing nets (mostly messenger based), high-speed samplers, and planktobenthos net systems all had their start in his era - the late 1800s and early 1900s. This was also an era in which many of the fundamental questions about the structure and dynamics of the plankton in the worlds oceans were first posed. Fewer new systems were introduced between 1912 and 1950 apparently due in part to the two World Wars. The continuous plankton recorder stands out as a truly innovative device developed during this period ( Hardy 1926b Nature, London118, 630 ). Resurgence in development of mechanically-based instruments occurred during the 1950s and 1960s. A new lineage of high-speed samplers, the Gulf series, began in the 1950s and a number of variants were developed in the 1960s and 1970s. Net systems specifically designed to collect neuston first appeared in the late 1950s. During the 1960s, many focused field and experimental tank experiments were carried out to investigate the hydrodynamics of nets, and much of our knowledge concerning net design and construction criteria was developed. The advent of reliable electrical conducting cables and electrically-based control systems during this same period gave rise first to a variety of cod-end samplers and then to the precursors of the acoustically and electronically-controlled multi-net systems and environmental sensors, which appeared in the 1970s. The decade of the 1970s saw a succession of multi-net systems based both on the Bé multiple plankton sampler and on the Tucker trawl. The advent of the micro-computer stimulated and enabled the development of sophisticated control and data logging electronics for these systems in the 1980s. In the 1990s, acoustic and optical technologies gave rise to sensor systems that either complement multiple net systems or are deployed without nets. Multi-sensor systems with high data telemetry rates through electro-optical cable are now being deployed in towed bodies and on remotely operated vehicles. In the offing are new molecular technologies to identify species in situ, and realtime data analysis, image processing, and 3D/4D display. In the near future, it is likely that the use of multi-sensor systems deployed on autonomous vehicles will yield world wide coverage of the distribution and abundance of zooplankton.
Topology of four-dimensional lattice gauge fields
NASA Astrophysics Data System (ADS)
Panagiotakopoulos, C.
1985-08-01
An extremely careful implementation of Woit's definition of the topological charge for SU(2) lattice gauge fields reveals a scaling violation by the topological susceptibility in the region 2.1<=β<=2.3. The result leaves open the possibility that Woit's charge approaches Luscher's charge at weak enough coupling.
Four-Dimensional Entropy from Three-Dimensional Gravity.
Carlip, S
2015-08-14
At the horizon of a black hole, the action of (3+1)-dimensional loop quantum gravity acquires a boundary term that is formally identical to an action for three-dimensional gravity. I show how to use this correspondence to obtain the entropy of the (3+1)-dimensional black hole from well-understood conformal field theory computations of the entropy in (2+1)-dimensional de Sitter space.
Realistic Field Theories on Submanifolds of Compact Extra Dimensions
Mirabelli, E.
2005-04-05
In this thesis, they study various physical models which assume the existence of spatial dimensions beyond the familiar three. While everyday observation suggests only three dimensions, there is no shortage of potential explanations for how extra dimensions could have escaped detection for so long. For instance, the extra dimensions could be compact, curled into a microscopic volume so that you can never move far in the extra dimensions without ending up back where you started. Or, the elements of everyday experience could be trapped on a three-dimensional membrane floating in a higher dimensions space. The models studied in this thesis each use both of these mechanisms in tandem, with electrons, photons, quarks, and the like being confined to a three-dimensional membrane that sits in a space with compact extra dimensions. Gravitons (and perhaps other new types of particles) could travel beyond the three-dimensional membrane, so they can feel the effects of the higher-dimensional space, but because the extra dimensions are compactified on a small scale, the effects are subtle.
CR singular images of generic submanifolds under holomorphic maps
NASA Astrophysics Data System (ADS)
Lebl, Jiří; Minor, André; Shroff, Ravi; Son, Duong; Zhang, Yuan
2014-10-01
The purpose of this paper is to organize some results on the local geometry of CR singular real-analytic manifolds that are images of CR manifolds via a CR map that is a diffeomorphism onto its image. We find a necessary (sufficient in dimension 2) condition for the diffeomorphism to extend to a finite holomorphic map. The multiplicity of this map is a biholomorphic invariant that is precisely the Moser invariant of the image, when it is a Bishop surface with vanishing Bishop invariant. In higher dimensions, we study Levi-flat CR singular images and we prove that the set of CR singular points must be large, and in the case of codimension 2, necessarily Levi-flat or complex. We also show that there exist real-analytic CR functions on such images that satisfy the tangential CR conditions at the singular points, yet fail to extend to holomorphic functions in a neighborhood. We provide many examples to illustrate the phenomena that arise.
[Three- and four-dimensional (3D/4D) ultrasound in obstetric practice: review].
Pavlova, E; Ivanov, St
2014-01-01
Three-dimensional (3D) ultrasound is following the natural development of the imaging technology. This review of the technical applications and clinical aspects of the three-dimensional ultrasound is focused on vizualiztion of the fetal anatomy and the possibilities of this new technology and to increase awareness of its present clinical usefulness. Consulting specialists understand fetal pathology better and can better plan postnatal interventions. 3D ultrasound is a promising imaging method to image the fetus. Here are presented the methods for visualization in obstetrics, and the place of the ultrasound imaging in prenatal diagnosis. The role and value of this method will be in the focus of further studies.
Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications.
Frydrychowicz, Alex; François, Christopher J; Turski, Patrick A
2011-10-01
Unlike other magnetic resonance angiographic techniques, phase contrast imaging (PC-MRI) offers co-registered morphologic images and velocity data within a single acquisition. While the basic principle of PC-MRI dates back almost 3 decades, novel time-resolved three-dimensional PC-MRI (4D PC-MRI) approaches have become increasingly researched over the past years. So-called 4D PC-MRI includes three-directional velocity encoding in a three-dimensional imaging volume over time, thereby providing the opportunity to comprehensively analyze human hemodynamics in vivo. Moreover, its large volume coverage offers the option to study systemic hemodynamic effects. Additionally, this offers the possibility to re-visit flow in any location of interest without being limited to predetermined two-dimensional slices. The attention received for hemodynamic research is partially based on flow-based theories of atherogenesis and arterial remodeling. 4D PC-MRI can be used to calculate flow-related vessel wall parameters and may hence serve as a diagnostic tool in preemptive medicine. Furthermore, technical improvements including the availability of sufficient computing power, data storage capabilities, and optimized acceleration schemes for data acquisition as well as comprehensive image processing algorithms have largely facilitated recent research progresses. We will present an overview of the potential of this relatively young imaging paradigm. After acquisition and processing the data in morphological and phase difference images, various visualization strategies permit the qualitative analysis of hemodynamics. A multitude of quantitative parameters such as pulse wave velocities and estimates of wall shear stress which might serve as future biomarkers can be extracted. Thereby, exciting new opportunities for vascular imaging and diagnosis are available.
