Science.gov

Sample records for four-level cell population

  1. Tumor-Volume Simulation During Radiotherapy for Head-and-Neck Cancer Using a Four-Level Cell Population Model

    SciTech Connect

    Chvetsov, Alexei V. Dong Lei; Palta, Jantinder R.; Amdur, Robert J.

    2009-10-01

    Purpose: To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. Methods: The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. Results: We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Conclusions: Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.

  2. Coherent population transfer and optical dipole force by chirped Gaussian femtosecond pulses in four level {sup 87}Rb

    SciTech Connect

    Chakraborty, Subhadeep Sarma, Amarendra K.

    2014-10-15

    We report coherent population transfer(CPT) in a four level atomic system, coupled by three chirped Gaussian femtosecond pulses. CPT is studied under two specific conditions beyond the RWA. It is observed that nearly complete population transfer to the states |3> and |4> can be achieved by maintaining proper resonance condition and judiciously choosing the laser parameters. In addition to this, the transverse optical dipole force on the four-level atomic system is numerically studied. The transverse force provides an acceleration to an atom which is eight order of magnitude higher than earth’s gravitational acceleration g. The force changes from a focusing force to a defocusing one as the initial population changes from the ground states to the excited states.

  3. Coherence generation and population transfer by stimulated Raman adiabatic passage and π pulse in a four-level ladder system.

    PubMed

    Zhang, Bing; Wu, Jin-Hui; Yan, Xi-Zhang; Wang, Lei; Zhang, Xiao-Jun; Gao, Jin-Yue

    2011-06-20

    We propose a new scheme for achieving the complete population transfer and the optimal coherence generation between the ground state and the Rydberg state in a four-level ladder system by combining the STIRAP or fractional STIRAP technique and the π pulse technique. We consider, in particular, two different situations where spontaneous emission from the two highest states are neglected or not. Our numerical calculations show that the time width and the delay time of the π pulse are two critical parameters for attaining the maximal population transfer and coherence generation in this scheme.

  4. Single chirped pulse control of hyperfine states population in Rb atom in the framework of the four-level system

    NASA Astrophysics Data System (ADS)

    Zakharov, Vladislav; Malinovskaya, Svetlana

    2012-06-01

    Electron population dynamics within the hyperfine structure in the Rb atom induced by a single ns pulse is theoretically investigated. The aim is to develop a methodology of the implementation of linearly chirped laser pulses for the desired excitations in the Rb atoms resulting in the creation of predetermined non-equilibrium states. A semi-classical model of laser pulse interaction with a four-level system representing the hyperfine energy levels of the Rb atom involved into dynamics has been developed. The equations for the probability amplitudes were obtained from the Schrodinger equation with the Hamiltonian that described the time evolution of the population of the four states in the field interaction representation. A code was written in Fortran for a numerical analysis of the time evolution of probability amplitudes as a function of the field parameters. The dependence of the quantum yield on the pulse duration, the linear chirp parameter and the Rabi frequency was studied to reveal the conditions for the entire population transfer to the upper hyperfine state of the 5S1/2 electronic level. The results may provide a robust tool for quantum operations in the alkali atoms.

  5. Four-level refrigerator driven by photons

    NASA Astrophysics Data System (ADS)

    Wang, Jianhui; Lai, Yiming; Ye, Zhuolin; He, Jizhou; Ma, Yongli; Liao, Qinghong

    2015-05-01

    We propose a quantum absorption refrigerator driven by photons. The model uses a four-level system as its working substance and couples simultaneously to hot, cold, and solar heat reservoirs. Explicit expressions for the cooling power Q˙c and coefficient of performance (COP) ηCOP are derived, with the purpose of revealing and optimizing the performance of the device. Our model runs most efficiently under the tight coupling condition, and it is consistent with the third law of thermodynamics in the limit T →0 .

  6. Four-level refrigerator driven by photons.

    PubMed

    Wang, Jianhui; Lai, Yiming; Ye, Zhuolin; He, Jizhou; Ma, Yongli; Liao, Qinghong

    2015-05-01

    We propose a quantum absorption refrigerator driven by photons. The model uses a four-level system as its working substance and couples simultaneously to hot, cold, and solar heat reservoirs. Explicit expressions for the cooling power Q̇(c) and coefficient of performance (COP) η(COP) are derived, with the purpose of revealing and optimizing the performance of the device. Our model runs most efficiently under the tight coupling condition, and it is consistent with the third law of thermodynamics in the limit T→0.

  7. Evaluating a Training Using the "Four Levels Model"

    ERIC Educational Resources Information Center

    Steensma, Herman; Groeneveld, Karin

    2010-01-01

    Purpose: The aims of this study are: to present a training evaluation based on the "four levels model"; to demonstrate the value of experimental designs in evaluation studies; and to take a first step in the development of an evidence-based training program. Design/methodology/approach: The Kirkpatrick four levels model was used to…

  8. Evaluating a Training Using the "Four Levels Model"

    ERIC Educational Resources Information Center

    Steensma, Herman; Groeneveld, Karin

    2010-01-01

    Purpose: The aims of this study are: to present a training evaluation based on the "four levels model"; to demonstrate the value of experimental designs in evaluation studies; and to take a first step in the development of an evidence-based training program. Design/methodology/approach: The Kirkpatrick four levels model was used to…

  9. Estimating cell populations

    NASA Technical Reports Server (NTRS)

    White, B. S.; Castleman, K. R.

    1981-01-01

    An important step in the diagnosis of a cervical cytology specimen is estimating the proportions of the various cell types present. This is usually done with a cell classifier, the error rates of which can be expressed as a confusion matrix. We show how to use the confusion matrix to obtain an unbiased estimate of the desired proportions. We show that the mean square error of this estimate depends on a 'befuddlement matrix' derived from the confusion matrix, and how this, in turn, leads to a figure of merit for cell classifiers. Finally, we work out the two-class problem in detail and present examples to illustrate the theory.

  10. Estimating cell populations

    NASA Technical Reports Server (NTRS)

    White, B. S.; Castleman, K. R.

    1981-01-01

    An important step in the diagnosis of a cervical cytology specimen is estimating the proportions of the various cell types present. This is usually done with a cell classifier, the error rates of which can be expressed as a confusion matrix. We show how to use the confusion matrix to obtain an unbiased estimate of the desired proportions. We show that the mean square error of this estimate depends on a 'befuddlement matrix' derived from the confusion matrix, and how this, in turn, leads to a figure of merit for cell classifiers. Finally, we work out the two-class problem in detail and present examples to illustrate the theory.

  11. Unequally spaced four levels phase encoding in holographic data storage

    NASA Astrophysics Data System (ADS)

    Xu, Ke; Huang, Yong; Lin, Xiao; Cheng, Yabin; Li, Xiaotong; Tan, Xiaodi

    2016-12-01

    Holographic data storage system is a candidate for the information recording due to its large storage capacity and high transfer rate. We propose an unequally spaced four levels phase encoding in the holographic data storage system here. Compared with two levels or three levels phase encoding, four levels phase encoding effectively improves the code rate. While more phase levels can further improve code rate, it also puts higher demand for the camera to differentiate the resulting smaller grayscale difference. Unequally spaced quaternary level phases eliminates the ambiguity of pixels with same phase difference relative to reference light compared to equally spaced quaternary levels. Corresponding encoding pattern design with phase pairs as the data element and decoding method were developed. Our encoding improves the code rate up to 0.875, which is 1.75 times of the conventional amplitude method with an error rate of 0.13 % according to our simulation results.

  12. A four level silicon microstructure fabrication by DRIE

    NASA Astrophysics Data System (ADS)

    Rahiminejad, S.; Cegielski, P.; Abassi, M.; Enoksson, P.

    2016-08-01

    We present a four level Si microstructure fabrication process with depths ranging from 70-400 μm. All four levels are etched from the same side, by using four hard masks (\\text{Si}{{\\text{O}}2} , Al, AZ4562 photo resist, and Al). The choice of the hard masks and their relative selectivity will be discussed. Also two different deep reactive ion etching (DRIE) processes, performed in two different machines, are compared and evaluated. The process evaluation and discussions are based on the vertical walls deviation from a right angle, the surface roughness and the resolution. In the end, a solution is proposed to remove spikes and grassing which appeared during both DRIE processes, and the impact of removing them from the surfaces is discussed.

  13. Simulating Heterogeneous Tumor Cell Populations

    PubMed Central

    Bar-Sagi, Dafna; Mishra, Bud

    2016-01-01

    Certain tumor phenomena, like metabolic heterogeneity and local stable regions of chronic hypoxia, signify a tumor’s resistance to therapy. Although recent research has shed light on the intracellular mechanisms of cancer metabolic reprogramming, little is known about how tumors become metabolically heterogeneous or chronically hypoxic, namely the initial conditions and spatiotemporal dynamics that drive these cell population conditions. To study these aspects, we developed a minimal, spatially-resolved simulation framework for modeling tissue-scale mixed populations of cells based on diffusible particles the cells consume and release, the concentrations of which determine their behavior in arbitrarily complex ways, and on stochastic reproduction. We simulate cell populations that self-sort to facilitate metabolic symbiosis, that grow according to tumor-stroma signaling patterns, and that give rise to stable local regions of chronic hypoxia near blood vessels. We raise two novel questions in the context of these results: (1) How will two metabolically symbiotic cell subpopulations self-sort in the presence of glucose, oxygen, and lactate gradients? We observe a robust pattern of alternating striations. (2) What is the proper time scale to observe stable local regions of chronic hypoxia? We observe the stability is a function of the balance of three factors related to O2—diffusion rate, local vessel release rate, and viable and hypoxic tumor cell consumption rate. We anticipate our simulation framework will help researchers design better experiments and generate novel hypotheses to better understand dynamic, emergent whole-tumor behavior. PMID:28030620

  14. Quasi four-level Tm:LuAG laser

    NASA Technical Reports Server (NTRS)

    Jani, Mahendra G. (Inventor); Barnes, Norman P. (Inventor); Hutcheson, Ralph L. (Inventor); Rodriguez, Waldo J. (Inventor)

    1997-01-01

    A quasi four-level solid-state laser is provided. A laser crystal is disposed in a laser cavity. The laser crystal has a LuAG-based host material doped to a final concentration between about 2% and about 7% thulium (Tm) ions. For the more heavily doped final concentrations, the LuAG-based host material is a LuAG seed crystal doped with a small concentration of Tm ions. Laser diode arrays are disposed transversely to the laser crystal for energizing the Tm ions.

  15. Covariant cloning machines for four-level systems

    NASA Astrophysics Data System (ADS)

    Durt, Thomas; Nagler, Bob

    2003-10-01

    The study of quantum cryptography and quantum entanglement has traditionally been based on two-level quantum systems (qubits) and more recently on three-level systems (qutrits). We investigate several classes of state-dependent quantum cloners for four-level systems (quartits). These results apply to symmetric as well as asymmetric cloners, so that the balance between the fidelity of the two clones can also be analyzed. We extend Cerf’s formalism for cloning states in order to derive cloning machines that remain invariant under certain unitary transformations. Our results show that a different cloner has to be used for two mutually unbiased bases which are related by a double Hadamard transformation, than for two mutually unbiased bases that are related by a Fourier transformation. This different cloner is obtained thanks to a redefinition of Bell states that respects the intrinsic symmetries of the Hadamard transformation.

  16. Four-level superradiant laser with full atomic cooperativity

    SciTech Connect

    Yu Deshui; Chen Jingbiao

    2010-05-15

    We investigate a four-level superradiant laser whose intensity is proportional to N{sup 2} and whose linewidth scales as 1/N{sup 2}. In the absence of spontaneous emissions, we derive the stationary solutions of the atomic full cooperativity, analyze their stabilities, and find the corresponding irreducible representation based on group U(4). We also investigate the spectra of the phase and amplitude fluctuations of the fields inside and outside the cavity and find that the amplitude fluctuations of the output fields cannot be squeezed in the low-frequency limit, which is completely different from the three-level superradiant laser system. Finally, we consider the stationary solutions corresponding to the partial cooperativity due to the symmetry breaking of U(4) induced by the atomic spontaneous emissions.

  17. Three-dimensional atom localization by laser fields in a four-level tripod system

    NASA Astrophysics Data System (ADS)

    Ivanov, Vladimir S.; Rozhdestvensky, Yuri V.; Suominen, Kalle-Antti

    2014-12-01

    We present a scheme for high-precision three-dimensional (3D) localization by the measurement of the atomic-level population. The scheme is applied to a four-level tripod-type atom coupled by three strong standing waves and a probe running wave. As a result, the atom can be localized in volumes that are substantially smaller than a cubic optical wavelength, which is achieved by the increase of standing-wave intensities. The upper-level distribution depends crucially on the atom-field coupling and it forms 3D periodic structures composed of spheres, hourglasses, bowls, donuts, or deformed barrels.

  18. Population ecology of heterotypic tumour cell cultures.

    PubMed

    Sega, M; Chignola, R

    2014-10-01

    Here, we propose a population ecology perspective to describe dynamic interplay between human leukaemia and cervical cancer cells growing together in the same environment. MOLT-3 (human T-lymphoblastic leukaemia) and HeLa (human cervical adenocarcinoma) cells were grown together or alone. Living cells were measured using flow cytometry, by counting propidium iodide-negative cells either CD5(+) (MOLT-3) or CD55(+) (HeLa). We developed a mathematical model to take into account possible interactions between cells and among cells and their environmental niches. Model equations were then fitted to growth data. Ecological interactions that require direct cell contact and indirect mechanisms acting on cell niches, successfully modelled cell population growth. Predicted heterotypic adhesion between the two different cell types was demonstrated experimentally. Theoretical ecology can be assayed using human cells and, most importantly, it can provide a conceptual framework to describe and understand evolution of mixed tumour cell populations. © 2014 John Wiley & Sons Ltd.

  19. Great Ideas Revisited. Techniques for Evaluating Training Programs. Revisiting Kirkpatrick's Four-Level Model.

    ERIC Educational Resources Information Center

    Kirkpatrick, Donald

    1996-01-01

    Kirkpatrick reviews his 1959 article presenting his four-level model of evaluation. He suggests that training professionals should evaluate their programs and understanding those four levels is a good start. The text of the original article is included. (JOW)

  20. Phenotype heterogeneity in cancer cell populations

    NASA Astrophysics Data System (ADS)

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-01

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as "bet hedging" of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  1. Phenotype heterogeneity in cancer cell populations

    SciTech Connect

    Almeida, Luis; Chisholm, Rebecca; Clairambault, Jean; Escargueil, Alexandre; Lorenzi, Tommaso; Lorz, Alexander; Trélat, Emmanuel

    2016-06-08

    Phenotype heterogeneity in cancer cell populations, be it of genetic, epigenetic or stochastic origin, has been identified as a main source of resistance to drug treatments and a major source of therapeutic failures in cancers. The molecular mechanisms of drug resistance are partly understood at the single cell level (e.g., overexpression of ABC transporters or of detoxication enzymes), but poorly predictable in tumours, where they are hypothesised to rely on heterogeneity at the cell population scale, which is thus the right level to describe cancer growth and optimise its control by therapeutic strategies in the clinic. We review a few results from the biological literature on the subject, and from mathematical models that have been published to predict and control evolution towards drug resistance in cancer cell populations. We propose, based on the latter, optimisation strategies of combined treatments to limit emergence of drug resistance to cytotoxic drugs in cancer cell populations, in the monoclonal situation, which limited as it is still retains consistent features of cell population heterogeneity. The polyclonal situation, that may be understood as “bet hedging” of the tumour, thus protecting itself from different sources of drug insults, may lie beyond such strategies and will need further developments. In the monoclonal situation, we have designed an optimised therapeutic strategy relying on a scheduled combination of cytotoxic and cytostatic treatments that can be adapted to different situations of cancer treatments. Finally, we review arguments for biological theoretical frameworks proposed at different time and development scales, the so-called atavistic model (diachronic view relying on Darwinian genotype selection in the coursof billions of years) and the Waddington-like epigenetic landscape endowed with evolutionary quasi-potential (synchronic view relying on Lamarckian phenotype instruction of a given genome by reversible mechanisms), to

  2. Reconstruction of cell population dynamics using CFSE

    PubMed Central

    Yates, Andrew; Chan, Cliburn; Strid, Jessica; Moon, Simon; Callard, Robin; George, Andrew JT; Stark, Jaroslav

    2007-01-01

    Background Quantifying cell division and death is central to many studies in the biological sciences. The fluorescent dye CFSE allows the tracking of cell division in vitro and in vivo and provides a rich source of information with which to test models of cell kinetics. Cell division and death have a stochastic component at the single-cell level, and the probabilities of these occurring in any given time interval may also undergo systematic variation at a population level. This gives rise to heterogeneity in proliferating cell populations. Branching processes provide a natural means of describing this behaviour. Results We present a likelihood-based method for estimating the parameters of branching process models of cell kinetics using CFSE-labeling experiments, and demonstrate its validity using synthetic and experimental datasets. Performing inference and model comparison with real CFSE data presents some statistical problems and we suggest methods of dealing with them. Conclusion The approach we describe here can be used to recover the (potentially variable) division and death rates of any cell population for which division tracking information is available. PMID:17565685

  3. Dynamics of protein distributions in cell populations

    NASA Astrophysics Data System (ADS)

    Brenner, Naama; Farkash, Keren; Braun, Erez

    2006-09-01

    A population of cells exhibits wide phenotypic variation even if it is genetically homogeneous. In particular, individual cells differ from one another in the amount of protein they express under a given regulatory system under fixed conditions. Here we study how protein distributions in a population of the yeast S. cerevisiae are shaped by a balance of processes: protein production—an intracellular process—and protein dilution due to cell division—a population process. We measure protein distributions by employing reporter green fluorescence protein (gfp) under the regulation of the yeast GAL system under conditions where it is metabolically essential. Cell populations are grown in chemostats, thus allowing control of the environment and stable measurements of distribution dynamics over many generations. Despite the essential functional role of the GAL system in a pure galactose medium, steady-state distributions are found to be universally broad, with exponential tails and a large standard-deviation-to-mean ratio. Under several different perturbations the dynamics of the distribution is observed to be asymmetric, with a much longer time to build a wide expression distribution from below compared with a fast relaxation of the distribution toward steady state from above. These results show that the main features of the protein distributions are largely determined by population effects and are less sensitive to the intracellular biochemical noise.

  4. Phase dependence of optical bistability and multistability in a four-level quantum system near a plasmonic nanostructure

    SciTech Connect

    Asadpour, Seyyed Hossein; Rahimpour Soleimani, H.

    2016-01-14

    The optical bistability and multistability properties of a four-level quantum system near a plasmonic nanostructure embedded in a unidirectional ring cavity are studied theoretically. Two orthogonal circularly polarized laser fields with the same frequency, different phases and electric fields amplitude are interacted by four-level quantum system. It is found that in the presence of the plasmonic nanostructure, the bistable behaviors related to one of the laser fields propagating through the unidirectional ring cavity can be modified by relative phase and amplitude control of another laser fields. Our obtained results show that the optical bistability can be converted into the optical multistability by varying the value of distance between the quantum system and the surface of the plasmonic nanostructure. Moreover, it is shown that under specific condition related to the distance, the lasing without population inversion can be obtained.

  5. Interval scanning photomicrography of microbial cell populations.

    NASA Technical Reports Server (NTRS)

    Casida, L. E., Jr.

    1972-01-01

    A single reproducible area of the preparation in a fixed focal plane is photographically scanned at intervals during incubation. The procedure can be used for evaluating the aerobic or anaerobic growth of many microbial cells simultaneously within a population. In addition, the microscope is not restricted to the viewing of any one microculture preparation, since the slide cultures are incubated separately from the microscope.

