Science.gov

Sample records for four-fermion interaction models

  1. Conformal window of gauge theories with four-fermion interactions and ideal walking technicolor

    NASA Astrophysics Data System (ADS)

    Fukano, Hidenori S.; Sannino, Francesco

    2010-08-01

    We investigate the effects of four-fermion interactions on the phase diagram of strongly interacting theories for any representation as function of the number of colors and flavors. We show that the conformal window, for any representation, shrinks with respect to the case in which the four-fermion interactions are neglected. The anomalous dimension of the mass increases beyond the unity value at the lower boundary of the new conformal window. We plot the new phase diagram which can be used, together with the information about the anomalous dimension, to propose ideal models of walking technicolor. We discover that when the extended technicolor sector, responsible for giving masses to the standard model fermions, is sufficiently strongly coupled the technicolor theory, in isolation, must have an infrared fixed point for the full model to be phenomenologically viable. Using the new phase diagram we show that the simplest one family and minimal walking technicolor models are the archetypes of models of dynamical electroweak symmetry breaking. Our predictions can be verified via first principle lattice simulations.

  2. Dynamical mass generation in pseudoquantum electrodynamics with four-fermion interactions

    NASA Astrophysics Data System (ADS)

    Alves, Van Sérgio; Junior, Reginaldo O. C.; Marino, E. C.; Nascimento, Leandro O.

    2017-08-01

    We describe dynamical symmetry breaking in a system of massless Dirac fermions with both electromagnetic and four-fermion interactions in (2 +1 ) dimensions. The former is described by the pseudo quantum electrodynamics, and the latter is given by the so-called Gross-Neveu action. We apply the Hubbard-Stratonovich transformation and the large-Nf expansion in our model to obtain a Yukawa action. Thereafter, the presence of a symmetry broken phase is inferred from the nonperturbative Schwinger-Dyson equation for the electron propagator. This is the physical solution whenever the fine-structure constant is larger than a critical value αc(D Nf). In particular, we obtain the critical coupling constant αc≈0.36 for D Nf=8 ., where D =2 , 4 corresponds to the SU(2) and SU(4) cases, respectively, and Nf is the flavor number. Our results show a decreasing of the critical coupling constant in comparison with the case of pure electromagnetic interaction, thus yielding a more favorable scenario for the occurrence of dynamical symmetry breaking. Nevertheless, the number of renormalized masses is not changed by the four-fermion interaction within our approximation. For two-dimensional materials, in application in condensed matter systems, it implies an energy gap at the Dirac points or valleys of the honeycomb lattice.

  3. Gravity-Induced Four-Fermion Contact Interaction Implies Gravitational Intermediate W and Z Type Gauge Bosons

    NASA Astrophysics Data System (ADS)

    Boos, Jens; Hehl, Friedrich W.

    2017-03-01

    Coupling fermions to gravity necessarily leads to a non-renormalizable, gravitational four-fermion contact interaction. In this essay, we argue that augmenting the Einstein-Cartan Lagrangian with suitable kinetic terms quadratic in the gravitational gauge field strengths (torsion and curvature) gives rise to new, massive propagating gravitational degrees of freedom. This is to be seen in close analogy to Fermi's effective four-fermion interaction and its emergent W and Z bosons.

  4. Anomalous dimensions and the renormalizability of the four-fermion interaction

    NASA Astrophysics Data System (ADS)

    Mannheim, Philip D.

    2017-10-01

    We show that when the dynamical dimension of the ψ bar ψ operator is reduced from three to two in a fermion electrodynamics with scaling, a g(ψ bar ψ) 2 + g(ψ bar iγ5 ψ) 2 four-fermion interaction which is dressed by this electrodynamics becomes renormalizable. In the fermion-antifermion scattering amplitude every term in an expansion to arbitrary order in g is found to diverge as just a single ultraviolet logarithm (i.e. no log squared or higher), and is thus made finite by a single subtraction. While not necessary for renormalizability per se, the reduction in the dimension of ψ bar ψ to two leads to dynamical chiral symmetry breaking in the infrared, with the needed subtraction then automatically being provided by the theory itself through the symmetry breaking mechanism, with there then being no need to introduce the subtraction by hand. Since the vector and axial vector currents are conserved, they do not acquire any anomalous dimension, with the four-fermion (ψ bar γμ ψ) 2 and (ψ bar γμγ5 ψ) 2 interactions instead having to be controlled by the standard Higgs mechanism.

  5. Fermion masses through four-fermion condensates

    SciTech Connect

    Ayyar, Venkitesh; Chandrasekharan, Shailesh

    2016-10-12

    Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the two phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.

  6. Fermion masses through four-fermion condensates

    DOE PAGES

    Ayyar, Venkitesh; Chandrasekharan, Shailesh

    2016-10-12

    Fermion masses can be generated through four-fermion condensates when symmetries prevent fermion bilinear condensates from forming. This less explored mechanism of fermion mass generation is responsible for making four reduced staggered lattice fermions massive at strong couplings in a lattice model with a local four-fermion coupling. The model has a massless fermion phase at weak couplings and a massive fermion phase at strong couplings. In particular there is no spontaneous symmetry breaking of any lattice symmetries in both these phases. Recently it was discovered that in three space-time dimensions there is a direct second order phase transition between the twomore » phases. Here we study the same model in four space-time dimensions and find results consistent with the existence of a narrow intermediate phase with fermion bilinear condensates, that separates the two asymptotic phases by continuous phase transitions.« less

  7. Novel phases in strongly coupled four-fermion theories

    NASA Astrophysics Data System (ADS)

    Catterall, Simon; Schaich, David

    2017-08-01

    We study a lattice model comprising four massless reduced staggered fermions in four dimensions coupled through an S U (4 )-invariant four-fermion interaction. We present both theoretical arguments and numerical evidence that no bilinear fermion condensates are present for any value of the four-fermi coupling, in contrast to earlier studies of Higgs-Yukawa models with different exact lattice symmetries. At strong coupling we observe the formation of a four-fermion condensate and a mass gap in spite of the absence of bilinear condensates. Unlike those previously studied systems we do not find a ferromagnetic phase separating this strong-coupling phase from the massless weak-coupling phase. Instead we observe long-range correlations in a narrow region of the coupling, still with vanishing bilinear condensates. While our numerical results come from relatively small lattice volumes that call for caution in drawing conclusions, if this novel phase structure is verified by future investigations employing larger volumes it may offer the possibility for new continuum limits for strongly interacting fermions in four dimensions.

  8. Effective four-fermion operators in top physics: A roadmap

    NASA Astrophysics Data System (ADS)

    Aguilar-Saavedra, J. A.

    2011-02-01

    We write down a minimal basis for dimension-six gauge-invariant four-fermion operators, with some operator replacements with respect to previous ones which make it simpler for calculations. Using this basis we classify all four-fermion operator contributions involving one or two top quarks. Taking into account the different fermion chiralities, possible colour contractions and independent flavour combinations, a total number of 572 gauge-invariant operators are involved. We apply this to calculate all three-body top decay widths t→dud, t→dei+ν, t→uuu, t→uej+ei-, t→uνν (with i,j,k generation indices) mediated by dimension-six four-fermion operators, including the interference with the Standard Model amplitudes when present. All single top production cross sections in pp, pp¯ and ee collisions are calculated as well, namely ud→dt, dd→ut, ud→dt, uu→ut, uu→ut, ee→ut and the charge conjugate processes. We also compute all top pair production cross sections, uu→tt¯, dd→tt¯, uu→tt and ee→tt¯. Our results are completely general, without assuming any particular relation among effective operator coefficients.

  9. Non-perturbative scale evolution of four-fermion operators in two-flavour QCD

    NASA Astrophysics Data System (ADS)

    Herdoiza, Gregorio

    2006-12-01

    We apply finite-size recursion techniques based on the Schrödinger functional formalism to de- termine the renormalization group running of four-fermion operators which appear in the S = 2 effective weak Hamiltonian of the Standard Model. Our calculations are done using O(a) im- proved Wilson fermions with Nf = 2 dynamical flavours. Preliminary results are presented for the four-fermion operator which determines the BK -parameter in tmQCD.

  10. One-loop corrections to h → boverline{b} and h → τ overline{τ} decays in the Standard Model dimension-6 EFT: four-fermion operators and the large- m t limit

    NASA Astrophysics Data System (ADS)

    Gauld, Rhorry; Pecjak, Benjamin D.; Scott, Darren J.

    2016-05-01

    We calculate a set of one-loop corrections to h → boverline{b} and h → τ overline{τ} decays in the dimension-6 Standard Model effective field theory (SMEFT). In particular, working in the limit of vanishing gauge couplings, we calculate directly in the broken phase of the theory all large logarithmic corrections and in addition the finite corrections in the large- m t limit. Moreover, we give exact results for one-loop contributions from four-fermion operators. We obtain these corrections within an extension of the widely used on-shell renormalisation scheme appropriate for SMEFT calculations, and show explicitly how UV divergent bare amplitudes from a total of 21 different SMEFT operators are rendered finite within this scheme. As a by-product of the calculation, we also compute to one-loop order the logarithmically enhanced and finite large- m t corrections to muon decay in the limit of vanishing gauge couplings, which is necessary to implement the G F input parameter scheme within the SMEFT.

  11. Impact of a Higgs boson at a mass of 126 GeV on the standard model with three and four fermion generations.

    PubMed

    Eberhardt, Otto; Herbert, Geoffrey; Lacker, Heiko; Lenz, Alexander; Menzel, Andreas; Nierste, Ulrich; Wiebusch, Martin

    2012-12-14

    We perform a comprehensive statistical analysis of the standard model (SM) with three and four generations using the latest Higgs search results from LHC and Tevatron, the electroweak precision observables measured at LEP and SLD, and the latest determinations of M(W), m(t), and α(s). For the three-generation case we analyze the tensions in the electroweak fit by removing individual observables from the fit and comparing their predicted values with the measured ones. In particular, we discuss the impact of the Higgs search results on the deviations of the electroweak precision observables from their best-fit values. Our indirect prediction of the top mass is m(t) =175.7(-2.2)(+3.0) GeV at 68.3% C.L., which is in good agreement with the direct measurement. We also plot the preferred area in the M(W)-m(t) plane. The best-fit Higgs boson mass is 126.0 GeV. For the case of the SM with a perturbative sequential fourth fermion generation (SM4) we discuss the deviations of the Higgs signal strengths from their best-fit values. The H → γγ signal strength now disagrees with its best-fit SM4 value at more than 4σ. We perform a likelihood-ratio test to compare the SM and SM4 and show that the SM4 is excluded at 5.3σ. Without the Tevatron data on H → bb the significance drops to 4.8σ.

  12. Covariant nonlocal chiral quark models with separable interactions

    SciTech Connect

    Dumm, D. Gomez; Grunfeld, A. G.; Scoccola, N. N.

    2006-09-01

    We present a comparative analysis of chiral quark models which include nonlocal covariant four-fermion couplings. We consider two alternative ways of introducing the nonlocality, as well as various shapes for the momentum-dependent form factors governing the effective interactions. In all cases we study the behavior of model parameters and analyze numerical results for constituent quark masses and quark propagator poles. Advantages of these covariant nonlocal schemes over instantaneous nonlocal schemes and the standard NJL model are pointed out.

  13. Perturbative matching of the staggered four-fermion operators for {epsilon}'/{epsilon}

    SciTech Connect

    Lee, Weonjong

    2001-09-01

    Using staggered fermions, we calculate the perturbative corrections to the bilinear and four-fermion operators that are used in the numerical study of weak matrix elements for {epsilon}'/{epsilon}. We present results for one-loop matching coefficients between continuum operators, calculated in the naive dimensional regularization (NDR) scheme, and gauge invariant staggered fermion operators. In particular, we concentrate on Feynman diagrams of the current-current insertion type. We also present results for the tadpole improved operators. These results, combined with existing results for penguin diagrams, provide a complete one-loop renormalization of the staggered four-fermion operators. Therefore, using our results, it is possible to match a lattice calculation of K{sup 0}-{bar K}{sup 0} mixing and K{yields}{pi}{pi} decays to the continuum NDR results with all corrections of O(g{sup 2}) included.

  14. Four-fermion production at γ γ colliders: 1. Lowest-order predictions and anomalous couplings

    NASA Astrophysics Data System (ADS)

    Bredenstein, A.; Dittmaier, S.; Roth, M.

    2004-08-01

    We have constructed a Monte Carlo generator (the corresponding FORTRAN code can be obtained from the authors upon request) for lowest-order predictions for the processes γγto 4f and γγto 4fγ in the standard model and extensions thereof by an effective γγ H coupling as well as anomalous triple and quartic gauge-boson couplings. Polarization is fully supported, and a realistic photon beam spectrum can be taken into account. For the processes γγto 4f all helicity amplitudes are explicitly given in a compact form. The presented numerical results contain, in particular, a survey of cross sections for representative final states and their comparison to results obtained with the program package Whizard/Madgraph. The impact of a realistic beam spectrum on cross sections and distributions is illustrated. Moreover, the size of various contributions to cross sections, such as from weak charged- or neutral-current, or from strong interactions, is analyzed. Particular attention is paid to W-pair production channels γγto W Wto 4f(γ) where we investigate the impact of background diagrams, possible definitions of the W-pair signal, and the issue of gauge-invariance violation caused by finite gauge-boson widths. Finally, the effects of triple and quartic anomalous gauge-boson couplings on cross sections as well as the possibility to constrain these anomalous couplings at future γγ colliders are discussed.

  15. Four fermions in a one-dimensional harmonic trap: Accuracy of a variational-ansatz approach

    NASA Astrophysics Data System (ADS)

    Pecak, D.; Dehkharghani, A. S.; Zinner, N. T.; Sowiński, T.

    2017-05-01

    A detailed analysis of a system of four interacting ultracold fermions confined in a one-dimensional harmonic trap is performed. The analysis is done in the framework of a simple variational ansatz for the many-body ground state, and its predictions are compared with the results of numerically exact diagonalization of the many-body Hamiltonian. A short discussion of the role of the quantum statistics, i.e., Bose-Bose and Bose-Fermi mixtures, is also presented. It is concluded that the variational ansatz, although appearing to be oversimplified, gives surprisingly good predictions of many different quantities for mixtures of equal as well as different mass systems. The result may have some experimental importance since it gives a quite simple and validated method for describing experimental outputs.

  16. Perturbative renormalization factors and O(a2) corrections for lattice four-fermion operators with improved fermion/gluon actions

    NASA Astrophysics Data System (ADS)

    Constantinou, Martha; Dimopoulos, Petros; Frezzotti, Roberto; Lubicz, Vittorio; Panagopoulos, Haralambos; Skouroupathis, Apostolos; Fotos Stylianou

    2011-04-01

    In this work we calculate the corrections to the amputated Green’s functions of four-fermion operators, in 1-loop lattice perturbation theory. One of the novel aspects of our calculations is that they are carried out to second order in the lattice spacing, O(a2). We employ the Wilson/clover action for massless fermions (also applicable for the twisted mass action in the chiral limit) and a family of Symanzik improved actions for gluons. Our calculations have been carried out in a general covariant gauge. Results have been obtained for several popular choices of values for the Symanzik coefficients (Plaquette, Tree-level Symanzik, Iwasaki, TILW and DBW2 action). While our Green’s function calculations regard any pointlike four-fermion operators which do not mix with lower dimension ones, we pay particular attention to ΔF=2 operators, both parity conserving and parity violating (F stands for flavor: S, C, B). By appropriately projecting those bare Green’s functions we compute the perturbative renormalization constants for a complete basis of four-fermion operators and we study their mixing pattern. For some of the actions considered here, even O(a0) results did not exist in the literature to date. The correction terms which we calculate (along with our previous O(a2) calculation of ZΨ [M. Constantinou, V. Lubicz, H. Panagopoulos, and F. Stylianou, J. High Energy Phys.JHEPFG1029-8479 10 (2009) 064.10.1088/1126-6708/2009/10/064][M. Constantinou, P. Dimopoulos, R. Frezzotti, G. Herdoiza, K. Jansen, V. Lubicz, H. Panagopoulos, G. C. Rossi, S. Simula, F. Stylianou, and A. Vladikas, J. High Energy Phys.JHEPFG1029-8479 08 (2010) 068.10.1007/JHEP08(2010)068][C. Alexandrou, M. Constantinou, T. Korzec, H. Panagopoulos, and F. Stylianou (unpublished).]) are essential ingredients for minimizing the lattice artifacts which are present in nonperturbative evaluations of renormalization constants with the RI'-MOM method. Our perturbative results, for the matrix elements of

  17. Perturbative renormalization factors and O(a{sup 2}) corrections for lattice four-fermion operators with improved fermion/gluon actions

    SciTech Connect

    Constantinou, Martha; Panagopoulos, Haralambos; Skouroupathis, Apostolos; Stylianou, Fotos; Dimopoulos, Petros; Frezzotti, Roberto

    2011-04-01

    In this work we calculate the corrections to the amputated Green's functions of four-fermion operators, in 1-loop lattice perturbation theory. One of the novel aspects of our calculations is that they are carried out to second order in the lattice spacing, O(a{sup 2}). We employ the Wilson/clover action for massless fermions (also applicable for the twisted mass action in the chiral limit) and a family of Symanzik improved actions for gluons. Our calculations have been carried out in a general covariant gauge. Results have been obtained for several popular choices of values for the Symanzik coefficients (Plaquette, Tree-level Symanzik, Iwasaki, TILW and DBW2 action). While our Green's function calculations regard any pointlike four-fermion operators which do not mix with lower dimension ones, we pay particular attention to {Delta}F=2 operators, both parity conserving and parity violating (F stands for flavor: S, C, B). By appropriately projecting those bare Green's functions we compute the perturbative renormalization constants for a complete basis of four-fermion operators and we study their mixing pattern. For some of the actions considered here, even O(a{sup 0}) results did not exist in the literature to date. The correction terms which we calculate (along with our previous O(a{sup 2}) calculation of Z{sub {Psi}}[M. Constantinou, V. Lubicz, H. Panagopoulos, and F. Stylianou, J. High Energy Phys. 10 (2009) 064.][M. Constantinou, P. Dimopoulos, R. Frezzotti, G. Herdoiza, K. Jansen, V. Lubicz, H. Panagopoulos, G. C. Rossi, S. Simula, F. Stylianou, and A. Vladikas, J. High Energy Phys. 08 (2010) 068.][C. Alexandrou, M. Constantinou, T. Korzec, H. Panagopoulos, and F. Stylianou (unpublished).]) are essential ingredients for minimizing the lattice artifacts which are present in nonperturbative evaluations of renormalization constants with the RI{sup '}-MOM method. Our perturbative results, for the matrix elements of {Delta}F=2 operators and for the corresponding

  18. JSPAM: Interacting galaxies modeller

    NASA Astrophysics Data System (ADS)

    Wallin, John F.; Holincheck, Anthony; Harvey, Allen

    2015-11-01

    JSPAM models galaxy collisions using a restricted n-body approach to speed up computation. Instead of using a softened point-mass potential, the software supports a modified version of the three component potential created by Hernquist (1994, ApJS 86, 389). Although spherically symmetric gravitationally potentials and a Gaussian model for the bulge are used to increase computational efficiency, the potential mimics that of a fully consistent n-body model of a galaxy. Dynamical friction has been implemented in the code to improve the accuracy of close approaches between galaxies. Simulations using this code using thousands of particles over the typical interaction times of a galaxy interaction take a few seconds on modern desktop workstations, making it ideal for rapidly prototyping the dynamics of colliding galaxies. Extensive testing of the code has shown that it produces nearly identical tidal features to those from hierarchical tree codes such as Gadget but using a fraction of the computational resources. This code was used in the Galaxy Zoo: Mergers project and is very well suited for automated fitting of galaxy mergers with automated pattern fitting approaches such as genetic algorithms. Java and Fortran versions of the code are available.

  19. Ridge Regression for Interactive Models.

    ERIC Educational Resources Information Center

    Tate, Richard L.

    1988-01-01

    An exploratory study of the value of ridge regression for interactive models is reported. Assuming that the linear terms in a simple interactive model are centered to eliminate non-essential multicollinearity, a variety of common models, representing both ordinal and disordinal interactions, are shown to have "orientations" that are…

  20. Digital quantum simulation of fermionic models with a superconducting circuit

    PubMed Central

    Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A. G.; Megrant, A; Jeffrey, E; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Solano, E.; Martinis, John M.

    2015-01-01

    One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions. PMID:26153660

  1. Digital quantum simulation of fermionic models with a superconducting circuit

    NASA Astrophysics Data System (ADS)

    Barends, R.; Lamata, L.; Kelly, J.; García-Álvarez, L.; Fowler, A. G.; Megrant, A.; Jeffrey, E.; White, T. C.; Sank, D.; Mutus, J. Y.; Campbell, B.; Chen, Yu; Chen, Z.; Chiaro, B.; Dunsworth, A.; Hoi, I.-C.; Neill, C.; O'Malley, P. J. J.; Quintana, C.; Roushan, P.; Vainsencher, A.; Wenner, J.; Solano, E.; Martinis, John M.

    2015-07-01

    One of the key applications of quantum information is simulating nature. Fermions are ubiquitous in nature, appearing in condensed matter systems, chemistry and high energy physics. However, universally simulating their interactions is arguably one of the largest challenges, because of the difficulties arising from anticommutativity. Here we use digital methods to construct the required arbitrary interactions, and perform quantum simulation of up to four fermionic modes with a superconducting quantum circuit. We employ in excess of 300 quantum logic gates, and reach fidelities that are consistent with a simple model of uncorrelated errors. The presented approach is in principle scalable to a larger number of modes, and arbitrary spatial dimensions.

  2. Mental Models in Social Interaction

    ERIC Educational Resources Information Center

    Fernandez-Berrocal, Pablo; Santamaria, Carlos

    2006-01-01

    In this study, the authors introduce a new way to analyze cognitive change during social interactions, based on the mental model theory of reasoning. From this approach, cognitive performance can be improved for solving problems that require multiple models when participants in a social interaction group maintain qualitatively different models of…

  3. Interaction Models for Functional Regression

    PubMed Central

    USSET, JOSEPH; STAICU, ANA-MARIA; MAITY, ARNAB

    2015-01-01

    A functional regression model with a scalar response and multiple functional predictors is proposed that accommodates two-way interactions in addition to their main effects. The proposed estimation procedure models the main effects using penalized regression splines, and the interaction effect by a tensor product basis. Extensions to generalized linear models and data observed on sparse grids or with measurement error are presented. A hypothesis testing procedure for the functional interaction effect is described. The proposed method can be easily implemented through existing software. Numerical studies show that fitting an additive model in the presence of interaction leads to both poor estimation performance and lost prediction power, while fitting an interaction model where there is in fact no interaction leads to negligible losses. The methodology is illustrated on the AneuRisk65 study data. PMID:26744549

  4. Measurement error models with interactions.

    PubMed

    Midthune, Douglas; Carroll, Raymond J; Freedman, Laurence S; Kipnis, Victor

    2016-04-01

    An important use of measurement error models is to correct regression models for bias due to covariate measurement error. Most measurement error models assume that the observed error-prone covariate (WW ) is a linear function of the unobserved true covariate (X) plus other covariates (Z) in the regression model. In this paper, we consider models for W that include interactions between X and Z. We derive the conditional distribution of X given W and Z and use it to extend the method of regression calibration to this class of measurement error models. We apply the model to dietary data and test whether self-reported dietary intake includes an interaction between true intake and body mass index. We also perform simulations to compare the model to simpler approximate calibration models. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Modeling Interactive Intelligences

    DTIC Science & Technology

    2002-08-01

    New York: Basic Books, 1999. P. 207-10. [5] Piaget , Jean . Play, Dreams, and Imitation in Childhood. New York: Norton, 1962. [6] Dillard, Annie. Living...concepts of reentry and binding. Next, I rely on Jean Piaget’s model of adaptation in order to examine the function of imitation and play in an...rather than metrics should be used. 2. ADAPTATION, SELECTION, IMITATION, AND PLAY Piaget presented adaptive behavior as a combination of accommodation and

  6. The joy of interactive modeling

    NASA Astrophysics Data System (ADS)

    Donchyts, Gennadii; Baart, Fedor; van Dam, Arthur; Jagers, Bert

    2013-04-01

    The conventional way of working with hydrodynamical models usually consists of the following steps: 1) define a schematization (e.g., in a graphical user interface, or by editing input files) 2) run model from start to end 3) visualize results 4) repeat any of the previous steps. This cycle commonly takes up from hours to several days. What if we can make this happen instantly? As most of the research done using numerical models is in fact qualitative and exploratory (Oreskes et al., 1994), why not use these models as such? How can we adapt models so that we can edit model input, run and visualize results at the same time? More and more, interactive models become available as online apps, mainly for demonstration and educational purposes. These models often simplify the physics behind flows and run on simplified model geometries, particularly when compared with state-of-the-art scientific simulation packages. Here we show how the aforementioned conventional standalone models ("static, run once") can be transformed into interactive models. The basic concepts behind turning existing (conventional) model engines into interactive engines are the following. The engine does not run the model from start to end, but is always available in memory, and can be fed by new boundary conditions, or state changes at any time. The model can be run continuously, per step, or up to a specified time. The Hollywood principle dictates how the model engine is instructed from 'outside', instead of the model engine taking all necessary actions on its own initiative. The underlying techniques that facilitate these concepts are introspection of the computation engine, which exposes its state variables, and control functions, e.g. for time stepping, via a standardized interface, such as BMI (Peckam et. al., 2012). In this work we have used a shallow water flow model engine D-Flow Flexible Mesh. The model was converted from executable to a library, and coupled to the graphical modelling

  7. Interactive modeling of storm impact

    NASA Astrophysics Data System (ADS)

    van Rooijen, A.; Baart, F.; Roelvink, J. A.; Donchyts, G.; Scheel, F.; de Boer, W.

    2014-12-01

    In the past decades the impact of storms on the coastal zone has increasingly drawn the attention of policy makers and coastal planners, engineers and researchers. The mean reason for this interest is the high density of the world's population living near the ocean, in combination with climate change. Due to sea level rise and extremer weather conditions, many of the world's coastlines are becoming more vulnerable to the potential of flooding. Currently it is common practice to predict storm impact using physics-based numerical models. The numerical model utilizes several inputs (e.g. bathymetry, waves, surge) to calculate the impact on the coastline. Traditionally, the numerical modeller takes the following three steps: schematization/model setup, running and post-processing. This process generally has a total feedback time in the order of hours to days, and is suitable for so-called confirmatory modelling.However, often models are applied as an exploratory tool, in which the effect of e.g. different hydraulic conditions, or measures is investigated. The above described traditional work flow is not the most efficient method for exploratory modelling. Interactive modelling lets users adjust a simulation while running. For models typically used for storm impact studies (e.g. XBeach, Delft3D, D-Flow FM), the user can for instance change the storm surge level, wave conditions, or add a measure such as a nourishment or a seawall. The model will take the adjustments into account immediately, and will directly compute the effect. Using this method, tools can be developed in which stakeholders (e.g. coastal planners, policy makers) are in control and together evaluate ideas by interacting with the model. Here we will show initial results for interactive modelling with a storm impact model.

  8. Modeling Interactions in Small Groups

    ERIC Educational Resources Information Center

    Heise, David R.

    2013-01-01

    A new theory of interaction within small groups posits that group members initiate actions when tension mounts between the affective meanings of their situational identities and impressions produced by recent events. Actors choose partners and behaviors so as to reduce the tensions. A computer model based on this theory, incorporating reciprocal…

  9. Modeling Interactions in Small Groups

    ERIC Educational Resources Information Center

    Heise, David R.

    2013-01-01

    A new theory of interaction within small groups posits that group members initiate actions when tension mounts between the affective meanings of their situational identities and impressions produced by recent events. Actors choose partners and behaviors so as to reduce the tensions. A computer model based on this theory, incorporating reciprocal…

  10. Models of dyadic social interaction.

    PubMed Central

    Griffin, Dale; Gonzalez, Richard

    2003-01-01

    We discuss the logic of research designs for dyadic interaction and present statistical models with parameters that are tied to psychologically relevant constructs. Building on Karl Pearson's classic nineteenth-century statistical analysis of within-organism similarity, we describe several approaches to indexing dyadic interdependence and provide graphical methods for visualizing dyadic data. We also describe several statistical and conceptual solutions to the 'levels of analytic' problem in analysing dyadic data. These analytic strategies allow the researcher to examine and measure psychological questions of interdependence and social influence. We provide illustrative data from casually interacting and romantic dyads. PMID:12689382

  11. Fermion pair production in e+e- collisions at 189 209 GeV and constraints on physics beyond the standard model

    NASA Astrophysics Data System (ADS)

    Schael, S.; Barate, R.; Brunelière, R.; de Bonis, I.; Decamp, D.; Goy, C.; Jézéquel, S.; Lees, J.-P.; Martin, F.; Merle, E.; Minard, M.-N.; Pietrzyk, B.; Trocmé, B.; Bravo, S.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, L.; Martinez, M.; Pacheco, A.; Ruiz, H.; Colaleo, A.; Creanza, D.; de Filippis, N.; de Palma, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Abbaneo, D.; Barklow, T.; Buchmüller, O.; Cattaneo, M.; Clerbaux, B.; Drevermann, H.; Forty, R. W.; Frank, M.; Gianotti, F.; Hansen, J. B.; Harvey, J.; Hutchcroft, D. E.; Janot, P.; Jost, B.; Kado, M.; Mato, P.; Moutoussi, A.; Ranjard, F.; Rolandi, L.; Schlatter, D.; Teubert, F.; Valassi, A.; Videau, I.; Badaud, F.; Dessagne, S.; Falvard, A.; Fayolle, D.; Gay, P.; Jousset, J.; Michel, B.; Monteil, S.; Pallin, D.; Pascolo, J. M.; Perret, P.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Kraan, A. C.; Nilsson, B. S.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Brient, J.-C.; Machefert, F.; Rougé, A.; Videau, H.; Ciulli, V.; Focardi, E.; Parrini, G.; Antonelli, A.; Antonelli, M.; Bencivenni, G.; Bossi, F.; Capon, G.; Cerutti, F.; Chiarella, V.; Laurelli, P.; Mannocchi, G.; Murtas, G. P.; Passalacqua, L.; Kennedy, J.; Lynch, J. G.; Negus, P.; O'Shea, V.; Thompson, A. S.; Wasserbaech, S.; Cavanaugh, R.; Dhamotharan, S.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Putzer, A.; Stenzel, H.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Cameron, W.; Davies, G.; Dornan, P. J.; Girone, M.; Hill, R. D.; Marinelli, N.; Nowell, J.; Rutherford, S. A.; Sedgbeer, J. K.; Thompson, J. C.; White, R.; Ghete, V. M.; Girtler, P.; Kneringer, E.; Kuhn, D.; Rudolph, G.; Bouhova-Thacker, E.; Bowdery, C. K.; Clarke, D. P.; Ellis, G.; Finch, A. J.; Foster, F.; Hughes, G.; Jones, R. W. L.; Pearson, M. R.; Robertson, N. A.; Smizanska, M.; van der Aa, O.; Delaere, C.; Leibenguth, G.; Lemaitre, V.; Blumenschein, U.; Hölldorfer, F.; Jakobs, K.; Kayser, F.; Müller, A.-S.; Quast, G.; Renk, B.; Sander, H.-G.; Schmeling, S.; Wachsmuth, H.; Zeitnitz, C.; Ziegler, T.; Bonissent, A.; Coyle, P.; Curtil, C.; Ealet, A.; Fouchez, D.; Payre, P.; Tilquin, A.; Ragusa, F.; David, A.; Dietl, H.; Ganis, G.; Hüttmann, K.; Lütjens, G.; Männer, W.; Moser, H.-G.; Settles, R.; Villegas, M.; Wolf, G.; Boucrot, J.; Callot, O.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, P.; Jacholkowska, A.; Serin, L.; Veillet, J.-J.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Foà, L.; Giammanco, A.; Giassi, A.; Ligabue, F.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Sguazzoni, G.; Spagnolo, P.; Tenchini, R.; Venturi, A.; Verdini, P. G.; Awunor, O.; Blair, G. A.; Cowan, G.; Garcia-Bellido, A.; Green, M. G.; Medcalf, T.; Misiejuk, A.; Strong, J. A.; Teixeira-Dias, P.; Clifft, R. W.; Edgecock, T. R.; Norton, P. R.; Tomalin, I. R.; Ward, J. J.; Bloch-Devaux, B.; Boumediene, D.; Colas, P.; Fabbro, B.; Lançon, E.; Lemaire, M.-C.; Locci, E.; Perez, P.; Rander, J.; Tuchming, B.; Vallage, B.; Litke, A. M.; Taylor, G.; Booth, C. N.; Cartwright, S.; Combley, F.; Hodgson, P. N.; Lehto, M.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Grupen, C.; Hess, J.; Ngac, A.; Prange, G.; Borean, C.; Giannini, G.; He, H.; Putz, J.; Rothberg, J.; Armstrong, S. R.; Berkelman, K.; Cranmer, K.; Ferguson, D. P. S.; Gao, Y.; González, S.; Hayes, O. J.; Hu, H.; Jin, S.; Kile, J.; McNamara, P. A., III; Nielsen, J.; Pan, Y. B.; von Wimmersperg-Toeller, J. H.; Wiedenmann, W.; Wu, J.; Wu, Sau Lan; Wu, X.; Zobernig, G.; Dissertori, G.

    2007-01-01

    Cross sections, angular distributions and forward-backward asymmetries are presented, of two-fermion events produced in e+e- collisions at centre-of-mass energies from 189 to 209 GeV at LEP, measured with the ALEPH detector. Results for e+e-, μ+μ-, τ+τ-, qq¯, bb¯ and cc¯ production are in agreement with the standard model predictions. Constraints are set on scenarios of new physics such as four-fermion contact interactions, leptoquarks, Z‧ bosons, TeV-scale quantum gravity and R-parity violating squarks and sneutrinos.

  12. Anisotropic exchange-interaction model: From the Potts model to the exchange-interaction model

    NASA Astrophysics Data System (ADS)

    King, T. C.; Chen, H. H.

    1995-04-01

    A spin model called the anisotropic exchange-interaction model is proposed. The Potts model, the exchange-interaction model, and the spin-1/2 anisotropic Heisenberg model are special cases of the proposed model. Thermodynamic properties of the model on the bcc and the fcc lattices are determined by the constant-coupling approximation.

  13. Stochastic hyperfine interactions modeling library

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2011-04-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized; however, there was a need to develop supplementary code to find an orthonormal set of (left and right) eigenvectors of complex, non-Hermitian matrices. In addition, example code is provided to illustrate the use of SHIML to generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A can be neglected. Program summaryProgram title: SHIML Catalogue identifier: AEIF_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEIF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GNU GPL 3 No. of lines in distributed program, including test data, etc.: 8224 No. of bytes in distributed program, including test data, etc.: 312 348 Distribution format: tar.gz Programming language: C Computer: Any Operating system: LINUX, OS X RAM: Varies Classification: 7.4 External routines: TAPP [1], BLAS [2], a C-interface to BLAS [3], and LAPACK [4] Nature of problem: In condensed matter systems, hyperfine methods such as nuclear magnetic resonance (NMR), Mössbauer effect (ME), muon spin rotation (μSR), and perturbed angular correlation spectroscopy (PAC) measure electronic and magnetic structure within Angstroms of nuclear probes through the hyperfine interaction. When

  14. Interacting Boson Model and nucleons

    NASA Astrophysics Data System (ADS)

    Otsuka, Takaharu

    2012-10-01

    An overview on the recent development of the microscopic derivation of the Interacting Boson Model is presented with some remarks not found elsewhere. The OAI mapping is reviewed very briefly, including the basic correspondence from nucleon-pair to boson. The new fermionboson mapping method is introduced, where intrinsic states of nucleons and bosons for a wide variation of shapes play an important role. Nucleon intrinsic states are obtained from mean field models, which is Skyrme model in examples to be shown. This method generates IBM-2 Hamiltonian which can describe and predict various situations of quadrupole collective states, including U(5), SU(3), O(6) and E(5) limits. The method is extended so that rotational response (cranking) can be handled, which enables us to describe rotational bands of strongly deformed nuclei. Thus, we have obtained a unified framework for the microscopic derivation of the IBM covering all known situations of quadrupole collectivity at low energy.

  15. Modelling Positron Interactions with Matter

    NASA Astrophysics Data System (ADS)

    Garcia, G.; Petrovic, Z.; White, R.; Buckman, S.

    2011-05-01

    In this work we link fundamental measurements of positron interactions with biomolecules, with the development of computer codes for positron transport and track structure calculations. We model positron transport in a medium from a knowledge of the fundamental scattering cross section for the atoms and molecules comprising the medium, combined with a transport analysis based on statistical mechanics and Monte-Carlo techniques. The accurate knowledge of the scattering is most important at low energies, a few tens of electron volts or less. The ultimate goal of this work is to do this in soft condensed matter, with a view to ultimately developing a dosimetry model for Positron Emission Tomography (PET). The high-energy positrons first emitted by a radionuclide in PET may well be described by standard formulas for energy loss of charged particles in matter, but it is incorrect to extrapolate these formulas to low energies. Likewise, using electron cross-sections to model positron transport at these low energies has been shown to be in serious error due to the effects of positronium formation. Work was supported by the Australian Research Council, the Serbian Government, and the Ministerio de Ciencia e Innovación, Spain.

  16. Anselm's Discovery of the Gross-Neveu Model in 1958

    NASA Astrophysics Data System (ADS)

    Shifman, M.

    2013-06-01

    The Gross-Neveu model comprises quantum field theory of N Dirac fermions interacting via four-fermion interaction in one spatial and one time dimension. It was introduced in 1974 (shortly after quantum chromodynamics was discovered) by David Gross and André Neveu [1] as a toy model which mimics two crucial features of quantum chromodynamics: asymptotic freedom and spontaneous breaking of a chiral symmetry. The model is based on N Dirac (i.e. complex two-component) fermions, ψ1, ψ2, ..., ψN. The Lagrangian of the Gross-Neveau model is [ {L} = bar{psi}ipartial_{mu}gamma^{mu}psi + frac{g^{2}}{2}(sumlimits_{k = 1}^{N}bar{psi}_{k}psi^{k})^{2}.

  17. ISS Plasma Interaction: Measurements and Modeling

    NASA Technical Reports Server (NTRS)

    Barsamian, H.; Mikatarian, R.; Alred, J.; Minow, J.; Koontz, S.

    2004-01-01

    Ionospheric plasma interaction effects on the International Space Station are discussed in the following paper. The large structure and high voltage arrays of the ISS represent a complex system interacting with LEO plasma. Discharge current measurements made by the Plasma Contactor Units and potential measurements made by the Floating Potential Probe delineate charging and magnetic induction effects on the ISS. Based on theoretical and physical understanding of the interaction phenomena, a model of ISS plasma interaction has been developed. The model includes magnetic induction effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. Based on these phenomena, the Plasma Interaction Model has been developed. Limited verification of the model has been performed by comparison of Floating Potential Probe measurement data to simulations. The ISS plasma interaction model will be further tested and verified as measurements from the Floating Potential Measurement Unit become available, and construction of the ISS continues.

  18. Method and apparatus for modeling interactions

    DOEpatents

    Xavier, Patrick G.

    2002-01-01

    The present invention provides a method and apparatus for modeling interactions that overcomes drawbacks. The method of the present invention comprises representing two bodies undergoing translations by two swept volume representations. Interactions such as nearest approach and collision can be modeled based on the swept body representations. The present invention is more robust and allows faster modeling than previous methods.

  19. An Interaction-Centric Learning Model.

    ERIC Educational Resources Information Center

    Ohl, Todd Michael

    2001-01-01

    Considers whether current definitions of interactivity in educational software are optimal and suggests a new model of interaction based on how learners interact mentally with new schema and on educational psychology. Discusses knowledge acquisition; production, or the creation of new knowledge; collaboration; and applying the learning interaction…

  20. Interactive Water Resources Modeling and Model Use: An Overview

    NASA Astrophysics Data System (ADS)

    Loucks, Daniel P.; Kindler, Janusz; Fedra, Kurt

    1985-02-01

    This serves as an introduction for the following sequence of five papers on interactive water resources and environmental management, policy modeling, and model use. We review some important shortcomings of many management and policy models and argue for improved human-computer-model interaction and communication. This interaction can lead to more effective model use which in turn should facilitate the exploration, analysis, and synthesis of alternative designs, plans, and policies by those directly involved in the planning, management, or policy making process. Potential advantages of interactive modeling and model use, as well as some problems and research needs, are discussed.

  1. Child Characteristics by Model Interactions.

    ERIC Educational Resources Information Center

    Featherstone, Helen J.

    Data from the 1969-70 and 1970-71 Head Start Planned Variation (HSPV)Study were used to examine program-child interactions. An effort was made to determine whether different preschool programs have different cognitive effects on different types of children. Seven hypotheses for the analysis of the data were generated from the results of the HSPV…

  2. The Support Model for Interactive Assessment

    ERIC Educational Resources Information Center

    Ahmed, Ayesha; Pollitt, Alastair

    2010-01-01

    The two most common models for assessment involve measuring "how well" students perform on a task (the "quality model"), and "how difficult" a task students can succeed on (the "difficulty model"). By exploiting the interactive potential of computers we may be able to use a third model: measuring "how…

  3. The Monash University Interactive Simple Climate Model

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2013-12-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 2000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system and solve some puzzles. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  4. The Monash University Interactive Simple Climate Model

    NASA Astrophysics Data System (ADS)

    Dommenget, Dietmar

    2013-04-01

    The Monash university interactive simple climate model is a web-based interface that allows students and the general public to explore the physical simulation of the climate system with a real global climate model. It is based on the Globally Resolved Energy Balance (GREB) model, which is a climate model published by Dommenget and Floeter [2011] in the international peer review science journal Climate Dynamics. The model simulates most of the main physical processes in the climate system in a very simplistic way and therefore allows very fast and simple climate model simulations on a normal PC computer. Despite its simplicity the model simulates the climate response to external forcings, such as doubling of the CO2 concentrations very realistically (similar to state of the art climate models). The Monash simple climate model web-interface allows you to study the results of more than a 1000 different model experiments in an interactive way and it allows you to study a number of tutorials on the interactions of physical processes in the climate system. By switching OFF/ON physical processes you can deconstruct the climate and learn how all the different processes interact to generate the observed climate and how the processes interact to generate the IPCC predicted climate change for anthropogenic CO2 increase. The presentation will illustrate how this web-base tool works and what are the possibilities in teaching students with this tool are.

  5. SABRINA - an interactive geometry modeler for MCNP

    SciTech Connect

    West, J.T.; Murphy, J. )

    1988-01-01

    One of the most difficult tasks when analyzing a complex three-dimensional system with Monte Carlo is geometry model development. SABRINA attempts to make the modeling process more user-friendly and less of an obstacle. It accepts both combinatorial solid bodies and MCNP surfaces and produces MCNP cells. The model development process in SABRINA is highly interactive and gives the user immediate feedback on errors. Users can view their geometry from arbitrary perspectives while the model is under development and interactively find and correct modeling errors. An example of a SABRINA display is shown. It represents a complex three-dimensional shape.

  6. Modeling of laser interactions with composite materials

    SciTech Connect

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  7. Modeling of laser interactions with composite materials

    DOE PAGES

    Rubenchik, Alexander M.; Boley, Charles D.

    2013-05-07

    In this study, we develop models of laser interactions with composite materials consisting of fibers embedded within a matrix. A ray-trace model is shown to determine the absorptivity, absorption depth, and optical power enhancement within the material, as well as the angular distribution of the reflected light. We also develop a macroscopic model, which provides physical insight and overall results. We show that the parameters in this model can be determined from the ray trace model.

  8. Modeling interaction for image-guided procedures

    NASA Astrophysics Data System (ADS)

    Trevisan, Daniela G.; Vanderdonckt, Jean; Macq, Benoit M. M.; Raftopoulos, Christian

    2003-05-01

    Compared to conventional interfaces, image guided surgery (IGS) interfaces contain a richer variety and more complex objects and interaction types. The main interactive characteristics emering from systems like this is the interaction focus shared between physical space, where the surgeon interacts with the patient using surgical tools, and with the digital world, where the surgeon interacts with the system. This limitation results in two different interfaces likely inconsistent, thereby the interaction discontinuities do break the natuarl workflow forcing the user to switch between the operation modes. Our work addresses these features by focusing on the model, interaction and ergonomic integrity analysis considering the Augmented Reality paradigm applied to IGS procedures and more specifically applied to the Neurosurgery study case. We followed a methodology according to the model-based approach, including new extensions in order to support interaction technologies and to sensure continuity interaction according to the IGS system requirements. As a result, designers may as soon as possible discover errors in the development process and may perform an efficient interface design coherently integrating constraints favoring continuity instead of discrete interaction with possible inconsistencies.

  9. Key Results of Interaction Models with Centering

    ERIC Educational Resources Information Center

    Afshartous, David; Preston, Richard A.

    2011-01-01

    We consider the effect on estimation of simultaneous variable centering and interaction effects in linear regression. We technically define, review, and amplify many of the statistical issues for interaction models with centering in order to create a useful and compact reference for teachers, students, and applied researchers. In addition, we…

  10. Lattice gas models with long range interactions

    NASA Astrophysics Data System (ADS)

    Aristoff, David; Zhu, Lingjiong

    2017-02-01

    We study microcanonical lattice gas models with long range interactions, including power law interactions. We rigorously obtain a variational principle for the entropy. In a one dimensional example, we find a first order phase transition by proving the entropy is non-differentiable along a certain curve.

  11. Syndetic model of fundamental interactions

    DOE PAGES

    Ma, Ernest

    2015-02-01

    The standard model of quarks and leptons is extended to connect three outstanding issues in particle physics and astrophysics: (1) the absence of strong CP nonconservation, (2) the existence of dark matter, and (3) the mechanism of nonzero neutrino masses, and that of the first family of quarks and leptons, all in the context of having only one Higgs boson in a renormalizable theory. Some phenomenological implications are discussed.

  12. Mathematical models for plant-herbivore interactions

    USGS Publications Warehouse

    Feng, Zhilan; DeAngelis, Donald L.

    2017-01-01

    Mathematical Models of Plant-Herbivore Interactions addresses mathematical models in the study of practical questions in ecology, particularly factors that affect herbivory, including plant defense, herbivore natural enemies, and adaptive herbivory, as well as the effects of these on plant community dynamics. The result of extensive research on the use of mathematical modeling to investigate the effects of plant defenses on plant-herbivore dynamics, this book describes a toxin-determined functional response model (TDFRM) that helps explains field observations of these interactions. This book is intended for graduate students and researchers interested in mathematical biology and ecology.

  13. Modeling Interaction Effects in Latent Growth Curve Models.

    ERIC Educational Resources Information Center

    Li, Fuzhong; Duncan, Terry E.; Acock, Alan

    2000-01-01

    Presents an extension of the method of estimating interaction effects among latent variables to latent growth curve models developed by K. Joreskog and F. Yang (1996). Illustrates the procedure and discusses results in terms of practical and statistical problems associated with interaction analyses in latent curve models and structural equation…

  14. Modeling Interaction Effects in Latent Growth Curve Models.

    ERIC Educational Resources Information Center

    Li, Fuzhong; Duncan, Terry E.; Acock, Alan

    2000-01-01

    Presents an extension of the method of estimating interaction effects among latent variables to latent growth curve models developed by K. Joreskog and F. Yang (1996). Illustrates the procedure and discusses results in terms of practical and statistical problems associated with interaction analyses in latent curve models and structural equation…

  15. Evaluating Interactive Instructional Technologies: A Cognitive Model.

    ERIC Educational Resources Information Center

    Tucker, Susan A.

    Strengths and weaknesses of prevailing evaluation models are analyzed, with attention to the role of feedback in each paradigm. A framework is then presented for analyzing issues faced by evaluators of interactive instructional technologies. The current practice of evaluation relies heavily on 3 models developed over 20 years ago: (1) the…

  16. Method and apparatus for modeling interactions

    DOEpatents

    Xavier, Patrick G.

    2000-08-08

    A method and apparatus for modeling interactions between bodies. The method comprises representing two bodies undergoing translations and rotations by two hierarchical swept volume representations. Interactions such as nearest approach and collision can be modeled based on the swept body representations. The present invention can serve as a practical tool in motion planning, CAD systems, simulation systems, safety analysis, and applications that require modeling time-based interactions. A body can be represented in the present invention by a union of convex polygons and convex polyhedra. As used generally herein, polyhedron includes polygon, and polyhedra includes polygons. The body undergoing translation can be represented by a swept body representation, where the swept body representation comprises a hierarchical bounding volume representation whose leaves each contain a representation of the region swept by a section of the body during the translation, and where the union of the regions is a superset of the region swept by the surface of the body during translation. Interactions between two bodies thus represented can be modeled by modeling interactions between the convex hulls of the finite sets of discrete points in the swept body representations.

  17. Interactive simulation of needle insertion models.

    PubMed

    DiMaio, Simon P; Salcudean, Septimiu E

    2005-07-01

    A novel interactive virtual needle insertion simulation is presented. The simulation models are based on measured planar tissue deformations and needle insertion forces. Since the force-displacement relationship is only of interest along the needle shaft, a condensation technique is shown to reduce the computational complexity of linear simulation models significantly. As the needle penetrates or is withdrawn from the tissue model, the boundary conditions that determine the tissue and needle motion change. Boundary condition and local material coordinate changes are facilitated by fast low-rank matrix updates. A large-strain elastic needle model is coupled to the tissue models to account for needle deflection and bending during simulated insertion. A haptic environment, based on these novel interactive simulation techniques, allows users to manipulate a three-degree-of-freedom virtual needle as it penetrates virtual tissue models, while experiencing steering torques and lateral needle forces through a planar haptic interface.

  18. Multisite Interactions in Lattice-Gas Models

    NASA Astrophysics Data System (ADS)

    Einstein, T. L.; Sathiyanarayanan, R.

    For detailed applications of lattice-gas models to surface systems, multisite interactions often play at least as significant a role as interactions between pairs of adatoms that are separated by a few lattice spacings. We recall that trio (3-adatom, non-pairwise) interactions do not inevitably create phase boundary asymmetries about half coverage. We discuss a sophisticated application to an experimental system and describe refinements in extracting lattice-gas energies from calculations of total energies of several different ordered overlayers. We describe how lateral relaxations complicate matters when there is direct interaction between the adatoms, an issue that is important when examining the angular dependence of step line tensions. We discuss the connector model as an alternative viewpoint and close with a brief account of recent work on organic molecule overlayers.

  19. Gauged Nambu-Jona-Lasinio model with extra dimensions: Phase structure and renormalizability

    SciTech Connect

    Gusynin, Valery P.; Hashimoto, Michio; Tanabashi, Masaharu; Yamawaki, Koichi

    2004-11-01

    We investigate phase structure of the D(>4)-dimensional gauged Nambu-Jona-Lasinio (NJL) model with {delta}(=D-4) extra dimensions compactified on TeV scale, based on the improved ladder Schwinger-Dyson (SD) equation in the bulk. We assume that the bulk (dimensionless) running gauge coupling in the SD equation for the SU(N{sub c}) gauge theory with N{sub f} massless flavors is given by the truncated Kaluza-Klein effective theory and hence has a nontrivial ultraviolet fixed point (UVFP), resulting in the walking coupling. We find the critical line in the parameter space of two couplings, the gauge coupling (value fixed at the UVFP) and the (dimensionless) four-fermion coupling, which is similar to that of the gauged NJL model with fixed (walking) gauge coupling in four dimensions. It is shown that in the presence of such walking gauge interactions the four-fermion interactions become nontrivial and renormalizable even in higher dimensions, similar to the four dimensional gauged NJL model. Such a renormalizability/nontriviality holds only in the restricted region of the critical line ('nontrivial window') with the gauge coupling larger than a nonvanishing value ('marginal triviality' point), in contrast to the four dimensional case where such a renormalizability holds for all regions of the critical line except for the pure NJL point (without gauge coupling). In the nontrivial window the renormalized effective potential yields a nontrivial interaction which is conformal invariant. The existence of the nontrivial window implies 'cutoff insensitivity' of the physics prediction in spite of the ultraviolet dominance of the dynamics. In the formal limit D{yields}4, the nontrivial window shrinks to the pure NJL point but with a nontrivial condition which coincides with the known condition of the renormalizability/nontriviality of the four dimensional gauged NJL model (9/2)(1/N{sub c})

  20. An experiment with interactive planning models

    NASA Technical Reports Server (NTRS)

    Beville, J.; Wagner, J. H.; Zannetos, Z. S.

    1970-01-01

    Experiments on decision making in planning problems are described. Executives were tested in dealing with capital investments and competitive pricing decisions under conditions of uncertainty. A software package, the interactive risk analysis model system, was developed, and two controlled experiments were conducted. It is concluded that planning models can aid management, and predicted uses of the models are as a central tool, as an educational tool, to improve consistency in decision making, to improve communications, and as a tool for consensus decision making.

  1. Bridging the Gap - Interactive Inverse Groundwater Modeling

    NASA Astrophysics Data System (ADS)

    Singh, A.; Minsker, B.

    2005-12-01

    This paper presents a novel approach for solving the inverse problem of estimating heterogeneous aquifer parameters for a groundwater flow model, using interactive multi-objective evolutionary optimization. A hypothetical aquifer, for which the `true' parameter values (in this case hydraulic conductivity) are known, is used as a test case to demonstrate the usefulness of this method. It is shown that using automated calibration techniques without using expert interaction leads to parameter values that are not consistent with site knowledge. In such cases, it is desirable to incorporate expert knowledge in the inversion process to generate more reasonable estimates. An interactive approach is proposed within a multi-objective framework that allows the user to evaluate trade-offs between the expert knowledge and other measures of numerical errors. Using Pilot points and geostatistical parameters as decision variables, numerical optimization is combined with expert knowledge leading to conductivity fields that respect both the observation data and site knowledge that the expert may have. Early results indicate that this approach leads to parameter estimates that are much more consistent with site knowledge. A major issue with interactive approaches, however, is `human fatigue' in evaluating numerous potential solutions. One way of dealing with human fatigue is to use machine learning to model user preferences. This work presents initial results showing that machine learning models can be successfully used to augment user interaction, allowing the interactive genetic algorithm to find good solutions with much less user-effort.

  2. Quark interchange model of baryon interactions

    SciTech Connect

    Maslow, J.N.

    1983-01-01

    The strong interactions at low energy are traditionally described by meson field theories treating hadrons as point-like particles. Here a mesonic quark interchange model (QIM) is presented which takes into account the finite size of the baryons and the internal quark structure of hadrons. The model incorporates the basic quark-gluon coupling of quantum chromodynamics (QCD) and the MIT bag model for color confinement. Because the quark-gluon coupling constant is large and it is assumed that confinement excludes overlap of hadronic quark bags except at high momenta, a non-perturbative method of nuclear interactions is presented. The QIM allows for exchange of quark quantum numbers at the bag boundary between colliding hadrons mediated at short distances by a gluon exchange between two quarks within the hadronic interior. This generates, via a Fierz transformation, an effective space-like t channel exchange of color singlet (q anti-q) states that can be identified with the low lying meson multiplets. Thus, a one boson exchange (OBE) model is obtained that allows for comparison with traditional phenomenological models of nuclear scattering. Inclusion of strange quarks enables calculation of YN scattering. The NN and YN coupling constants and the nucleon form factors show good agreement with experimental values as do the deuteron low energy data and the NN low energy phase shifts. Thus, the QIM provides a simple model of strong interactions that is chirally invariant, includes confinement and allows for an OBE form of hadronic interaction at low energies and momentum transfers.

  3. Modeling interactions between political parties and electors

    NASA Astrophysics Data System (ADS)

    Bagarello, F.; Gargano, F.

    2017-09-01

    In this paper we extend some recent results on an operatorial approach to the description of alliances between political parties interacting among themselves and with a basin of electors. In particular, we propose and compare three different models, deducing the dynamics of their related decision functions, i.e. the attitude of each party to form or not an alliance. In the first model the interactions between each party and their electors are considered. We show that these interactions drive the decision functions toward certain asymptotic values depending on the electors only: this is the perfect party, which behaves following the electors' suggestions. The second model is an extension of the first one in which we include a rule which modifies the status of the electors, and of the decision functions as a consequence, at some specific time step. In the third model we neglect the interactions with the electors while we consider cubic and quartic interactions between the parties and we show that we get (slightly oscillating) asymptotic values for the decision functions, close to their initial values. This is the real party, which does not listen to the electors. Several explicit situations are considered in details and numerical results are also shown.

  4. Interactive Visual Analysis within Dynamic Ocean Models

    NASA Astrophysics Data System (ADS)

    Butkiewicz, T.

    2012-12-01

    The many observation and simulation based ocean models available today can provide crucial insights for all fields of marine research and can serve as valuable references when planning data collection missions. However, the increasing size and complexity of these models makes leveraging their contents difficult for end users. Through a combination of data visualization techniques, interactive analysis tools, and new hardware technologies, the data within these models can be made more accessible to domain scientists. We present an interactive system that supports exploratory visual analysis within large-scale ocean flow models. The currents and eddies within the models are illustrated using effective, particle-based flow visualization techniques. Stereoscopic displays and rendering methods are employed to ensure that the user can correctly perceive the complex 3D structures of depth-dependent flow patterns. Interactive analysis tools are provided which allow the user to experiment through the introduction of their customizable virtual dye particles into the models to explore regions of interest. A multi-touch interface provides natural, efficient interaction, with custom multi-touch gestures simplifying the otherwise challenging tasks of navigating and positioning tools within a 3D environment. We demonstrate the potential applications of our visual analysis environment with two examples of real-world significance: Firstly, an example of using customized particles with physics-based behaviors to simulate pollutant release scenarios, including predicting the oil plume path for the 2010 Deepwater Horizon oil spill disaster. Secondly, an interactive tool for plotting and revising proposed autonomous underwater vehicle mission pathlines with respect to the surrounding flow patterns predicted by the model; as these survey vessels have extremely limited energy budgets, designing more efficient paths allows for greater survey areas.

  5. Global Quantitative Modeling of Chromatin Factor Interactions

    PubMed Central

    Zhou, Jian; Troyanskaya, Olga G.