Validation of four-dimensional ultrasound for targeting in minimally-invasive beating-heart surgery
NASA Astrophysics Data System (ADS)
Pace, Danielle F.; Wiles, Andrew D.; Moore, John; Wedlake, Chris; Gobbi, David G.; Peters, Terry M.
2009-02-01
Ultrasound is garnering significant interest as an imaging modality for surgical guidance, due to its affordability, real-time temporal resolution and ease of integration into the operating room. Minimally-invasive intracardiac surgery performed on the beating-heart prevents direct vision of the surgical target, and procedures such as mitral valve replacement and atrial septal defect closure would benefit from intraoperative ultrasound imaging. We propose that placing 4D ultrasound within an augmented reality environment, along with a patient-specific cardiac model and virtual representations of tracked surgical tools, will create a visually intuitive platform with sufficient image information to safely and accurately repair tissue within the beating heart. However, the quality of the imaging parameters, spatial calibration, temporal calibration and ECG-gating must be well characterized before any 4D ultrasound system can be used clinically to guide the treatment of moving structures. In this paper, we describe a comprehensive accuracy assessment framework that can be used to evaluate the performance of 4D ultrasound systems while imaging moving targets. We image a dynamic phantom that is comprised of a simple robot and a tracked phantom to which point-source, distance and spherical objects of known construction can be attached. We also follow our protocol to evaluate 4D ultrasound images generated in real-time by reconstructing ECG-gated 2D ultrasound images acquired from a tracked multiplanar transesophageal probe. Likewise, our evaluation framework allows any type of 4D ultrasound to be quantitatively assessed.
Comparisons among a new soil index and other two- and four-dimensional vegetation indices
NASA Technical Reports Server (NTRS)
Wiegand, C. L.; Richardson, A. J. (Principal Investigator)
1982-01-01
The 2-D difference vegetation index (DVI) and perpendicular vegetation index (PVI), and the 4-D green vegetation index (GVI) are compared in LANDSAT MSS data from grain sorghum (Sorghum bicolor, L. Moench) fields for the years 1973 to 1977. PVI and DVI were more closely related to LAI than was GVI. A new 2-D soil line index (SLI), the vector distance from the soil line origin to the point of intersection of PVI with the soil line, is defined and compared with the 4-D soil brightness index, SBI. SLI (based on MSS and MSS7) and SL16 (based on MSS 5 and MSS 6) were smaller in magnitude than SBI but contained similar information about the soil background. These findings indicate that vegetation and soil indices calculated from the single visible and reflective infrared band sensor systems, such as the AVHRR of the TIROS-N polar orbiting series of satellites, will be meaningful for synoptic monitoring of renewable vegetation.
NASA Astrophysics Data System (ADS)
Jenkins, Michael W.; Peterson, Lindsy; Gu, Shi; Gargesha, Madhusudhana; Wilson, David L.; Watanabe, Michiko; Rollins, Andrew M.
2010-11-01
Hemodynamics is thought to play a major role in heart development, yet tools to quantitatively assess hemodynamics in the embryo are sorely lacking. The especially challenging analysis of hemodynamics in the early embryo requires new technology. Small changes in blood flow could indicate when anomalies are initiated even before structural changes can be detected. Furthermore, small changes in the early embryo that affect blood flow could lead to profound abnormalities at later stages. We present a demonstration of 4-D Doppler optical coherence tomography (OCT) imaging of structure and flow, and present several new hemodynamic measurements on embryonic avian hearts at early stages prior to the formation of the four chambers. Using 4-D data, pulsed Doppler measurements could accurately be attained in the inflow and outflow of the heart tube. Also, by employing an en-face slice from the 4-D Doppler image set, measurements of stroke volume and cardiac output are obtained without the need to determine absolute velocity. Finally, an image plane orthogonal to the blood flow is used to determine shear stress by calculating the velocity gradient normal to the endocardium. Hemodynamic measurements will be crucial to identifying genetic and environmental factors that lead to congenital heart defects.
The eleven-dimensional uplift of four-dimensional supersymmetric RG flow
NASA Astrophysics Data System (ADS)
Ahn, Changhyun
2012-06-01
The squashed and stretched 7-dimensional internal metric preserving U(1)×U(1)×U(1)R symmetry possesses an Einstein-Kahler 2-fold which is a base manifold of 5-dimensional Sasaki-Einstein L space. The r(transverse to the domain wall)-dependence of the two 4-dimensional supergravity fields, that play the role of geometric parameters for squashing and stretching, makes the 11-dimensional Einstein-Maxwell equations consistent not only at the two critical points but also along the whole N=2 supersymmetric RG flow connecting them. The Ricci tensor of the solution has a common feature with the previous three 11-dimensional solutions. The 4-forms preserve only U(1)R symmetry for other generic parameters of the metric. We find an exact solution to the 11-dimensional Einstein-Maxwell equations corresponding to the lift of the 4-dimensional supersymmetric RG flow.
Universal features of four-dimensional superconformal field theory on conic space
NASA Astrophysics Data System (ADS)
Zhou, Yang
2015-08-01
Following the set up in arXiv:1408.3393, we study 4 d superconformal field theories on conic spaces. We show that the universal part of supersymmetric Rényi entropy S q across a spherical entangling surface in the limit q → 0 is proportional to a linear combination of central charges, 3 c - 2 a. This is equivalent to a similar statement about the free energy of SCFTs on conic space or hyperbolic space in the corresponding limit. We first derive the asymptotic formula by the free field computation in the presence of a U (1) R-symmetry background and then provide an independent derivation by studying theories on with a particular scaling , which thus confirms the validity of the formula for general interacting SCFTs. Finally we revisit the supersymmetric Rényi entropy of generel SCFTs and find a simple formula for it in terms of central charges a and c.
Multi-objective four-dimensional vehicle motion planning in large dynamic environments.