  6. Programming microbial population dynamics by engineered cell-cell communication.

    PubMed

    Song, Hao; Payne, Stephen; Tan, Cheemeng; You, Lingchong

    2011-07-01

    A major aim of synthetic biology is to program novel cellular behavior using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behavior at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications.

  7. Programming microbial population dynamics by engineered cell-cell communication

    PubMed Central

    Song, Hao; Payne, Stephen; Tan, Cheemeng; You, Lingchong

    2013-01-01

    A major aim of synthetic biology is to program novel cellular behaviors using engineered gene circuits. Early endeavors focused on building simple circuits that fulfill simple functions, such as logic gates, bistable toggle switches, and oscillators. These gene circuits have primarily focused on single-cell behaviors since they operate intracellularly. Thus, they are often susceptible to cell-cell variations due to stochastic gene expression. Cell-cell communication offers an efficient strategy to coordinate cellular behaviors at the population level. To this end, we review recent advances in engineering cell-cell communication to achieve reliable population dynamics, spanning from communication within single species to multispecies, from one-way sender-receiver communication to two-way communication in synthetic microbial ecosystems. These engineered systems serve as well-defined model systems to better understand design principles of their naturally occurring counterparts and to facilitate novel biotechnology applications. PMID:21681967

  8. Creation of Arbitrary Coherent Superposition States in Four-Level Systems

    SciTech Connect

    Gong, S.; Niu, Y.

    2005-08-15

    Using the technique of stimulated Raman adiabatic passage, we propose schemes for creating arbitrary coherent superposition states of atoms in four-level systems: a {lambda}-type system with twofold final states and a four-level ladder system. With the use of a control field, arbitrary coherent superposition states are created without the condition of multiphoton resonance. Suitable manipulation of detunings and the control field can create either a single state or any superposition states desired.

  9. SU(4) based classification of four-level systems and their semiclassical solution

    SciTech Connect

    Sen, Surajit Ahmed, Helal

    2014-12-15

    We present a systematic method to classify the four-level system using SU(4) symmetry as the basis group. It is shown that this symmetry allows three dipole transitions which eventually leads to six possible configurations of the four-level system. Using a dressed atom approach, the semi-classical version of each configuration is exactly solved under rotating wave approximation and the symmetry among the Rabi oscillation among various models is studied.

  10. Pregnancy persistently affects memory T cell populations.

    PubMed

    Kieffer, Tom E C; Faas, Marijke M; Scherjon, Sicco A; Prins, Jelmer R

    2017-02-01

    Pregnancy is an immune challenge to the maternal immune system. The effects of pregnancy on maternal immunity and particularly on memory T cells during and after pregnancy are not fully known. This observational study aims to show the short term and the long term effects of pregnancy on the constitution, size and activation status of peripheral human memory T-lymphocyte populations. Effector memory (EM) and central memory (CM) T-lymphocytes were analyzed using flow cytometry of peripheral blood from 14 nulligravid, 12 primigravid and 15 parous women that were on average 18 months postpartum. The short term effects were shown by the significantly higher CD4+ EM cell and activated CD4+ memory cell proportions in primigravid women compared to nulligravid women. The persistent effects found in this study were the significantly higher proportions of CD4+ EM, CD4+ CM and activated memory T cells in parous women compared to nulligravid women. In contrast to CD4+ cells, activation status of CD8+ memory cells did not differ between the groups. This study shows that pregnancy persistently affects the pre-pregnancy CD4+ memory cell pool in human peripheral blood. During pregnancy, CD4+ T-lymphocytes might differentiate into EM cells followed by persistent higher proportions of CD4+ CM and EM cells postpartum. The persistent effects of pregnancy on memory T cells found in this study support the hypothesis that memory T cells are generated during pregnancy and that these cells could be involved in the lower complication risks in multiparous pregnancies in humans.

  11. Phase transitions in unstable cancer cell populations

    NASA Astrophysics Data System (ADS)

    Solé, R. V.

    2003-09-01

    The dynamics of cancer evolution is studied by means of a simple quasispecies model involving cells displaying high levels of genetic instability. Both continuous, mean-field and discrete, bit-string models are analysed. The string model is simulated on a single-peak landscape. It is shown that a phase transition exists at high levels of genetic instability, thus separating two phases of slow and rapid growth. The results suggest that, under a conserved level of genetic instability the cancer cell population will be close to the threshold level. Implications for therapy are outlined.

  12. Population dynamics of cancer cells with cell state conversions

    PubMed Central

    Zhou, Da; Wu, Dingming; Li, Zhe; Qian, Minping; Zhang, Michael Q.

    2015-01-01

    Cancer stem cell (CSC) theory suggests a cell-lineage structure in tumor cells in which CSCs are capable of giving rise to the other non-stem cancer cells (NSCCs) but not vice versa. However, an alternative scenario of bidirectional interconversions between CSCs and NSCCs was proposed very recently. Here we present a general population model of cancer cells by integrating conventional cell divisions with direct conversions between different cell states, namely, not only can CSCs differentiate into NSCCs by asymmetric cell division, NSCCs can also dedifferentiate into CSCs by cell state conversion. Our theoretical model is validated when applying the model to recent experimental data. It is also found that the transient increase in CSCs proportion initiated from the purified NSCCs subpopulation cannot be well predicted by the conventional CSC model where the conversion from NSCCs to CSCs is forbidden, implying that the cell state conversion is required especially for the transient dynamics. The theoretical analysis also gives the condition such that our general model can be equivalently reduced into a simple Markov chain with only cell state transitions keeping the same cell proportion dynamics. PMID:26085954

  13. The regulation of hematopoietic stem cell populations

    PubMed Central

    Mayani, Hector

    2016-01-01

    Evidence presented over the last few years indicates that the hematopoietic stem cell (HSC) compartment comprises not just one but a number of different cell populations. Based on HSCs’ proliferation and engraftment potential, it has been suggested that there are two classes of HSC, with long- and short-term engraftment potential. HSC heterogeneity seems to involve differentiation capacities as well, since it has been shown that some HSC clones are able to give rise to both myeloid and lymphoid progeny, whereas others are lymphoid deficient. It has been recognized that HSC function depends on intrinsic cell regulators, which are modulated by external signals. Among the former, we can include transcription factors and non-coding RNAs as well as epigenetic modifiers. Among the latter, cytokines and extracellular matrix molecules have been implicated. Understanding the elements and mechanisms that regulate HSC populations is of significant relevance both in biological and in clinical terms, and research in this area still has to face several complex and exciting challenges. PMID:27408695

  14. A Four-Level Hierarchy for Organizing Wildland Stream Resource Information

    Treesearch

    Harry Parrott; Daniel A. Marion; R. Douglas Perkinson

    1989-01-01

    An analysis of current USDA Forest Service methods of collecting and using wildland stream resource data indicates that required information can be organized into a four-level hierarchy. Information at each level is tiered with information at the preceding level. Level 1 is the ASSOCIATION, which is differentiated by stream size and flow regime. Level 2, STREAM TYPE,...

  15. Interior of sump/sewerage room looking up four levels, ladder on ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Interior of sump/sewerage room looking up four levels, ladder on pipe, view facing southwest - U.S. Naval Base, Pearl Harbor, Dry Dock No. 1, Pumpwell, By-Pass Valve & Saltwater Pumphouse, North end of Fifth Street, between Dry Dock No. 1 & Facility GD2 , Pearl City, Honolulu County, HI

  16. Assessing Academic and Creative Abilities in Mathematics at Four Levels of Understanding.

    ERIC Educational Resources Information Center

    Livne, Nava L.; Livne, Oren E.; Milgram, Roberta M.

    1999-01-01

    Develops a mapping sentence to construct test items measuring academic and creative abilities in mathematics at four levels. Describes the three stages of the process of developing the mapping sentence and presents examples of test items representing each ability/level combination. Contains 63 references. (Author/ASK)

  17. Four-level noncontiguous fracture of the vertebral column: a case report.

    PubMed

    Acaroğlu, E R; Alanay, A

    2001-05-01

    The case of a patient with four-level fractures of the vertebral column, located at the cervical, thoracic, lumbar, and sacral regions, three of which were unstable, is reported. There were no injuries in the appendicular skeleton. Neurological involvement was potentially caused by multilevel compressions. This patient was treated aggressively with early surgical stabilization of all unstable levels, which facilitated early expeditious rehabilitation.

  18. Goos-Hänchen shifts in a four-level quantum system near plasmonic nanostructure

    NASA Astrophysics Data System (ADS)

    Jabbari, M.

    2016-05-01

    Goos-Hänchen (GH) shifts of the reflected and transmitted probe beams through a cavity with a four-level quantum system and plasmonic nanostructure is investigated. It is realized that for different values of distance between plasmonic nanostructure and quantum system, the negative and positive GH shifts of the reflected and transmitted probe beams can be controlled. In addition, it is found that the relative phase of applied fields in the presence of plasmonic nanostructure can be used as an important parameter for controlling the GH shifts in reflected and transmitted light through the cavity. Moreover, the distance effect between four-level quantum system and plasmonic nanostructure has also been discussed on lateral shifts of reflected and transmitted light.

  19. Two-collective Mode Entanglement in a Four-level Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Xia; Hu, Xiang-Ming; Cheng, Xu-Xin; Cui, Hai-Ning

    2017-09-01

    We propose a theoretical method to obtain two-collective mode entanglement in a four-level atomic ensemble. One collective mode is produced due to the Raman atomic coherence, the acquisition of another collective mode is ascribed to the quantum interference in two four-wave mixing processes. We show that two-collective mode and two original single modes are also in the entangled state in experimentally accessible parameter regimes.

  20. High prevalence of side population in human cancer cell lines

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Fiegl, Heidi; Wolf, Barbara; Huber, Julia; Klocker, Helmut; Gastl, Guenther

    2016-01-01

    Cancer cell lines are essential platforms for performing cancer research on human cells. We here demonstrate that, across tumor entities, human cancer cell lines harbor minority populations of putative stem-like cells, molecularly defined by dye extrusion resulting in the side population phenotype. These findings establish a heterogeneous nature of human cancer cell lines and argue for their stem cell origin. This should be considered when interpreting research involving these model systems. PMID:27226981

  1. Dynamics of N-configuration four-level atom interacting with one-mode cavity field

    NASA Astrophysics Data System (ADS)

    Abdel-Wahab, N. H.; Thabet, Lamia

    2014-07-01

    In this paper, a model is presented to investigate the interaction between a four-level atom and a single mode of the radiation field. The relative phase, the detuning and the Kerr-like medium are taken into consideration. The exact solution is given when the atom is initially prepared in superposition coherent state. The influences of the relative phase, and the Kerr-like medium on the collapses-revivals, the field entropy and the amplitude-squared squeezing phenomena for the considered system are examined. It is found that these parameters have important effects on the properties of these phenomena.

  2. Electromagnetically induced transparency in the four-level system driven by bichromatic microwave field

    NASA Astrophysics Data System (ADS)

    Yang, Lijun; Sun, Ke-jia; Zhang, Su-heng; Feng, Xiao-min

    2014-11-01

    We present a theoretical study on the nonlinear behaviors of the electromagnetically induced transparency resonance subject to two microwave driving fields in a four-level atom system. The probe absorption spectrum is obtained by solving numerically the relevant equations of density matrix. It is shown that there are two pairs of the EIT windows in the probe absorption spectrum. The two pairs of EIT windows have symmetry with respect to the resonance frequency of the probe field, and the separation is equal to the Rabi frequency of the resonant microwave driving field. But in each pair, the splitting of two EIT windows is dominated to the strength of detuning microwave driving field.

  3. Electromagnetically Induced Grating via Coherently Driven Four-Level Atoms in a N-Type Configuration

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Li, Jia-Yu; Liu, Ming

    2015-03-01

    We propose a scheme to generate an electromagnetically induced grating via coherently driven four-level atoms in a N-type configuration in the presence of a standing signal field, a coupling field and a probe field. We show that a nearly ideal phase grating can be realized by adjusting the frequency detuning of signal field, the interaction length of atomic medium, and the ratio of the intensity between the signal field and the coupling field. The first-order diffraction efficiency of the grating is about 29.9 %, which is close to that of an ideal sinusoidal phase grating.

  4. Four-level microwave-microwave double resonance in NH3ṡHe gas mixtures

    NASA Astrophysics Data System (ADS)

    Peterson, Dean B.; Schwendeman, R. H.

    1987-06-01

    Four-level microwave-microwave double-resonance measurements have been carried out for a number of pump-probe pairs in the inversion spectrum of NH3 in dilute mixtures of NH3 in He. The results completely confirm corresponding measurements previously carried out by Oka with a different apparatus in a different laboratory [Adv. At. Mol. Phys. 9, 127 (1973)]. The original data had been questioned by Davis and Green on the basis of a comparison of observed and calculated results [J. Chem. Phys. 78, 2170 (1983)].

  5. Control of Four-Level Quantum Coherence via Discrete Spectral Shaping of an Optical Frequency Comb

    SciTech Connect

    Stowe, Matthew C.; Peer, Avi; Ye Jun

    2008-05-23

    We present experiments demonstrating high-resolution and wide-bandwidth coherent control of a four-level atomic system in a diamond configuration. A femtosecond frequency comb is used to excite a specific pair of two-photon transitions in cold {sup 87}Rb. The optical-phase-sensitive response of the closed-loop diamond system is studied by controlling the phase of the comb modes with a pulse shaper. Finally, the pulse shape is optimized resulting in a 256% increase in the two-photon transition rate by forcing constructive interference between the mode pairs detuned from an intermediate resonance.

  6. Effects of pump modulation on a four-level laser amplifier

    SciTech Connect

    Chakmakjian, S.H.; Koch, K.; Papademetriou, S.; Stroud, C.R. Jr.

    1989-01-01

    A theory is developed to describe the way in which modulations in the pump intensity produce modulations in the gain of a four-level, homogeneously broadened laser amplifier. The theory is tested by carrying out an experiment using an alexandrite crystal pumped by a c-w dye laser. A second dye laser is used to measure the gain in the inverted laser transition. The dependence of the magnitude and the bandwidth of the gain on the pumping rate is determined. Agreement between theory and experiment is good.

  7. Effects of pump modulation on a four-level laser amplifier

    SciTech Connect

    Chakmakjian, S.H.; Koch, K.; Papademetriou, S.; Stroud, C.R. Jr. )

    1989-09-01

    A theory is developed to describe the way in which modulations in the pump intensity produce modulations in the gain of a four-level, homogeneously broadened laser amplifier. The theory is tested by carrying out an experiment using an alexandrite crystal pumped by a cw dye laser. A second dye laser is used to measure the gain in the inverted laser transition. The dependence of the magnitude and the bandwidth of the gain on the pumping rate is determined. Agreement between theory and experiment is good.

  8. Four-level polarization discriminator based on a surface plasmon polaritonic crystal

    NASA Astrophysics Data System (ADS)

    Benetou, M. I.; Thomsen, B. C.; Bayvel, P.; Dickson, W.; Zayats, A. V.

    2011-03-01

    A compact, four-level polarization discriminator based on a surface plasmon polaritonic crystal (SPPC) has been experimentally demonstrated. It is able to uniquely resolve and spatially separate four signals that have been linearly polarized at azimuth angles 0°, 45°, 90°, and 135°. It exploits the excitation of multiple surface plasmon polariton eigenmodes in nondegenerate directions when the SPPC is illuminated with monochromatic light. The device is planar and of micrometer scale, which makes it suitable for on-chip integration and miniaturization of photonic circuits.

  9. Four-level N -scheme crossover resonances in Rb saturation spectroscopy in magnetic fields

    NASA Astrophysics Data System (ADS)

    Scotto, S.; Ciampini, D.; Rizzo, C.; Arimondo, E.

    2015-12-01

    We perform saturated absorption spectroscopy on the D2 line for room temperature rubidium atoms immersed in magnetic fields within the 0.05-0.13 T range. At those medium-high field values the hyperfine structure in the excited state is broken by the Zeeman effect, while in the ground-state hyperfine structure and Zeeman shifts are comparable. The observed spectra are composed by a large number of absorption lines. We identify them as saturated absorptions on two-level systems, on three-level systems in a V configuration, and on four-level systems in an N or double-N configuration where two optical transitions not sharing a common level are coupled by spontaneous emission decays. We analyze the intensity of all those transitions within a unified simple theoretical model. We concentrate our attention on the double-N crossovers signals whose intensity is very large because of the symmetry in the branching ratios of the four levels. We point out that these structures, present in all alkali-metal atoms at medium-high magnetic fields, have interesting properties for electromagnetically induced transparency and slow light applications.

  10. Raman scattering in a four-level atomic system with hyperfine structure

    NASA Astrophysics Data System (ADS)

    Li, Jia-Hua; Yang, Wen-Xing; Peng, Ju-Cun

    2005-04-01

    We propose and analyse an efficient Raman scheme for suppressing the absorption of a weak probe beam in a typical four-level atomic system with a nearly hyperfine doublet structure of two higher-lying excited levels for the two cases of transient regime and steady-state process. For the transient process, using the numerical calculations by a nice MATHEMATICA code, we find that the magnitude of the probe absorption at line centre of the probe transition is small compared to the standard three-level atomic system based on electromagnetically induced transparency (EIT). In particular, our results show that the probe absorption can be completely eliminated under the condition of Raman resonance, i.e. we only require that two-photon detuning is zero within the range of the hyperfine two-level frequency gap for the case of the steady state. In contrast to the standard three-level EIT scheme, one of the key advantages of our four-level Raman scheme is that under the Raman resonance condition we can observe one transparency window without the need of exact vanishing of one- and two-photon detuning. As a consequence, the atomic hyperfine structure cannot be a hindrance for obtaining EIT.

  11. Noise property of a four-level system in vee + ladder configuration

    NASA Astrophysics Data System (ADS)

    Ming, Ying; Liu, Hong-Yu; Yang, Rong-Can

    2016-11-01

    We present the results of a theoretical study of the output amplitude noises of a four-level atomic system in vee + ladder configuration. The difference and connection of electromagnetically induced transparency and Autler-Townes splitting effects are investigated theoretically. The output amplitude noise of the probe field of two effects were compared, the quantum properties of the input field of the thin medium and the thick medium under Autler-Townes splitting or electromagnetically induced transparency (EIT) condition are maintained, the higher fidelity is obtained in the storage of the thick medium under the condition of EIT in non-classical states. The noise characteristics of the squeezed vacuum field after four-level coherent medium are studied; the noise of the output field is lowest when the detection light is far away from detuning. The double split of EIT window was made by the dynamic Stark splitting on the ground state of control field, the quantum properties of the input field in the strong-control field and strong-coupling field were maintained. The output noise spectrum is divided with the increase in the field strength, the maximum output squeezing is far away from the resonance.

  12. Shifts from a distant neighboring resonance for a four-level atom

    SciTech Connect

    Horbatsch, M.; Hessels, E. A.

    2011-09-15

    In a recent paper [Phys. Rev. A 82, 052519 (2010)], the systematic shifts of a resonance due to quantum-mechanical interference from a distant neighboring resonance were derived. In that paper, the simplest three-level closed system was used to calculate analytic expressions for shifts in the resonant line centers. Here, we extend the analysis to the more relevant four-level system, which consists of two ground states and two excited states and which incorporates the physics of dark states. The shifts are shown to depend on the type of experiment performed and can be much larger than the shifts for the three-level system. The analytic formulas obtained are applied to the {sup 23}S-to-{sup 23}P transitions in atomic helium, where significant shifts are found.