    2014-01-01

    Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896

  6. Interaction Effects in Growth Modeling: A Full Model.

    ERIC Educational Resources Information Center

    Wen, Zhonglin; Marsh, Herbert W.; Hau, Kit-Tai

    2002-01-01

    Points out two concerns with recent research by F. Li and others (2000) and T. Duncan and others (1999) that extended the structural equation model of latent interactions developed by K. Joreskog and F. Yang (1996) to latent growth modeling. Used mathematical derivation and a comparison of alternative models fitted to simulated data to develop a…

  7. Interactive Activation Model of Speech Perception.

    DTIC Science & Technology

    1984-11-01

    contract. 0 Elar, .l... & .McC’lelland .1.1. Speech perception a, a cognitive proces,: The interactive act ia- %e., tion model of speech perception. In...attempts to provide a machine solution to the problem of speech perception. A second kind of model, growing out of Cognitive Psychology, attempts to...architectures to cognitive and perceptual problems. We also owe a debt to what we might call the computational connectionists -- those who have applied highly

  8. A fashion model with social interaction

    NASA Astrophysics Data System (ADS)

    Nakayama, Shoichiro; Nakamura, Yasuyuki

    2004-06-01

    In general, it is difficult to investigate social phenomena mathematically or quantitatively due to non-linear interactions. Statistical physics can provide powerful methods for studying social phenomena with interactions, and could be very useful for them. In this study, we take a focus on fashion as a social phenomenon with interaction. The social interaction considered here are “bandwagon effect” and “snob effect.” In the bandwagon effect, the correlation between one's behavior and others is positive. People feel fashion weary or boring when it is overly popular. This is the snob effect. It is assumed that the fashion phenomenon is formed by the aggregation of individual's binary choice, that is, the fashion is adopted or not. We formulate the fashion phenomenon as the logit model, which is based on the random utility theory in social science, especially economics. The model derived here basically has the similarity with the pioneering model by Weidlich (Phys. Rep. 204 (1991) 1), which was derived from the master equation, the Langevin equation, or the Fokker-Planck equation. This study seems to give the behavioral or behaviormetrical foundation to his model. As a result of dynamical analysis, it is found that in the case that both the bandwagon effect and the snob effect work, periodic or chaotic behavior of fashion occurs under certain conditions.

  9. AN INTERACTION MODEL APPLIED TO SUPERVISION.

    ERIC Educational Resources Information Center

    BOYD, ROBERT D.

    THIS STUDY OUTLINES A SMALL GROUP INTERACTION MODEL WHICH CAN BE APPLIED TO SUPERVISION. IT CONSISTS OF THREE CHANNELS -- (1) THE MOTIVATIONAL CHANNEL IN WHICH THE MOTIVATIONAL ASPECT OF AN UTTERANCE (I.E. QUESTIONS, EXCLAMATIONS, ASSERTIONS) IS IDENTIFIED ACCORDING TO THE PARTICULAR EGO CRISIS (TRUST VS. MISTRUST, AUTONOMY VS. SHAME DOUBT,…

  10. Statistical pairwise interaction model of stock market

    NASA Astrophysics Data System (ADS)

    Bury, Thomas

    2013-03-01

    Financial markets are a classical example of complex systems as they are compound by many interacting stocks. As such, we can obtain a surprisingly good description of their structure by making the rough simplification of binary daily returns. Spin glass models have been applied and gave some valuable results but at the price of restrictive assumptions on the market dynamics or they are agent-based models with rules designed in order to recover some empirical behaviors. Here we show that the pairwise model is actually a statistically consistent model with the observed first and second moments of the stocks orientation without making such restrictive assumptions. This is done with an approach only based on empirical data of price returns. Our data analysis of six major indices suggests that the actual interaction structure may be thought as an Ising model on a complex network with interaction strengths scaling as the inverse of the system size. This has potentially important implications since many properties of such a model are already known and some techniques of the spin glass theory can be straightforwardly applied. Typical behaviors, as multiple equilibria or metastable states, different characteristic time scales, spatial patterns, order-disorder, could find an explanation in this picture.

  11. Multi-scale modeling of chemotactic interactions

    NASA Astrophysics Data System (ADS)

    Grima, Ramon

    Biological complexity emerges from the synthesis of biochemical, chemical and physical phenomena. In recent years there has been an intense effort in modeling various cellular systems of interest to understand how the observed complexity emerges from the underlying mechanisms. Most modeling approaches are based on a population description of the cells: these methods, though usually amenable to calculation, are only valid in the limit of large numbers of interacting cells. Many systems of interest involve the interaction of a relatively small number of cells; even biological systems composed of thousands of cells have spatially extended regions over which the number density of cells is small. For the latter cases, population descriptions are not valid and individual based models become a necessity. Such models, usually cellular automaton models, have been numerically studied in recent years; however, these models are not usually amenable to analytic calculation. The work presented in this thesis seeks to fulfill a gap in modeling approaches to the understanding of biocomplexity by constructing an individual based model on which analysis is possible, through the methods of statistical physics and the theory of stochastic processes. This model will be used to study the differences between individual based and population based models and the range of applicability of the latter. For the sake of comparison of the two, new efficient computational algorithms are devised for the simulation of both types of models. We finally complete our multiscale study of modeling by investigating the robustness of individual based models; this meaning a comparison of the results of different microscopic descriptions modeling the same underlying phenomena.

  12. Algebraic Turbulence-Chemistry Interaction Model

    NASA Technical Reports Server (NTRS)

    Norris, Andrew T.

    2012-01-01

    The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.

  13. Peppytides: Interactive Models of Polypeptide Chains

    SciTech Connect

    Zuckermann, Ron; Chakraborty, Promita; Derisi, Joe

    2014-01-21

    Peppytides are scaled, 3D-printed models of polypeptide chains that can be folded into accurate protein structures. Designed and created by Berkeley Lab Researcher, Promita Chakraborty, and Berkeley Lab Senior Scientist, Dr. Ron Zuckermann, Peppytides are accurate physical models of polypeptide chains that anyone can interact with and fold intro various protein structures - proving to be a great educational tool, resulting in a deeper understanding of these fascinating structures and how they function. Build your own Peppytide model and learn about how nature's machines fold into their intricate architectures!

  14. Peppytides: Interactive Models of Polypeptide Chains

    ScienceCinema

    Zuckermann, Ron; Chakraborty, Promita; Derisi, Joe

    2016-07-12

    Peppytides are scaled, 3D-printed models of polypeptide chains that can be folded into accurate protein structures. Designed and created by Berkeley Lab Researcher, Promita Chakraborty, and Berkeley Lab Senior Scientist, Dr. Ron Zuckermann, Peppytides are accurate physical models of polypeptide chains that anyone can interact with and fold intro various protein structures - proving to be a great educational tool, resulting in a deeper understanding of these fascinating structures and how they function. Build your own Peppytide model and learn about how nature's machines fold into their intricate architectures!

  15. Interactive canopies for a climate model

    SciTech Connect

    Dickinson, R.E.; Shaikh, M.; Bryant, R.; Graumlich, L.

    1998-11-01

    Climate models depend on evapotranspiration from models of plant stomatal resistance and leaf cover, and hence they depend on a description of the response of leaf cover to temperature and soil moisture. Such a description is derived as an addition to the Biosphere-Atmosphere Transfer Scheme and tested by simulations in a climate model. Rules for carbon uptake, allocation between leaves, fine roots, and wood, and loss terms from respiration, leaf, and root turnover and cold and drought stress, are used to infer the seasonal growth of leaf area as needed in a climate model, and to provide carbon fluxes (assuming also a simple soil carbon model) and net primary productivity. The scheme is tested in an 11-yr integration with the NCAR CCM3 climate model. After a spinup period of several years, the model equilibrates to a seasonal cycle plus some interannual variability. Effects of the latter are noticeable for the Amazon. Overall, drought stress has nearly as large an effect on leaf mortality as cold stress. The leaf areas agree on average with those inferred from Normalized Difference Vegetation Index although some individual systems are either too high (grass and crops) or too low (deciduous needleleaf in Siberia) compared to the satellite data. Evergreen needleleaf forests have significantly smaller annual range and later phase than indicated by the data. The interactive parameterization increases temperatures and reduces evapotranspiration and precipitation compared to the control over the extratropical Northern Hemisphere summer. This interactive leaf model may serve not only to provide feedbacks between vegetation and the climate model, but also to diagnose shortcomings of a climate model simulation from the viewpoint of its impact on the biosphere.

  16. Interactive mapping on 3-D terrain models

    NASA Astrophysics Data System (ADS)

    Bernardin, T.; Cowgill, E.; Gold, R.; Hamann, B.; Kreylos, O.; Schmitt, A.

    2006-10-01

    We present an interactive, real-time mapping system for use with digital elevation models and remotely sensed multispectral imagery that aids geoscientists in the creation and interpretation of geologic/neotectonic maps at length scales of 10 m to 1000 km. Our system provides a terrain visualization of the surface of the Earth or other terrestrial planets by displaying a virtual terrain model generated from a digital elevation model overlain by a color texture generated from orthophotos or satellite imagery. We use a quadtree-based, multiresolution display method to render in real time high-resolution virtual terrain models that span large spatial regions. The system allows users to measure the orientations of geologic surfaces and record their observations by drawing lines directly on the virtual terrain model. In addition, interpretive surfaces can be generated from these drawings and displayed to facilitate understanding of the three-dimensional geometry of geologic surfaces. The main strength of our system is the combination of real-time rendering and interactive mapping performed directly on the virtual terrain model with the ability to navigate the scene while changing viewpoints arbitrarily during mapping. User studies and comparisons with commercially available mapping software show that our system improves mapping accuracy and efficiency and also yields observations that cannot be made with existing systems.

  17. Characterizing nanoparticle interactions: Linking models to experiments

    SciTech Connect

    Ramakrishnan, S.; Zukoski, C. F.

    2000-07-15

    Self-assembly of nanoparticles involves manipulating particle interactions such that attractions are on the order of the average thermal energy in the system. If the self-assembly is to result in an ordered packing, an understanding of their phase behavior is necessary. Here we test the ability of simple pair potentials to characterize the interactions and phase behavior of silico tungstic acid (STA), a 1.2 nm particle. The strength of interaction is controlled by dispersing STA in different background salt concentrations. The experimental variables used in characterizing the interactions are the osmotic compressibility (d{pi}/d{rho}), the second virial coefficient (B{sub 2}), relative solution viscosity ({eta}/{eta}{sub c}), and the solubility ({rho}{sigma}{sup 3}){sub sat}. Various techniques are then developed to extract the parameters of square well, the adhesive hard sphere (AHS), and the Yukawa pair potentials that best describe the experimental data. The AHS model describes the solution thermodynamic behavior only where the system is weakly attractive but, as would be expected, fails when long range repulsions or nonmonotonic pair potentials become important. Model free representations are presented which offer the opportunity to extract pair potential parameters. (c) 2000 American Institute of Physics.

  18. Interacting Dark Energy Models and Observations

    NASA Astrophysics Data System (ADS)

    Shojaei, Hamed; Urioste, Jazmin

    2017-01-01

    Dark energy is one of the mysteries of the twenty first century. Although there are candidates resembling some features of dark energy, there is no single model describing all the properties of dark energy. Dark energy is believed to be the most dominant component of the cosmic inventory, but a lot of models do not consider any interaction between dark energy and other constituents of the cosmic inventory. Introducing an interaction will change the equation governing the behavior of dark energy and matter and creates new ways to explain cosmic coincidence problem. In this work we studied how the Hubble parameter and density parameters evolve with time in the presence of certain types of interaction. The interaction serves as a way to convert dark energy into matter to avoid a dark energy-dominated universe by creating new equilibrium points for the differential equations. Then we will use numerical analysis to predict the values of distance moduli at different redshifts and compare them to the values for the distance moduli obtained by WMAP (Wilkinson Microwave Anisotropy Probe). Undergraduate Student

  19. Interacting holographic generalized cosmic Chaplygin gas model

    NASA Astrophysics Data System (ADS)

    Naji, Jalil

    2014-03-01

    In this paper we consider a correspondence between the holographic dark energy density and interacting generalized cosmic Chaplygin gas energy density in flat FRW universe. Then, we reconstruct the potential of the scalar field which describe the generalized cosmic Chaplygin cosmology. In the special case we obtain time-dependent energy density and study cosmological parameters. We find stability condition of this model which is depend on cosmic parameter.

  20. PRIMO: An Interactive Homology Modeling Pipeline.

    PubMed

    Hatherley, Rowan; Brown, David K; Glenister, Michael; Tastan Bishop, Özlem

    2016-01-01

    The development of automated servers to predict the three-dimensional structure of proteins has seen much progress over the years. These servers make calculations simpler, but largely exclude users from the process. In this study, we present the PRotein Interactive MOdeling (PRIMO) pipeline for homology modeling of protein monomers. The pipeline eases the multi-step modeling process, and reduces the workload required by the user, while still allowing engagement from the user during every step. Default parameters are given for each step, which can either be modified or supplemented with additional external input. PRIMO has been designed for users of varying levels of experience with homology modeling. The pipeline incorporates a user-friendly interface that makes it easy to alter parameters used during modeling. During each stage of the modeling process, the site provides suggestions for novice users to improve the quality of their models. PRIMO provides functionality that allows users to also model ligands and ions in complex with their protein targets. Herein, we assess the accuracy of the fully automated capabilities of the server, including a comparative analysis of the available alignment programs, as well as of the refinement levels used during modeling. The tests presented here demonstrate the reliability of the PRIMO server when producing a large number of protein models. While PRIMO does focus on user involvement in the homology modeling process, the results indicate that in the presence of suitable templates, good quality models can be produced even without user intervention. This gives an idea of the base level accuracy of PRIMO, which users can improve upon by adjusting parameters in their modeling runs. The accuracy of PRIMO's automated scripts is being continuously evaluated by the CAMEO (Continuous Automated Model EvaluatiOn) project. The PRIMO site is free for non-commercial use and can be accessed at https://primo.rubi.ru.ac.za/.

  1. PRIMO: An Interactive Homology Modeling Pipeline

    PubMed Central

    Glenister, Michael

    2016-01-01

    The development of automated servers to predict the three-dimensional structure of proteins has seen much progress over the years. These servers make calculations simpler, but largely exclude users from the process. In this study, we present the PRotein Interactive MOdeling (PRIMO) pipeline for homology modeling of protein monomers. The pipeline eases the multi-step modeling process, and reduces the workload required by the user, while still allowing engagement from the user during every step. Default parameters are given for each step, which can either be modified or supplemented with additional external input. PRIMO has been designed for users of varying levels of experience with homology modeling. The pipeline incorporates a user-friendly interface that makes it easy to alter parameters used during modeling. During each stage of the modeling process, the site provides suggestions for novice users to improve the quality of their models. PRIMO provides functionality that allows users to also model ligands and ions in complex with their protein targets. Herein, we assess the accuracy of the fully automated capabilities of the server, including a comparative analysis of the available alignment programs, as well as of the refinement levels used during modeling. The tests presented here demonstrate the reliability of the PRIMO server when producing a large number of protein models. While PRIMO does focus on user involvement in the homology modeling process, the results indicate that in the presence of suitable templates, good quality models can be produced even without user intervention. This gives an idea of the base level accuracy of PRIMO, which users can improve upon by adjusting parameters in their modeling runs. The accuracy of PRIMO’s automated scripts is being continuously evaluated by the CAMEO (Continuous Automated Model EvaluatiOn) project. The PRIMO site is free for non-commercial use and can be accessed at https://primo.rubi.ru.ac.za/. PMID:27855192

  2. Nonlinear interaction model of subsonic jet noise.

    PubMed

    Sandham, Neil D; Salgado, Adriana M

    2008-08-13

    Noise generation in a subsonic round jet is studied by a simplified model, in which nonlinear interactions of spatially evolving instability modes lead to the radiation of sound. The spatial mode evolution is computed using linear parabolized stability equations. Nonlinear interactions are found on a mode-by-mode basis and the sound radiation characteristics are determined by solution of the Lilley-Goldstein equation. Since mode interactions are computed explicitly, it is possible to find their relative importance for sound radiation. The method is applied to a single stream jet for which experimental data are available. The model gives Strouhal numbers of 0.45 for the most amplified waves in the jet and 0.19 for the dominant sound radiation. While in near field axisymmetric and the first azimuthal modes are both important, far-field sound is predominantly axisymmetric. These results are in close correspondence with experiment, suggesting that the simplified model is capturing at least some of the important mechanisms of subsonic jet noise.

  3. Method of and apparatus for modeling interactions

    DOEpatents

    Budge, Kent G.

    2004-01-13

    A method and apparatus for modeling interactions can accurately model tribological and other properties and accommodate topological disruptions. Two portions of a problem space are represented, a first with a Lagrangian mesh and a second with an ALE mesh. The ALE and Lagrangian meshes are constructed so that each node on the surface of the Lagrangian mesh is in a known correspondence with adjacent nodes in the ALE mesh. The interaction can be predicted for a time interval. Material flow within the ALE mesh can accurately model complex interactions such as bifurcation. After prediction, nodes in the ALE mesh in correspondence with nodes on the surface of the Lagrangian mesh can be mapped so that they are once again adjacent to their corresponding Lagrangian mesh nodes. The ALE mesh can then be smoothed to reduce mesh distortion that might reduce the accuracy or efficiency of subsequent prediction steps. The process, from prediction through mapping and smoothing, can be repeated until a terminal condition is reached.

  4. Nagaoka's atomic model and hyperfine interactions.

    PubMed

    Inamura, Takashi T

    2016-01-01

    The prevailing view of Nagaoka's "Saturnian" atom is so misleading that today many people have an erroneous picture of Nagaoka's vision. They believe it to be a system involving a 'giant core' with electrons circulating just outside. Actually, though, in view of the Coulomb potential related to the atomic nucleus, Nagaoka's model is exactly the same as Rutherford's. This is true of the Bohr atom, too. To give proper credit, Nagaoka should be remembered together with Rutherford and Bohr in the history of the atomic model. It is also pointed out that Nagaoka was a pioneer of understanding hyperfine interactions in order to study nuclear structure.

  5. Lepton number violation interactions and their effects on neutrino oscillation experiments

    NASA Astrophysics Data System (ADS)

    Bergmann, Sven; Klapdor-Kleingrothaus, H. V.; Päs, Heinrich

    2000-12-01

    Mixing between bosons that transform differently under the standard model gauge group, but identically under its unbroken subgroup, can induce interactions that violate the total lepton number. We discuss four-fermion operators that mediate lepton number violating neutrino interactions both in a model-independent framework and within supersymmetry (SUSY) without R parity. The effective couplings of such operators are constrained by (i) the upper bounds on the relevant elementary couplings between the bosons and the fermions, (ii) by the limit on universality violation in pion decays, (iii) by the data on neutrinoless double beta decay, and (iv) by loop-induced neutrino masses. We find that the present bounds imply that lepton number violating neutrino interactions are not relevant for the solar and atmospheric neutrino problems. Within SUSY without R parity also the LSND anomaly cannot be explained by such interactions, but one cannot rule out an effect model independently. Possible consequences for future terrestrial neutrino oscillation experiments and for neutrinos from a supernova are discussed.

  6. Discrete network models of interacting nephrons

    NASA Astrophysics Data System (ADS)

    Moss, Rob; Kazmierczak, Ed; Kirley, Michael; Harris, Peter

    2009-11-01

    The kidney is one of the major organs involved in whole-body homeostasis, and exhibits many of the properties of a complex system. The functional unit of the kidney is the nephron, a complex, segmented tube into which blood plasma is filtered and its composition adjusted. Although the behaviour of individual nephrons can fluctuate widely and even chaotically, the behaviour of the kidney remains stable. In this paper, we investigate how the filtration rate of a multi-nephron system is affected by interactions between nephrons. We introduce a discrete-time multi-nephron network model. The tubular mechanisms that have the greatest effect on filtration rate are the transport of sodium and water, consequently our model attempts to capture these mechanisms. Multi-nephron systems also incorporate two competing coupling mechanisms-vascular and hemodynamic-that enforce in-phase and anti-phase synchronisations respectively. Using a two-nephron model, we demonstrate how changing the strength of the hemodynamic coupling mechanism and changing the arterial blood pressure have equivalent effects on the system. The same two-nephron system is then used to demonstrate the interactions that arise between the two coupling mechanisms. We conclude by arguing that our approach is scalable to large numbers of nephrons, based on the performance characteristics of the model.

  7. A Formulation of the Interactive Evaluation Model

    PubMed Central

    Walsh, Peter J.; Awad-Edwards, Roger; Engelhardt, K. G.; Perkash, Inder

    1985-01-01

    The development of highly technical devices for specialized users requires continual feedback from potential users to the project team designing the device to assure that a useful product will result. This necessity for user input is the basis for the Interactive Evaluation Model which has been applied to complex computer assisted robotic aids for individuals with disabilities and has wide application to the development of a variety of technical devices. We present a preliminary mathematical formulation of the Interactive Evaluation Model which maximizes the rate of growth toward success, at a constant cost rate, of the efforts of a team having the diverse expertises needed to produce a complex technical product. Close interaction is simulated by a growth rate which is a multiplicative product involving the number of participants within a given class of necessary expertise and evaluation is included by demanding that users form one of the necessary classes. In the multipliers, the number of class participants is raised to a power termed the class weight exponent. In the simplest case, the optimum participant number varies as the ratio of the class weight exponent to the average class cost. An illustrative example, based on our experience with medical care assistive aids, shows the dramatic cost reduction possible with users on the team.

  8. Comments on interactions in the SUSY models

    NASA Astrophysics Data System (ADS)

    Upadhyay, Sudhaker; Reshetnyak, Alexander; Mandal, Bhabani Prasad

    2016-07-01

    We consider special supersymmetry (SUSY) transformations with m generators overleftarrow{s}_α , for some class of models and study the physical consequences when making the Grassmann-odd transformations to form an Abelian supergroup with finite parameters and a set of group-like elements with finite parameters being functionals of the field variables. The SUSY-invariant path integral measure within conventional quantization scheme leads to the appearance of the Jacobian under a change of variables generated by such SUSY transformations, which is explicitly calculated. The Jacobian implies, first of all, the appearance of trivial interactions in the transformed action, and, second, the presence of a modified Ward identity which reduces to the standard Ward identities in the case of constant parameters. We examine the case of the {N}=1 and N=2 supersymmetric harmonic oscillators to illustrate the general concept by a simple free model with (1, 1) physical degrees of freedom. It is shown that the interaction terms U_{tr} have a corresponding SUSY-exact form: U_{tr}= big (V_{(1)}overleftarrow{s}; V_{(2)}overleftarrow{bar{s}} overleftarrow{s}big ) generated naturally under such generalized formulation. We argue that the case of a non-trivial interaction cannot be obtained in such a way.

  9. On dark degeneracy and interacting models

    SciTech Connect

    Carneiro, S.; Borges, H.A. E-mail: humberto@ufba.br

    2014-06-01

    Cosmological background observations cannot fix the dark energy equation of state, which is related to a degeneracy in the definition of the dark sector components. Here we show that this degeneracy can be broken at perturbation level by imposing two observational properties on dark matter. First, dark matter is defined as the clustering component we observe in large scale structures. This definition is meaningful only if dark energy is unperturbed, which is achieved if we additionally assume, as a second condition, that dark matter is cold, i.e. non-relativistic. As a consequence, dark energy models with equation-of-state parameter −1 ≤ ω < 0 are reduced to two observationally distinguishable classes with ω = −1, equally competitive when tested against observations. The first comprises the ΛCDM model with constant dark energy density. The second consists of interacting models with an energy flux from dark energy to dark matter.

  10. Simple Model for the Benzene Hexafluorobenzene Interaction

    DOE PAGES

    Tillack, Andreas F.; Robinson, Bruce H.

    2017-06-05

    While the experimental intermolecular distance distribution functions of pure benzene and pure hexafluorobenzene are well described by transferable all-atom force fields, the interaction between the two molecules (in a 1:1 mixture) is not well simulated. We demonstrate that the parameters of the transferable force fields are adequate to describe the intermolecular distance distribution if the charges are replaced by a set of charges that are not located at the atoms. Here, the simplest model that well describes the experimental distance distribution, between benzene and hexafluorobenzene, is that of a single ellipsoid for each molecule, representing the van der Waals interactions,more » and a set of three point charges (on the axis perpendicular to the arene plane) which give the same quadrupole moment as do the all atom charges from the transferable force fields.« less

  11. Interacting damage models mapped onto ising and percolation models

    SciTech Connect

    Toussaint, Renaud; Pride, Steven R.

    2004-03-23

    The authors introduce a class of damage models on regular lattices with isotropic interactions between the broken cells of the lattice. Quasistatic fiber bundles are an example. The interactions are assumed to be weak, in the sense that the stress perturbation from a broken cell is much smaller than the mean stress in the system. The system starts intact with a surface-energy threshold required to break any cell sampled from an uncorrelated quenched-disorder distribution. The evolution of this heterogeneous system is ruled by Griffith's principle which states that a cell breaks when the release in potential (elastic) energy in the system exceeds the surface-energy barrier necessary to break the cell. By direct integration over all possible realizations of the quenched disorder, they obtain the probability distribution of each damage configuration at any level of the imposed external deformation. They demonstrate an isomorphism between the distributions so obtained and standard generalized Ising models, in which the coupling constants and effective temperature in the Ising model are functions of the nature of the quenched-disorder distribution and the extent of accumulated damage. In particular, they show that damage models with global load sharing are isomorphic to standard percolation theory, that damage models with local load sharing rule are isomorphic to the standard ising model, and draw consequences thereof for the universality class and behavior of the autocorrelation length of the breakdown transitions corresponding to these models. they also treat damage models having more general power-law interactions, and classify the breakdown process as a function of the power-law interaction exponent. Last, they also show that the probability distribution over configurations is a maximum of Shannon's entropy under some specific constraints related to the energetic balance of the fracture process, which firmly relates this type of quenched-disorder based damage model

  12. Modeling selective local interactions with memory

    NASA Astrophysics Data System (ADS)

    Galante, Amanda; Levy, Doron

    2013-10-01

    Recently we developed a stochastic particle system describing local interactions between cyanobacteria. We focused on the common freshwater cyanobacteria Synechocystis sp., which are coccoidal bacteria that utilize group dynamics to move toward a light source, a motion referred to as phototaxis. We were particularly interested in the local interactions between cells that were located in low to medium density areas away from the front. The simulations of our stochastic particle system in 2D replicated many experimentally observed phenomena, such as the formation of aggregations and the quasi-random motion of cells. In this paper, we seek to develop a better understanding of group dynamics produced by this model. To facilitate this study, we replace the stochastic model with a system of ordinary differential equations describing the evolution of particles in 1D. Unlike many other models, our emphasis is on particles that selectively choose one of their neighbors as the preferred direction of motion. Furthermore, we incorporate memory by allowing persistence in the motion. We conduct numerical simulations which allow us to efficiently explore the space of parameters, in order to study the stability, size, and merging of aggregations.

  13. PDF modeling of turbulence-radiation interactions

    SciTech Connect

    Mazumder, S.; Modest, M.F.

    1997-07-01

    The interactions between turbulence and radiation, although acknowledged and qualitatively understood over the last several decades, are extremely difficult to model. Traditional Eulerian turbulence models are incapable of addressing the closure problem for any realistic reactive flow situation, because of the large number of unknown turbulent moments that need to be modeled. A novel approach, based on the velocity-composition joint probability density function (PDF) method, is presented. This approach is Lagrangian in nature and provides an elegant and feasible alternative to turbulence closure. A mixed Monte Carlo/finite-volume technique is used to simulate a bluff-body-stabilized methane-air diffusion flame in a two-dimensional planar recirculating combustor, and enables treatment of turbulence in recirculating flows, finite-rate chemistry, and multiple-band radiation calculations within the CPU limitations of a standard single-processor workstation. Results demonstrate the role of radiation and turbulence-radiation interactions in altering the overall flame structure, the wall heat loads, and the overall heat emission by the flame at various Reynolds numbers and equivalence ratios.

  14. Point Process Modeling for Directed Interaction Networks

    DTIC Science & Technology

    2011-10-01

    NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 5c. PROGRAM ELEMENT NUMBER 5b. GRANT NUMBER 5a. CONTRACT NUMBER W911NF-11-1-0036 611103 Form... works literature; see, e.g., McPherson et al. (2001); Butts (2008); Aral et al. (2009); Snijders et al. (2010), and references contained therein...the individual using a hidden Markov model, and of Heard et al. (2010), who work at the level of the dyad, assum- ing a piecewise-constant interaction

  15. Interactive Inverse Groundwater Modeling - Addressing User Fatigue

    NASA Astrophysics Data System (ADS)

    Singh, A.; Minsker, B. S.

    2006-12-01

    This paper builds on ongoing research on developing an interactive and multi-objective framework to solve the groundwater inverse problem. In this work we solve the classic groundwater inverse problem of estimating a spatially continuous conductivity field, given field measurements of hydraulic heads. The proposed framework is based on an interactive multi-objective genetic algorithm (IMOGA) that not only considers quantitative measures such as calibration error and degree of regularization, but also takes into account expert knowledge about the structure of the underlying conductivity field expressed as subjective rankings of potential conductivity fields by the expert. The IMOGA converges to the optimal Pareto front representing the best trade- off among the qualitative as well as quantitative objectives. However, since the IMOGA is a population-based iterative search it requires the user to evaluate hundreds of solutions. This leads to the problem of 'user fatigue'. We propose a two step methodology to combat user fatigue in such interactive systems. The first step is choosing only a few highly representative solutions to be shown to the expert for ranking. Spatial clustering is used to group the search space based on the similarity of the conductivity fields. Sampling is then carried out from different clusters to improve the diversity of solutions shown to the user. Once the expert has ranked representative solutions from each cluster a machine learning model is used to 'learn user preference' and extrapolate these for the solutions not ranked by the expert. We investigate different machine learning models such as Decision Trees, Bayesian learning model, and instance based weighting to model user preference. In addition, we also investigate ways to improve the performance of these models by providing information about the spatial structure of the conductivity fields (which is what the expert bases his or her rank on). Results are shown for each of these

  16. Optimal Scaling of Interaction Effects in Generalized Linear Models

    ERIC Educational Resources Information Center

    van Rosmalen, Joost; Koning, Alex J.; Groenen, Patrick J. F.

    2009-01-01

    Multiplicative interaction models, such as Goodman's (1981) RC(M) association models, can be a useful tool for analyzing the content of interaction effects. However, most models for interaction effects are suitable only for data sets with two or three predictor variables. Here, we discuss an optimal scaling model for analyzing the content of…

  17. Optimal Scaling of Interaction Effects in Generalized Linear Models

    ERIC Educational Resources Information Center

    van Rosmalen, Joost; Koning, Alex J.; Groenen, Patrick J. F.

    2009-01-01

    Multiplicative interaction models, such as Goodman's (1981) RC(M) association models, can be a useful tool for analyzing the content of interaction effects. However, most models for interaction effects are suitable only for data sets with two or three predictor variables. Here, we discuss an optimal scaling model for analyzing the content of…

  18. Modeling the Enceladus Plume--Plasma Interaction

    NASA Astrophysics Data System (ADS)

    Fleshman, B. L.; Delamere, P. A.; Bagenal, F.

    2009-12-01

    We investigate the chemical interaction between Saturn's corotating plasma and Enceladus' volcanic plumes. The evolution of a parcel of ambient plasma passing through a prescribed H2O plume is estimated using a physical chemistry model based on the Io torus chemistry but adapted for water-group reactions. The flow field is assumed to be that of a plasma around an electrically-conducting obstacle centered on Enceladus and aligned with Saturn's magnetic field, consistent with Cassini magnetometer data. Our results suggest that charge exchange dominates the local chemistry and that H3O+ dominates the water-group composition downstream of the Enceladus plumes. We explore the effects on the physical chemistry of (1) a small population of hot electrons and (2) a flow decelerated in response to the pickup of fresh ions near the plumes. Charge exchange dominates the local interaction, leading to an H3O+-dominated local water-group chemistry. Pickup Rate/(kg s-1) Pickup rate from the plasma--plume interaction. We emphasize: (1) The possibility of hot electron beams at Enceladus, given the contraints on charge exchange + impact ionization pickup [0.2--3 kg s-1, Khurana et al. (2007); Saur et al. (2007); Burger et al. (2008)]. (2) Charge exchange dominates the local chemistry.

  19. Interaction of Mastoparan with Model Membranes

    NASA Astrophysics Data System (ADS)

    Haloot, Justin

    2010-10-01

    The use of antimicrobial agents began during the 20th century to reduce the effects of infectious diseases. Since the 1990s, antimicrobial resistance has become an ever-increasing global problem. Our laboratory recently found that small antimicrobial peptides (AMPs) have potent antimicrobial activity against a wide range of Gram-negative and Gram-positive organisms including antibiotic resistant organisms. These AMPs are potential therapeutic agents against the growing problem of antimicrobial resistance. AMPs are small peptides produced by plants, insects and animals. Several hypotheses concede that these peptides cause some type of structural perturbations and increased membrane permeability in bacteria however, how AMPs kill bacteria remains unclear. The goal of this study was to design an assay that would allow us to evaluate and monitor the pore forming ability of an AMP, Mastoparan, on model membrane structures called liposomes. Development of this model will facilitate the study of how mastoparan and related AMPs interact with the bacterial membrane.

  20. Convex Modeling of Interactions with Strong Heredity

    PubMed Central

    Haris, Asad; Witten, Daniela; Simon, Noah

    2015-01-01

    We consider the task of fitting a regression model involving interactions among a potentially large set of covariates, in which we wish to enforce strong heredity. We propose FAMILY, a very general framework for this task. Our proposal is a generalization of several existing methods, such as VANISH [Radchenko and James, 2010], hierNet [Bien et al., 2013], the all-pairs lasso, and the lasso using only main effects. It can be formulated as the solution to a convex optimization problem, which we solve using an efficient alternating directions method of multipliers (ADMM) algorithm. This algorithm has guaranteed convergence to the global optimum, can be easily specialized to any convex penalty function of interest, and allows for a straightforward extension to the setting of generalized linear models. We derive an unbiased estimator of the degrees of freedom of FAMILY, and explore its performance in a simulation study and on an HIV sequence data set.

  1. Search for single top quark production via contact interactions at LEP2

    NASA Astrophysics Data System (ADS)

    Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Oliveira, O.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.

    2011-02-01

    Single top quark production via four-fermion contact interactions associated to flavour-changing neutral currents was searched for in data taken by the DELPHI detector at LEP2. The data were accumulated at centre-of-mass energies ranging from 189 to 209 GeV, with an integrated luminosity of 598.1 pb-1. No evidence for a signal was found. Limits on the energy scale Λ, were set for scalar-, vector- and tensor-like coupling scenarios.

  2. A simple model for studying interacting networks

    NASA Astrophysics Data System (ADS)

    Liu, Wenjia; Jolad, Shivakumar; Schmittmann, Beate; Zia, R. K. P.

    2011-03-01

    Many specific physical networks (e.g., internet, power grid, interstates), have been characterized in considerable detail, but in isolation from each other. Yet, each of these networks supports the functions of the others, and so far, little is known about how their interactions affect their structure and functionality. To address this issue, we consider two coupled model networks. Each network is relatively simple, with a fixed set of nodes, but dynamically generated set of links which has a preferred degree, κ . In the stationary state, the degree distribution has exponential tails (far from κ), an attribute which we can explain. Next, we consider two such networks with different κ 's, reminiscent of two social groups, e.g., extroverts and introverts. Finally, we let these networks interact by establishing a controllable fraction of cross links. The resulting distribution of links, both within and across the two model networks, is investigated and discussed, along with some potential consequences for real networks. Supported in part by NSF-DMR-0705152 and 1005417.

  3. Retention modelling in hydrophilic interaction chromatography.

    PubMed

    Euerby, Melvin R; Hulse, Jennifer; Petersson, Patrik; Vazhentsev, Andrey; Kassam, Karim

    2015-12-01

    The retention behaviour of acidic, basic and quaternary ammonium salts and polar neutral analytes has been evaluated on acidic, basic and neutral hydrophilic interaction chromatography (HILIC) stationary phases as a function of HILIC operating parameters such as MeCN content, buffer concentration, pH and temperature. Numerous empirical HILIC retention models (existing and newly developed ones) have been assessed for their ability to describe retention as a function of the HILIC operating parameters investigated. Retention models have been incorporated into a commercially available retention modelling programme (i.e. ACD/LC simulator) and their accuracy of retention prediction assessed. The applicability of HILIC modelling using these equations has been demonstrated in the two-dimensional isocratic (i.e. buffer concentration versus MeCN content modelling) and one-dimensional gradient separations for a range of analytes of differing physico-chemical properties on the three stationary phases. The accuracy of retention and peak width prediction was observed to be comparable to that reported in reversed-phase chromatography (RPC) retention modelling. Intriguingly, our results have confirmed that the use of gradient modelling to predict HILIC isocratic conditions and vice versa is not reliable. A relative ranking of the importance of the retention and selectivity of HILIC operating parameters has been determined using statistical approaches. For retention, the order of importance was observed to be organic content > stationary phase > temperature ≈ mobile phase pH (i.e. pH 3-6 which mainly effects the ionization of the analyte) ≈ buffer concentration. For selectivity, the nature of the stationary phase > mobile phase pH > buffer concentration > temperature > organic content.

  4. Calculating the Annihilation Rate of Weakly Interacting Massive Particles

    NASA Astrophysics Data System (ADS)

    Baumgart, Matthew; Rothstein, Ira Z.; Vaidya, Varun

    2015-05-01

    We develop a formalism that allows one to systematically calculate the weakly interacting massive particle (WIMP) annihilation rate into gamma rays whose energy far exceeds the weak scale. A factorization theorem is presented which separates the radiative corrections stemming from initial-state potential interactions from loops involving the final state. This separation allows us to go beyond the fixed order calculation, which is polluted by large infrared logarithms. For the case of Majorana WIMPs transforming in the adjoint representation of SU(2), we present the result for the resummed rate at leading double-log accuracy in terms of two initial-state partial-wave matrix elements and one hard matching coefficient. For a given model, one may calculate the cross section by finding the tree level matching coefficient and determining the value of a local four-fermion operator. The effects of resummation can be as large as 100% for a 20 TeV WIMP. However, for lighter WIMP masses relevant for the thermal relic scenario, leading-log resummation modifies the Sudakov factors only at the 10% level. Furthermore, given comparably sized Sommerfeld factors, the total effect of radiative corrections on the semi-inclusive photon annihilation rate is found to be percent level. The generalization of the formalism to other types of WIMPs is discussed.

  5. Classical interaction model for the water molecule.

    PubMed

    Baranyai, András; Bartók, Albert

    2007-05-14

    The authors propose a new classical model for the water molecule. The geometry of the molecule is built on the rigid TIP5P model and has the experimental gas phase dipole moment of water created by four equal point charges. The model preserves its rigidity but the size of the charges increases or decreases following the electric field created by the rest of the molecules. The polarization is expressed by an electric field dependent nonlinear polarization function. The increasing dipole of the molecule slightly increases the size of the water molecule expressed by the oxygen-centered sigma parameter of the Lennard-Jones interaction. After refining the adjustable parameters, the authors performed Monte Carlo simulations to check the ability of the new model in the ice, liquid, and gas phases. They determined the density and internal energy of several ice polymorphs, liquid water, and gaseous water and calculated the heat capacity, the isothermal compressibility, the isobar heat expansion coefficients, and the dielectric constant of ambient water. They also determined the pair-correlation functions of ambient water and calculated the energy of the water dimer. The accuracy of theirs results was satisfactory.

  6. Modeling mechanical interactions between cancerous mammary acini

    NASA Astrophysics Data System (ADS)

    Wang, Jeffrey; Liphardt, Jan; Rycroft, Chris

    2015-03-01

    The rules and mechanical forces governing cell motility and interactions with the extracellular matrix of a tissue are often critical for understanding the mechanisms by which breast cancer is able to spread through the breast tissue and eventually metastasize. Ex vivo experimentation has demonstrated the the formation of long collagen fibers through collagen gels between the cancerous mammary acini responsible for milk production, providing a fiber scaffolding along which cancer cells can disorganize. We present a minimal mechanical model that serves as a potential explanation for the formation of these collagen fibers and the resultant motion. Our working hypothesis is that cancerous cells induce this fiber formation by pulling on the gel and taking advantage of the specific mechanical properties of collagen. To model this system, we employ a new Eulerian, fixed grid simulation method to model the collagen as a nonlinear viscoelastic material subject to various forces coupled with a multi-agent model to describe individual cancer cells. We find that these phenomena can be explained two simple ideas: cells pull collagen radially inwards and move towards the tension gradient of the collagen gel, while being exposed to standard adhesive and collision forces.

  7. Integrating interactive computational modeling in biology curricula.

    PubMed

    Helikar, Tomáš; Cutucache, Christine E; Dahlquist, Lauren M; Herek, Tyler A; Larson, Joshua J; Rogers, Jim A

    2015-03-01

    While the use of computer tools to simulate complex processes such as computer circuits is normal practice in fields like engineering, the majority of life sciences/biological sciences courses continue to rely on the traditional textbook and memorization approach. To address this issue, we explored the use of the Cell Collective platform as a novel, interactive, and evolving pedagogical tool to foster student engagement, creativity, and higher-level thinking. Cell Collective is a Web-based platform used to create and simulate dynamical models of various biological processes. Students can create models of cells, diseases, or pathways themselves or explore existing models. This technology was implemented in both undergraduate and graduate courses as a pilot study to determine the feasibility of such software at the university level. First, a new (In Silico Biology) class was developed to enable students to learn biology by "building and breaking it" via computer models and their simulations. This class and technology also provide a non-intimidating way to incorporate mathematical and computational concepts into a class with students who have a limited mathematical background. Second, we used the technology to mediate the use of simulations and modeling modules as a learning tool for traditional biological concepts, such as T cell differentiation or cell cycle regulation, in existing biology courses. Results of this pilot application suggest that there is promise in the use of computational modeling and software tools such as Cell Collective to provide new teaching methods in biology and contribute to the implementation of the "Vision and Change" call to action in undergraduate biology education by providing a hands-on approach to biology.

  8. SABRINA: an interactive solid geometry modeling program for Monte Carlo

    SciTech Connect

    West, J.T.

    1985-01-01

    SABRINA is a fully interactive three-dimensional geometry modeling program for MCNP. In SABRINA, a user interactively constructs either body geometry, or surface geometry models, and interactively debugs spatial descriptions for the resulting objects. This enhanced capability significantly reduces the effort in constructing and debugging complicated three-dimensional geometry models for Monte Carlo Analysis.

  9. Detecting abandoned objects using interacting multiple models

    NASA Astrophysics Data System (ADS)

    Becker, Stefan; Münch, David; Kieritz, Hilke; Hübner, Wolfgang; Arens, Michael

    2015-10-01

    In recent years, the wide use of video surveillance systems has caused an enormous increase in the amount of data that has to be stored, monitored, and processed. As a consequence, it is crucial to support human operators with automated surveillance applications. Towards this end an intelligent video analysis module for real-time alerting in case of abandoned objects in public spaces is proposed. The overall processing pipeline consists of two major parts. First, person motion is modeled using an Interacting Multiple Model (IMM) filter. The IMM filter estimates the state of a person according to a finite-state, discrete-time Markov chain. Second, the location of persons that stay at a fixed position defines a region of interest, in which a nonparametric background model with dynamic per-pixel state variables identifies abandoned objects. In case of a detected abandoned object, an alarm event is triggered. The effectiveness of the proposed system is evaluated on the PETS 2006 dataset and the i-Lids dataset, both reflecting prototypical surveillance scenarios.

  10. Geodynamo Modeling of Core-Mantle Interactions

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)

    2001-01-01

    Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.

  11. Geodynamo Modeling of Core-Mantle Interactions

    NASA Technical Reports Server (NTRS)

    Kuang, Wei-Jia; Chao, Benjamin F.; Smith, David E. (Technical Monitor)

    2001-01-01

    Angular momentum exchange between the Earth's mantle and core influences the Earth's rotation on time scales of decades and longer, in particular in the length of day (LOD) which have been measured with progressively increasing accuracy for the last two centuries. There are four possible coupling mechanisms for transferring the axial angular momentum across the core-mantle boundary (CMB): viscous, magnetic, topography, and gravitational torques. Here we use our scalable, modularized, fully dynamic geodynamo model for the core to assess the importance of these torques. This numerical model, as an extension of the Kuang-Bloxham model that has successfully simulated the generation of the Earth's magnetic field, is used to obtain numerical results in various physical conditions in terms of specific parameterization consistent with the dynamical processes in the fluid outer core. The results show that depending on the electrical conductivity of the lower mantle and the amplitude of the boundary topography at CMB, both magnetic and topographic couplings can contribute significantly to the angular momentum exchange. This implies that the core-mantle interactions are far more complex than has been assumed and that there is unlikely a single dominant coupling mechanism for the observed decadal LOD variation.

  12. Interaction of elaiophylin with model bilayer membrane

    NASA Astrophysics Data System (ADS)

    Genova, J.; Dencheva-Zarkova, M.

    2017-01-01

    Elaiophylin is a new macrodiolide antibiotic, which is produced by the Streptomyces strains [1]. It displays biological activities against Gram-positive bacteria and fungi. The mode of action of this antibiotic has been attributed to an alteration of the membrane permeability. When this antibiotic is inserted into the bilayer membranes destabilization of the membrane and formation of ion-penetrable channels is observed. The macrodiolide antibiotic forms stable cation selective ion channels in synthetic lipid bilayer membranes. The aim of this work was to study the interactions of Elaiophylin with model bilayer membranes and to get information on the mechanical properties of lipid bilayers in presence of this antibiotic. Patch-clamp technique [2] were used in the study

  13. Interaction of arginine oligomer with model membrane

    SciTech Connect

    Yi, Dandan . E-mail: yi_dandan@yahoo.com.cn; Guoming, Li; Gao, Li; Wei, Liang

    2007-08-10

    Short oligomers of arginine (R8) have been shown to cross readily a variety of biological barriers. A hypothesis was put forward that inverted micelles form in biological membranes in the presence of arginine oligomer peptides, facilitating their transfer through the membranes. In order to define the role of peptide-lipid interaction in this mechanism, we prepared liposomes as the model membrane to study the ability of R8 inducing calcein release from liposomes, the fusion of liposomes, R8 binding to liposomes and membrane disturbing activity of the bound R8. The results show that R8 binding to liposome membrane depends on lipid compositions, negative surface charge density and interior water phase pH values of liposomes. R8 has no activity to induce the leakage of calcein from liposomes or improve liposome fusion. R8 does not permeabilize through the membrane spontaneously. These peptides delivering drugs through membranes may depend on receptors and energy.

  14. Magnetic Clouds Modeled As Interacting Toroidal Configurations

    NASA Astrophysics Data System (ADS)

    Fainberg, J.; Osherovich, V. A.

    Multiple loops can be seen in the solar corona before the onset of a coronal mass ejection (CME), during the event and after the CME. We apply multi-toroidal con- figurations to model CMEs and their interplanetary counterparts U magnetic clouds. Such solutions found as MHD bounded states describe a single toroid (ground state) and multiple toroids (excited states), (Osherovich 1975; Osherovich and Lawrence 1982). We analyze noncircular cross section of such toroids and compare the compo- nents of the magnetic field vector with in situ observations in interplanetary magnetic clouds. The interaction of CMEs with the global coronal field will also be discussed. References Osherovich, V.A., Sooln Dann No 8, 1975. Osherovich, V.A. and J.K. Lawrence, Sol. Phys. 88, 117, 1983.

  15. Institute for Multiscale Modeling of Biological Interactions

    SciTech Connect

    Paulaitis, Michael E; Garcia-Moreno, Bertrand; Lenhoff, Abraham

    2009-12-26

    The Institute for Multiscale Modeling of Biological Interactions (IMMBI) has two primary goals: Foster interdisciplinary collaborations among faculty and their research laboratories that will lead to novel applications of multiscale simulation and modeling methods in the biological sciences and engineering; and Building on the unique biophysical/biology-based engineering foundations of the participating faculty, train scientists and engineers to apply computational methods that collectively span multiple time and length scales of biological organization. The success of IMMBI will be defined by the following: Size and quality of the applicant pool for pre-doctoral and post-doctoral fellows; Academic performance; Quality of the pre-doctoral and post-doctoral research; Impact of the research broadly and to the DOE (ASCR program) mission; Distinction of the next career step for pre-doctoral and post-doctoral fellows; and Faculty collaborations that result from IMMBI activities. Specific details about accomplishments during the three years of DOE support for IMMBI have been documented in Annual Progress Reports (April 2005, June 2006, and March 2007) and a Report for a National Academy of Sciences Review (October 2005) that were submitted to DOE on the dates indicated. An overview of these accomplishments is provided.

  16. Interactions of amphipathic CPPs with model membranes.

    PubMed

    Deshayes, Sébastien; Konate, Karidia; Aldrian, Gudrun; Heitz, Frédéric; Divita, Gilles

    2011-01-01

    Due to the poor permeability of the plasma membrane, several strategies are designed to enhance the transfer of therapeutics into cells. Over the last 20 years, small peptides called Cell-Penetrating Peptides (CPPs) have been widely developed to improve the cellular delivery of biomolecules. These small peptides derive from protein transduction domains, chimerical constructs, or model sequences. Several CPPs are primary or secondary amphipathic peptides, depending on whether the distribution of their hydrophobic and hydrophilic domains occurs from their amino-acid sequence or through α-helical folding. Most of the CPPs are able to deliver different therapeutics such as nucleic acids or proteins in vitro and in vivo. Although their mechanisms of internalization are varied and controversial, the understanding of the intrinsic features of CPPs is essential for future developments. This chapter describes several protocols for the investigation of biophysical properties of amphipathic CPPs. Surface physics approaches are specifically applied to characterize the interactions of amphipathic peptides with model membranes. Circular dichroism and infra-red spectroscopy allow the identification of their structural state. These methods are exemplified by the analyses of the main biophysical features of the cell-penetrating peptides MPG, Pep-1, and CADY.

  17. Interactive Model Visualization for NET-VISA

    NASA Astrophysics Data System (ADS)

    Kuzma, H. A.; Arora, N. S.

    2013-12-01

    NET-VISA is a probabilistic system developed for seismic network processing of data measured on the International Monitoring System (IMS) of the Comprehensive nuclear Test Ban Treaty Organization (CTBTO). NET-VISA is composed of a Generative Model (GM) and an Inference Algorithm (IA). The GM is an explicit mathematical description of the relationships between various factors in seismic network analysis. Some of the relationships inside the GM are deterministic and some are statistical. Statistical relationships are described by probability distributions, the exact parameters of which (such as mean and standard deviation) are found by training NET-VISA using recent data. The IA uses the GM to evaluate the probability of various events and associations, searching for the seismic bulletin which has the highest overall probability and is consistent with a given set of measured arrivals. An Interactive Model Visualization tool (IMV) has been developed which makes 'peeking into' the GM simple and intuitive through a web-based interfaced. For example, it is now possible to access the probability distributions for attributes of events and arrivals such as the detection rate for each station for each of 14 phases. It also clarifies the assumptions and prior knowledge that are incorporated into NET-VISA's event determination. When NET-VISA is retrained, the IMV will be a visual tool for quality control both as a means of testing that the training has been accomplished correctly and that the IMS network has not changed unexpectedly. A preview of the IMV will be shown at this poster presentation. Homepage for the IMV IMV shows current model file and reference image.

  18. Experimental modelling of outburst flood - bed interactions

    NASA Astrophysics Data System (ADS)

    Carrivick, J. L.; Xie, Z.; Sleigh, A.; Hubbard, M.

    2009-04-01

    Outburst floods are a sudden release and advancing wave of water and sediment, with a peak discharge that is often several orders of magnitude greater than perennial flows. Common outburst floods from natural sources include those from glacial and moraine-impounded lakes, freshwater dyke and levee bursts, volcanic debris dams, landslides, avalanches, coastal bay-bars, and those from tree or vegetation dams. Outburst flood hazards are regularly incorporated into risk assessments for urban, coastal and mountainous areas, for example. Outburst flood hazards are primarily due to direct impacts, caused by a frontal surge wave, from debris within a flow body, and from the mass and consistency of the flows. A number of secondary impacts also pose hazards, including widespread deposition of sediment and blocked tributary streams. It is rapid landscape change, which is achieved the mobilization and redistribution of sediment that causes one of the greatest hazards due to outburst floods. The aim of this project is therefore to parameterise hydrodynamic - sedimentary interactions in experimental outburst floods. Specifically, this project applies laboratory flume modelling, which offers a hitherto untapped opportunity for examining complex interactions between water and sediment within outburst floods. The experimental set-up is of a tradition lock-gate design with a straight 4 m long tank. Hydraulics are scaled at 1:20 froude scale and the following controls on frontal wave flow-bed interactions and hence on rapid landscape change are being investigated: 1. Pre-existing mobile sediment effects, fixed bed roughness effects, sediment concentration effects, mobile bed effects. An emphasis is being maintained on examining the downstream temporal and spatial change in physical character of the water / sediment frontal wave. Facilities are state-of-the-art with a fully-automated laser bed-profiler to measure bed elevation after a run, Seatek arrays to measure transient flow

  19. Relationship between X(5) models and the interacting boson model

    SciTech Connect

    Barea, Jose; Arias, Jose M.; Garcia-Ramos, Jose Enrique

    2010-08-15

    The connections between the X(5) models [the original X(5) using an infinite square well, X(5)-{beta}{sup 8}, X(5)-{beta}{sup 6}, X(5)-{beta}{sup 4}, and X(5)-{beta}{sup 2}], based on particular solutions of the geometrical Bohr Hamiltonian with harmonic potential in the {gamma} degree of freedom, and the interacting boson model (IBM) are explored. This work is the natural extension of the work presented in Garcia-Ramos and Arias, Phys. Rev. C 77, 054307 (2008) for the E(5) models. For that purpose, a quite general one- and two-body IBM Hamiltonian is used and a numerical fit to the different X(5) model energies is performed; then the obtained wave functions are used to calculate B(E2) transition rates. It is shown that within the IBM one can reproduce well the results for energies and B(E2) transition rates obtained with all these X(5) models, although the agreement is not so impressive as for the E(5) models. From the fitted IBM parameters the corresponding energy surface can be extracted and, surprisingly, only the X(5) case corresponds in the moderately large N limit to an energy surface very close to the one expected for a critical point, whereas the rest of models are situated a little further away.

  20. Supervisor's Interactive Model of Organizational Relationships

    ERIC Educational Resources Information Center

    O'Reilly, Frances L.; Matt, John; McCaw, William P.

    2014-01-01

    The Supervisor's Interactive Model of Organizational Relationships (SIMOR) integrates two models addressed in the leadership literature and then highlights the importance of relationships. The Supervisor's Interactive Model of Organizational Relationships combines the modified Hersey and Blanchard model of situational leadership, the…

  1. Supervisor's Interactive Model of Organizational Relationships

    ERIC Educational Resources Information Center

    O'Reilly, Frances L.; Matt, John; McCaw, William P.

    2014-01-01

    The Supervisor's Interactive Model of Organizational Relationships (SIMOR) integrates two models addressed in the leadership literature and then highlights the importance of relationships. The Supervisor's Interactive Model of Organizational Relationships combines the modified Hersey and Blanchard model of situational leadership, the…

  2. 3D Models of Stellar Interactions

    NASA Astrophysics Data System (ADS)

    Mohamed, S.; Podsiadlowski, Ph.; Booth, R.; Maercker, M.; Ramstedt, S.; Vlemmings, W.; Harries, T.; Mackey, J.; Langer, N.; Corradi, R.

    2014-04-01

    Symbiotic binaries consist of a cool, evolved mass-losing giant and an accreting compact companion. As symbiotic nebulae show similar morphologies to those in planetary nebulae (so much so that it is often difficult to distinguish between the two), they are ideal laboratories for understanding the role a binary companion plays in shaping the circumstellar envelopes in these evolved systems. We will present 3D Smoothed Particle Hydrodynamics (SPH) models of interacting binaries, e.g. R Aquarii and Mira, and discuss the formation of spiral outflows, arcs, shells and equatorial density enhancements.We will also discuss the implications of the former for planetary nebulae, e.g. the Egg Nebula and Cat's Eye, and the latter for the formation of bipolar geometries, e.g. M2-9. We also investigate accretion and angular momentum evolution in symbiotic binaries which may be important to understand the formation of jets and more episodic mass-loss features we see in circumstellar envelopes and the orbital characteristics of binary central stars of planetary nebulae.

  3. Model ecosystems with random nonlinear interspecies interactions

    NASA Astrophysics Data System (ADS)

    Santos, Danielle O. C.; Fontanari, José F.

    2004-12-01

    The principle of competitive exclusion in ecology establishes that two species living together cannot occupy the same ecological niche. Here we present a model ecosystem in which the species are described by a series of phenotypic characters and the strength of the competition between two species is given by a nondecreasing (modulating) function of the number of common characters. Using analytical tools of statistical mechanics we find that the ecosystem diversity, defined as the fraction of species that coexist at equilibrium, decreases as the complexity (i.e., number of characters) of the species increases, regardless of the modulating function. By considering both selective and random elimination of the links in the community web, we show that ecosystems composed of simple species are more robust than those composed of complex species. In addition, we show that the puzzling result that there exists either rich or poor ecosystems for a linear modulating function is not typical of communities in which the interspecies interactions are determined by a complementarity rule.

  4. Nanoparticle interaction with model lung surfactant monolayers

    PubMed Central

    Harishchandra, Rakesh Kumar; Saleem, Mohammed; Galla, Hans-Joachim

    2010-01-01

    One of the most important functions of the lung surfactant monolayer is to form the first line of defence against inhaled aerosols such as nanoparticles (NPs), which remains largely unexplored. We report here, for the first time, the interaction of polyorganosiloxane NPs (AmorSil20: 22 nm in diameter) with lipid monolayers characteristic of alveolar surfactant. To enable a better understanding, the current knowledge about an established model surface film that mimics the surface properties of the lung is reviewed and major results originating from our group are summarized. The pure lipid components dipalmitoylphosphatidylcholine and dipalmitoylphosphatidylglycerol have been used to study the biophysical behaviour of their monolayer films spread at the air–water interface in the presence of NPs. Film balance measurements combined with video-enhanced fluorescence microscopy have been used to investigate the formation of domain structures and the changes in the surface pattern induced by NPs. We are able to show that NPs are incorporated into lipid monolayers with a clear preference for defect structures at the fluid–crystalline interface leading to a considerable monolayer expansion and fluidization. NPs remain at the air–water interface probably by coating themselves with lipids in a self-assembly process, thereby exhibiting hydrophobic surface properties. We also show that the domain structure in lipid layers containing surfactant protein C, which is potentially responsible for the proper functioning of surfactant material, is considerably affected by NPs. PMID:19846443

  5. Model ecosystems with random nonlinear interspecies interactions.

    PubMed

    Santos, Danielle O C; Fontanari, José F

    2004-12-01

    The principle of competitive exclusion in ecology establishes that two species living together cannot occupy the same ecological niche. Here we present a model ecosystem in which the species are described by a series of phenotypic characters and the strength of the competition between two species is given by a nondecreasing (modulating) function of the number of common characters. Using analytical tools of statistical mechanics we find that the ecosystem diversity, defined as the fraction of species that coexist at equilibrium, decreases as the complexity (i.e., number of characters) of the species increases, regardless of the modulating function. By considering both selective and random elimination of the links in the community web, we show that ecosystems composed of simple species are more robust than those composed of complex species. In addition, we show that the puzzling result that there exists either rich or poor ecosystems for a linear modulating function is not typical of communities in which the interspecies interactions are determined by a complementarity rule.