Wu, Paul P-Y; Campbell, Duncan; Merz, Torsten
2011-06-01
This paper presents Multi-Step A∗ (MSA∗), a search algorithm based on A∗ for multi-objective 4-D vehicle motion planning (three spatial and one time dimensions). The research is principally motivated by the need for offline and online motion planning for autonomous unmanned aerial vehicles (UAVs). For UAVs operating in large dynamic uncertain 4-D environments, the motion plan consists of a sequence of connected linear tracks (or trajectory segments). The track angle and velocity are important parameters that are often restricted by assumptions and a grid geometry in conventional motion planners. Many existing planners also fail to incorporate multiple decision criteria and constraints such as wind, fuel, dynamic obstacles, and the rules of the air. It is shown that MSA∗ finds a cost optimal solution using variable length, angle, and velocity trajectory segments. These segments are approximated with a grid-based cell sequence that provides an inherent tolerance to uncertainty. The computational efficiency is achieved by using variable successor operators to create a multiresolution memory-efficient lattice sampling structure. The simulation studies on the UAV flight planning problem show that MSA∗ meets the time constraints of online replanning and finds paths of equivalent cost but in a quarter of the time (on average) of a vector neighborhood-based A∗.
Medical applications of three-dimensional and four-dimensional laser scanning of facial morphology
NASA Astrophysics Data System (ADS)
Sadler, Lewis L.; Chen, Xiaoming; Figueroa, Alvaro A.; Aduss, Howard
1991-04-01
Two-degrees offreedom laser scanning devices offer the advantage ofspeed in data acquisition over three-degrees offreedom devices. Data acquisition on patients especially children requires speed in data gathering instantaneous verification ofdata integrity and more than two degrees offreedom to adequately describe morphology. A technique to generate a pseudo-third degree of freedom scan will be presented. An additional benefit of the technique is the ability to compare data acquired at different times.
NASA Astrophysics Data System (ADS)
Hejkrlík, Libor; Plachá, Helena
2017-04-01
Number concentrations of fine particles had been measured by SMPS in a diameter range of 10 to 800 nm in 7 channels with time resolution of one hour since June 2012 to December 2015 at a background urban site in Northern Bohemia. At nearly the same place hourly means of three meteorological elements were available (air temperature Th, relative air humidity Hh and global radiation Rh) and as a complementary index of atmospheric pollution the mass concentrations of PM1-BC (black carbon). The whole period of observations covered 1309 days, periodically involving all of the seasons of the year. Th varied between 11,2 ˚ C and 36,1 ˚ C, for Hh it was between 21% and 100% and Rh reached its extremes between 0,2 and 940,5 W/m2 (night hours were excluded). Resulting number of analyzed rows of 11 variables was approximately 14 000. The nearly-continuous combinations of meteorological data were transformed into three-dimensional matrix where Th,Hh and Rh were assigned only few discrete values (48, 13 and 13 respectively). In the cells of the 3D matrix mean concentrations of different modes of fine particles and of PM1-BC were calculated. The results were displayed in the form of XYZ bubble graph, diameters of the spheres being the fourth dimension. The results offer insight into relation between sub-micron particles concentrations and meteorological conditions on parallel time basis. The nucleation mode of nanoparticles (10-30 nm) demonstrate strong proliferation (N˜104/cm3/hour) under extreme both temperature and solar radiation while air moisture remains moderate. The effect is less obvious for Aitken mode (30-70 nm) and fades gradually away for fine particles (100-800 nm, N˜103/cm3/hour). Particles PM1-BC (≤ 1000 nm, Cm ˜1 μg/m3/hour), measured by MAAP, show considerable affinity to low visibility and high humidity but the overall picture persists, what may serve as a proof of equivalence of the measuring procedures.
NASA Astrophysics Data System (ADS)
Széplaky, Dávid; Varga, Augustín
2016-06-01
The contribution describes the principle of the FENIX program operation, which was designed to determine the temperature field of the transit pipeline for the transportation of natural gas. The program itself consists of several modules which are reciprocally linked. The basis of the program is the elementary balance method by means of which the unsteady heat transfer is assigned in several layers in different directions. The first step was to assess both the pressure and temperature of the natural gas mode, the second step is to determine the heat transfer through the walls of the pipes, and the last one is to determine the distribution of the temperature field in the surroundings of the pipeline.
Three- and four-dimensional mapping of speech and language in patients with epilepsy.
Nakai, Yasuo; Jeong, Jeong-Won; Brown, Erik C; Rothermel, Robert; Kojima, Katsuaki; Kambara, Toshimune; Shah, Aashit; Mittal, Sandeep; Sood, Sandeep; Asano, Eishi
2017-03-16
We have provided 3-D and 4D mapping of speech and language function based upon the results of direct cortical stimulation and event-related modulation of electrocorticography signals. Patients estimated to have right-hemispheric language dominance were excluded. Thus, 100 patients who underwent two-stage epilepsy surgery with chronic electrocorticography recording were studied. An older group consisted of 84 patients at least 10 years of age (7367 artefact-free non-epileptic electrodes), whereas a younger group included 16 children younger than age 10 (1438 electrodes). The probability of symptoms transiently induced by electrical stimulation was delineated on a 3D average surface image. The electrocorticography amplitude changes of high-gamma (70-110 Hz) and beta (15-30 Hz) activities during an auditory-naming task were animated on the average surface image in a 4D manner. Thereby, high-gamma augmentation and beta attenuation were treated as summary measures of cortical activation. Stimulation data indicated the causal relationship between (i) superior-temporal gyrus of either hemisphere and auditory hallucination; (ii) left superior-/middle-temporal gyri and receptive aphasia; (iii) widespread temporal/frontal lobe regions of the left hemisphere and expressive aphasia; and (iv) bilateral precentral/left posterior superior-frontal regions and speech arrest. On electrocorticography analysis, high-gamma augmentation involved the bilateral superior-temporal and precentral gyri immediately following question onset; at the same time, high-gamma activity was attenuated in the left orbitofrontal gyrus. High-gamma activity was augmented in the left temporal/frontal lobe regions, as well as left inferior-parietal and cingulate regions, maximally around question offset, with high-gamma augmentation in the left pars orbitalis inferior-frontal, middle-frontal, and inferior-parietal regions preceded by high-gamma attenuation in the contralateral homotopic regions. Immediately before verbal response, high-gamma augmentation involved the posterior superior-frontal and pre/postcentral regions, bilaterally. Beta-attenuation was spatially and temporally correlated with high-gamma augmentation in general but with exceptions. The younger and older groups shared similar spatial-temporal profiles of high-gamma and beta modulation; except, the younger group failed to show left-dominant activation in the rostral middle-frontal and pars orbitalis inferior-frontal regions around stimulus offset. The human brain may rapidly and alternately activate and deactivate cortical areas advantageous or obtrusive to function directed toward speech and language at a given moment. Increased left-dominant activation in the anterior frontal structures in the older age group may reflect developmental consolidation of the language system. The results of our functional mapping may be useful in predicting, across not only space but also time and patient age, sites specific to language function for presurgical evaluation of focal epilepsy.awx051media15361817553001.