  13. Transparency and slow light in a four-level quantum system near a plasmonic nanostructure

    NASA Astrophysics Data System (ADS)

    Evangelou, Sofia; Yannopapas, Vassilios; Paspalakis, Emmanuel

    2012-11-01

    We study theoretically the effects of a plasmonic nanostructure on the linear absorption and dispersion spectrum of a four-level double- V-type quantum system. In the quantum system under study one V-type transition is influenced by the interaction with surface plasmons while the other V-type transition interacts with free-space vacuum. As plasmonic nanostructure we consider a two-dimensional array of metal-coated dielectric nanospheres. We analyze the optical properties of a linearly polarized laser field that couples the lowest state with the upper states in the free-space transitions. We show that, due to the presence of the plasmonic nanostructure, effects of optical transparency are created. These effects are also complemented by the existence of slow light.

  14. Control of the absorption of a four-level quantum system near a plasmonic nanostructure

    NASA Astrophysics Data System (ADS)

    Carreño, F.; Antón, M. A.; Yannopapas, V.; Paspalakis, E.

    2017-05-01

    We study the optical response of a four-level double-V-type quantum system which interacts simultaneously with probe and pump laser fields and is located near a two-dimensional array of metal-coated dielectric nanospheres. By considering different coupling configurations for the pump/probe laser fields and analyzing the resulting probe absorption spectrum we reveal a variety of phenomena, such as huge enhancement of the absorption at the central line, gain without inversion, and a phase-dependent absorption spectrum. We also show that the enhancement of probe absorption or the gain can be controlled by varying the distance of the quantum system from the plasmonic nanostructure, the intensity of the pump field(s), and, when applicable, their relative phase. Our results can find applications in on-chip nanoscale photonic devices.

  15. Control of resonance fluorescence of a four-level quantum emitter near a plasmonic nanostructure

    NASA Astrophysics Data System (ADS)

    Carreño, F.; Antón, M. A.; Yannopapas, V.; Paspalakis, E.

    2017-04-01

    We present a theoretical study of the resonance fluorescence of a four-level double-V -type quantum emitter near a plasmonic nanostructure. The quantum system interacts with two orthogonal circularly polarized laser fields with the same frequency and intensity, but with different phases. For the plasmonic nanostructure we consider a two-dimensional array of metal-coated dielectric nanospheres. We show that the presence of the plasmonic nanostructure leads to strong modification of both the resonance fluorescence spectrum and the transition from antibunching to bunching for the fluorescent photons. In addition, we show that both the resonance fluorescence spectrum and the second-order correlation function are strongly phase-dependent so that the relative phase of laser fields can be used for the efficient control of the resonance fluorescence characteristics. The results are explained by using a dressed-state picture.

  16. Strongly correlated photons generated by coupling a three- or four-level system to a waveguide

    NASA Astrophysics Data System (ADS)

    Zheng, Huaixiu; Gauthier, Daniel J.; Baranger, Harold U.

    2012-04-01

    We study the generation of strongly correlated photons by coupling an atom to photonic quantum fields in a one-dimensional waveguide. Specifically, we consider a three-level or four-level system for the atom. Photon-photon bound states emerge as a manifestation of the strong photon-photon correlation mediated by the atom. Effective repulsive or attractive interaction between photons can be produced, causing either suppressed multiphoton transmission (photon blockade) or enhanced multiphoton transmission (photon-induced tunneling). As a result, nonclassical light sources can be generated on demand by sending coherent states into the proposed system. We calculate the second-order correlation function of the transmitted field and observe bunching and antibunching caused by the bound states. Furthermore, we demonstrate that the proposed system can produce photon pairs with a high degree of spectral entanglement, which have a large capacity for carrying information and are important for large-alphabet quantum communication.

  17. Four-level atom dynamics and emission statistics using a quantum jump approach

    NASA Astrophysics Data System (ADS)

    Sandhya, S. N.

    2007-01-01

    Four-level atom dynamics is studied in a ladder system in the nine parameter space consisting of driving field strengths, detunings and decay constants, {Ω1,Ω2,Ω3,Δ1,Δ2,Δ3,Γ2,Γ3,Γ4} . One can selectively excite or induce two-level behavior between particular levels of ones choice by appropriately tuning the driving field strengths at three-photon resonance. The dynamics may be classified into two main regions of interest (i) small Ω2 coupling the ∣2⟩-∣3⟩ transition and (ii) large Ω2 . In case (i) one sees two-level behavior consisting of adjacent levels and in a particular region in the parameter space, there is an intermittent shelving of the electrons in one of the two subsystems. In case (ii) the levels consist of the ground state and the upper most level. Emission statistics is studied using the delay function approach in both the cases. In case (i), the behavior of the second order correlation function g2(t) , is similar to that of two-level emission for low Ω1 coupling the ∣1⟩-∣2⟩ transition, and the correlation increases with Ω1 for smaller time delays. While, in case (ii) when, in addition, Ω3 coupling the ∣3⟩-∣4⟩ transitionis kept low, g2(t) shows superpoissonian distribution, which may be attributed to three-photon processes.

  18. Coherent manipulation of absorption by intense fields in four level ladder system

    NASA Astrophysics Data System (ADS)

    Kumar, Pardeep; Dasgupta, Shubhrangshu

    2016-05-01

    Nonlinear optical processes attributed to the dependence of the susceptibility of the medium on the input fluence can be remarkably manipulated by the quantum interference and coherence. One of these processes, the optical bistability (OB), that refers to the possibilities of two stable outputs for the same input fields, can also be modified by quantum coherence. Further, the nonlinear dependence of the absorption on the power of the input light gives rise to interesting processes like saturable absorption (SA) and reverse saturable absorption (RSA). While the SA corresponds to the decrease in the absorption coefficient with the increase of intensity of input light, the RSA corresponds to otherwise, that finds applications in optical limiting. We show, using a four-level Ladder system, how a control field manipulates these processes for an intense probe field applied in the excited state transition. The nonlinear absorption increases whereas the threshold of OB decreases in presence of a control field. We further delineates how the control field and the decay rates modifies SA and RSA. The control of these processes find applications in optical switching, optical limiting and optical communications.

  19. Spontaneous emission from a microwave-driven four-level atom in an anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Jiang, Li; Wan, Ren-Gang; Yao, Zhi-Hai

    2016-10-01

    The spontaneous emission from a microwave-driven four-level atom embedded in an anisotropic photonic crystal is studied. Due to the modified density of state (DOS) in the anisotropic photonic band gap (PBG) and the coherent control induced by the coupling fields, spontaneous emission can be significantly enhanced when the position of the spontaneous emission peak gets close to the band gap edge. As a result of the closed-loop interaction between the fields and the atom, the spontaneous emission depends on the dynamically induced Autler-Townes splitting and its position relative to the PBG. Interesting phenomena, such as spectral-line suppression, enhancement and narrowing, and fluorescence quenching, appear in the spontaneous emission spectra, which are modulated by amplitudes and phases of the coherently driven fields and the effect of PBG. This theoretical study can provide us with more efficient methods to manipulate the atomic spontaneous emission. Project supported by the National Natural Science Foundation of China (Grant Nos. 11447232, 11204367, 11447157, and 11305020).

  20. Study of the crossing of quasi-energy levels in a four-level system

    SciTech Connect

    Arushanyan, S; Melikyan, A; Saakyan, S

    2011-05-31

    It was shown previously that in taking into account only dipole transitions, the crossing of quasi-energy levels is possible in the system if any of the transitions forms a closed loop. It followed herefrom that for the analysis of the crossing conditions, it is necessary to consider a system which has at least four levels. In this paper we show that we can uniquely specify which quasi-energy levels cross at the given values of the parameters of the atomic system and radiation field, without solving an algebraic quartic equation. It was found that the most suitable system for the implementation of the crossing is the group of energy levels {sup 5}S{sub 1/2}, {sup 5}P{sub 1/2}, {sup 5}P{sub 3/2} and {sup 5}D{sub 3/2} of a rubidium atom. The performed calculations of the laser field intensity and frequency values at which crossing takes place in this system show that they are easily attainable. It turned out that in this system there occur crossing of quasi-energy levels corresponding to the excited atomic levels. (intersection of quasi-energy levels)

  1. Optical pumping and coherence effects in fluorescence from a four level system

    NASA Astrophysics Data System (ADS)

    Narayanan, A.

    2006-07-01

    An effective four-level system around the D2 line of 85Rb at room temperature, is experimentally investigated by fluorescent studies under the action of two driving fields L1 and L2. This system exhibits unique features in fluorescence as a function of frequency separation between L1 and L2. In particular, at two-photon resonance, when the Rabi frequency of L1 exceeds that of L2, signatures of Electromagnetically Induced Transperancy effect (EIT) arising from the three-level Λ sub-system is present as a sub-natural dip in fluorescence from the fourth level. At comparable strengths of L1 and L2 the fluorescence features indicate a regime, where the effects arising from optical pumping and EIT effect due to ground hyperfine level coherence coexist. We see in the coexistence regime, saturation effects arising from difference frequency crossing (DFC) resonances and optical pumping around the EIT window. At low strengths of L1, all signs of coherence vanishes from the system and the fluorescent features result from incoherent optical pumping through the Autler-Townes split states of the excited state hyperfine levels, which are split due to the stronger L2 laser. The dominant role of the L1 laser in creating a robust transparency signal even in the presence of an off-resonant excitation is brought out. The results are supported by density matrix calculations.

  2. Overshoot during phenotypic switching of cancer cell populations.

    PubMed

    Sellerio, Alessandro L; Ciusani, Emilio; Ben-Moshe, Noa Bossel; Coco, Stefania; Piccinini, Andrea; Myers, Christopher R; Sethna, James P; Giampietro, Costanza; Zapperi, Stefano; La Porta, Caterina A M

    2015-10-23

    The dynamics of tumor cell populations is hotly debated: do populations derive hierarchically from a subpopulation of cancer stem cells (CSCs), or are stochastic transitions that mutate differentiated cancer cells to CSCs important? Here we argue that regulation must also be important. We sort human melanoma cells using three distinct cancer stem cell (CSC) markers - CXCR6, CD271 and ABCG2 - and observe that the fraction of non-CSC-marked cells first overshoots to a higher level and then returns to the level of unsorted cells. This clearly indicates that the CSC population is homeostatically regulated. Combining experimental measurements with theoretical modeling and numerical simulations, we show that the population dynamics of cancer cells is associated with a complex miRNA network regulating the Wnt and PI3K pathways. Hence phenotypic switching is not stochastic, but is tightly regulated by the balance between positive and negative cells in the population. Reducing the fraction of CSCs below a threshold triggers massive phenotypic switching, suggesting that a therapeutic strategy based on CSC eradication is unlikely to succeed.

  3. In situ cell-by-cell imaging and analysis of small cell populations by mass spectrometry.

    PubMed

    Shrestha, Bindesh; Patt, Joseph M; Vertes, Akos

    2011-04-15

    Molecular imaging by mass spectrometry (MS) is emerging as a tool to determine the distribution of proteins, lipids, and metabolites in tissues. The existing imaging methods, however, mostly rely on predefined rectangular grids for sampling that ignore the natural cellular organization of the tissue. Here we demonstrate that laser ablation electrospray ionization (LAESI) MS can be utilized for in situ cell-by-cell imaging of plant tissues. The cell-by-cell molecular image of the metabolite cyanidin, the ion responsible for purple pigmentation in onion (Allium cepa) epidermal cells, correlated well with the color of cells in the tissue. Chemical imaging using single-cells as voxels reflects the spatial distribution of biochemical differences within a tissue without the distortion stemming from sampling multiple cells within the laser focal spot. Microsampling by laser ablation also has the benefit of enabling the analysis of very small cell populations for biochemical heterogeneity. For example, with a ∼30 μm ablation spot we were able to analyze 3-4 achlorophyllous cells within an oil gland on a sour orange (Citrus aurantium) leaf. To explore cell-to-cell variations within and between tissues, multivariate statistical analysis on LAESI-MS data from epidermal cells of an A. cepa bulb and a C. aurantium leaf and from human buccal epithelial cell populations was performed using the method of orthogonal projections to latent structures discriminant analysis (OPLS-DA). The OPLS-DA analysis of mass spectra, containing over 300 peaks each, provided guidance in identifying a small number of metabolites most responsible for the variance between the cell populations. These metabolites can be viewed as promising candidates for biomarkers that, however, require further verification. © 2011 American Chemical Society

  4. Extracortical origin of some murine subplate cell populations

    PubMed Central

    Pedraza, María; Hoerder-Suabedissen, Anna; Albert-Maestro, María Amparo; Molnár, Zoltán; De Carlos, Juan A.

    2014-01-01

    The subplate layer, the deepest cortical layer in mammals, has important roles in cerebral cortical development. The subplate contains heterogeneous cell populations that are morphologically diverse, with several projection targets. It is currently assumed that these cells are generated in the germinative zone of the earliest cortical neuroepithelium. Here we identify a pallial but extracortical area located in the rostromedial telencephalic wall (RMTW) that gives rise to several cell populations. Postmitotic neurons migrate tangentially from the RMTW toward the cerebral cortex. Most RMTW-derived cells are incorporated into the subplate layer throughout its rostrocaudal extension, with others contributing to the GABAergic interneuron pool of cortical layers V and VI. PMID:24778253

  5. Emergence of cytotoxic resistance in cancer cell populations: Single-cell mechanisms and population-level consequences

    SciTech Connect

    Lorenzi, Tommaso; Chisholm, Rebecca H.; Lorz, Alexander; Neves de Almeida, Luís; Clairambault, Jean; Larsen, Annette K.; Escargueil, Alexandre

    2016-06-08

    We formulate an individual-based model and a population model of phenotypic evolution, under cytotoxic drugs, in a cancer cell population structured by the expression levels of survival-potential and proliferation-potential. We apply these models to a recently studied experimental system. Our results suggest that mechanisms based on fundamental laws of biology can reversibly push an actively-proliferating, and drug-sensitive, cell population to transition into a weakly-proliferative and drug-tolerant state, which will eventually facilitate the emergence of more potent, proliferating and drug-tolerant cells.

  6. A visual analytics approach for models of heterogeneous cell populations

    PubMed Central

    2012-01-01

    In recent years, cell population models have become increasingly common. In contrast to classic single cell models, population models allow for the study of cell-to-cell variability, a crucial phenomenon in most populations of primary cells, cancer cells, and stem cells. Unfortunately, tools for in-depth analysis of population models are still missing. This problem originates from the complexity of population models. Particularly important are methods to determine the source of heterogeneity (e.g., genetics or epigenetic differences) and to select potential (bio-)markers. We propose an analysis based on visual analytics to tackle this problem. Our approach combines parallel-coordinates plots, used for a visual assessment of the high-dimensional dependencies, and nonlinear support vector machines, for the quantification of effects. The method can be employed to study qualitative and quantitative differences among cells. To illustrate the different components, we perform a case study using the proapoptotic signal transduction pathway involved in cellular apoptosis. PMID:22651376

  7. Cancer stem cells as a target population for drug discovery.

    PubMed

    Bouvard, Claire; Barefield, Colleen; Zhu, Shoutian

    2014-09-01

    Cancer stem cells (CSCs) have been identified in a growing list of malignancies and are believed to be responsible for cancer initiation, metastasis and relapse following certain therapies, even though they may only represent a small fraction of the cells in a given cancer. Like somatic stem cells and embryonic stem cells, CSCs are capable of self-renewal and differentiation into more mature, less tumorigenic cells that make up the bulk populations of cancer cells. Elimination of CSCs promises intriguing therapeutic potential and this concept has been adopted in preclinical drug discovery programs. Herein we will discuss the progress of these efforts, general considerations in practice, major challenges and possible solutions.

  8. Concise Review: Stem Cell Population Biology: Insights from Hematopoiesis.

    PubMed

    MacLean, Adam L; Lo Celso, Cristina; Stumpf, Michael P H

    2017-01-01

    Stem cells are fundamental to human life and offer great therapeutic potential, yet their biology remains incompletely-or in cases even poorly-understood. The field of stem cell biology has grown substantially in recent years due to a combination of experimental and theoretical contributions: the experimental branch of this work provides data in an ever-increasing number of dimensions, while the theoretical branch seeks to determine suitable models of the fundamental stem cell processes that these data describe. The application of population dynamics to biology is amongst the oldest applications of mathematics to biology, and the population dynamics perspective continues to offer much today. Here we describe the impact that such a perspective has made in the field of stem cell biology. Using hematopoietic stem cells as our model system, we discuss the approaches that have been used to study their key properties, such as capacity for self-renewal, differentiation, and cell fate lineage choice. We will also discuss the relevance of population dynamics in models of stem cells and cancer, where competition naturally emerges as an influential factor on the temporal evolution of cell populations. Stem Cells 2017;35:80-88.

  9. Human Prostate Side Population Cells Demonstrate Stem Cell Properties in Recombination with Urogenital Sinus Mesenchyme

    PubMed Central

    Foster, Barbara A.; Gangavarapu, Kalyan J.; Mathew, Grinu; Azabdaftari, Gissou; Morrison, Carl D.; Miller, Austin; Huss, Wendy J.

    2013-01-01

    Stem cell enrichment provides a tool to examine prostate stem cells obtained from benign and malignant tissue. Functional assays can enrich stem cells based on common stem cell phenotypes, such as high ATP binding cassette (ABC) transporter mediated efflux of Hoechst substrates (side population assay). This functional assay is based upon mechanisms that protect cells from environmental insult thus contributing to the survival and protection of the stem cell population. We have isolated and analyzed cells digested from twelve clinical prostate specimens based on the side population assay. Prostate stem cell properties of the isolated cells were tested by serial recombination with rat urogenital mesenchyme. Recombinants with side population cells demonstrate an increase in the frequency of human ductal growth and the number of glands per recombinant when compared to recombinants with non-side population cells. Isolated cells were capable of prostatic growth for up to three generations in the recombination assay with as little as 125 sorted prostate cells. The ability to reproducibly use cells isolated by fluorescence activated cell sorting from human prostate tissue is an essential step to a better understanding of human prostate stem cell biology. ABC transporter G2 (ABCG2) was expressed in recombinants from side population cells indicating the side population cells have self-renewal properties. Epithelial cell differentiation of recombinants was determined by immunohistochemical analysis for expression of the basal, luminal, and neuroendocrine markers, p63, androgen receptor, prostate specific antigen, and chromogranin A, respectively. Thus, the ABCG2 expressing side population demonstrates multipotency and self-renewal properties indicating stem cells are within this population. PMID:23383057

  10. Accurate Expression Profiling of Very Small Cell Populations

    PubMed Central

    Gonzalez-Roca, Eva; Garcia-Albéniz, Xabier; Rodriguez-Mulero, Silvia; Gomis, Roger R.; Kornacker, Karl; Auer, Herbert

    2010-01-01

    Background Expression profiling, the measurement of all transcripts of a cell or tissue type, is currently the most comprehensive method to describe their physiological states. Given that accurate profiling methods currently available require RNA amounts found in thousands to millions of cells, many fields of biology working with specialized cell types cannot use these techniques because available cell numbers are limited. Currently available alternative methods for expression profiling from nanograms of RNA or from very small cell populations lack a broad validation of results to provide accurate information about the measured transcripts. Methods and Findings We provide evidence that currently available methods for expression profiling of very small cell populations are prone to technical noise and therefore cannot be used efficiently as discovery tools. Furthermore, we present Pico Profiling, a new expression profiling method from as few as ten cells, and we show that this approach is as informative as standard techniques from thousands to millions of cells. The central component of Pico Profiling is Whole Transcriptome Amplification (WTA), which generates expression profiles that are highly comparable to those produced by others, at different times, by standard protocols or by Real-time PCR. We provide a complete workflow from RNA isolation to analysis of expression profiles. Conclusions Pico Profiling, as presented here, allows generating an accurate expression profile from cell populations as small as ten cells. PMID:21203435

  11. Bacterial Programmed Cell Death as a Population Phenomenon

    DTIC Science & Technology

    2013-06-11

    Moving in for the kil:Activation of an endoribonuclease toxin by quorum sensing peptide, Molecular Cell, (03 2011): . doi: 06/11/2013 11.00...shown that E. coli mazEF-mediated cell death is a population phenomenon requiring the E. coli quorum sensing factor EDF (Extracellular Death Factor... quorum - sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318: 652-655. 7) Kolodkin-Gal I, Engelberg-Kulka, H (2008

  12. Metabolic Differences in Microbial Cell Populations Revealed by Nanophotonic Ionization

    SciTech Connect

    Walker, Bennett; Antonakos, Cory; Retterer, Scott T; Vertes, Akos

    2013-01-01

    ellular differences are linked to cell differentiation, the proliferation of cancer and to the development of drug resistance in microbial infections. Due to sensitivity limitations, however, large- scale metabolic analysis at the single cell level is only available for cells significantly larger in volume than Saccharomyces cerevisiae (~30 fL). Here we demonstrate that by a nanophotonic ionization platform and mass spectrometry, over one hundred up to 108 metabolites, or up to 18% of the known S. cerevisiae metabolome, can be identified in very small cell populations (n < 100). Under ideal conditions, r Relative quantitation of up to 4% of the metabolites is achieved at the single cell level.