  6. Approaches to Testing Interaction Effects Using Structural Equation Modeling Methodology.

    ERIC Educational Resources Information Center

    Li, Fuzhong; Harmer, Peter; Duncan, Terry E.; Duncan, Susan C.; Acock, Alan; Boles, Shawn

    1998-01-01

    Reviews a single indicator approach and multiple indicator approaches that simplify testing interaction effects using structural equation modeling. An illustrative application examines the interactive effect of perceptions of competence and perceptions of autonomy on exercise-intrinsic motivation. (SLD)

  7. Functionalized Anatomical Models for EM-Neuron Interaction Modeling

    PubMed Central

    Neufeld, Esra; Cassará, Antonino Mario; Montanaro, Hazael; Kuster, Niels; Kainz, Wolfgang

    2017-01-01

    The understanding of interactions between electromagnetic (EM) fields and nerves are crucial in contexts ranging from therapeutic neurostimulation to low frequency EM exposure safety. To properly consider the impact of in-vivo induced field inhomogeneity on non-linear neuronal dynamics, coupled EM-neuronal dynamics modeling is required. For that purpose, novel functionalized computable human phantoms have been developed. Their implementation and the systematic verification of the integrated anisotropic quasi-static EM solver and neuronal dynamics modeling functionality, based on the method of manufactured solutions and numerical reference data, is described. Electric and magnetic stimulation of the ulnar and sciatic nerve were modeled to help understanding a range of controversial issues related to the magnitude and optimal determination of strength-duration (SD) time constants. The results indicate the importance of considering the stimulation-specific inhomogeneous field distributions (especially at tissue interfaces), realistic models of non-linear neuronal dynamics, very short pulses, and suitable SD extrapolation models. These results and the functionalized computable phantom will influence and support the development of safe and effective neuroprosthetic devices and novel electroceuticals. Furthermore they will assist the evaluation of existing low frequency exposure standards for the entire population under all exposure conditions. PMID:27224508

  8. Functionalized anatomical models for EM-neuron Interaction modeling

    NASA Astrophysics Data System (ADS)

    Neufeld, Esra; Cassará, Antonino Mario; Montanaro, Hazael; Kuster, Niels; Kainz, Wolfgang

    2016-06-01

    The understanding of interactions between electromagnetic (EM) fields and nerves are crucial in contexts ranging from therapeutic neurostimulation to low frequency EM exposure safety. To properly consider the impact of in vivo induced field inhomogeneity on non-linear neuronal dynamics, coupled EM-neuronal dynamics modeling is required. For that purpose, novel functionalized computable human phantoms have been developed. Their implementation and the systematic verification of the integrated anisotropic quasi-static EM solver and neuronal dynamics modeling functionality, based on the method of manufactured solutions and numerical reference data, is described. Electric and magnetic stimulation of the ulnar and sciatic nerve were modeled to help understanding a range of controversial issues related to the magnitude and optimal determination of strength-duration (SD) time constants. The results indicate the importance of considering the stimulation-specific inhomogeneous field distributions (especially at tissue interfaces), realistic models of non-linear neuronal dynamics, very short pulses, and suitable SD extrapolation models. These results and the functionalized computable phantom will influence and support the development of safe and effective neuroprosthetic devices and novel electroceuticals. Furthermore they will assist the evaluation of existing low frequency exposure standards for the entire population under all exposure conditions.

  9. Search for contact interactions in the dielectron channel in p-p collisions at √s=8

    SciTech Connect

    Lamichhane, Pramod

    2013-01-01

    A possible explanation of mass hierarchy, which is not explained by the Standard Model, is that quarks and leptons are composite objects made of more fundamental particles known as preons. The existence of preons will be manifest as a four fermion contact interaction in the annihilation of a quark and anti-quark, in a p-p collision, producing positron-electron pairs. At high mass, such pairs are also produced from off-shell Z and γ bosons. This thesis provides a detailed discussion of the analysis strategy to study these processes using the Compact Muon Solenoid Experiment at the Large Hadron Collider. The study utilizes data recorded in 2012 at √s = 8 TeV, corresponding to an integrated luminosity of 19.6 fb-1. The dielectron mass spectrum above 300 GeV shows no significant deviation from the prediction of the Standard Model. In the framework of the left-left iso-scalar model of eeqq contact interactions, 95\\% CL lower limits on the energy scale parameter are found for destructive (13.1 TeV) and constructive (18.3 TeV) interference between the contact and standard model amplitudes. These limits are the most stringent to date.

  10. AISIM (Automated Interactive Simulation Modeling System) VAX Version Training Manual.

    DTIC Science & Technology

    1985-02-01

    AD-Ri6t 436 AISIM (RUTOMATED INTERACTIVE SIMULATION MODELING 1/2 SYSTEM) VAX VERSION TRAI (U) HUGHES AIRCRAFT CO FULLERTON CA GROUND SYSTEMS GROUP S...Continue on reverse if necessary and Identify by block number) THIS DOCUMENT IS THE TRAINING MANUAL FOR THE AUTOMATED INTERACTIVE SIMULATION MODELING SYSTEM...form. Page 85 . . . . . . . . APPENDIX B SIMULATION REPORT FOR WORKING EXAMPLE Pa jPage.8 7AD-Ai6i 46 ISIM (AUTOMATED INTERACTIVE SIMULATION MODELING 2

  11. String coupling and interactions in type IIB matrix model

    SciTech Connect

    Kitazawa, Yoshihisa; Nagaoka, Satoshi

    2009-05-15

    We investigate the interactions of closed strings in a IIB matrix model. The basic interaction of the closed superstring is realized by the recombination of two intersecting strings. Such interaction is investigated in a IIB matrix model via two-dimensional noncommutative gauge theory in the IR limit. By estimating the probability of the recombination, we identify the string coupling g{sub s} in the IIB matrix model. We confirm that our identification is consistent with matrix string theory.

  12. Search for Contact Interactions in the Dimuon Channel in $pp$ Collisions at $\\sqrt{s} = 7$ TeV at CMS

    SciTech Connect

    Gollapinni, Sowjanya

    2012-01-01

    The standard model fails to explain the variety of observed quark and lepton avors and their masses suggesting that there might exist a more fundamental basis. If quarks and leptons are composite particles made up of more basic constituents, a new physics interaction in the form of a four-fermion contact interaction arises between them. Experimentally the signal is manifest as a deviation from the standard model prediction in the high-mass tail for the invariant mass distribution of the opposite-sign dimuon pairs. The Large Hadron Collider accelerator at the Center for European Nuclear Research is built to explore new physics possibilities from proton-proton collisions occurring at the world's highest center-of-mass energy. This thesis discusses in detail a search strategy for a new physics possibility based on a left-handed current model of contact interactions. Based on 5.3 fb-1 of 2011 data as collected by the Compact Muon Solenoid detector, exclusion lower limits at 95% con dence level are set on the compositeness energy scale , for both destructive and constructive interferences of the new physics with the standard model Drell-Yan process. These limits form the most stringent limits to date and exceed the current published limits signi cantly.

  13. Interactive Multimedia and Model-based Learning in Biology.

    ERIC Educational Resources Information Center

    Buckley, Barbara C.

    2000-01-01

    Documents a case of model-building in biology through microanalysis of one student's interaction with "Science for Living: The Circulatory System (SFL)", an interactive multimedia resource prototype for research. Describes the student's learning goals, gains, and activities with particular attention to interactions with representations,…

  14. Interactive Multimedia and Model-based Learning in Biology.

    ERIC Educational Resources Information Center

    Buckley, Barbara C.

    2000-01-01

    Documents a case of model-building in biology through microanalysis of one student's interaction with "Science for Living: The Circulatory System (SFL)", an interactive multimedia resource prototype for research. Describes the student's learning goals, gains, and activities with particular attention to interactions with representations,…

  15. Biological models and statistical interactions: an example from multistage carcinogenesis.

    PubMed

    Siemiatycki, J; Thomas, D C

    1981-12-01

    From the assessment of statistical interaction between risk factors it is tempting to infer the nature of the biologic interaction between the factors. However, the use of statistical analyses of epidemiologic data to infer biologic processes can be misleading. as an example, we consider the multistage model of carcinogenesis. Under this biologic model, it is shown, by means of simple hypothetical examples, that even if carcinogenic factors act independently, some pairs may fit an additive statistical model, some a multiplicative statistical model, and some neither. The elucidation of biological interactions by means of statistical models requires the imaginative and prudent use of inductive and deductive reasoning; it cannot be done mechanically.

  16. Dynamical symmetry breaking in models with the Yukawa interaction

    SciTech Connect

    Ksenzov, V. G.; Romanov, A. I.

    2013-04-15

    The models with a massless fermion and a self-interacting massive scalar field with the Yukawa interaction are discussed. The chiral condensate and the fermion mass are calculated analytically through a one-loop approximation in (1 + 1)-dimensions. It is shown that the models have a phase transition as a function of the squared mass of the scalar field.

  17. Evaluation Novelty in Modeling-Based and Interactive Engagement Instruction

    ERIC Educational Resources Information Center

    Örnek, Funda

    2007-01-01

    A calculus-based introductory physics course, which is based on the Matter and Interactions curriculum of Chabay and Sherwood (2002), has been taught at Purdue University. Characteristic of this course is its emphasis on modeling. Therefore, I would like to investigate the effects of modeling-based instruction and interactive engagement on…

  18. Cyberdemocracy and Online Politics: A New Model of Interactivity

    ERIC Educational Resources Information Center

    Ferber, Paul; Foltz, Franz; Pugliese, Rudy

    2007-01-01

    Building on McMillan's two-way model of interactivity, this study presents a three-way model of interactive communication, which is used to assess political Web sites' progress toward the ideals of cyberdemocracy and the fostering of public deliberation. Results of a 3-year study of state legislature Web sites, an analysis of the community…

  19. Cyberdemocracy and Online Politics: A New Model of Interactivity

    ERIC Educational Resources Information Center

    Ferber, Paul; Foltz, Franz; Pugliese, Rudy

    2007-01-01

    Building on McMillan's two-way model of interactivity, this study presents a three-way model of interactive communication, which is used to assess political Web sites' progress toward the ideals of cyberdemocracy and the fostering of public deliberation. Results of a 3-year study of state legislature Web sites, an analysis of the community…

  20. A Social Interaction Model of Reading. Technical Report No. 218.

    ERIC Educational Resources Information Center

    Bruce, Bertram

    A model for the levels of social interaction between author and reader provides a framework for examining the devices through which the author engages the reader. An important aspect of this model is the creation of additional levels of social interaction involving, for example, an "implied author" and an "implied reader."…

  1. Cyberpsychology: a human-interaction perspective based on cognitive modeling.

    PubMed

    Emond, Bruno; West, Robert L

    2003-10-01

    This paper argues for the relevance of cognitive modeling and cognitive architectures to cyberpsychology. From a human-computer interaction point of view, cognitive modeling can have benefits both for theory and model building, and for the design and evaluation of sociotechnical systems usability. Cognitive modeling research applied to human-computer interaction has two complimentary objectives: (1) to develop theories and computational models of human interactive behavior with information and collaborative technologies, and (2) to use the computational models as building blocks for the design, implementation, and evaluation of interactive technologies. From the perspective of building theories and models, cognitive modeling offers the possibility to anchor cyberpsychology theories and models into cognitive architectures. From the perspective of the design and evaluation of socio-technical systems, cognitive models can provide the basis for simulated users, which can play an important role in usability testing. As an example of application of cognitive modeling to technology design, the paper presents a simulation of interactive behavior with five different adaptive menu algorithms: random, fixed, stacked, frequency based, and activation based. Results of the simulation indicate that fixed menu positions seem to offer the best support for classification like tasks such as filing e-mails. This research is part of the Human-Computer Interaction, and the Broadband Visual Communication research programs at the National Research Council of Canada, in collaboration with the Carleton Cognitive Modeling Lab at Carleton University.

  2. Polymer Interaction in a Model Bioblend

    USDA-ARS?s Scientific Manuscript database

    EBU/PS blends of varying compositions were investigated using TGA, MDSC, and FTIR-PAS methods. The goal of the investigation was that of probing for the presence or lack of intermolecular interactions between the two polymers. The TGA investigation showed at least one blend composition with better...

  3. Conversation as a Model of Instructional Interaction

    ERIC Educational Resources Information Center

    Van Bramer, Joan

    2003-01-01

    The role of social context and the nature of human interaction provide rich resources for the study of learning and human cognition. In order to understand these elements more fully, it is important to consider the language in use within these contexts. The early intervention Reading Recovery is grounded in the belief that the conversation between…

  4. Developing Interactive Instructional Materials: A Model.

    ERIC Educational Resources Information Center

    Henderson, Craig; And Others

    Many colleges and departments at Tennessee Technological University, as well as most other major universities, are progressing toward more interactive instructional materials. The benefits of implementing instructional technology are numerous and diverse. However, because of increasingly austere budgets, a focused and cost-effective approach to…

  5. User Interaction Modeling and Profile Extraction in Interactive Systems: A Groupware Application Case Study †

    PubMed Central

    Tîrnăucă, Cristina; Duque, Rafael; Montaña, José L.

    2017-01-01

    A relevant goal in human–computer interaction is to produce applications that are easy to use and well-adjusted to their users’ needs. To address this problem it is important to know how users interact with the system. This work constitutes a methodological contribution capable of identifying the context of use in which users perform interactions with a groupware application (synchronous or asynchronous) and provides, using machine learning techniques, generative models of how users behave. Additionally, these models are transformed into a text that describes in natural language the main characteristics of the interaction of the users with the system. PMID:28726762

  6. User Interaction Modeling and Profile Extraction in Interactive Systems: A Groupware Application Case Study.

    PubMed

    Tîrnăucă, Cristina; Duque, Rafael; Montaña, José L

    2017-07-20

    A relevant goal in human-computer interaction is to produce applications that are easy to use and well-adjusted to their users' needs. To address this problem it is important to know how users interact with the system. This work constitutes a methodological contribution capable of identifying the context of use in which users perform interactions with a groupware application (synchronous or asynchronous) and provides, using machine learning techniques, generative models of how users behave. Additionally, these models are transformed into a text that describes in natural language the main characteristics of the interaction of the users with the system.

  7. Turbulent Chemical Interaction Models in NCC: Comparison

    NASA Technical Reports Server (NTRS)

    Norris, Andrew T.; Liu, Nan-Suey

    2006-01-01

    The performance of a scalar PDF hydrogen-air combustion model in predicting a complex reacting flow is evaluated. In addition the results are compared to those obtained by running the same case with the so-called laminar chemistry model and also a new model based on the concept of mapping partially stirred reactor data onto perfectly stirred reactor data. The results show that the scalar PDF model produces significantly different results from the other two models, and at a significantly higher computational cost.

  8. A new interaction potential for swarming models

    NASA Astrophysics Data System (ADS)

    Carrillo, J. A.; Martin, S.; Panferov, V.

    2013-10-01

    We consider a self-propelled particle system which has been used to describe certain types of collective motion of animals, such as fish schools and bird flocks. Interactions between particles are specified by means of a pairwise potential, repulsive at short ranges and attractive at longer ranges. The exponentially decaying Morse potential is a typical choice, and is known to reproduce certain types of collective motion observed in nature, particularly aligned flocks and rotating mills. We introduce a class of interaction potentials, that we call Quasi-Morse, for which flock and rotating mills states are also observed numerically, however in that case the corresponding macroscopic equations allow for explicit solutions in terms of special functions, with coefficients that can be obtained numerically without solving the particle evolution. We compare the obtained solutions with long-time dynamics of the particle systems and find a close agreement for several types of flock and mill solutions.

  9. Geoacoustic Physical Modeling: Volume-Roughness Interactions

    DTIC Science & Technology

    2008-09-30

    important break by showing its relationship to the angle of repose , a fundamental feature of granular sediments (such as sands)[Ivakin, 2005...significant considering the fact that the slope of roughness at sub-cm scales at SAX99 site is large and can be close to both angle of repose and...roughness interactions and should be very pronounced at near- and sub-critical grazing angles . For example, the very first theoretical considerations

  10. Modeling Microbiological Interactions with Hydrothermal Flow

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori

    2006-01-01

    All organisms require energy. Characterizing and quantifying the biological demand for energy places constraints on the possible interactions of organisms with each other and with the environment. This talk will consider energetic and mass transfer constraints on the ecology of hydrothermal vent microbes. Following a general introduction to the biological energy requirements and their link to environmental conditions, energy constraints will be applied to several vent-relevant case studies.

  11. Modeling Microbiological Interactions with Hydrothermal Flow

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori

    2006-01-01

    All organisms require energy. Characterizing and quantifying the biological demand for energy places constraints on the possible interactions of organisms with each other and with the environment. This talk will consider energetic and mass transfer constraints on the ecology of hydrothermal vent microbes. Following a general introduction to the biological energy requirements and their link to environmental conditions, energy constraints will be applied to several vent-relevant case studies.

  12. Model for High-Speed Interaction Heating.

    DTIC Science & Technology

    1982-12-01

    confined reverse flow region. The classical Howarth boundary-layer separation calculation involves an ex- ternal flow with a linearly decreasing edge...flows separate and never re- attach. In order to circumvent this behavior, the classical Howarth example was modified by maintaining the edge velocity...113-127. 3. Golstein , S., Quart. J. Mech Appl. Math. 1, 1948, 43. 4. Wigton, L. B. and Holt, M., "Viscous-Inviscid Interaction in Transonic Flow

  13. Modeling land use interaction using linguistic variables

    NASA Astrophysics Data System (ADS)

    Karimi, Mohammad; Sharifi, Mohammad Ali; Mesgari, Mohammad Saadi

    2012-06-01

    One of the main factors of land use change (LUC) modeling is the land use intersection (LUI) or neighborhood effect, which is normally modeled using cellular automata (CA) concept. The effects of LUI over distance are represented in terms of CA transition rules. In this paper, a new model for LUI process is developed that makes use of expert knowledge to define the transition rules. In this model, the region of influence is defined using a new radial structure; the transition rules are described by expert knowledge and spatial metrics in the form of linguistic variables; and finally, the neighborhood effect is classified into three groups of compactness, dependency and incompatibility. The model is implemented and evaluated using the data of Borkhar and Meymeh township, in Esfahan, Iran, for the two periods of 1986-1998 and 1998-2005. The results show that the model and its related concept are performing rather well.

  14. Interactive communication systems simulation model - ICSSM

    NASA Astrophysics Data System (ADS)

    Wade, W. D.; Mortara, M. E.; Leong, P. K.; Frost, V. S.

    1984-01-01

    The design of ICSSM, a nonreal time computer-aided simulation and analysis tool for communications systems, is presented, ICSSM is capable of supporting modeling, simulation, and analysis of any system representable in terms of a network of multiport functional blocks. Its applicability is limited only by the modeler's ingenuity to decompose the system to functional blocks and to represent these functional blocks algorithmically. ICSSM has been constructed modularly, consisting of five subsytems to facilitate the tasks of formulating the model, exercising the model, evaluating and showing the simulation results, and storing and maintaining a library of modeling elements, analysis, and utility subroutines. It is written exclusively in ANSI Standard Fortran IV language, and is now operational in a Honeywell DPS 7/80 M computer under the MULTICS Operating System. Description of a recent simulation using ICSSM and some generic modules of general interest developed as a result of the modeling work are also presented.

  15. Mathematical Modeling of Circadian and Homeostatic Interaction

    DTIC Science & Technology

    2011-11-16

    Williams and C. Diniz Behn. A Hodgkin- Huxley -type model orexin neuron. SLEEP 32, A25, 2009. 4) C. Diniz Behn, D. Pal, G. Vanini, R. Lydic, G. A. Mashour...Switzerland, September 2009. 11) K. Williams, “A Hodgkin- Huxley -type model orexin neuron”, Associated Professional Sleep Societies Annual Meeting...Seattle, WA, June 2009. 12) K. Williams, “Dynamics in a Hodgkin- Huxley -type model orexin neuron”, Society for Industrial and Applied Mathematics Annual

  16. The GOURD model of human-computer interaction

    SciTech Connect

    Goldbogen, G.

    1996-12-31

    This paper presents a model, the GOURD model, that can be used to measure the goodness of {open_quotes}interactivity{close_quotes} of an interface design and qualifies how to improve the design. The GOURD model describes what happens to the computer and to the human during a human-computer interaction. Since the interaction is generally repeated, the traversal of the model repeatedly is similar to a loop programming structure. Because the model measures interaction over part or all of the application, it can also be used as a classifier of the part or the whole application. But primarily, the model is used as a design guide and a predictor of effectiveness.

  17. Mathematical Modelling of Laser/Material Interactions.

    DTIC Science & Technology

    1983-11-25

    translated to the model input. Even an experimental mode print can also be digitalised for the model. In trying to describe high order modes matliematically...4. Mazumder J. Steen W.M. "Welding of Ti 6al - 4V by continuous wave CO2 laser". Metal construction Sept. 1980 pp423 - 427. 5. Kogelnik H, Li.T Proc

  18. MODELING DISPERSANT INTERACTIONS WITH OIL SPILLS

    EPA Science Inventory

    EPA is developing a model called the EPA Research Object-Oriented Oil Spill Model (ERO3S) and associated databases to simulate the impacts of dispersants on oil slicks. Because there are features of oil slicks that align naturally with major concepts of object-oriented programmi...

  19. MODELING DISPERSANT INTERACTIONS WITH OIL SPILLS

    EPA Science Inventory

    EPA is developing a model called the EPA Research Object-Oriented Oil Spill Model (ERO3S) and associated databases to simulate the impacts of dispersants on oil slicks. Because there are features of oil slicks that align naturally with major concepts of object-oriented programmi...

  20. Interactive Model-Centric Systems Engineering (IMCSE) Phase Two

    DTIC Science & Technology

    2015-02-28

    point in time by a single decision maker; multi- sensory representations may allow for some loosening of this constraint and improve human -model...important in the practice of SE. To take advantage of model-based techniques, it is important to improve human and technology integration. The...research program aims to develop transformative results through enabling intense human -model interaction, to rapidly conceive of systems and interact

  1. Proton-neutron interacting boson model under random two-body interactions

    SciTech Connect

    Yoshida, N.; Zhao, Y. M.; Arima, A.

    2009-12-15

    The low-lying states of sd-boson systems in the presence of random two-body interactions are studied in the proton-neutron interacting boson model (IBM-2). The predominance of spin-zero ground states is confirmed, and a very prominent maximum F-spin dominance in ground states is found. It turns out that the requirement of random interactions with F-spin conservation intensifies the above predominance. Collective motion in the low-lying states is discussed.

  2. Effective Interactions from No Core Shell Model

    SciTech Connect

    Dikmen, E.; Lisetskiy, A. F.; Barrett, B. R.; Navratil, P.; Vary, J. P.

    2008-11-11

    We construct the many-body effective Hamiltonian for pf-shell by carrying out 2({Dirac_h}/2{pi}){omega}. NCSM calculations at the 2-body cluster level. We demonstrate how the effective Hamiltonian derived from realistic nucleon-nucleon (NN) potentials for the 2({Dirac_h}/2{pi}){omega} NCSM space should be modified to properly account for the many-body correlations produced by truncating to the major pf-shell. We obtain two-body effective interactions for the pf-shell by using direct projection and use them to reproduce the results of large scale NCSM for other light Ca isotopes.

  3. Interactive model building for Q-learning.

    PubMed

    Laber, Eric B; Linn, Kristin A; Stefanski, Leonard A

    2014-10-20

    Evidence-based rules for optimal treatment allocation are key components in the quest for efficient, effective health care delivery. Q-learning, an approximate dynamic programming algorithm, is a popular method for estimating optimal sequential decision rules from data. Q-learning requires the modeling of nonsmooth, nonmonotone transformations of the data, complicating the search for adequately expressive, yet parsimonious, statistical models. The default Q-learning working model is multiple linear regression, which is not only provably misspecified under most data-generating models, but also results in nonregular regression estimators, complicating inference. We propose an alternative strategy for estimating optimal sequential decision rules for which the requisite statistical modeling does not depend on nonsmooth, nonmonotone transformed data, does not result in nonregular regression estimators, is consistent under a broader array of data-generation models than Q-learning, results in estimated sequential decision rules that have better sampling properties, and is amenable to established statistical approaches for exploratory data analysis, model building, and validation. We derive the new method, IQ-learning, via an interchange in the order of certain steps in Q-learning. In simulated experiments IQ-learning improves on Q-learning in terms of integrated mean squared error and power. The method is illustrated using data from a study of major depressive disorder.

  4. INFUSION: Modeling Robot and Crew Interaction

    NASA Technical Reports Server (NTRS)

    Laufenberg, Lawrence

    2003-01-01

    Brahms is a multi-agent modeling and simulation language and distributed runtime system developed at NASA. It can be used to model and run a simualtion of the distributed work activities of multiple agents, such as humans,robots, and software agents, to coordinate a mission on one or more locations.Brahms is being used to model activities at the Flashline Man Arctic Research Station for possible use in planning Mars missions. The station is located at Haughton Crater, Devon Island, Nutiavut, Arctic Canada.

  5. Water simulation model with explicit three-molecule interactions.

    PubMed

    Kumar, R; Skinner, J L

    2008-07-17

    Much effort has been directed at developing models for the computer simulation of liquid water. The simplest models involve effective two-molecule interactions, parametrized from experiment, for use in classical molecular dynamics simulations. These models have been very successful in describing the structure and dynamics of liquid water at room temperature and one atmosphere pressure. A completely successful model, however, should be robust enough to describe the properties of liquid water at other thermodynamic points, water's complicated phase diagram, heterogeneous situations like the liquid/vapor interface, ionic, and other aqueous solutions, and confined and biological water. In this paper, we develop a new classical simulation model with explicit three-molecule interactions. These interactions presumably make the model more robust in the senses described above, and since they are short-ranged, the model is efficient to simulate. The model is formulated as a perturbation from a classical two-molecule interaction model, where the forms of the correction to the two-molecule term and the three-molecule terms result from electronic structure calculations on dimers and trimers. The magnitudes of these perturbations, however, are determined empirically. The resulting model improves upon the well-known two-molecule interaction models for both static and dynamic properties.

  6. Pedagogical Interaction in High School, the Structural and Functional Model of Pedagogical Interaction

    ERIC Educational Resources Information Center

    Semenova, Larissa A.; Kazantseva, Anastassiya I.; Sergeyeva, Valeriya V.; Raklova, Yekaterina M.; Baiseitova, Zhanar B.

    2016-01-01

    The study covers the problems of pedagogical technologies and their experimental implementation in the learning process. The theoretical aspects of the "student-teacher" interaction are investigated. A structural and functional model of pedagogical interaction is offered, which determines the conditions for improving pedagogical…

  7. Modeling Type-IIn Interacting Supernovae

    NASA Astrophysics Data System (ADS)

    McDowell, Austin; Duffell, Paul; Kasen, Daniel

    2017-01-01

    Spectra of Type-IIn Supernovae (SNe) have shown evidence of interaction between SN ejecta and a surrounding circumstellar medium (CSM). Namely, narrow Hydrogen lines indicate that the fast moving ejecta slows after it collides with the slow moving CSM. However, observations of eta-Carinae and spectropolarimetry of SN2009ip during its 2012 explosion have shown that the CSM may often be asymmetric. In this study, we investigate the ability of an asymmetric CSM to disguise the characteristic narrow H lines expected from Type-IIn SNe. We perform two-dimensional hydrodynamic simulations of the interaction between supernova ejecta and CSM. The simulations are run using the moving-mesh hydrodynamics code JET. Previous studies have ignored possible asymmetries by limiting their calculations to one-dimension or assuming a spherically symmetric CSM. We calculate shock propagation within the disk and CSM heating rate to produce mock-bolometric light curves. We also track unshocked CSM mass and speculate on its effects on the observation of H lines.

  8. Modelling refractive index changes due to molecular interactions

    NASA Astrophysics Data System (ADS)

    Varma, Manoj

    2016-03-01

    There are a large number of sensing techniques which use optical changes to monitor interactions between molecules. In the absence of fluorophores or other labels, the basic signal transduction mechanism relies on refractive index changes arising from the interactions of the molecules involved. A quantitative model incorporating molecular transport, reaction kinetics and optical mixing is presented which reveals important insights concerning the optimal detection of molecular interactions optically. Although conceptually simple, a comprehensive model such as this has not been reported anywhere. Specifically, we investigate the pros and cons of detecting molecular interactions in free solution relative to detecting molecular interactions on surfaces using surface bound receptor molecules such as antibodies. The model reveals that the refractive index change produced in surface based sensors is 2-3 orders of magnitude higher than that from interactions in free solution. On the other hand, the model also reveals that it is indeed possible to distinguish specific molecular interactions from non-specific ones based on free-solution bulk refractometry without any washing step necessary in surface based sensors. However, the refractive index change for free solution interactions predicted by the model is smaller than 10-7 RIU, even for large proteins such as IgG in sufficiently high concentrations. This value is smaller than the typical 10-6 RIU detection limit of most state of the art optical sensing techniques therefore requiring techniques with substantially higher index sensitivity such as Back Scattering Interferometry.

  9. Model Compound Interactions Characterizing Aquatic Humic Substances

    DTIC Science & Technology

    1990-01-01

    Isolation...............48 3.3.2 Titration Apparatus..............49 3.3.3 Potentiometric Titrations ..........52 3.3.4 Complexometric Titrations ...Potentiometric Titrations ..........57 4.2.2 Complexometric Titrations ..........61 4.3 Natural Sources and Model Compound Mixtures . .. 69 4.3.1...groundwater ........ .................... 50 3.4 Milli-Q complexometric titrations ... ......... .54 4.1a Potentiometric titration of model compounds

  10. Utilitarian supersymmetric gauge model of particle interactions

    NASA Astrophysics Data System (ADS)

    Ma, Ernest

    2010-05-01

    A remarkabale U(1) gauge extension of the supersymmetric standard model was proposed 8 years ago. It is anomaly free, has no μ term, and conserves baryon and lepton numbers automatically. The phenomenology of a specific version of this model is discussed. In particular, leptoquarks are predicted, with couplings to the heavy singlet neutrinos, the scalar partners of which may be components of dark matter. The Majorana neutrino mass matrix itself may have two zero subdeterminants.

  11. Approaches to modelling hydrology and ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Silberstein, Richard P.

    2014-05-01

    As the pressures of industry, agriculture and mining on groundwater resources increase there is a burgeoning un-met need to be able to capture these multiple, direct and indirect stresses in a formal framework that will enable better assessment of impact scenarios. While there are many catchment hydrological models and there are some models that represent ecological states and change (e.g. FLAMES, Liedloff and Cook, 2007), these have not been linked in any deterministic or substantive way. Without such coupled eco-hydrological models quantitative assessments of impacts from water use intensification on water dependent ecosystems under changing climate are difficult, if not impossible. The concept would include facility for direct and indirect water related stresses that may develop around mining and well operations, climate stresses, such as rainfall and temperature, biological stresses, such as diseases and invasive species, and competition such as encroachment from other competing land uses. Indirect water impacts could be, for example, a change in groundwater conditions has an impact on stream flow regime, and hence aquatic ecosystems. This paper reviews previous work examining models combining ecology and hydrology with a view to developing a conceptual framework linking a biophysically defensable model that combines ecosystem function with hydrology. The objective is to develop a model capable of representing the cumulative impact of multiple stresses on water resources and associated ecosystem function.

  12. Supersonic jet and crossflow interaction: Computational modeling

    NASA Astrophysics Data System (ADS)

    Hassan, Ez; Boles, John; Aono, Hikaru; Davis, Douglas; Shyy, Wei

    2013-02-01

    The supersonic jet-in-crossflow problem which involves shocks, turbulent mixing, and large-scale vortical structures, requires special treatment for turbulence to obtain accurate solutions. Different turbulence modeling techniques are reviewed and compared in terms of their performance in predicting results consistent with the experimental data. Reynolds-averaged Navier-Stokes (RANS) models are limited in prediction of fuel structure due to their inability to accurately capture unsteadiness in the flow. Large eddy simulation (LES) is not yet practical due to prohibitively large grid requirement near the wall. Hybrid RANS/LES can offer reasonable compromise between accuracy and efficiency. The hybrid models are based on various approaches such as explicit blending of RANS and LES, detached eddy simulation (DES), and filter-based multi-scale models. In particular, they can be used to evaluate the turbulent Schmidt number modeling techniques used in jet-in-crossflow simulations. Specifically, an adaptive approach can be devised by utilizing the information obtained from the resolved field to help assign the value of turbulent Schmidt number in the sub-filter field. The adaptive approach combined with the multi-scale model improves the results especially when highly refined grids are needed to resolve small structures involved in the mixing process.

  13. Ferromagnetic interaction model of activity level in workplace communication

    NASA Astrophysics Data System (ADS)

    Akitomi, Tomoaki; Ara, Koji; Watanabe, Jun-ichiro; Yano, Kazuo

    2013-03-01

    The nature of human-human interaction, specifically, how people synchronize with each other in multiple-participant conversations, is described by a ferromagnetic interaction model of people’s activity levels. We found two microscopic human interaction characteristics from a real-environment face-to-face conversation. The first characteristic is that people quite regularly synchronize their activity level with that of the other participants in a conversation. The second characteristic is that the degree of synchronization increases as the number of participants increases. Based on these microscopic ferromagnetic characteristics, a “conversation activity level” was modeled according to the Ising model. The results of a simulation of activity level based on this model well reproduce macroscopic experimental measurements of activity level. This model will give a new insight into how people interact with each other in a conversation.

  14. Modeling of particle interactions in magnetorheological elastomers

    SciTech Connect

    Biller, A. M. Stolbov, O. V. Raikher, Yu. L.

    2014-09-21

    The interaction between two particles made of an isotropic linearly polarizable magnetic material and embedded in an elastomer matrix is studied. In this case, when an external field is imposed, the magnetic attraction of the particles, contrary to point dipoles, is almost wraparound. The exact solution of the magnetic problem in the linear polarization case, although existing, is not practical; to circumvent its use, an interpolation formula is proposed. One more interpolation expression is developed for the resistance of the elastic matrix to the field-induced particle displacements. Minimization of the total energy of the pair reveals its configurational bistability in a certain field range. One of the possible equilibrium states corresponds to the particles dwelling at a distance, the other—to their collapse in a tight dimer. This mesoscopic bistability causes magnetomechanical hysteresis which has important implications for the macroscopic behavior of magnetorheological elastomers.

  15. RF models for plasma-surface interactions

    NASA Astrophysics Data System (ADS)

    Jenkins, Thomas; Smithe, David; Lin, Ming-Chieh; Kruger, Scott; Stoltz, Peter

    2013-09-01

    Computational models for DC and oscillatory (RF-driven) sheath potentials, arising at metal or dielectric-coated surfaces in contact with plasma, are developed within the VSim code and applied in parameter regimes characteristic of fusion plasma experiments and plasma processing scenarios. Results from initial studies quantifying the effects of various dielectric wall coating materials and thicknesses on these sheath potentials, as well as on the ensuing flux of plasma particles to the wall, are presented. As well, the developed models are used to model plasma-facing ICRF antenna structures in the ITER device; we present initial assessments of the efficacy of dielectric-coated antenna surfaces in reducing sputtering-induced high-Z impurity contamination of the fusion reaction. Funded by U.S. DoE via a Phase I SBIR grant, award DE-SC0009501.

  16. One-Dimensional Ising Model with "k"-Spin Interactions

    ERIC Educational Resources Information Center

    Fan, Yale

    2011-01-01

    We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…

  17. AIC, BIC, Bayesian evidence against the interacting dark energy model

    NASA Astrophysics Data System (ADS)

    Szydłowski, Marek; Krawiec, Adam; Kurek, Aleksandra; Kamionka, Michał

    2015-01-01

    Recent astronomical observations have indicated that the Universe is in a phase of accelerated expansion. While there are many cosmological models which try to explain this phenomenon, we focus on the interacting CDM model where an interaction between the dark energy and dark matter sectors takes place. This model is compared to its simpler alternative—the CDM model. To choose between these models the likelihood ratio test was applied as well as the model comparison methods (employing Occam's principle): the Akaike information criterion (AIC), the Bayesian information criterion (BIC) and the Bayesian evidence. Using the current astronomical data: type Ia supernova (Union2.1), , baryon acoustic oscillation, the Alcock-Paczynski test, and the cosmic microwave background data, we evaluated both models. The analyses based on the AIC indicated that there is less support for the interacting CDM model when compared to the CDM model, while those based on the BIC indicated that there is strong evidence against it in favor of the CDM model. Given the weak or almost non-existing support for the interacting CDM model and bearing in mind Occam's razor we are inclined to reject this model.

  18. One-Dimensional Ising Model with "k"-Spin Interactions

    ERIC Educational Resources Information Center

    Fan, Yale

    2011-01-01

    We examine a generalization of the one-dimensional Ising model involving interactions among neighbourhoods of "k" adjacent spins. The model is solved by exploiting a connection to an interesting computational problem that we call ""k"-SAT on a ring", and is shown to be equivalent to the nearest-neighbour Ising model in the absence of an external…

  19. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    ERIC Educational Resources Information Center

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  20. Problem Solving: Physics Modeling-Based Interactive Engagement

    ERIC Educational Resources Information Center

    Ornek, Funda

    2009-01-01

    The purpose of this study was to investigate how modeling-based instruction combined with an interactive-engagement teaching approach promotes students' problem solving abilities. I focused on students in a calculus-based introductory physics course, based on the matter and interactions curriculum of Chabay & Sherwood (2002) at a large state…

  1. Self-consistent Models of Strong Interaction with Chiral Symmetry

    DOE R&D Accomplishments Database

    Nambu, Y.; Pascual, P.

    1963-04-01

    Some simple models of (renormalizable) meson-nucleon interaction are examined in which the nucleon mass is entirely due to interaction and the chiral ( gamma {sub 5}) symmetry is "broken'' to become a hidden symmetry. It is found that such a scheme is possible provided that a vector meson is introduced as an elementary field. (auth)

  2. Levels of Interaction Provided by Online Distance Education Models

    ERIC Educational Resources Information Center

    Alhih, Mohammed; Ossiannilsson, Ebba; Berigel, Muhammet

    2017-01-01

    Interaction plays a significant role to foster usability and quality in online education. It is one of the quality standard to reveal the evidence of practice in online distance education models. This research study aims to evaluate levels of interaction in the practices of distance education centres. It is aimed to provide online distance…

  3. Bilingual Lexical Interactions in an Unsupervised Neural Network Model

    ERIC Educational Resources Information Center

    Zhao, Xiaowei; Li, Ping

    2010-01-01

    In this paper we present an unsupervised neural network model of bilingual lexical development and interaction. We focus on how the representational structures of the bilingual lexicons can emerge, develop, and interact with each other as a function of the learning history. The results show that: (1) distinct representations for the two lexicons…

  4. Models: Electric and Magnetic Interactions, Teacher's Guide.

    ERIC Educational Resources Information Center

    Karplus, Robert

    The unit presented in this teacher's guide is one of two developed for the sixth and final year in the Science Curriculum Improvement Study (SCIS) curriculum. The concept of a scientific model is introduced in this unit with activities directed toward increasing student understanding of electric and magnetic phenomena through concrete experience…

  5. Models: Electric and Magnetic Interactions, Teacher's Guide.

    ERIC Educational Resources Information Center

    Karplus, Robert

    The unit presented in this teacher's guide is one of two developed for the sixth and final year in the Science Curriculum Improvement Study (SCIS) curriculum. The concept of a scientific model is introduced in this unit with activities directed toward increasing student understanding of electric and magnetic phenomena through concrete experience…

  6. An Integrative-Interactive Conceptual Model for Curriculum Development.

    ERIC Educational Resources Information Center

    Al-Ibrahim, Abdul Rahman H.

    1982-01-01

    The Integrative-Interactive Conceptual Model for Curriculum Development calls for curriculum reform and innovation to be cybernetic so that all aspects of curriculum planning get adequate attention. (CJ)

  7. A Study of Fan Stage/Casing Interaction Models

    NASA Technical Reports Server (NTRS)

    Lawrence, Charles; Carney, Kelly; Gallardo, Vicente

    2003-01-01

    The purpose of the present study is to investigate the performance of several existing and new, blade-case interactions modeling capabilities that are compatible with the large system simulations used to capture structural response during blade-out events. Three contact models are examined for simulating the interactions between a rotor bladed disk and a case: a radial and linear gap element and a new element based on a hydrodynamic formulation. The first two models are currently available in commercial finite element codes such as NASTRAN and have been showed to perform adequately for simulating rotor-case interactions. The hydrodynamic model, although not readily available in commercial codes, may prove to be better able to characterize rotor-case interactions.

  8. Electrochemical modelling of QD-phospholipid interactions.

    PubMed

    Zhang, Shengwen; Chen, Rongjun; Malhotra, Girish; Critchley, Kevin; Vakurov, Alexander; Nelson, Andrew

    2014-04-15

    The aggregation of quantum dots (QDs) and capping of individual QDs affects their activity towards biomembrane models. Electrochemical methods using a phospholipid layer on mercury (Hg) membrane model have been used to determine the phospholipid monolayer activity of thioglycollic acid (TGA) coated quantum dots (QDs) as an indicator of biomembrane activity. The particles were characterised for size and charge. The activity of the QDs towards dioleoyl phosphatidylcholine (DOPC) monolayers is pH dependent, and is most active at pH 8.2 within the pH range 8.2-6.5 examined in this work. This pH dependent activity is the result of increased particle aggregation coupled to decreasing surface charge emanating from the TGA carboxylic groups employed to stabilize the QD dispersion in aqueous media. Capping the QDs with CdS/ZnS lowers the particles' activity to phospholipid monolayers. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Molecular modeling in dioxane methanol interaction.

    PubMed

    Sharma, Dipti; Sahoo, Sagarika; Mishra, Bijay K

    2014-09-01

    Molecular interaction between dioxane and methanol involves certain polar and nonpolar bonding to form a one to one complex. Interatomic distances between hydrogen and oxygen within 3 Å have been considered as hydrogen bonding. Optimizations of the structures of dioxane-methanol complexes were carried out considering any spatial orientation of a methanol molecule around a chair/boat/twisted-boat conformation of dioxane. From 45 different orientations of dioxane and water, 23 different structures with different local minima were obtained and the structural characteristics like interatomic distances, bond angles, dihedral angles, dipole moment of each complex were discussed. The most stable structure, i.e., with minimum heat of formation is found to have a chair form dioxane, one O-H…O, and two C-H…O hydrogen bonds. In general, the O-H…O hydrogen bonds have an average distance of 1.8 Å while C-H…O bonds have 2.6 Å. The binding energy of the dioxane-methanol complex is found to be a linear function of number of O-H…O and C-H…O bonds, and hydrogen bond length.

  10. Building Interdisciplinary Research Models through Interactive Education

    PubMed Central

    Hessels, Amanda; Robinson, Brian; O’Rourke, Michael; Begg, Melissa D.; Larson, Elaine

    2015-01-01

    Background Critical interdisciplinary research skills include effective communication with diverse disciplines and cultivating collaborative relationships. Acquiring these skills during graduate education may foster future interdisciplinary research quality and productivity. Objective The project aim was to develop and evaluate an interactive Toolbox workshop approach within an inter-professional graduate level course to enhance student learning and skill in interdisciplinary research. We sought to examine the student experience of integrating the Toolbox workshop in modular format over the duration of a 14 week course. Methods The Toolbox Health Sciences Instrument includes six modules that were introduced in a 110-minute dialogue session during the first class and then integrated into the course in a series of six individual workshops in three phases over the course of the semester. Results Seventeen students participated; the majority were nursing students. Three measures were used to assess project outcomes: pre-post intervention Toolbox survey, competency self-assessment and a post-course survey. All measures indicated the objectives were met by a change in survey responses, improved competencies and favorable experience of the Toolbox modular intervention. Conclusion Our experience indicates that incorporating this Toolbox modular approach into research curricula can enhance individual level scientific capacity, future interdisciplinary research project success, and ultimately impact on practice and policy. PMID:26636555

  11. Modeling Electrocardiograms Using Interacting Markov Chains.

    DTIC Science & Technology

    1985-07-01

    13. ABSTRACT lConngjae on mwee if meeery and Idl.. Iy by Msh numiri In this paper we develop a methodology for the statistical modeling of cardiac...portion of an atrial submodel might initiate the gen - eration of a P wave in the corresponding electromagnetic submodel. The mathematical structure of...III.IIIIIIIIIIIIII IIIIIIIIIIIIf. EEEEEEEEE 11111 .0 Q.028 MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS- 1963- A % 5A %- *~~~ ~ %SS.S* * AFOSR.TR

  12. Pluto: Modeling of 3-D Atmosphere-Surface Interactions

    NASA Astrophysics Data System (ADS)

    Michaels, Timothy I.

    2015-11-01

    Atmosphere-surface interactions on Pluto are of great importance to creating and maintaining the atmospheric variations and heterogeneous surface that have been observed by New Horizons and two decades' prior work. Publicly released images/data from New Horizons contain numerous fascinating surface features and constrasts. Insights into their origin, maintenance, and/or evolution may be gleaned through multidisciplinary climate modeling. Some results from such modeling will be presented, with an emphasis on shorter-timescale interactions.

  13. Phase space analysis of some interacting Chaplygin gas models

    NASA Astrophysics Data System (ADS)

    Khurshudyan, M.; Myrzakulov, R.

    2017-02-01

    In this paper we discuss a phase space analysis of various interacting Chaplygin gas models in general relativity. Linear and nonlinear sign changeable interactions are considered. For each case appropriate late time attractors of field equations are found. The Chaplygin gas is one of the dark fluids actively considered in modern cosmology due to the fact that it is a joint model of dark energy and dark matter.

  14. Membrane–drug interactions studied using model membrane systems

    PubMed Central

    Knobloch, Jacqueline; Suhendro, Daniel K.; Zieleniecki, Julius L.; Shapter, Joseph G.; Köper, Ingo

    2015-01-01

    The direct interaction of drugs with the cell membrane is often neglected when drug effects are studied. Systematic investigations are hindered by the complexity of the natural membrane and model membrane systems can offer a useful alternative. Here some examples are reviewed of how model membrane architectures including vesicles, Langmuir monolayers and solid supported membranes can be used to investigate the effects of drug molecules on the membrane structure, and how these interactions can translate into effects on embedded membrane proteins. PMID:26586998

  15. Application of large eddy interaction model to a mixing layer

    NASA Technical Reports Server (NTRS)

    Murthy, S. N. B.

    1989-01-01

    The large eddy interaction model (LEIM) is a statistical model of turbulence based on the interaction of selected eddies with the mean flow and all of the eddies in a turbulent shear flow. It can be utilized as the starting point for obtaining physical structures in the flow. The possible application of the LEIM to a mixing layer formed between two parallel, incompressible flows with a small temperature difference is developed by invoking a detailed similarity between the spectra of velocity and temperature.

  16. Turbulence modeling in shock wave/turbulent boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Smits, A. J.

    1992-01-01

    The research performed was an experimental program to help develop turbulence models for shock wave boundary layer interactions. The measurements were taken in a Mach 3, 16 deg compression corner interaction, at a unit Reynolds number of 63 x 10(exp 6)/m. The data consisted of heat transfer data taken upstream and downstream of the interaction, hot wire measurements of the instantaneous temperature and velocity fluctuations to verify the Strong Reynolds Analogy, and single- and double-pulsed Rayleigh scattering images to study the development of the instantaneous shock/turbulence interaction.

  17. Modeling of Interactions of Ablated Plumes

    DTIC Science & Technology

    2008-02-01

    C). B. The governing equations and the numerical method The developed model is based on the compressible two-species Euler and Navier - Stokes equations ...heat transfer at 20 km are obtained by solving the inviscid Euler and viscous Navier - Stokes equations (see Fig. 2). Note that in this and subsequent...altitude 20kmn: a-b) plume concentration -t 45l) and c-d) heat transfer coefficient, where a,c) Euler equations and b,d) Navier - Stokes equations . III

  18. Modeling the interaction of ultrasound with pores

    NASA Technical Reports Server (NTRS)

    Lu, Yichi; Wadley, Haydn N. G.; Parthasarathi, Sanjai

    1991-01-01

    Factors that affect ultrasonic velocity sensing of density during consolidation of metal powders are examined. A comparison is made between experimental results obtained during the final stage of densification and the predictions of models that assume either a spherical or a spheroidal pore shape. It is found that for measurements made at low frequencies during the final stage of densification, relative density (pore fraction) and pore shape are the two most important factors determining the ultrasonic velocity, the effect of pore size is negligible.

  19. Improved simulation of groundwater - surface water interaction in catchment models

    NASA Astrophysics Data System (ADS)

    teklesadik, aklilu; van Griensven, Ann; Anibas, Christian; Huysmans, Marijke

    2016-04-01

    Groundwater storage can have a significant contribution to stream flow, therefore a thorough understanding of the groundwater surface water interaction is of prime important when doing catchment modeling. The aim of this study is to improve the simulation of groundwater - surface water interaction in a catchment model of the upper Zenne River basin located in Belgium. To achieve this objective we used the "Groundwater-Surface water Flow" (GSFLOW) modeling software, which is an integration of the surface water modeling tool "Precipitation and Runoff Modeling system" (PRMS) and the groundwater modeling tool MODFLOW. For this case study, the PRMS model and MODFLOW model were built and calibrated independently. The PRMS upper Zenne River basin model is divided into 84 hydrological response units (HRUs) and is calibrated with flow data at the Tubize gauging station. The spatial discretization of the MODFLOW upper Zenne groundwater flow model consists of 100m grids. Natural groundwater divides and the Brussels-Charleroi canal are used as boundary conditions for the MODFLOW model. The model is calibrated using piezometric data. The GSFLOW results were evaluated against a SWAT model application and field observations of groundwater-surface water interactions along a cross section of the Zenne River and riparian zone. The field observations confirm that there is no exchange of groundwater beyond the Brussel-Charleroi canal and that the interaction at the river bed is relatively low. The results show that there is a significant difference in the groundwater simulations when using GSFLOW versus SWAT. This indicates that the groundwater component representation in the SWAT model could be improved and that a more realistic implementation of the interactions between groundwater and surface water is advisable. This could be achieved by integrating SWAT and MODFLOW.

  20. Modeling of high power laser interaction with metals

    NASA Astrophysics Data System (ADS)

    Mustafa, Kurt; Zahide, Demircioǧlu

    2017-02-01

    Laser matter interaction has been very popular subject from the first recognition of lasers. Laser application in industry or laboratory applications are based on definite interactions of the laser beam with the workpiece. In this paper, an effective model related with high power radiation interaction with metals is presented. In metals, Lorentz-Drude model is used calculate permeability theoretically. The plasma frequency was calculated at various temperatures and using the obtained results the refractive index of the metal (Ag) was investigated. The calculation result revealed that the effect of the temperature need to be considered at reflection and transmission of the laser beam.

  1. Filament Interaction Modeled by Flux Rope Reconnection

    NASA Astrophysics Data System (ADS)

    Török, T.; Chandra, R.; Pariat, E.; Démoulin, P.; Schmieder, B.; Aulanier, G.; Linton, M. G.; Mandrini, C. H.

    2011-02-01

    Hα observations of solar active region NOAA 10501 on 2003 November 20 revealed a very uncommon dynamic process: during the development of a nearby flare, two adjacent elongated filaments approached each other, merged at their middle sections, and separated again, thereby forming stable configurations with new footpoint connections. The observed dynamic pattern is indicative of "slingshot" reconnection between two magnetic flux ropes. We test this scenario by means of a three-dimensional zero β magnetohydrodynamic simulation, using a modified version of the coronal flux rope model by Titov and Démoulin as the initial condition for the magnetic field. To this end, a configuration is constructed that contains two flux ropes which are oriented side-by-side and are embedded in an ambient potential field. The choice of the magnetic orientation of the flux ropes and of the topology of the potential field is guided by the observations. Quasi-static boundary flows are then imposed to bring the middle sections of the flux ropes into contact. After sufficient driving, the ropes reconnect and two new flux ropes are formed, which now connect the former adjacent flux rope footpoints of opposite polarity. The corresponding evolution of filament material is modeled by calculating the positions of field line dips at all times. The dips follow the morphological evolution of the flux ropes, in qualitative agreement with the observed filaments.

  2. Element-specific density profiles in interacting biomembrane models

    NASA Astrophysics Data System (ADS)

    Schneck, Emanuel; Rodriguez-Loureiro, Ignacio; Bertinetti, Luca; Marin, Egor; Novikov, Dmitri; Konovalov, Oleg; Gochev, Georgi

    2017-03-01

    Surface interactions involving biomembranes, such as cell-cell interactions or membrane contacts inside cells play important roles in numerous biological processes. Structural insight into the interacting surfaces is a prerequisite to understand the interaction characteristics as well as the underlying physical mechanisms. Here, we work with simplified planar experimental models of membrane surfaces, composed of lipids and lipopolymers. Their interaction is quantified in terms of pressure-distance curves using ellipsometry at controlled dehydrating (interaction) pressures. For selected pressures, their internal structure is investigated by standing-wave x-ray fluorescence (SWXF). This technique yields specific density profiles of the chemical elements P and S belonging to lipid headgroups and polymer chains, as well as counter-ion profiles for charged surfaces.

  3. New generation of exploration tools: interactive modeling software and microcomputers

    SciTech Connect

    Krajewski, S.A.

    1986-08-01

    Software packages offering interactive modeling techniques are now available for use on microcomputer hardware systems. These packages are reasonably priced for both company and independent explorationists; they do not require users to have high levels of computer literacy; they are capable of rapidly completing complex ranges of sophisticated geologic and geophysical modeling tasks; and they can produce presentation-quality output for comparison with real-world data. For example, interactive packages are available for mapping, log analysis, seismic modeling, reservoir studies, and financial projects as well as for applying a variety of statistical and geostatistical techniques to analysis of exploration data. More importantly, these packages enable explorationists to directly apply their geologic expertise when developing and fine-tuning models for identifying new prospects and for extending producing fields. As a result of these features, microcomputers and interactive modeling software are becoming common tools in many exploration offices. Gravity and magnetics software programs illustrate some of the capabilities of such exploration tools.

  4. A Nonlinear Interactions Approximation Model for Large-Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Haliloglu, Mehmet U.; Akhavan, Rayhaneh

    2003-11-01

    A new approach to LES modelling is proposed based on direct approximation of the nonlinear terms \\overlineu_iuj in the filtered Navier-Stokes equations, instead of the subgrid-scale stress, τ_ij. The proposed model, which we call the Nonlinear Interactions Approximation (NIA) model, uses graded filters and deconvolution to parameterize the local interactions across the LES cutoff, and a Smagorinsky eddy viscosity term to parameterize the distant interactions. A dynamic procedure is used to determine the unknown eddy viscosity coefficient, rendering the model free of adjustable parameters. The proposed NIA model has been applied to LES of turbulent channel flows at Re_τ ≈ 210 and Re_τ ≈ 570. The results show good agreement with DNS not only for the mean and resolved second-order turbulence statistics but also for the full (resolved plus subgrid) Reynolds stress and turbulence intensities.

  5. Interaction field modeling of mini-UAV swarm

    NASA Astrophysics Data System (ADS)

    Liou, William W.; Ro, Kapseong; Szu, Harold

    2006-05-01

    A behavior-based, simple interaction model inspired by molecular interaction field depicted by the Lennard-Jones function is examined for the averaged interaction in swarming. The modeled kinematic equation of motion contains only one variable, instead of a multiple state variable dependence a more complete dynamics entails. The model assumes a spatial distribution of the potential associate with the swarm. The model has been applied to examine the formation of swarm and the results are reported. The modeling can be reflected in an equilibrium theory for the operation of a swarm of mini-UAVs pioneered by Szu, where every member serves the mission while exploiting other's loss, resulting in a zero-sum game among the team members.

  6. Two-dimensional XXZ-Ising model with quartic interactions.

    PubMed

    Valverde, J S

    2012-05-01

    In this work we study a two-dimensional XXZ-Ising spin-1/2 model with quartic interactions. The model is composed of a two-dimensional lattice of edge-sharing unitary cells, where each cell consists of two triangular prisms, converging in a basal plane with four Ising spin-1/2 (open circles); the apical positions are also occupied by four Heisenberg spin-1/2 (solid circles). Interaction of the base plane containing the multispin Ising interaction has the parameter J_{4}, and the other pairwise interactions have parameter J. For the proposed model we construct the phase diagram at zero temperature and give all possible spin configurations. In addition, we investigate two regions where the model can be solved exactly, the free fermion condition (FFC) and the symmetrical eight-vertex condition (SEVC). For this purpose we perform a straightforward mapping for a zero-field eight-vertex model. The necessary conditions for the equivalence are analyzed for all ranges of the interaction parameters. Unfortunately, the present model does not satisfy the FFC unless the trivial case; however, it was possible to give a region where the model can be solved approximately. We study the SEVC and verify that this condition is always satisfied. We also explore and discuss the critical conditions giving the region where these critical points are relevant.

  7. Predicting genetic interactions from Boolean models of biological networks.

    PubMed

    Calzone, Laurence; Barillot, Emmanuel; Zinovyev, Andrei

    2015-08-01

    Genetic interaction can be defined as a deviation of the phenotypic quantitative effect of a double gene mutation from the effect predicted from single mutations using a simple (e.g., multiplicative or linear additive) statistical model. Experimentally characterized genetic interaction networks in model organisms provide important insights into relationships between different biological functions. We describe a computational methodology allowing us to systematically and quantitatively characterize a Boolean mathematical model of a biological network in terms of genetic interactions between all loss of function and gain of function mutations with respect to all model phenotypes or outputs. We use the probabilistic framework defined in MaBoSS software, based on continuous time Markov chains and stochastic simulations. In addition, we suggest several computational tools for studying the distribution of double mutants in the space of model phenotype probabilities. We demonstrate this methodology on three published models for each of which we derive the genetic interaction networks and analyze their properties. We classify the obtained interactions according to their class of epistasis, dependence on the chosen initial conditions and the phenotype. The use of this methodology for validating mathematical models from experimental data and designing new experiments is discussed.