NASA Astrophysics Data System (ADS)
Kleshneva, T.; Muzik, J.; Alber, M.
2006-08-01
Recently, several techniques have been developed to improve the quality of computed tomography (CT) images of the thoracic and abdominal region that are degraded by the interference of the scanning process and respiration. Several devices for respiratory-correlated CT are available for clinical usage. They are based on the synchronization of the acquired CT image data with the respiratory motion using a signal from an external respiratory monitoring system. In this work, some practical aspects of clinical implementation of the multi-slice 4D CT scanner Somatom Sensation Open (Siemens Medical Solutions, Erlangen, Germany) equipped with a respiratory gating system (RGS) AZ-733V (Anzai Medical, Tokyo, Japan) are discussed. A new algorithm developed for automatic respiratory phase determination needed for the reconstruction of the 4D CT images is presented.
NASA Astrophysics Data System (ADS)
Ozawa, Tomoki; Price, Hannah M.; Goldman, Nathan; Zilberberg, Oded; Carusotto, Iacopo
2016-04-01
Recent technological advances in integrated photonics have spurred on the study of topological phenomena in engineered bosonic systems. Indeed, the controllability of silicon ring-resonator arrays has opened up new perspectives for building lattices for photons with topologically nontrivial bands and integrating them into photonic devices for practical applications. Here, we push these developments even further by exploiting the different modes of a silicon ring resonator as an extra dimension for photons. Tunneling along this synthetic dimension is implemented via an external time-dependent modulation that allows for the generation of engineered gauge fields. We show how this approach can be used to generate a variety of exciting topological phenomena in integrated photonics, ranging from a topologically-robust optical isolator in a spatially one-dimensional (1D) ring-resonator chain to a driven-dissipative analog of the 4D quantum Hall effect in a spatially 3D resonator lattice. Our proposal paves the way towards the use of topological effects in the design of novel photonic lattices supporting many frequency channels and displaying higher connectivities.
Glauser, Daniel L.; Saydam, Okay; Balsiger, N. Alexander; Heid, Irma; Linden, R. Michael; Ackermann, Mathias; Fraefel, Cornel
2005-01-01
The adeno-associated virus (AAV) inverted terminal repeats (ITRs) contain the AAV Rep protein-binding site (RBS) and the terminal resolution site (TRS), which together act as a minimal origin of DNA replication. The AAV p5 promoter also contains an RBS, which is involved in Rep-mediated regulation of promoter activity, as well as a functional TRS, and origin activity of these signals has in fact been demonstrated previously in the presence of adenovirus helper functions. Here, we show that in the presence of herpes simplex virus type 1 (HSV-1) and AAV Rep protein, p5 promoter-bearing plasmids are efficiently amplified to form large head-to-tail concatemers, which are readily packaged in HSV-1 virions if an HSV-1 DNA-packaging/cleavage signal is provided in cis. We also demonstrate simultaneous and independent replication from the two alternative AAV replication origins, p5 and ITR, on the single-cell level using multicolor-fluorescence live imaging, a finding which raises the possibility that both origins may contribute to the AAV life cycle. Furthermore, we assess the differential affinities of Rep for the two different replication origins, p5 and ITR, both in vitro and in live cells and identify this as a potential mechanism to control the replicative and promoter activities of p5. PMID:16160148
Glauser, Daniel L; Saydam, Okay; Balsiger, N Alexander; Heid, Irma; Linden, R Michael; Ackermann, Mathias; Fraefel, Cornel
2005-10-01
The adeno-associated virus (AAV) inverted terminal repeats (ITRs) contain the AAV Rep protein-binding site (RBS) and the terminal resolution site (TRS), which together act as a minimal origin of DNA replication. The AAV p5 promoter also contains an RBS, which is involved in Rep-mediated regulation of promoter activity, as well as a functional TRS, and origin activity of these signals has in fact been demonstrated previously in the presence of adenovirus helper functions. Here, we show that in the presence of herpes simplex virus type 1 (HSV-1) and AAV Rep protein, p5 promoter-bearing plasmids are efficiently amplified to form large head-to-tail concatemers, which are readily packaged in HSV-1 virions if an HSV-1 DNA-packaging/cleavage signal is provided in cis. We also demonstrate simultaneous and independent replication from the two alternative AAV replication origins, p5 and ITR, on the single-cell level using multicolor-fluorescence live imaging, a finding which raises the possibility that both origins may contribute to the AAV life cycle. Furthermore, we assess the differential affinities of Rep for the two different replication origins, p5 and ITR, both in vitro and in live cells and identify this as a potential mechanism to control the replicative and promoter activities of p5.
A Four-Dimensional, Mesoscale, Non-Gaussian Multispectral Smoke Model. Phase 1. Feasibility Study
1992-12-01
and the effect of the "lid" itself as a boundary that limits the vertical scale of motion. 2.2.3.1 Convective boundary layer (Hojstrup, 1982) nSu(n...particles correctly; we must also account for their size-dependent removal rates and determine cost effective ways to assess local particle... effective scatterers in the far infrared (IR) (for example, particle diameter d - wavelength 1 = 100 u) can settle out with deposition velocities of order
Exact static vacuum solution of four-dimensional metric-affine gravity with nontrivial torsion
NASA Astrophysics Data System (ADS)
Tresguerres, Romualdo
1995-02-01
We present an exact spherically symmetric vacuum solution for a metric-affine quadratic Lagrangian. The metric part of the solution is of Reissner-Nordström type. The connection part includes nonmetricity depending on a dilatation charge and a shear charge. Furthermore, a nontrivial torsion depending on a certain torsion mass and with intrinsic contributions is present.