  13. Experimental depletion of different renal interstitial cell populations

    SciTech Connect

    Bohman, S.O.; Sundelin, B.; Forsum, U.; Tribukait, B.

    1988-04-01

    To define different populations of renal interstitial cells and investigate some aspects of their function, we studied the kidneys of normal rats and rats with hereditary diabetes insipidus (DI, Brattleboro) after experimental manipulations expected to alter the number of interstitial cells. DI rats showed an almost complete loss of interstitial cells in their renal papillae after treatment with a high dose of vasopressin. In spite of the lack of interstitial cells, the animals concentrated their urine to the same extent as vasopressin-treated normal rats, indicating that the renomedullary interstitial cells do not have an important function in concentrating the urine. The interstitial cells returned nearly to normal within 1 week off vasopressin treatment, suggesting a rapid turnover rate of these cells. To further distinguish different populations of interstitial cells, we studied the distribution of class II MHC antigen expression in the kidneys of normal and bone-marrow depleted Wistar rats. Normal rats had abundant class II antigen-positive interstitial cells in the renal cortex and outer medulla, but not in the inner medulla (papilla). Six days after 1000 rad whole body irradiation, the stainable cells were almost completely lost, but electron microscopic morphometry showed a virtually unchanged volume density of interstitial cells in the cortex and outer medulla, as well as the inner medulla. Thus, irradiation abolished the expression of the class II antigen but caused no significant depletion of interstitial cells.

  14. Characterization of Side Population Cells from Human Airway Epithelium

    PubMed Central

    Hackett, Tillie-Louise; Shaheen, Furquan; Johnson, Andrew; Wadsworth, Samuel; Pechkovsky, Dmitri V.; Jacoby, David B.; Kicic, Anthony; Stick, Stephen M.; Knight, Darryl A.

    2010-01-01

    The airway epithelium is the first line of contact with the inhaled external environment and is continuously exposed to and injured by pollutants, allergens, and viruses. However, little is known about epithelial repair and in particular the identity and role of tissue resident stem/progenitor cells that may contribute to epithelial regeneration. The aims of the present study were to identify, isolate, and characterize side population (SP) cells in human tracheobronchial epithelium. Epithelial cells were obtained from seven nontransplantable healthy lungs and four asthmatic lungs by pronase digestion. SP cells were identified by verapamil-sensitive efflux of the DNA-binding dye Hoechst 33342. Using flow cytometry, CD45− SP, CD45+ SP, and non-SP cells were isolated and sorted. CD45− SP cells made up 0.12% ± 0.01% of the total epithelial cell population in normal airway but 4.1% ± 0.06% of the epithelium in asthmatic airways. All CD45− SP cells showed positive staining for epithelial-specific markers cytokeratin-5, E-cadherin, ZO-1, and p63. CD45− SP cells exhibited stable telomere length and increased colony-forming and proliferative potential, undergoing population expansion for at least 16 consecutive passages. In contrast with non-SP cells, fewer than 100 CD45− SP cells were able to generate a multilayered and differentiated epithelium in air-liquid interface culture. SP cells are present in human tracheobronchial epithelium, exhibit both short- and longterm proliferative potential, and are capable of generation of differentiated epithelium in vitro. The number of SP cells is significantly greater in asthmatic airways, providing evidence of dysregulated resident SP cells in the asthmatic epithelium. PMID:18653771

  15. The Variance of Intraclass Correlations in Three- and Four-Level Models

    ERIC Educational Resources Information Center

    Hedges, Larry V.; Hedberg, E. C.; Kuyper, Arend M.

    2012-01-01

    Intraclass correlations are used to summarize the variance decomposition in populations with multilevel hierarchical structure. There has recently been considerable interest in estimating intraclass correlations from surveys or designed experiments to provide design parameters for planning future large-scale randomized experiments. The large…

  16. The Variance of Intraclass Correlations in Three- and Four-Level Models

    ERIC Educational Resources Information Center

    Hedges, Larry V.; Hedberg, E. C.; Kuyper, Arend M.

    2012-01-01

    Intraclass correlations are used to summarize the variance decomposition in populations with multilevel hierarchical structure. There has recently been considerable interest in estimating intraclass correlations from surveys or designed experiments to provide design parameters for planning future large-scale randomized experiments. The large…

  17. Analysis of side population cells derived from dental pulp tissue.

    PubMed

    Kenmotsu, M; Matsuzaka, K; Kokubu, E; Azuma, T; Inoue, T

    2010-12-01

    To investigate the characteristics of side population (SP) cells derived from the dental pulp of young and aged rats. Maxillary and mandibular incisors were extracted from 5-week-old (young) rats and 60- to 80-week-old (aged) rats. Coronal pulp tissue was removed mechanically, and single-cell suspensions were prepared using collagenase and dispase. Cells were stained with Hoechst 33342 and sorted with an fluorescence-activated cell sorter (FACS). Isolated SP and main population (MP) cells were analysed by real-time reverse transcription polymerase chain reaction, immunohistochemical localization and cell cycle determination. Two-way analysis of variance and the multiple comparison Scheffè test were used for statistical analysis (P<0.05). Approximately 0.40% of pulp cells in young rats and 0.11% in aged rats comprised SP cells. SP cells expressed a higher mRNA level of ATP-binding cassette transporter G2 (ABCG2), but lower mRNA levels of nestin, alkaline phosphatase, p16 and p57 than MP cells in both age groups. Immunohistochemical observation revealed ABCG2-positive cells localized in the cell-rich zone and nestin in the odontoblastic layer in both groups. Furthermore, the majority of both young and aged SP and MP cells were in growth arrest of the G(0) /G(1) phase. The FACS analysis revealed a decrease in the proportion of SP cells with age, whilst p16 mRNA expression indicated an increase in cell senescence. The cell cycles of SP and MP cells from both young and aged dental pulp were generally in the G0/G1 phase. © 2010 International Endodontic Journal.

  18. Modelling Spread of Oncolytic Viruses in Heterogeneous Cell Populations

    NASA Astrophysics Data System (ADS)

    Ellis, Michael; Dobrovolny, Hana

    2014-03-01

    One of the most promising areas in current cancer research and treatment is the use of viruses to attack cancer cells. A number of oncolytic viruses have been identified to date that possess the ability to destroy or neutralize cancer cells while inflicting minimal damage upon healthy cells. Formulation of predictive models that correctly describe the evolution of infected tumor systems is critical to the successful application of oncolytic virus therapy. A number of different models have been proposed for analysis of the oncolytic virus-infected tumor system, with approaches ranging from traditional coupled differential equations such as the Lotka-Volterra predator-prey models, to contemporary modeling frameworks based on neural networks and cellular automata. Existing models are focused on tumor cells and the effects of virus infection, and offer the potential for improvement by including effects upon normal cells. We have recently extended the traditional framework to a 2-cell model addressing the full cellular system including tumor cells, normal cells, and the impacts of viral infection upon both populations. Analysis of the new framework reveals complex interaction between the populations and potential inability to simultaneously eliminate the virus and tumor populations.

  19. [Sorting of side population cells from multiple myeloma cell lines and analysis of their biological characteristics].

    PubMed

    Zhang, Xiao-Li; Zhang, Li-Na; Huang, Hong-Ming; Ding, Run-Sheng; Shi, Wei; Xu, Rui-Rong; Yu, Xiao-Tang; Jiang, Sheng-Hua

    2014-06-01

    This study was aimed to sort the side population (SP) cells from human multiple myeloma cell lines, then detect the biological characteristics of those SP cells. After Hoechst33342 staining, intracellular Hoechst33342 fluorescence staining differences of myeloma cell lines observed by the fluorescence microscopy. The fluorescence-activated cell sorting (FACS) technology was used to isolate SP cells and main population (MP) cells; proliferative capacity in vitro was determined by cell growth curve; the cell colony forming ability was compared by colony forming test. The CD138 expression was detected by flow cytometry. The expression of ABCG2 mRNA was detected by reverse transcription PCR; CCK-8 assay and colony forming test were used to evaluate the effect of bortezomib on the cell proliferation, vitality and colony forming ability of the two populations. The results showed that the myeloma cell lines had a small proportion of SP cells, especially, RPMI 8226 cells accounted for the highest proportion of SP cells (7.10 ± 2.69)%, which have also been confirmed under the fluorescence microscope; the proliferative activity and cell colony forming ability of SP cells were significantly higher than those of MP cells (P < 0.05). The expression levels of CD138 in SP and MP cells were not significantly different (P > 0.05). RT-PCR results showed that SP cells expressed the drug-resistance gene ABCG2, but MP cells hardly express these genes. The inhibition rate of bortezomib on SP cells was significantly lower than that on MP cells (P < 0.05), however, the difference was not significant (P > 0.05) at bortezomib 40 nmol/L. Bortezomib could reduce colony formation in the both two cell populations, but more severe reduction appeared in the MP cells. It is concluded that the myeloma cell line contain a small amount of SP cells with the cancer stem cell characteristics.

  20. Analysis of individual cell trajectories in lattice-gas cellular automaton models for migrating cell populations.

    PubMed

    Mente, Carsten; Voss-Böhme, Anja; Deutsch, Andreas

    2015-04-01

    Collective dynamics of migrating cell populations drive key processes in tissue formation and maintenance under normal and diseased conditions. Collective cell behavior at the tissue level is typically characterized by considering cell density patterns such as clusters and moving cell fronts. However, there are also important observables of collective dynamics related to individual cell behavior. In particular, individual cell trajectories are footprints of emergent behavior in populations of migrating cells. Lattice-gas cellular automata (LGCA) have proven successful to model and analyze collective behavior arising from interactions of migrating cells. There are well-established methods to analyze cell density patterns in LGCA models. Although LGCA dynamics are defined by cell-based rules, individual cells are not distinguished. Therefore, individual cell trajectories cannot be analyzed in LGCA so far. Here, we extend the classical LGCA framework to allow labeling and tracking of individual cells. We consider cell number conserving LGCA models of migrating cell populations where cell interactions are regulated by local cell density and derive stochastic differential equations approximating individual cell trajectories in LGCA. This result allows the prediction of complex individual cell trajectories emerging in LGCA models and is a basis for model-experiment comparisons at the individual cell level.

  1. The Role of Cardiac Side Population Cells in Cardiac Regeneration

    PubMed Central

    Yellamilli, Amritha; van Berlo, Jop H.

    2016-01-01

    The heart has a limited ability to regenerate. It is important to identify therapeutic strategies that enhance cardiac regeneration in order to replace cardiomyocytes lost during the progression of heart failure. Cardiac progenitor cells are interesting targets for new regenerative therapies because they are self-renewing, multipotent cells located in the heart. Cardiac side population cells (cSPCs), the first cardiac progenitor cells identified in the adult heart, have the ability to differentiate into cardiomyocytes, endothelial cells, smooth muscle cells, and fibroblasts. They become activated in response to cardiac injury and transplantation of cSPCs into the injured heart improves cardiac function. In this review, we will discuss the current literature on the progenitor cell properties and therapeutic potential of cSPCs. This body of work demonstrates the great promise cSPCs hold as targets for new regenerative strategies. PMID:27679798

  2. Lung regeneration: mechanisms, applications and emerging stem cell populations

    PubMed Central

    Kotton, Darrell N; Morrisey, Edward E

    2014-01-01

    Recent studies have shown that the respiratory system has an extensive ability to respond to injury and regenerate lost or damaged cells. The unperturbed adult lung is remarkably quiescent, but after insult or injury progenitor populations can be activated or remaining cells can re-enter the cell cycle. Techniques including cell-lineage tracing and transcriptome analysis have provided novel and exciting insights into how the lungs and trachea regenerate in response to injury and have allowed the identification of pathways important in lung development and regeneration. These studies are now informing approaches for modulating the pathways that may promote endogenous regeneration as well as the generation of exogenous lung cell lineages from pluripotent stem cells. The emerging advances, highlighted in this Review, are providing new techniques and assays for basic mechanistic studies as well as generating new model systems for human disease and strategies for cell replacement. PMID:25100528

  3. Trail networks formed by populations of immune cells

    NASA Astrophysics Data System (ADS)

    Yang, Taeseok Daniel; Kwon, Tae Goo; Park, Jin-sung; Lee, Kyoung J.

    2014-02-01

    Populations of biological cells that communicate with each other can organize themselves to generate large-scale patterns. Examples can be found in diverse systems, ranging from developing embryos, cardiac tissues, chemotaxing ameba and swirling bacteria. The similarity, often shared by the patterns, suggests the existence of some general governing principle. On the other hand, rich diversity and system-specific properties are exhibited, depending on the type of involved cells and the nature of their interactions. The study on the similarity and the diversity constitutes a rapidly growing field of research. Here, we introduce a new class of self-organized patterns of cell populations that we term as ‘cellular trail networks’. They were observed with populations of rat microglia, the immune cells of the brain and the experimental evidence suggested that haptotaxis is the key element responsible for them. The essential features of the observed patterns are well captured by the mathematical model cells that actively crawl and interact with each other through a decomposing but non-diffusing chemical attractant laid down by the cells. Our finding suggests an unusual mechanism of socially cooperative long-range signaling for the crawling immune cells.

  4. Population mechanics: A mathematical framework to study T cell homeostasis.

    PubMed

    Arias, Clemente F; Herrero, Miguel A; Acosta, Francisco J; Fernandez-Arias, Cristina

    2017-08-25

    Unlike other cell types, T cells do not form spatially arranged tissues, but move independently throughout the body. Accordingly, the number of T cells in the organism does not depend on physical constraints imposed by the shape or size of specific organs. Instead, it is determined by competition for interleukins. From the perspective of classical population dynamics, competition for resources seems to be at odds with the observed high clone diversity, leading to the so-called diversity paradox. In this work we make use of population mechanics, a non-standard theoretical approach to T cell homeostasis that accounts for clone diversity as arising from competition for interleukins. The proposed models show that carrying capacities of T cell populations naturally emerge from the balance between interleukins production and consumption. These models also suggest remarkable functional differences in the maintenance of diversity in naïve and memory pools. In particular, the distribution of memory clones would be biased towards clones activated more recently, or responding to more aggressive pathogenic threats. In contrast, permanence of naïve T cell clones would be determined by their affinity for cognate antigens. From this viewpoint, positive and negative selection can be understood as mechanisms to maximize naïve T cell diversity.

  5. A Model for Cell Population Size Control Using Asymmetric Division

    PubMed Central

    Hamidi, Mani; Emberly, Eldon

    2013-01-01

    In multicellular organisms one can find examples where a growing tissue divides up until some final fixed cell number. Asymmetric division plays a prevalent feature in tissue differentiation in these organisms, where the daughters of each asymmetric division inherit unequal amounts of a fate determining molecule and as a result follow different developmental fates. In some tissues the accumulation or decrease of cell cycle regulators acts as an intrinsic timing mechanism governing proliferation. Here we present a minimal model based on asymmetric division and dilution of a cell-cycle regulator that can generate any final population size that might be needed. We show that within the model there are a variety of growth mechanisms from linear to non-linear that can lead to the same final cell count. Interestingly, when we include noise at division we find that there are special final cell population sizes that can be generated with high confidence that are flanked by population sizes that are less robust to division noise. When we include further perturbations in the division process we find that these special populations can remain relatively stable and in some cases even improve in their fidelity. PMID:24040230

  6. Cell Population Tracking and Lineage Construction with Spatiotemporal Context 1

    PubMed Central

    Li, Kang; Chen, Mei; Kanade, Takeo; Miller, Eric D.; Weiss, Lee E.; Campbell, Phil G.

    2008-01-01

    Automated visual-tracking of cell populations in vitro using phase contrast time-lapse microscopy enables quantitative, systematic and high-throughput measurements of cell behaviors. These measurements include the spatiotemporal quantification of cell migration, mitosis, apoptosis, and the construction of cell lineages. The combination of low signal-to-noise ratio of phase contrast microscopy images, high and varying densities of the cell cultures, topological complexities of cell shapes, and wide range of cell behaviors pose many challenges to existing tracking techniques. This paper presents a fully-automated multi-target tracking system that can efficiently cope with these challenges while simultaneously tracking and analyzing thousands of cells observed using time-lapse phase contrast microscopy. The system combines bottom-up and top-down image analysis by integrating multiple collaborative modules, which exploit a fast geometric active contour tracker in conjunction with adaptive interacting multiple models (IMM) motion filtering and spatiotemporal trajectory optimization. The system, which was tested using a variety of cell populations, achieved tracking accuracy in the range of 86.9%–92.5%. PMID:18656418

  7. Modeling Bacterial Population Growth from Stochastic Single-Cell Dynamics

    PubMed Central

    Molina, Ignacio; Theodoropoulos, Constantinos

    2014-01-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  8. Modeling bacterial population growth from stochastic single-cell dynamics.

    PubMed

    Alonso, Antonio A; Molina, Ignacio; Theodoropoulos, Constantinos

    2014-09-01

    A few bacterial cells may be sufficient to produce a food-borne illness outbreak, provided that they are capable of adapting and proliferating on a food matrix. This is why any quantitative health risk assessment policy must incorporate methods to accurately predict the growth of bacterial populations from a small number of pathogens. In this aim, mathematical models have become a powerful tool. Unfortunately, at low cell concentrations, standard deterministic models fail to predict the fate of the population, essentially because the heterogeneity between individuals becomes relevant. In this work, a stochastic differential equation (SDE) model is proposed to describe variability within single-cell growth and division and to simulate population growth from a given initial number of individuals. We provide evidence of the model ability to explain the observed distributions of times to division, including the lag time produced by the adaptation to the environment, by comparing model predictions with experiments from the literature for Escherichia coli, Listeria innocua, and Salmonella enterica. The model is shown to accurately predict experimental growth population dynamics for both small and large microbial populations. The use of stochastic models for the estimation of parameters to successfully fit experimental data is a particularly challenging problem. For instance, if Monte Carlo methods are employed to model the required distributions of times to division, the parameter estimation problem can become numerically intractable. We overcame this limitation by converting the stochastic description to a partial differential equation (backward Kolmogorov) instead, which relates to the distribution of division times. Contrary to previous stochastic formulations based on random parameters, the present model is capable of explaining the variability observed in populations that result from the growth of a small number of initial cells as well as the lack of it compared to

  9. [Identification of a multihit model for nonhomogeneous cell population].