  8. Towards a Revised Monte Carlo Neutral Particle Surface Interaction Model

    SciTech Connect

    D.P. Stotler

    2005-06-09

    The components of the neutral- and plasma-surface interaction model used in the Monte Carlo neutral transport code DEGAS 2 are reviewed. The idealized surfaces and processes handled by that model are inadequate for accurately simulating neutral transport behavior in present day and future fusion devices. We identify some of the physical processes missing from the model, such as mixed materials and implanted hydrogen, and make some suggestions for improving the model.

  9. Modeling Human Dynamics of Face-to-Face Interaction Networks

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2013-04-01

    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of interconversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here we present a simple model that reproduces quantitatively most of the relevant features of empirical face-to-face interaction networks. The model describes agents that perform a random walk in a two-dimensional space and are characterized by an attractiveness whose effect is to slow down the motion of people around them. The proposed framework sheds light on the dynamics of human interactions and can improve the modeling of dynamical processes taking place on the ensuing dynamical social networks.

  10. Shock Particle Interaction - Fully Resolved Simulations and Modeling

    NASA Astrophysics Data System (ADS)

    Mehta, Yash; Neal, Chris; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth

    2016-11-01

    Currently there is a substantial lack of fully resolved data for shock interacting with multiple particles. In this talk we will fill this gap by presenting results of shock interaction with 1-D array and 3-D structured arrays of particles. Objectives of performing fully resolved simulations of shock propagation through packs of multiple particles are twofold, 1) To understand the complicated physical phenomena occurring during shock particle interaction, and 2) To translate the knowledge from microscale simulations in building next generation point-particle models for macroscale simulations that can better predict the motion (forces) and heat transfer for particles. We compare results from multiple particle simulations against the single particle simulations and make relevant observations. The drag history and flow field for multiple particle simulations are markedly different from those of single particle simluations, highlighting the effect of neighboring particles. We propose new models which capture this effect of neighboring particles. These models are called Pair-wise Interaction Extended Point Particle models (PIEP). Effect of multiple neighboring particles is broken down into pair-wise interactions, and these pair-wise interactions are superimposed to get the final model U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.

  11. Comparison of ICME Parameters Using Drag Based Model for Interacting and Non-interacting CMEs

    NASA Astrophysics Data System (ADS)

    Prasanna Subramanian, S.; Shanmugaraju, A.; Vrřnak, B.

    It is well known that solar wind drag is an important parameter for propagation of CMEs in the interplanetary space. In the present work, we utilize the Drag Based Model (DBM) developed recently by Vrš}nak et al., (2013) to obtain the travel time of CMEs from the Sun to the Earth and speed of interplanetary CME (ICME) near the Earth using the initial parameters of CMEs near the Sun. For this study, we consider the list of 91 CME-ICME pairs given by Manoharan et al., (2004). These events were observed during the period 1997-2002 and the list includes 66 non-interacting and 25 interacting events. The aim of this study is to compare the observed parameters of CMEs/ICMEs (transit time of CMEs and speed of ICMEs) in interacting and non-interacting events with the parameters derived from the DBM. The results obtained from this analysis are: (i) The CME transit times and ICME speeds derived from the model are nearly consistent with the observations for non-interacting CMEs (correlation coefficient = 0.70). But, they deviate from the model results for interacting CMEs (correlation coefficient = 0.45). (ii) While the deviation in transit times is symmetrical (± 20 hours) for non-interacting events and it is positive asymmetric for interacting CMEs according to its mean transit time values. (iii) The ICME speeds derived from the model for most of the interacting CMEs are slightly higher than the observed values, whereas, they seem to be similar for non-interacting events. (iv) When the transit times and ICME speeds near the Earth are determined for various solar wind speeds, it is seen that the derived and observed values are in agreement for a solar wind speed of 500 km s^{-1}. (v) Also, the percentage of error between the DBM value and observed value (at solar wind speed 400 km s^{-1}) shows that the derived parameters of more than 80% of events have less than 30% error. This analysis is useful to evaluate the forecasting model in general and to compare the interacting

  12. Galaxy Zoo: Mergers - Dynamical models of interacting galaxies

    NASA Astrophysics Data System (ADS)

    Holincheck, Anthony J.; Wallin, John F.; Borne, Kirk; Fortson, Lucy; Lintott, Chris; Smith, Arfon M.; Bamford, Steven; Keel, William C.; Parrish, Michael

    2016-06-01

    The dynamical history of most merging galaxies is not well understood. Correlations between galaxy interaction and star formation have been found in previous studies, but require the context of the physical history of merging systems for full insight into the processes that lead to enhanced star formation. We present the results of simulations that reconstruct the orbit trajectories and disturbed morphologies of pairs of interacting galaxies. With the use of a restricted three-body simulation code and the help of citizen scientists, we sample 105 points in parameter space for each system. We demonstrate a successful recreation of the morphologies of 62 pairs of interacting galaxies through the review of more than 3 million simulations. We examine the level of convergence and uniqueness of the dynamical properties of each system. These simulations represent the largest collection of models of interacting galaxies to date, providing a valuable resource for the investigation of mergers. This paper presents the simulation parameters generated by the project. They are now publicly available in electronic format at http://data.galaxyzoo.org/mergers.html. Though our best-fitting model parameters are not an exact match to previously published models, our method for determining uncertainty measurements will aid future comparisons between models. The dynamical clocks from our models agree with previous results of the time since the onset of star formation from starburst models in interacting systems and suggest that tidally induced star formation is triggered very soon after closest approach.

  13. A random interacting network model for complex networks

    PubMed Central

    Goswami, Bedartha; Shekatkar, Snehal M.; Rheinwalt, Aljoscha; Ambika, G.; Kurths, Jürgen

    2015-01-01

    We propose a RAndom Interacting Network (RAIN) model to study the interactions between a pair of complex networks. The model involves two major steps: (i) the selection of a pair of nodes, one from each network, based on intra-network node-based characteristics, and (ii) the placement of a link between selected nodes based on the similarity of their relative importance in their respective networks. Node selection is based on a selection fitness function and node linkage is based on a linkage probability defined on the linkage scores of nodes. The model allows us to relate within-network characteristics to between-network structure. We apply the model to the interaction between the USA and Schengen airline transportation networks (ATNs). Our results indicate that two mechanisms: degree-based preferential node selection and degree-assortative link placement are necessary to replicate the observed inter-network degree distributions as well as the observed inter-network assortativity. The RAIN model offers the possibility to test multiple hypotheses regarding the mechanisms underlying network interactions. It can also incorporate complex interaction topologies. Furthermore, the framework of the RAIN model is general and can be potentially adapted to various real-world complex systems. PMID:26657032

  14. Validation of a transparent decision model to rate drug interactions

    PubMed Central

    2012-01-01

    Background Multiple databases provide ratings of drug-drug interactions. The ratings are often based on different criteria and lack background information on the decision making process. User acceptance of rating systems could be improved by providing a transparent decision path for each category. Methods We rated 200 randomly selected potential drug-drug interactions by a transparent decision model developed by our team. The cases were generated from ward round observations and physicians’ queries from an outpatient setting. We compared our ratings to those assigned by a senior clinical pharmacologist and by a standard interaction database, and thus validated the model. Results The decision model rated consistently with the standard database and the pharmacologist in 94 and 156 cases, respectively. In two cases the model decision required correction. Following removal of systematic model construction differences, the DM was fully consistent with other rating systems. Conclusion The decision model reproducibly rates interactions and elucidates systematic differences. We propose to supply validated decision paths alongside the interaction rating to improve comprehensibility and to enable physicians to interpret the ratings in a clinical context. PMID:22950884

  15. Coexistence of interacting opinions in a generalized Sznajd model.

    PubMed

    Timpanaro, André M; Prado, Carmen P C

    2011-08-01

    The Sznajd model is a sociophysics model that mimics the propagation of opinions in a closed society, where the interactions favor groups of agreeing people. It is based in the Ising and Potts ferromagnetic models and, although the original model used only linear chains, it has since been adapted to general networks. This model has a very rich transient, which has been used to model several aspects of elections, but its stationary states are always consensus states. In order to model more complex behaviors, we have, in a recent work, introduced the idea of biases and prejudices to the Sznajd model by generalizing the bounded confidence rule, which is common to many continuous opinion models, to what we called confidence rules. In that work we have found that the mean field version of this model (corresponding to a complete network) allows for stationary states where noninteracting opinions survive, but never for the coexistence of interacting opinions. In the present work, we provide networks that allow for the coexistence of interacting opinions for certain confidence rules. Moreover, we show that the model does not become inactive; that is, the opinions keep changing, even in the stationary regime. This is an important result in the context of understanding how a rule that breeds local conformity is still able to sustain global diversity while avoiding a frozen stationary state. We also provide results that give some insights on how this behavior approaches the mean field behavior as the networks are changed.

  16. Coexistence of interacting opinions in a generalized Sznajd model

    NASA Astrophysics Data System (ADS)

    Timpanaro, André M.; Prado, Carmen P. C.

    2011-08-01

    The Sznajd model is a sociophysics model that mimics the propagation of opinions in a closed society, where the interactions favor groups of agreeing people. It is based in the Ising and Potts ferromagnetic models and, although the original model used only linear chains, it has since been adapted to general networks. This model has a very rich transient, which has been used to model several aspects of elections, but its stationary states are always consensus states. In order to model more complex behaviors, we have, in a recent work, introduced the idea of biases and prejudices to the Sznajd model by generalizing the bounded confidence rule, which is common to many continuous opinion models, to what we called confidence rules. In that work we have found that the mean field version of this model (corresponding to a complete network) allows for stationary states where noninteracting opinions survive, but never for the coexistence of interacting opinions. In the present work, we provide networks that allow for the coexistence of interacting opinions for certain confidence rules. Moreover, we show that the model does not become inactive; that is, the opinions keep changing, even in the stationary regime. This is an important result in the context of understanding how a rule that breeds local conformity is still able to sustain global diversity while avoiding a frozen stationary state. We also provide results that give some insights on how this behavior approaches the mean field behavior as the networks are changed.

  17. Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models

    ERIC Educational Resources Information Center

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This article focuses on understanding regression mixture models, which are relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their…

  18. Evaluating Differential Effects Using Regression Interactions and Regression Mixture Models

    ERIC Educational Resources Information Center

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This article focuses on understanding regression mixture models, which are relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their…

  19. Cluster variation studies of the anisotropic exchange interaction model

    NASA Astrophysics Data System (ADS)

    King, T. C.; Chen, H. H.

    The cluster variation method is applied to study critical properties of the Potts-like ferromagnetic anisotropic exchange interaction model. Phase transition temperatures, order parameter discontinuities and latent heats of the model on the triangular and the fcc lattices are determined by the triangle approximation; and those on the square and the sc lattices are determined by the square approximation.

  20. Reduced-order models for vertical human-structure interaction

    NASA Astrophysics Data System (ADS)

    Van Nimmen, Katrien; Lombaert, Geert; De Roeck, Guido; Van den Broeck, Peter

    2016-09-01

    For slender and lightweight structures, the vibration serviceability under crowd- induced loading is often critical in design. Currently, designers rely on equivalent load models, upscaled from single-person force measurements. Furthermore, it is important to consider the mechanical interaction with the human body as this can significantly reduce the structural response. To account for these interaction effects, the contact force between the pedestrian and the structure can be modelled as the superposition of the force induced by the pedestrian on a rigid floor and the force resulting from the mechanical interaction between the structure and the human body. For the case of large crowds, however, this approach leads to models with a very high system order. In the present contribution, two equivalent reduced-order models are proposed to approximate the dynamic behaviour of the full-order coupled crowd-structure system. A numerical study is performed to evaluate the impact of the modelling assumptions on the structural response to pedestrian excitation. The results show that the full-order moving crowd model can be well approximated by a reduced-order model whereby the interaction with the pedestrians in the crowd is modelled using a single (equivalent) SDOF system.

  1. Systematic Uncertainties in High-Energy Hadronic Interaction Models

    NASA Astrophysics Data System (ADS)

    Zha, M.; Knapp, J.; Ostapchenko, S.

    2003-07-01

    Hadronic interaction models for cosmic ray energies are uncertain since our knowledge of hadronic interactions is extrap olated from accelerator experiments at much lower energies. At present most high-energy models are based on Grib ov-Regge theory of multi-Pomeron exchange, which provides a theoretical framework to evaluate cross-sections and particle production. While experimental data constrain some of the model parameters, others are not well determined and are therefore a source of systematic uncertainties. In this paper we evaluate the variation of results obtained with the QGSJET model, when modifying parameters relating to three ma jor sources of uncertainty: the form of the parton structure function, the role of diffractive interactions, and the string hadronisation. Results on inelastic cross sections, on secondary particle production and on the air shower development are discussed.

  2. The hadronic interaction model Sibyll - past, present and future

    NASA Astrophysics Data System (ADS)

    Engel, Ralph; Riehn, Felix; Fedynitch, Anatoli; Gaisser, Thomas K.; Stanev, Todor

    2017-06-01

    Sibyll is one of the first microscopic interaction models that was specifically developed for interpreting cosmic ray data. It combines non-perturbative concepts of simulating hadronic particle production with predictions derived from perturbative QCD calculations, focusing on forward particle production of relevance in studying cosmic ray interactions. In this contribution we briefly recall the history of Sibyll and then, in this context, describe improvements made in the different versions of the Sibyll model. The discussion focuses on the basic concepts and ideas of these improvements rather than going into detail or giving a comprehensive description of the models. We also discuss shortcomings, conceptual problems, and uncertainties in modeling hadronic interactions and make some suggestions how to address these open questions in the future.

  3. Energy economy in the actomyosin interaction: lessons from simple models.

    PubMed

    Lehman, Steven L

    2010-01-01

    The energy economy of the actomyosin interaction in skeletal muscle is both scientifically fascinating and practically important. This chapter demonstrates how simple cross-bridge models have guided research regarding the energy economy of skeletal muscle. Parameter variation on a very simple two-state strain-dependent model shows that early events in the actomyosin interaction strongly influence energy efficiency, and late events determine maximum shortening velocity. Addition of a weakly-bound state preceding force production allows weak coupling of cross-bridge mechanics and ATP turnover, so that a simple three-state model can simulate the velocity-dependence of ATP turnover. Consideration of the limitations of this model leads to a review of recent evidence regarding the relationship between ligand binding states, conformational states, and macromolecular structures of myosin cross-bridges. Investigation of the fine structure of the actomyosin interaction during the working stroke continues to inform fundamental research regarding the energy economy of striated muscle.

  4. Modeling symbiosis by interactions through species carrying capacities

    NASA Astrophysics Data System (ADS)

    Yukalov, V. I.; Yukalova, E. P.; Sornette, D.

    2012-08-01

    We introduce a mathematical model of symbiosis between different species by taking into account the influence of each species on the carrying capacities of the others. The modeled entities can pertain to biological and ecological societies or to social, economic and financial societies. Our model includes three basic types: symbiosis with direct mutual interactions, symbiosis with asymmetric interactions, and symbiosis without direct interactions. In all cases, we provide a complete classification of all admissible dynamical regimes. The proposed model of symbiosis turned out to be very rich, as it exhibits four qualitatively different regimes: convergence to stationary states, unbounded exponential growth, finite-time singularity, and finite-time death or extinction of species.

  5. Interactive Documentary: A Production Model for Nonfiction Multimedia Narratives

    NASA Astrophysics Data System (ADS)

    Choi, Insook

    This paper presents an interactive production model for nonfiction multimedia, referred to as interactive documentary. We discuss the design of ontologies for authoring interactive documentary. A working prototype supports the use of reasoning for retrieving, composing, and displaying media resources in real-time. A GUI is designed to facilitate concept-based navigation which enables queries across media resources of diverse types. A dual-root-node data design links ontological reasoning with metadata, which provides a method for defining hybrid semantic-quantitative relationships. Our application focuses on archiving and retrieving non-text based media resources. The system architecture supports sensory-rich display feedback with real time interactivity for navigating documents’ space. We argue an experience of narratives evolves through the performitivity in the interactive narrative structure when the constituents are mediated by common ontology. The consequential experience identifies a renewed practice of oral tradition where the accumulative sensorial propositions inform narratives, such as in performance practice.

  6. Dense gaps in the interacting Aubry-André model

    NASA Astrophysics Data System (ADS)

    Mastropietro, Vieri

    2016-06-01

    We consider the interacting Aubry-André model describing fermions on a one-dimensional lattice with an incommensurate potential and a short-range many-body interaction. The single-particle spectrum has infinitely many gaps in the extended phase and at zero temperature is an insulator for almost all the chemical potentials. The many-body interaction has the effect that the gaps are strongly decreased or increased depending on the attractive or repulsive nature of the interaction, but even the smallest gaps remain open. The system is a band insulator for generic chemical potentials even in the presence of interaction, and a quantum phase transition is excluded at weak coupling.

  7. A Pairwise Preferential Interaction Model for Understanding Peptide Aggregation

    PubMed Central

    Kang, Myungshim

    2010-01-01

    A pairwise preferential interaction model (PPIM), based on Kirkwood–Buff integrals, is developed to quantify and characterize the interactions between some of the functional groups commonly observed in peptides. The existing experimental data are analyzed to determine the preferential interaction (PI) parameters for different amino acid and small peptide systems in aqueous solutions. The PIs between the different functional groups present in the peptides are then isolated and quantified by assuming simple pairwise additivity. The PPIM approach provides consistent estimates for the pair interactions between the same functional groups obtained from different solute molecules. Furthermore, these interactions appear to be chemically intuitive. It is argued that this type of approach can provide valuable information concerning specific functional group correlations which could give rise to peptide aggregation. PMID:20694045

  8. An interaction model for visualizations beyond the desktop.

    PubMed

    Jansen, Yvonne; Dragicevic, Pierre

    2013-12-01

    We present an interaction model for beyond-desktop visualizations that combines the visualization reference model with the instrumental interaction paradigm. Beyond-desktop visualizations involve a wide range of emerging technologies such as wall-sized displays, 3D and shape-changing displays, touch and tangible input, and physical information visualizations. While these technologies allow for new forms of interaction, they are often studied in isolation. New conceptual models are needed to build a coherent picture of what has been done and what is possible. We describe a modified pipeline model where raw data is processed into a visualization and then rendered into the physical world. Users can explore or change data by directly manipulating visualizations or through the use of instruments. Interactions can also take place in the physical world outside the visualization system, such as when using locomotion to inspect a large scale visualization. Through case studies we illustrate how this model can be used to describe both conventional and unconventional interactive visualization systems, and compare different design alternatives.

  9. Modeling of Needle-Tissue Interaction Forces During Surgical Suturing

    PubMed Central

    Jackson, Russell C.; Çavuşoğlu, M. Cenk

    2013-01-01

    This paper presents a model of needle tissue interaction forces that a rigid suture needle experiences during surgical suturing. The needle-tissue interaction forces are modeled as the sum of lumped parameters. The model has three main components; friction, tissue compression, and cutting forces. The tissue compression force uses the area that the needle sweeps out during a suture to estimate both the force magnitude and force direction. The area that the needle sweeps out is a direct result of driving the needle in a way that does not follow the natural curve of the needle. The friction force is approximated as a static friction force along the shaft of the needle. The cutting force acts only on the needle tip. The resulting force and torque model is experimentally validated using a tissue phantom. These results indicate that the proposed lumped parameter model is capable of accurately modeling the forces experienced during a suture. PMID:24683499

  10. Meson exchange current (MEC) models in neutrino interaction generators

    SciTech Connect

    Katori, Teppei

    2015-05-15

    Understanding of the so-called 2 particle-2 hole (2p-2h) effect is an urgent program in neutrino interaction physics for current and future oscillation experiments. Such processes are believed to be responsible for the event excesses observed by recent neutrino experiments. The 2p-2h effect is dominated by the meson exchange current (MEC), and is accompanied by a 2-nucleon emission from the primary vertex, instead of a single nucleon emission from the charged-current quasi-elastic (CCQE) interaction. Current and future high resolution experiments can potentially nail down this effect. For this reason, there are world wide efforts to model and implement this process in neutrino interaction simulations. In these proceedings, I would like to describe how this channel is modeled in neutrino interaction generators.

  11. Towards an integrated molecular model of plant-virus interactions.

    PubMed

    Elena, Santiago F; Rodrigo, Guillermo

    2012-12-01

    The application in recent years of network theory methods to the study of host-virus interactions is providing a new perspective to the way viruses manipulate the host to promote their own replication. An integrated molecular model of such pathosystems require three detailed maps describing, firstly, the interactions between viral elements, secondly, the interactions between host elements, and thirdly, the cross-interactions between viral and host elements. Here, we compile available information for Potyvirus infecting Arabidopsis thaliana. With an integrated model, it is possible to analyze the mode of virus action and how the perturbation of the virus targets propagates along the network. These studies suggest that viral pathogenicity results not only from the alteration of individual elements but it is a systemic property. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. Interactive, process-oriented climate modeling with CLIMLAB

    NASA Astrophysics Data System (ADS)

    Rose, B. E. J.

    2016-12-01

    Global climate is a complex emergent property of the rich interactions between simpler components of the climate system. We build scientific understanding of this system by breaking it down into component process models (e.g. radiation, large-scale dynamics, boundary layer turbulence), understanding each components, and putting them back together. Hands-on experience and freedom to tinker with climate models (whether simple or complex) is invaluable for building physical understanding. CLIMLAB is an open-ended software engine for interactive, process-oriented climate modeling. With CLIMLAB you can interactively mix and match model components, or combine simpler process models together into a more comprehensive model. It was created primarily to support classroom activities, using hands-on modeling to teach fundamentals of climate science at both undergraduate and graduate levels. CLIMLAB is written in Python and ties in with the rich ecosystem of open-source scientific Python tools for numerics and graphics. The Jupyter Notebook format provides an elegant medium for distributing interactive example code. I will give an overview of the current capabilities of CLIMLAB, the curriculum we have developed thus far, and plans for the future. Using CLIMLAB requires some basic Python coding skills. We consider this an educational asset, as we are targeting upper-level undergraduates and Python is an increasingly important language in STEM fields.

  13. Effects of Latent Variable Nonnormality and Model Misspecification on Testing Structural Equation Modeling Interactions

    ERIC Educational Resources Information Center

    Sun, Shaojing; Konold, Timothy R.; Fan, Xitao

    2011-01-01

    Interest in testing interaction terms within the latent variable modeling framework has been on the rise in recent years. However, little is known about the influence of nonnormality and model misspecification on such models that involve latent variable interactions. The authors used Mattson's data generation method to control for latent variable…

  14. General form of the boson-fermion interaction in the interacting boson-fermion model-2

    NASA Astrophysics Data System (ADS)

    Matus, F. A.; Barea, J.

    2017-03-01

    The boson-fermion interaction in the interacting boson-fermion model-2 (IBFM-2) is derived in a systematic and general form from a quadrupole-quadrupole force using several nondegenerate levels. The boson-fermion quadrupole operator employed is obtained from the boson-fermion image of the one nucleon transfer operator which in turn can be calculated following two alternative schemes: the Otsuka-Arima-Iachello and generalized Holstein-Primakoff schemes. Four different terms (two quadrupole and two exchange) were obtained. Application of the new expressions to a single-j model is studied and analyzed.

  15. Continuum electromechanical modeling of protein-membrane interactions.

    PubMed

    Zhou, Y C; Lu, Benzhuo; Gorfe, Alemayehu A

    2010-10-01

    A continuum electromechanical model is proposed to describe the membrane curvature induced by electrostatic interactions in a solvated protein-membrane system. The model couples the macroscopic strain energy of membrane and the electrostatic solvation energy of the system, and equilibrium membrane deformation is obtained by minimizing the electroelastic energy functional with respect to the dielectric interface. The model is illustrated with the systems with increasing geometry complexity and captures the sensitivity of membrane curvature to the permanent and mobile charge distributions.

  16. Interactive Model Centric Systems Engineering (IMCSE) Phase 4

    DTIC Science & Technology

    2017-03-01

    28  Importance  of communication...Making ...................................................................................................... 33  Importance  of Model Context and...models. An  interview‐based  approach  is  used  to  identify  important   considerations  surrounding  human‐ model  interaction and trust that experts

  17. Multinucleon Ejection Model for Two Body Current Neutrino Interactions

    SciTech Connect

    Sobczyk, Jan T.; /Fermilab

    2012-06-01

    A model is proposed to describe nucleons ejected from a nucleus as a result of two-body-current neutrino interactions. The model can be easily implemented in Monte Carlo neutrino event generators. Various possibilities to measure the two-body-current contribution are discussed. The model can help identify genuine charge current quasielastic events and allow for a better determination of the systematic error on neutrino energy reconstruction in neutrino oscillation experiments.

  18. NON-LINEAR MODELING OF THE RHIC INTERACTION REGIONS.

    SciTech Connect

    TOMAS,R.FISCHER,W.JAIN,A.LUO,Y.PILAT,F.

    2004-07-05

    For RHIC's collision lattices the dominant sources of transverse non-linearities are located in the interaction regions. The field quality is available for most of the magnets in the interaction regions from the magnetic measurements, or from extrapolations of these measurements. We discuss the implementation of these measurements in the MADX models of the Blue and the Yellow rings and their impact on beam stability.

  19. Speech Perception as a Cognitive Process: The Interactive Activation Model.

    DTIC Science & Technology

    1983-04-01

    one another in COHORT, the nodes for sell, your, light, and cellulite , wil all bc in active competition with one another. The system will have no way...7 AD-AI28 787 SPEECH PERCEPTION AS A COGNITIVE PROCESS: THE INTERACTIVE ACTIVATION MODE..(U) CALIFORNIA UNIV SAN D IEGO LA dOLLA INST FOR COGNITIVE...TYPE OF REPORT & PERIOD COVERED Speech Perception as a Cognitive Process: Technical Report The Interactive Activation Model S. PERFORMING ORG. REPORT

  20. Toward immersive clay modeling: interactive modeling with octrees

    NASA Astrophysics Data System (ADS)

    Moritz, Elke; Kuester, Falko; Hamann, Bernd; Joy, Kenneth I.; Hagen, Hans

    2000-05-01

    The described virtual clay modeling project explores the use of virtual environments (VES) for the simulation of two- handed clay modeling and sculpting tasks. Traditional clay modeling concepts are implemented and enhanced with new digital design tools leveraging from virtual reality (VR) and new input device technology. In particular, the creation of an intuitive and natural work environment for comfortable and unconstrained modeling is emphasized. VR projection devices, such as the Immersive WorkBench, shutter glasses, and pinch gloves, equipped with six-degrees-of-freedom trackers, are used to apply various virtual cutting tools to a volumetric data structure . The employment of an octree as underlying data structure for volume representation and manipulation in immersive environments allows real-time modeling of solids utilizing a suite of either geometrically or mathematically defined cutting and modeling tools.

  1. Towards an interactive electromechanical model of the heart

    PubMed Central

    Talbot, Hugo; Marchesseau, Stéphanie; Duriez, Christian; Sermesant, Maxime; Cotin, Stéphane; Delingette, Hervé

    2013-01-01

    In this work, we develop an interactive framework for rehearsal of and training in cardiac catheter ablation, and for planning cardiac resynchronization therapy. To this end, an interactive and real-time electrophysiology model of the heart is developed to fit patient-specific data. The proposed interactive framework relies on two main contributions. First, an efficient implementation of cardiac electrophysiology is proposed, using the latest graphics processing unit computing techniques. Second, a mechanical simulation is then coupled to the electrophysiological signals to produce realistic motion of the heart. We demonstrate that pathological mechanical and electrophysiological behaviour can be simulated. PMID:24427533

  2. The growth of structure in interacting dark energy models

    SciTech Connect

    Caldera-Cabral, Gabriela; Maartens, Roy; Schaefer, Bjoern Malte E-mail: roy.maartens@port.ac.uk

    2009-07-01

    If dark energy interacts with dark matter, there is a change in the background evolution of the universe, since the dark matter density no longer evolves as a{sup −3}. In addition, the non-gravitational interaction affects the growth of structure. In principle, these changes allow us to detect and constrain an interaction in the dark sector. Here we investigate the growth factor and the weak lensing signal for a new class of interacting dark energy models. In these models, the interaction generalises the simple cases where one dark fluid decays into the other. In order to calculate the effect on structure formation, we perform a careful analysis of the perturbed interaction and its effect on peculiar velocities. Assuming a normalization to today's values of dark matter density and overdensity, the signal of the interaction is an enhancement (suppression) of both the growth factor and the lensing power, when the energy transfer in the background is from dark matter to dark energy (dark energy to dark matter)

  3. Estimation of exposure to toxic releases using spatial interaction modeling.

    PubMed

    Conley, Jamison F

    2011-03-21

    The United States Environmental Protection Agency's Toxic Release Inventory (TRI) data are frequently used to estimate a community's exposure to pollution. However, this estimation process often uses underdeveloped geographic theory. Spatial interaction modeling provides a more realistic approach to this estimation process. This paper uses four sets of data: lung cancer age-adjusted mortality rates from the years 1990 through 2006 inclusive from the National Cancer Institute's Surveillance Epidemiology and End Results (SEER) database, TRI releases of carcinogens from 1987 to 1996, covariates associated with lung cancer, and the EPA's Risk-Screening Environmental Indicators (RSEI) model. The impact of the volume of carcinogenic TRI releases on each county's lung cancer mortality rates was calculated using six spatial interaction functions (containment, buffer, power decay, exponential decay, quadratic decay, and RSEI estimates) and evaluated with four multivariate regression methods (linear, generalized linear, spatial lag, and spatial error). Akaike Information Criterion values and P values of spatial interaction terms were computed. The impacts calculated from the interaction models were also mapped. Buffer and quadratic interaction functions had the lowest AIC values (22298 and 22525 respectively), although the gains from including the spatial interaction terms were diminished with spatial error and spatial lag regression. The use of different methods for estimating the spatial risk posed by pollution from TRI sites can give different results about the impact of those sites on health outcomes. The most reliable estimates did not always come from the most complex methods.

  4. Momentum distribution and non-Fermi-liquid behavior in low-doped two-orbital model: Finite-size cluster quantum Monte Carlo approach

    NASA Astrophysics Data System (ADS)

    Kashurnikov, Vladimir A.; Krasavin, Andrey V.; Zhumagulov, Yaroslav V.

    2016-12-01

    The two-dimensional two-orbital Hubbard model is studied with the use of a finite-size cluster world-line quantum Monte Carlo algorithm. This model is widely used for simulation of the band structure of FeAs clusters, which are structure elements of Fe-based high-temperature superconductors. The choice of a special basis set of hypersites allowed us to take into account four-fermion operator terms and to overcome partly the sign problem. Spectral functions and the density of states for various parameters of the model are obtained in the undoped and low-doped regimes. The correlated distortion of the spectral density with the change of doping is observed, and the applicability of the "hard-band" approximation in the doped regime is demonstrated. Profiles of the momentum distribution are obtained for the first Brillouin zone; they have pronounced jump near the Fermi level, which decreases with the growth of the strength of the interaction. The invariance of the Fermi surface with respect to the strength of the interaction is testified. Nesting is found in the case of electron and hole doping. Fermi-liquid parameters of the model are derived. The Z factor grows sharply with the increasing of the level of doping and monotonously decreases with the growth of the strength of the interaction. Moreover, electron-hole doping asymmetry of the Z factor is revealed. The non-Fermi-liquid behavior and the deviation from Luttinger theorem are observed.

  5. Interaction effects in a microscopic quantum wire model with strong spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Winkler, G. W.; Ganahl, M.; Schuricht, D.; Evertz, H. G.; Andergassen, S.

    2017-06-01

    We investigate the effect of strong interactions on the spectral properties of quantum wires with strong Rashba spin-orbit (SO) interaction in a magnetic field, using a combination of matrix product state and bosonization techniques. Quantum wires with strong Rashba SO interaction and magnetic field exhibit a partial gap in one-half of the conducting modes. Such systems have attracted wide-spread experimental and theoretical attention due to their unusual physical properties, among which are spin-dependent transport, or a topological superconducting phase when under the proximity effect of an s-wave superconductor. As a microscopic model for the quantum wire we study an extended Hubbard model with SO interaction and Zeeman field. We obtain spin resolved spectral densities from the real-time evolution of excitations, and calculate the phase diagram. We find that interactions increase the pseudo gap at k = 0 and thus also enhance the Majorana-supporting phase and stabilize the helical spin order. Furthermore, we calculate the optical conductivity and compare it with the low energy spiral Luttinger liquid result, obtained from field theoretical calculations. With interactions, the optical conductivity is dominated by an excotic excitation of a bound soliton-antisoliton pair known as a breather state. We visualize the oscillating motion of the breather state, which could provide the route to their experimental detection in e.g. cold atom experiments.

  6. Interactive computational models of particle dynamics using virtual reality

    SciTech Connect

    Canfield, T.; Diachin, D.; Freitag, L.; Heath, D.; Herzog, J.; Michels, W.

    1996-12-31

    An increasing number of industrial applications rely on computational models to reduce costs in product design, development, and testing cycles. Here, the authors discuss an interactive environment for the visualization, analysis, and modification of computational models used in industrial settings. In particular, they focus on interactively placing massless, massed, and evaporating particulate matter in computational fluid dynamics applications.they discuss the numerical model used to compute the particle pathlines in the fluid flow for display and analysis. They briefly describe the toolkits developed for vector and scalar field visualization, interactive particulate source placement, and a three-dimensional GUI interface. This system is currently used in two industrial applications, and they present the tools in the context of these applications. They summarize the current state of the project and offer directions for future research.

  7. Analyzing models for interactions of aptamers to proteins

    NASA Astrophysics Data System (ADS)

    Silva, Dilson; Missailidis, Sotiris

    2014-10-01

    We have devised an experimental and theoretical model, based on fluorescent spectroscopy and molecular modelling, to describe the interaction of aptamer (selected against various protein targets) with proteins and albumins in particular. This model, described in this work, has allowed us to decipher the nature of the interactions between aptamers and albumins, the binding site of the aptamers to albumins, the potential role of primer binding to the albumin and expand to the ability of albumin to carry aptamers in the bloodstream, providing data to better understand the level of free aptamer for target binding. We are presenting the study of a variety of aptamers, including those against the MUC1 tumour marker, heparanase and human kallikrein 6 with bovine and human serum albumins and the effect these interactions may have on the bioavailability of the aptamer for target-specific binding and therapeutic activity.

  8. Combining microsimulation and spatial interaction models for retail location analysis

    NASA Astrophysics Data System (ADS)

    Nakaya, Tomoki; Fotheringham, A. Stewart; Hanaoka, Kazumasa; Clarke, Graham; Ballas, Dimitris; Yano, Keiji

    2007-12-01

    Although the disaggregation of consumers is crucial in understanding the fragmented markets that are dominant in many developed countries, it is not always straightforward to carry out such disaggregation within conventional retail modelling frameworks due to the limitations of data. In particular, consumer grouping based on sampled data is not assured to link with the other statistics that are vital in estimating sampling biases and missing variables in the sampling survey. To overcome this difficulty, we propose a useful combination of spatial interaction modelling and microsimulation approaches for the reliable estimation of retail interactions based on a sample survey of consumer behaviour being linked with other areal statistics. We demonstrate this approach by building an operational retail interaction model to estimate expenditure flows from households to retail stores in a local city in Japan, Kusatsu City.

  9. Modeling of MOX Fuel Pellet-Clad Interaction Using ABAQUS

    SciTech Connect

    Ambrosek, Richard G.; Pedersen, Robert C.; Maple, Amanda

    2002-07-01

    Post-irradiation examination (PIE) has indicated an increase in the outer diameter of fuel pins being irradiated in the Advanced Test Reactor (ATR) for the MOX irradiation program. The diameter increase is the largest in the region between fuel pellets. The fuel pellet was modeled using PATRAN and the model was evaluated using ABAQUS, version 6.2. The results from the analysis indicate the non-uniform clad diameter is caused by interaction between the fuel pellet and the clad. The results also demonstrate that the interaction is not uniform over the pellet axial length, with the largest interaction occurring in the region of the pellet-pellet interface. Results were obtained for an axisymmetric model and for a 1/8 pie shaped segment, using the coupled temperature-displacement solution technique. (authors)

  10. An Opinion Interactive Model Based on Individual Persuasiveness

    PubMed Central

    Zhou, Xin; Liu, Liang; Ma, Liang; Qiu, Xiaogang

    2015-01-01

    In order to study the formation process of group opinion in real life, we put forward a new opinion interactive model based on Deffuant model and its improved models in this paper because current models of opinion dynamics lack considering individual persuasiveness. Our model has following advantages: firstly persuasiveness is added to individual's attributes reflecting the importance of persuasiveness, which means that all the individuals are different from others; secondly probability is introduced in the course of interaction which simulates the uncertainty of interaction. In Monte Carlo simulation experiments, sensitivity analysis including the influence of randomness, initial persuasiveness distribution, and number of individuals is studied at first; what comes next is that the range of common opinion based on the initial persuasiveness distribution can be predicted. Simulation experiment results show that when the initial values of agents are fixed, no matter how many times independently replicated experiments, the common opinion will converge at a certain point; however the number of iterations will not always be the same; the range of common opinion can be predicted when initial distribution of opinion and persuasiveness are given. As a result, this model can reflect and interpret some phenomena of opinion interaction in realistic society. PMID:26508911

  11. An Opinion Interactive Model Based on Individual Persuasiveness.

    PubMed

    Zhou, Xin; Chen, Bin; Liu, Liang; Ma, Liang; Qiu, Xiaogang

    2015-01-01

    In order to study the formation process of group opinion in real life, we put forward a new opinion interactive model based on Deffuant model and its improved models in this paper because current models of opinion dynamics lack considering individual persuasiveness. Our model has following advantages: firstly persuasiveness is added to individual's attributes reflecting the importance of persuasiveness, which means that all the individuals are different from others; secondly probability is introduced in the course of interaction which simulates the uncertainty of interaction. In Monte Carlo simulation experiments, sensitivity analysis including the influence of randomness, initial persuasiveness distribution, and number of individuals is studied at first; what comes next is that the range of common opinion based on the initial persuasiveness distribution can be predicted. Simulation experiment results show that when the initial values of agents are fixed, no matter how many times independently replicated experiments, the common opinion will converge at a certain point; however the number of iterations will not always be the same; the range of common opinion can be predicted when initial distribution of opinion and persuasiveness are given. As a result, this model can reflect and interpret some phenomena of opinion interaction in realistic society.

  12. Developing an Empirical Model for Jet-Surface Interaction Noise

    NASA Technical Reports Server (NTRS)

    Brown, Clif

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are t to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  13. Developing an Empirical Model for Jet-Surface Interaction Noise

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2014-01-01

    The process of developing an empirical model for jet-surface interaction noise is described and the resulting model evaluated. Jet-surface interaction noise is generated when the high-speed engine exhaust from modern tightly integrated or conventional high-bypass ratio engine aircraft strikes or flows over the airframe surfaces. An empirical model based on an existing experimental database is developed for use in preliminary design system level studies where computation speed and range of configurations is valued over absolute accuracy to select the most promising (or eliminate the worst) possible designs. The model developed assumes that the jet-surface interaction noise spectra can be separated from the jet mixing noise and described as a parabolic function with three coefficients: peak amplitude, spectral width, and peak frequency. These coefficients are fit to functions of surface length and distance from the jet lipline to form a characteristic spectra which is then adjusted for changes in jet velocity and/or observer angle using scaling laws from published theoretical and experimental work. The resulting model is then evaluated for its ability to reproduce the characteristic spectra and then for reproducing spectra measured at other jet velocities and observer angles; successes and limitations are discussed considering the complexity of the jet-surface interaction noise versus the desire for a model that is simple to implement and quick to execute.

  14. Supermodel - Interactive Ensemble of Low-dimensional Models

    NASA Astrophysics Data System (ADS)

    Basnarkov, Lasko; Duane, Gregory; Kocarev, Ljupco

    2013-04-01

    The accuracy of numerical weather prediction is steadily increasing due to the advances in different scientific disciplines. One of them aims at understanding the physics that underlies the atmospheric dynamics. Although the basic laws are well known there is large room for improvement in modeling various small scale processes. Currently they are generally parametrized and thus we are facing dozens of atmospheric models that are used in different meteorological centers around the world. The models are based on the same fluid dynamics laws, but generally differ in spatial resolution, parametrisation of the unresolved processes and also in the corresponding parameter values. Another key factor that contributes to the prediction improvement is the increase of the available computational power. As one consequence the grid resolution is getting smaller. As another, the contemporary numerical weather prediction schemes consider combinations of the outputs of the ensembles of models -- different perturbations of the same model or even different models. Considering interactive ensembles- with dynamical exchange of information between models that run simultaneously-is a novel approach toward improving the weather forecast or climate projection. Although flux exchange between different ocean and atmospheric models has some history, coupling different atmospheric models is rather new. The coupling schemes can be different and the first approaches are those that combine corresponding dynamical variables or tendency components. In this work we present an example with an artificial toy model- the Lorenz 96 model-that shares some properties with the atmosphere. As reality (the atmosphere) we consider one Lorenz 96 class III system, while as its imperfect models are taken three class II systems that have different forcing terms. The interactive ensemble has tendencies that are weighted combinations of the individual models' tendencies. The weights are obtained with statistical

  15. A pairwise interaction model for multivariate functional and longitudinal data.

    PubMed

    Chiou, Jeng-Min; Müller, Hans-Georg

    2016-06-01

    Functional data vectors consisting of samples of multivariate data where each component is a random function are encountered increasingly often but have not yet been comprehensively investigated. We introduce a simple pairwise interaction model that leads to an interpretable and straightforward decomposition of multivariate functional data and of their variation into component-specific processes and pairwise interaction processes. The latter quantify the degree of pairwise interactions between the components of the functional data vectors, while the component-specific processes reflect the functional variation of a particular functional vector component that cannot be explained by the other components. Thus the proposed model provides an extension of the usual notion of a covariance or correlation matrix for multivariate vector data to functional data vectors and generates an interpretable functional interaction map. The decomposition provided by the model can also serve as a basis for subsequent analysis, such as study of the network structure of functional data vectors. The decomposition of the total variance into componentwise and interaction contributions can be quantified by an [Formula: see text]-like decomposition. We provide consistency results for the proposed methods and illustrate the model by applying it to sparsely sampled longitudinal data from the Baltimore Longitudinal Study of Aging, examining the relationships between body mass index and blood fats.

  16. Integrated Sachs-Wolfe effect in interacting dark energy models

    SciTech Connect

    Olivares, German; Pavon, Diego; Atrio-Barandela, Fernando

    2008-05-15

    Models with dark energy decaying into dark matter have been proposed in cosmology to solve the coincidence problem. We study the effect of such coupling on the cosmic microwave background temperature anisotropies. The interaction changes the rate of evolution of the metric potentials and the growth rate of matter density perturbations and modifies the integrated Sachs-Wolfe component of cosmic microwave background temperature anisotropies, enhancing the effect. Cross correlation of galaxy catalogs with cosmic microwave background maps provides a model-independent test to constrain the interaction. We particularize our analysis for a specific interacting model and show that galaxy catalogs with median redshifts z{sub m}=0.1-0.9 can rule out models with an interaction parameter strength of c{sup 2}{approx_equal}0.1 better than 99.95% confidence level. Values of c{sup 2}{<=}0.01 are compatible with the data and may account for the possible discrepancy between the fraction of dark energy derived from Wilkinson microwave anisotropy probe 3 yr data and the fraction obtained from the integrated Sachs-Wolfe effect. Measuring the fraction of dark energy by these two methods could provide evidence of an interaction.

  17. Modelling biological invasions: species traits, species interactions, and habitat heterogeneity.

    PubMed

    Cannas, Sergio A; Marco, Diana E; Páez, Sergio A

    2003-05-01

    In this paper we explore the integration of different factors to understand, predict and control ecological invasions, through a general cellular automaton model especially developed. The model includes life history traits of several species in a modular structure interacting multiple cellular automata. We performed simulations using field values corresponding to the exotic Gleditsia triacanthos and native co-dominant trees in a montane area. Presence of G. triacanthos juvenile bank was a determinant condition for invasion success. Main parameters influencing invasion velocity were mean seed dispersal distance and minimum reproductive age. Seed production had a small influence on the invasion velocity. Velocities predicted by the model agreed well with estimations from field data. Values of population density predicted matched field values closely. The modular structure of the model, the explicit interaction between the invader and the native species, and the simplicity of parameters and transition rules are novel features of the model.

  18. Interacting boson models for N{approx}Z nuclei

    SciTech Connect

    Van Isacker, P.

    2011-05-06

    This contribution discusses the use of boson models in the description of N{approx}Z nuclei. A brief review is given of earlier attempts, initiated by Elliott and co-workers, to extend the interacting boson model of Arima and Iachello by the inclusion of neutron-proton s and d bosons with T = 1 (IBM-3) as well as T = 0 (IBM-4). It is argued that for the N{approx}Z nuclei that are currently studied experimentally, a different approach is needed which invokes aligned neutron-proton pairs with angular momentum J = 2j and isospin T = 0. This claim is supported by an analysis of shell-model wave functions in terms of pair states. Results of this alternative version of the interacting boson model are compared with shell-model calculations in the 1g{sub 9/2} shell.

  19. Rich-and-Poor Model for Human and Nature Interaction

    NASA Astrophysics Data System (ADS)

    Motesharrei, S.; Kalnay, E.; Rivas, J.; Rich-n-Poor

    2011-12-01

    Historical evidence shows collapse of several civilizations in different regions of the world. Jared Diamond presents an account of such societal failures in his 2005 book "Collapse: How Societies Choose to Fail or Succeed." As a precursor to building a complex model for interaction of human and environment, we developed a "thought-experiment" model based on Lotka-Volterra equations for the interaction of two species, known as the Predator-Prey model. We constructed a fairly simple rich-and-poor model that includes only four state variables (or stocks): Rich Population, Poor Population, Nature, and Rich Savings. We observed several scenarios for growth of societies by varying the model's parameter values, including scenarios that resemble the catastrophic fall of ancient civilizations such as the Maya and Anasazi.

  20. Modeling the dynamic interaction of Hebbian and homeostatic plasticity

    PubMed Central

    Toyoizumi, Taro; Kaneko, Megumi; Stryker, Michael P.; Miller, Kenneth D.

    2014-01-01

    Summary Hebbian and homeostatic plasticity together refine neural circuitry, but their interactions are unclear. In most existing models, each form of plasticity directly modifies synaptic strength. Equilibrium is reached when the two are inducing equal and opposite changes. We show that such models cannot reproduce ocular dominance plasticity (ODP) because negative feedback from the slow homeostatic plasticity observed in ODP cannot stabilize the positive feedback of fast Hebbian plasticity. We propose a new model in which synaptic strength is the product of a synapse-specific Hebbian factor and a postsynaptic-cell-specific homeostatic factor, with each factor separately arriving at a stable inactive state. This model captures ODP dynamics and has plausible biophysical substrates. We experimentally confirm model predictions that plasticity is inactive at stable states and that synaptic strength overshoots during recovery from visual deprivation. These results highlight the importance of multiple regulatory pathways for interactions of plasticity mechanisms operating over separate timescales. PMID:25374364

  1. Interacting boson models for N˜Z nuclei

    NASA Astrophysics Data System (ADS)

    Van Isacker, P.

    2011-05-01

    This contribution discusses the use of boson models in the description of N˜Z nuclei. A brief review is given of earlier attempts, initiated by Elliott and co-workers, to extend the interacting boson model of Arima and Iachello by the inclusion of neutron-proton s and d bosons with T = 1 (IBM-3) as well as T = 0 (IBM-4). It is argued that for the N˜Z nuclei that are currently studied experimentally, a different approach is needed which invokes aligned neutron-proton pairs with angular momentum J = 2j and isospin T = 0. This claim is supported by an analysis of shell-model wave functions in terms of pair states. Results of this alternative version of the interacting boson model are compared with shell-model calculations in the 1g9/2 shell.

  2. A Semiparametric Response Surface Model for Assessing Drug Interaction

    PubMed Central

    Kong, Maiying; Lee, J. Jack

    2016-01-01

    SUMMARY When multiple drugs are administered simultaneously, investigators are often interested in assessing whether the drug combinations are synergistic, additive, or antagonistic. Existing response surface models are not adequate to capture the complex patterns of drug interactions. We propose a two-component semiparametric response surface model with a parametric function to describe the additive effect of a combination dose and a nonparametric function to capture the departure from the additive effect. The nonparametric function is estimated using the technique developed in thin plate splines, and the pointwise bootstrap confidence interval for this function is constructed. The proposed semiparametric model offers an effective way of formulating the additive effect while allowing the flexibility of modeling a departure from additivity. Example and simulations are given to illustrate that the proposed model provides an excellent estimation for different patterns of interactions between two drugs. PMID:17900314

  3. Modelling of molten fuel/concrete interactions. [PWR; BWR

    SciTech Connect

    Muir, J. F.; Benjamin, A. S.

    1980-01-01

    A computer program modelling the interaction between molten core materials and structural concrete (CORCON) is being developed to provide quantitative estimates of fuel-melt accident consequences suitable for risk assessment of light water reactors. The principal features of CORCON are reviewed. Models developed for the principal interaction phenomena, inter-component heat transfer, concrete erosion, and melt/gas chemical reactions, are described. Alternative models for the controlling phenomenon, heat transfer from the molten pool to the surrounding concrete, are presented. These models, formulated in conjunction with the development of CORCON, are characterized by the presence or absence of either a gas film or viscous layer of molten concrete at the melt/concrete interface. Predictions of heat transfer based on these models compare favorably with available experimental data.

  4. Constraints on the SU(3) electroweak model

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Erlich, Joshua; Kribs, Graham D.; Terning, John

    2002-10-01

    We consider a recent proposal by Dimopoulos and Kaplan to embed the electroweak SU(2)L×U(1)Y into a larger group SU(3)W×SU(2)×U(1) at a scale above a TeV. This idea is motivated by the prediction for the weak mixing angle sin2θW=1/4, which naturally appears in these models so long as the gauge couplings of the high energy SU(2) and U(1) groups are moderately large. The extended gauge dynamics results in new effective operators that contribute to four-fermion interactions and Z pole observables. We calculate the corrections to these electroweak precision observables and carry out a global fit of the new physics to the data. For SU(2) and U(1) gauge couplings larger than 1, we find that the 95% C.L. lower bound on the matching (heavy gauge boson mass) scale is 11 TeV. We comment on the fine-tuning of the high energy parameters needed to allow matching scales above our bounds. The remnants of SU(3)W breaking include multi-TeV SU(2)L doublets with electric charge (+/-2,+/-1). The lightest charged gauge boson is stable, leading to cosmological difficulties.

  5. Modelling the interaction between flooding events and economic growth

    NASA Astrophysics Data System (ADS)

    Grames, J.; Prskawetz, A.; Grass, D.; Blöschl, G.

    2015-06-01

    Socio-hydrology describes the interaction between the socio-economy and water. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre et al., 2013; Viglione et al., 2014). These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. In order to build this first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events, we transform an existing descriptive stochastic model into an optimal deterministic model. The intermediate step is to formulate and simulate a descriptive deterministic model. We develop a periodic water function to approximate the former discrete stochastic time series of rainfall events. Due to the non-autonomous exogenous periodic rainfall function the long-term path of consumption and investment will be periodic.

  6. [Analytic methods for seed models with genotype x environment interactions].

    PubMed

    Zhu, J

    1996-01-01

    Genetic models with genotype effect (G) and genotype x environment interaction effect (GE) are proposed for analyzing generation means of seed quantitative traits in crops. The total genetic effect (G) is partitioned into seed direct genetic effect (G0), cytoplasm genetic of effect (C), and maternal plant genetic effect (Gm). Seed direct genetic effect (G0) can be further partitioned into direct additive (A) and direct dominance (D) genetic components. Maternal genetic effect (Gm) can also be partitioned into maternal additive (Am) and maternal dominance (Dm) genetic components. The total genotype x environment interaction effect (GE) can also be partitioned into direct genetic by environment interaction effect (G0E), cytoplasm genetic by environment interaction effect (CE), and maternal genetic by environment interaction effect (GmE). G0E can be partitioned into direct additive by environment interaction (AE) and direct dominance by environment interaction (DE) genetic components. GmE can also be partitioned into maternal additive by environment interaction (AmE) and maternal dominance by environment interaction (DmE) genetic components. Partitions of genetic components are listed for parent, F1, F2 and backcrosses. A set of parents, their reciprocal F1 and F2 seeds is applicable for efficient analysis of seed quantitative traits. MINQUE(0/1) method can be used for estimating variance and covariance components. Unbiased estimation for covariance components between two traits can also be obtained by the MINQUE(0/1) method. Random genetic effects in seed models are predictable by the Adjusted Unbiased Prediction (AUP) approach with MINQUE(0/1) method. The jackknife procedure is suggested for estimation of sampling variances of estimated variance and covariance components and of predicted genetic effects, which can be further used in a t-test for parameter. Unbiasedness and efficiency for estimating variance components and predicting genetic effects are tested by

  7. A six-dimensional Jordan model for electroweak interactions

    NASA Astrophysics Data System (ADS)

    Martínez Merino, Aldo; Obregon, Octavio

    2014-03-01

    We present a model for the electroweak interactions based on the commutative but non-associative exceptional Jordan algebra of Hermitian matrices valued on the octonions. By this means, we propose a construction of a gauge theory which take values in this algebra. Following closely the six-dimensional model proposed by D. Fairlie years ago and using a supergroup, we found a natural structure that provides the weak interaction action with some additional terms; we will briefly comment on their possible meaning. Postdoctoral Fellow at Universidad de Guanajuato.

  8. Modelling low energy electron interactions for biomedical uses of radiation

    NASA Astrophysics Data System (ADS)

    Fuss, M.; Muñoz, A.; Oller, J. C.; Blanco, F.; Limão-Vieira, P.; Huerga, C.; Téllez, M.; Hubin-Fraskin, M. J.; Nixon, K.; Brunger, M.; García, G.

    2009-11-01

    Current radiation based medical applications in the field of radiotherapy, radio-diagnostic and radiation protection require modelling single particle interactions at the molecular level. Due to their relevance in radiation damage to biological systems, special attention should be paid to include the effect of low energy secondary electrons. In this study we present a single track simulation procedure for photons and electrons which is based on reliable experimental and theoretical cross section data and the energy loss distribution functions derived from our experiments. The effect of including secondary electron interactions in this model will be discussed.

  9. Development of a Comprehensive Magnetohydrodynamic Model of Solar- Terrestrial Interaction

    DTIC Science & Technology

    1988-12-01

    these new submodels as well as those of the core interaction model are discussed in detail in the following section. 6 4 . SUMMARY OF INTERACTION MODEL...Fluid Dynamics, Plasma Dynamics and Lasers Conference. Honolulu, HI. June 8-10, 1987. 4 . Stahara. S. S., G. M. Molvik and J. R. Spreiter. A New ...Belotserkovskii et al.1 4 and assume that (a) km/sec, sonic Mach number Ms.. = 6.0, and ratio of the only important source of new ions is the photoioniza

  10. Current status of final-state interaction models and their impact on neutrino-nucleus interactions

    NASA Astrophysics Data System (ADS)

    Ma, W. Y.; Pinzon Guerra, E. S.; Yu, M.; Fiorentini, A.; Feusels, T.; T2K collaboration

    2017-09-01

    Hadrons produced in neutrino-nucleus interactions may re-scatter while propagating through the nuclear medium. Such re-scatters, often called Final State Interactions (FSI), can change the charge and multiplicity of the outgoing hadrons, as well as altering their final state kinematics. A good description of these processes is crucial for accurate measurements of the neutrino energy spectra – a key part of neutrino oscillation analyses. We present the comparison of predictions from various neutrino interaction event generators (NEUT, GENIE, Geant4, NuWro and FLUKA) with thin-target pion/nucleon scattering data. The FSI model used in NEUT is a microscopic cascade where the hadrons are propagated semiclassically through a nuclear medium in finite steps. A new tune of the cascade model has been performed for improvements from the current NEUT parameters using external data, and is presented.

  11. A Generalized Multiple Discrete Interaction Approximation for resonant four-wave interactions in wind wave models

    NASA Astrophysics Data System (ADS)

    Tolman, Hendrik L.

    2013-10-01

    For several decades, the Discrete Interaction Approximation (DIA) for nonlinear resonant four-wave interactions has been the engine of third-generation wind-wave models. The present study presents a Generalized Multiple DIA (GMD) which expands upon the DIA by (i) expanding the definition of the representative quadruplet, (ii) formulating the DIA for arbitrary water depths, (iii) providing complimentary deep and shallow water scaling terms and (iv) allowing for multiple representative quadruplets. The GMD is rigorously derived to be an extension of the DIA, and is backward compatible with it. The free parameters of the GMD are optimized holistically, by optimizing full model behavior in the WAVEWATCH III® wave model as reported in a companion paper. Here, a cascade of GMD configurations with increasing complexity, accuracy and cost is presented. First, the performance of these configurations is discussed using idealized test cases used to optimize the GMD. It is shown that in deep water, GMD configurations can be found which remove most of the errors of the DIA. The GMD is also capable of representing four-wave interactions in extremely shallow water, although some remaining spurious behavior makes applications of this part of the GMD less suitable for operational wave models. Finally, several GMD configurations are applied to an idealized hurricane case, showing that results from idealized test cases indeed are representative for real-world applications, and confirming that such GMD configurations are economically feasible in operational wind wave models. Finally, the DIA results in surprisingly large model errors in hurricane conditions.

  12. Critical properties of an aperiodic model for interacting polymers

    NASA Astrophysics Data System (ADS)

    Haddad, T. A. S.; Andrade, R. F. S.; Salinas, S. R.

    2004-02-01

    We investigate the effects of aperiodic interactions on the critical behaviour of an interacting two-polymer model on hierarchical lattices (equivalent to the Migadal-Kadanoff approximation for the model on Bravais lattices), via renormalization-group and transfer-matrix calculations. The exact renormalization-group recursion relations always present a symmetric fixed point, associated with the critical behaviour of the underlying uniform model. If the aperiodic interactions, defined by substitution rules, lead to relevant geometric fluctuations, this fixed point becomes fully unstable, giving rise to novel attractors of different nature. We present an explicit example in which this new attractor is a two-cycle attractor, with critical indices different from the uniform model. In the case of the four-letter Rudin-Shapiro substitution rule, we find a surprising closed curve whose points are attractors of period two, associated with a marginal operator. Nevertheless, a scaling analysis indicates that this attractor may lead to a new critical universality class. In order to provide an independent confirmation of the scaling results, we turn to a direct thermodynamic calculation of the specific-heat exponent. The thermodynamic free energy is obtained from a transfer-matrix formalism, which had been previously introduced for spin systems, and is now extended to the two-polymer model with aperiodic interactions.

  13. Interactive Reliability Model for Whisker-toughened Ceramics

    NASA Technical Reports Server (NTRS)

    Palko, Joseph L.