Four-Dimensional Respiratory Motion-Resolved Whole Heart Coronary MR Angiography
Piccini, Davide; Feng, Li; Bonanno, Gabriele; Coppo, Simone; Yerly, Jérôme; Lim, Ruth P.; Schwitter, Juerg; Sodickson, Daniel K.; Otazo, Ricardo; Stuber, Matthias
2016-01-01
Purpose Free-breathing whole-heart coronary MR angiography (MRA) commonly uses navigators to gate respiratory motion, resulting in lengthy and unpredictable acquisition times. Conversely, self-navigation has 100% scan efficiency, but requires motion correction over a broad range of respiratory displacements, which may introduce image artifacts. We propose replacing navigators and self-navigation with a respiratory motion-resolved reconstruction approach. Methods Using a respiratory signal extracted directly from the imaging data, individual signal-readouts are binned according to their respiratory states. The resultant series of undersampled images are reconstructed using an extradimensional golden-angle radial sparse parallel imaging (XD-GRASP) algorithm, which exploits sparsity along the respiratory dimension. Whole-heart coronary MRA was performed in 11 volunteers and four patients with the proposed methodology. Image quality was compared with that obtained with one-dimensional respiratory self-navigation. Results Respiratory-resolved reconstruction effectively suppressed respiratory motion artifacts. The quality score for XD-GRASP reconstructions was greater than or equal to self-navigation in 80/88 coronary segments, reaching diagnostic quality in 61/88 segments versus 41/88. Coronary sharpness and length were always superior for the respiratory-resolved datasets, reaching statistical significance (P < 0.05) in most cases. Conclusion XD-GRASP represents an attractive alternative for handling respiratory motion in free-breathing whole heart MRI and provides an effective alternative to self-navigation. PMID:27052418
A Four Dimensional Spatio-Temporal Analysis of an Agricultural Dataset.
Donald, Margaret R; Mengersen, Kerrie L; Young, Rick R
2015-01-01
While a variety of statistical models now exist for the spatio-temporal analysis of two-dimensional (surface) data collected over time, there are few published examples of analogous models for the spatial analysis of data taken over four dimensions: latitude, longitude, height or depth, and time. When taking account of the autocorrelation of data within and between dimensions, the notion of closeness often differs for each of the dimensions. Here, we consider a number of approaches to the analysis of such a dataset, which arises from an agricultural experiment exploring the impact of different cropping systems on soil moisture. The proposed models vary in their representation of the spatial correlation in the data, the assumed temporal pattern and choice of conditional autoregressive (CAR) and other priors. In terms of the substantive question, we find that response cropping is generally more effective than long fallow cropping in reducing soil moisture at the depths considered (100 cm to 220 cm). Thus, if we wish to reduce the possibility of deep drainage and increased groundwater salinity, the recommended cropping system is response cropping.
Effective Doses in Four-Dimensional Computed Tomography for Lung Radiotherapy Planning
Mori, Shinichiro Ko, Susumu; Ishii, Takayoshi; Nishizawa, Kanae
2009-04-01
The recent broad adoption of 4-D computed tomography (4DCT) scanning in radiotherapy has allowed the accurate determination of the target volume of tumors by minimizing image degradation caused by respiratory motion. Although the radiation exposure of the treatment beam is significantly greater than that of CT scans used for treatment planning, it is important to recognize and optimize the radiation exposure in 4DCT from the radiological protection point of view. Here, radiation exposure in 4DCT was measured with a 16 multidetector CT. Organ doses were measured using thermoluminescence radiation dosimeter chips inserted at respective anatomical sites of an anthropomorphic phantom. Results were compared with those with the helical CT scan mode. The effective dose measured for 4DCT was 24.7 mSv, approximately four times higher than that for helical CT. However, the increase in treatment accuracy afforded by 4DCT means its use in radiotherapy is inevitable. The patient exposure in the 4DCT could be of value by clarifying the advantage of the treatment planning using 4DCT.
Four-Dimensional Characterization of Paper Web at the Wet End
Goddard, JS
2001-02-28
This report presents a detailed description of a vision system whose purpose is to detect and to localize the nonuniformities that appear on the paper slurry (wood fiber and water mixture) at the wet end of a paper machine. Specifically, the system is capable of monitoring the paper slurry upon its exit from the headbox and alerting the operators of any event (e.g., streaks) that disrupts the otherwise homogeneous background. Such events are thought to affect crucial product properties such as formation, which if poor, results in thick and thin spots on the sheet and impacts its strength and printability. This report describes the vision system in terms of its hardware modules, as well as the image processing algorithms that it utilizes to perform its function. Basically, the system acquires both intensity and topographic information from the scene and uses texture-based features for the detection, and facet-based descriptors for the localization of the nonuniformities. In addition to being tested in a laboratory environment, a prototype of this system was constructed and deployed to a paper mill, where its performance was evaluated under realistic conditions. Installed on a fourdrinier paper machine, running at 480 m/min and producing linerboard material, the vision system was able to monitor an approximately 1-meter-wide area and to successfully detect and localize slurry streaks.
Assimilation of Satellite Altimeter Data With a Four Dimensional Model of the Japan Sea
NASA Technical Reports Server (NTRS)
Hirose, Naoki; Ichiro, Fukumori; Jong-Hwan, Yoon
1999-01-01
A data assimilation is carried out to detect the variability of the Japan Sea circulation in the range from a few days to several years and from eddy to basin scale. The model applied in this study is the same 1/6 degree GFDL MOM1 as Kim and Yoon (1999) but is driven by ECMWF daily wind stress, heat and fresh water fluxes. The satellite altimeter data of TOPEX/POSEIDON, ERS-1 (phase C and G) and -2 are assimilated by an approximate Kalman filter (Fukumori and M.Rizzoli, 1995). The approximation is made by seeking an asymptotic steady error covariance matrix (Fukumori et al., 1993) and by introducing a coarser grid model for the innovation (data-model misfit). The coarse grid model is defined on 1/2 degree horizontal resolution and consists of the barotropic stream function, first baroclinic displacement and velocity amplitudes. The assimilated estimates explain about 6cm sea level variability of the data (approximately 12cm in the southern part), which is much larger than the previous reduced-gravity model and TOPEX/POSEIDON altimeter data assimilation (Hirose et al., 1999). The impacts of the T/P and ERS data on the filtered estimates are comparable. The result also shows high correlation to subsurface water temperatures measured by CTD. Many of the mesoscale eddies/disturbances travel east-northeastward with the advection speed of 1-3cm/s though most of them generated in the western region can not pass over the Oki Spur. The quasi-biennial variability found by Hirose and Ostrovskii (1999) did not show clear propagation pattern. The shallow Oki Spur may work as a "western boundary" to this signal. This is more plausible estimation than by the R-G model which has no bottom topography.