    PubMed

    Pavlova, L V; Khanin, L G; Iakovlev, A Iu

    1992-01-01

    A generalized multihit-multitarget model for a nonhomogeneous, with respect to radiosensitivity, population of irradiated cells is presented. The least squares and the maximum likelihood estimation of the model parameters is given. The estimates quality is evaluated by the computer-based study. The results obtained show the possibility of the parametric identification of cell radiosensitivity distribution according to the "dose-response" data.

  10. Ventrally emigrating neural tube (VENT) cells: a second neural tube-derived cell population.

    PubMed

    Dickinson, Douglas P; Machnicki, Michal; Ali, Mohammed M; Zhang, Zhanying; Sohal, Gurkirpal S

    2004-08-01

    Two embryological fates for cells of the neural tube are well established. Cells from the dorsal part of the developing neural tube emigrate and become neural crest cells, which in turn contribute to the development of the peripheral nervous system and a variety of non-neural structures. Other neural tube cells form the neurons and glial cells of the central nervous system (CNS). This has led to the neural crest being treated as the sole neural tube-derived emigrating cell population, with the remaining neural tube cells assumed to be restricted to forming the CNS. However, this restriction has not been tested fully. Our investigations of chick, quail and duck embryos utilizing a variety of different labelling techniques (DiI, LacZ, GFP and quail chimera) demonstrate the existence of a second neural tube-derived emigrating cell population. These cells originate from the ventral part of the cranial neural tube, emigrate at the exit/entry site of the cranial nerves, migrate in association with the nerves and populate their target tissues. On the basis of its site of origin and route of migration we have named this cell population the ventrally emigrating neural tube (VENT) cells. VENT cells also differ from neural crest cells in that they emigrate considerably after the emigration of neural crest cells, and lack expression of the neural crest cell antigen HNK-1. VENT cells are multipotent, differentiating into cell types belonging to all four basic tissues in the body: the nerve, muscle, connective and epithelium. Thus, the neural tube provides at least two cell populations--neural crest and VENT cells--that contribute to the development of the peripheral nervous system and various non-neural structures. This review describes the origin of the idea of VENT cells, and discusses evidence for their existence and subsequent fates.

  11. CELL POPULATION KINETICS OF AN OSTEOGENIC TISSUE · I

    PubMed Central

    Owen, Maureen

    1963-01-01

    Cell proliferation on the actively growing periosteal surface of the femur of rabbits aged 2 weeks has been investigated using autoradiographic techniques. Injections of tritiated glycine and tritiated thymidine were given simultaneously and the animals sacrificed at intervals from 1 hour to 5 days after injection. The glycine labeled the position of the bone surface at the time of injection and the thymidine labeled the cells which were synthesising DNA. The rate of increase in the cell population was determined by counting the number of cells beyond the glycine label at different times after injection. The cell kinetics of the fibroblast-pre-osteoblast-osteoblast-osteocyte system has been studied. The fibroblasts are relatively unimportant from the point of view of increase in the cell population. The main site of cell proliferation is the layer of pre-osteoblasts on the periosteal surface. The rate of movement of cells from the pre-osteoblast to the osteoblast and osteocyte compartments has been measured. The incorporation of osteoblasts into the bone is not a random process, but it appears that the osteoblast must spend a certain time on the periosteal surface before becoming either an osteocyte or a relatively inactive osteoblast lining an haversian canal. It was estimated that, on an average, an osteoblast produces 2 or 3 times its own volume of matrix during its most active period on the periosteal surface. PMID:14069793

  12. Deformation measurement of individual cells in large populations using a single-cell microchamber array chip.

    PubMed

    Doh, I; Lee, W C; Cho, Y-H; Pisano, A P; Kuypers, F A

    2012-04-23

    We analyze the deformability of individual red blood cells (RBCs) using SiCMA technology. Our approach is adequate to quickly measure large numbers of individual cells in heterogeneous populations. Individual cells are trapped in a large-scale array of micro-wells, and dielectrophoretic (DEP) force is applied to deform the cells. The simple structures of micro-wells and DEP electrodes facilitate the analysis of thousands of RBCs in parallel. This unique method allows the correlation of red cell deformation with cell surface and cytosolic characteristics to define the distribution of individual cellular characteristics in heterogeneous populations.

  13. Purification of specific cell population by fluorescence activated cell sorting (FACS).

    PubMed

    Basu, Sreemanti; Campbell, Hope M; Dittel, Bonnie N; Ray, Avijit

    2010-07-10

    Experimental and clinical studies often require highly purified cell populations. FACS is a technique of choice to purify cell populations of known phenotype. Other bulk methods of purification include panning, complement depletion and magnetic bead separation. However, FACS has several advantages over other available methods. FACS is the preferred method when very high purity of the desired population is required, when the target cell population expresses a very low level of the identifying marker or when cell populations require separation based on differential marker density. In addition, FACS is the only available purification technique to isolate cells based on internal staining or intracellular protein expression, such as a genetically modified fluorescent protein marker. FACS allows the purification of individual cells based on size, granularity and fluorescence. In order to purify cells of interest, they are first stained with fluorescently-tagged monoclonal antibodies (mAb), which recognize specific surface markers on the desired cell population (1). Negative selection of unstained cells is also possible. FACS purification requires a flow cytometer with sorting capacity and the appropriate software. For FACS, cells in suspension are passed as a stream in droplets with each containing a single cell in front of a laser. The fluorescence detection system detects cells of interest based on predetermined fluorescent parameters of the cells. The instrument applies a charge to the droplet containing a cell of interest and an electrostatic deflection system facilitates collection of the charged droplets into appropriate collection tubes (2). The success of staining and thereby sorting depends largely on the selection of the identifying markers and the choice of mAb. Sorting parameters can be adjusted depending on the requirement of purity and yield. Although FACS requires specialized equipment and personnel training, it is the method of choice for isolation of

  14. Intraocular pressure (IOP) in relation to four levels of daily geomagnetic and extreme yearly solar activity

    NASA Astrophysics Data System (ADS)

    Stoupel, E.; Goldenfeld, M.; Shimshoni, M.; Siegel, R.

    1993-03-01

    The link between geomagnetic field activity (GMA), solar activity and intraocular pressure (IOP) in healthy individuals was investigated. The IOP of 485 patients (970 eyes) was recorded over three nonconsecutive years (1979, 1986, 1989) which were characterized by maximal solar activity (1979, 1989) or minimal solar activity (1986). The measurements were also correlated with four categories of GMA activity: quiet (level I0), unsettled (II0), active (III0), and stormy (IV0). Participants were also differentiated by age and sex. We found that IOP was lowest on days of level IV0 (stormy) GMA. The drop in IOP concomitant with a decrease in GMA level was more significant during periods of low solar activity and in persons over 65 years of age. There was a trend towards higher IOP values on days of levels II0 and IV0 GMA in years of high solar activity. Differences between the sexes and among individuals younger than 65 years were not significant. Our results show an interesting aspect of environmental influence on the healthy population.

  15. Triplet correlations among similarly tuned cells impact population coding

    PubMed Central

    Cayco-Gajic, Natasha A.; Zylberberg, Joel; Shea-Brown, Eric

    2015-01-01

    Which statistical features of spiking activity matter for how stimuli are encoded in neural populations? A vast body of work has explored how firing rates in individual cells and correlations in the spikes of cell pairs impact coding. Recent experiments have shown evidence for the existence of higher-order spiking correlations, which describe simultaneous firing in triplets and larger ensembles of cells; however, little is known about their impact on encoded stimulus information. Here, we take a first step toward closing this gap. We vary triplet correlations in small (approximately 10 cell) neural populations while keeping single cell and pairwise statistics fixed at typically reported values. This connection with empirically observed lower-order statistics is important, as it places strong constraints on the level of triplet correlations that can occur. For each value of triplet correlations, we estimate the performance of the neural population on a two-stimulus discrimination task. We find that the allowed changes in the level of triplet correlations can significantly enhance coding, in particular if triplet correlations differ for the two stimuli. In this scenario, triplet correlations must be included in order to accurately quantify the functionality of neural populations. When both stimuli elicit similar triplet correlations, however, pairwise models provide relatively accurate descriptions of coding accuracy. We explain our findings geometrically via the skew that triplet correlations induce in population-wide distributions of neural responses. Finally, we calculate how many samples are necessary to accurately measure spiking correlations of this type, providing an estimate of the necessary recording times in future experiments. PMID:26042024

  16. Enriching and characterizing cancer stem cell sub-populations in the WM115 melanoma cell line.

    PubMed

    Chandrasekaran, Siddarth; DeLouise, Lisa A

    2011-12-01

    Cutaneous melanoma is an increasingly common and potentially lethal malignancy of melanocytes, the melanin producing cells normally located in the basal layer of the skin epidermis. Despite major advances in cancer chemotherapeutics and immunotherapy, the success in treating metastatic melanoma remains poor. The notion that cancer stem cells (CSCs) play a key role in melanoma progression is well received. Therefore, isolating and characterizing CSCs is of critical importance for designing new therapeutic strategies that target this unique tumor initiating cell sub-population. In this work, we present a simple in vitro method, employing cell culture on polydimethylsiloxane (PDMS) and transfer back onto standard tissue culture plate, to enrich a non-adherent spheroid (NA/S) forming and an adherent monolayer (AM) cell sub-populations from the tumorigenic WM115 melanoma cell line. The phenotypes of the morphologically distinct NA/S and AM sub-populations were further characterized by quantifying the expression of stem cell markers, CD20 and CD271. Flow cytometric analysis found 2.32% of the cells in the NA/S sub-population were CD20+ CD271+ whereas only 0.27% of the cells in the AM sub-population were CD20+ CD271+. When the NA/S sub-population was cultured back onto PDMS it resulted in the further enrichment of CD20+ CD271+ cells to 14.7%. We used microbubble arrays to quantify the in vitro clonogenic potential of the NA/S and AM cell sub-populations. Microbubbles are spherical cavities, ~160 μm in diameter with 60 μm circular openings, formed in PDMS using the gas expansion molding (GEM) process. Cells from each sub-population were seeded, under limiting dilution conditions, onto separate arrays containing 1215 microbubble wells. After five days in culture, wells seeded with 1, 2, 3 and >3 cells per microbubble well were inspected for cell proliferation. The Extreme Limiting Dilutions Analysis (ELDA) determined a ~58% clonal survival (1 in every 1.72 cells) for the

  17. γδ T Cells Shape Pre-Immune Peripheral B Cell Populations

    PubMed Central

    Huang, Yafei; Getahun, Andrew; Heiser, Ryan A.; Detanico, Thiago O.; Aviszus, Katja; Kirchenbaum, Greg A.; Casper, Tamara L.; Huang, Chunjian; Aydintug, M. Kemal; Carding, Simon R.; Ikuta, Koichi; Huang, Hua; Wysocki, Lawrence J.; Cambier, John C.; O’Brien, Rebecca L.; Born, Willi K.

    2015-01-01

    We previously reported that selective ablation of certain γδ T cell subsets rather than removal of all γδ T cells, strongly affects serum antibody levels in non-immunized mice. This type of manipulation also changed T cells including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4+ and Vγ6+ γδ T cells (B6.TCR-Vγ4−/−/6−/−), we observed expanded Vγ1+ cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4−/−/6−/− mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of antibody-producing cells, and serum levels of antibodies, IL-4 and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain, and their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Together, these data demonstrate the capability of γδ T cells of modulating size and productivity of pre-immune peripheral B cell populations. PMID:26582947

  18. γδ T Cells Shape Preimmune Peripheral B Cell Populations.

    PubMed

    Huang, Yafei; Getahun, Andrew; Heiser, Ryan A; Detanico, Thiago O; Aviszus, Katja; Kirchenbaum, Greg A; Casper, Tamara L; Huang, Chunjian; Aydintug, M Kemal; Carding, Simon R; Ikuta, Koichi; Huang, Hua; Wysocki, Lawrence J; Cambier, John C; O'Brien, Rebecca L; Born, Willi K

    2016-01-01

    We previously reported that selective ablation of certain γδ T cell subsets, rather than removal of all γδ T cells, strongly affects serum Ab levels in nonimmunized mice. This type of manipulation also changed T cells, including residual γδ T cells, revealing some interdependence of γδ T cell populations. For example, in mice lacking Vγ4(+) and Vγ6(+) γδ T cells (B6.TCR-Vγ4(-/-)/6(-/-)), we observed expanded Vγ1(+) cells, which changed in composition and activation and produced more IL-4 upon stimulation in vitro, increased IL-4 production by αβ T cells as well as spontaneous germinal center formation in the spleen, and elevated serum Ig and autoantibodies. We therefore examined B cell populations in this and other γδ-deficient mouse strains. Whereas immature bone marrow B cells remained largely unchanged, peripheral B cells underwent several changes. Specifically, transitional and mature B cells in the spleen of B6.TCR-Vγ4(-/-)/6(-/-) mice and other peripheral B cell populations were diminished, most of all splenic marginal zone (MZ) B cells. However, relative frequencies and absolute numbers of Ab-producing cells, as well as serum levels of Abs, IL-4, and BAFF, were increased. Cell transfers confirmed that these changes are directly dependent on the altered γδ T cells in this strain and on their enhanced potential of producing IL-4. Further evidence suggests the possibility of direct interactions between γδ T cells and B cells in the splenic MZ. Taken together, these data demonstrate the capability of γδ T cells of modulating size and productivity of preimmune peripheral B cell populations. Copyright © 2015 by The American Association of Immunologists, Inc.

  19. A novel perivascular cell population in the zebrafish brain

    PubMed Central

    Galanternik, Marina Venero; Castranova, Daniel; Gore, Aniket V; Blewett, Nathan H; Jung, Hyun Min; Stratman, Amber N; Kirby, Martha R; Iben, James; Miller, Mayumi F; Kawakami, Koichi; Maraia, Richard J; Weinstein, Brant M

    2017-01-01

    The blood-brain barrier is essential for the proper homeostasis and function of the CNS, but its mechanism of function is poorly understood. Perivascular cells surrounding brain blood vessels are thought to be important for blood-brain barrier establishment, but their roles are not well defined. Here, we describe a novel perivascular cell population closely associated with blood vessels on the zebrafish brain. Based on similarities in their morphology, location, and scavenger behavior, these cells appear to be the zebrafish equivalent of cells variably characterized as Fluorescent Granular Perithelial cells (FGPs), perivascular macrophages, or ‘Mato Cells’ in mammals. Despite their macrophage-like morphology and perivascular location, zebrafish FGPs appear molecularly most similar to lymphatic endothelium, and our imaging studies suggest that these cells emerge by differentiation from endothelium of the optic choroidal vascular plexus. Our findings provide the first report of a perivascular cell population in the brain derived from vascular endothelium. DOI: http://dx.doi.org/10.7554/eLife.24369.001 PMID:28395729

  20. Modeling circadian clock-cell cycle interaction effects on cell population growth rates.

    PubMed

    El Cheikh, R; Bernard, S; El Khatib, N

    2014-12-21

    The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells which cannot be explained by a molecular model or a population model alone. In this work, we present a combined molecular-population model that studies how coupling the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain to the circadian clock with different rational period ratios and characterize multiple domains of entrainment. We show that coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly, we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it elsewhere. Combining a molecular model to a population model offers new insight on the influence of the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering treatments at a specific time of the day. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Functional heterogeneity of side population cells in skeletal muscle

    SciTech Connect

    Uezumi, Akiyoshi; Ojima, Koichi; Fukada, So-ichiro; Ikemoto, Madoka; Masuda, Satoru; Miyagoe-Suzuki, Yuko; Takeda, Shin'ichi . E-mail: takeda@ncnp.go.jp

    2006-03-17

    Skeletal muscle regeneration has been exclusively attributed to myogenic precursors, satellite cells. A stem cell-rich fraction referred to as side population (SP) cells also resides in skeletal muscle, but its roles in muscle regeneration remain unclear. We found that muscle SP cells could be subdivided into three sub-fractions using CD31 and CD45 markers. The majority of SP cells in normal non-regenerating muscle expressed CD31 and had endothelial characteristics. However, CD31{sup -}CD45{sup -} SP cells, which are a minor subpopulation in normal muscle, actively proliferated upon muscle injury and expressed not only several regulatory genes for muscle regeneration but also some mesenchymal lineage markers. CD31{sup -}CD45{sup -} SP cells showed the greatest myogenic potential among three SP sub-fractions, but indeed revealed mesenchymal potentials in vitro. These SP cells preferentially differentiated into myofibers after intramuscular transplantation in vivo. Our results revealed the heterogeneity of muscle SP cells and suggest that CD31{sup -}CD45{sup -} SP cells participate in muscle regeneration.

  2. Unmasking Chaotic Attributes in Time Series of Living Cell Populations

    PubMed Central

    Laurent, Michel; Deschatrette, Jean; Wolfrom, Claire M.

    2010-01-01

    Background Long-range oscillations of the mammalian cell proliferation rate are commonly observed both in vivo and in vitro. Such complicated dynamics are generally the result of a combination of stochastic events and deterministic regulation. Assessing the role, if any, of chaotic regulation is difficult. However, unmasking chaotic dynamics is essential for analysis of cellular processes related to proliferation rate, including metabolic activity, telomere homeostasis, gene expression, and tumor growth. Methodology/Principal Findings Using a simple, original, nonlinear method based on return maps, we previously found a geometrical deterministic structure coordinating such fluctuations in populations of various cell types. However, nonlinearity and determinism are only necessary conditions for chaos; they do not by themselves constitute a proof of chaotic dynamics. Therefore, we used the same analytical method to analyze the oscillations of four well-known, low-dimensional, chaotic oscillators, originally designed in diverse settings and all possibly well-adapted to model the fluctuations of cell populations: the Lorenz, Rössler, Verhulst and Duffing oscillators. All four systems also display this geometrical structure, coordinating the oscillations of one or two variables of the oscillator. No such structure could be observed in periodic or stochastic fluctuations. Conclusion/Significance Theoretical models predict various cell population dynamics, from stable through periodically oscillating to a chaotic regime. Periodic and stochastic fluctuations were first described long ago in various mammalian cells, but by contrast, chaotic regulation had not previously been evidenced. The findings with our nonlinear geometrical approach are entirely consistent with the notion that fluctuations of cell populations can be chaotically controlled. PMID:20179755

  3. Limits to collaborative concentration sensing in cell populations

    NASA Astrophysics Data System (ADS)

    Fancher, Sean; Mugler, Andrew

    Cells sense chemical concentrations with a precision that approaches the physical limit set by molecular diffusion. Recent experiments have vividly shown that cells can beat this limit when they communicate. We derive the physical limits to concentration sensing for cells that communicate over short distances by directly exchanging small molecules across their membranes (juxtacrine signaling), and over long distances by secreting and absorbing a diffusive messenger molecule (paracrine signaling). In the latter case, we find that the cell spacing that optimizes precision can be large, due to a tradeoff between maintaining communication strength and reducing signal cross-correlations. This leads to the surprising result that paracrine signaling allows more precise sensing than juxtacrine signaling for sufficiently large populations, even though this means that the cells are spaced far apart. We compare our results to recent experiments. This work is supported by a Grant from the Simons Foundation (376198 to A.M.).