    1993-01-01

    Wider use of ceramic matrix composites (CMC) will require the development of advanced structural analysis technologies. The use of an interactive model to predict the time-independent reliability of a component subjected to multiaxial loads is discussed. The deterministic, three-parameter Willam-Warnke failure criterion serves as the theoretical basis for the reliability model. The strength parameters defining the model are assumed to be random variables, thereby transforming the deterministic failure criterion into a probabilistic criterion. The ability of the model to account for multiaxial stress states with the same unified theory is an improvement over existing models. The new model was coupled with a public-domain finite element program through an integrated design program. This allows a design engineer to predict the probability of failure of a component. A simple structural problem is analyzed using the new model, and the results are compared to existing models.

  14. Interactive models for semantic labeling of satellite images

    NASA Astrophysics Data System (ADS)

    Koperski, Krzysztof; Marchisio, Giovanni B.; Tusk, Carsten; Aksoy, Selim

    2002-09-01

    We describe a system for interactive training of models for semantic labeling of land cover. The models are build based on three levels of features: 1) pixel level, 2) region level, and 3) scene level features. We developed a Bayesian algorithm and a decision tree algorithm for interactive training. The Bayesian algorithm enables training based on pixel features. The scene level summaries of pixel features are used for fast retrieval of scenes with high/low content of features and scenes with low confidence of classification. The decision tree algorithm is based on region level features that are extracted based on 1) spectral and textural characteristics of the image, 2) shape descriptors of regions that are created through segmentation process, and 3) auxiliary information such as elevation data. The initial model can be created based on a database of ground truth and than be refined based on the feedback supplied by a data analyst who interactively trains the model using the system output and/or additional scenes. The combination of supervised and unsupervised methods provides a more complete exploration of model space. A user may detect the inadequacy of the model space and add additional features to the model. The graphical tools for the exploration of decision trees allow insight into the interaction of features used in the construction of models. The preliminary experiments show that accurate models can be build in a short time for a variety of land covers. The scalable classification techniques allow for fast searches for a specific label over a large area.

  15. A simple probabilistic model of multibody interactions in proteins.

    PubMed

    Johansson, Kristoffer Enøe; Hamelryck, Thomas

    2013-08-01

    Protein structure prediction methods typically use statistical potentials, which rely on statistics derived from a database of know protein structures. In the vast majority of cases, these potentials involve pairwise distances or contacts between amino acids or atoms. Although some potentials beyond pairwise interactions have been described, the formulation of a general multibody potential is seen as intractable due to the perceived limited amount of data. In this article, we show that it is possible to formulate a probabilistic model of higher order interactions in proteins, without arbitrarily limiting the number of contacts. The success of this approach is based on replacing a naive table-based approach with a simple hierarchical model involving suitable probability distributions and conditional independence assumptions. The model captures the joint probability distribution of an amino acid and its neighbors, local structure and solvent exposure. We show that this model can be used to approximate the conditional probability distribution of an amino acid sequence given a structure using a pseudo-likelihood approach. We verify the model by decoy recognition and site-specific amino acid predictions. Our coarse-grained model is compared to state-of-art methods that use full atomic detail. This article illustrates how the use of simple probabilistic models can lead to new opportunities in the treatment of nonlocal interactions in knowledge-based protein structure prediction and design. Copyright © 2013 Wiley Periodicals, Inc., a Wiley company.

  16. Stochastic hyperfine interactions modeling library-Version 2

    NASA Astrophysics Data System (ADS)

    Zacate, Matthew O.; Evenson, William E.

    2016-02-01

    The stochastic hyperfine interactions modeling library (SHIML) provides a set of routines to assist in the development and application of stochastic models of hyperfine interactions. The library provides routines written in the C programming language that (1) read a text description of a model for fluctuating hyperfine fields, (2) set up the Blume matrix, upon which the evolution operator of the system depends, and (3) find the eigenvalues and eigenvectors of the Blume matrix so that theoretical spectra of experimental techniques that measure hyperfine interactions can be calculated. The optimized vector and matrix operations of the BLAS and LAPACK libraries are utilized. The original version of SHIML constructed and solved Blume matrices for methods that measure hyperfine interactions of nuclear probes in a single spin state. Version 2 provides additional support for methods that measure interactions on two different spin states such as Mössbauer spectroscopy and nuclear resonant scattering of synchrotron radiation. Example codes are provided to illustrate the use of SHIML to (1) generate perturbed angular correlation spectra for the special case of polycrystalline samples when anisotropy terms of higher order than A22 can be neglected and (2) generate Mössbauer spectra for polycrystalline samples for pure dipole or pure quadrupole transitions.

  17. Inferring modulators of genetic interactions with epistatic nested effects models.

    PubMed

    Pirkl, Martin; Diekmann, Madeline; van der Wees, Marlies; Beerenwinkel, Niko; Fröhlich, Holger; Markowetz, Florian

    2017-04-01

    Maps of genetic interactions can dissect functional redundancies in cellular networks. Gene expression profiles as high-dimensional molecular readouts of combinatorial perturbations provide a detailed view of genetic interactions, but can be hard to interpret if different gene sets respond in different ways (called mixed epistasis). Here we test the hypothesis that mixed epistasis between a gene pair can be explained by the action of a third gene that modulates the interaction. We have extended the framework of Nested Effects Models (NEMs), a type of graphical model specifically tailored to analyze high-dimensional gene perturbation data, to incorporate logical functions that describe interactions between regulators on downstream genes and proteins. We benchmark our approach in the controlled setting of a simulation study and show high accuracy in inferring the correct model. In an application to data from deletion mutants of kinases and phosphatases in S. cerevisiae we show that epistatic NEMs can point to modulators of genetic interactions. Our approach is implemented in the R-package 'epiNEM' available from https://github.com/cbg-ethz/epiNEM and https://bioconductor.org/packages/epiNEM/.

  18. 19 Gene × Environment Interaction Models in Psychiatric Genetics

    PubMed Central

    Karg, Katja; Sen, Srijan

    2013-01-01

    Gene-environment (G×E) interaction research is an emerging area in psychiatry, with the number of G×E studies growing rapidly in the past two decades. This article aims to give a comprehensive introduction to the field, with an emphasis on central theoretical and practical problems that are worth considering before conducting a G×E interaction study. On the theoretical side, we discuss two fundamental, but controversial questions about (1) the validity of statistical models for biological interaction and (2) the utility of G×E research for psychiatric genetics. On the practical side, we focus on study characteristics that potentially influence the outcome of G×E interaction studies and discuss strengths and pitfalls of different study designs, including recent approaches like Genome-Environment Wide Interaction Studies (GEWIS). Finally, we discuss recent developments in G×E interaction research on the most heavily investigated example in psychiatric genetics, the interaction between a serotonin transporter gene promoter variant (5-HTTLPR) and stress on depression. PMID:22241248

  19. Spoken language interaction with model uncertainty: an adaptive human-robot interaction system

    NASA Astrophysics Data System (ADS)

    Doshi, Finale; Roy, Nicholas

    2008-12-01

    Spoken language is one of the most intuitive forms of interaction between humans and agents. Unfortunately, agents that interact with people using natural language often experience communication errors and do not correctly understand the user's intentions. Recent systems have successfully used probabilistic models of speech, language and user behaviour to generate robust dialogue performance in the presence of noisy speech recognition and ambiguous language choices, but decisions made using these probabilistic models are still prone to errors owing to the complexity of acquiring and maintaining a complete model of human language and behaviour. In this paper, a decision-theoretic model for human-robot interaction using natural language is described. The algorithm is based on the Partially Observable Markov Decision Process (POMDP), which allows agents to choose actions that are robust not only to uncertainty from noisy or ambiguous speech recognition but also unknown user models. Like most dialogue systems, a POMDP is defined by a large number of parameters that may be difficult to specify a priori from domain knowledge, and learning these parameters from the user may require an unacceptably long training period. An extension to the POMDP model is described that allows the agent to acquire a linguistic model of the user online, including new vocabulary and word choice preferences. The approach not only avoids a training period of constant questioning as the agent learns, but also allows the agent actively to query for additional information when its uncertainty suggests a high risk of mistakes. The approach is demonstrated both in simulation and on a natural language interaction system for a robotic wheelchair application.

  20. Interactive modelling with stakeholders in two cases in flood management

    NASA Astrophysics Data System (ADS)

    Leskens, Johannes; Brugnach, Marcela

    2013-04-01

    New policies on flood management called Multi-Level Safety (MLS), demand for an integral and collaborative approach. The goal of MLS is to minimize flood risks by a coherent package of protection measures, crisis management and flood resilience measures. To achieve this, various stakeholders, such as water boards, municipalities and provinces, have to collaborate in composing these measures. Besides the many advances this integral and collaborative approach gives, the decision-making environment becomes also more complex. Participants have to consider more criteria than they used to do and have to take a wide network of participants into account, all with specific perspectives, cultures and preferences. In response, sophisticated models are developed to support decision-makers in grasping this complexity. These models provide predictions of flood events and offer the opportunity to test the effectiveness of various measures under different criteria. Recent model advances in computation speed and model flexibility allow stakeholders to directly interact with a hydrological hydraulic model during meetings. Besides a better understanding of the decision content, these interactive models are supposed to support the incorporation of stakeholder knowledge in modelling and to support mutual understanding of different perspectives of stakeholders To explore the support of interactive modelling in integral and collaborate policies, such as MLS, we tested a prototype of an interactive flood model (3Di) with respect to a conventional model (Sobek) in two cases. The two cases included the designing of flood protection measures in Amsterdam and a flood event exercise in Delft. These case studies yielded two main results. First, we observed that in the exploration phase of a decision-making process, stakeholders participated actively in interactive modelling sessions. This increased the technical understanding of complex problems and the insight in the effectiveness of various

  1. Sensitivity analysis of random shell-model interactions

    NASA Astrophysics Data System (ADS)

    Krastev, Plamen; Johnson, Calvin

    2010-02-01

    The input to the configuration-interaction shell model includes many dozens or even hundreds of independent two-body matrix elements. Previous studies have shown that when fitting to experimental low-lying spectra, the greatest sensitivity is to only a few linear combinations of matrix elements. Following Brown and Richter [1], here we consider general two-body interactions in the 1s-0d shell and find that the low-lying spectra are also only sensitive to a few linear combinations of two-body matrix elements. We find out in particular the ground state energies for both the random and non-random (here given by the USDB) interaction are dominated by similar matrix elements, which we try to interpret in terms of monopole and contact interactions, while the excitation energies have completely different character. [4pt] [1] B. Alex Brown and W. A. Richter, Phys. Rev. C 74, 034315 (2006) )

  2. Coarse-Grained Models for Protein-Cell Membrane Interactions

    PubMed Central

    Bradley, Ryan; Radhakrishnan, Ravi

    2015-01-01

    The physiological properties of biological soft matter are the product of collective interactions, which span many time and length scales. Recent computational modeling efforts have helped illuminate experiments that characterize the ways in which proteins modulate membrane physics. Linking these models across time and length scales in a multiscale model explains how atomistic information propagates to larger scales. This paper reviews continuum modeling and coarse-grained molecular dynamics methods, which connect atomistic simulations and single-molecule experiments with the observed microscopic or mesoscale properties of soft-matter systems essential to our understanding of cells, particularly those involved in sculpting and remodeling cell membranes. PMID:26613047

  3. Partonomies for interactive explorable 3D-models of anatomy.

    PubMed Central

    Schubert, R.; Höhne, K. H.

    1998-01-01

    We introduce a concept to model subtle part-whole-semantics for the use with interactive 3d-models of human anatomy. Similar to experiences with modeling partonomies for physical artifacts like machines or buildings we found one unique part-whole-relation to be insufficient to represent anatomical reality. This claim will be illustrated with anatomical examples. According to the requirements these examples demand, a semantic classification of part-whole-relations is introduced. Initial results in modeling anatomical partonomies for a 3d-visualization environment proved this approach to be an promising way to represent anatomy and to enable powerful complex inferences. Images Figure 2 Figure 4 PMID:9929256

  4. Atazanavir–bilirubin interaction: a pharmacokinetic–pharmacodynamic model

    PubMed Central

    Lozano, Roberto; Domeque, Nieves; Apesteguia, Alberto-Fermin

    2013-01-01

    Purpose The aim of this work was to analyze the atazanavir–bilirubin relationship, using a new mathematical approach to pharmacokinetic–pharmacodynamic models, for competitive drug interactions based on Michaelis–Menten equations. Patients and methods Because atazanavir induces an increase of plasma bilirubin levels, in a concentration-dependent manner, we developed a mathematical model, based on increments of atazanavir and bilirubin concentrations at steady state, in HIV infected (HIV+) patients, and plotted the corresponding nomogram for detecting suboptimal atazanavir exposure. Results By applying the obtained model, the results indicate that an absolute value or an increment of bilirubin at steady state below 3.8 μmol/L, are predictive of suboptimal atazanavir exposure and therapeutic failure. Conclusion We have successfully implemented a new mathematical approach to pharmacokinetic–pharmacodynamic model for atazanavir–bilirubin interaction. As a result, we found that bilirubin plasma levels constitute a good marker of exposure to atazanavir and of viral suppression. PMID:24106429

  5. Interactive Rapid Dose Assessment Model (IRDAM): user's guide

    SciTech Connect

    Poeton, R.W.; Moeller, M.P.; Laughlin, G.J.; Desrosiers, A.E.

    1983-05-01

    As part of the continuing emphasis on emergency preparedness the US Nuclear Regulatory Commission (NRC) sponsored the development of a rapid dose assessment system by Pacific Northwest Laboratory (PNL). This system, the Interactive Rapid Dose Assessment Model (IRDAM) is a micro-computer based program for rapidly assessing the radiological impact of accidents at nuclear power plants. This User's Guide provides instruction in the setup and operation of the equipment necessary to run IRDAM. Instructions are also given on how to load the magnetic disks and access the interactive part of the program. Two other companion volumes to this one provide additional information on IRDAM. Reactor Accident Assessment Methods (NUREG/CR-3012, Volume 2) describes the technical bases for IRDAM including methods, models and assumptions used in calculations. Scenarios for Comparing Dose Assessment Models (NUREG/CR-3012, Volume 3) provides the results of calculations made by IRDAM and other models for specific accident scenarios.

  6. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    SciTech Connect

    Wu Dianliang; Zhu Hongmin

    2010-05-21

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  7. An exotic k-essence interpretation of interactive cosmological models

    NASA Astrophysics Data System (ADS)

    Forte, Mónica

    2016-01-01

    We define a generalization of scalar fields with non-canonical kinetic term which we call exotic k-essence or, briefly, exotik. These fields are generated by the global description of cosmological models with two interactive fluids in the dark sector and under certain conditions they correspond to usual k-essences. The formalism is applied to the cases of constant potential and of inverse square potential and also we develop the purely exotik version for the modified holographic Ricci type (MHR) of dark energy, where the equations of state are not constant. With the kinetic function F=1+mx and the inverse square potential we recover, through the interaction term, the identification between k-essences and quintessences of an exponential potential, already known for Friedmann-Robertson-Walker and Bianchi type I geometries. Worked examples are shown that include the self-interacting MHR and also models with crossing of the phantom divide line (PDL).

  8. Information on biotic interactions improves transferability of distribution models.

    PubMed

    Godsoe, William; Murray, Rua; Plank, Michael J

    2015-02-01

    Predicting changes in species' distributions is a crucial problem in ecology, with leading methods relying on information about species' putative climatic requirements. Empirical support for this approach relies on our ability to use observations of a species' distribution in one region to predict its range in other regions (model transferability). On the basis of this observation, ecologists have hypothesized that climate is the strongest determinant of species' distributions at large spatial scales. However, it is difficult to reconcile this claim with the pervasive effects of biotic interactions. Here, we resolve this apparent paradox by demonstrating how biotic interactions can affect species' range margins yet still be compatible with model transferability. We also identify situations where small changes in species' interactions dramatically shift range margins.

  9. Tools and Equipment Modeling for Automobile Interactive Assembling Operating Simulation

    NASA Astrophysics Data System (ADS)

    Wu, Dianliang; Zhu, Hongmin

    2010-05-01

    Tools and equipment play an important role in the simulation of virtual assembly, especially in the assembly process simulation and plan. Because of variety in function and complexity in structure and manipulation, the simulation of tools and equipments remains to be a challenge for interactive assembly operation. Based on analysis of details and characteristics of interactive operations for automobile assembly, the functional requirement for tools and equipments of automobile assembly is given. Then, a unified modeling method for information expression and function realization of general tools and equipments is represented, and the handling methods of manual, semi-automatic, automatic tools and equipments are discussed. Finally, the application in assembly simulation of rear suspension and front suspension of Roewe 750 automobile is given. The result shows that the modeling and handling methods are applicable in the interactive simulation of various tools and equipments, and can also be used for supporting assembly process planning in virtual environment.

  10. Enhanced compressibility due to repulsive interaction in the Harper model

    NASA Astrophysics Data System (ADS)

    Kraus, Yaacov E.; Zilberberg, Oded; Berkovits, Richard

    2014-04-01

    We study the interplay between a repulsive interaction and an almost staggered on-site potential in one dimension. Specifically, we address the Harper model for spinless fermions with nearest-neighbor repulsion, close to half filling. Using the density matrix renormalization group, we find that, in contrast to standard behavior, the system becomes more compressible as the repulsive interaction is increased. By deriving a low-energy effective model, we unveil the effect of interactions using mean-field analysis: The density of a narrow band around half filling is anticorrelated with the on-site potential, whereas the density of lower occupied bands follows the potential and strengthens it. As a result, the states around half filling are squeezed by the background density, their band becomes flatter, and the compressibility increases.

  11. Making Transporter Models for Drug-Drug Interaction Prediction Mobile.

    PubMed

    Ekins, Sean; Clark, Alex M; Wright, Stephen H

    2015-10-01

    The past decade has seen increased numbers of studies publishing ligand-based computational models for drug transporters. Although they generally use small experimental data sets, these models can provide insights into structure-activity relationships for the transporter. In addition, such models have helped to identify new compounds as substrates or inhibitors of transporters of interest. We recently proposed that many transporters are promiscuous and may require profiling of new chemical entities against multiple substrates for a specific transporter. Furthermore, it should be noted that virtually all of the published ligand-based transporter models are only accessible to those involved in creating them and, consequently, are rarely shared effectively. One way to surmount this is to make models shareable or more accessible. The development of mobile apps that can access such models is highlighted here. These apps can be used to predict ligand interactions with transporters using Bayesian algorithms. We used recently published transporter data sets (MATE1, MATE2K, OCT2, OCTN2, ASBT, and NTCP) to build preliminary models in a commercial tool and in open software that can deliver the model in a mobile app. In addition, several transporter data sets extracted from the ChEMBL database were used to illustrate how such public data and models can be shared. Predicting drug-drug interactions for various transporters using computational models is potentially within reach of anyone with an iPhone or iPad. Such tools could help prioritize which substrates should be used for in vivo drug-drug interaction testing and enable open sharing of models.

  12. An Arctic Ice/Ocean Coupled Model with Wave Interactions

    DTIC Science & Technology

    2015-09-30

    ocean waves and sea ice interact, for use in operational models of the Arctic Basin and the adjacent seas; – improve the forecasting capacities of...spectra and modify their directional spread. Being the primary focus of the current project, we are developing innovative methods to model these...during WIFAR (Waves-in-Ice Forecasting for Arctic Operators), a partnership between the Nansen Environmental and Remote Sensing Center (NERSC) in

  13. Finite Element Modeling of Tire-Terrain Interaction

    DTIC Science & Technology

    2001-11-01

    cent advancements in the contact formulations of general-purpose finite element codes (e.g. ABAQUS , HKS 1998) and increases in computer processing...are based on the models as implemented in ABAQUS (HKS 1998). Additional information on soil plasticity and critical state soil mechanics is given...snow interaction, however, the model must simulate snow deformation in a three-dimensional stress field. Initial simulations using the ABAQUS

  14. A Computational Dual-Process Model of Social Interaction

    DTIC Science & Technology

    2014-01-30

    Debate. Perspectives on Psychological Science, 8(3), 223-241. Fiske, S. T. (1998). Stereotyping , Prejudice , and Discrimination . In D. T. Gilbert, S...describe the modeling of stereotypes and prejudice , principally with respect to race and religion, in social interactions. We developed a computational...implicitly activated and automatically invoked (Devine, 1989; Fiske, 1998). It is the modeling of stereotypes and prejudice , principally with respect to

  15. Interactive Visualizations of Complex Seismic Data and Models

    NASA Astrophysics Data System (ADS)

    Chai, C.; Ammon, C. J.; Maceira, M.; Herrmann, R. B.

    2016-12-01

    The volume and complexity of seismic data and models have increased dramatically thanks to dense seismic station deployments and advances in data modeling and processing. Seismic observations such as receiver functions and surface-wave dispersion are multidimensional: latitude, longitude, time, amplitude and latitude, longitude, period, and velocity. Three-dimensional seismic velocity models are characterized with three spatial dimensions and one additional dimension for the speed. In these circumstances, exploring the data and models and assessing the data fits is a challenge. A few professional packages are available to visualize these complex data and models. However, most of these packages rely on expensive commercial software or require a substantial time investment to master, and even when that effort is complete, communicating the results to others remains a problem. A traditional approach during the model interpretation stage is to examine data fits and model features using a large number of static displays. Publications include a few key slices or cross-sections of these high-dimensional data, but this prevents others from directly exploring the model and corresponding data fits. In this presentation, we share interactive visualization examples of complex seismic data and models that are based on open-source tools and are easy to implement. Model and data are linked in an intuitive and informative web-browser based display that can be used to explore the model and the features in the data that influence various aspects of the model. We encode the model and data into HTML files and present high-dimensional information using two approaches. The first uses a Python package to pack both data and interactive plots in a single file. The second approach uses JavaScript, CSS, and HTML to build a dynamic webpage for seismic data visualization. The tools have proven useful and led to deeper insight into 3D seismic models and the data that were used to construct them

  16. Modeling seasonal interactions in the population dynamics of migratory birds

    USGS Publications Warehouse

    Runge, M.C.; Marra, P.P.; Greenberg, Russell; Marra, Peter P.

    2005-01-01

    Understanding the population dynamics of migratory birds requires understanding the relevant biological events that occur during breeding, migratory, and overwintering periods. The few available population models for passerine birds focus on breeding-season events, disregard or oversimplify events during nonbreeding periods, and ignore interactions that occur between periods of the annual cycle. Identifying and explicitly incorporating seasonal interactions into population models for migratory birds could provide important insights about when population limitation actually occurs in the annual cycle. We present a population model for the annual cycle of a migratory bird, based on the American Redstart (Setophaga ruticilla) but more generally applicable, that examines the importance of seasonal interactions by incorporating: (1) density dependence during the breeding and winter seasons, (2) a carry-over effect of winter habitat on breeding-season productivity, and (3) the effects of behavioral dominance on seasonal and habitat specific demographic rates. First, we show that habitat availability on both the wintering and breeding grounds can strongly affect equilibrium population size and sex ratio. Second, sex ratio dynamics, as mediated by behavioral dominance, can affect all other aspects of population dynamics. Third, carry-over effects can be strong, especially when winter events are limiting. These results suggest that understanding the population dynamics of migratory birds may require more consideration of the seasonal interactions induced by carry-over effects and density dependence in multiple seasons. This model provides a framework in which to explore more fully these seasonal dynamics and a context for estimation of life history parameters.

  17. An Interactive Simulation System for Modeling Stands, Harvests, and Machines

    Treesearch

    Jingxin Wang; W. Dale Greene

    1999-01-01

    A interactive computer simulation program models stands, harvest, and machine factors and evaluates their interatcitons while performing felling, skidding, or fowarding activities. A stand generator allows the user to generate either natural or planted stands. Fellings with chainsaw, drive-to-tree feller-bunchers, or harvesters and extraction with grapple skidders or...

  18. Bilingual Parents' Modeling of Pragmatic Language Use in Multiparty Interactions

    ERIC Educational Resources Information Center

    Tare, Medha; Gelman, Susan A.

    2011-01-01

    Parental input represents an important source of language socialization. Particularly in bilingual contexts, parents may model pragmatic language use and metalinguistic strategies to highlight language differences. The present study examines multiparty interactions involving 28 bilingual English- and Marathi-speaking parent-child pairs in the…

  19. Representing climate, disturbance, and vegetation interactions in landscape models

    Treesearch

    Robert E. Keane; Donald McKenzie; Donald A. Falk; Erica A.H. Smithwick; Carol Miller; Lara-Karena B. Kellogg

    2015-01-01

    The prospect of rapidly changing climates over the next century calls for methods to predict their effects on myriad, interactive ecosystem processes. Spatially explicit models that simulate ecosystem dynamics at fine (plant, stand) to coarse (regional, global) scales are indispensable tools for meeting this challenge under a variety of possible futures. A special...

  20. Bilingual Parents' Modeling of Pragmatic Language Use in Multiparty Interactions

    ERIC Educational Resources Information Center

    Tare, Medha; Gelman, Susan A.

    2011-01-01

    Parental input represents an important source of language socialization. Particularly in bilingual contexts, parents may model pragmatic language use and metalinguistic strategies to highlight language differences. The present study examines multiparty interactions involving 28 bilingual English- and Marathi-speaking parent-child pairs in the…

  1. Geometry of coexistence in the interacting boson model

    SciTech Connect

    Van Isacker, P.; Frank, A.; Vargas, C.E.

    2004-09-13

    The Interacting Boson Model (IBM) with configuration mixing is applied to describe the phenomenon of coexistence in nuclei. The analysis suggests that the IBM with configuration mixing, used in conjunction with a (matrix) coherent-state method, may be a reliable tool for the study of geometric aspects of shape coexistence in nuclei.

  2. Moment Testing for Interaction Terms in Structural Equation Modeling

    ERIC Educational Resources Information Center

    Mooijaart, Ab; Satorra, Albert

    2012-01-01

    Starting with Kenny and Judd ("Psychol. Bull." 96:201-210, 1984) several methods have been introduced for analyzing models with interaction terms. In all these methods more information from the data than just means and covariances is required. In this paper we also use more than just first- and second-order moments; however, we are aiming to…

  3. Dark Matter in the Heavens and at Colliders: Models and Constraints

    SciTech Connect

    Primulando, Reinard

    2012-08-01

    In this dissertation, we investigate various aspects of dark matter detection and model building. Motivated by the cosmic ray positron excess observed by PAMELA, we construct models of decaying dark matter to explain the excess. Specifically we present an explicit, TeV-scale model of decaying dark matter in which the approximate stability of the dark matter candidate is a consequence of a global symmetry that is broken only by instanton-induced operators generated by a non-Abelian dark gauge group. Alternatively, the decaying operator can arise as a Planck suppressed correction in a model with an Abelian discrete symmetry and vector-like states at an intermediate scale that are responsible for generating lepton Yukawa couplings. A flavor-nonconserving dark matter decay is also considered in the case of fermionic dark matter. Assuming a general Dirac structure for the four-fermion contact interactions of interest, the cosmic-ray electron and positron spectra were studied. We show that good fits to the current data can be obtained for both charged-leptonflavor- conserving and flavor-violating decay channels. Motivated by a possible excess of gamma rays in the galactic center, we constructed a supersymmetric leptophilic higgs model to explain the excess. Finally, we consider an improvement on dark matter collider searches using the Razor analysis, which was originally utilized for supersymmetry searches by the CMS collaboration.

  4. Minimal models of loop-induced lepton flavor violation in Higgs boson decays

    NASA Astrophysics Data System (ADS)

    Alvarado, Carlos; Capdevilla, Rodolfo M.; Delgado, Antonio; Martin, Adam

    2016-10-01

    The LHC has recently reported a slight excess in the h →τ μ channel. If this lepton flavor violating (LFV) decay is confirmed, an extension of the standard model (SM) will be required to explain it. In this paper we investigate two different possibilities to accommodate such a LFV process: the first scenario is based on flavor off-diagonal A terms in the minimal supersymmetric standard model, and the second is a model where the Higgs boson couples to new vectorlike fermions that couple to the SM leptons through a LFV four-fermion interaction. In the supersymmetric model, we find that the sizes of the A terms needed to accommodate the h →τ μ excess are in conflict with charge- and color-breaking vacuum constraints. In the second model, the excess can be successfully explained while satisfying all other flavor constraints, with order-one couplings, vectorlike fermion masses as low as 15 TeV, and a UV scale higher than 35 TeV.

  5. Modeling of nonlinear interactions between guided waves and fatigue cracks using local interaction simulation approach.

    PubMed

    Shen, Yanfeng; Cesnik, Carlos E S

    2017-02-01

    This article presents a parallel algorithm to model the nonlinear dynamic interactions between ultrasonic guided waves and fatigue cracks. The Local Interaction Simulation Approach (LISA) is further developed to capture the contact-impact clapping phenomena during the wave crack interactions based on the penalty method. Initial opening and closure distributions are considered to approximate the 3-D rough crack microscopic features. A Coulomb friction model is integrated to capture the stick-slip contact motions between the crack surfaces. The LISA procedure is parallelized via the Compute Unified Device Architecture (CUDA), which enables parallel computing on powerful graphic cards. The explicit contact formulation, the parallel algorithm, as well as the GPU-based implementation facilitate LISA's high computational efficiency over the conventional finite element method (FEM). This article starts with the theoretical formulation and numerical implementation of the proposed algorithm, followed by the solution behavior study and numerical verification against a commercial finite element code. Numerical case studies are conducted on Lamb wave interactions with fatigue cracks. Several nonlinear ultrasonic phenomena are addressed. The classical nonlinear higher harmonic and DC response are successfully captured. The nonlinear mode conversion at a through-thickness and a half-thickness fatigue crack is investigated. Threshold behaviors, induced by initial openings and closures of rough crack surfaces, are depicted by the proposed contact LISA model.

  6. Modeling attacker-defender interactions in information networks.

    SciTech Connect

    Collins, Michael Joseph

    2010-09-01

    The simplest conceptual model of cybersecurity implicitly views attackers and defenders as acting in isolation from one another: an attacker seeks to penetrate or disrupt a system that has been protected to a given level, while a defender attempts to thwart particular attacks. Such a model also views all non-malicious parties as having the same goal of preventing all attacks. But in fact, attackers and defenders are interacting parts of the same system, and different defenders have their own individual interests: defenders may be willing to accept some risk of successful attack if the cost of defense is too high. We have used game theory to develop models of how non-cooperative but non-malicious players in a network interact when there is a substantial cost associated with effective defensive measures. Although game theory has been applied in this area before, we have introduced some novel aspects of player behavior in our work, including: (1) A model of how players attempt to avoid the costs of defense and force others to assume these costs; (2) A model of how players interact when the cost of defending one node can be shared by other nodes; and (3) A model of the incentives for a defender to choose less expensive, but less effective, defensive actions.

  7. A coarse grain model for protein-surface interactions.

    PubMed

    Wei, Shuai; Knotts, Thomas A

    2013-09-07

    The interaction of proteins with surfaces is important in numerous applications in many fields-such as biotechnology, proteomics, sensors, and medicine--but fundamental understanding of how protein stability and structure are affected by surfaces remains incomplete. Over the last several years, molecular simulation using coarse grain models has yielded significant insights, but the formalisms used to represent the surface interactions have been rudimentary. We present a new model for protein surface interactions that incorporates the chemical specificity of both the surface and the residues comprising the protein in the context of a one-bead-per-residue, coarse grain approach that maintains computational efficiency. The model is parameterized against experimental adsorption energies for multiple model peptides on different types of surfaces. The validity of the model is established by its ability to quantitatively and qualitatively predict the free energy of adsorption and structural changes for multiple biologically-relevant proteins on different surfaces. The validation, done with proteins not used in parameterization, shows that the model produces remarkable agreement between simulation and experiment.

  8. A coarse grain model for protein-surface interactions

    NASA Astrophysics Data System (ADS)

    Wei, Shuai; Knotts, Thomas A.

    2013-09-01

    The interaction of proteins with surfaces is important in numerous applications in many fields—such as biotechnology, proteomics, sensors, and medicine—but fundamental understanding of how protein stability and structure are affected by surfaces remains incomplete. Over the last several years, molecular simulation using coarse grain models has yielded significant insights, but the formalisms used to represent the surface interactions have been rudimentary. We present a new model for protein surface interactions that incorporates the chemical specificity of both the surface and the residues comprising the protein in the context of a one-bead-per-residue, coarse grain approach that maintains computational efficiency. The model is parameterized against experimental adsorption energies for multiple model peptides on different types of surfaces. The validity of the model is established by its ability to quantitatively and qualitatively predict the free energy of adsorption and structural changes for multiple biologically-relevant proteins on different surfaces. The validation, done with proteins not used in parameterization, shows that the model produces remarkable agreement between simulation and experiment.

  9. Multi-particle interaction in a model of the hydrophobic interaction

    NASA Astrophysics Data System (ADS)

    Bedeaux, D.; Koper, G. J. M.; Ispolatov, S.; Widom, B.

    2001-03-01

    The multi-particle potential of mean force between interstitial solute molecules in Ben-Naim's one-dimensional, many-state lattice model is calculated. The solution is a direct extension of an earlier calculation of the two-particle interaction by Kolomeisky and Widom (Faraday Dis. 112 (1999) 81). It is found that the many-particle interaction potential is a sum of pair potentials between neighboring particles only. An exact equation of state, expressing the activity in the temperature and the pressure, is derived. The resulting solubility of a gaseous hydrophobe, which is defined osmotically, is calculated and found to increase considerably with the gas density.

  10. The effect of model uncertainty on cooperation in sensorimotor interactions

    PubMed Central

    Grau-Moya, J.; Hez, E.; Pezzulo, G.; Braun, D. A.

    2013-01-01

    Decision-makers have been shown to rely on probabilistic models for perception and action. However, these models can be incorrect or partially wrong in which case the decision-maker has to cope with model uncertainty. Model uncertainty has recently also been shown to be an important determinant of sensorimotor behaviour in humans that can lead to risk-sensitive deviations from Bayes optimal behaviour towards worst-case or best-case outcomes. Here, we investigate the effect of model uncertainty on cooperation in sensorimotor interactions similar to the stag-hunt game, where players develop models about the other player and decide between a pay-off-dominant cooperative solution and a risk-dominant, non-cooperative solution. In simulations, we show that players who allow for optimistic deviations from their opponent model are much more likely to converge to cooperative outcomes. We also implemented this agent model in a virtual reality environment, and let human subjects play against a virtual player. In this game, subjects' pay-offs were experienced as forces opposing their movements. During the experiment, we manipulated the risk sensitivity of the computer player and observed human responses. We found not only that humans adaptively changed their level of cooperation depending on the risk sensitivity of the computer player but also that their initial play exhibited characteristic risk-sensitive biases. Our results suggest that model uncertainty is an important determinant of cooperation in two-player sensorimotor interactions. PMID:23945266

  11. Interactive graphical model building using telepresence and virtual reality

    SciTech Connect

    Cooke, C.; Stansfield, S.

    1993-10-01

    This paper presents a prototype system developed at Sandia National Laboratories to create and verify computer-generated graphical models of remote physical environments. The goal of the system is to create an interface between an operator and a computer vision system so that graphical models can be created interactively. Virtual reality and telepresence are used to allow interaction between the operator, computer, and remote environment. A stereo view of the remote environment is produced by two CCD cameras. The cameras are mounted on a three degree-of-freedom platform which is slaved to a mechanically-tracked, stereoscopic viewing device. This gives the operator a sense of immersion in the physical environment. The stereo video is enhanced by overlaying the graphical model onto it. Overlay of the graphical model onto the stereo video allows visual verification of graphical models. Creation of a graphical model is accomplished by allowing the operator to assist the computer in modeling. The operator controls a 3-D cursor to mark objects to be modeled. The computer then automatically extracts positional and geometric information about the object and creates the graphical model.

  12. Systems pharmacology - Towards the modeling of network interactions.

    PubMed

    Danhof, Meindert

    2016-10-30

    Mechanism-based pharmacokinetic and pharmacodynamics (PKPD) and disease system (DS) models have been introduced in drug discovery and development research, to predict in a quantitative manner the effect of drug treatment in vivo in health and disease. This requires consideration of several fundamental properties of biological systems behavior including: hysteresis, non-linearity, variability, interdependency, convergence, resilience, and multi-stationarity. Classical physiology-based PKPD models consider linear transduction pathways, connecting processes on the causal path between drug administration and effect, as the basis of drug action. Depending on the drug and its biological target, such models may contain expressions to characterize i) the disposition and the target site distribution kinetics of the drug under investigation, ii) the kinetics of target binding and activation and iii) the kinetics of transduction. When connected to physiology-based DS models, PKPD models can characterize the effect on disease progression in a mechanistic manner. These models have been found useful to characterize hysteresis and non-linearity, yet they fail to explain the effects of the other fundamental properties of biological systems behavior. Recently systems pharmacology has been introduced as novel approach to predict in vivo drug effects, in which biological networks rather than single transduction pathways are considered as the basis of drug action and disease progression. These models contain expressions to characterize the functional interactions within a biological network. Such interactions are relevant when drugs act at multiple targets in the network or when homeostatic feedback mechanisms are operative. As a result systems pharmacology models are particularly useful to describe complex patterns of drug action (i.e. synergy, oscillatory behavior) and disease progression (i.e. episodic disorders). In this contribution it is shown how physiology-based PKPD and

  13. Factor selection and structural identification in the interaction ANOVA model.

    PubMed

    Post, Justin B; Bondell, Howard D

    2013-03-01

    When faced with categorical predictors and a continuous response, the objective of an analysis often consists of two tasks: finding which factors are important and determining which levels of the factors differ significantly from one another. Often times, these tasks are done separately using Analysis of Variance (ANOVA) followed by a post hoc hypothesis testing procedure such as Tukey's Honestly Significant Difference test. When interactions between factors are included in the model the collapsing of levels of a factor becomes a more difficult problem. When testing for differences between two levels of a factor, claiming no difference would refer not only to equality of main effects, but also to equality of each interaction involving those levels. This structure between the main effects and interactions in a model is similar to the idea of heredity used in regression models. This article introduces a new method for accomplishing both of the common analysis tasks simultaneously in an interaction model while also adhering to the heredity-type constraint on the model. An appropriate penalization is constructed that encourages levels of factors to collapse and entire factors to be set to zero. It is shown that the procedure has the oracle property implying that asymptotically it performs as well as if the exact structure were known beforehand. We also discuss the application to estimating interactions in the unreplicated case. Simulation studies show the procedure outperforms post hoc hypothesis testing procedures as well as similar methods that do not include a structural constraint. The method is also illustrated using a real data example.

  14. Factor Selection and Structural Identification in the Interaction ANOVA Model

    PubMed Central

    Post, Justin B.; Bondell, Howard D.

    2013-01-01

    Summary When faced with categorical predictors and a continuous response, the objective of analysis often consists of two tasks: finding which factors are important and determining which levels of the factors differ significantly from one another. Often times these tasks are done separately using Analysis of Variance (ANOVA) followed by a post-hoc hypothesis testing procedure such as Tukey’s Honestly Significant Difference test. When interactions between factors are included in the model the collapsing of levels of a factor becomes a more difficult problem. When testing for differences between two levels of a factor, claiming no difference would refer not only to equality of main effects, but also equality of each interaction involving those levels. This structure between the main effects and interactions in a model is similar to the idea of heredity used in regression models. This paper introduces a new method for accomplishing both of the common analysis tasks simultaneously in an interaction model while also adhering to the heredity-type constraint on the model. An appropriate penalization is constructed that encourages levels of factors to collapse and entire factors to be set to zero. It is shown that the procedure has the oracle property implying that asymptotically it performs as well as if the exact structure were known beforehand. We also discuss the application to estimating interactions in the unreplicated case. Simulation studies show the procedure outperforms post hoc hypothesis testing procedures as well as similar methods that do not include a structural constraint. The method is also illustrated using a real data example. PMID:23323643

  15. Compressibility enhancement in an almost staggered interacting Harper model

    NASA Astrophysics Data System (ADS)

    Friedman, Bat-el; Berkovits, Richard

    2015-03-01

    We discuss the compressibility in the almost staggered fermionic Harper model with repulsive interactions in the vicinity of half-filling. It has been shown by Kraus et al. [Phys. Rev. B 89, 161106(R) (2014)], 10.1103/PhysRevB.89.161106 that for spinless electrons and nearest neighbors electron-electron interactions the compressibility in the central band is enhanced by repulsive interactions. Here we would like to investigate the sensitivity of this conclusion to the spin degree of freedom and longer range interactions. We use the Hartree-Fock (HF) approximation, as well as the density matrix renormalization group (DMRG) calculation to evaluate the compressibility. In the almost staggered Harper model, the central energy band is essentially flat and separated from the other bands by a large gap and therefore, the HF approximation is rather accurate. In both cases the compressibility of the system is enhanced compared to the noninteracting case, although the enhancement is weaker due to the inclusion of Hubbard and longer ranged interactions. We also show that the entanglement entropy is suppressed when the compressibility of the system is enhanced.

  16. The Soliton-Soliton Interaction in the Chiral Dilaton Model

    NASA Astrophysics Data System (ADS)

    Mantovani-Sarti, Valentina; Park, Byung-Yoon; Vento, Vicente

    2013-10-01

    We study the interaction between two B = 1 states in the Chiral Dilaton Model where baryons are described as nontopological solitons arising from the interaction of chiral mesons and quarks. By using the hedgehog solution for B = 1 states we construct, via a product ansatz, three possible B = 2 configurations to analyse the role of the relative orientation of the hedgehog quills in the dynamics of the soliton-soliton interaction and investigate the behavior of these solutions in the range of long/intermediate distance. One of the solutions is quite binding due to the dynamics of the π and σ fields at intermediate distance and should be used for nuclear matter studies. Since the product ansatz break down as the two solitons get close, we explore the short range distance regime with a model that describes the interaction via a six-quark bag ansatz. We calculate the interaction energy as a function of the inter-soliton distance and show that for small separations the six quarks bag, assuming a hedgehog structure, provides a stable bound state that at large separations connects with a special configuration coming from the product ansatz.

  17. Incorporating Context Dependency of Species Interactions in Species Distribution Models.

    PubMed

    Lany, Nina K; Zarnetske, Phoebe L; Gouhier, Tarik C; Menge, Bruce A

    2017-07-01

    Species distribution models typically use correlative approaches that characterize the species-environment relationship using occurrence or abundance data for a single species. However, species distributions are determined by both abiotic conditions and biotic interactions with other species in the community. Therefore, climate change is expected to impact species through direct effects on their physiology and indirect effects propagated through their resources, predators, competitors, or mutualists. Furthermore, the sign and strength of species interactions can change according to abiotic conditions, resulting in context-dependent species interactions that may change across space or with climate change. Here, we incorporated the context dependency of species interactions into a dynamic species distribution model. We developed a multi-species model that uses a time-series of observational survey data to evaluate how abiotic conditions and species interactions affect the dynamics of three rocky intertidal species. The model further distinguishes between the direct effects of abiotic conditions on abundance and the indirect effects propagated through interactions with other species. We apply the model to keystone predation by the sea star Pisaster ochraceus on the mussel Mytilus californianus and the barnacle Balanus glandula in the rocky intertidal zone of the Pacific coast, USA. Our method indicated that biotic interactions between P. ochraceus and B. glandula affected B. glandula dynamics across >1000 km of coastline. Consistent with patterns from keystone predation, the growth rate of B. glandula varied according to the abundance of P. ochraceus in the previous year. The data and the model did not indicate that the strength of keystone predation by P. ochraceus varied with a mean annual upwelling index. Balanus glandula cover increased following years with high phytoplankton abundance measured as mean annual chlorophyll-a. M. californianus exhibited the same

  18. Incorporating groundwater-surface water interaction into river management models.

    PubMed

    Valerio, Allison; Rajaram, Harihar; Zagona, Edith

    2010-01-01

    Accurate representation of groundwater-surface water interactions is critical to modeling low river flows in the semi-arid southwestern United States. Although a number of groundwater-surface water models exist, they are seldom integrated with river operation/management models. A link between the object-oriented river and reservoir operations model, RiverWare, and the groundwater model, MODFLOW, was developed to incorporate groundwater-surface water interaction processes, such as river seepage/gains, riparian evapotranspiration, and irrigation return flows, into a rule-based water allocations model. An explicit approach is used in which the two models run in tandem, exchanging data once in each computational time step. Because the MODFLOW grid is typically at a finer resolution than RiverWare objects, the linked model employs spatial interpolation and summation for compatible communication of exchanged variables. The performance of the linked model is illustrated through two applications in the Middle Rio Grande Basin in New Mexico where overappropriation impacts endangered species habitats. In one application, the linked model results are compared with historical data; the other illustrates use of the linked model for determining management strategies needed to attain an in-stream flow target. The flows predicted by the linked model at gauge locations are reasonably accurate except during a few very low flow periods when discrepancies may be attributable to stream gaging uncertainties or inaccurate documentation of diversions. The linked model accounted for complex diversions, releases, groundwater pumpage, irrigation return flows, and seepage between the groundwater system and canals/drains to achieve a schedule of releases that satisfied the in-stream target flow.

  19. Development of a coupled wave-flow-vegetation interaction model

    USGS Publications Warehouse

    Beudin, Alexis; Kalra, Tarandeep; Ganju, Neil K.; Warner, John C.

    2017-01-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  20. Development of a coupled wave-flow-vegetation interaction model

    NASA Astrophysics Data System (ADS)

    Beudin, Alexis; Kalra, Tarandeep S.; Ganju, Neil K.; Warner, John C.

    2017-03-01

    Emergent and submerged vegetation can significantly affect coastal hydrodynamics. However, most deterministic numerical models do not take into account their influence on currents, waves, and turbulence. In this paper, we describe the implementation of a wave-flow-vegetation module into a Coupled-Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system that includes a flow model (ROMS) and a wave model (SWAN), and illustrate various interacting processes using an idealized shallow basin application. The flow model has been modified to include plant posture-dependent three-dimensional drag, in-canopy wave-induced streaming, and production of turbulent kinetic energy and enstrophy to parameterize vertical mixing. The coupling framework has been updated to exchange vegetation-related variables between the flow model and the wave model to account for wave energy dissipation due to vegetation. This study i) demonstrates the validity of the plant posture-dependent drag parameterization against field measurements, ii) shows that the model is capable of reproducing the mean and turbulent flow field in the presence of vegetation as compared to various laboratory experiments, iii) provides insight into the flow-vegetation interaction through an analysis of the terms in the momentum balance, iv) describes the influence of a submerged vegetation patch on tidal currents and waves separately and combined, and v) proposes future directions for research and development.

  1. Monotonic single-index models to assess drug interactions.

    PubMed

    Wan, Yubing; Datta, Susmita; Lee, J Jack; Kong, Maiying

    2017-02-20

    Although single-index models have been extensively studied, the monotonicity of the link function f in the single-index model is rarely studied. In many situations, it is desirable that f is monotonic, which results in a monotonic single-index model that can be very useful in economics and biometrics. In this article, we propose a monotonic single-index model in which the link function is constructed using penalized I-splines along with constraints on coefficients to achieve monotonicity of the link function f. An algorithm to estimate the single-index parameters and the link function is developed, and the sandwich estimate of the variance of the index parameters is provided. We propose to apply this monotonic single-index model to estimate the dose-response surface and assess drug interactions while considering the variability of the observed data. An extensive simulation study was carried out to evaluate the performance of the proposed monotonic single-index model. A case study is provided to illustrate the application of the proposed model to estimate the dose-response surface and assess drug interactions. Both the simulation and case study show that the proposed monotonic single-index model works very well. Copyright © 2016 John Wiley & Sons, Ltd.

  2. Head Motion Modeling for Human Behavior Analysis in Dyadic Interaction

    PubMed Central

    Xiao, Bo; Georgiou, Panayiotis; Baucom, Brian; Narayanan, Shrikanth S.

    2015-01-01

    This paper presents a computational study of head motion in human interaction, notably of its role in conveying interlocutors’ behavioral characteristics. Head motion is physically complex and carries rich information; current modeling approaches based on visual signals, however, are still limited in their ability to adequately capture these important properties. Guided by the methodology of kinesics, we propose a data driven approach to identify typical head motion patterns. The approach follows the steps of first segmenting motion events, then parametrically representing the motion by linear predictive features, and finally generalizing the motion types using Gaussian mixture models. The proposed approach is experimentally validated using video recordings of communication sessions from real couples involved in a couples therapy study. In particular we use the head motion model to classify binarized expert judgments of the interactants’ specific behavioral characteristics where entrainment in head motion is hypothesized to play a role: Acceptance, Blame, Positive, and Negative behavior. We achieve accuracies in the range of 60% to 70% for the various experimental settings and conditions. In addition, we describe a measure of motion similarity between the interaction partners based on the proposed model. We show that the relative change of head motion similarity during the interaction significantly correlates with the expert judgments of the interactants’ behavioral characteristics. These findings demonstrate the effectiveness of the proposed head motion model, and underscore the promise of analyzing human behavioral characteristics through signal processing methods. PMID:26557047

  3. Vector Interaction Enhanced Bag Model for Astrophysical Applications

    NASA Astrophysics Data System (ADS)

    Klähn, Thomas; Fischer, Tobias

    2015-09-01

    For quark matter studies in astrophysics the thermodynamic bag model (tdBAG) has been widely used. Despite its success it fails to account for various phenomena expected from QCD. We suggest a straightforward extension of tdBAG in order to take the dynamical breaking of chiral symmetry and the influence of vector interactions explicitly into account. As for tdBAG the model mimics confinement in a phenomenological approach. It is based on an analysis of the Nambu-Jona-Lasinio (NJL) model at finite density. Furthermore, we demonstrate how NJL and bag models in this regime follow from the more general and QCD-based framework of the Dyson-Schwinger equations in a medium by assuming simple gluon contact interaction. Based on our simple and novel model, we construct quark hadron hybrid equations of state and systematically study chiral and deconfinement phase transitions, the appearance of s-quarks, and the role of vector interaction. We further study these aspects for matter in β-equilibrium at zero temperature, with particular focus on the current ˜2 {M}⊙ maximum mass constraint for neutron stars. Our approach indicates that the currently only theoretical evidence for the hypothesis of stable strange matter is an artifact of tdBAG and results from neglecting the dynamical breaking of chiral symmetry.

  4. Evaluating differential effects using regression interactions and regression mixture models

    PubMed Central

    Van Horn, M. Lee; Jaki, Thomas; Masyn, Katherine; Howe, George; Feaster, Daniel J.; Lamont, Andrea E.; George, Melissa R. W.; Kim, Minjung

    2015-01-01

    Research increasingly emphasizes understanding differential effects. This paper focuses on understanding regression mixture models, a relatively new statistical methods for assessing differential effects by comparing results to using an interactive term in linear regression. The research questions which each model answers, their formulation, and their assumptions are compared using Monte Carlo simulations and real data analysis. The capabilities of regression mixture models are described and specific issues to be addressed when conducting regression mixtures are proposed. The paper aims to clarify the role that regression mixtures can take in the estimation of differential effects and increase awareness of the benefits and potential pitfalls of this approach. Regression mixture models are shown to be a potentially effective exploratory method for finding differential effects when these effects can be defined by a small number of classes of respondents who share a typical relationship between a predictor and an outcome. It is also shown that the comparison between regression mixture models and interactions becomes substantially more complex as the number of classes increases. It is argued that regression interactions are well suited for direct tests of specific hypotheses about differential effects and regression mixtures provide a useful approach for exploring effect heterogeneity given adequate samples and study design. PMID:26556903

  5. Identifying and modeling the structural discontinuities of human interactions

    PubMed Central

    Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo

    2017-01-01

    The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales. PMID:28443647

  6. Identifying and modeling the structural discontinuities of human interactions

    NASA Astrophysics Data System (ADS)

    Grauwin, Sebastian; Szell, Michael; Sobolevsky, Stanislav; Hövel, Philipp; Simini, Filippo; Vanhoof, Maarten; Smoreda, Zbigniew; Barabási, Albert-László; Ratti, Carlo

    2017-04-01

    The idea of a hierarchical spatial organization of society lies at the core of seminal theories in human geography that have strongly influenced our understanding of social organization. Along the same line, the recent availability of large-scale human mobility and communication data has offered novel quantitative insights hinting at a strong geographical confinement of human interactions within neighboring regions, extending to local levels within countries. However, models of human interaction largely ignore this effect. Here, we analyze several country-wide networks of telephone calls - both, mobile and landline - and in either case uncover a systematic decrease of communication induced by borders which we identify as the missing variable in state-of-the-art models. Using this empirical evidence, we propose an alternative modeling framework that naturally stylizes the damping effect of borders. We show that this new notion substantially improves the predictive power of widely used interaction models. This increases our ability to understand, model and predict social activities and to plan the development of infrastructures across multiple scales.

  7. ANNIE - INTERACTIVE PROCESSING OF DATA BASES FOR HYDROLOGIC MODELS.

    USGS Publications Warehouse

    Lumb, Alan M.; Kittle, John L.

    1985-01-01

    ANNIE is a data storage and retrieval system that was developed to reduce the time and effort required to calibrate, verify, and apply watershed models that continuously simulate water quantity and quality. Watershed models have three categories of input: parameters to describe segments of a drainage area, linkage of the segments, and time-series data. Additional goals for ANNIE include the development of software that is easily implemented on minicomputers and some microcomputers and software that has no special requirements for interactive display terminals. Another goal is for the user interaction to be based on the experience of the user so that ANNIE is helpful to the inexperienced user and yet efficient and brief for the experienced user. Finally, the code should be designed so that additional hydrologic models can easily be added to ANNIE.

  8. Using Agent Based Modeling (ABM) to Develop Cultural Interaction Simulations

    NASA Technical Reports Server (NTRS)

    Drucker, Nick; Jones, Phillip N.

    2012-01-01

    Today, most cultural training is based on or built around "cultural engagements" or discrete interactions between the individual learner and one or more cultural "others". Often, success in the engagement is the end or the objective. In reality, these interactions usually involve secondary and tertiary effects with potentially wide ranging consequences. The concern is that learning culture within a strict engagement context might lead to "checklist" cultural thinking that will not empower learners to understand the full consequence of their actions. We propose the use of agent based modeling (ABM) to collect, store, and, simulating the effects of social networks, promulgate engagement effects over time, distance, and consequence. The ABM development allows for rapid modification to re-create any number of population types, extending the applicability of the model to any requirement for social modeling.

  9. Traumatization and chronic pain: a further model of interaction

    PubMed Central

    Egloff, Niklaus; Hirschi, Anna; von Känel, Roland

    2013-01-01

    Up to 80% of patients with severe posttraumatic stress disorder are suffering from “unexplained” chronic pain. Theories about the links between traumatization and chronic pain have become the subject of increased interest over the last several years. We will give a short summary about the existing interaction models that emphasize particularly psychological and behavioral aspects of this interaction. After a synopsis of the most important psychoneurobiological mechanisms of pain in the context of traumatization, we introduce the hypermnesia–hyperarousal model, which focuses on two psychoneurobiological aspects of the physiology of learning. This hypothesis provides an answer to the hitherto open question about the origin of pain persistence and pain sensitization following a traumatic event and also provides a straightforward explanatory model for educational purposes. PMID:24231792

  10. Interaction of sulpiride and serum albumin: Modeling from spectrofluorimetric data

    NASA Astrophysics Data System (ADS)

    Fragoso, Viviane Muniz da Silva; Silva, Dilson

    2015-12-01

    We have applied the fluorescence quenching modeling to study the process of interaction of sulpiride with human serum albumin (HSA) and bovine (BSA). Albumin is more abundant protein in blood and it emits fluorescence when excited by 260-295 nm. Sulpiride is an atypical antipsychotic used in the treatment of many psychiatric disorders. As sulpiride is fluorescent, we developed a mathematical model to analyzing the interaction of two fluorescent substances. This model was able to separate the albumin fluorescence from the quencher fluorescence. Results have shown that sulpiride quenches the fluorescence of both albumins by a static process, due to the complex formation drugalbumin. The association constants calculated for sulpiride-HSA was 2.20 (± 0.08) × 104 M-1 at 37° C, and 5.46 (± 0.20) × 104 M-1, 25 ° C, and the primary binding site to sulpiride in the albumin is located closer to the subdomain IB.

  11. Model Checking for Verification of Interactive Health IT Systems

    PubMed Central

    Butler, Keith A.; Mercer, Eric; Bahrami, Ali; Tao, Cui

    2015-01-01

    Rigorous methods for design and verification of health IT systems have lagged far behind their proliferation. The inherent technical complexity of healthcare, combined with the added complexity of health information technology makes their resulting behavior unpredictable and introduces serious risk. We propose to mitigate this risk by formalizing the relationship between HIT and the conceptual work that increasingly typifies modern care. We introduce new techniques for modeling clinical workflows and the conceptual products within them that allow established, powerful modeling checking technology to be applied to interactive health IT systems. The new capability can evaluate the workflows of a new HIT system performed by clinicians and computers to improve safety and reliability. We demonstrate the method on a patient contact system to demonstrate model checking is effective for interactive systems and that much of it can be automated. PMID:26958166

  12. MESOI: an interactive Lagrangian trajectory puff diffusion model

    SciTech Connect

    Ramsdell, J.V.; Athey, G.F.

    1981-12-01

    MESOI is an interactive Lagrangian trajectory puff diffusion model based on an earlier model by Start and Wendell at the Air Resources Laboratory Field Office at Idaho Falls, Idaho. Puff trajectories are determined using spatially and temporally varying wind fields. Diffusion in the puffs is computed as a function of distance traveled and atmospheric stability. Exposures are computed at nodes of a 31 by 31 grid. There is also provision for interpolation of short term exposures at off-grid locations. This report discusses: the theoretical bases of the model, the numerical approach used in the model, and the sensitivity and accuracy of the model. It contains a description of the computer program and a listing of the code. MESOI is written in FORTRAN. A companion report (Athey, Allwine and Ramsdell, 1981) contains a user's guide to MESOI and documents utility programs that maintain the data files needed by the model.

  13. Ising models of strongly coupled biological networks with multivariate interactions

    NASA Astrophysics Data System (ADS)

    Merchan, Lina; Nemenman, Ilya

    2013-03-01

    Biological networks consist of a large number of variables that can be coupled by complex multivariate interactions. However, several neuroscience and cell biology experiments have reported that observed statistics of network states can be approximated surprisingly well by maximum entropy models that constrain correlations only within pairs of variables. We would like to verify if this reduction in complexity results from intricacies of biological organization, or if it is a more general attribute of these networks. We generate random networks with p-spin (p > 2) interactions, with N spins and M interaction terms. The probability distribution of the network states is then calculated and approximated with a maximum entropy model based on constraining pairwise spin correlations. Depending on the M/N ratio and the strength of the interaction terms, we observe a transition where the pairwise approximation is very good to a region where it fails. This resembles the sat-unsat transition in constraint satisfaction problems. We argue that the pairwise model works when the number of highly probable states is small. We argue that many biological systems must operate in a strongly constrained regime, and hence we expect the pairwise approximation to be accurate for a wide class of problems. This research has been partially supported by the James S McDonnell Foundation grant No.220020321.