Ultrashort electron pulses as a four-dimensional diagnosis of plasma dynamics.
Zhu, P F; Zhang, Z C; Chen, L; Li, R Z; Li, J J; Wang, X; Cao, J M; Sheng, Z M; Zhang, J
2010-10-01
We report an ultrafast electron imaging system for real-time examination of ultrafast plasma dynamics in four dimensions. It consists of a femtosecond pulsed electron gun and a two-dimensional single electron detector. The device has an unprecedented capability of acquiring a high-quality shadowgraph image with a single ultrashort electron pulse, thus permitting the measurement of irreversible processes using a single-shot scheme. In a prototype experiment of laser-induced plasma of a metal target under moderate pump intensity, we demonstrated its unique capability of acquiring high-quality shadowgraph images on a micron scale with a-few-picosecond time resolution.
Four-Dimensional Weather Functional Requirements for NextGen Air Traffic Management
2008-01-18
1-3 1.1.2 SME Cost-Benefit Analysis...6 SME ESTIMATED ROM COSTS............................................................................... 6-1 7 RISKS...ASSIMILATED INTO DECISIONMAKING DRAFT EXECUTIVE SUMMARY ES-2 The JPDO requested that subject matter experts ( SME ) representing government
SU-E-T-437: Four-Dimensional Treatment Planning for Lung VMAT-SBRT
Hashimoto, M; Takashina, M; Koizumi, M; Oohira, S; Ueda, Y; Miyazaki, M; Isono, M; Masaoka, A; Teshima, T
2015-06-15
Purpose: To assess optimal treatment planning approach of Volumetric Modulated Arc Therapy for lung Stereotactic Body Radiation Therapy (VMAT-SBRT). Methods: Subjects were 10 patients with lung cancer who had undergone 4DCT. The internal target volume (ITV) volume ranged from 2.6 to 16.5cm{sup 3} and the tumor motion ranged from 0 to 2cm. From 4DCT, which was binned into 10 respiratory phases, 4 image data sets were created; maximum intensity projection (MIP), average intensity projection (AIP), AIP with the ITV replaced by 0HU (RITV-AIP) and RITV-AIP with the planning target volume (PTV) minus the internal target volume was set to −200 HU (HR-AIP). VMAT-SBRT plans were generated on each image set for a patient. 48Gy was prescribed to 95% of PTV. The plans were recalculated on all phase images of 4DCT and the dose distributions were accumulated using a deformable image registration software MIM Maestro™ as the 4D calculated dose to the gross tumor volume (GTV). The planned dose to the ITV and 4D calculated dose to the GTV were compared. Results: In AIP plan, 10 patients average of all dose parameters (D1%, D-mean, and D99%) discrepancy were 1Gy or smaller. MIP and RITV-AIP plans resulted in having common tendency and larger discrepancy than AIP plan. The 4D dose was lower than the planned dose, and 10 patients average of all dose parameters discrepancy were in range 1.3 to 2.6Gy. HR-AIP plan had the largest discrepancy in our trials. 4D calculated D1%, D-mean, and D99% were resulted in 3.0, 4.1, and 6.1Gy lower than the expected in plan, respectively. Conclusion: For all patients, the dose parameters expected in AIP plan approximated to 4D calculated. Using AIP image set seems optimal treatment planning approach of VMAT-SBRT for a mobile tumor. Funding Support: This work was supported by the Japan Society for the Promotion of Science Core-to-Core program (No. 23003)
Four-dimensional Monte Carlo investigation of organ motion in radiotherapy for lung cancer
NASA Astrophysics Data System (ADS)
Heath, Emily
A limitation of current dose calculation algorithms employed in radiotherapy treatment planning is the assumption that the patient's anatomy is static throughout the imaging, planning and delivery. 4D dose calculation methods employ non-linear image registration to determine the cumulative dose received in a deforming anatomy. In this work, we developed a 4D Monte Carlo dose calculation code, designated defDOSXYZ, which determines the dose received in a deforming voxel grid. Voxel deformations were determined from deformation vectors resulting from non-linear image registration between images of the reference and target states. The ANIMAL non-linear image registration algorithm was implemented for registration of thoracic 4D CT images. Modifications were performed to ANIMAL to minimize deformation vector discontinuities. A method for correcting artifacts in 4D CT images was developed which uses non-linear image registration to interpolate voxel intensities from temporally adjacent artifact-free images. Dose calculations in deforming phantoms and 4D CT patient data using defDOSXYZ were compared to conventional center-of-mass (COM) and trilinear (TL) dose remapping methods. defDOSXYZ calculations were determined to be accurate to within 1% by comparison with DOSXYZ calculations and internal consistency checks. Conventional dose remapping methods were found to underestimate the dose by 29% and 8%, on average, when remapping dose from Exhale to Inhale within simple deforming phantoms with voxel sizes of 1 cm and 0.5 cm, respectively. These discrepancies were reduced to 0.2% for voxel sizes of 0.25 cm and smaller, however dose errors of 20-30% still existed in regions of steep dose gradients. The accuracy of non-linear image registration between inhale and exhale images for 5 lung patients was found to be within 2 mm which was deemed acceptable for clinical dose calculations. Temporal interpolation using ANIMAL was demonstrated to improve image quality in 4D data sets containing motion artifacts. Comparison of dose remapping from Inhale to Exhale in an anatomical breathing phantom revealed that interpolation methods underestimate the dose in the penumbra and near the surface. defDOSXYZ calculations were also compared with two dose remapping methods in 4D CT patient data. Systematic offsets between the dose calculation methods were noted which were attributed to inconsistent handling of voxel mass conservation in the image registration and dose calculations. A mass-consistent comparison of defDOSXYZ calculations and remapping calculations for clinically relevant planning scenarios and dose grid sizes revealed discrepancies in regions of steep gradients which was consistent with the phantom studies. No clinically significant differences in planning volume doses were noted between all three dose calculation methods, although conventional dose remapping failed to predict certain details of the cumulative dose distribution which may be important for 4D conformal treatment planning.