  4. Multiplexed Population Coding of Stimulus Properties by Leech Mechanosensory Cells.

    PubMed

    Pirschel, Friederice; Kretzberg, Jutta

    2016-03-30

    Sensory coding has long been discussed in terms of a dichotomy between spike timing and rate coding. However, recent studies found that in primate mechanoperception and other sensory systems, spike rates and timing of cell populations complement each other. They simultaneously carry information about different stimulus properties in a multiplexed way. Here, we present evidence for multiplexed encoding of tactile skin stimulation in the tiny population of leech mechanoreceptors, consisting of only 10 cells of two types with overlapping receptive fields. Each mechanoreceptor neuron of the leech varies spike count and response latency to both touch intensity and location, leading to ambiguous responses to different stimuli. Nevertheless, three different stimulus estimation techniques consistently reveal that the neuronal population allows reliable decoding of both stimulus properties. For the two mechanoreceptor types, the transient responses of T (touch) cells and the sustained responses of P (pressure) cells, the relative timing of the first spikes of two mechanoreceptors encodes stimulus location, whereas summed spike counts represent touch intensity. Differences between the cell types become evident in responses to combined stimulus properties. The best estimation performance for stimulus location is obtained from the relative first spike timing of the faster and temporally more precise T cells. Simultaneously, the sustained responses of P cells indicate touch intensity by summed spike counts and stimulus duration by the duration of spike responses. The striking similarities of these results with previous findings on primate mechanosensory afferents suggest multiplexed population coding as a general principle of somatosensation. Multiplexing, the simultaneous encoding of different stimulus properties by distinct neuronal response features, has recently been suggested as a mechanism used in several sensory systems, including primate somatosensation. While a

  5. Transcriptional and phenotypical heterogeneity of Trypanosoma cruzi cell populations

    PubMed Central

    Seco-Hidalgo, Víctor; De Pablos, Luis Miguel; Osuna, Antonio

    2015-01-01

    Trypanosoma cruzi has a complex life cycle comprising pools of cell populations which circulate among humans, vectors, sylvatic reservoirs and domestic animals. Recent experimental evidence has demonstrated the importance of clonal variations for parasite population dynamics, survival and evolution. By limiting dilution assays, we have isolated seven isogenic clonal cell lines derived from the Pan4 strain of T. cruzi. Applying different molecular techniques, we have been able to provide a comprehensive characterization of the expression heterogeneity in the mucin-associated surface protein (MASP) gene family, where all the clonal isogenic populations were transcriptionally different. Hierarchical cluster analysis and sequence comparison among different MASP cDNA libraries showed that, despite the great variability in MASP expression, some members of the transcriptome (including MASP pseudogenes) are conserved, not only in the life-cycle stages but also among different strains of T. cruzi. Finally, other important aspects for the parasite, such as growth, spontaneous metacyclogenesis or excretion of different catabolites, were also compared among the clones, demonstrating that T. cruzi populations of cells are also phenotypically heterogeneous. Although the evolutionary strategy that sustains the MASP expression polymorphism remains unknown, we suggest that MASP clonal variability and phenotypic heterogeneities found in this study might provide an advantage, allowing a rapid response to environmental pressure or changes during the life cycle of T. cruzi. PMID:26674416

  6. Stem cell populations in the heart and the role of Isl1 positive cells.

    PubMed

    Di Felice, V; Zummo, G

    2013-05-09

    Cardiac progenitor cells are multipotent stem cells isolated from both embryonic and adult hearts in several species and are able to differentiate at least into smooth muscle cells, endothelial cells and cardiomyocytes. The embryonic origin of these cells has not yet been demonstrated, but it has been suggested that these cells may derive from the first and secondary heart fields and from the neural crest. In the last decade, two diffe-rent populations of cardiac progenitor or stem cells have been identified and isolated, i.e., the Islet1 positive (Isl1+) and c-Kit positive (c-Kit+)/Stem Cell Antigen-1 positive (Sca-1+) cells. Until 2012, these two populations have been considered two separate entities with different roles and a different origin, but new evidence now suggests a con-nection between the two populations and that the two populations may represent two subpopulations of a unique pool of cardiac stem cells, derived from a common immature primitive cell. To find a common consensus on this concept is very important in furthe-ring the application of stem cells to cardiac tissue engineering.

  7. Hydrodynamic stretching of single cells for large population mechanical phenotyping

    PubMed Central

    Gossett, Daniel R.; Tse, Henry T. K.; Lee, Serena A.; Ying, Yong; Lindgren, Anne G.; Yang, Otto O.; Rao, Jianyu; Clark, Amander T.; Di Carlo, Dino

    2012-01-01

    Cell state is often assayed through measurement of biochemical and biophysical markers. Although biochemical markers have been widely used, intrinsic biophysical markers, such as the ability to mechanically deform under a load, are advantageous in that they do not require costly labeling or sample preparation. However, current techniques that assay cell mechanical properties have had limited adoption in clinical and cell biology research applications. Here, we demonstrate an automated microfluidic technology capable of probing single-cell deformability at approximately 2,000 cells/s. The method uses inertial focusing to uniformly deliver cells to a stretching extensional flow where cells are deformed at high strain rates, imaged with a high-speed camera, and computationally analyzed to extract quantitative parameters. This approach allows us to analyze cells at throughputs orders of magnitude faster than previously reported biophysical flow cytometers and single-cell mechanics tools, while creating easily observable larger strains and limiting user time commitment and bias through automation. Using this approach we rapidly assay the deformability of native populations of leukocytes and malignant cells in pleural effusions and accurately predict disease state in patients with cancer and immune activation with a sensitivity of 91% and a specificity of 86%. As a tool for biological research, we show the deformability we measure is an early biomarker for pluripotent stem cell differentiation and is likely linked to nuclear structural changes. Microfluidic deformability cytometry brings the statistical accuracy of traditional flow cytometric techniques to label-free biophysical biomarkers, enabling applications in clinical diagnostics, stem cell characterization, and single-cell biophysics. PMID:22547795

  8. T Regulatory Cells Support Plasma Cell Populations in the Bone Marrow.

    PubMed

    Glatman Zaretsky, Arielle; Konradt, Christoph; Dépis, Fabien; Wing, James B; Goenka, Radhika; Atria, Daniela Gomez; Silver, Jonathan S; Cho, Sunglim; Wolf, Amaya I; Quinn, William J; Engiles, Julie B; Brown, Dorothy C; Beiting, Daniel; Erikson, Jan; Allman, David; Cancro, Michael P; Sakaguchi, Shimon; Lu, Li-Fan; Benoist, Christophe O; Hunter, Christopher A

    2017-02-21

    Long-lived plasma cells (PCs) in the bone marrow (BM) are a critical source of antibodies after infection or vaccination, but questions remain about the factors that control PCs. We found that systemic infection alters the BM, greatly reducing PCs and regulatory T (Treg) cells, a population that contributes to immune privilege in the BM. The use of intravital imaging revealed that BM Treg cells display a distinct behavior characterized by sustained co-localization with PCs and CD11c-YFP(+) cells. Gene expression profiling indicated that BM Treg cells express high levels of Treg effector molecules, and CTLA-4 deletion in these cells resulted in elevated PCs. Furthermore, preservation of Treg cells during systemic infection prevents PC loss, while Treg cell depletion in uninfected mice reduced PC populations. These studies suggest a role for Treg cells in PC biology and provide a potential target for the modulation of PCs during vaccine-induced humoral responses or autoimmunity.

  9. A microfluidic device for depositing and addressing two cell populations with intercellular population communication capability.

    PubMed

    Lovchik, Robert D; Tonna, Noemi; Bianco, Fabio; Matteoli, Michela; Delamarche, Emmanuel

    2010-04-01

    We present a method for depositing cells in the microchambers of a sealed microfluidic device and establishing flow across the chambers independently and serially. The device comprises a transparent poly(dimethylsiloxane) (PDMS) microfluidic network (MFN) having 2 cell chambers with a volume of 0.49 microL, 6 microchannels for servicing the chambers, and 1 microchannel linking both chambers. The MFN is sealed with a Si chip having 6 vias and ports that can be left open or connected to high-precision pumps. Liquids are drawn through each chamber in parallel or sequentially at flow rates from 0.1 to 10 microL min(-1). Plugs of liquid as small as 0.5 microL can be passed in one chamber within 5 s to 5 min. Plugs of liquid can also be introduced into a chamber for residence times of up to 30 min. By injecting different liquids into 3 ports, 3 adjacent laminar streams of liquid can be drawn inside one chamber with lateral concentration gradients between the streams ranging from 20 to 500 microm. The flexibility of this device for depositing cells and exposing them to liquids in parallel or serially is illustrated by depositing two types of cells, murine N9 microglia and human SH-S5Y5 neuroblastoma. Microfluidic communication between the chambers is illustrated by stimulating N9 microglia using ATP to induce these cells to release plasma membrane vesicles. The vesicles are drawn through the second chamber containing neuroblastoma and collected in a port of the device for off-chip analysis using confocal fluorescence microscopy. Cells in the MFN can also be fixed using a solution of formaldehyde for further analysis after disassembly of the MFN and Si lid. This microfluidic device offers a simple, flexible, and powerful method for depositing two cell populations in separate chambers and may help investigating pathways between the cells populations.

  10. Isolation of side population cells in B-cell non-Hodgkin's lymphomas.

    PubMed

    Lee, Mi Ran; Ju, Hyun-Jeong; Kim, Byung Soo; Ko, Young Hyeh; Kim, Won Seog; Kim, Seok Jin

    2013-01-01

    Side population (SP) cells are characterized by the ability to exclude Hoechst 33342 dye due to high expression of the ATP-binding cassette transporter. This ability is associated with drug-resistant characteristics of cancer stem cells. We analyzed SP cells from human B-cell non-Hodgkin's lymphoma cell lines and primary cells derived from patients and compared them with non-SP (NSP) cells. SP cells comprised a minor fraction of all cells ranging from 1.5 ± 1.8 to 8.3 ± 5.7% in cell lines and had higher ABCG2 expression than NSP cells. SP cells had better cell viability, colony-forming ability and drug resistance than NSP cells. The SP cells also showed stem cell-like characteristics, including elevated telomerase activity and higher expression of OCT4 and NANOG. A cDNA microarray demonstrated that SP cells had decreased expression of genes associated with apoptosis and cell death compared to NSP cells. The presence of SP cells might imply the possibility of lymphoma stem cells and be associated with a malignant potential of B-cell lymphoma. Copyright © 2012 S. Karger AG, Basel.

  11. Quantum interference in a four-level system of a {sup 87}Rb atom: Effects of spontaneously generated coherence

    SciTech Connect

    Wang Dongsheng; Zheng Yujun

    2011-01-15

    In this work, the effects of quantum interference and spontaneously generated coherence (SGC) are theoretically analyzed in a four-level system of a {sup 87}Rb atom. For the effects of SGC, we find that a new kind of electromagnetically induced transparency channel can be induced due to destructive interference, and the nonlinear Kerr absorption can be coherently narrowed or eliminated under different strengths of the coupling and switching fields.

  12. Coherent Control of the Goos—Hänchen Shifts in a Four-Level N Type Atomic Medium

    NASA Astrophysics Data System (ADS)

    Parisa, Maboodi; Soheila, Hemmatzadeh; Seyyed, Hossein Asadpour; H. Rahimpour, Soleimani

    2014-12-01

    The behavior of the Goos—Hänchen (GH) shifts of the reflected and transmitted probe light beams is theoretically investigated. In a fixed geometrical configuration, the effect of quantum interference induced by spontaneous emission on the phase control of the GH shifts is analyzed in this paper. It is found that in a four-level N-type atomic system as an intracavity medium, the GH shifts of the reflected and transmitted probe light beam are completely phase dependent.

  13. Monte Carlo approach to tissue-cell populations

    NASA Astrophysics Data System (ADS)

    Drasdo, D.; Kree, R.; McCaskill, J. S.

    1995-12-01

    We describe a stochastic dynamics of tissue cells with special emphasis on epithelial cells and fibro- blasts and fibrocytes of the connective tissue. Pattern formation and growth characteristics of such cell populations in culture are investigated numerically by Monte Carlo simulations for quasi-two-dimensional systems of cells. A number of quantitative predictions are obtained which may be confronted with experimental results. Furthermore we introduce several biologically motivated variants of our basic model and briefly discuss the simulation of two dimensional analogs of two complex processes in tissues: the growth of a sarcoma across an epithelial boundary and the wound healing of a skin cut. As compared to other approaches, we find the Monte Carlo approach to tissue growth and structure to be particularly simple and flexible. It allows for a hierarchy of models reaching from global description of birth-death processes to very specific features of intracellular dynamics. (c) 1995 The American Physical Society

  14. T-cell receptor variable region gene usage in T-cell populations.

    PubMed Central

    Garman, R D; Ko, J L; Vulpe, C D; Raulet, D H

    1986-01-01

    We have examined T-cell receptor alpha- and beta-chain variable (V) region gene usage in T-cell populations predicted to have different major histocompatibility complex-restriction specificities. Using a sensitive ribonuclease protection assay to measure T-cell receptor mRNA levels, we found no striking differences in the usage of three V alpha genes and three V beta genes in T-cell populations from three congeneic H-2-disparate strains of mice and between the mutually exclusive Ly2+ L3T4- and Ly2- L3T4+ T-cell subpopulations. These results suggest that major histocompatibility complex restriction cannot be explained by the differential usage of nonoverlapping V alpha or V beta gene pools. In contrast, striking but unpredictable differences were seen in V gene usage in populations of T cells selected by activation with particular alloantigens. Images PMID:3487085

  15. A preliminary study of side population cells in human gastric cancer cell line HGC-27.

    PubMed

    Gao, Ganglong; Sun, Zhenliang; Wenyong, Liu; Dongxia, Ye; Zhao, Runjia; Zhang, Xueli

    2015-03-16

    Cancer stem cell-like side population (SP) cells, which may be responsible for recurrence, tumor metastasis, and resistance to cancer therapy, have been identified and characterized in several types of cell lines from gastric cancer. However, there is no report on isolation of SP cells from human gastric cancer cell line HGC-27. This study aims to analyze the proportion of SP cells in HGC-27 cell line, differentiate SP from non-side population (NSP) cells, and determine whether the SP cells have certain biological properties of stem cells. (1) HGC-27 suspension was prepared and stained with Hoechst33342 and PI for flow cytometric isolation of SP (2). Differences in proliferation and stemness-related gene expression profiles (CD133, CD44, OCT-4, MDR1, EpCAM, and ABCG2) between SP and NSP cells were detected by gastric formation assay and quantitative real-time PCR (3). Oncogenicity of SP and NSP cells was determined in nude mice in vivo. (1) SP cells accounted for 0.1-1.0% of HGC-27 cells, and decreased to 0% after verapamil inhibition. Using flow cytometry, we sorted 7.5×10⁵ SP cells and most HGC-27 cells were NSP cells (2). Gastric formation assay and MTT demonstrated that there was a significant difference in proliferation between SP and NSP cells. Gene expression analysis showed that the expression of genes was significantly higher in SP cells (3). The oncogenicity experiment in nude mice revealed that 105 SP cells were able to form tumors, which demonstrated higher tumorigenicity than non-SP cells. These results collectively suggested that SP cells from HGC-27 cell line have some cancer stem cell properties and could be used for studying the pathogenesis of gastric cancer, which may contribute to discovery of novel therapeutic targets.

  16. Classification method for heterogeneity in monoclonal cell population

    NASA Astrophysics Data System (ADS)

    Aburatani, S.; Tashiro, K.; Kuhara, S.

    2015-09-01

    Monoclonal cell populations are known to be composed of heterogeneous subpopulations, thus complicating the data analysis. To gain clear insights into the mechanisms of cellular systems, biological data from a homogeneous cell population should be obtained. In this study, we developed a method based on Latent Profile Analysis (LPA) combined with Confirmatory Factor Analysis (CFA) to divide mixed data into classes, depending on their heterogeneity. In general cluster analysis, the number of measured points is a constraint, and thereby the data must be classified into fewer groups than the number of samples. By our newly developed method, the measured data can be divided into groups depending on their latent effects, without constraints. Our method is useful to clarify all types of omics data, including transcriptome, proteome and metabolic information.

  17. From single-cell genetic architecture to cell population dynamics: quantitatively decomposing the effects of different population heterogeneity sources for a genetic network with positive feedback architecture.

    PubMed

    Mantzaris, Nikos V

    2007-06-15

    Phenotypic cell-to-cell variability or cell population heterogeneity originates from two fundamentally different sources: unequal partitioning of cellular material at cell division and stochastic fluctuations associated with intracellular reactions. We developed a mathematical and computational framework that can quantitatively isolate both heterogeneity sources and applied it to a genetic network with positive feedback architecture. The framework consists of three vastly different mathematical formulations: a), a continuum model, which completely neglects population heterogeneity; b), a deterministic cell population balance model, which accounts for population heterogeneity originating only from unequal partitioning at cell division; and c), a fully stochastic model accommodating both sources of population heterogeneity. The framework enables the quantitative decomposition of the effects of the different population heterogeneity sources on system behavior. Our results indicate the importance of cell population heterogeneity in accurately predicting even average population properties. Moreover, we find that unequal partitioning at cell division and sharp division rates shrink the region of the parameter space where the population exhibits bistable behavior, a characteristic feature of networks with positive feedback architecture. In addition, intrinsic noise at the single-cell level due to slow operator fluctuations and small numbers of molecules further contributes toward the shrinkage of the bistability regime at the cell population level. Finally, the effect of intrinsic noise at the cell population level was found to be markedly different than at the single-cell level, emphasizing the importance of simulating entire cell populations and not just individual cells to understand the complex interplay between single-cell genetic architecture and behavior at the cell population level.

  18. From Single-Cell Genetic Architecture to Cell Population Dynamics: Quantitatively Decomposing the Effects of Different Population Heterogeneity Sources for a Genetic Network with Positive Feedback Architecture

    PubMed Central

    Mantzaris, Nikos V.

    2007-01-01

    Phenotypic cell-to-cell variability or cell population heterogeneity originates from two fundamentally different sources: unequal partitioning of cellular material at cell division and stochastic fluctuations associated with intracellular reactions. We developed a mathematical and computational framework that can quantitatively isolate both heterogeneity sources and applied it to a genetic network with positive feedback architecture. The framework consists of three vastly different mathematical formulations: a), a continuum model, which completely neglects population heterogeneity; b), a deterministic cell population balance model, which accounts for population heterogeneity originating only from unequal partitioning at cell division; and c), a fully stochastic model accommodating both sources of population heterogeneity. The framework enables the quantitative decomposition of the effects of the different population heterogeneity sources on system behavior. Our results indicate the importance of cell population heterogeneity in accurately predicting even average population properties. Moreover, we find that unequal partitioning at cell division and sharp division rates shrink the region of the parameter space where the population exhibits bistable behavior, a characteristic feature of networks with positive feedback architecture. In addition, intrinsic noise at the single-cell level due to slow operator fluctuations and small numbers of molecules further contributes toward the shrinkage of the bistability regime at the cell population level. Finally, the effect of intrinsic noise at the cell population level was found to be markedly different than at the single-cell level, emphasizing the importance of simulating entire cell populations and not just individual cells to understand the complex interplay between single-cell genetic architecture and behavior at the cell population level. PMID:17384073

  19. Rejuvenation in distinct cell populations - What does it mean?

    PubMed

    Hass, Ralf

    2009-10-01

    Rejuvenation represents a well organized and tightly regulated cellular process in vitro and in vivo, whereby senescent and/or certain differentiated cells revert specific properties acquired during previous steps of maturation to restore again a younger phenotype. Effects of the microenvironment and cellular mechanisms including asymmetric mitosis or retrodifferentiation can contribute to rejuvenation during a dynamic cellular development in contrast to terminally differentiated cells like unicellular organisms, which appear unable to retrodifferentiate and to rejuvenate. The process of rejuvenation is observed in distinct cell populations and includes a coordinated multistep network of transduction cascades with extracellular signaling and cell-to-cell communication to relay intracellular pathways. This provides a certain tissue homeostasis by a regenerative potential and renewal upon tissue-specific repair requirements in addition to residual stem cells, which can vary among different organs and species to extend their life span. However, dysfunctions within a rejuvenation program may also include the risk of neoplastic growth during such a retrograde development. In contrast to rejuvenation in certain cell types, a life span extension - also termed longevity - does not represent a retrograde development but an overall prolonged function of tissues, organs and/or whole organisms. Thus, rejuvenation of a distinct cell population could contribute to longevity of the corresponding organism but may not necessarily be required since longevity could also be achieved mechanistically by inhibition of the mTOR-mediated signaling pathway or by sufficient supply of anti-oxidative defence compounds, physiologically by nutrient restrictions, genetically by the induction of longevity genes or environmentally by the inhibition of aging.