  14. Mathematical Modeling of Tumor Cell Growth and Immune System Interactions

    NASA Astrophysics Data System (ADS)

    Rihan, Fathalla A.; Safan, Muntaser; Abdeen, Mohamed A.; Abdel-Rahman, Duaa H.

    In this paper, we provide a family of ordinary and delay differential equations to describe the dynamics of tumor-growth and immunotherapy interactions. We explore the effects of adoptive cellular immunotherapy on the model and describe under what circumstances the tumor can be eliminated. The possibility of clearing the tumor, with a strategy, is based on two parameters in the model: the rate of influx of the effector cells, and the rate of influx of IL2. The critical tumor-growth rate, below which endemic tumor does not exist, has been found. One can use the model to make predictions about tumor-dormancy.

  15. Stochastic waves in a Brusselator model with nonlocal interaction.

    PubMed

    Biancalani, Tommaso; Galla, Tobias; McKane, Alan J

    2011-08-01

    We show that intrinsic noise can induce spatiotemporal phenomena such as Turing patterns and traveling waves in a Brusselator model with nonlocal interaction terms. In order to predict and to characterize these stochastic waves we analyze the nonlocal model using a system-size expansion. The resulting theory is used to calculate the power spectra of the stochastic waves analytically and the outcome is tested successfully against simulations. We discuss the possibility that nonlocal models in other areas, such as epidemic spread or social dynamics, may contain similar stochastically induced patterns.

  16. Exactly solvable relativistic model with the anomalous interaction

    NASA Astrophysics Data System (ADS)

    Ferraro, Elena; Messina, Antonino; Nikitin, A. G.

    2010-04-01

    A special class of Dirac-Pauli equations with time-like vector potentials of an external field is investigated. An exactly solvable relativistic model describing the anomalous interaction of a neutral Dirac fermion with a cylindrically symmetric external electromagnetic field is presented. The related external field is a superposition of the electric field generated by a charged infinite filament and the magnetic field generated by a straight line current. In the nonrelativistic approximation the considered model is reduced to the integrable Pron’ko-Stroganov model.

  17. Analysis of Geophysical Data Bases and Models for Spacecraft Interactions.

    DTIC Science & Technology

    1986-10-31

    electrons, protons, ions (major species), and measured dose. - Evaluation of magnetic field models (Delta B Model). - Quasi- static Data Bases, Analysis ...AIB4 889 ANALYSIS OF GEOPHYSICRL DATA BASES AND MODELS FOR 1/3 SPACECRAFT INTERACTIONS(U) RADEX INC CARLISLE MA J N BAS ET AL 31 OCT 86 AFGL-TR-86...1114 11116 MICROCOPY RESOLUTION TEST CHART NATI()NAL BUREAU flE SIANDARD % 43 A oJ P=I -- % AFGL-TR-86-0221 0 00 ANALYSIS OF GEOPHYSICAL DATA BASES

  18. A model of interaction between anticorruption authority and corruption groups

    SciTech Connect

    Neverova, Elena G.; Malafeyef, Oleg A.

    2015-03-10

    The paper provides a model of interaction between anticorruption unit and corruption groups. The main policy functions of the anticorruption unit involve reducing corrupt practices in some entities through an optimal approach to resource allocation and effective anticorruption policy. We develop a model based on Markov decision-making process and use Howard’s policy-improvement algorithm for solving an optimal decision strategy. We examine the assumption that corruption groups retaliate against the anticorruption authority to protect themselves. This model was implemented through stochastic game.

  19. Gutzwiller wave function for a model of strongly interacting bosons

    SciTech Connect

    Krauth, W. ); Caffarel, M. Laboratoire Dynamique des Interactions Moleculaires, Universite Paris VI, F-75252 Paris CEDEX 05 ); Bouchaud, J. )

    1992-02-01

    We study a model of strongly interacting lattice bosons with a Gutzwiller-type wave function that contains only on-site correlations. The variational energy and the condensate fraction associated with the variational wave function are exactly evaluated for both finite and infinite systems and compared with exact quantum Monte Carlo results in two dimensions. This ansatz for the wave function gives the correct qualitative picture of the phase diagram of this system; at commensurate densities, this system enters a Mott-insulator phase for large values of the interaction.

  20. A nonlinear Bloch model for Coulomb interaction in quantum dots

    SciTech Connect

    Bidegaray-Fesquet, Brigitte Keita, Kole

    2014-02-15

    In this paper, we first derive a Coulomb Hamiltonian for electron–electron interaction in quantum dots in the Heisenberg picture. Then we use this Hamiltonian to enhance a Bloch model, which happens to be nonlinear in the density matrix. The coupling with Maxwell equations in case of interaction with an electromagnetic field is also considered from the Cauchy problem point of view. The study is completed by numerical results and a discussion about the advisability of neglecting intra-band coherences, as is done in part of the literature.

  1. Modeling variation in interaction strength between barnacles and fucoids.

    PubMed

    Kordas, Rebecca L; Dudgeon, Steve

    2009-01-01

    The strength by which species interact can vary throughout their ontogeny, as environments vary in space and time, and with the density of their populations. Characterizing strengths of interaction in situ for even a small number of species is logistically difficult and may apply only to those conditions under which the estimates were derived. We sought to combine data from field experiments estimating interaction strength of life stages of the barnacle, Semibalanus balanoides, on germlings of Ascophyllum nodosum, with a model that explored the consequences of variability at per capita and per population levels to the abundance of year-old algal recruits. We further simulated how this interaction affected fucoid germling abundance as the timing of their respective settlements varied relative to one another, as occurs regionally across the Gulf of Maine, USA. Juvenile S. balanoides have a weak estimated per capita effect on germlings. Germling populations are sensitive to variation in per capita effects of juvenile barnacles because of the typically large population sizes of the latter. However, high mortality of juvenile barnacles weakens the population interaction strength over time. Adult barnacles probably weakly facilitate fucoid germlings, but greater survival of adults sustains the strength of that interaction at the population level. Germling abundance is positively associated with densities of adult barnacles and negatively associated with that of juvenile barnacles. Metamorphosing cyprid larvae have the strongest per capita effect on germling abundance, but the interaction between the two stages is so short-lived that germling abundance is altered little. Variation in the timing of barnacle and A. nodosum settlement relative to one another had very little influence on the abundance of yearling germlings. Interactions between barnacles and germlings may influence the demographic structure of A. nodosum populations and the persistence of fucoid

  2. Web-based Interactive Landform Simulation Model - Grand Canyon

    NASA Astrophysics Data System (ADS)

    Luo, W.; Pelletier, J. D.; Duffin, K.; Ormand, C. J.; Hung, W.; Iverson, E. A.; Shernoff, D.; Zhai, X.; Chowdary, A.

    2013-12-01

    Earth science educators need interactive tools to engage and enable students to better understand how Earth systems work over geologic time scales. The evolution of landforms is ripe for interactive, inquiry-based learning exercises because landforms exist all around us. The Web-based Interactive Landform Simulation Model - Grand Canyon (WILSIM-GC, http://serc.carleton.edu/landform/) is a continuation and upgrade of the simple cellular automata (CA) rule-based model (WILSIM-CA, http://www.niu.edu/landform/) that can be accessed from anywhere with an Internet connection. Major improvements in WILSIM-GC include adopting a physically based model and the latest Java technology. The physically based model is incorporated to illustrate the fluvial processes involved in land-sculpting pertaining to the development and evolution of one of the most famous landforms on Earth: the Grand Canyon. It is hoped that this focus on a famous and specific landscape will attract greater student interest and provide opportunities for students to learn not only how different processes interact to form the landform we observe today, but also how models and data are used together to enhance our understanding of the processes involved. The latest development in Java technology (such as Java OpenGL for access to ubiquitous fast graphics hardware, Trusted Applet for file input and output, and multithreaded ability to take advantage of modern multi-core CPUs) are incorporated into building WILSIM-GC and active, standards-aligned curricula materials guided by educational psychology theory on science learning will be developed to accompany the model. This project is funded NSF-TUES program.

  3. Forecast improvement by interactive ensemble of atmospheric models

    NASA Astrophysics Data System (ADS)

    Basnarkov, L.; Duane, G. S.; Kocarev, L.

    2013-12-01

    The advances in weather forecast traditionally have been based on two lines of improvement: 1 - deepening the understanding of physical phenomena that underlies the atmospheric dynamics; and 2 - steady increase in computer power that enables use of finer grid resolution. The meteorological centers model dynamics of the atmosphere with the same basic physical laws, but sometimes take different approaches in capturing small-scale phenomena and generally use different grid sizes. As a result there are dozens operational models around the globe with various parameterizations of the unresolved processes. Newest attempts in forecast improvements are based on using ensemble prediction. Multiple outputs are taken from runs with perturbed initial conditions, or perturbed parameter values. A novel paradigm is exploiting dynamical exchange of variables between simultaneously running models. There are already simulations of models exchanging fluxes between ocean and atmospheric models, but examples with direct coupling of different atmospheric models are rather new. Within this approach the coupling schemes can be different, but as simplest appear those that combine corresponding dynamical variables or tendency components. In this work we present results with an artificial toy model-Lorenz 96 model. To make more faithful example as reality (the atmosphere) is considered one Lorenz 96 class III system, while as its imperfect models are taken three class II systems that have different forcing terms. These resemble the models used in three different meteorological centers. The interactive ensemble has tendency that is weighted combination of the individual models' tendencies. The weights are obtained with statistical techniques based on past observations that target to minimize the mismatch between the truth's and interactive ensemble's tendencies. By means of anomaly correlation it is numerically verified that this ensemble has longer range of forecast than the individual models.

  4. Implementation of Modeling the Land-Surface/Atmosphere Interactions to Mesoscale Model COAMPS

    DTIC Science & Technology

    2012-09-30

    1 DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Implementation of Modeling the Land-Surface/Atmosphere...Interactions to Mesoscale Model COAMPS Dr. Bogumil Jakubiak Interdisciplinary Centre for Mathematical and Computational Modelling , Warsaw...Interdisciplinary Centre for Mathematical and Computational Modelling , Warsaw University, Pawinskiego 5A, 02-106 Warsaw, Poland phone: +48-22-8749-144 fax

  5. Dynamical variability in the modelling of chemistry-climate interactions.

    PubMed

    Pyle, J A; Braesicke, P; Zeng, G

    2005-01-01

    We have used a version of the Met Office's climate model, into which we have introduced schemes for atmospheric chemistry, to study chemistry-dynamics-climate interactions. We have considered the variability of the stratospheric polar vortex, whose behaviour influences stratospheric ozone loss and will affect ozone recovery. In particular, we analyse the dynamical control of high latitude ozone in a model version which includes an assimilation of the equatorial quasi-biennial oscillation (QBO), demonstrating the stability of the linear relation between vortex strength and high latitude ozone. We discuss the effect of interactive model ozone on polar stratospheric cloud (PSC) area/volume and winter-spring stratospheric ozone loss in the northern hemisphere. In general we find larger polar ozone losses calculated in those model integrations in which modelled ozone is used interactively in the radiation scheme, even though we underestimate the slope of the ozone loss per PSC volume relation derived from observations. We have also looked at the influence of changing stratosphere-to-troposphere exchange on the tropospheric oxidizing capacity and, in particular, have considered the variability of tropospheric composition under different climate regimes (El Niño/La Niña, etc.). Focusing on the UT/LS, we show the response of ozone to El Niño in two different model set-ups (tropospheric/ stratospheric). In the stratospheric model set-up we find a distinct signal in the lower tropical stratosphere, which shows an anti-correlation between the Niño 3 index and the ozone column amount. In contrast ozone generally increases in the upper troposphere of the tropospheric model set-up after an El Niño. Understanding future trends in stratospheric ozone and tropospheric oxidizing capacity requires an understanding of natural variability, which we explore here.

  6. A Qualitative Model of Human Interaction with Complex Dynamic Systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1987-01-01

    A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.

  7. A qualitative model of human interaction with complex dynamic systems

    NASA Technical Reports Server (NTRS)

    Hess, Ronald A.

    1987-01-01

    A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.

  8. Modeling the interaction between flow and highly flexible aquatic vegetation

    NASA Astrophysics Data System (ADS)

    Dijkstra, J. T.; Uittenbogaard, R. E.

    2010-12-01

    Aquatic vegetation has an important role in estuaries and rivers by acting as bed stabilizer, filter, food source, and nursing area. However, macrophyte populations worldwide are under high anthropogenic pressure. Protection and restoration efforts will benefit from more insight into the interaction between vegetation, currents, waves, and sediment transport. Most aquatic plants are very flexible, implying that their shape and hence their drag and turbulence production depend on the flow conditions. We have developed a numerical simulation model that describes this dynamic interaction between very flexible vegetation and a time-varying flow, using the sea grass Zostera marina as an example. The model consists of two parts: an existing 1DV k-ɛ turbulence model simulating the flow combined with a new model simulating the bending of the plants, based on a force balance that takes account of both vegetation position and buoyancy. We validated this model using observations of positions of flexible plastic strips and of the forces they are subjected to, as well as hydrodynamic measurements. The model predicts important properties like the forces on plants, flow velocity profiles, and turbulence characteristics well. Although the validation data are limited, the results are sufficiently encouraging to consider our model to be of generic value in studying flow processes in fields of flexible vegetation.

  9. Deciphering Supramolecular Structures with Protein-Protein Interaction Network Modeling

    PubMed Central

    Tsuji, Toshiyuki; Yoda, Takao; Shirai, Tsuyoshi

    2015-01-01

    Many biological molecules are assembled into supramolecules that are essential to perform complicated functions in the cell. However, experimental information about the structures of supramolecules is not sufficient at this point. We developed a method of predicting and modeling the structures of supramolecules in a biological network by combining structural data of the Protein Data Bank (PDB) and interaction data in IntAct databases. Templates for binary complexes in IntAct were extracted from PDB. Modeling was attempted by assembling binary complexes with superposed shared subunits. A total of 3,197 models were constructed, and 1,306 (41% of the total) contained at least one subunit absent from experimental structures. The models also suggested 970 (25% of the total) experimentally undetected subunit interfaces, and 41 human disease-related amino acid variants were mapped onto these model-suggested interfaces. The models demonstrated that protein-protein interaction network modeling is useful to fill the information gap between biological networks and structures. PMID:26549015

  10. Particle-Surface Interaction Model and Method of Determining Particle-Surface Interactions

    NASA Technical Reports Server (NTRS)

    Hughes, David W. (Inventor)

    2012-01-01

    A method and model of predicting particle-surface interactions with a surface, such as the surface of a spacecraft. The method includes the steps of: determining a trajectory path of a plurality of moving particles; predicting whether any of the moving particles will intersect a surface; predicting whether any of the particles will be captured by the surface and/or; predicting a reflected trajectory and velocity of particles reflected from the surface.

  11. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models.

    PubMed

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A; Burgueño, Juan; Pérez-Rodríguez, Paulino; de Los Campos, Gustavo

    2017-01-05

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects [Formula: see text] that can be assessed by the Kronecker product of variance-covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model [Formula: see text] plus an extra component, F: , that captures random effects between environments that were not captured by the random effects [Formula: see text] We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with [Formula: see text] over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect [Formula: see text]. Copyright © 2017 Cuevas et al.

  12. Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models

    PubMed Central

    Cuevas, Jaime; Crossa, José; Montesinos-López, Osval A.; Burgueño, Juan; Pérez-Rodríguez, Paulino; de los Campos, Gustavo

    2016-01-01

    The phenomenon of genotype × environment (G × E) interaction in plant breeding decreases selection accuracy, thereby negatively affecting genetic gains. Several genomic prediction models incorporating G × E have been recently developed and used in genomic selection of plant breeding programs. Genomic prediction models for assessing multi-environment G × E interaction are extensions of a single-environment model, and have advantages and limitations. In this study, we propose two multi-environment Bayesian genomic models: the first model considers genetic effects (u) that can be assessed by the Kronecker product of variance–covariance matrices of genetic correlations between environments and genomic kernels through markers under two linear kernel methods, linear (genomic best linear unbiased predictors, GBLUP) and Gaussian (Gaussian kernel, GK). The other model has the same genetic component as the first model (u) plus an extra component, f, that captures random effects between environments that were not captured by the random effects u. We used five CIMMYT data sets (one maize and four wheat) that were previously used in different studies. Results show that models with G × E always have superior prediction ability than single-environment models, and the higher prediction ability of multi-environment models with u and f over the multi-environment model with only u occurred 85% of the time with GBLUP and 45% of the time with GK across the five data sets. The latter result indicated that including the random effect f is still beneficial for increasing prediction ability after adjusting by the random effect u. PMID:27793970

  13. Universal stochastic series expansion algorithm for Heisenberg model and Bose-Hubbard model with interaction.

    PubMed

    Zyubin, M V; Kashurnikov, V A

    2004-03-01

    We propose a universal stochastic series expansion (SSE) method for the simulation of the Heisenberg model with arbitrary spin and the Bose-Hubbard model with interaction. We report the calculations involving soft-core bosons with interaction by the SSE method. Moreover, we develop a simple procedure for increased efficiency of the algorithm. From calculation of integrated autocorrelation times we conclude that the method is efficient for both models and essentially eliminates the critical slowing down problem.

  14. Towards accurate modeling of noncovalent interactions for protein rigidity analysis.

    PubMed

    Fox, Naomi; Streinu, Ileana

    2013-01-01

    Protein rigidity analysis is an efficient computational method for extracting flexibility information from static, X-ray crystallography protein data. Atoms and bonds are modeled as a mechanical structure and analyzed with a fast graph-based algorithm, producing a decomposition of the flexible molecule into interconnected rigid clusters. The result depends critically on noncovalent atomic interactions, primarily on how hydrogen bonds and hydrophobic interactions are computed and modeled. Ongoing research points to the stringent need for benchmarking rigidity analysis software systems, towards the goal of increasing their accuracy and validating their results, either against each other and against biologically relevant (functional) parameters. We propose two new methods for modeling hydrogen bonds and hydrophobic interactions that more accurately reflect a mechanical model, without being computationally more intensive. We evaluate them using a novel scoring method, based on the B-cubed score from the information retrieval literature, which measures how well two cluster decompositions match. To evaluate the modeling accuracy of KINARI, our pebble-game rigidity analysis system, we use a benchmark data set of 20 proteins, each with multiple distinct conformations deposited in the Protein Data Bank. Cluster decompositions for them were previously determined with the RigidFinder method from Gerstein's lab and validated against experimental data. When KINARI's default tuning parameters are used, an improvement of the B-cubed score over a crude baseline is observed in 30% of this data. With our new modeling options, improvements were observed in over 70% of the proteins in this data set. We investigate the sensitivity of the cluster decomposition score with case studies on pyruvate phosphate dikinase and calmodulin. To substantially improve the accuracy of protein rigidity analysis systems, thorough benchmarking must be performed on all current systems and future

  15. Towards accurate modeling of noncovalent interactions for protein rigidity analysis

    PubMed Central

    2013-01-01

    Background Protein rigidity analysis is an efficient computational method for extracting flexibility information from static, X-ray crystallography protein data. Atoms and bonds are modeled as a mechanical structure and analyzed with a fast graph-based algorithm, producing a decomposition of the flexible molecule into interconnected rigid clusters. The result depends critically on noncovalent atomic interactions, primarily on how hydrogen bonds and hydrophobic interactions are computed and modeled. Ongoing research points to the stringent need for benchmarking rigidity analysis software systems, towards the goal of increasing their accuracy and validating their results, either against each other and against biologically relevant (functional) parameters. We propose two new methods for modeling hydrogen bonds and hydrophobic interactions that more accurately reflect a mechanical model, without being computationally more intensive. We evaluate them using a novel scoring method, based on the B-cubed score from the information retrieval literature, which measures how well two cluster decompositions match. Results To evaluate the modeling accuracy of KINARI, our pebble-game rigidity analysis system, we use a benchmark data set of 20 proteins, each with multiple distinct conformations deposited in the Protein Data Bank. Cluster decompositions for them were previously determined with the RigidFinder method from Gerstein's lab and validated against experimental data. When KINARI's default tuning parameters are used, an improvement of the B-cubed score over a crude baseline is observed in 30% of this data. With our new modeling options, improvements were observed in over 70% of the proteins in this data set. We investigate the sensitivity of the cluster decomposition score with case studies on pyruvate phosphate dikinase and calmodulin. Conclusion To substantially improve the accuracy of protein rigidity analysis systems, thorough benchmarking must be performed on all

  16. Adapting GOMS to Model Human-Robot Interaction

    SciTech Connect

    Drury, Jill; Scholtz, Jean; Kieras, David

    2007-03-09

    Human-robot interaction (HRI) has been maturing in tandem with robots’ commercial success. In the last few years HRI researchers have been adopting—and sometimes adapting—human-computer interaction (HCI) evaluation techniques to assess the efficiency and intuitiveness of HRI designs. For example, Adams (2005) used Goal Directed Task Analysis to determine the interaction needs of officers from the Nashville Metro Police Bomb Squad. Scholtz et al. (2004) used Endsley’s (1988) Situation Awareness Global Assessment Technique to determine robotic vehicle supervisors’ awareness of when vehicles were in trouble and thus required closer monitoring or intervention. Yanco and Drury (2004) employed usability testing to determine (among other things) how well a search-andrescue interface supported use by first responders. One set of HCI tools that has so far seen little exploration in the HRI domain, however, is the class of modeling and evaluation techniques known as formal methods.

  17. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    NASA Astrophysics Data System (ADS)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  18. A responsive finite element method to aid interactive geometric modeling.

    PubMed

    Umetani, N; Takayama, K; Mitani, J; Igarashi, T

    2011-01-01

    Current computer-aided engineering systems use numerical-simulation methods mainly as offline verification tools to reject designs that don't satisfy the required constraints, rather than as tools to guide users toward better designs. However, integrating real-time finite element method (FEM) into interactive geometric modeling can provide user guidance. During interactive editing, real-time feedback from numerical simulation guides users toward an improved design without tedious trial-and-error iterations. Careful reuse of previous computation results, such as meshes and matrices, on the basis of speed and accuracy trade-offs, have helped produce fast FEM analysis during interactive editing. Several 2D example applications and informal user studies show this approach's effectiveness. Such tools could help nonexpert users design objects that satisfy physical constraints and help those users understand the underlying physical properties.

  19. Rational solitons of wave resonant-interaction models

    NASA Astrophysics Data System (ADS)

    Degasperis, Antonio; Lombardo, Sara

    2013-11-01

    Integrable models of resonant interaction of two or more waves in 1+1 dimensions are known to be of applicative interest in several areas. Here we consider a system of three coupled wave equations which includes as special cases the vector nonlinear Schrödinger equations and the equations describing the resonant interaction of three waves. The Darboux-Dressing construction of soliton solutions is applied under the condition that the solutions have rational, or mixed rational-exponential, dependence on coordinates. Our algebraic construction relies on the use of nilpotent matrices and their Jordan form. We systematically search for all bounded rational (mixed rational-exponential) solutions and find a broad family of such solutions of the three wave resonant interaction equations.

  20. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    NASA Astrophysics Data System (ADS)

    Reynolds, Quinn G.

    2016-11-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  1. Model-independent analyses of dark-matter particle interactions

    SciTech Connect

    Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.

    2015-03-24

    A model-independent treatment of dark-matter particle elastic scattering has been developed, yielding the most general interaction for WIMP-nucleon low-energy scattering, and the resulting amplitude has been embedded into the nucleus, taking into account the selection rules imposed by parity and time-reversal. One finds that, in contrast to the usual spin-independent/spin-dependent (SI/SD) formulation, the resulting cross section contains six independent nuclear response functions, three of which are associated with possible velocity-dependent interactions. We find that current experiments are four orders of magnitude more sensitive to derivative couplings than is apparent in the standard SI/SD treatment, which necessarily associated such interactions with cross sections proportional to v2T ~ 10⁻⁶, where vT is the WIMP velocity relative to the center of mass of the nuclear target.

  2. Shell-model phenomenology of low-momentum interactions

    NASA Astrophysics Data System (ADS)

    Schwenk, Achim; Zuker, Andrés P.

    2006-12-01

    The first detailed comparison of the low-momentum interaction Vlowk with G matrices is presented. We use overlaps to measure quantitatively the similarity of shell-model matrix elements for different cutoffs and oscillator frequencies. Over a wide range, all sets of Vlowk matrix elements can be approximately obtained from a universal set by a simple scaling. In an oscillator mean-field approach, Vlowk reproduces satisfactorily many features of the single-particle and single-hole spectra on closed-shell nuclei, in particular through remarkably good splittings between spin-orbit partners on top of harmonic oscillator closures. The main deficiencies of pure two-nucleon interactions are associated with binding energies and with the failure to ensure magicity for the extruder-intruder closures. Here, calculations including three-nucleon interactions are most needed. Vlowk makes it possible to define directly a meaningful unperturbed monopole Hamiltonian, for which the inclusion of three-nucleon forces is tractable.

  3. Models of atmosphere-ecosystem-hydrology interactions: Approaches and testing

    NASA Technical Reports Server (NTRS)

    Schimel, David S.

    1992-01-01

    Interactions among the atmosphere, terrestrial ecosystems, and the hydrological cycle have been the subject of investigation for many years, although most of the research has had a regional focus. The topic is broad, including the effects of climate and hydrology on vegetation, the effects of vegetation on hydrology, the effects of the hydrological cycle on the atmosphere, and interactions of the cycles via material flux such as solutes and trace gases. The intent of this paper is to identify areas of critical uncertainty, discuss modeling approaches to resolving those problems, and then propose techniques for testing. I consider several interactions specifically to illustrate the range of problems. These areas are as follows: (1) cloud parameterizations and the land surface, (2) soil moisture, and (3) the terrestrial carbon cycle.

  4. Model-independent analyses of dark-matter particle interactions

    DOE PAGES

    Anand, Nikhil; Fitzpatrick, A. Liam; Haxton, W. C.

    2015-03-24

    A model-independent treatment of dark-matter particle elastic scattering has been developed, yielding the most general interaction for WIMP-nucleon low-energy scattering, and the resulting amplitude has been embedded into the nucleus, taking into account the selection rules imposed by parity and time-reversal. One finds that, in contrast to the usual spin-independent/spin-dependent (SI/SD) formulation, the resulting cross section contains six independent nuclear response functions, three of which are associated with possible velocity-dependent interactions. We find that current experiments are four orders of magnitude more sensitive to derivative couplings than is apparent in the standard SI/SD treatment, which necessarily associated such interactions withmore » cross sections proportional to v2T ~ 10⁻⁶, where vT is the WIMP velocity relative to the center of mass of the nuclear target.« less

  5. Analysis and application of opinion model with multiple topic interactions

    NASA Astrophysics Data System (ADS)

    Xiong, Fei; Liu, Yun; Wang, Liang; Wang, Ximeng

    2017-08-01

    To reveal heterogeneous behaviors of opinion evolution in different scenarios, we propose an opinion model with topic interactions. Individual opinions and topic features are represented by a multidimensional vector. We measure an agent's action towards a specific topic by the product of opinion and topic feature. When pairs of agents interact for a topic, their actions are introduced to opinion updates with bounded confidence. Simulation results show that a transition from a disordered state to a consensus state occurs at a critical point of the tolerance threshold, which depends on the opinion dimension. The critical point increases as the dimension of opinions increases. Multiple topics promote opinion interactions and lead to the formation of macroscopic opinion clusters. In addition, more topics accelerate the evolutionary process and weaken the effect of network topology. We use two sets of large-scale real data to evaluate the model, and the results prove its effectiveness in characterizing a real evolutionary process. Our model achieves high performance in individual action prediction and even outperforms state-of-the-art methods. Meanwhile, our model has much smaller computational complexity. This paper provides a demonstration for possible practical applications of theoretical opinion dynamics.

  6. Intuitive Cognition and Models of Human-Automation Interaction.

    PubMed

    Patterson, Robert Earl

    2017-02-01

    The aim of this study was to provide an analysis of the implications of the dominance of intuitive cognition in human reasoning and decision making for conceptualizing models and taxonomies of human-automation interaction, focusing on the Parasuraman et al. model and taxonomy. Knowledge about how humans reason and make decisions, which has been shown to be largely intuitive, has implications for the design of future human-machine systems. One hundred twenty articles and books cited in other works as well as those obtained from an Internet search were reviewed. Works were deemed eligible if they were published within the past 50 years and common to a given literature. Analysis shows that intuitive cognition dominates human reasoning and decision making in all situations examined. The implications of the dominance of intuitive cognition for the Parasuraman et al. model and taxonomy are discussed. A taxonomy of human-automation interaction that incorporates intuitive cognition is suggested. Understanding the ways in which human reasoning and decision making is intuitive can provide insight for future models and taxonomies of human-automation interaction.

  7. Modeling decision support rule interactions in a clinical setting.

    PubMed

    Sordo, Margarita; Rocha, Beatriz H; Morales, Alfredo A; Maviglia, Saverio M; Oglio, Elisa Dell'Oglio; Fairbanks, Amanda; Aroy, Teal; Dubois, David; Bouyer-Ferullo, Sharon; Rocha, Roberto A

    2013-01-01

    Traditionally, rule interactions are handled at implementation time through rule task properties that control the order in which rules are executed. By doing so, knowledge about the behavior and interactions of decision rules is not captured at modeling time. We argue that this is important knowledge that should be integrated in the modeling phase. In this project, we build upon current work on a conceptual schema to represent clinical knowledge for decision support in the form of if then rules. This schema currently captures provenance of the clinical content, context where such content is actionable (i.e. constraints) and the logic of the rule itself. For this project, we borrowed concepts from both the Semantic Web (i.e., Ontologies) and Complex Adaptive Systems (CAS), to explore a conceptual approach for modeling rule interactions in an enterprise-wide clinical setting. We expect that a more comprehensive modeling will facilitate knowledge authoring, editing and update; foster consistency in rules implementation and maintenance; and develop authoritative knowledge repositories to promote quality, safety and efficacy of healthcare.

  8. Genomic Prediction of Genotype × Environment Interaction Kernel Regression Models.

    PubMed

    Cuevas, Jaime; Crossa, José; Soberanis, Víctor; Pérez-Elizalde, Sergio; Pérez-Rodríguez, Paulino; Campos, Gustavo de Los; Montesinos-López, O A; Burgueño, Juan

    2016-11-01

    In genomic selection (GS), genotype × environment interaction (G × E) can be modeled by a marker × environment interaction (M × E). The G × E may be modeled through a linear kernel or a nonlinear (Gaussian) kernel. In this study, we propose using two nonlinear Gaussian kernels: the reproducing kernel Hilbert space with kernel averaging (RKHS KA) and the Gaussian kernel with the bandwidth estimated through an empirical Bayesian method (RKHS EB). We performed single-environment analyses and extended to account for G × E interaction (GBLUP-G × E, RKHS KA-G × E and RKHS EB-G × E) in wheat ( L.) and maize ( L.) data sets. For single-environment analyses of wheat and maize data sets, RKHS EB and RKHS KA had higher prediction accuracy than GBLUP for all environments. For the wheat data, the RKHS KA-G × E and RKHS EB-G × E models did show up to 60 to 68% superiority over the corresponding single environment for pairs of environments with positive correlations. For the wheat data set, the models with Gaussian kernels had accuracies up to 17% higher than that of GBLUP-G × E. For the maize data set, the prediction accuracy of RKHS EB-G × E and RKHS KA-G × E was, on average, 5 to 6% higher than that of GBLUP-G × E. The superiority of the Gaussian kernel models over the linear kernel is due to more flexible kernels that accounts for small, more complex marker main effects and marker-specific interaction effects.

  9. A Conceptual Model for Extratropical Atmosphere-ocean Interaction

    NASA Astrophysics Data System (ADS)

    Zhao, B.; Reichler, T.

    2015-12-01

    Equipped with the current understanding for atmosphere-ocean interaction, we build a simple physically-based system of coupled equations to portray the relationships among major atmospheric and oceanic modes, including the NAO, AMO, AMOC, ENSO and stratospheric NAM. The simple model reproduces the strongly timescale-dependent character of the relationships, which changes in strength and direction on scales ranging from days to centuries. Another emphasis is placed on explicitly resolving the air-sea heat fluxes as a function of timescale to provide insight into the coupling between ocean and atmosphere. In constructing and testing the simple model we make use of a multi-millennium-long control integration with a fully coupled climate model. Cross-correlation, spectral analysis and inverse methods are employed to characterize important aspects of the interactions in the full and simple models. It is found that, a) Bjerknes' conjecture on ocean-atmosphere coupling, that is the atmosphere drives climate on high frequencies (days to months) while the ocean acts as the main source of climate variability on interannual and longer timescales, is confirmed; b) the AMOC can be readily understood as a harmonic oscillator driven by the NAO; c) the two-way interaction between NAO and AMO, and also the influence of ENSO on both NAO and AMO are essential for reproducing important correlation features; and d) the consideration of heat fluxes provides additional explanatory power to our model. Our approach not only helps to clarify our understanding for the nature of the atmosphere-ocean interaction problem but also raises new and intriguing questions for future research.

  10. Framework for scalable adsorbate–adsorbate interaction models

    DOE PAGES

    Hoffmann, Max J.; Medford, Andrew J.; Bligaard, Thomas

    2016-06-02

    Here, we present a framework for physically motivated models of adsorbate–adsorbate interaction between small molecules on transition and coinage metals based on modifications to the substrate electronic structure due to adsorption. We use this framework to develop one model for transition and one for coinage metal surfaces. The models for transition metals are based on the d-band center position, and the models for coinage metals are based on partial charges. The models require no empirical parameters, only two first-principles calculations per adsorbate as input, and therefore scale linearly with the number of reaction intermediates. By theory to theory comparison withmore » explicit density functional theory calculations over a wide range of adsorbates and surfaces, we show that the root-mean-squared error for differential adsorption energies is less than 0.2 eV for up to 1 ML coverage.« less

  11. Modeling relaxor characteristics in systems of interacting dipoles

    NASA Astrophysics Data System (ADS)

    Kliem, Herbert; Leschhorn, Andreas

    2016-12-01

    We present a model which derives typical relaxor characteristics from simple and plausible microscopic assumptions. The model is based on charges which fluctuate thermally activated in double well potentials. The double well potentials are asymmetric due to disorder in the system. The electrostatic interaction between the charges is considered via a mean field approach. This model yields the typical relaxor features: we find high susceptibilities in a broad temperature range with dynamics following the Vogel-Fulcher law. In the framework of the model no spontaneous polarization arises at cooling without strong external field in accordance to experimental findings for relaxors. Furthermore the model yields hysteresis loops which depend on the amplitude of the external field and which become more and more thin and deformed above the maximum temperature of the susceptibility.

  12. Stochastic models for large interacting systems and related correlation inequalities

    PubMed Central

    Liggett, Thomas M.

    2010-01-01

    A very large and active part of probability theory is concerned with the formulation and analysis of models for the evolution of large systems arising in the sciences, including physics and biology. These models have in their description randomness in the evolution rules, and interactions among various parts of the system. This article describes some of the main models in this area, as well as some of the major results about their behavior that have been obtained during the past 40 years. An important technique in this area, as well as in related parts of physics, is the use of correlation inequalities. These express positive or negative dependence between random quantities related to the model. In some types of models, the underlying dependence is positive, whereas in others it is negative. We give particular attention to these issues, and to applications of these inequalities. Among the applications are central limit theorems that give convergence to a Gaussian distribution. PMID:20826441

  13. Framework for scalable adsorbate–adsorbate interaction models

    SciTech Connect

    Hoffmann, Max J.; Medford, Andrew J.; Bligaard, Thomas

    2016-06-02

    Here, we present a framework for physically motivated models of adsorbate–adsorbate interaction between small molecules on transition and coinage metals based on modifications to the substrate electronic structure due to adsorption. We use this framework to develop one model for transition and one for coinage metal surfaces. The models for transition metals are based on the d-band center position, and the models for coinage metals are based on partial charges. The models require no empirical parameters, only two first-principles calculations per adsorbate as input, and therefore scale linearly with the number of reaction intermediates. By theory to theory comparison with explicit density functional theory calculations over a wide range of adsorbates and surfaces, we show that the root-mean-squared error for differential adsorption energies is less than 0.2 eV for up to 1 ML coverage.

  14. Modeling the Interactions Between Multiple Crack Closure Mechanisms at Threshold

    NASA Technical Reports Server (NTRS)

    Newman, John A.; Riddell, William T.; Piascik, Robert S.

    2003-01-01

    A fatigue crack closure model is developed that includes interactions between the three closure mechanisms most likely to occur at threshold; plasticity, roughness, and oxide. This model, herein referred to as the CROP model (for Closure, Roughness, Oxide, and Plasticity), also includes the effects of out-of plane cracking and multi-axial loading. These features make the CROP closure model uniquely suited for, but not limited to, threshold applications. Rough cracks are idealized here as two-dimensional sawtooths, whose geometry induces mixed-mode crack- tip stresses. Continuum mechanics and crack-tip dislocation concepts are combined to relate crack face displacements to crack-tip loads. Geometric criteria are used to determine closure loads from crack-face displacements. Finite element results, used to verify model predictions, provide critical information about the locations where crack closure occurs.

  15. Modelling social interaction as perceptual crossing: an investigation into the dynamics of the interaction process

    NASA Astrophysics Data System (ADS)

    Froese, Tom; Di Paolo, Ezequiel A.

    2010-03-01

    This paper continues efforts to establish a mutually informative dialogue between psychology and evolutionary robotics in order to investigate the dynamics of social interaction. We replicate a recent simulation model of a minimalist experiment in perceptual crossing and confirm the results with significantly simpler artificial agents. A series of psycho-physical tests of their behaviour informs a hypothetical circuit model of their internal operation. However, a detailed study of the actual internal dynamics reveals this circuit model to be unfounded, thereby offering a tale of caution for those hypothesising about sub-personal processes in terms of behavioural observations. In particular, it is shown that the behaviour of the agents largely emerges out of the interaction process itself rather than being an individual achievement alone. We also extend the original simulation model in two novel directions in order to test further the extent to which perceptual crossing between agents can self-organise in a robust manner. These modelling results suggest new hypotheses that can become the basis for further psychological experiments.

  16. Modeling river aquifer interactions - Implications for flow restoration

    NASA Astrophysics Data System (ADS)

    Fleckenstein, J.; Niswonger, R.; Fogg, G.

    2003-04-01

    The Cosumnes River in Sacramento County, California has historically supported large fall runs of endangered Chinook salmon. Decreasing fish counts over the last 3 decades have been linked to declining fall flows in the river. Severe overdraft of the regional aquifer over the last 60 years has drawn down groundwater levels far below the elevation of the channel over extended reaches of the river, practically eliminating baseflows. Efforts to restore Chinook salmon fall runs have lead to investigations of river aquifer interactions along the lower Cosumnes. Numerical models are being used to guide the development of management strategies to restore fall flows. River aquifer interactions are investigated on a regional (>50km), sub-regional (30km) and a river reach scale (0.2km). Regional groundwater simulations were carried out to quantify regional groundwater deficits with respect to reestablishment of base flows on the Cosumnes River. Results indicated that unrealistic reductions in groundwater pumping would be needed to reconnect the channel with the regional aquifer. Surface flow augmentation and artificial recharge have been proposed as short and long term alternatives to pumping reductions. To evaluate the effectiveness of such measures a sub-regional groundwater model was built. This model is based on detailed geostatistical simulations of the hydrostratigraphy of the alluvial aquifer. Conditional sequential indicator simulations based on transition probabilities and Markov-Chains were used in the geostatistical model. River aquifer interactions are modeled with a finite difference groundwater model including variably saturated flow below the river channel. Riverbed parameterization and calibration of the sub-regional model are supported by reach scale field experiments using piezometers, 3D temperature measurements, automated TDR setups and heat dissipation probes.

  17. Quantitative Modeling of Human-Environment Interactions in Preindustrial Time

    NASA Astrophysics Data System (ADS)

    Sommer, Philipp S.; Kaplan, Jed O.

    2017-04-01

    Quantifying human-environment interactions and anthropogenic influences on the environment prior to the Industrial revolution is essential for understanding the current state of the earth system. This is particularly true for the terrestrial biosphere, but marine ecosystems and even climate were likely modified by human activities centuries to millennia ago. Direct observations are however very sparse in space and time, especially as one considers prehistory. Numerical models are therefore essential to produce a continuous picture of human-environment interactions in the past. Agent-based approaches, while widely applied to quantifying human influence on the environment in localized studies, are unsuitable for global spatial domains and Holocene timescales because of computational demands and large parameter uncertainty. Here we outline a new paradigm for the quantitative modeling of human-environment interactions in preindustrial time that is adapted to the global Holocene. Rather than attempting to simulate agency directly, the model is informed by a suite of characteristics describing those things about society that cannot be predicted on the basis of environment, e.g., diet, presence of agriculture, or range of animals exploited. These categorical data are combined with the properties of the physical environment in coupled human-environment model. The model is, at its core, a dynamic global vegetation model with a module for simulating crop growth that is adapted for preindustrial agriculture. This allows us to simulate yield and calories for feeding both humans and their domesticated animals. We couple this basic caloric availability with a simple demographic model to calculate potential population, and, constrained by labor requirements and land limitations, we create scenarios of land use and land cover on a moderate-resolution grid. We further implement a feedback loop where anthropogenic activities lead to changes in the properties of the physical

  18. Brachypodium as an emerging model for cereal–pathogen interactions

    PubMed Central

    Fitzgerald, Timothy L.; Powell, Jonathan J.; Schneebeli, Katharina; Hsia, M. Mandy; Gardiner, Donald M.; Bragg, Jennifer N.; McIntyre, C. Lynne; Manners, John M.; Ayliffe, Mick; Watt, Michelle; Vogel, John P.; Henry, Robert J.; Kazan, Kemal

    2015-01-01

    Background Cereal diseases cause tens of billions of dollars of losses annually and have devastating humanitarian consequences in the developing world. Increased understanding of the molecular basis of cereal host–pathogen interactions should facilitate development of novel resistance strategies. However, achieving this in most cereals can be challenging due to large and complex genomes, long generation times and large plant size, as well as quarantine and intellectual property issues that may constrain the development and use of community resources. Brachypodium distachyon (brachypodium) with its small, diploid and sequenced genome, short generation time, high transformability and rapidly expanding community resources is emerging as a tractable cereal model. Scope Recent research reviewed here has demonstrated that brachypodium is either susceptible or partially susceptible to many of the major cereal pathogens. Thus, the study of brachypodium–pathogen interactions appears to hold great potential to improve understanding of cereal disease resistance, and to guide approaches to enhance this resistance. This paper reviews brachypodium experimental pathosystems for the study of fungal, bacterial and viral cereal pathogens; the current status of the use of brachypodium for functional analysis of cereal disease resistance; and comparative genomic approaches undertaken using brachypodium to assist characterization of cereal resistance genes. Additionally, it explores future prospects for brachypodium as a model to study cereal–pathogen interactions. Conclusions The study of brachypodium–pathogen interactions appears to be a productive strategy for understanding mechanisms of disease resistance in cereal species. Knowledge obtained from this model interaction has strong potential to be exploited for crop improvement. PMID:25808446

  19. Modeling the intracellular pathogen-immune interaction with cure rate

    NASA Astrophysics Data System (ADS)

    Dubey, Balram; Dubey, Preeti; Dubey, Uma S.

    2016-09-01

    Many common and emergent infectious diseases like Influenza, SARS, Hepatitis, Ebola etc. are caused by viral pathogens. These infections can be controlled or prevented by understanding the dynamics of pathogen-immune interaction in vivo. In this paper, interaction of pathogens with uninfected and infected cells in presence or absence of immune response are considered in four different cases. In the first case, the model considers the saturated nonlinear infection rate and linear cure rate without absorption of pathogens into uninfected cells and without immune response. The next model considers the effect of absorption of pathogens into uninfected cells while all other terms are same as in the first case. The third model incorporates innate immune response, humoral immune response and Cytotoxic T lymphocytes (CTL) mediated immune response with cure rate and without absorption of pathogens into uninfected cells. The last model is an extension of the third model in which the effect of absorption of pathogens into uninfected cells has been considered. Positivity and boundedness of solutions are established to ensure the well-posedness of the problem. It has been found that all the four models have two equilibria, namely, pathogen-free equilibrium point and pathogen-present equilibrium point. In each case, stability analysis of each equilibrium point is investigated. Pathogen-free equilibrium is globally asymptotically stable when basic reproduction number is less or equal to unity. This implies that control or prevention of infection is independent of initial concentration of uninfected cells, infected cells, pathogens and immune responses in the body. The proposed models show that introduction of immune response and cure rate strongly affects the stability behavior of the system. Further, on computing basic reproduction number, it has been found to be minimum for the fourth model vis-a-vis other models. The analytical findings of each model have been exemplified by

  20. Modeling interactions of Hg(II) and bauxitic soils.

    PubMed

    Weerasooriya, Rohan; Tobschall, Heinz J; Bandara, Atula

    2007-11-01

    The adsorptive interactions of Hg(II) with gibbsite-rich soils (hereafter SOIL-g) were modeled by 1-pK surface complexation theory using charge distribution multi-site ion competition model (CD MUSIC) incorporating basic Stern layer model (BSM) to account for electrostatic effects. The model calibrations were performed for the experimental data of synthetic gibbsite-Hg(II) adsorption. When [NaNO(3)] > or = 0.01M, the Hg(II) adsorption density values, of gibbsite, Gamma(Hg(II)), showed a negligible variation with ionic strength. However, Gamma(Hg(II)) values show a marked variation with the [Cl(-)]. When [Cl(-)] > or = 0.01M, the Gamma(Hg(II)) values showed a significant reduction with the pH. The Hg(II) adsorption behavior in NaNO(3) was modeled assuming homogeneous solid surface. The introduction of high affinity sites, i.e., >Al(s)OH at a low concentration (typically about 0.045 sites nm(-2)) is required to model Hg(II) adsorption in NaCl. According to IR spectroscopic data, the bauxitic soil (SOIL-g) is characterized by gibbsite and bayerite. These mineral phases were not treated discretely in modeling of Hg(II) and soil interactions. The CD MUSIC/BSM model combination can be used to model Hg(II) adsorption on bauxitic soil. The role of organic matter seems to play a role on Hg(II) binding when pH>8. The Hg(II) adsorption in the presence of excess Cl(-) ions required the selection of high affinity sites in modeling.

  1. Unsupervised abnormal crowd activity detection using interaction power model

    NASA Astrophysics Data System (ADS)

    Lin, Shengnan; Zhang, Hong; Cheng, Feiyang; Sun, Mingui; Yuan, Ding

    2014-11-01

    Abnormal event detection in crowded scenes is one of the most challenging tasks in the video surveillance for the public security control. Different from previous work based on learning. We proposed an unsupervised Interaction Power model with an adaptive threshold strategy to detect abnormal group activity by analyzing the steady state of individuals' behaviors in the crowed scene. Firstly, the optical flow field of the potential pedestrians is only calculated within the extracted foreground to reduce the computational cost. Secondly, each pedestrian can be divided into patches of the same size, and the interaction power of the pedestrians will be represented by the motion particles which describe the motion status at the center pixels of the patches. The motion status of each patch is computed by using the optical flows of the pixels within the patch. For each motion particle, its interaction power, defined as its steady state of the current behavior, is computed among all its neighboring motion particles. Finally, the dense crowds' steady state can be represented as a collection of motion particles' interaction power. Here, an adaptive threshold strategy is proposed to detect abnormal events by examining the frame power field which is a fixed-size random sampling of the interaction power of motion particles. Experimental results on the standard UMN dataset and online videos show that our method could detect the crowd anomalies and achieve a higher accuracy compared to the other competitive methods published recently.

  2. Hydrodynamic interaction of two swimming model micro-organisms

    NASA Astrophysics Data System (ADS)

    Ishikawa, Takuji; Simmonds, M. P.; Pedley, T. J.

    2006-12-01

    In order to understand the rheological and transport properties of a suspension of swimming micro-organisms, it is necessary to analyse the fluid-dynamical interaction of pairs of such swimming cells. In this paper, a swimming micro-organism is modelled as a squirming sphere with prescribed tangential surface velocity, referred to as a squirmer. The centre of mass of the sphere may be displaced from the geometric centre (bottom-heaviness). The effects of inertia and Brownian motion are neglected, because real micro-organisms swim at very low Reynolds numbers but are too large for Brownian effects to be important. The interaction of two squirmers is calculated analytically for the limits of small and large separations and is also calculated numerically using a boundary-element method. The analytical and the numerical results for the translational rotational velocities and for the stresslet of two squirmers correspond very well. We sought to generate a database for an interacting pair of squirmers from which one can easily predict the motion of a collection of squirmers. The behaviour of two interacting squirmers is discussed phenomenologically, too. The results for the trajectories of two squirmers show that first the squirmers attract each other, then they change their orientation dramatically when they are in near contact and finally they separate from each other. The effect of bottom-heaviness is considerable. Restricting the trajectories to two dimensions is shown to give misleading results. Some movies of interacting squirmers are available with the online version of the paper.

  3. Interaction of tea tree oil with model and cellular membranes.

    PubMed

    Giordani, Cristiano; Molinari, Agnese; Toccacieli, Laura; Calcabrini, Annarica; Stringaro, Annarita; Chistolini, Pietro; Arancia, Giuseppe; Diociaiuti, Marco

    2006-07-27

    Tea tree oil (TTO) is the essential oil steam-distilled from Melaleuca alternifolia, a species of northern New South Wales, Australia. It exhibits a broad-spectrum antimicrobial activity and an antifungal activity. Only recently has TTO been shown to inhibit the in vitro growth of multidrug resistant (MDR) human melanoma cells. It has been suggested that the effect of TTO on tumor cells could be mediated by its interaction with the plasma membrane, most likely by inducing a reorganization of lipid architecture. In this paper we report biophysical and structural results obtained using simplified planar model membranes (Langmuir films) mimicking lipid "rafts". We also used flow cytometry analysis (FCA) and freeze-fracturing transmission electron microscopy to investigate the effects of TTO on actual MDR melanoma cell membranes. Thermodynamic (compression isotherms and adsorption kinetics) and structural (Brewster angle microscopy) investigation of the lipid monolayers clearly indicates that TTO interacts preferentially with the less ordered DPPC "sea" and that it does not alter the more ordered lipid "rafts". Structural observations, performed by freeze fracturing, confirm that TTO interacts with the MDR melanoma cell plasma membrane. Moreover, experiments performed by FCA demonstrate that TTO does not interfere with the function of the MDR drug transporter P-gp. We therefore propose that the effect exerted on MDR melanoma cells is mediated by the interaction with the fluid DPPC phase, rather than with the more organized "rafts" and that this interaction preferentially influences the ATP-independent antiapoptotic activity of P-gp likely localized outside "rafts".

  4. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models

    NASA Astrophysics Data System (ADS)

    Marsh, M. C. David

    2017-01-01

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, Nvac˜O (1 0272 000) , are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  5. Exacerbating the Cosmological Constant Problem with Interacting Dark Energy Models.

    PubMed

    Marsh, M C David

    2017-01-06

    Future cosmological surveys will probe the expansion history of the Universe and constrain phenomenological models of dark energy. Such models do not address the fine-tuning problem of the vacuum energy, i.e., the cosmological constant problem (CCP), but can make it spectacularly worse. We show that this is the case for "interacting dark energy" models in which the masses of the dark matter states depend on the dark energy sector. If realized in nature, these models have far-reaching implications for proposed solutions to the CCP that require the number of vacua to exceed the fine-tuning of the vacuum energy density. We show that current estimates of the number of flux vacua in string theory, N_{vac}∼O(10^{272 000}), are far too small to realize certain simple models of interacting dark energy and solve the cosmological constant problem anthropically. These models admit distinctive observational signatures that can be targeted by future gamma-ray observatories, hence making it possible to observationally rule out the anthropic solution to the cosmological constant problem in theories with a finite number of vacua.

  6. Characterization and modeling of protein protein interaction networks

    NASA Astrophysics Data System (ADS)

    Colizza, Vittoria; Flammini, Alessandro; Maritan, Amos; Vespignani, Alessandro

    2005-07-01

    The recent availability of high-throughput gene expression and proteomics techniques has created an unprecedented opportunity for a comprehensive study of the structure and dynamics of many biological networks. Global proteomic interaction data, in particular, are synthetically represented as undirected networks exhibiting features far from the random paradigm which has dominated past effort in network theory. This evidence, along with the advances in the theory of complex networks, has triggered an intense research activity aimed at exploiting the evolutionary and biological significance of the resulting network's topology. Here we present a review of the results obtained in the characterization and modeling of the yeast Saccharomyces Cerevisiae protein interaction networks obtained with different experimental techniques. We provide a comparative assessment of the topological properties and discuss possible biases in interaction networks obtained with different techniques. We report on dynamical models based on duplication mechanisms that cast the protein interaction networks in the family of dynamically growing complex networks. Finally, we discuss various results and analysis correlating the networks’ topology with the biological function of proteins.

  7. (Multi)matrix models and interacting clones of Liouville gravity

    NASA Astrophysics Data System (ADS)

    Kiritsis, Elias; Niarchos, Vasilis

    2008-08-01

    Large-N matrix models coupled via multitrace operators are used to define, via appropriate double-scaling limits, solvable models of interacting multi-string theories. It is shown that although such theories are non-local at the world-sheet level they have a simple description of the spacetime physics. Such theories share the main characteristics of similarly coupled higher-dimensional CFTs. An interpretation has been given in the past of similar continuum limits in terms of Liouville interactions that violate the Seiberg bound. We provide a novel interpretation of this relation which agrees with the current understanding of Liouville theory and analogous observations in the AdS/CFT correspondence.

  8. Exploring host–microbiota interactions in animal models and humans

    PubMed Central

    Kostic, Aleksandar D.; Howitt, Michael R.; Garrett, Wendy S.

    2013-01-01

    The animal and bacterial kingdoms have coevolved and coadapted in response to environmental selective pressures over hundreds of millions of years. The meta'omics revolution in both sequencing and its analytic pipelines is fostering an explosion of interest in how the gut microbiome impacts physiology and propensity to disease. Gut microbiome studies are inherently interdisciplinary, drawing on approaches and technical skill sets from the biomedical sciences, ecology, and computational biology. Central to unraveling the complex biology of environment, genetics, and microbiome interaction in human health and disease is a deeper understanding of the symbiosis between animals and bacteria. Experimental model systems, including mice, fish, insects, and the Hawaiian bobtail squid, continue to provide critical insight into how host–microbiota homeostasis is constructed and maintained. Here we consider how model systems are influencing current understanding of host–microbiota interactions and explore recent human microbiome studies. PMID:23592793

  9. Interacting agegraphic dark energy models in phase space

    SciTech Connect

    Lemets, O.A.; Yerokhin, D.A.; Zazunov, L.G. E-mail: denyerokhin@gmail.com

    2011-01-01

    Agegraphic dark energy, has been recently proposed, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In the first part of the article we study the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. The phase space analysis was made and the critical points were found, one of which is the attractor corresponding to an accelerated expanding Universe. Recent observations of near supernova show that the acceleration of Universe decreases. This phenomenon is called the transient acceleration. In the second part of Article we consider the 3-component Universe composed of a scalar field, interacting with the dark matter on the agegraphic dark energy background. We show that the transient acceleration appears in frame of such a model. The obtained results agree with the observations.

  10. Stochastic Local Interaction (SLI) model: Bridging machine learning and geostatistics

    NASA Astrophysics Data System (ADS)

    Hristopulos, Dionissios T.

    2015-12-01

    Machine learning and geostatistics are powerful mathematical frameworks for modeling spatial data. Both approaches, however, suffer from poor scaling of the required computational resources for large data applications. We present the Stochastic Local Interaction (SLI) model, which employs a local representation to improve computational efficiency. SLI combines geostatistics and machine learning with ideas from statistical physics and computational geometry. It is based on a joint probability density function defined by an energy functional which involves local interactions implemented by means of kernel functions with adaptive local kernel bandwidths. SLI is expressed in terms of an explicit, typically sparse, precision (inverse covariance) matrix. This representation leads to a semi-analytical expression for interpolation (prediction), which is valid in any number of dimensions and avoids the computationally costly covariance matrix inversion.

  11. Interactive model of urban development in residential areas in Skopje

    NASA Astrophysics Data System (ADS)

    Marina, O.; Masala, E.; Pensa, S.; Stavric, M.

    2012-10-01

    Development of residential areas in Skopje in a period after the 1963 earthquake led to an emergence of continuous pressure to the physical structure of the city. It's essential to analyse, explore and understand the processes that are shaping our city. The study explores interactive tool that exercise the complex analysis of architectural and urban structure within the Skopje's residential areas and proposes a 3D model to investigate local dynamics and best fitting urban indicators for development. Through series of analysis of diverse typologies, programs, spatial and functional configurations of the dwelling within the city, the study presents an effort by use of Interactive Visualization Tool (InViTo) for modeling of urban development to explicate spatial distribution, the process of transformation and acknowledge the regularities and suitability of development of urban form in Skopje's residential area and, in particular, the relationship between functions and its localizations.

  12. Trilevel interaction design model for pilot part-task training

    SciTech Connect

    Roman, J.H.; Pistone, R.A.; Stoddard, M.L.

    1986-01-01

    Development of effective, scenario-driven training exercises requires both an instructional design and a delivery system that match the subject domain and needs of the students. The Training Research Team at Los Alamos National Laboratory conducts research and development of prototype training systems. One of the Team's efforts is a joint research project, supported with funding and behavioral science guidance from the Army Research Institute, to develop a prototype part-task trainer for student helicopter pilots. The Team designed a ''trilevel interaction'' model and a Level III interactive videodisc delivery system for this project. The model, founded on instructional and psychological theory, should be transferable to other domains where part-task training is appropriate.

  13. Understanding polycaroboxylate interactions with counterions: A molecular modeling approach

    SciTech Connect

    Fitzwater, S.; Freeman, M.B.

    1993-12-31

    Low molecular weight polycarboyxlates, such as poly(acrylic acid), have utility as dispersants in a variety of commercial applications including home laundry detergents, mineral processing and water treatment. In general, counterions (Ca, Mg, Fe, etc.) are unavoidable in these applications and often dictate the polymer composition and molecular weight necessary for successful performance. The authors have been investigating the interaction of polycarboxylates with counterions in order to better understand how that interaction impacts on the dispersant properties of a polymer. Using computer modeling, it can be seen how molecular geometry, molecular dynamics, and the shape/polarity of the molecular surface are affected by counterion binding and polymer composition. The authors can then combine information from the modeling with experimental information and literature concepts to provide a direction toward the synthesis of improved low molecular weight polycarboxylate dispersants.