Deng, Jing; Crouch, Naomi S; Creighton, Sarah M; Linney, Alfred D; Todd-Pokropek, Andrew; Rodeck, Charles H
2006-10-01
There has been no objective means for imaging the three-dimensional (3D) morphology of the clitoris-a poorly understood, complex structure. A Live 3D ultrasound system with a matrix-array transducer was used for data acquisition from eight women. The transducer was positioned in front of and about 3 cm away from the clitoris, with a gel pad or water pad being placed in between. The pads allowed the delicate structures to be imaged without noticeable deformation. Quality images could be obtained with use of a water pad in all patients. The imaging volume was big enough to cover the clitoral glans and body simultaneously, allowing real-time 3D visualisation. To cover the entire clitoris, the probe was moved from one side of the crus to the other, or a four subvolume scan was performed. 3D clitoral anatomy was depicted from 71% of 51 water pad data-sets. The study demonstrates the feasibility of obtaining 3D clitoral ultrasound images. This will improve scientific and clinical understanding of the clitoral role in sexual activity. The minimally-compressive scanning offers an opportunity to visualise dynamic 3D (4D) morphology of other deformable body parts.
Management and display of four-dimensional environmental data sets using McIDAS
NASA Technical Reports Server (NTRS)
Hibbard, William L.; Santek, David; Suomi, Verner E.
1990-01-01
Over the past four years, great strides have been made in the areas of data management and display of 4-D meteorological data sets. A survey was conducted of available and planned 4-D meteorological data sources. The data types were evaluated for their impact on the data management and display system. The requirements were analyzed for data base management generated by the 4-D data display system. The suitability of the existing data base management procedures and file structure were evaluated in light of the new requirements. Where needed, new data base management tools and file procedures were designed and implemented. The quality of the basic 4-D data sets was assured. The interpolation and extrapolation techniques of the 4-D data were investigated. The 4-D data from various sources were combined to make a uniform and consistent data set for display purposes. Data display software was designed to create abstract line graphic 3-D displays. Realistic shaded 3-D displays were created. Animation routines for these displays were developed in order to produce a dynamic 4-D presentation. A prototype dynamic color stereo workstation was implemented. A computer functional design specification was produced based on interactive studies and user feedback.
Chirped imaging pulses in four-dimensional electron microscopy: femtosecond pulsed hole burning
NASA Astrophysics Data System (ADS)
Park, Sang Tae; Kwon, Oh-Hoon; Zewail, Ahmed H.
2012-05-01
The energy and time correlation, i.e. the chirp, of imaging electron pulses in dispersive propagation is measured by time-slicing (temporal hole burning) using photon-induced near-field electron microscopy. The chirp coefficient and the degree of correlation are obtained in addition to the duration of the electron pulse and its energy spread. Improving temporal and energy resolutions by time-slicing and energy-selection is discussed here and we explore their utility in imaging with time and energy resolutions below those of the generated ultrashort electron pulse. Potential applications for these imaging capabilities are discussed.
Time-symmetric initial data sets in four-dimensional dilaton gravity
NASA Astrophysics Data System (ADS)
Ortín, Tomás
1995-09-01
I study the time-symmetric initial-data problem in theories with a massless scalar field (dilaton), free or coupled to a Maxwell field in the stringy way, finding different initial-data sets describing an arbitrary number of black holes with arbitrary masses, charges, and asymptotic value of the dilaton. The presence of the scalar field gives rise to a number of interesting effects. The mass and charges of a single black hole are different in its two asymptotically flat regions across the Einstein-Rosen bridge. The same happens to the value of the dilaton at infinity. This forbids the identification of these asymptotic regions in order to build (Misner) wormholes in the most naive way. Using different techniques, I find regular initial data for stringy wormholes. The price paid is the existence singularities in the dilaton field. The presence of a single-valued scalar seems to constrain strongly the allowed topologies of the initial spacelike surface. Other kinds of scalar fields (taking values on a circle or being defined up to an additive constant) are also briefly considered.
Four-dimensional black holes with scalar hair in nonlinear electrodynamics
NASA Astrophysics Data System (ADS)
Barrientos, José; González, P. A.; Vásquez, Yerko
2016-12-01
We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and a U(1) nonlinear electromagnetic field. Solving analytically and numerically the coupled system for both power-law and Born-Infeld type electrodynamics, we find charged hairy black hole solutions. Then we study the thermodynamics of these solutions and we find that at a low temperature the topological charged black hole with scalar hair is thermodynamically preferred, whereas the topological charged black hole without scalar hair is thermodynamically preferred at a high temperature for power-law electrodynamics. Interestingly enough, these phase transitions occur at a fixed critical temperature and do not depend on the exponent p of the nonlinear electrodynamics.
NASA Astrophysics Data System (ADS)
Troch, Peter A.; Niu, Guo-Yue; Gevaert, Anouk; Teuling, Adriaan; Uijlenhoet, Remko; Pasetto, Damiano; Paniconi, Claudio; Putti, Mario
2014-05-01
The Landscape Evolution Observatory (LEO) at Biosphere 2-The University of Arizona consists of three identical, sloping, 333 m2 convergent landscapes inside a 5,000 m2 environmentally controlled facility. These engineered landscapes contain 1-meter depth of basaltic tephra, ground to homogenous loamy sand. Each landscape contains a spatially dense sensor and sampler network capable of resolving meter-scale lateral heterogeneity and sub-meter scale vertical heterogeneity in moisture, energy and carbon states and fluxes. The density of sensors and frequency at which they can be polled allows for data collection at spatial and temporal scales that are impossible in natural field settings. Each ~600 metric ton landscape has load cells embedded into the structure to measure changes in total system mass with 0.05% full-scale repeatability (equivalent to less than 1 cm of precipitation). This facilitates the real time accounting of hydrological partitioning at the hillslope scale. Each hillslope is equipped with an engineered rain system capable of raining at rates between 3 and 45 mm/hr in a range of spatial patterns. We observed the spatial and temporal evolution of the soil moisture content at 496 5-TM Decagon sensors distributed over 5 different depths during a low-intensity long-duration rainfall experiment in February 2013. This presentation will focus on our modeling efforts to reveal subsurface hydraulic heterogeneity required to explain observed rainfall-runoff dynamics at the hillslope scale.