  20. Oxidized low-density lipoprotein alters endothelial progenitor cell populations.

    PubMed

    Cui, Yuqi; Narasimhulu, Chandrakala A; Liu, Lingjuan; Li, Xin; Xiao, Yuan; Zhang, Jia; Xie, Xiaoyun; Hao, Hong; Liu, Jason Z; He, Guanglong; Cowan, Peter J; Cui, Lianqun; Zhu, Hua; Parthasarathy, Sampath; Liu, Zhenguo

    2015-06-01

    Oxidized low-density lipoprotein (ox-LDL) is critical to atherosclerosis in hyperlipidemia. Bone marrow (BM)-derived endothelial progenitor cells (EPCs) are important to preventing atherosclerosis, and significantly decreased in hyperlipidemia. This study was to demonstrate ox-LDL and hyperlipidemia could exhibit similar effect on EPC population and the role of reactive oxygen species (ROS). ROS production in BM and blood was significantly increased in male C57BL/6 mice with intravenous ox-LDL treatment, and in hyperlipidemic LDL receptor knockout mice with 4-month high-fat diet. ROS formation was effectively blocked with overexpression of antioxidant enzymes or N-acetylcysteine treatment. In hyperlipidemic and ox-LDL-treated mice, c-Kit(+)/CD31(+) cell number in BM and blood, and Sca-1(+)/Flk-1(+) cell number in blood, not in BM, were significantly decreased, which were not affected by inhibiting ROS production, while blood CD34(+)/Flk-1(+) cell number was significantly increased that was prevented with reduced ROS formation. However, blood CD34(+)/CD133(+) cell number increased in ox-LDL-treated mice, while decreased in hyperlipidemic mice. These data suggested that ox-LDL produced significant changes in BM and blood EPC populations similar (but not identical) to chronic hyperlipidemia with predominantly ROS-independent mechanism(s).

  1. Quantitative single cell analysis of cell population dynamics during submandibular salivary gland development and differentiation

    PubMed Central

    Nelson, Deirdre A.; Manhardt, Charles; Kamath, Vidya; Sui, Yunxia; Santamaria-Pang, Alberto; Can, Ali; Bello, Musodiq; Corwin, Alex; Dinn, Sean R.; Lazare, Michael; Gervais, Elise M.; Sequeira, Sharon J.; Peters, Sarah B.; Ginty, Fiona; Gerdes, Michael J.; Larsen, Melinda

    2013-01-01

    Summary Epithelial organ morphogenesis involves reciprocal interactions between epithelial and mesenchymal cell types to balance progenitor cell retention and expansion with cell differentiation for evolution of tissue architecture. Underlying submandibular salivary gland branching morphogenesis is the regulated proliferation and differentiation of perhaps several progenitor cell populations, which have not been characterized throughout development, and yet are critical for understanding organ development, regeneration, and disease. Here we applied a serial multiplexed fluorescent immunohistochemistry technology to map the progressive refinement of the epithelial and mesenchymal cell populations throughout development from embryonic day 14 through postnatal day 20. Using computational single cell analysis methods, we simultaneously mapped the evolving temporal and spatial location of epithelial cells expressing subsets of differentiation and progenitor markers throughout salivary gland development. We mapped epithelial cell differentiation markers, including aquaporin 5, PSP, SABPA, and mucin 10 (acinar cells); cytokeratin 7 (ductal cells); and smooth muscle α-actin (myoepithelial cells) and epithelial progenitor cell markers, cytokeratin 5 and c-kit. We used pairwise correlation and visual mapping of the cells in multiplexed images to quantify the number of single- and double-positive cells expressing these differentiation and progenitor markers at each developmental stage. We identified smooth muscle α-actin as a putative early myoepithelial progenitor marker that is expressed in cytokeratin 5-negative cells. Additionally, our results reveal dynamic expansion and redistributions of c-kit- and K5-positive progenitor cell populations throughout development and in postnatal glands. The data suggest that there are temporally and spatially discreet progenitor populations that contribute to salivary gland development and homeostasis. PMID:23789091

  2. Extracellular matrix stiffness modulates VEGF calcium signaling in endothelial cells: individual cell and population analysis.

    PubMed

    Derricks, Kelsey E; Trinkaus-Randall, Vickery; Nugent, Matthew A

    2015-09-01

    Vascular disease and its associated complications are the number one cause of death in the Western world. Both extracellular matrix stiffening and dysfunctional endothelial cells contribute to vascular disease. We examined endothelial cell calcium signaling in response to VEGF as a function of extracellular matrix stiffness. We developed a new analytical tool to analyze both population based and individual cell responses. Endothelial cells on soft substrates, 4 kPa, were the most responsive to VEGF, whereas cells on the 125 kPa substrates exhibited an attenuated response. Magnitude of activation, not the quantity of cells responding or the number of local maximums each cell experienced distinguished the responses. Individual cell analysis, across all treatments, identified two unique cell clusters. One cluster, containing most of the cells, exhibited minimal or slow calcium release. The remaining cell cluster had a rapid, high magnitude VEGF activation that ultimately defined the population based average calcium response. Interestingly, at low doses of VEGF, the high responding cell cluster contained smaller cells on average, suggesting that cell shape and size may be indicative of VEGF-sensitive endothelial cells. This study provides a new analytical tool to quantitatively analyze individual cell signaling response kinetics, that we have used to help uncover outcomes that are hidden within the average. The ability to selectively identify highly VEGF responsive cells within a population may lead to a better understanding of the specific phenotypic characteristics that define cell responsiveness, which could provide new insight for the development of targeted anti- and pro-angiogenic therapies.

  3. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells.

    PubMed

    Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N; McGinnis, Christopher S; Zhou, Joseph X; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy

    2017-02-28

    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or "tipping point" at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations.

  4. Side Population Cells in the Mouse Thyroid Exhibit Stem/Progenitor Cell-Like Characteristics

    PubMed Central

    Hoshi, Nobuo; Kusakabe, Takashi; Taylor, Barbara J.; Kimura, Shioko

    2008-01-01

    Side population (SP) cells are characterized by their ability to efflux the vital dye Hoechst 33342 (Sigma-Aldrich, St. Louis, MO) due to expression of the ATP binding cassette (ABC)-dependent transporter ABCG2, and are highly enriched for stem/progenitor cell activity. In this study we identified SP cells in murine thyroid, which are composed of two populations of cells: CD45(−)/c-kit(−)/Sca1(+) and CD45(−)/c-kit(−)/Sca1(−) cells. Quantitative RT-PCR analysis revealed that SP cells highly express ABCG2 and the stem cell marker genes encoding nucleostemin and Oct4, whereas the expression of genes encoding the thyroid differentiation markers, thyroid peroxidase, thyroglobulin (TG), and TSH receptor, and two transcription factors, thyroid transcription factor 1 (TITF1) and paired PAX8, critical for thyroid specific gene expression, are low in SP cells as compared with the main population cells. In situ hybridization and double immunofluorescence demonstrated that cells expressing Abcg2 gene reside in the interfollicular space of the thyroid gland. Approximately half and a small percentage of the ABCG2-positive cells were also positive for vimentin and calcitonin, respectively. After 9 wk under three-dimensional thyroid primary culture conditions, main population cells formed an epithelial arrangement and follicle-like structures that are immunoreactive for TITF1 and TG. In contrast, SP cells demonstrated very few morphological changes without any epithelial or follicle-like structure and negative immunostaining for TITF1 and TG. These results demonstrate that thyroid possesses SP cells that may represent stem/progenitor cells. PMID:17584961

  5. Side population cells in the mouse thyroid exhibit stem/progenitor cell-like characteristics.

    PubMed

    Hoshi, Nobuo; Kusakabe, Takashi; Taylor, Barbara J; Kimura, Shioko

    2007-09-01

    Side population (SP) cells are characterized by their ability to efflux the vital dye Hoechst 33342 (Sigma-Aldrich, St. Louis, MO) due to expression of the ATP binding cassette (ABC)-dependent transporter ABCG2, and are highly enriched for stem/progenitor cell activity. In this study we identified SP cells in murine thyroid, which are composed of two populations of cells: CD45(-)/c-kit(-)/Sca1(+) and CD45(-)/c-kit(-)/Sca1(-) cells. Quantitative RT-PCR analysis revealed that SP cells highly express ABCG2 and the stem cell marker genes encoding nucleostemin and Oct4, whereas the expression of genes encoding the thyroid differentiation markers, thyroid peroxidase, thyroglobulin (TG), and TSH receptor, and two transcription factors, thyroid transcription factor 1 (TITF1) and paired PAX8, critical for thyroid specific gene expression, are low in SP cells as compared with the main population cells. In situ hybridization and double immunofluorescence demonstrated that cells expressing Abcg2 gene reside in the interfollicular space of the thyroid gland. Approximately half and a small percentage of the ABCG2-positive cells were also positive for vimentin and calcitonin, respectively. After 9 wk under three-dimensional thyroid primary culture conditions, main population cells formed an epithelial arrangement and follicle-like structures that are immunoreactive for TITF1 and TG. In contrast, SP cells demonstrated very few morphological changes without any epithelial or follicle-like structure and negative immunostaining for TITF1 and TG. These results demonstrate that thyroid possesses SP cells that may represent stem/progenitor cells.

  6. Cell population structure prior to bifurcation predicts efficiency of directed differentiation in human induced pluripotent cells

    PubMed Central

    Bargaje, Rhishikesh; Trachana, Kalliopi; Shelton, Martin N.; McGinnis, Christopher S.; Zhou, Joseph X.; Chadick, Cora; Cook, Savannah; Cavanaugh, Christopher; Huang, Sui; Hood, Leroy

    2017-01-01

    Steering the differentiation of induced pluripotent stem cells (iPSCs) toward specific cell types is crucial for patient-specific disease modeling and drug testing. This effort requires the capacity to predict and control when and how multipotent progenitor cells commit to the desired cell fate. Cell fate commitment represents a critical state transition or “tipping point” at which complex systems undergo a sudden qualitative shift. To characterize such transitions during iPSC to cardiomyocyte differentiation, we analyzed the gene expression patterns of 96 developmental genes at single-cell resolution. We identified a bifurcation event early in the trajectory when a primitive streak-like cell population segregated into the mesodermal and endodermal lineages. Before this branching point, we could detect the signature of an imminent critical transition: increase in cell heterogeneity and coordination of gene expression. Correlation analysis of gene expression profiles at the tipping point indicates transcription factors that drive the state transition toward each alternative cell fate and their relationships with specific phenotypic readouts. The latter helps us to facilitate small molecule screening for differentiation efficiency. To this end, we set up an analysis of cell population structure at the tipping point after systematic variation of the protocol to bias the differentiation toward mesodermal or endodermal cell lineage. We were able to predict the proportion of cardiomyocytes many days before cells manifest the differentiated phenotype. The analysis of cell populations undergoing a critical state transition thus affords a tool to forecast cell fate outcomes and can be used to optimize differentiation protocols to obtain desired cell populations. PMID:28167799

  7. Population genetics inside a cell: Mutations and mitochondrial genome maintenance

    NASA Astrophysics Data System (ADS)

    Goyal, Sidhartha; Shraiman, Boris; Gottschling, Dan

    2012-02-01

    In realistic ecological and evolutionary systems natural selection acts on multiple levels, i.e. it acts on individuals as well as on collection of individuals. An understanding of evolutionary dynamics of such systems is limited in large part due to the lack of experimental systems that can challenge theoretical models. Mitochondrial genomes (mtDNA) are subjected to selection acting on cellular as well as organelle levels. It is well accepted that mtDNA in yeast Saccharomyces cerevisiae is unstable and can degrade over time scales comparable to yeast cell division time. We utilize a recent technology designed in Gottschling lab to extract DNA from populations of aged yeast cells and deep sequencing to characterize mtDNA variation in a population of young and old cells. In tandem, we developed a stochastic model that includes the essential features of mitochondrial biology that provides a null model for expected mtDNA variation. Overall, we find approximately 2% of the polymorphic loci that show significant increase in frequency as cells age providing direct evidence for organelle level selection. Such quantitative study of mtDNA dynamics is absolutely essential to understand the propagation of mtDNA mutations linked to a spectrum of age-related diseases in humans.

  8. A distinct innate lymphoid cell population regulates tumor-associated T cells.

    PubMed

    Crome, Sarah Q; Nguyen, Linh T; Lopez-Verges, Sandra; Yang, S Y Cindy; Martin, Bernard; Yam, Jennifer Y; Johnson, Dylan J; Nie, Jessica; Pniak, Michael; Yen, Pei Hua; Milea, Anca; Sowamber, Ramlogan; Katz, Sarah Rachel; Bernardini, Marcus Q; Clarke, Blaise A; Shaw, Patricia A; Lang, Philipp A; Berman, Hal K; Pugh, Trevor J; Lanier, Lewis L; Ohashi, Pamela S

    2017-03-01

    Antitumor T cells are subject to multiple mechanisms of negative regulation. Recent findings that innate lymphoid cells (ILCs) regulate adaptive T cell responses led us to examine the regulatory potential of ILCs in the context of cancer. We identified a unique ILC population that inhibits tumor-infiltrating lymphocytes (TILs) from high-grade serous tumors, defined their suppressive capacity in vitro, and performed a comprehensive analysis of their phenotype. Notably, the presence of this CD56(+)CD3(-) population in TIL cultures was associated with reduced T cell numbers, and further functional studies demonstrated that this population suppressed TIL expansion and altered TIL cytokine production. Transcriptome analysis and phenotypic characterization determined that regulatory CD56(+)CD3(-) cells exhibit low cytotoxic activity, produce IL-22, and have an expression profile that overlaps with those of natural killer (NK) cells and other ILCs. NKp46 was highly expressed by these cells, and addition of anti-NKp46 antibodies to TIL cultures abrogated the ability of these regulatory ILCs to suppress T cell expansion. Notably, the presence of these regulatory ILCs in TIL cultures corresponded with a striking reduction in the time to disease recurrence. These studies demonstrate that a previously uncharacterized ILC population regulates the activity and expansion of tumor-associated T cells.

  9. Muscle Interstitial Cells: A Brief Field Guide to Non-satellite Cell Populations in Skeletal Muscle.

    PubMed

    Tedesco, Francesco Saverio; Moyle, Louise A; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle regeneration is mainly enabled by a population of adult stem cells known as satellite cells. Satellite cells have been shown to be indispensable for adult skeletal muscle repair and regeneration. In the last two decades, other stem/progenitor cell populations resident in the skeletal muscle interstitium have been identified as "collaborators" of satellite cells during regeneration. They also appear to have a key role in replacing skeletal muscle with adipose, fibrous, or bone tissue in pathological conditions. Here, we review the role and known functions of these different interstitial skeletal muscle cell types and discuss their role in skeletal muscle tissue homeostasis, regeneration, and disease, including their therapeutic potential for cell transplantation protocols.

  10. Collective Decision-Making and Oscillatory Behaviors in Cell Populations

    NASA Astrophysics Data System (ADS)

    Fujimoto, Koichi; Sawai, Satoshi

    2013-12-01

    Many examples of oscillations are known in multicellular dynamics, however how properties of individual cells can account for the collective rhythmic behaviors at the tissue level remain elusive. Recently, studies in chemical reactions, synthetic gene circuits, yeast and social amoeba Dictyostelium have greatly enhanced our understanding of collective oscillations in cell populations. From these relatively simple systems, a unified view of how excitable and oscillatory regulations could be tuned and coupled to give rise to tissue-level oscillations is emerging. This chapter reviews recent progress in these and other experimental systems and highlight similarities and differences. We will show how group-level information can be encoded in the oscillations depending on degree of autonomy of single cells and discuss some of their possible biological roles.

  11. A multi-laboratory comparison of blood dendritic cell populations.

    PubMed

    Fromm, Phillip Dieter; Kupresanin, Fiona; Brooks, Anna Elizabeth Stella; Dunbar, Peter Rodney; Haniffa, Muzifilla; Hart, Derek Nigel John; Clark, Georgina Jane

    2016-04-01

    HLDA10 collated a panel of monoclonal antibodies (mAbs) that primarily recognised molecules on human myeloid cell and dendritic cell (DC) populations. As part of the studies, we validated a backbone of mAbs to delineate monocyte and DC populations from peripheral blood. The mAb backbone allowed identification of monocyte and DC subsets using fluorochromes that were compatible with most 'off the shelf' or routine flow cytometers. Three laboratories used this mAb backbone to assess the HLDA10 panel on blood monocytes and DCs. Each laboratory was provided with enough mAbs to perform five repeat experiments. The data were collated and analysed using Spanning-tree Progression Analysis of Density-normalised Events (SPADE). The data were interrogated for inter- and intra-laboratory variability. The results highlight the definition of DC populations using current readily available reagents. This collaborative process provides the broader scientific community with an invaluable data set that validates mAbs to leucocyte surface molecules.

  12. Expression of Stanniocalcin 1 in Thyroid Side Population Cells and Thyroid Cancer Cells

    PubMed Central

    Hayase, Suguru; Sasaki, Yoshihito; Matsubara, Tsutomu; Seo, Daekwan; Miyakoshi, Masaaki; Murata, Tsubasa; Ozaki, Takashi; Kakudo, Kennichi; Kumamoto, Kensuke; Ylaya, Kris; Cheng, Sheue-yann; Thorgeirsson, Snorri S.; Hewitt, Stephen M.; Ward, Jerrold M.