  14. Modeling gas-dust interactions in debris disks

    NASA Astrophysics Data System (ADS)

    Richert, Alex J. W.; Kuchner, Marc J.; Lyra, Wladimir

    2017-01-01

    The discovery of gas in debris disks has raised the question of whether gas-dust interactions can observably affect global disk structure. This has important implications for identifying planets in debris disks, as well as probing dust grain composition, which is key to understanding the habitability of planetary systems. In this dissertation talk, I present two-dimensional global hydrodynamical models of debris disks with gas and discuss the effects of the gas on the global distribution of the dust.

  15. Interactive Model-Centric Systems Engineering (IMCSE) Phase 1

    DTIC Science & Technology

    2014-09-30

    point in time by a single decision maker; multi- sensory representations may allow for some loosening of this constraint and improve human -model...34Point" Futures (l) and Multi-Epoch Analysis (r) ....................... 40 Figure 10. Interactive Epoch-Era Analysis leverages humans -in-the-loop...develop systems, it is important to improve human and technology integration to make trades and decide on what is most effective given the present

  16. Celiac disease: a model disease for gene-environment interaction.

    PubMed

    Uibo, Raivo; Tian, Zhigang; Gershwin, M Eric

    2011-03-01

    Celiac sprue remains a model autoimmune disease for dissection of genetic and environmental influences on disease progression. The 2010 Congress of Autoimmunity included several key sessions devoted to genetics and environment. Several papers from these symposia were selected for in-depth discussion and publication. This issue is devoted to this theme. The goal is not to discuss genetic and environmental interactions, but rather to focus on key elements of diagnosis, the inflammatory response and the mechanisms of autoimmunity.

  17. Celiac disease: a model disease for gene–environment interaction

    PubMed Central

    Uibo, Raivo; Tian, Zhigang; Gershwin, M Eric

    2011-01-01

    Celiac sprue remains a model autoimmune disease for dissection of genetic and environmental influences on disease progression. The 2010 Congress of Autoimmunity included several key sessions devoted to genetics and environment. Several papers from these symposia were selected for in-depth discussion and publication. This issue is devoted to this theme. The goal is not to discuss genetic and environmental interactions, but rather to focus on key elements of diagnosis, the inflammatory response and the mechanisms of autoimmunity. PMID:21317918

  18. Modeling Interaction of a Tropical Cyclone with Its Cold Wake

    DTIC Science & Technology

    2014-09-01

    circulation crosses the cold wake. The energy input from the ocean to a tropical cyclone (TC) may be modulated by low sea-surface temperatures (SST... TROPICAL CYCLONE WITH ITS COLD WAKE by Sue Chen September 2014 Dissertation Supervisors: Patrick A. Harr Russell L. Elsberry THIS...4. TITLE AND SUBTITLE MODELING INTERACTION OF A TROPICAL CYCLONE WITH ITS COLD WAKE 5. FUNDING NUMBERS N/A 6. AUTHOR(S) Sue Chen 7. PERFORMING

  19. Turbulence radiation interaction modeling in hydrocarbon pool fire simulations

    SciTech Connect

    BURNS,SHAWN P.

    1999-12-01

    The importance of turbulent fluctuations in temperature and species concentration in thermal radiation transport modeling for combustion applications is well accepted by the radiation transport and combustion communities. A number of experimental and theoretical studies over the last twenty years have shown that fluctuations in the temperature and species concentrations may increase the effective emittance of a turbulent flame by as much as 50% to 300% over the value that would be expected from the mean temperatures and concentrations. With the possibility of such a large effect on the principal mode of heat transfer from a fire, it is extremely important for fire modeling efforts that turbulence radiation interaction be well characterized and possible modeling approaches understood. Toward this end, this report seeks to accomplish three goals. First, the principal turbulence radiation interaction closure terms are defined. Second, an order of magnitude analysis is performed to understand the relative importance of the various closure terms. Finally, the state of the art in turbulence radiation interaction closure modeling is reviewed. Hydrocarbon pool fire applications are of particular interest in this report and this is the perspective from which this review proceeds. Experimental and theoretical analysis suggests that, for this type of heavily sooting flame, the turbulent radiation interaction effect is dominated by the nonlinear dependence of the Planck function on the temperature. Additional effects due to the correlation between turbulent fluctuations in the absorptivity and temperature may be small relative to the Planck function effect for heavily sooting flames. This observation is drawn from a number of experimental and theoretical discussions. Nevertheless, additional analysis and data is needed to validate this observation for heavily sooting buoyancy dominated plumes.

  20. A validation study of a stochastic model of human interaction

    NASA Astrophysics Data System (ADS)

    Burchfield, Mitchel Talmadge

    The purpose of this dissertation is to validate a stochastic model of human interactions which is part of a developmentalism paradigm. Incorporating elements of ancient and contemporary philosophy and science, developmentalism defines human development as a progression of increasing competence and utilizes compatible theories of developmental psychology, cognitive psychology, educational psychology, social psychology, curriculum development, neurology, psychophysics, and physics. To validate a stochastic model of human interactions, the study addressed four research questions: (a) Does attitude vary over time? (b) What are the distributional assumptions underlying attitudes? (c) Does the stochastic model, {-}N{intlimitssbsp{-infty}{infty}}varphi(chi,tau)\\ Psi(tau)dtau, have utility for the study of attitudinal distributions and dynamics? (d) Are the Maxwell-Boltzmann, Fermi-Dirac, and Bose-Einstein theories applicable to human groups? Approximately 25,000 attitude observations were made using the Semantic Differential Scale. Positions of individuals varied over time and the logistic model predicted observed distributions with correlations between 0.98 and 1.0, with estimated standard errors significantly less than the magnitudes of the parameters. The results bring into question the applicability of Fisherian research designs (Fisher, 1922, 1928, 1938) for behavioral research based on the apparent failure of two fundamental assumptions-the noninteractive nature of the objects being studied and normal distribution of attributes. The findings indicate that individual belief structures are representable in terms of a psychological space which has the same or similar properties as physical space. The psychological space not only has dimension, but individuals interact by force equations similar to those described in theoretical physics models. Nonlinear regression techniques were used to estimate Fermi-Dirac parameters from the data. The model explained a high degree

  1. Stochastic model of agent interaction with opinion leaders.

    PubMed

    Ellero, Andrea; Fasano, Giovanni; Sorato, Annamaria

    2013-04-01

    We analyze the problem of agents' interactions in a given population. The purpose of this paper is twofold. Starting from a scheme proposed by Galam [Physica A 320, 571 (2003)], which is based on a majority rule to treat the individuals' interactions, we first study some of its relevant properties. Then, we introduce special individuals, called opinion leaders, who play a key role in information spreading in several practical applications. Opinion leaders have the special feature of strongly interfering with the process based on the majority rule, speeding up the diffusion. We consider a model describing agents' interactions, which encompasses Galam's proposal, where opinion leaders are included as special agents. Then we study its specific properties which significantly recast and extend some conclusions drawn for the models given by Galam and Ellero, Fasano, and Sorato [Physica A 388, 3901 (2009)]. Finally, we provide theoretical and numerical results concerning the dynamics of our model, showing that a small percentage of opinion leaders may both accelerate and/or even reverse the overall consensus among all the agents.

  2. Model-based description of environment interaction for mobile robots

    NASA Astrophysics Data System (ADS)

    Borghi, Giuseppe; Ferrari, Carlo; Pagello, Enrico; Vianello, Marco

    1999-01-01

    We consider a mobile robot that attempts to accomplish a task by reaching a given goal, and interacts with its environment through a finite set of actions and observations. The interaction between robot and environment is modeled by Partially Observable Markov Decision Processes (POMDP). The robot takes its decisions in presence of uncertainty about the current state, by maximizing its reward gained during interactions with the environment. It is able to self-locate into the environment by collecting actions and perception histories during the navigation. To make the state estimation more reliable, we introduce an additional information in the model without adding new states and without discretizing the considered measures. Thus, we associate to the state transition probabilities also a continuous metric given through the mean and the variance of some significant sensor measurements suitable to be kept under continuous form, such as odometric measurements, showing that also such unreliable data can supply a great deal of information to the robot. The overall control system of the robot is structured as a two-levels layered architecture, where the low level implements several collision avoidance algorithms, while the upper level takes care of the navigation problem. In this paper, we concentrate on how to use POMDP models at the upper level.

  3. Observational constraints on the interacting Ricci dark energy model

    SciTech Connect

    Suwa, Masashi; Nihei, Takeshi

    2010-01-15

    We consider an extension of the holographic Ricci dark energy model by introducing an interaction between dark energy and matter. In this model, the dark energy density is given by {rho}{sub {Lambda}=}-(1/2){alpha}M{sub p}{sup 2}R, where R is the Ricci scalar curvature, M{sub p} is the reduced Planck mass, and {alpha} is a dimensionless parameter. The interaction rate is given by Q={gamma}H{rho}{sub {Lambda},} where H is the Hubble expansion rate, and {gamma} is a dimensionless parameter. We investigate current observational constraints on this model by applying the type Ia supernovae, the baryon acoustic oscillation and the cosmic microwave background anisotropy data. It is shown that a nonvanishing interaction rate is favored by the observations. The best fit values are {alpha}=0.45{+-}0.03 and {gamma}=0.15{+-}0.03 for the present dark energy density parameter {Omega}{sub {Lambda}0}=0.73{+-}0.03.

  4. A simple model of directional interactions for proteins.

    PubMed

    Li, Xiaofei; Gunton, J D; Chakrabarti, A

    2009-09-21

    We study a simple two patch model of globular protein solutions. The model consists of a hard sphere interaction, together with a weak isotropic attraction, decorated with stronger attractive patch-patch interactions. The isotropic and anisotropic attractions are modeled with square well potentials with an interaction range of 1.2sigma, where sigma is the hard sphere diameter. We have calculated its phase diagram and found a metastable fluid-fluid phase separation curve. We have also obtained the different stable crystal structures at various temperatures. The orientationally ordered, body-centered crystal (bcc-o) lattice is the crystal structure that has the lowest energy; it is stable at lower temperatures and moderate pressures. The orientationally ordered face-centered crystal (fcc) lattice has a higher energy and becomes stable with respect to bcc-o at high pressures and lower temperatures. Finally, at high temperatures when the entropy effect becomes important, the orientational order is lost and an orientationally disordered fcc lattice becomes stable.

  5. Stochastic model of agent interaction with opinion leaders

    NASA Astrophysics Data System (ADS)

    Ellero, Andrea; Fasano, Giovanni; Sorato, Annamaria

    2013-04-01

    We analyze the problem of agents' interactions in a given population. The purpose of this paper is twofold. Starting from a scheme proposed by Galam [Physica A0378-437110.1016/S0378-4371(02)01582-0 320, 571 (2003)], which is based on a majority rule to treat the individuals’ interactions, we first study some of its relevant properties. Then, we introduce special individuals, called opinion leaders, who play a key role in information spreading in several practical applications. Opinion leaders have the special feature of strongly interfering with the process based on the majority rule, speeding up the diffusion. We consider a model describing agents’ interactions, which encompasses Galam's proposal, where opinion leaders are included as special agents. Then we study its specific properties which significantly recast and extend some conclusions drawn for the models given by Galam and Ellero, Fasano, and Sorato [Physica A0378-437110.1016/j.physa.2009.06.002 388, 3901 (2009)]. Finally, we provide theoretical and numerical results concerning the dynamics of our model, showing that a small percentage of opinion leaders may both accelerate and/or even reverse the overall consensus among all the agents.

  6. Space station crew safety: Human factors interaction model

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.; Junge, M. K.

    1985-01-01

    A model of the various human factors issues and interactions that might affect crew safety is developed. The first step addressed systematically the central question: How is this space station different from all other spacecraft? A wide range of possible issue was identified and researched. Five major topics of human factors issues that interacted with crew safety resulted: Protocols, Critical Habitability, Work Related Issues, Crew Incapacitation and Personal Choice. Second, an interaction model was developed that would show some degree of cause and effect between objective environmental or operational conditions and the creation of potential safety hazards. The intermediary steps between these two extremes of causality were the effects on human performance and the results of degraded performance. The model contains three milestones: stressor, human performance (degraded) and safety hazard threshold. Between these milestones are two countermeasure intervention points. The first opportunity for intervention is the countermeasure against stress. If this countermeasure fails, performance degrades. The second opportunity for intervention is the countermeasure against error. If this second countermeasure fails, the threshold of a potential safety hazard may be crossed.

  7. Analyzing Groundwater-Vegetation Interactions using a Dynamic Agroecosystem Model

    NASA Astrophysics Data System (ADS)

    Soylu, M. E.; Kucharik, C. J.; Loheide, S. P.

    2012-12-01

    Groundwater is a crucial source of water for vegetation, especially in arid and semiarid environments in many regions around the world and its availability controls the distribution and the physiology of plant species. However, the impact of groundwater on vegetation is not completely understood mainly due to the limited ability of current models to simulate groundwater and vegetation interactions. Existing land surface models (LSM) simulate water and energy fluxes among soil-vegetation-atmosphere systems in a process-based way, but lack a detailed simulation of soil water movement in the unsaturated zone, particularly when groundwater is present. Furthermore, there are only a few available LSM and/or process based vegetation models that can simulate agroecosystems, which are as important to understand as natural ecosystems considering they occupy approximately 40% of the global land surface. On the other hand, current physically-based, variably-saturated soil water flux models are able to accurately simulate water movement in the unsaturated zone. However, they often lack a detailed plant physiology component making it difficult to understand plant responses to both variations in energy fluxes and upward capillary fluxes in shallow groundwater environments. To connect these two different model types, the objectives of this study are (1) to incorporate an advanced dynamic agroecosystem model (Agro-IBIS) and a variably saturated soil water flow model (Hydrus-1D) into a single framework that is capable of simulating groundwater and plant/crop system interactions in a fully, physically-based fashion, and (2) to apply this model using observed climate records to better understand the responses of managed and natural ecosystems to varied water table depths under inter-annual climate forcing conditions. The model results show that as the water table becomes shallower, (1) soil temperature decreases due to the moisture content driven effects on the thermal diffusivity of

  8. Computational modeling of RNA 3D structures and interactions.

    PubMed

    Dawson, Wayne K; Bujnicki, Janusz M

    2016-04-01

    RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  9. Interactive data exploration and particle tracking for general circulation models

    NASA Technical Reports Server (NTRS)

    Rosenbaum, R. I.; Peskin, R. L.; Walther, S. S.; Zinn, H. P.

    1995-01-01

    The SCENE environment for interactive visualization of complex data sets is discussed. This environment is used to create tools for graphical exploration of atmospheric flow models. These tools may be extended by the user in a seamless manner, so that no programming is required. A module for accurately tracing field lines and particle trajectories in SCENE is presented. This is used to examine the flowfield qualitatively with streamlines and pathlines and to identify critical points in the velocity field. The paper also describes a visualization tool for general circulation models on which the primary features of the environment are demonstrated.

  10. Minimal model for synchronization induced by hydrodynamic interactions

    NASA Astrophysics Data System (ADS)

    Qian, Bian; Jiang, Hongyuan; Gagnon, David A.; Breuer, Kenneth S.; Powers, Thomas R.

    2009-12-01

    Motivated by the observed coordination of nearby beating cilia, we use a scale model experiment to show that hydrodynamic interactions can cause synchronization between rotating paddles driven at constant torque in a very viscous fluid. Synchronization is only observed when the shafts supporting the paddles have some flexibility. The phase difference in the synchronized state depends on the symmetry of the paddles. We use the method of regularized Stokeslets to model the paddles and find excellent agreement with the experimental observations. We also use a simple analytic theory based on far-field approximations to derive scaling laws for the synchronization time as a function of paddle separation.

  11. Modeling of High-Energy Pulsed Laser Interactions with Coupons

    SciTech Connect

    Boley, C D; Rubenchik, A M

    2003-02-06

    We describe a computational model of laser-materials interactions in the regime accessed by the solid state heat capacity lasers (SSHCLs) built at LLNL. We show that its predictions compare quite favorably with coupon experiments by the 10 kW SSHCL at LLNL. The body of this paper describes the following topics, listed by section number: (2) model in quiescent air, (3) comparison with experiments in quiescent air, (4) effects of air flow, (5) comparison with experiments involving air flow, (6) importance of material properties, (7) advantage of pulsed lasers over CW lasers, and (8) conclusions and recommendations.

  12. An investigation of ab initio shell-model interactions derived by no-core shell model

    NASA Astrophysics Data System (ADS)

    Wang, XiaoBao; Dong, GuoXiang; Li, QingFeng; Shen, CaiWan; Yu, ShaoYing

    2016-09-01

    The microscopic shell-model effective interactions are mainly based on the many-body perturbation theory (MBPT), the first work of which can be traced to Brown and Kuo's first attempt in 1966, derived from the Hamada-Johnston nucleon-nucleon potential. However, the convergence of the MBPT is still unclear. On the other hand, ab initio theories, such as Green's function Monte Carlo (GFMC), no-core shell model (NCSM), and coupled-cluster theory with single and double excitations (CCSD), have made many progress in recent years. However, due to the increasing demanding of computing resources, these ab initio applications are usually limited to nuclei with mass up to A = 16. Recently, people have realized the ab initio construction of valence-space effective interactions, which is obtained through a second-time renormalization, or to be more exactly, projecting the full-manybody Hamiltonian into core, one-body, and two-body cluster parts. In this paper, we present the investigation of such ab initio shell-model interactions, by the recent derived sd-shell effective interactions based on effective J-matrix Inverse Scattering Potential (JISP) and chiral effective-field theory (EFT) through NCSM. In this work, we have seen the similarity between the ab initio shellmodel interactions and the interactions obtained by MBPT or by empirical fitting. Without the inclusion of three-body (3-bd) force, the ab initio shell-model interactions still share similar defects with the microscopic interactions by MBPT, i.e., T = 1 channel is more attractive while T = 0 channel is more repulsive than empirical interactions. The progress to include more many-body correlations and 3-bd force is still badly needed, to see whether such efforts of ab initio shell-model interactions can reach similar precision as the interactions fitted to experimental data.

  13. Molecular modelling of protein-protein/protein-solvent interactions

    NASA Astrophysics Data System (ADS)

    Luchko, Tyler

    The inner workings of individual cells are based on intricate networks of protein-protein interactions. However, each of these individual protein interactions requires a complex physical interaction between proteins and their aqueous environment at the atomic scale. In this thesis, molecular dynamics simulations are used in three theoretical studies to gain insight at the atomic scale about protein hydration, protein structure and tubulin-tubulin (protein-protein) interactions, as found in microtubules. Also presented, in a fourth project, is a molecular model of solvation coupled with the Amber molecular modelling package, to facilitate further studies without the need of explicitly modelled water. Basic properties of a minimally solvated protein were calculated through an extended study of myoglobin hydration with explicit solvent, directly investigating water and protein polarization. Results indicate a close correlation between polarization of both water and protein and the onset of protein function. The methodology of explicit solvent molecular dynamics was further used to study tubulin and microtubules. Extensive conformational sampling of the carboxy-terminal tails of 8-tubulin was performed via replica exchange molecular dynamics, allowing the characterisation of the flexibility, secondary structure and binding domains of the C-terminal tails through statistical analysis methods. Mechanical properties of tubulin and microtubules were calculated with adaptive biasing force molecular dynamics. The function of the M-loop in microtubule stability was demonstrated in these simulations. The flexibility of this loop allowed constant contacts between the protofilaments to be maintained during simulations while the smooth deformation provided a spring-like restoring force. Additionally, calculating the free energy profile between the straight and bent tubulin configurations was used to test the proposed conformational change in tubulin, thought to cause microtubule

  14. Phase transitions in simplified models with long-range interactions

    NASA Astrophysics Data System (ADS)

    Rocha Filho, T. M.; Amato, M. A.; Mello, B. A.; Figueiredo, A.

    2011-10-01

    We study the origin of phase transitions in several simplified models with long-range interactions. For the self-gravitating ring model, we are unable to observe a possible phase transition predicted by Nardini and Casetti [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.80.060103 80, 060103R (2009).] from an energy landscape analysis. Instead we observe a sharp, although without any nonanalyticity, change from a core-halo to a core-only configuration in the spatial distribution functions for low energies. By introducing a different class of solvable simplified models without any critical points in the potential energy we show that a behavior similar to the thermodynamics of the ring model is obtained, with a first-order phase transition from an almost homogeneous high-energy phase to a clustered phase and the same core-halo to core configuration transition at lower energies. We discuss the origin of these features for the simplified models and show that the first-order phase transition comes from the maximization of the entropy of the system as a function of energy and an order parameter, as previously discussed by Hahn and Kastner [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.72.056134 72, 056134 (2005); Eur. Phys. J. BEPJBFY1434-602810.1140/epjb/e2006-00100-7 50, 311 (2006)], which seems to be the main mechanism causing phase transitions in long-range interacting systems.

  15. Modeling insurer-homeowner interactions in managing natural disaster risk.

    PubMed

    Kesete, Yohannes; Peng, Jiazhen; Gao, Yang; Shan, Xiaojun; Davidson, Rachel A; Nozick, Linda K; Kruse, Jamie

    2014-06-01

    The current system for managing natural disaster risk in the United States is problematic for both homeowners and insurers. Homeowners are often uninsured or underinsured against natural disaster losses, and typically do not invest in retrofits that can reduce losses. Insurers often do not want to insure against these losses, which are some of their biggest exposures and can cause an undesirably high chance of insolvency. There is a need to design an improved system that acknowledges the different perspectives of the stakeholders. In this article, we introduce a new modeling framework to help understand and manage the insurer's role in catastrophe risk management. The framework includes a new game-theoretic optimization model of insurer decisions that interacts with a utility-based homeowner decision model and is integrated with a regional catastrophe loss estimation model. Reinsurer and government roles are represented as bounds on the insurer-insured interactions. We demonstrate the model for a full-scale case study for hurricane risk to residential buildings in eastern North Carolina; present the results from the perspectives of all stakeholders-primary insurers, homeowners (insured and uninsured), and reinsurers; and examine the effect of key parameters on the results.

  16. A Warm Fluid Model of Intense Laser-Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Tarkenton, G. M.; Shadwick, B. A.; Esarey, E. H.; Leemans, W. P.

    2001-10-01

    Following up on our previous work on modeling intense laser-plasma interactions with cold fluids,(B.A.Shadwick, G. M. Tarkenton, E.H. Esarey, and W.P. Leemans, ``Fluid Modeling of Intense Laser-Plasma Interactions'', in Advanced Accelerator Concepts), P. Colestock and S. Kelley editors, AIP Conf. Proc. 569 (AIP, NY 2001), pg. 154. we are exploring warm fluid models. These models represent the next level in a hierarchy of complexity beyond the cold fluid approximation. With only a modest increase in computation effort, warm fluids incorporate effects that are relevant to a variety of technologically interesting cases. We present a derivation of the warm fluid from a kinetic (i.e. Vlasov) perspective and make a connection with the usual relativistic thermodynamic approach.(S. R. de Groot, W. A. van Leeuwen and Ch. G. van Weert, Relativistic Kinetic Theory: Principles and Applications), North-Holland (1980). We will provide examples where the warm fluids yield physics results not contained in the cold model and discuss experimental parameters where these effects are believed to be important.

  17. Receptor dependent multidimensional QSAR for modeling drug--receptor interactions.

    PubMed

    Polanski, Jaroslaw

    2009-01-01

    Quantitative Structure Activity Relationship (QSAR) is an approach of mapping chemical structure to properties. A significant development can be observed in the last two decades in this method which originated from the Hansch analysis based on the logP data and Hammett constant towards a growing importance of the molecular descriptors derived from 3D structure including conformational dynamics and solvation scenarios. However, molecular interactions in biological systems are complex phenomena generating extremely noisy data, if simulated in silico. This decides that activity modeling and predictions are a risky business. Molecular recognition uncertainty in traditional receptor independent (RI) m-QSAR cannot be eliminated but by the inclusion of the receptor data. Modeling ligand-receptor interactions is a complex computational problem. This has limited the development of the receptor dependent (RD) m-QSAR. However, a steady increase of computational power has also improved modeling ability in chemoinformatics and novel RD QSAR methods appeared. Following the RI m-QSAR terminology this is usually classified as RD 3/6D-QSAR. However, a clear systematic m-QSAR classification can be proposed, where dimension m refers to, the static ligand representation (3D), multiple ligand representation (4D), ligand-based virtual or pseudo receptor models (5D), multiple solvation scenarios (6D) and real receptor or target-based receptor model data (7D).

  18. Mattress model of lipid-protein interactions in membranes.

    PubMed Central

    Mouritsen, O G; Bloom, M

    1984-01-01

    A thermodynamic model is proposed for describing phase diagrams of mixtures of lipid bilayers and amphiphilic proteins or polypeptides in water solution. The basic geometrical variables of the model are the thickness of the hydrophobic region of the lipid bilayer and the length of the hydrophobic region of the proteins. The model incorporates the elastic properties of the lipid bilayer and the proteins, as well as indirect and direct lipid-protein interactions expressed in terms of the geometrical variables. The concept of mismatch of the hydrophobic regions of the lipids and proteins is an important ingredient of the model. The general phase behavior is calculated using simple real solution theory. The phase behavior turns out to be quite rich and is used to discuss previous experiments on planar aggregations of proteins in phospholipid bilayers and to propose a systematic study of synthetic amphiphilic polypeptides in bilayers of different thicknesses. The model is used to interpret the influence of the lipid-protein interaction on calorimetric measurements and on local orientational order as determined by deuterium nuclear magnetic resonance. PMID:6478029

  19. Reduced order modeling of fluid/structure interaction.

    SciTech Connect

    Barone, Matthew Franklin; Kalashnikova, Irina; Segalman, Daniel Joseph; Brake, Matthew Robert

    2009-11-01

    This report describes work performed from October 2007 through September 2009 under the Sandia Laboratory Directed Research and Development project titled 'Reduced Order Modeling of Fluid/Structure Interaction.' This project addresses fundamental aspects of techniques for construction of predictive Reduced Order Models (ROMs). A ROM is defined as a model, derived from a sequence of high-fidelity simulations, that preserves the essential physics and predictive capability of the original simulations but at a much lower computational cost. Techniques are developed for construction of provably stable linear Galerkin projection ROMs for compressible fluid flow, including a method for enforcing boundary conditions that preserves numerical stability. A convergence proof and error estimates are given for this class of ROM, and the method is demonstrated on a series of model problems. A reduced order method, based on the method of quadratic components, for solving the von Karman nonlinear plate equations is developed and tested. This method is applied to the problem of nonlinear limit cycle oscillations encountered when the plate interacts with an adjacent supersonic flow. A stability-preserving method for coupling the linear fluid ROM with the structural dynamics model for the elastic plate is constructed and tested. Methods for constructing efficient ROMs for nonlinear fluid equations are developed and tested on a one-dimensional convection-diffusion-reaction equation. These methods are combined with a symmetrization approach to construct a ROM technique for application to the compressible Navier-Stokes equations.

  20. Unsupervised learnable neuron model with nonlinear interaction on dendrites.

    PubMed

    Todo, Yuki; Tamura, Hiroki; Yamashita, Kazuya; Tang, Zheng

    2014-12-01

    Recent researches have provided strong circumstantial support to dendrites playing a key and possibly essential role in computations. In this paper, we propose an unsupervised learnable neuron model by including the nonlinear interactions between excitation and inhibition on dendrites. The model neuron self-adjusts its synaptic parameters, so that the synapse to dendrite, according to a generalized delta-rule-like algorithm. The model is used to simulate directionally selective cells by the unsupervised learning algorithm. In the simulations, we initialize the interaction and dendrite of the neuron randomly and use the generalized delta-rule-like unsupervised learning algorithm to learn the two-dimensional multi-directional selectivity problem without an external teacher's signals. Simulation results show that the directionally selective cells can be formed by unsupervised learning, acquiring the required number of dendritic branches, and if needed, enhanced and if not, eliminated. Further, the results show whether a synapse exists; if it exists, where and what type (excitatory or inhibitory) of synapse it is. This leads us to believe that the proposed neuron model may be considerably more powerful on computations than the McCulloch-Pitts model because theoretically a single neuron or a single layer of such neurons is capable of solving any complex problem. These may also lead to a completely new technique for analyzing the mechanisms and principles of neurons, dendrites, and synapses.

  1. Strongly Interacting Matter at Finite Chemical Potential: Hybrid Model Approach

    NASA Astrophysics Data System (ADS)

    Srivastava, P. K.; Singh, C. P.

    2013-06-01

    Search for a proper and realistic equation of state (EOS) for strongly interacting matter used in the study of the QCD phase diagram still appears as a challenging problem. Recently, we constructed a hybrid model description for the quark-gluon plasma (QGP) as well as hadron gas (HG) phases where we used an excluded volume model for HG and a thermodynamically consistent quasiparticle model for the QGP phase. The hybrid model suitably describes the recent lattice results of various thermodynamical as well as transport properties of the QCD matter at zero baryon chemical potential (μB). In this paper, we extend our investigations further in obtaining the properties of QCD matter at finite value of μB and compare our results with the most recent results of lattice QCD calculation.

  2. A computer model of solar panel-plasma interactions

    NASA Technical Reports Server (NTRS)

    Cooke, D. L.; Freeman, J. W.

    1980-01-01

    High power solar arrays for satellite power systems are presently being planned with dimensions of kilometers, and with tens of kilovolts distributed over their surface. Such systems face many plasma interaction problems, such as power leakage to the plasma, particle focusing, and anomalous arcing. These effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Laboratory studies of 1 by 10 meter solar array in a simulated low Earth orbit plasma are discussed. The plasma screening process is discussed, program theory is outlined, and a series of calibration models is presented. These models are designed to demonstrate that PANEL is capable of accurate self consistant space charge calculations. Such models include PANEL predictions for the Child-Langmuir diode problem.

  3. Anisotropic interactions in a first-order aggregation model

    NASA Astrophysics Data System (ADS)

    Evers, Joep H. M.; Fetecau, Razvan C.; Ryzhik, Lenya

    2015-08-01

    We extend a well studied ODE model for collective behaviour by considering anisotropic interactions among individuals. Anisotropy is modelled by limited sensorial perception of individuals, that depends on their current direction of motion. Consequently, the first-order model becomes implicit, and new analytical issues, such as non-uniqueness and jump discontinuities in velocities, are raised. We study the well-posedness of the anisotropic model and discuss its modes of breakdown. To extend solutions beyond breakdown we propose a relaxation system containing a small parameter ε, which can be interpreted as a small amount of inertia or response time. We show that the limit ε → 0 can be used as a jump criterion to select the physically correct velocities. In smooth regimes, the convergence of the relaxation system as ε → 0 is guaranteed by a theorem due to Tikhonov. We illustrate the results with numerical simulations in two dimensions.

  4. Development of an interactive anatomical three-dimensional eye model.

    PubMed

    Allen, Lauren K; Bhattacharyya, Siddhartha; Wilson, Timothy D

    2015-01-01

    The discrete anatomy of the eye's intricate oculomotor system is conceptually difficult for novice students to grasp. This is problematic given that this group of muscles represents one of the most common sites of clinical intervention in the treatment of ocular motility disorders and other eye disorders. This project was designed to develop a digital, interactive, three-dimensional (3D) model of the muscles and cranial nerves of the oculomotor system. Development of the 3D model utilized data from the Visible Human Project (VHP) dataset that was refined using multiple forms of 3D software. The model was then paired with a virtual user interface in order to create a novel 3D learning tool for the human oculomotor system. Development of the virtual eye model was done while attempting to adhere to the principles of cognitive load theory (CLT) and the reduction of extraneous load in particular. The detailed approach, digital tools employed, and the CLT guidelines are described herein.

  5. Scalar excitation with Leggett frequency in 3He -B and the 125 GeV Higgs particle in top quark condensation models as pseudo-Goldstone bosons

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.; Zubkov, M. A.

    2015-09-01

    We consider the scenario in which the light Higgs scalar boson appears as the pseudo-Goldstone boson. We discuss examples in both condensed matter and relativistic field theory. In 3He -B the symmetry breaking gives rise to four Nambu-Goldstone (NG) modes and 14 Higgs modes. At lower energy one of the four NG modes becomes the Higgs boson with a small mass. This is the mode measured in experiments with the longitudinal NMR, and the Higgs mass corresponds to the Leggett frequency MH=ℏΩB . The formation of the Higgs mass is the result of the violation of the hidden spin-orbit symmetry at low energy. In this scenario the symmetry-breaking energy scale Δ (the gap in the fermionic spectrum) and the Higgs mass scale MH are highly separated: MH≪Δ . On the particle physics side we consider the model inspired by the models of Refs. Cheng et al. [J. High Energy Phys. 08 (014) 095] and Fukano et al. [Phys. Rev. D 90, 055009 (2014)]. At high energies the SU(3) symmetry is assumed which relates the left-handed top and bottom quarks to the additional fermion χL. This symmetry is softly broken at low energies. As a result the only C P -even Goldstone boson acquires a mass and may be considered as a candidate for the 125 GeV scalar boson. We consider a condensation pattern different from that typically used in top-seesaw models, where the condensate ⟨t¯ LχR⟩ is off-diagonal. In our case the condensates are mostly diagonal. Unlike the work of Cheng et al. [J. High Energy Phys. 08 (014) 095] and Fukano et al. [Phys. Rev. D 90, 055009 (2014)], the explicit mass terms are absent and the soft breaking of SU(3) symmetry is given solely by the four-fermion terms. This reveals a complete analogy with 3He, where there is no explicit mass term and the spin-orbit interaction has the form of the four-fermion interaction.

  6. The autophagy interaction network of the aging model Podospora anserina.

    PubMed

    Philipp, Oliver; Hamann, Andrea; Osiewacz, Heinz D; Koch, Ina

    2017-03-27

    Autophagy is a conserved molecular pathway involved in the degradation and recycling of cellular components. It is active either as response to starvation or molecular damage. Evidence is emerging that autophagy plays a key role in the degradation of damaged cellular components and thereby affects aging and lifespan control. In earlier studies, it was found that autophagy in the aging model Podospora anserina acts as a longevity assurance mechanism. However, only little is known about the individual components controlling autophagy in this aging model. Here, we report a biochemical and bioinformatics study to detect the protein-protein interaction (PPI) network of P. anserina combining experimental and theoretical methods. We constructed the PPI network of autophagy in P. anserina based on the corresponding networks of yeast and human. We integrated PaATG8 interaction partners identified in an own yeast two-hybrid analysis using ATG8 of P. anserina as bait. Additionally, we included age-dependent transcriptome data. The resulting network consists of 89 proteins involved in 186 interactions. We applied bioinformatics approaches to analyze the network topology and to prove that the network is not random, but exhibits biologically meaningful properties. We identified hub proteins which play an essential role in the network as well as seven putative sub-pathways, and interactions which are likely to be evolutionary conserved amongst species. We confirmed that autophagy-associated genes are significantly often up-regulated and co-expressed during aging of P. anserina. With the present study, we provide a comprehensive biological network of the autophagy pathway in P. anserina comprising PPI and gene expression data. It is based on computational prediction as well as experimental data. We identified sub-pathways, important hub proteins, and evolutionary conserved interactions. The network clearly illustrates the relation of autophagy to aging processes and enables

  7. Estimation and Model Selection for Finite Mixtures of Latent Interaction Models

    ERIC Educational Resources Information Center

    Hsu, Jui-Chen

    2011-01-01

    Latent interaction models and mixture models have received considerable attention in social science research recently, but little is known about how to handle if unobserved population heterogeneity exists in the endogenous latent variables of the nonlinear structural equation models. The current study estimates a mixture of latent interaction…

  8. Estimation and Model Selection for Finite Mixtures of Latent Interaction Models

    ERIC Educational Resources Information Center

    Hsu, Jui-Chen

    2011-01-01

    Latent interaction models and mixture models have received considerable attention in social science research recently, but little is known about how to handle if unobserved population heterogeneity exists in the endogenous latent variables of the nonlinear structural equation models. The current study estimates a mixture of latent interaction…

  9. How to model the interaction of charged Janus particles

    NASA Astrophysics Data System (ADS)

    Hieronimus, Reint; Raschke, Simon; Heuer, Andreas

    2016-08-01

    We analyze the interaction of charged Janus particles including screening effects. The explicit interaction is mapped via a least square method on a variable number n of systematically generated tensors that reflect the angular dependence of the potential. For n = 2 we show that the interaction is equivalent to a model previously described by Erdmann, Kröger, and Hess (EKH). Interestingly, this mapping is for n = 2 not able to capture the subtleties of the interaction for small screening lengths. Rather, a larger number of tensors has to be used. We find that the characteristics of the Janus type interaction plays an important role for the aggregation behavior. We obtained cluster structures up to the size of 13 particles for n = 2 and 36 and screening lengths κ-1 = 0.1 and 1.0 via Monte Carlo simulations. The influence of the screening length is analyzed and the structures are compared to results for an electrostatic-type potential and for the multipole-expanded Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. We find that a dipole-like potential (EKH or dipole DLVO approximation) is not able to sufficiently reproduce the anisotropy effects of the potential. Instead, a higher order expansion has to be used to obtain cluster structures that are compatible with experimental observations. The resulting minimum-energy clusters are compared to those of sticky hard sphere systems. Janus particles with a short-range screened interaction resemble sticky hard sphere clusters for all considered particle numbers, whereas for long-range screening even very small clusters are structurally different.

  10. Phospholipid interactions in model membrane systems. II. Theory.

    PubMed Central

    Stigter, D; Mingins, J; Dill, K A

    1992-01-01

    We describe statistical thermodynamic theory for the lateral interactions among phospholipid head groups in monolayers and bilayers. Extensive monolayer experiments show that at low surface densities, PC head groups have strong lateral repulsions which increase considerably with temperature, whereas PE interactions are much weaker and have no significant temperature dependence (see the preceding paper). In previous work, we showed that the second virial coefficients for these interactions can be explained by: (a) steric repulsions among the head groups, and (b) a tilting of the P-N+ dipole of PC so that the N+ end enters the oil phase, to an extent that increases with temperature. It was also predicted that PE interactions should be weaker and less temperature dependent because the N+ terminal of the PE head-group is hydrophilic, hence, it is tilted into the water phase, so dipolar contributions among PE's are negligible due to the high dielectric constant of water. In the present work, we broaden the theory to treat phospholipid interactions up to higher lateral surface densities. We generalize the Hill interfacial virial expansion to account for dipoles and to include the third virial term. We show that to account for the large third virial coefficients for both PC and PE requires that the short range lateral attractions among the head groups also be taken into account. In addition, the third virial coefficient includes fluctuating head group dipoles, computed by Monte Carlo integration assuming pairwise additivity of the instantaneous pair potentials. We find that because the dipole fluctuations are correlated, the average triplet interactions do not equal the sum of the average dipole pair potentials. This is important for predicting, the magnitude and the independence of temperature of the third virial coefficients for PC. The consistency of the theory with data of both the second and the third virial coefficients extends the applicability of the head

  11. Computer modeling of the membrane interaction of FYVE domains.

    PubMed

    Diraviyam, Karthikeyan; Stahelin, Robert V; Cho, Wonhwa; Murray, Diana

    2003-05-02

    FYVE domains are membrane targeting domains that are found in proteins involved in endosomal trafficking and signal transduction pathways. Most FYVE domains bind specifically to phosphatidylinositol 3-phosphate (PI(3)P), a lipid that resides mainly in endosomal membranes. Though the specific interactions between FYVE domains and the headgroup of PI(3)P have been well characterized, principally through structural studies, the available experimental structures suggest several different models for FYVE/membrane association. Thus, the manner in which FYVE domains adsorb to the membrane surface remains to be elucidated. Towards this end, recent experiments have shown that FYVE domains bind PI(3)P in the context of phospholipid bilayers and that hydrophobic residues on a conserved loop are able to penetrate the membrane interface in a PI(3)P-dependent manner.Here, the finite difference Poisson-Boltzmann (FDPB) method has been used to calculate the energetic interactions of FYVE domains with phospholipid membranes. Based on the computational analysis, it is found that (1) recruitment to membranes is facilitated by non-specific electrostatic interactions that occur between basic residues on the domains and acidic phospholipids in the membrane, (2) the energetic analysis can quantitatively differentiate among the modes of membrane association proposed by the experimentally determined structures, (3) FDPB calculations predict energetically feasible models for the membrane-associated states of FYVE domains, (4) these models are consistent with the observation that conserved hydrophobic residues insert into the membrane interface, and (5) the calculations provide a molecular model for the hydrophobic partitioning: binding of PI(3)P significantly neutralizes positive potential in the region of the hydrophobic residues, which acts as an "electrostatic switch" by reducing the energetic barrier for membrane penetration. Finally, the computational results are extended to FYVE

  12. Agent Based Modeling of Human Gut Microbiome Interactions and Perturbations

    PubMed Central

    Shashkova, Tatiana; Popenko, Anna; Tyakht, Alexander; Peskov, Kirill; Kosinsky, Yuri; Bogolubsky, Lev; Raigorodskii, Andrei; Ischenko, Dmitry; Alexeev, Dmitry; Govorun, Vadim

    2016-01-01

    Background Intestinal microbiota plays an important role in the human health. It is involved in the digestion and protects the host against external pathogens. Examination of the intestinal microbiome interactions is required for understanding of the community influence on host health. Studies of the microbiome can provide insight on methods of improving health, including specific clinical procedures for individual microbial community composition modification and microbiota correction by colonizing with new bacterial species or dietary changes. Methodology/Principal Findings In this work we report an agent-based model of interactions between two bacterial species and between species and the gut. The model is based on reactions describing bacterial fermentation of polysaccharides to acetate and propionate and fermentation of acetate to butyrate. Antibiotic treatment was chosen as disturbance factor and used to investigate stability of the system. System recovery after antibiotic treatment was analyzed as dependence on quantity of feedback interactions inside the community, therapy duration and amount of antibiotics. Bacterial species are known to mutate and acquire resistance to the antibiotics. The ability to mutate was considered to be a stochastic process, under this suggestion ratio of sensitive to resistant bacteria was calculated during antibiotic therapy and recovery. Conclusion/Significance The model confirms a hypothesis of feedbacks mechanisms necessity for providing functionality and stability of the system after disturbance. High fraction of bacterial community was shown to mutate during antibiotic treatment, though sensitive strains could become dominating after recovery. The recovery of sensitive strains is explained by fitness cost of the resistance. The model demonstrates not only quantitative dynamics of bacterial species, but also gives an ability to observe the emergent spatial structure and its alteration, depending on various feedback mechanisms

  13. Galaxies and Genes: How to Model Interacting Galaxies

    NASA Astrophysics Data System (ADS)

    Harfst, Stefan; Gerds, Christoph; Theis, Christian

    The observed features of interacting galaxies (e.g. tidal tails) provide a lot of information on the dynamics of such a system. Dark matter halos, for example, play an important rôle for the dynamical evolution of galaxies so that they should obviously have perceptible effects on the interaction. Unfortunately, the problem of modeling interacting galaxies from observational data suffers from an extended parameter space. Recently it has been shown that a Genetic Algorithm (GA) can be applied to this problem (Wahde 1998; Theis 1999). The general idea of a GA is to mimic natural evolution: A population of individuals which correspond to single points in parameter space (i.e. single N-body simulations) is evolved according to the principle of ``survival of the fittest''. The fitness is calculated by a comparison of observed intensities with the numerical model. New populations are created by ``sexual reproduction'' whereas individuals with a higher fitness reproduce themselves more often. This breeding process is repeated until a sufficient fit is achieved. Until now the GA has been applied to a chosen reference model (i.e. a preferred set of parameters) as in the case of NGC 4449 (Theis 1999). An automatic procedure for the selection of a suitable set of parameters on the basis of observational data is highly desirable. A first step in order to achieve this goal is an ``idealized'' observation which can be computed from a self-consistent N-body simulation. By this not only the parameters of the interaction are in control but one can also adjust the quality of the observational data allowing to check the general applicability of the GA to observational data.

  14. PREFACE: Singular interactions in quantum mechanics: solvable models

    NASA Astrophysics Data System (ADS)

    Dell'Antonio, Gianfausto; Exner, Pavel; Geyler, Vladimir

    2005-06-01

    This issue comprises two dozen research papers which are all in one sense or another devoted to models in which the interaction is singular and sharply localized; a typical example is a quantum particle interacting with a family of δ-type potentials. Such an idealization usually makes analysis of their properties considerably easier, sometimes allowing us to reduce it to a simple algebraic problem—this is why one speaks about solvable models. The subject can be traced back to the early days of quantum mechanics; however, the progress in this field was slow and uneven until the 1960s, mostly because singular interactions are often difficult to deal with mathematically and intuitive arguments do not work. After overcoming the initial difficulties the `classical' theory of point interactions was developed, and finally summarized in 1988 in a monograph by Albeverio, Gesztesy, Høegh-Krohn, and Holden, which you will find quoted in numerous places within this issue. A reliable way to judge theories is to observe the progress they make within one or two decades. In this case there is no doubt that the field has witnessed a continuous development and covered areas which nobody had thought of when the subject first emerged. The reader may see it in the second edition of the aforementioned book which was published by AMS Chelsea only recently and contained a brief survey of these new achievements. It is no coincidence that this topical issue appears at the same time; it has been conceived as its counterpart and a forum at which fresh results in the field can demonstrated. Let us briefly survey the contents of the issue. While the papers included have in common the basic subject, they represent a broad spectrum philosophically as well as technically, and any attempt to classify them is somewhat futile. Nevertheless, we will divide them into a few groups. The first comprises contributions directly related to the usual point-interaction ideology. M Correggi and one of the

  15. Interaction Mindsets, Interactional Behaviors, and L2 Development: An Affective-Social-Cognitive Model

    ERIC Educational Resources Information Center

    Sato, Masatoshi

    2017-01-01

    This classroom-based study explored links among second language (L2) learners' interaction mindsets, interactional behaviors, and L2 development in the context of peer interaction. While peer interaction research has revealed that certain interactional behaviors (e.g., receiving corrective feedback and engaging in collaborative interaction) assist…

  16. The Development in modeling Tibetan Plateau Land/Climate Interaction

    NASA Astrophysics Data System (ADS)

    Xue, Yongkang; Liu, Ye; li, qian; Maheswor Shrestha, Maheswor; Ma, Hsi-Yen; Cox, Peter; Sun, shufen; Koike, Toshio

    2015-04-01

    Tibetan Plateau (TP) plays an important role in influencing the continental and planetary scale climate, including East Asian and South Asian monsoon, circulation and precipitation over West Pacific and Indian Oceans. The numerical study has identified TP as the area with strongest land/atmosphere interactions over the midlatitude land. The land degradation there has also affected the monsoon precipitation in TP along the monsoon pathway. The water cycle there affects water sources for major Asian river systems, which include the Tarim, Amu Darya, Indus, Ganges, Brahmaputra, Irrawaddy, Salween, Mekong, Yellow, and Yangtze Rivers. Despite the importance of TP land process in the climate system, the TP land surface processes are poorly modeled due to lack of data available for model validation. To better understand, simulate, and project the role of Tibetan Plateau land surface processes, better parameterization of the Tibetan Land surface processes have been developed and evaluated. The recently available field measurement there and satellite observation have greatly helped this development. This paper presents these new developments and preliminary results using the newly developed biophysical/dynamic vegetation model, frozen soil model, and glacier model. In recent CMIP5 simulation, the CMIP5 models with dynamic vegetation model show poor performance in simulating the TP vegetation and climate. To better simulate the TP vegetation condition and its interaction with climate, we have developed biophysical/dynamic vegetation model, the Simplified Simple Biosphere Model version 4/Top-down Representation of Interactive Foliage and Flora Including Dynamics Model (SSiB4/TRIFFID), based on water, carbon, and energy balance. The simulated vegetation variables are updates, driven by carbon assimilation, allocation, and accumulation, as well as competition between plant functional types. The model has been validated with the station data, including those measured over the TP

  17. Monte Carlo Computational Modeling of Atomic Oxygen Interactions

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Stueber, Thomas J.; Miller, Sharon K.; De Groh, Kim K.

    2017-01-01

    Computational modeling of the erosion of polymers caused by atomic oxygen in low Earth orbit (LEO) is useful for determining areas of concern for spacecraft environment durability. Successful modeling requires that the characteristics of the environment such as atomic oxygen energy distribution, flux, and angular distribution be properly represented in the model. Thus whether the atomic oxygen is arriving normal to or inclined to a surface and whether it arrives in a consistent direction or is sweeping across the surface such as in the case of polymeric solar array blankets is important to determine durability. When atomic oxygen impacts a polymer surface it can react removing a certain volume per incident atom (called the erosion yield), recombine, or be ejected as an active oxygen atom to potentially either react with other polymer atoms or exit into space. Scattered atoms can also have a lower energy as a result of partial or total thermal accommodation. Many solutions to polymer durability in LEO involve protective thin films of metal oxides such as SiO2 to prevent atomic oxygen erosion. Such protective films also have their own interaction characteristics. A Monte Carlo computational model has been developed which takes into account the various types of atomic oxygen arrival and how it reacts with a representative polymer (polyimide Kapton H) and how it reacts at defect sites in an oxide protective coating, such as SiO2 on that polymer. Although this model was initially intended to determine atomic oxygen erosion behavior at defect sites for the International Space Station solar arrays, it has been used to predict atomic oxygen erosion or oxidation behavior on many other spacecraft components including erosion of polymeric joints, durability of solar array blanket box covers, and scattering of atomic oxygen into telescopes and microwave cavities where oxidation of critical component surfaces can take place. The computational model is a two dimensional model

  18. Exploring the Earth System through online interactive models

    NASA Astrophysics Data System (ADS)

    Coogan, L. A.

    2013-12-01

    Upper level Earth Science students commonly have a strong background of mathematical training from Math courses, however their ability to use mathematical models to solve Earth Science problems is commonly limited. Their difficulty comes, in part, because of the nature of the subject matter. There is a large body of background ';conceptual' and ';observational' understanding and knowledge required in the Earth Sciences before in-depth quantification becomes useful. For example, it is difficult to answer questions about geological processes until you can identify minerals and rocks and understand the general geodynamic implications of their associations. However, science is fundamentally quantitative. To become scientists students have to translate their conceptual understanding into quantifiable models. Thus, it is desirable for students to become comfortable with using mathematical models to test hypotheses. With the aim of helping to bridging the gap between conceptual understanding and quantification I have started to build an interactive teaching website based around quantitative models of Earth System processes. The site is aimed at upper-level undergraduate students and spans a range of topics that will continue to grow as time allows. The mathematical models are all built for the students, allowing them to spend their time thinking about how the ';model world' changes in response to their manipulation of the input variables. The web site is divided into broad topics or chapters (Background, Solid Earth, Ocean and Atmosphere, Earth history) and within each chapter there are different subtopic (e.g. Solid Earth: Core, Mantle, Crust) and in each of these individual webpages. Each webpage, or topic, starts with an introduction to the topic, followed by an interactive model that the students can use sliders to control the input to and watch how the results change. This interaction between student and model is guided by a series of multiple choice questions that

  19. A conservative interface-interaction model with insoluble surfactant

    NASA Astrophysics Data System (ADS)

    Schranner, Felix S.; Adams, Nikolaus A.

    2016-12-01

    In this paper we extend the conservative interface-interaction method of Hu et al. (2006) [34], adapted for weakly-compressible flows by Luo et al. (2015) [37], to include the effects of viscous, capillary, and Marangoni stresses consistently as momentum-exchange terms at the sharp interface. The interface-interaction method is coupled with insoluble surfactant transport which employs the underlying sharp-interface representation. Unlike previous methods, we thus achieve discrete global conservation in terms of interface interactions and a consistently sharp interface representation. The interface is reconstructed locally, and a sub-cell correction of the interface curvature improves the evaluation of capillary stresses and surfactant diffusion in particular for marginal mesh resolutions. For a range of numerical test cases we demonstrate accuracy and robustness of the method. In particular, we show that the method is at least as accurate as previous diffuse-interface models while exhibiting throughout the considered test cases improved computational efficiency. We believe that the method is attractive for high-resolution level-set interface-tracking simulations as it straightforwardly incorporates the effects of variable surface tension into the underlying conservative interface-interaction approach.

  20. Freed by interaction kinetic states in the Harper model

    NASA Astrophysics Data System (ADS)

    Frahm, Klaus M.; Shepelyansky, Dima L.

    2015-12-01

    We study the problem of two interacting particles in a one-dimensional quasiperiodic lattice of the Harper model. We show that a short or long range interaction between particles leads to emergence of delocalized pairs in the non-interacting localized phase. The properties of these freed by interaction kinetic states (FIKS) are analyzed numerically including the advanced Arnoldi method. We find that the number of sites populated by FIKS pairs grows algebraically with the system size with the maximal exponent b = 1, up to a largest lattice size N = 10 946 reached in our numerical simulations, thus corresponding to a complete delocalization of pairs. For delocalized FIKS pairs the spectral properties of such quasiperiodic operators represent a deep mathematical problem. We argue that FIKS pairs can be detected in the framework of recent cold atom experiments [M. Schreiber et al., Science 349, 842 (2015)] by a simple setup modification. We also discuss possible implications of FIKS pairs for electron transport in the regime of charge-density wave and high T c superconductivity.

  1. Modeling Callisto's Interaction with the Jovian Magnetospheric Environment

    NASA Astrophysics Data System (ADS)

    Liuzzo, L.; Feyerabend, M.; Simon, S.; Motschmann, U. M.

    2015-12-01

    The interaction of the Jovian magnetospheric environment with an atmosphere and induced dipole at Callisto is investigated by applying a hybrid (kinetic ions, fluid electrons) simulation code. Callisto is unique among the Galilean satellites in its interaction with the ambient magnetospheric plasma as the gyroradii of the impinging plasma and pickup ions are large compared to the size of the moon. A kinetic representation of the ions is therefore mandatory to adequately describe the resulting asymmetries in the electromagnetic fields and the deflection of the plasma flow near Callisto. When Callisto is embedded in the magnetodisk lobes of Jupiter, a dipolar magnetic field is generated via induction in a subsurface ocean. This field creates an obstacle to the impinging magnetospheric plasma flow at the moon. However, when Callisto is located near the center of the Jovian current sheet, local magnetic perturbations due to the magnetosphere-ionosphere interaction are more than twice the strength of the background field and may therefore obscure any magnetic signal generated via induction in a subsurface ocean. Our simulations demonstrate that the deflection of the magnetospheric plasma into Callisto's wake cannot alone explain the plasma density enhancement of two orders of magnitude measured in the wake of the interaction region during Galileo flybys of the moon. However, through inclusion of an ionosphere around Callisto, modeled densities in the wake are consistent with in situ measurements.

  2. Periodic Striped Ground States in Ising Models with Competing Interactions

    NASA Astrophysics Data System (ADS)

    Giuliani, Alessandro; Seiringer, Robert

    2016-11-01

    We consider Ising models in two and three dimensions, with short range ferromagnetic and long range, power-law decaying, antiferromagnetic interactions. We let J be the ratio between the strength of the ferromagnetic to antiferromagnetic interactions. The competition between these two kinds of interactions induces the system to form domains of minus spins in a background of plus spins, or vice versa. If the decay exponent p of the long range interaction is larger than d + 1, with d the space dimension, this happens for all values of J smaller than a critical value J c ( p), beyond which the ground state is homogeneous. In this paper, we give a characterization of the infinite volume ground states of the system, for p > 2 d and J in a left neighborhood of J c ( p). In particular, we prove that the quasi-one-dimensional states consisting of infinite stripes ( d = 2) or slabs ( d = 3), all of the same optimal width and orientation, and alternating magnetization, are infinite volume ground states. Our proof is based on localization bounds combined with reflection positivity.

  3. Turbulence modeling for shock wave/turbulent boundary layer interactions

    NASA Astrophysics Data System (ADS)

    Lillard, Randolph Pascal

    Accurate aerodynamic computational predictions are essential for the safety of space vehicles, but these computations are of limited accuracy when large pressure gradients are present in the flow. The goal of the current project is to improve the state of compressible turbulence modeling for high speed flows with shock wave / turbulent boundary layer interactions (SWTBLI). Emphasis is placed on models that can accurately predict the separated region caused by SWTBLI. These flows are classified as nonequilibrium boundary layers because of the very large and variable adverse pressure gradients caused by the shock waves. The Lag model was designed to model these nonequilibrium flows by incorporating history effects. Standard one- and two-equation models (Spalart Allmaras and SST) and the Lag model are run and compared to the new model. The focus of this work is thus to introduce a new model that builds on the success of the Lag model, but uses the Reynolds Stress Tensor (RST) as the lagged variable. This new model, the Reynolds stress tensor lag model (lagRST), is assessed against multiple wind tunnel tests and correlations as well as other models. The basis of the Lag and lagRST models is to preserve the accuracy of the standard turbulence models in equilibrium turbulence, when the Reynolds stresses are linearly related to the mean strain rates, but create a lag between mean strain rate effects and turbulence when nonequilibrium effects become important, such as in large pressure gradients. The effect this lag has on the results for SWTBLI and massively separated flows is determined. These computations are done with a modified version of the OVERFLOW code. This code solves the Reynolds Averaged Navier Stokes (RANS) equations on overset grids. It was used for this study for its ability to input very complex geometries into the flow solver, such as the Space Shuttle in the full stack configuration. The model was successfully implemented within two versions of the

  4. Convergent series for lattice models with polynomial interactions

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksandr S.; Sazonov, Vasily K.

    2017-01-01

    The standard perturbative weak-coupling expansions in lattice models are asymptotic. The reason for this is hidden in the incorrect interchange of the summation and integration. However, substituting the Gaussian initial approximation of the perturbative expansions by a certain interacting model or regularizing original lattice integrals, one can construct desired convergent series. In this paper we develop methods, which are based on the joint and separate utilization of the regularization and new initial approximation. We prove, that the convergent series exist and can be expressed as re-summed standard perturbation theory for any model on the finite lattice with the polynomial interaction of even degree. We discuss properties of such series and study their applicability to practical computations on the example of the lattice ϕ4-model. We calculate <ϕn2 > expectation value using the convergent series, the comparison of the results with the Borel re-summation and Monte Carlo simulations shows a good agreement between all these methods.

  5. A multi-interacting-agent model for financial markets

    NASA Astrophysics Data System (ADS)

    Queirós, Sílvio M. Duarte; Curado, E. M. F.; Nobre, F. D.