POD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
NASA Astrophysics Data System (ADS)
Ştefănescu, R.; Sandu, A.; Navon, I. M.
2015-08-01
This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key requirement for a successful reduced order solution is that reduced order Karush-Kuhn-Tucker conditions accurately represent their full order counterparts. In particular, accurate reduced order approximations are needed for the forward and adjoint dynamical models, as well as for the reduced gradient. New strategies to construct reduced order based are developed for proper orthogonal decomposition (POD) ROM data assimilation using both Galerkin and Petrov-Galerkin projections. For the first time POD, tensorial POD, and discrete empirical interpolation method (DEIM) are employed to develop reduced data assimilation systems for a geophysical flow model, namely, the two dimensional shallow water equations. Numerical experiments confirm the theoretical framework for Galerkin projection. In the case of Petrov-Galerkin projection, stabilization strategies must be considered for the reduced order models. The new reduced order shallow water data assimilation system provides analyses similar to those produced by the full resolution data assimilation system in one tenth of the computational time.
Properties of Ca2+ sparks revealed by four-dimensional confocal imaging of cardiac muscle
Shkryl, Vyacheslav M.; Blatter, Lothar A.
2012-01-01
Parameters (amplitude, width, kinetics) of Ca2+ sparks imaged confocally are affected by errors when the spark source is not in focus. To identify sparks that were in focus, we used fast scanning (LSM 5 LIVE; Carl Zeiss) combined with fast piezoelectric focusing to acquire x–y images in three planes at 1-µm separation (x-y-z-t mode). In 3,000 x–y scans in each of 34 membrane-permeabilized cat atrial cardiomyocytes, 6,906 sparks were detected. 767 sparks were in focus. They had greater amplitude, but their spatial width and rise time were similar compared with all sparks recorded. Their distribution of amplitudes had a mode at ΔF/F0 = 0.7. The Ca2+ release current underlying in-focus sparks was 11 pA, requiring 20 to 30 open channels, a number at the high end of earlier estimates. Spark frequency was greater than in earlier imaging studies of permeabilized ventricular cells, suggesting a greater susceptibility to excitation, which could have functional relevance for atrial cells. Ca2+ release flux peaked earlier than the time of peak fluorescence and then decayed, consistent with significant sarcoplasmic reticulum (SR) depletion. The evolution of fluorescence and release flux were strikingly similar for in-focus sparks of different rise time (T). Spark termination involves both depletion of Ca2+ in the SR and channel closure, which may be synchronized by depletion. The observation of similar flux in sparks of different T requires either that channel closure and other termination processes be independent of the determinants of flux (including [Ca2+]SR) or that different channel clusters respond to [Ca2+]SR with different sensitivity. PMID:22330954
Four Dimensional Analysis of Free Electron Lasers in the Amplifier Configuration
2007-12-01
19 G. TAPERED WIGGLER ...................................20 1. Linear Tapering ..............................21 2...separatrix (black line) and the closed (green line) and open ( red doted line) orbits on a phase space diagram; horizontal axis is the angular...closed orbits until it begins an upward trend, taking the energy away from the optical field. G. TAPERED WIGGLER In this work, an analysis of an FEL
Four-dimensional modeling of recent vertical movements in the area of the southern California uplift
Vanicek, Petr; Elliot, Michael R.; Castle, Robert O.
1979-01-01
This paper describes an analytical technique that utilizes scattered geodetic relevelings and tide-gauge records to portray Recent vertical crustal movements that may have been characterized by spasmodic changes in velocity. The technique is based on the fitting of a time-varying algebraic surface of prescribed degree to the geodetic data treated as tilt elements and to tide-gauge readings treated as point movements. Desired variations in time can be selected as any combination of powers of vertical movement velocity and episodic events. The state of the modeled vertical displacement can be shown for any number of dates for visual display. Statistical confidence limits of the modeled displacements, derived from the density of measurements in both space and time, line length, and accuracy of input data, are also provided. The capabilities of the technique are demonstrated on selected data from the region of the southern California uplift.
NASA Technical Reports Server (NTRS)
Fox, Geoffrey C.; Ou, Chao-Wei
1997-01-01
The approach of this task was to apply leading parallel computing research to a number of existing techniques for assimilation, and extract parameters indicating where and how input/output limits computational performance. The following was used for detailed knowledge of the application problems: 1. Developing a parallel input/output system specifically for this application 2. Extracting the important input/output characteristics of data assimilation problems; and 3. Building these characteristics s parameters into our runtime library (Fortran D/High Performance Fortran) for parallel input/output support.
Classical and quantum analysis of repulsive singularities in four-dimensional extended supergravity
NASA Astrophysics Data System (ADS)
Gaida, I.; Hollmann, H. R.; Stewart, J. M.
1999-07-01
Non-minimal repulsive singularities (`repulsons') in extended supergravity theories are investigated. The short-distance antigravity properties of the repulsons are tested at the classical and the quantum level by a scalar test-particle. Using a partial wave expansion it is shown that the particle is totally reflected at the origin. A high-frequency incoming particle undergoes a phase shift of icons/Journals/Common/pi" ALT="pi" ALIGN="TOP"/>/2. However, the phase shift for a low-frequency particle depends upon the physical data of the repulson. The curvature singularity at a finite distance rh turns out to be transparent for the scalar test-particle and the coordinate singularity at the origin serves as the repulsive barrier to bounce back the particles.
Four-dimensional in vivo X-ray microscopy with projection-guided gating
NASA Astrophysics Data System (ADS)
Mokso, Rajmund; Schwyn, Daniel A.; Walker, Simon M.; Doube, Michael; Wicklein, Martina; Müller, Tonya; Stampanoni, Marco; Taylor, Graham K.; Krapp, Holger G.
2015-03-01
Visualizing fast micrometer scale internal movements of small animals is a key challenge for functional anatomy, physiology and biomechanics. We combine phase contrast tomographic microscopy (down to 3.3 μm voxel size) with retrospective, projection-based gating (in the order of hundreds of microseconds) to improve the spatiotemporal resolution by an order of magnitude over previous studies. We demonstrate our method by visualizing 20 three-dimensional snapshots through the 150 Hz oscillations of the blowfly flight motor.