    2007-02-01

    Microscopic models, which resemble random magnetic systems, have been used recently in the literature for the description of financial markets. In the present work, a model with many interacting agents, similar to an Ising random magnet with infinite-range interactions, is investigated. The introduction of a local-field term, depending on the absolute value of a magnetization-like parameter-which measures the volatility of a financial market-leads to a significant improvement with respect to previously studied models in the literature. By investigating the return time series, we show that several features, characteristic of real financial markets, are better reproduced by the present model. In particular, within this approach one is able to provide a proper behavior for the following properties: (i) the power-law tails and the nonzero skewness of the probability distribution of returns; (ii) the exponential decay of the two-time autocorrelation function of returns, typical of high-frequency financial data; (iii) the so-called “leverage effect”, which corresponds to a negative correlation between past returns and future volatility.

  6. Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface Geology.

    PubMed

    Cordonnier, Guillaume; Cani, Marie-Paule; Benes, Bedrich; Braun, Jean; Galin, Eric

    2017-03-29

    Most mountain ranges are formed by the compression and folding of colliding tectonic plates. Subduction of one plate causes large-scale asymmetry while their layered composition (or stratigraphy) explains the multi-scale folded strata observed on real terrains. We introduce a novel interactive modeling technique to generate visually plausible, large scale terrains that capture these phenomena. Our method draws on both geological knowledge for consistency and on sculpting systems for user interaction. The user is provided hands-on control on the shape and motion of tectonic plates, represented using a new geologically-inspired model for the Earth crust. The model captures their volume preserving and complex folding behaviors under collision, causing mountains to grow. It generates a volumetric uplift map representing the growth rate of subsurface layers. Erosion and uplift movement are jointly simulated to generate the terrain. The stratigraphy allows us to render folded strata on eroded cliffs. We validated the usability of our sculpting interface through a user study, and compare the visual consistency of the earth crust model with geological simulation results and real terrains.

  7. Coevolving complex networks in the model of social interactions

    NASA Astrophysics Data System (ADS)

    Raducha, Tomasz; Gubiec, Tomasz

    2017-04-01

    We analyze Axelrod's model of social interactions on coevolving complex networks. We introduce four extensions with different mechanisms of edge rewiring. The models are intended to catch two kinds of interactions-preferential attachment, which can be observed in scientists or actors collaborations, and local rewiring, which can be observed in friendship formation in everyday relations. Numerical simulations show that proposed dynamics can lead to the power-law distribution of nodes' degree and high value of the clustering coefficient, while still retaining the small-world effect in three models. All models are characterized by two phase transitions of a different nature. In case of local rewiring we obtain order-disorder discontinuous phase transition even in the thermodynamic limit, while in case of long-distance switching discontinuity disappears in the thermodynamic limit, leaving one continuous phase transition. In addition, we discover a new and universal characteristic of the second transition point-an abrupt increase of the clustering coefficient, due to formation of many small complete subgraphs inside the network.

  8. Modeling the interactions between pathogenic bacteria, bacteriophage and immune response

    NASA Astrophysics Data System (ADS)

    Leung, Chung Yin (Joey); Weitz, Joshua S.

    The prevalence of antibiotic-resistant strains of pathogenic bacteria has led to renewed interest in the use of bacteriophage (phage), or virus that infects bacteria, as a therapeutic agent against bacterial infections. However, little is known about the theoretical mechanism by which phage therapy may work. In particular, interactions between the bacteria, the phage and the host immune response crucially influences the outcome of the therapy. Few models of phage therapy have incorporated all these three components, and existing models suffer from unrealistic assumptions such as unbounded growth of the immune response. We propose a model of phage therapy with an emphasis on nonlinear feedback arising from interactions with bacteria and the immune response. Our model shows a synergistic effect between the phage and the immune response which underlies a possible mechanism for phage to catalyze the elimination of bacteria even when neither the immune response nor phage could do so alone. We study the significance of this effect for different parameters of infection and immune response, and discuss its implications for phage therapy.

  9. A theory of convection: Modelling by two buoyant interacting fluids

    NASA Astrophysics Data System (ADS)

    Cushman-Roisin, Benoit

    A new model of convection and mixing is presented. The fluid is envisioned as being composed of two buoyant interacting fluids, called thermals and anti-thermals. In the context of the Boussinesq approximation, pairs of governing equations are derived for thermals and anti-thermals. Each pair meets an Invariance Principle as a consequence of the reciprocity in the roles played by thermals and anti-thermals. Each pair is transformed into an average equation for which interaction terms cancel and another very simple equation linking the two fluid properties. An important parameter of the model is the fraction, f, of area occupied by thermals to the total area. A dynamic saturation equilibrium between thermals and antithermals is assumed. This implies a constant values of f throughout the system. The set of equations is written in terms of mean values and root-mean-square fluctuations, in keeping with equations of turbulence theories. The final set consists of four coupled non-linear differential equations. The model neglects dissipation and can be applied to any convective situations where molecular viscosity and diffusivity may be neglected. Applications of the model to mixed-layer deepening and penetrative convection are presented in subsequent papers.

  10. Modelling interaction cross sections for intermediate and low energy ions.

    PubMed

    Toburen, L H; Shinpaugh, J L; Justiniano, E L B

    2002-01-01

    When charged particles slow in tissue they undergo electron capture and loss processes that can have profound effects on subsequent interaction cross sections. Although a large amount of data exists for the interaction of bare charged particles with atoms and molecules, few experiments have been reported for these 'dressed' particles. Projectile electrons contribute to an impact-parameter-dependent screening of the projectile charge that precludes straightforward scaling of energy loss cross sections from those of bare charged particles. The objective of this work is to develop an analytical model for the energy-loss-dependent effects of screening on differential ionisation cross sections that can be used in track structure calculations for high LET ions. As a first step a model of differential ionisation cross sections for bare ions has been combined with a simple screening model to explore cross sections for intermediate and low energy dressed ions in collisions with atomic and molecular gas targets. The model is described briefly and preliminary results compared to measured ejected electron energy spectra.

  11. Modeling of Propagation of Interacting Cracks Under Hydraulic Pressure Gradient

    SciTech Connect

    Huang, Hai; Mattson, Earl Douglas; Podgorney, Robert Karl

    2015-04-01

    A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for fluid flow in both fractures and porous matrix. Fracturing is represented explicitly by removing broken bonds from the network to represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns.

  12. RANS Modeling of Benchmark Shockwave / Boundary Layer Interaction Experiments

    NASA Technical Reports Server (NTRS)

    Georgiadis, Nick; Vyas, Manan; Yoder, Dennis

    2010-01-01

    This presentation summarizes the computations of a set of shock wave / turbulent boundary layer interaction (SWTBLI) test cases using the Wind-US code, as part of the 2010 American Institute of Aeronautics and Astronautics (AIAA) shock / boundary layer interaction workshop. The experiments involve supersonic flows in wind tunnels with a shock generator that directs an oblique shock wave toward the boundary layer along one of the walls of the wind tunnel. The Wind-US calculations utilized structured grid computations performed in Reynolds-averaged Navier-Stokes mode. Three turbulence models were investigated: the Spalart-Allmaras one-equation model, the Menter Shear Stress Transport wavenumber-angular frequency two-equation model, and an explicit algebraic stress wavenumber-angular frequency formulation. Effects of grid resolution and upwinding scheme were also considered. The results from the CFD calculations are compared to particle image velocimetry (PIV) data from the experiments. As expected, turbulence model effects dominated the accuracy of the solutions with upwinding scheme selection indicating minimal effects.!

  13. Numerical modeling of the vortex/airfoil interaction

    NASA Technical Reports Server (NTRS)

    Panaras, Argyris G.

    1987-01-01

    A modeling of the vortex-airfoil interaction is presented in which the finite-area of the real vortices is taken into consideration. Two vortex models are used. In the first, a disturbed piece of vorticity layer is simulated by four rows of discrete vortices of small strength. In the second, a number of discrete vortices is arranged within a circle. The first model may simulate a shear layer or a wake, while the second, a well-formed vortex. The method was applied to the calculation of the pressure induced on the surface of the airfoil by the interacting vortex. Both models give similar results. It was found that for large distances of the vortex from the surface of the airfoil, the consideration or not of the finite-area of the vortex is not a significant factor in determining the induced pressure field. However, when the distance of the vortex from the surface is reduced, its shape is distorted and the induced pressure pulses have lower amplitude than the ones induced by an equivalent point vortex. In the limit, where the vortex impinges on the leading edge of the airfoil, it is split into two and the time dependent pressure coefficient takes even negative values at some time intervals.

  14. A new interacting two-fluid model and its consequences

    NASA Astrophysics Data System (ADS)

    Sharov, G. S.; Bhattacharya, S.; Pan, S.; Nunes, R. C.; Chakraborty, S.

    2017-04-01

    In the background of a homogeneous and isotropic space-time with zero spatial curvature, we consider interacting scenarios between two barotropic fluids, one is the pressureless dark matter and the other one is dark energy (DE), in which the equation of state (EoS) in DE is either constant or time-dependent. In particular, for constant EoS in DE, we show that the evolution equations for both fluids can be analytically solved. For all these scenarios, the model parameters have been constrained using the current astronomical observations from Type Ia supernovae, Hubble parameter measurements and baryon acoustic oscillation distance measurements. Our analysis shows that both for constant and variable EoS in DE, a very small but non-zero interaction in the dark sector is favoured while the EoS in DE can predict a slight phantom nature, i.e. the EoS in DE can cross the phantom divide line '-1'. On the other hand, although the models with variable EoS describe the observations better, the Akaike Information Criterion supports models with minimal number of parameters. However, it is found that all the models are very close to the Λ cold dark matter cosmology.

  15. Reduced Quasilinear Models for Energetic Particles Interaction with Alfvenic Eigenmodes

    SciTech Connect

    Ghantous, Katy

    2013-11-01

    The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. \\par The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap

  16. Reduced quasilinear models for energetic particles interaction with Alfvenic eigenmodes

    NASA Astrophysics Data System (ADS)

    Ghantous, Katy

    The Line Broadened Quasilinear (LBQ) and the 1.5D reduced models are able to predict the effect of Alfvenic eigenmodes' interaction with energetic particles in burning plasmas. This interaction can result in energetic-particle losses that can damage the first wall, deteriorate the plasma performance, and even prevent ignition. The 1.5D model assumes a broad spectrum of overlapping modes and, based on analytic expressions for the growth and damping rates, calculates the pressure profiles that the energetic particles relax to upon interacting with the modes. 1.5D is validated with DIII-D experiments and predicted neutron losses consistent with observation. The model is employed to predict alpha-particle fusion-product losses in a large-scale operational parameter-space for burning plasmas. The LBQ model captures the interaction both in the regime of isolated modes as well as in the conventional regime of overlapping modes. Rules were established that allow quasilinear equations to replicate the expected steady-state saturation levels of isolated modes. The fitting formula is improved and the model is benchmarked with a Vlasov code, BOT. The saturation levels are accurately predicted and the mode evolution is well-replicated in the case of steady-state evolution where the collisions are high enough that coherent structures do not form. When the collisionality is low, oscillatory behavior can occur. LBQ can also exhibit non-steady behavior, but the onset of oscillations occurs for much higher collisional rates in BOT than in LBQ. For certain parameters of low collisionality, hole-clump creation and frequency chirping can occur which are not captured by the LBQ model. Also, there are cases of non-steady evolution without chirping which is possible for LBQ to study. However the results are inconclusive since the periods and amplitudes of the oscillations in the mode evolution are not well-replicated. If multiple modes exist, they can grow to the point of overlap which

  17. Fermented foods, neuroticism, and social anxiety: An interaction model.

    PubMed

    Hilimire, Matthew R; DeVylder, Jordan E; Forestell, Catherine A

    2015-08-15

    Animal models and clinical trials in humans suggest that probiotics can have an anxiolytic effect. However, no studies have examined the relationship between probiotics and social anxiety. Here we employ a cross-sectional approach to determine whether consumption of fermented foods likely to contain probiotics interacts with neuroticism to predict social anxiety symptoms. A sample of young adults (N=710, 445 female) completed self-report measures of fermented food consumption, neuroticism, and social anxiety. An interaction model, controlling for demographics, general consumption of healthful foods, and exercise frequency, showed that exercise frequency, neuroticism, and fermented food consumption significantly and independently predicted social anxiety. Moreover, fermented food consumption also interacted with neuroticism in predicting social anxiety. Specifically, for those high in neuroticism, higher frequency of fermented food consumption was associated with fewer symptoms of social anxiety. Taken together with previous studies, the results suggest that fermented foods that contain probiotics may have a protective effect against social anxiety symptoms for those at higher genetic risk, as indexed by trait neuroticism. While additional research is necessary to determine the direction of causality, these results suggest that consumption of fermented foods that contain probiotics may serve as a low-risk intervention for reducing social anxiety. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. Ion-macromolecule interactions studied with model polyurethanes.

    PubMed

    Fernández-d'Arlas, Borja; Huertos, Miguel Ángel; Müller, Alejandro J

    2017-09-02

    The solubility and self-assembly of macromolecules in solution can be tuned by the presence of different salts. Natural proteins have been long manipulated with the aid of salts, and natural silk is processed in the gland tip across a gradient of different salts which modifies its solubility. Hence, the comprehensive understanding of the role of ion-macromolecule interactions should pave the way towards a biomimetic processing of macromolecules. A model polyurethane catiomer (PU(+)) with high density of hydrogen donors and acceptors (similar to proteins) has been designed and synthesized in order to study ion-macromolecule interactions by means of dynamic light scattering (DLS), infrared spectroscopy (FTIR) and nuclear magnetic resonance ((13)C NMR). The PU(+) solubility in the presence of different salts exhibited a reversed anion Hofmeister series (i.e., the anion ability to precipitate the PU(+) was F(-)model used here to estimate the degree of macromolecule-ion pairing in water solution. This work also helps understanding the role of cations and anions nature on their interaction with macromolecules backbone. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. A Human View Model for Socio-Technical Interactions

    NASA Technical Reports Server (NTRS)

    Handley, Holly A.; Tolk, Andreas

    2012-01-01

    The Human View was developed as an additional architectural viewpoint to focus on the human part of a system. The Human View can be used to collect and organize data in order to understand how human operators interact and impact the other elements of a system. This framework can also be used to develop a model to describe how humans interact with each other in network enabled systems. These socio-technical interactions form the foundation of the emerging area of Human Interoperability. Human Interoperability strives to understand the relationships required between human operators that impact collaboration across networked environments, including the effect of belonging to different organizations. By applying organizational relationship concepts from network theory to the Human View elements, and aligning these relationships with a model developed to identify layers of coalition interoperability, the conditions for different levels for Human Interoperability for network enabled systems can be identified. These requirements can then be captured in the Human View products to improve the overall network enabled system.

  20. Laser tissue interaction in the porcine otic capsule tissue model

    NASA Astrophysics Data System (ADS)

    Wong, Brian J.; Lee, Jon P.; Berns, Michael W.; White, Joel M.; Neev, Joseph

    1996-01-01

    The absence of a hard tissue model reflecting the properties of the inner and middle ear has made it difficult to draw consistent conclusions on the many experimental laser studies in ear surgery. Porcine otic capsule tissue has been studied by our group extensively in a wide variety of laser-tissue interaction studies and is an economically attractive and simple to use hard tissue source. Porcine otic capsule was harvested from the temporal bone of freshly sacrificed domestic pigs via a craniotomy approach. The technique when performed with power instruments takes less than 5 minutes and the entire otic capsule bone is removed intact as the suture line is not fused to the remaining petrous apex. The tissue specimen contains a vestibule, cochlea, oval and round windows, and internal auditory canals which can be used as an intact middle ear/inner ear system. The tissue can also be micromachined into thin slabs of bone varying for 100 - 1000 micrometers in thickness. In order to quantify more precisely the laser-tissue interactions in otic capsule, optical properties (absorption and scattering) and physical properties were determined (acoustic impedance). The tissue has been used in a wide variety of basic studies investigating the laser-tissue interactions with argon, KTP, (Nd:YAG), carbon dioxide, Ho:YAG, Er:YAG, and XeCl lasers. Porcine otic capsule is an ideal tissue on which standardized test can be performed to compare the relative effects of various laser in otosurgical models.

  1. Modelling the interaction between flooding events and economic growth

    NASA Astrophysics Data System (ADS)

    Grames, Johanna; Grass, Dieter; Prskawetz, Alexia; Blöschl, Günther

    2015-04-01

    Socio-hydrology describes the interaction between the socio-economy, water and population dynamics. Recent models analyze the interplay of community risk-coping culture, flooding damage and economic growth (Di Baldassarre, 2013, Viglione, 2014). These models descriptively explain the feedbacks between socio-economic development and natural disasters like floods. Contrary to these descriptive models, our approach develops an optimization model, where the intertemporal decision of an economic agent interacts with the hydrological system. This is the first economic growth model describing the interaction between the consumption and investment decisions of an economic agent and the occurrence of flooding events: Investments in defense capital can avoid floods even when the water level is high, but on the other hand such investment competes with investment in productive capital and hence may reduce the level of consumption. When floods occur, the flood damage therefore depends on the existing defense capital. The aim is to find an optimal tradeoff between investments in productive versus defense capital such as to optimize the stream of consumption in the long-term. We assume a non-autonomous exogenous periodic rainfall function (Yevjevich et.al. 1990, Zakaria 2001) which implies that the long-term equilibrium will be periodic . With our model we aim to derive mechanisms that allow consumption smoothing in the long term, and at the same time allow for optimal investment in flood defense to maximize economic output. We choose an aggregate welfare function that depends on the consumption level of the society as the objective function. I.e. we assume a social planer with perfect foresight that maximizes the aggregate welfare function. Within our model framework we can also study whether the path and level of defense capital (that protects people from floods) is related to the time preference rate of the social planner. Our model also allows to investigate how the frequency

  2. Nonlinear wave interaction and spin models in the magnetohydrodynamic regime

    NASA Astrophysics Data System (ADS)

    Brodin, G.; Lundin, J.; Zamanian, J.; Stefan, M.

    2011-08-01

    Here we consider the influence on the electron spin in the magnetohydrodynamic (MHD) regime. Recently developed models that include spin-velocity correlations are taken as the starting point. A theoretical argument is presented, suggesting that in the MHD regime a single-fluid electron model with spin correlations is equivalent to a model with spin-up and spin-down electrons constituting different fluids, but where the spin-velocity correlations are omitted. Three-wave interaction of two shear Alfvén waves and a compressional Alfvén wave is then taken as a model problem to evaluate the asserted equivalence. The theoretical argument turns out to be supported, because the predictions of the two models agree completely. Furthermore, the three-wave coupling coefficients obey the Manley-Rowe relations, which further support the soundness of the models and the validity of the assumptions made in the derivation. Finally, we point out that the proposed two-fluid model can be incorporated in standard particle-in-cell schemes with only minor modifications.

  3. Defect modelling in an interactive 3-D CAD environment

    NASA Astrophysics Data System (ADS)

    Reilly, D.; Potts, A.; McNab, A.; Toft, M.; Chapman, R. K.

    2000-05-01

    This paper describes enhancement of the NDT Workbench, as presented at QNDE '98, to include theoretical models for the ultrasonic inspection of smooth planar defects, developed by British Energy and BNFL-Magnox Generation. The Workbench is a PC-based software package for the reconstruction, visualization and analysis of 3-D ultrasonic NDT data in an interactive CAD environment. This extension of the Workbeach now provides the user with a well established modelling approach, coupled with a graphical user interface for: a) configuring the model for flaw size, shape, orientation and location; b) flexible specification of probe parameters; c) selection of scanning surface and scan pattern on the CAD component model; d) presentation of the output as a simulated ultrasound image within the component, or as graphical or tabular displays. The defect modelling facilities of the Workbench can be used for inspection procedure assessment and confirmation of data interpretation, by comparison of overlay images generated from real and simulated data. The modelling technique currently implemented is based on the Geometrical Theory of Diffraction, for simulation of strip-like, circular or elliptical crack responses in the time harmonic or time dependent cases. Eventually, the Workbench will also allow modelling using elastodynamic Kirchhoff theory.

  4. Kernel method based human model for enhancing interactive evolutionary optimization.

    PubMed

    Pei, Yan; Zhao, Qiangfu; Liu, Yong

    2015-01-01

    A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly.

  5. Kernel Method Based Human Model for Enhancing Interactive Evolutionary Optimization

    PubMed Central

    Zhao, Qiangfu; Liu, Yong

    2015-01-01

    A fitness landscape presents the relationship between individual and its reproductive success in evolutionary computation (EC). However, discrete and approximate landscape in an original search space may not support enough and accurate information for EC search, especially in interactive EC (IEC). The fitness landscape of human subjective evaluation in IEC is very difficult and impossible to model, even with a hypothesis of what its definition might be. In this paper, we propose a method to establish a human model in projected high dimensional search space by kernel classification for enhancing IEC search. Because bivalent logic is a simplest perceptual paradigm, the human model is established by considering this paradigm principle. In feature space, we design a linear classifier as a human model to obtain user preference knowledge, which cannot be supported linearly in original discrete search space. The human model is established by this method for predicting potential perceptual knowledge of human. With the human model, we design an evolution control method to enhance IEC search. From experimental evaluation results with a pseudo-IEC user, our proposed model and method can enhance IEC search significantly. PMID:25879050

  6. Interacting ghost dark energy models with variable G and Λ

    SciTech Connect

    Sadeghi, J.; Farahani, H.; Khurshudyan, M.; Movsisyan, A. E-mail: martiros.khurshudyan@nano.cnr.it E-mail: h.farahani@umz.ac.ir

    2013-12-01

    In this paper we consider several phenomenological models of variable Λ. Model of a flat Universe with variable Λ and G is accepted. It is well known, that varying G and Λ gives rise to modified field equations and modified conservation laws, which gives rise to many different manipulations and assumptions in literature. We will consider two component fluid, which parameters will enter to Λ. Interaction between fluids with energy densities ρ{sub 1} and ρ{sub 2} assumed as Q = 3Hb(ρ{sub 1}+ρ{sub 2}). We have numerical analyze of important cosmological parameters like EoS parameter of the composed fluid and deceleration parameter q of the model.

  7. Cloud-radiation interactions and their parameterization in climate models

    SciTech Connect

    1994-11-01

    This report contains papers from the International Workshop on Cloud-Radiation Interactions and Their Parameterization in Climate Models met on 18--20 October 1993 in Camp Springs, Maryland, USA. It was organized by the Joint Working Group on Clouds and Radiation of the International Association of Meteorology and Atmospheric Sciences. Recommendations were grouped into three broad areas: (1) general circulation models (GCMs), (2) satellite studies, and (3) process studies. Each of the panels developed recommendations on the. themes of the workshop. Explicitly or implicitly, each panel independently recommended observations of basic cloud microphysical properties (water content, phase, size) on the scales resolved by GCMs. Such observations are necessary to validate cloud parameterizations in GCMs, to use satellite data to infer radiative forcing in the atmosphere and at the earth`s surface, and to refine the process models which are used to develop advanced cloud parameterizations.

  8. On the earthquake predictability of fault interaction models

    PubMed Central

    Marzocchi, W; Melini, D

    2014-01-01

    Space-time clustering is the most striking departure of large earthquakes occurrence process from randomness. These clusters are usually described ex-post by a physics-based model in which earthquakes are triggered by Coulomb stress changes induced by other surrounding earthquakes. Notwithstanding the popularity of this kind of modeling, its ex-ante skill in terms of earthquake predictability gain is still unknown. Here we show that even in synthetic systems that are rooted on the physics of fault interaction using the Coulomb stress changes, such a kind of modeling often does not increase significantly earthquake predictability. Earthquake predictability of a fault may increase only when the Coulomb stress change induced by a nearby earthquake is much larger than the stress changes caused by earthquakes on other faults and by the intrinsic variability of the earthquake occurrence process. PMID:26074643

  9. New holographic dark energy model with non-linear interaction

    NASA Astrophysics Data System (ADS)

    Oliveros, A.; Acero, Mario A.

    2015-05-01

    In this paper the cosmological evolution of a holographic dark energy model with a non-linear interaction between the dark energy and dark matter components in a FRW type flat universe is analysed. In this context, the deceleration parameter q and the equation state w Λ are obtained. We found that, as the square of the speed of sound remains positive, the model is stable under perturbations since early times; it also shows that the evolution of the matter and dark energy densities are of the same order for a long period of time, avoiding the so-called coincidence problem. We have also made the correspondence of the model with the dark energy densities and pressures for the quintessence and tachyon fields. From this correspondence we have reconstructed the potential of scalar fields and their dynamics.

  10. Cloud-radiation interactions and their parameterization in climate models

    NASA Technical Reports Server (NTRS)

    1994-01-01

    This report contains papers from the International Workshop on Cloud-Radiation Interactions and Their Parameterization in Climate Models met on 18-20 October 1993 in Camp Springs, Maryland, USA. It was organized by the Joint Working Group on Clouds and Radiation of the International Association of Meteorology and Atmospheric Sciences. Recommendations were grouped into three broad areas: (1) general circulation models (GCMs), (2) satellite studies, and (3) process studies. Each of the panels developed recommendations on the themes of the workshop. Explicitly or implicitly, each panel independently recommended observations of basic cloud microphysical properties (water content, phase, size) on the scales resolved by GCMs. Such observations are necessary to validate cloud parameterizations in GCMs, to use satellite data to infer radiative forcing in the atmosphere and at the earth's surface, and to refine the process models which are used to develop advanced cloud parameterizations.

  11. Modeling of interactions of electromagnetic fields with human bodies

    NASA Astrophysics Data System (ADS)

    Caputa, Krzysztof

    Interactions of electromagnetic fields with the human body have been a subject of scientific interest and public concern. In recent years, issues in power line field effects and those of wireless telephones have been in the forefront of research. Engineering research compliments biological investigations by quantifying the induced fields in biological bodies due to exposure to external fields. The research presented in this thesis aims at providing reliable tools, and addressing some of the unresolved issues related to interactions with the human body of power line fields and fields produced by handheld wireless telephones. The research comprises two areas, namely development of versatile models of the human body and their visualisation, and verification and application of numerical codes to solve selected problems of interest. The models of the human body, which are based on the magnetic resonance scans of the body, are unique and differ considerably from other models currently available. With the aid of computer software developed, the models can be arranged to different postures, and medical devices can be accurately placed inside them. A previously developed code for modeling interactions of power line fields with biological bodies has been verified by rigorous, quantitative inter-laboratory comparison for two human body models. This code has been employed to model electromagnetic interference (EMI) of the magnetic field with implanted cardiac pacemakers. In this case, the correct placement and representation of the pacemaker leads are critical, as simplified computations have been shown to result in significant errors. In modeling interactions of wireless communication devices, the finite difference time domain technique (FDTD) has become a de facto standard. The previously developed code has been verified by comparison with the analytical solution for a conductive sphere. While previously researchers limited their verifications to principal axes of the sphere

  12. Modelling of ionic interactions with wastewater treatment biomass.

    PubMed

    Westergreen, S; Brouckaert, C J; Foxon, K M

    2012-01-01

    Titration data for samples of mixed salts with glycine, baker's yeast cell mass and anaerobic digester sludge were obtained and compared to a speciation model of weak acid-base interaction in aqueous solutions. The effect of glycine on the buffer intensity of the solution could be precisely described by the speciation model but did not represent the proton exchange characteristics of either baker's yeast or anaerobic sludge well. A model component, UKZiNe, consisting of carboxylic acids, phosphate and amine groups described the baker's yeast well, and a combination of UKZiNe and carbonate-yielding inorganic solids described anaerobic digester sludge. The effect of biomass on buffer intensity in the pH range 6.5 to 8 was small for the concentration ranges tested.

  13. On the earthquake predictability of fault interaction models

    NASA Astrophysics Data System (ADS)

    Marzocchi, W.; Melini, D.

    2014-12-01

    Space-time clustering is the most striking departure of large earthquakes occurrence process from randomness. These clusters are usually described ex-post by a physics-based model in which earthquakes are triggered by Coulomb stress changes induced by other surrounding earthquakes. Notwithstanding the popularity of this kind of modeling, its ex-ante skill in terms of earthquake predictability gain is still unknown. Here we show that even in synthetic systems that are rooted on the physics of fault interaction using the Coulomb stress changes, such a kind of modeling often does not increase significantly earthquake predictability. Earthquake predictability of a fault may increase only when the Coulomb stress change induced by a nearby earthquake is much larger than the stress changes caused by earthquakes on other faults and by the intrinsic variability of the earthquake occurrence process.

  14. Vapor mediated droplet interactions - models and mechanisms (Part 2)

    NASA Astrophysics Data System (ADS)

    Benusiglio, Adrien; Cira, Nate; Prakash, Manu

    2014-11-01

    When deposited on clean glass a two-component binary mixture of propylene glycol and water is energetically inclined to spread, as both pure liquids do. Instead the mixture forms droplets stabilized by evaporation induced surface tension gradients, giving them unique properties such as negligible hysteresis. When two of these special droplets are deposited several radii apart they attract each other. The vapor from one droplet destabilizes the other, resulting in an attraction force which brings both droplets together. We present a flux-based model for droplet stabilization and a model which connects the vapor profile to net force. These simple models capture the static and dynamic experimental trends, and our fundamental understanding of these droplets and their interactions allowed us to build autonomous fluidic machines.

  15. Interactions of model biomolecules. Benchmark CC calculations within MOLCAS

    SciTech Connect

    Urban, Miroslav; Pitoňák, Michal; Neogrády, Pavel; Dedíková, Pavlína; Hobza, Pavel

    2015-01-22

    We present results using the OVOS approach (Optimized Virtual Orbitals Space) aimed at enhancing the effectiveness of the Coupled Cluster calculations. This approach allows to reduce the total computer time required for large-scale CCSD(T) calculations about ten times when the original full virtual space is reduced to about 50% of its original size without affecting the accuracy. The method is implemented in the MOLCAS computer program. When combined with the Cholesky decomposition of the two-electron integrals and suitable parallelization it allows calculations which were formerly prohibitively too demanding. We focused ourselves to accurate calculations of the hydrogen bonded and the stacking interactions of the model biomolecules. Interaction energies of the formaldehyde, formamide, benzene, and uracil dimers and the three-body contributions in the cytosine – guanine tetramer are presented. Other applications, as the electron affinity of the uracil affected by solvation are also shortly mentioned.

  16. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes.

    PubMed

    Baul, Upayan; Kuroda, Kenichi; Vemparala, Satyavani

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  17. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    NASA Astrophysics Data System (ADS)

    Baul, Upayan; Kuroda, Kenichi; Vemparala, Satyavani

    2014-08-01

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  18. Fused cerebral organoids model interactions between brain regions.

    PubMed

    Bagley, Joshua A; Reumann, Daniel; Bian, Shan; Lévi-Strauss, Julie; Knoblich, Juergen A

    2017-07-01

    Human brain development involves complex interactions between different regions, including long-distance neuronal migration or formation of major axonal tracts. Different brain regions can be cultured in vitro within 3D cerebral organoids, but the random arrangement of regional identities limits the reliable analysis of complex phenotypes. Here, we describe a coculture method combining brain regions of choice within one organoid tissue. By fusing organoids of dorsal and ventral forebrain identities, we generate a dorsal-ventral axis. Using fluorescent reporters, we demonstrate CXCR4-dependent GABAergic interneuron migration from ventral to dorsal forebrain and describe methodology for time-lapse imaging of human interneuron migration. Our results demonstrate that cerebral organoid fusion cultures can model complex interactions between different brain regions. Combined with reprogramming technology, fusions should offer researchers the possibility to analyze complex neurodevelopmental defects using cells from neurological disease patients and to test potential therapeutic compounds.

  19. Interaction of multiple biomimetic antimicrobial polymers with model bacterial membranes

    SciTech Connect

    Baul, Upayan Vemparala, Satyavani; Kuroda, Kenichi

    2014-08-28

    Using atomistic molecular dynamics simulations, interaction of multiple synthetic random copolymers based on methacrylates on prototypical bacterial membranes is investigated. The simulations show that the cationic polymers form a micellar aggregate in water phase and the aggregate, when interacting with the bacterial membrane, induces clustering of oppositely charged anionic lipid molecules to form clusters and enhances ordering of lipid chains. The model bacterial membrane, consequently, develops lateral inhomogeneity in membrane thickness profile compared to polymer-free system. The individual polymers in the aggregate are released into the bacterial membrane in a phased manner and the simulations suggest that the most probable location of the partitioned polymers is near the 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) clusters. The partitioned polymers preferentially adopt facially amphiphilic conformations at lipid-water interface, despite lacking intrinsic secondary structures such as α-helix or β-sheet found in naturally occurring antimicrobial peptides.

  20. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2008-01-01

    The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation, the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.

  1. Probabilistic Multi-Factor Interaction Model for Complex Material Behavior

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.; Abumeri, Galib H.

    2008-01-01

    The Multi-Factor Interaction Model (MFIM) is used to evaluate the divot weight (foam weight ejected) from the launch external tanks. The multi-factor has sufficient degrees of freedom to evaluate a large number of factors that may contribute to the divot ejection. It also accommodates all interactions by its product form. Each factor has an exponent that satisfies only two points, the initial and final points. The exponent describes a monotonic path from the initial condition to the final. The exponent values are selected so that the described path makes sense in the absence of experimental data. In the present investigation the data used was obtained by testing simulated specimens in launching conditions. Results show that the MFIM is an effective method of describing the divot weight ejected under the conditions investigated.

  2. Coarse-grained models for interacting, flapping swimmers

    NASA Astrophysics Data System (ADS)

    Oza, Anand; Ristroph, Leif; Shelley, Michael; Courant Institute Applied Math Lab Collaboration

    2016-11-01

    We present the results of a theoretical investigation into the dynamics of interacting flapping swimmers. Our study is motivated by ongoing experiments in the NYU Applied Math Lab, in which freely-translating, heaving airfoils interact hydrodynamically to choose their relative positions and velocities. We develop a discrete dynamical system in which flapping swimmers shed point vortices during each flapping cycle, which in turn exert forces on the swimmers. We present a framework for finding exact solutions to the evolution equations and for assessing their stability, giving physical insight into the preference for certain observed "schooling states". The model may be extended to arrays of flapping swimmers, and configurations in which the swimmers' flapping frequencies are incommensurate. Generally, our results indicate how hydrodynamics may mediate schooling and flocking behavior in biological contexts. A. Oza acknowledges the support of the NSF Mathematical Sciences Postdoctoral Fellowship.

  3. Three-Dimensional Modeling of Air-Sea Interaction

    NASA Astrophysics Data System (ADS)

    Regis, J. L.; Slinn, D. N.

    2004-12-01

    Deep-water wave breaking is crucial in the transfer of heat, gases, and momentum between the ocean and the atmosphere. Observations of these events have provided qualitative support to this end, and yet accurate quantification of momentum transfer for strong winds and nonlinear waves has remained a challenge. In recent years, advances have been made in the development of numerous algorithms to capture and describe air-sea interaction. Most, however, are idealized and only capable of modeling fluid flow within the two-dimensional approximation. Thus, many important characteristics of the flow composition and breaking process are ignored, oversimplified, or remain unknown. We employ a three-dimensional, time-dependent, finite difference, volume of fluid model, including both the flow of air and water, entitled TRUCHAS, to address the issue of deep-water breaking waves. Our model utilizes the multidimensional piecewise linear interface calculation method to assess the volume fraction of each fluid material in every mesh cell. The model solves conservation equations for mass and momentum for multiple fluids within the domain and tracks the interfaces between them. A great many details of the flow development are available for analysis from the model output. These include wind and water velocities, pressure gradients in both the air and sea around a breaking wave, the development and evolution of wind-generated waves, and the corresponding transfer of momentum from the atmosphere to the ocean. Our results are correlated with laboratory experiments conducted at the University of Miami's Air-Sea Interaction Salt-water Tank that possesses both wind and wave generating capabilities. Preliminary model results show good qualitative agreement to laboratory data.

  4. Allometric functional response model: body masses constrain interaction strengths.

    PubMed

    Vucic-Pestic, Olivera; Rall, Björn C; Kalinkat, Gregor; Brose, Ulrich

    2010-01-01

    1. Functional responses quantify the per capita consumption rates of predators depending on prey density. The parameters of these nonlinear interaction strength models were recently used as successful proxies for predicting population dynamics, food-web topology and stability. 2. This study addressed systematic effects of predator and prey body masses on the functional response parameters handling time, instantaneous search coefficient (attack coefficient) and a scaling exponent converting type II into type III functional responses. To fully explore the possible combinations of predator and prey body masses, we studied the functional responses of 13 predator species (ground beetles and wolf spiders) on one small and one large prey resulting in 26 functional responses. 3. We found (i) a power-law decrease of handling time with predator mass with an exponent of -0.94; (ii) an increase of handling time with prey mass (power-law with an exponent of 0.83, but only three prey sizes were included); (iii) a hump-shaped relationship between instantaneous search coefficients and predator-prey body-mass ratios; and (iv) low scaling exponents for low predator-prey body mass ratios in contrast to high scaling exponents for high predator-prey body-mass ratios. 4. These scaling relationships suggest that nonlinear interaction strengths can be predicted by knowledge of predator and prey body masses. Our results imply that predators of intermediate size impose stronger per capita top-down interaction strengths on a prey than smaller or larger predators. Moreover, the stability of population and food-web dynamics should increase with increasing body-mass ratios in consequence of increases in the scaling exponents. 5. Integrating these scaling relationships into population models will allow predicting energy fluxes, food-web structures and the distribution of interaction strengths across food web links based on knowledge of the species' body masses.

  5. Simulating physiological interactions in a hybrid system of mathematical models.

    PubMed

    Kretschmer, Jörn; Haunsberger, Thomas; Drost, Erick; Koch, Edmund; Möller, Knut

    2014-12-01

    Mathematical models can be deployed to simulate physiological processes of the human organism. Exploiting these simulations, reactions of a patient to changes in the therapy regime can be predicted. Based on these predictions, medical decision support systems (MDSS) can help in optimizing medical therapy. An MDSS designed to support mechanical ventilation in critically ill patients should not only consider respiratory mechanics but should also consider other systems of the human organism such as gas exchange or blood circulation. A specially designed framework allows combining three model families (respiratory mechanics, cardiovascular dynamics and gas exchange) to predict the outcome of a therapy setting. Elements of the three model families are dynamically combined to form a complex model system with interacting submodels. Tests revealed that complex model combinations are not computationally feasible. In most patients, cardiovascular physiology could be simulated by simplified models decreasing computational costs. Thus, a simplified cardiovascular model that is able to reproduce basic physiological behavior is introduced. This model purely consists of difference equations and does not require special algorithms to be solved numerically. The model is based on a beat-to-beat model which has been extended to react to intrathoracic pressure levels that are present during mechanical ventilation. The introduced reaction to intrathoracic pressure levels as found during mechanical ventilation has been tuned to mimic the behavior of a complex 19-compartment model. Tests revealed that the model is able to represent general system behavior comparable to the 19-compartment model closely. Blood pressures were calculated with a maximum deviation of 1.8 % in systolic pressure and 3.5 % in diastolic pressure, leading to a simulation error of 0.3 % in cardiac output. The gas exchange submodel being reactive to changes in cardiac output showed a resulting deviation of less

  6. Dynamic Gas-Surface Interaction Modeling for Satellite Aerodynamic Computations

    NASA Astrophysics Data System (ADS)

    Pilinski, M. D.

    Drag coefficients are a large source of uncertainty when predicting the aerodynamic forces on orbiting satellites. Accordingly, the focus of this research is to improve the fidelity of drag modeling by investigating the nature of gas-surface interactions in low earth orbit. The author has investigated to what extent oxygen adsorption can influence the parameters of drag coefficient models, most notably the energy accommodation coefficient. To accomplish this, several analysis techniques are applied. Fitted drag coefficients for 68 objects were provided by Air Force Space Command Drag Analysis Office and are analyzed using analytical and numerical aerodynamic models. Gas-surface parameters are estimated by comparing the model results to the observed coefficients. The results indicate that a successful and predictive relationship of the energy accommodation coefficient can be obtained with gas-surface models incorporating Langmuir adsorption. Good agreement with data has been obtained by using a cosine reflection model below 500 km. Furthermore, it is found that satellite accommodation coefficients can be explained by a model in which atomic oxygen binds to the surface with an energy of approximately 5.7 eV. Multi-axis accelerometer data from the CHAMP and GRACE satellites has also been analyzed to derive measurements of lift and drag which are compared to model predictions given different gas-surface assumptions. The results indicate that diffuse reflection is appropriate for CHAMP near 400 km and that the accommodation coefficient before 2008 ranges between 0.86 and 0.89. CHAMP accelerometer data is also combined with remote sensing estimates of density to arrive at values of drag coefficient which do not depend on empirical atmospheric models alone. This dataset confirms the predicted drop in accommodation with decreasing atomic oxygen pressure. The culmination of this work is an enhanced energy accommodation and drag coefficient model applicable between 100 km

  7. GSSI, a general model for solute-solvent interactions. 1. Description of the model.

    PubMed

    Deanda, Felix; Smith, Karl M; Liu, Jie; Pearlman, Robert S

    2004-01-12

    A novel, semiempirical approach for the general treatment of solute-solvent interactions (GSSI) was developed to enable the prediction of solution-phase properties (e.g., free energies of desolvation, partition coefficients, and membrane permeabilities). The GSSI approach is based on the principle that all solution-phase processes can be modeled in terms of one or more gas-to-solution transfer processes. The free energy of each gas-to-solution transfer process is calculated as the sum of the free energy of cavity formation and the free energy of solute-solvent interaction. The solute's contributions to these free energies are modeled on the basis of various quantities computed from the solute's three-dimensional (3D) structure, whereas the solvent's contributions are modeled by empirically determined regression coefficients. More specifically, the free energy of cavity formation is modeled on the basis of the total solvent-accessible surface area of the solute. The enthalpy of solute-solvent interaction is modeled on the basis of intermolecular interaction potentials calculated at many uniformly distributed points on the solvent-accessible surface of the solute. The entropy of solute-solvent interaction is modeled on the basis of an effective number of rotatable bonds in the solute and by the regression coefficients characteristic of the solvent. The potential utility of the GSSI approach was demonstrated by modeling the free energy of gas-to-solution transfer for 111 solutes in water, 250 solutes in hexadecane, and 84 solutes in octanol.

  8. Parametric Model for Astrophysical Proton-Proton Interactions and Applications

    SciTech Connect

    Karlsson, Niklas

    2007-01-01

    Observations of gamma-rays have been made from celestial sources such as active galaxies, gamma-ray bursts and supernova remnants as well as the Galactic ridge. The study of gamma rays can provide information about production mechanisms and cosmic-ray acceleration. In the high-energy regime, one of the dominant mechanisms for gamma-ray production is the decay of neutral pions produced in interactions of ultra-relativistic cosmic-ray nuclei and interstellar matter. Presented here is a parametric model for calculations of inclusive cross sections and transverse momentum distributions for secondary particles--gamma rays, e±, ve, $\\bar{v}$e, vμ and $\\bar{μ}$e--produced in proton-proton interactions. This parametric model is derived on the proton-proton interaction model proposed by Kamae et al.; it includes the diffraction dissociation process, Feynman-scaling violation and the logarithmically rising inelastic proton-proton cross section. To improve fidelity to experimental data for lower energies, two baryon resonance excitation processes were added; one representing the Δ(1232) and the other multiple resonances with masses around 1600 MeV/c2. The model predicts the power-law spectral index for all secondary particle to be about 0.05 lower in absolute value than that of the incident proton and their inclusive cross sections to be larger than those predicted by previous models based on the Feynman-scaling hypothesis. The applications of the presented model in astrophysics are plentiful. It has been implemented into the Galprop code to calculate the contribution due to pion decays in the Galactic plane. The model has also been used to estimate the cosmic-ray flux in the Large Magellanic Cloud based on HI, CO and gamma-ray observations. The transverse momentum distributions enable calculations when the proton distribution is anisotropic. It is shown that the gamma-ray spectrum and flux due to a

  9. Interactive model evaluation tool based on IPython notebook

    NASA Astrophysics Data System (ADS)

    Balemans, Sophie; Van Hoey, Stijn; Nopens, Ingmar; Seuntjes, Piet

    2015-04-01

    In hydrological modelling, some kind of parameter optimization is mostly performed. This can be the selection of a single best parameter set, a split in behavioural and non-behavioural parameter sets based on a selected threshold or a posterior parameter distribution derived with a formal Bayesian approach. The selection of the criterion to measure the goodness of fit (likelihood or any objective function) is an essential step in all of these methodologies and will affect the final selected parameter subset. Moreover, the discriminative power of the objective function is also dependent from the time period used. In practice, the optimization process is an iterative procedure. As such, in the course of the modelling process, an increasing amount of simulations is performed. However, the information carried by these simulation outputs is not always fully exploited. In this respect, we developed and present an interactive environment that enables the user to intuitively evaluate the model performance. The aim is to explore the parameter space graphically and to visualize the impact of the selected objective function on model behaviour. First, a set of model simulation results is loaded along with the corresponding parameter sets and a data set of the same variable as the model outcome (mostly discharge). The ranges of the loaded parameter sets define the parameter space. A selection of the two parameters visualised can be made by the user. Furthermore, an objective function and a time period of interest need to be selected. Based on this information, a two-dimensional parameter response surface is created, which actually just shows a scatter plot of the parameter combinations and assigns a color scale corresponding with the goodness of fit of each parameter combination. Finally, a slider is available to change the color mapping of the points. Actually, the slider provides a threshold to exclude non behaviour parameter sets and the color scale is only attributed to the

  10. Determining Interactions in PSA models: Application to a Space PSA

    SciTech Connect

    C. Smith; E. Borgonovo

    2010-06-01

    This paper addresses use of an importance measure interaction study of a probabilistic risk analysis (PSA) performed for a hypothetical aerospace lunar mission. The PSA methods used in this study follow the general guidance provided in the NASA Probabilistic Risk Assessment Procedures Guide for NASA Managers and Practitioners. For the PSA portion, we used phased-based event tree and fault tree logic structures are used to model a lunar mission, including multiple phases (from launch to return to the Earth surface) and multiple critical systems. Details of the analysis results are not provided in this paper – instead specific basic events are denoted by number (e.g., the first event is 1, the second is 2, and so on). However, in the model, we used approximately 150 fault trees and over 800 basic events. Following analysis and truncation of cut sets, we were left with about 400 basic events to evaluate. We used this model to explore interactions between different basic events and systems. These sensitivity studies provide high-level insights into features of the PSA for the hypothetical lunar mission.

  11. Modeling of Fluid-Membrane Interaction in Cellular Microinjection Process

    NASA Astrophysics Data System (ADS)

    Karzar-Jeddi, Mehdi; Diaz, Jhon; Olgac, Nejat; Fan, Tai-Hsi

    2009-11-01

    Cellular microinjection is a well-accepted method to deliver matters such as sperm, nucleus, or macromolecules into biological cells. To improve the success rate of in vitro fertilization and to establish the ideal operating conditions for a novel computer controlled rotationally oscillating intracytoplasmic sperm injection (ICSI) technology, we investigate the fluid-membrane interactions in the ICSI procedure. The procedure consists of anchoring the oocyte (a developing egg) using a holding pipette, penetrating oocyte's zona pellucida (the outer membrane) and the oolemma (the plasma or inner membrane) using an injection micropipette, and finally to deliver sperm into the oocyte for fertilization. To predict the large deformation of the oocyte membranes up to the piercing of the oolemma and the motion of fluids across both membranes, the dynamic fluid-pipette-membrane interactions are formulated by the coupled Stokes' equations and the continuum membrane model based on Helfrich's energy theory. A boundary integral model is developed to simulate the transient membrane deformation and the local membrane stress induced by the longitudinal motion of the injection pipette. The model captures the essential features of the membranes shown on optical images of ICSI experiments, and is capable of suggesting the optimal deformation level of the oolemma to start the rotational oscillations for piercing into the oolemma.

  12. Fluid Structure Interaction Analysis on Sidewall Aneurysm Models

    NASA Astrophysics Data System (ADS)

    Hao, Qing

    2016-11-01

    Wall shear stress is considered as an important factor for cerebral aneurysm growth and rupture. The objective of present study is to evaluate wall shear stress in aneurysm sac and neck by a fluid-structure-interaction (FSI) model, which was developed and validated against the particle image velocimetry (PIV) data. In this FSI model, the flow characteristics in a straight tube with different asymmetric aneurysm sizes over a range of Reynolds numbers from 200 to 1600 were investigated. The FSI results agreed well with PIV data. It was found that at steady flow conditions, when Reynolds number above 700, one large recirculating vortex would be formed, occupying the entire aneurysm sac. The center of the vortex is located at region near to the distal neck. A pair of counter rotating vortices would however be formed at Reynolds number below 700. Wall shear stresses reached highest level at the distal neck of the aneurysmal sac. The vortex strength, in general, is stronger at higher Reynolds number. Fluid Structure Interaction Analysis on Sidewall Aneurysm Models.

  13. Collaborative modelling for interactive participation in urban flood risk management

    NASA Astrophysics Data System (ADS)

    Evers, M.

    2012-04-01

    This paper presents an attempt to enhance the role of local stakeholders in dealing with urban floods. The concept is based on the DIANE-CM project (Decentralised Integrated Analysis and Enhancement of Awareness through Collaborative Modelling and Management of Flood Risk) of the ERANET CRUE programme. The main objective of the project was to develop and test the advanced methodology for enhancing the resilience of the local communities to flooding by a participative and interactive approach. Through collaborative modelling, a social learning process was initiated which will enhance the social capacity of the stakeholders due to the interaction process. The other aim of the project was to better understand how data from hazard and vulnerability analyses and improved maps, as well as from the near real time flood prediction, can be used to initiate a public dialogue (i.e. collaborative mapping and planning activities) in order to carry out more informed and shared decision making processes and to enhance flood risk awareness - which will improve the flood resilience situation. The concept of collaborative modelling was applied in two case studies: (1) the Roding river/Cranbrook catchment in the UK, with focus on pluvial flooding, and (2) the Alster catchment in Germany, with focus on fluvial flooding.

  14. Modeling Dark Energy Through AN Ising Fluid with Network Interactions

    NASA Astrophysics Data System (ADS)

    Luongo, Orlando; Tommasini, Damiano

    2014-12-01

    We show that the dark energy (DE) effects can be modeled by using an Ising perfect fluid with network interactions, whose low redshift equation of state (EoS), i.e. ω0, becomes ω0 = -1 as in the ΛCDM model. In our picture, DE is characterized by a barotropic fluid on a lattice in the equilibrium configuration. Thus, mimicking the spin interaction by replacing the spin variable with an occupational number, the pressure naturally becomes negative. We find that the corresponding EoS mimics the effects of a variable DE term, whose limiting case reduces to the cosmological constant Λ. This permits us to avoid the introduction of a vacuum energy as DE source by hand, alleviating the coincidence and fine tuning problems. We find fairly good cosmological constraints, by performing three tests with supernovae Ia (SNeIa), baryonic acoustic oscillation (BAO) and cosmic microwave background (CMB) measurements. Finally, we perform the Akaike information criterion (AIC) and Bayesian information criterion (BIC) selection criteria, showing that our model is statistically favored with respect to the Chevallier-Polarsky-Linder (CPL) parametrization.

  15. An interactive flow model for projecting school enrolments

    NASA Astrophysics Data System (ADS)

    Gould, Edward

    1993-07-01

    Successful planning in educational administration is highly dependent on accurate student numbers. An interactive enrolment projection model is described which begins with pre-school age children to project the expected number of first grade entrants. These cohorts are then progressed through the school system. The model described can be implemented on a microcomputer and uses an interactive technique which enables human intervention in order to take full account of local knowledge in predicting the numbers in each year group. Control is maintained by allowing groups of schools to be amalgamated and then by applying to these larger groups the same techniques used to obtain the initial individual school enrolments. Adjustments to individual school enrolments are then possible following the reconciliation of larger group figures with known demographic statistics. This counteracts the effects of student mobility across wider areas and overcomes many of the problems associated with simple aggregation of individual school projections. The model provides a valuable planning tool when enrolment figures are needed for decision making.

  16. Turbulence Modeling for Shock Wave/Turbulent Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Lillard, Randolph P.

    2011-01-01

    Accurate aerodynamic computational predictions are essential for the safety of space vehicles, but these computations are of limited accuracy when large pressure gradients are present in the flow. The goal of the current project is to improve the state of compressible turbulence modeling for high speed flows with shock wave / turbulent boundary layer interactions (SWTBLI). Emphasis will be placed on models that can accurately predict the separated region caused by the SWTBLI. These flows are classified as nonequilibrium boundary layers because of the very large and variable adverse pressure gradients caused by the shock waves. The lag model was designed to model these nonequilibrium flows by incorporating history effects. Standard one- and two-equation models (Spalart Allmaras and SST) and the lag model will be run and compared to a new lag model. This new model, the Reynolds stress tensor lag model (lagRST), will be assessed against multiple wind tunnel tests and correlations. The basis of the lag and lagRST models are to preserve the accuracy of the standard turbulence models in equilibrium turbulence, when the Reynolds stresses are linearly related to the mean strain rates, but create a lag between mean strain rate effects and turbulence when nonequilibrium effects become important, such as in large pressure gradients. The affect this lag has on the results for SWBLI and massively separated flows will be determined. These computations will be done with a modified version of the OVERFLOW code. This code solves the RANS equations on overset grids. It was used for this study for its ability to input very complex geometries into the flow solver, such as the Space Shuttle in the full stack configuration. The model was successfully implemented within two versions of the OVERFLOW code. Results show a substantial improvement over the baseline models for transonic separated flows. The results are mixed for the SWBLI assessed. Separation predictions are not as good as the

  17. Blood vessel modeling for interactive simulation of interventional neuroradiology procedures.

    PubMed

    Kerrien, E; Yureidini, A; Dequidt, J; Duriez, C; Anxionnat, R; Cotin, S

    2017-01-01

    Endovascular interventions can benefit from interactive simulation in their training phase but also during pre-operative and intra-operative phases if simulation scenarios are based on patient data. A key feature in this context is the ability to extract, from patient images, models of blood vessels that impede neither the realism nor the performance of simulation. This paper addresses both the segmentation and reconstruction of the vasculature from 3D Rotational Angiography data, and adapted to simulation: An original tracking algorithm is proposed to segment the vessel tree while filtering points extracted at the vessel surface in the vicinity of each point on the centerline; then an automatic procedure is described to reconstruct each local unstructured point set as a skeleton-based implicit surface (blobby model). The output of successively applying both algorithms is a new model of vasculature as a tree of local implicit models. The segmentation algorithm is compared with Multiple Hypothesis Testing (MHT) algorithm (Friman et al., 2010) on patient data, showing its greater ability to track blood vessels. The reconstruction algorithm is evaluated on both synthetic and patient data and demonstrate its ability to fit points with a subvoxel precision. Various tests are also reported where our model is used to simulate catheter navigation in interventional neuroradiology. An excellent realism, and much lower computational costs are reported when compared to triangular mesh surface models.

  18. Modeling shear band interaction in 1D torsion

    NASA Astrophysics Data System (ADS)

    Partom, Yehuda; Hanina, Erez

    2017-01-01

    When two shear bands are being formed at close distance from each other they interact, and further development of one of them may be quenched down. As a result there should be a minimum distance between shear bands. In the literature there are at least three analytical models for this minimum distance. Predictions of these models do not generally agree with each other and with test results. Recently we developed a 1D numerical scheme to predict the formation of shear bands in a torsion test of a thin walled pipe. We validated our code by reproducing results of the pioneering experiments of Marchand and Duffy, and then used it to investigate the mechanics of shear localization and shear band formation. We describe our shear band code in a separate publication, and here we use it only as a tool to investigate the interaction between two neighboring shear bands during the process of their formation. We trigger the formation of shear bands by specifying two perturbations of the initial strength. We vary the perturbations in terms of their amplitude and/or their width. Usually, the stronger perturbation triggers a faster developing shear band, which then prevails and quenches the development of the other shear band. We change the distance between the two shear bands and find, that up to a certain distance one of the shear bands becomes fully developed, and the other stays only partially developed. Beyond this distance the two shear bands are both fully developed. Finally, we check the influence of certain material and loading parameters on the interaction between the two shear bands, and compare the results to predictions of the analytical models from the literature.

  19. Comparing models of star formation simulating observed interacting galaxies

    NASA Astrophysics Data System (ADS)

    Quiroga, L. F.; Muñoz-Cuartas, J. C.; Rodrigues, I.

    2017-07-01

    In this work, we make a comparison between different models of star formation to reproduce observed interacting galaxies. We use observational data to model the evolution of a pair of galaxies undergoing a minor merger. Minor mergers represent situations weakly deviated from the equilibrium configuration but significant changes in star fomation (SF) efficiency can take place, then, minor mergers provide an unique scene to study SF in galaxies in a realistic but yet simple way. Reproducing observed systems also give us the opportunity to compare the results of the simulations with observations, which at the end can be used as probes to characterize the models of SF implemented in the comparison. In this work we compare two different star formation recipes implemented in Gadget3 and GIZMO codes. Both codes share the same numerical background, and differences arise mainly in the star formation recipe they use. We use observations from Pico dos Días and GEMINI telescopes and show how we use observational data of the interacting pair in AM2229-735 to characterize the interacting pair. Later we use this information to simulate the evolution of the system to finally reproduce the observations: Mass distribution, morphology and main features of the merger-induced star formation burst. We show that both methods manage to reproduce roughly the star formation activity. We show, through a careful study, that resolution plays a major role in the reproducibility of the system. In that sense, star formation recipe implemented in GIZMO code has shown a more robust performance. Acknowledgements: This work is supported by Colciencias, Doctorado Nacional - 617 program.

  20. A model of the interaction between mood and memory.

    PubMed

    Rolls, E T; Stringer, S M

    2001-05-01

    This paper investigates a neural network model of the interaction between mood and memory. The model has two attractor networks that represent the inferior temporal cortex (IT), which stores representations of visual stimuli, and the amygdala, the activity of which reflects the mood state. The two attractor networks are coupled by forward and backward projections. The model is however generic, and is relevant to understanding the interaction between different pairs of modules in the brain, particularly, as is the case with moods and memories, when there are fewer states represented in one module than in the other. During learning, a large number of patterns are presented to the IT, each paired with one of two mood states represented in the amygdala. The recurrent connections within each module, the forward connections from the memory module to the amygdala, and the backward connections from the amygdala to the memory module, are associatively modified. It is shown how the mood state in the amygdala can influence which memory patterns are recalled in the memory module. Further, it is shown that if there is an existing mood state in the amygdala, it can be difficult to change it even when a retrieval cue is presented to the memory module that is associated with a different mood state. It is also shown that the backprojections from the amygdala to the memory module must be relatively weak if memory retrieval in the memory module is not to be disrupted. The results are relevant to understanding the interaction between structures important in mood and emotion (such as the amygdala and orbitofrontal cortex) and other brain areas involved in storing objects and faces (such as the inferior temporal visual cortex) and memories (such as the hippocampus).