    2015-01-01

    Background: Mouse thyroid side population (SP) cells consist of a minor population of mouse thyroid cells that may have multipotent thyroid stem cell characteristics. However the nature of thyroid SP cells remains elusive, particularly in relation to thyroid cancer. Stanniocalcin (STC) 1 and 2 are secreted glycoproteins known to regulate serum calcium and phosphate homeostasis. In recent years, the relationship of STC1/2 expression to cancer has been described in various tissues. Method: Microarray analysis was carried out to determine genes up- and down-regulated in thyroid SP cells as compared with non-SP cells. Among genes up-regulated, stanniocalcin 1 (STC1) was chosen for study because of its expression in various thyroid cells by Western blotting and immunohistochemistry. Results: Gene expression analysis revealed that genes known to be highly expressed in cancer cells and/or involved in cancer invasion/metastasis were markedly up-regulated in SP cells from both intact as well as partial thyroidectomized thyroids. Among these genes, expression of STC1 was found in five human thyroid carcinoma–derived cell lines as revealed by analysis of mRNA and protein, and its expression was inversely correlated with the differentiation status of the cells. Immunohistochemical analysis demonstrated higher expression of STC1 in the thyroid tumor cell line and thyroid tumor tissues from humans and mice. Conclusion: These results suggest that SP cells contain a population of cells that express genes also highly expressed in cancer cells including Stc1, which warrants further study on the role of SP cells and/or STC1 expression in thyroid cancer. PMID:25647164

  13. PopulationProfiler: A Tool for Population Analysis and Visualization of Image-Based Cell Screening Data.

    PubMed

    Matuszewski, Damian J; Wählby, Carolina; Puigvert, Jordi Carreras; Sintorn, Ida-Maria

    2016-01-01

    Image-based screening typically produces quantitative measurements of cell appearance. Large-scale screens involving tens of thousands of images, each containing hundreds of cells described by hundreds of measurements, result in overwhelming amounts of data. Reducing per-cell measurements to the averages across the image(s) for each treatment leads to loss of potentially valuable information on population variability. We present PopulationProfiler-a new software tool that reduces per-cell measurements to population statistics. The software imports measurements from a simple text file, visualizes population distributions in a compact and comprehensive way, and can create gates for subpopulation classes based on control samples. We validate the tool by showing how PopulationProfiler can be used to analyze the effect of drugs that disturb the cell cycle, and compare the results to those obtained with flow cytometry.

  14. Influence of incoherent pumping field on spatial evolution of gain without inversion in a four-level quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Karimi, R.; Asadpour, S. H.; Batebi, S.; Rahimpour Soleimani, H.

    2015-09-01

    We investigated the propagation effect on gain without inversion (GWI) phenomena in an open four level quantum dot nanostructure in the presence and absence of incoherent pumping field. The simulation results show that, the ratio of the injection rates and strength of incoherent pumping field has remarkable effect on spatial evolution of GWI and output. We can obtain the optimal GWI and output by choosing appropriate values of parameters. The theoretical results show that, in the open system the value of gain (output) in the absence of incoherent pumping field is much larger than that in the presence of incoherent pumping field.

  15. Two-dimensional electromagnetically induced cross-grating in a four-level N-type atomic system

    NASA Astrophysics Data System (ADS)

    Wu, Jianchun; Ai, Baoquan

    2015-06-01

    We propose a scheme for a two-dimensional (2D) electromagnetically induced cross-grating (EICG) in a four-level N-type atomic system. By employing standing-wave fields interacting with the atomic system, the absorption and dispersion of the probe field will change with the spatial periodical modulation. The first-order diffraction intensity sensitively depends on the parameters (the probe detuning, and the amplitude and detuning of the standing-wave fields), and can reach its maximum on varying the system parameters. The present studies may be instructive to design new devices in all-optical switching and optical imaging.

  16. Influence of Fano interference and incoherent processes on optical bistability in a four-level quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin

    2016-03-01

    Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily.

  17. Phase-dependent high refractive index without absorption in a four-level inverted-Y atomic system

    SciTech Connect

    Zhi-Qiang Zeng; Fu-Ti Liu; Yu-Ping Wang; Zeng-Hui Gao

    2015-01-31

    We consider a closed four-level inverted-Y system in the presence and the absence of a microwave field. It is found that due to the quantum coherence between the two lower levels, either induced by the spontaneous decay or by the microwave field, the refraction – absorption properties of the system can be modulated by controlling the relative phase of the applied fields in both driven ways. In particular, by properly setting the values of the relative phase, the desirable high index of refraction without absorption can be achieved. (nonlinear optical phenomena)

  18. Effect of gain anisotropy on low-frequency dynamics in four-level solid-state lasers.

    PubMed

    Park, Jong-Dae; McKay, Aaron M; Dawes, Judith M

    2009-04-13

    Our anisotropic rate equation model outlines the relationship between the relaxation dynamics in a four-level solid-state laser and its anisotropic gain properties. Anisotropic pump rates and stimulated emission cross-sections were included to account for specific atom orientations in the gain material. The model is compared with experimental measurements of two relaxation oscillation frequencies which are related to the anisotropic atom-laser interaction in orthogonally polarized dual-mode lasers. The model predicts that crystal orientation and pump polarization affect the laser operation characteristics, as found experimentally. The gain anisotropy influences the fast laser dynamics, as in single-mode relaxation oscillations.

  19. All-optical demultiplexing of 16-QAM signals into QPSK tributaries using four-level optical phase quantizers.

    PubMed

    Bogris, Adonis

    2014-04-01

    The potential of four-level optical phase quantizers toward coherent processing of advanced modulation formats, such as 16-QAM, is proposed and numerically demonstrated. The work shows that phase quantization achieved in fiber-based phase-sensitive amplifiers can demultiplex 16-QAM into two quadrature phase shift keying (QPSK) signals, enabling subchannel switching. The numerical study highlights the impact of the quantizer transfer function on the performance of the demultiplexing process and numerically calculates the bit error rate for each QPSK tributary after the demultiplexing procedure.

  20. Single-cell Migration Chip for Chemotaxis-based Microfluidic Selection of Heterogeneous Cell Populations

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Allen, Steven G.; Ingram, Patrick N.; Buckanovich, Ronald; Merajver, Sofia D.; Yoon, Euisik

    2015-05-01

    Tumor cell migration toward and intravasation into capillaries is an early and key event in cancer metastasis, yet not all cancer cells are imbued with the same capability to do so. This heterogeneity within a tumor is a fundamental property of cancer. Tools to help us understand what molecular characteristics allow a certain subpopulation of cells to spread from the primary tumor are thus critical for overcoming metastasis. Conventional in vitro migration platforms treat populations in aggregate, which leads to a masking of intrinsic differences among cells. Some migration assays reported recently have single-cell resolution, but these platforms do not provide for selective retrieval of the distinct migrating and non-migrating cell populations for further analysis. Thus, to study the intrinsic differences in cells responsible for chemotactic heterogeneity, we developed a single-cell migration platform so that individual cells’ migration behavior can be studied and the heterogeneous population sorted based upon chemotactic phenotype. Furthermore, after migration, the highly chemotactic and non-chemotactic cells were retrieved and proved viable for later molecular analysis of their differences. Moreover, we modified the migration channel to resemble lymphatic capillaries to better understand how certain cancer cells are able to move through geometrically confining spaces.

  1. Sorting, identification and enrichment of side population cells in THP-1 acute monocytic leukemia cells.

    PubMed

    Wang, Yingchao; Yin, Chuyun; Feng, Lei; Ma, Lina; Wei, Yongwei; Sheng, Guangyao

    2013-05-01

    The objective of the present study was to examine and determine whether the human acute monocytic leukemia cell line THP-1 contains side population (SP) cells, and, if so, to increase the proportion of SP cells using arabinosylcytosine (Ara-C). Fluorescent microscopy and flow cytometry were employed to detect the percentage of SP cells in THP-1 cells. Then, SP and non-SP (NSP) cell subpopulations were collected and identified. THP-1 cells were incubated with different concentrations of Ara-C for 24 h and the proportion of SP cells was detected. Our results demonstrated that the percentage of SP cells was 1.81 ± 0.99% in THP-1 cells. A majority of the SP cells remained in the G₀/G₁ phase, and the expression of CD34⁺ and CD34⁺CD38⁻ and the proliferation ability of the SP cells were higher compared to NSP cells (P<0.05). The mRNA expression of multidrug resistance genes (ABCG2 and ABCB1), apoptosis regulation genes (Bcl-2) and the Bcl-2/Bax value of SP cells were higher than those of NSP cells. SP cells have been shown to be more tumorigenic than NSP cells. Following co-culture with Ara-C, the proportion of SP cells increased significantly and subsequently the Ara-C concentration increased. These findings suggest that the THP-1 cell line contains SP cells and that SP cells possess certain intrinsic stem cell properties and may contain a larger proportion of leukemia stem cells (LSCs). The concentrations of SP cells can be increased with Ara-C by co-culture, and this technique is a useful and important application for the study of LSCs.

  2. Biological characteristics of side population cells in a self-established human ovarian cancer cell line

    PubMed Central

    WEI, ZHENTONG; LV, SHUANG; WANG, YISHU; SUN, MEIYU; CHI, GUANGFAN; GUO, JUN; SONG, PEIYE; FU, XIAOYU; ZHANG, SONGLING; LI, YULIN

    2016-01-01

    The aim of the present study was to establish an ovarian cancer (OC) cell line from ascites of an ovarian serous cystadenocarcinoma patient and investigate the biological characteristics of its side population (SP) cells. The OC cell line was established by isolating, purifying and subculturing primary cells from ascites of an ovarian serous cystadenocarcinoma patient (stage IIIc; grade 3). SP and non-SP (NSP) cells were isolated by fluorescence-activated cell sorting and cultured in serum-free medium and soft agar to compare the tumorsphere and colony formation capacities. Furthermore, SP and NSP cell tumorigenesis was examined by subcutaneous and intraperitoneal injection of the cells to non-obese diabetic/severe combined immune deficiency (NOD/SCID) mice. Drug resistance to cisplatin was examined by cell counting kit-8. The OC cell line was successfully established from ascites of an ovarian serous cystadenocarcinoma patient, which exhibited properties similar to primary tumors subsequent to >50 passages and >2 years of culture. The SP cell ratio was 0.38% in the OC cell line, and a similar SP cell ratio (0.39%) was observed when sorted SP cells were cultured for 3 weeks. Compared with NSP cells, SP cells exhibited increased abilities in differentiation and tumorsphere and colony formation, in addition to the formation of xenografted tumors and ascites and metastasis of the tumors in NOD/SCID mice, even at low cell numbers (3.0×103 cells). The xenografted tumors demonstrated histological features similar to primary tumors and expressed the ovarian serous cystadenocarcinoma marker CA125. In addition, SP cells demonstrated a significantly stronger drug resistance to cisplatin compared with NSP and unsorted cells, while treatment with verapamil, an inhibitor of ATP-binding cassette transporters, potently abrogated SP cell drug resistance. In conclusion, the present study verified SP cells from an established OC cell line and characterized the cells with self

  3. Multi-population model of a microbial electrolysis cell.

    PubMed

    Pinto, R P; Srinivasan, B; Escapa, A; Tartakovsky, B

    2011-06-01

    This work presents a multi-population dynamic model of a microbial electrolysis cell (MEC). The model describes the growth and metabolic activity of fermentative, electricigenic, methanogenic acetoclastic, and methanogenic hydrogenophilic microorganisms and is capable of simulating hydrogen production in a MEC fed with complex organic matter, such as wastewater. The model parameters were estimated with the experimental results obtained in continuous flow MECs fed with acetate or synthetic wastewater. Following successful model validation with an independent data set, the model was used to analyze and discuss the influence of applied voltage and organic load on hydrogen production and COD removal.

  4. TLR7-expressing cells comprise an interfollicular epidermal stem cell population in murine epidermis

    PubMed Central

    Yin, Chaoran; Zhang, Ting; Qiao, Liangjun; Du, Jia; Li, Shuang; Zhao, Hengguang; Wang, Fangfang; Huang, Qiaorong; Meng, Wentong; Zhu, Hongyan; Bu, Hong; Li, Hui; Xu, Hong; Mo, Xianming

    2014-01-01

    Normal interfollicular epidermis (IFE) homeostasis is maintained throughout the entire life by its own stem cells that self-renew and generate progeny that undergo terminal differentiation. However, the fine markers of the stem cells in interfollicular epidermis are not well defined yet. Here we found that TLR7 identified the existence of progenitors and interfollicular epidermal stem cells in murine skin. In vitro, TLR7-expressing cells comprised of two subpopulations that were competent to proliferate and exhibited distinct differentiation potentials. Three-dimensional (3D) organotypic culture and skin reconstitution assays showed that TLR7-expressing cells were able to reconstruct the interfollicular epidermis. Finally, TLR7-expressing cells maintained the intact interfollicular epidermal structures revealed in serial transplantation assays in vivo in mice. Taken together, our results suggest that TLR7-expressing cells comprise an interfollicular epidermal stem cell population. PMID:25060222

  5. TLR7-expressing cells comprise an interfollicular epidermal stem cell population in murine epidermis.

    PubMed

    Yin, Chaoran; Zhang, Ting; Qiao, Liangjun; Du, Jia; Li, Shuang; Zhao, Hengguang; Wang, Fangfang; Huang, Qiaorong; Meng, Wentong; Zhu, Hongyan; Bu, Hong; Li, Hui; Xu, Hong; Mo, Xianming

    2014-07-25

    Normal interfollicular epidermis (IFE) homeostasis is maintained throughout the entire life by its own stem cells that self-renew and generate progeny that undergo terminal differentiation. However, the fine markers of the stem cells in interfollicular epidermis are not well defined yet. Here we found that TLR7 identified the existence of progenitors and interfollicular epidermal stem cells in murine skin. In vitro, TLR7-expressing cells comprised of two subpopulations that were competent to proliferate and exhibited distinct differentiation potentials. Three-dimensional (3D) organotypic culture and skin reconstitution assays showed that TLR7-expressing cells were able to reconstruct the interfollicular epidermis. Finally, TLR7-expressing cells maintained the intact interfollicular epidermal structures revealed in serial transplantation assays in vivo in mice. Taken together, our results suggest that TLR7-expressing cells comprise an interfollicular epidermal stem cell population.

  6. [Th17 cells, a novel proinflammatory effector CD4 T cell population].

    PubMed

    Leung-Theung-Long, Stéphane; Guerder, Sylvie

    2008-11-01

    After more than 20 years of hegemony, the Th1-Th2 paradigm was recently shaken by the discovery of a novel population of CD4 effector T cells, the Th17 cells. Th17 effector cells produce IL-17 and IL-22 and thus have pro-inflammatory properties notably favoring neutrophils recruitment and thus control of extracellular bacteria mainly at the epithelium surface. Th17 cells appear also as the major inducer of organ specific autoimmune pathologies such as EAE or rheumatoid arthritis, a function previously attributed to Th1 effector cells. The discovery of Th17 cells further supports the notion that effector CD4 T cells responses are diverse in vivo and that fine tuning of these different effector cells is critical to maintain tissue integrity.

  7. Cross-Presentation of Cell-Associated Antigens by Mouse Splenic Dendritic Cell Populations

    PubMed Central

    Thacker, Robert I.; Janssen, Edith M.

    2012-01-01

    Cross-presentation of cell-associated antigens (Ag) plays an important role in the induction of anti-tumor responses, autoimmune diseases, and transplant rejection. While several dendritic cell (DC) populations can induce pro-inflammatory CD8+ T cell responses to cell-associated Ag during infection, in the absence of infection, cross-priming of naïve CD8+ T cells is highly restricted. Comparison of the main splenic DC populations in mice – including the classic, cross-presenting CD8α DC and the recently described merocytic DC (mcDC) – reveals that cross-priming DCs display a distinct phenotype in cell-associated Ag uptake, endosomal/lysosomal trafficking, lysosomal acidification, and Ag persistence compared to non-cross-priming DC populations. Although the CD8α DC and mcDC subsets utilize similar processing pathways to cross-present cell-associated Ag, cross-priming by CD8α DCs is associated with IL-12 production, while the superior priming of the mcDC is critically dependent on type I IFN production. This discussion illustrates how subtle differences in internal processing pathways and their signaling sequelae significantly affect the duration of Ag cross-presentation and cytokine production by DCs, thereby shaping the ensuing CD8+ T cell response. PMID:22566924

  8. Sickle cell disease in tribal populations in India.

    PubMed

    Colah, Roshan B; Mukherjee, Malay B; Martin, Snehal; Ghosh, Kanjaksha

    2015-05-01

    The sickle gene is widespread among many tribal population groups in India with prevalence of heterozygotes varying from 1-40 per cent. Co-inheritance of the sickle gene with β-thalassaemia, HbD Punjab and glucose-6-phosphate dehydrogenase (G6PD) deficiency has also been reported. Most of the screening programmes in India now use high performance liquid chromatography (HPLC) analysis although the solubility test is also sensitive and cheap. Sickle cell disease (SCD) among tribal populations is generally milder than among non-tribal groups with fewer episodes of painful crises, infections, acute chest syndrome and need for hospitalization. This has partly been attributed to the very high prevalence of α-thalassaemia among these tribes as well as higher foetal haemoglobin levels. However, the clinical presentation is variable with many cases having a severe presentation. There is not much information available on maternal and perinatal outcome in tribal women with sickle cell disease. Newborn screening programmes for SCD have recently been initiated in Maharashtra, Gujarat, Orissa and Chattisgarh and monitoring these birth cohorts will help to understand the natural history of SCD in India. Prenatal diagnosis is acceptable by tribal families in India. The Indian Council of Medical Research and the National Rural Health Mission in different States are undertaking outreach programmes for better management and control of the disease.

  9. Dynamic equilibrium of reconstituting hematopoietic stem cell populations.

    PubMed

    O'Quigley, John

    2010-12-01

    Clonal dominance in hematopoietic stem cell populations is an important question of interest but not one we can directly answer. Any estimates are based on indirect measurement. For marked populations, we can equate empirical and theoretical moments for binomial sampling, in particular we can use the well-known formula for the sampling variation of a binomial proportion. The empirical variance itself cannot always be reliably estimated and some caution is needed. We describe the difficulties here and identify ready solutions which only require appropriate use of variance-stabilizing transformations. From these we obtain estimators for the steady state, or dynamic equilibrium, of the number of hematopoietic stem cells involved in repopulating the marrow. The calculations themselves are not too involved. We give the distribution theory for the estimator as well as simple approximations for practical application. As an illustration, we rework on data recently gathered to address the question as to whether or not reconstitution of marrow grafts in the clinical setting might be considered to be oligoclonal.

  10. Sickle cell disease in tribal populations in India

    PubMed Central

    Colah, Roshan B.; Mukherjee, Malay B.; Martin, Snehal; Ghosh, Kanjaksha

    2015-01-01

    The sickle gene is widespread among many tribal population groups in India with prevalence of heterozygotes varying from 1-40 per cent. Co-inheritance of the sickle gene with β-thalassaemia, HbD Punjab and glucose-6-phosphate dehydrogenase (G6PD) deficiency has also been reported. Most of the screening programmes in India now use high performance liquid chromatography (HPLC) analysis although the solubility test is also sensitive and cheap. Sickle cell disease (SCD) among tribal populations is generally milder than among non-tribal groups with fewer episodes of painful crises, infections, acute chest syndrome and need for hospitalization. This has partly been attributed to the very high prevalence of α-thalassaemia among these tribes as well as higher foetal haemoglobin levels. However, the clinical presentation is variable with many cases having a severe presentation. There is not much information available on maternal and perinatal outcome in tribal women with sickle cell disease. Newborn screening programmes for SCD have recently been initiated in Maharashtra, Gujarat, Odisha and Chattisgarh and monitoring these birth cohorts will help to understand the natural history of SCD in India. Prenatal diagnosis is acceptable by tribal families in India. The Indian Council of Medical Research and the National Rural Health Mission in different States are undertaking outreach programmes for better management and control of the disease. PMID:26139766

  11. Reconstitution of immune cell populations in multiple sclerosis patients after autologous stem cell transplantation.

    PubMed

    Karnell, F G; Lin, D; Motley, S; Duhen, T; Lim, N; Campbell, D J; Turka, L A; Maecker, H T; Harris, K M

    2017-09-01

    Multiple sclerosis is an inflammatory T cell-mediated autoimmune disease. In a Phase II clinical trial, high-dose immunosuppressive therapy combined with autologous CD34(+) haematopoietic stem cell transplant resulted in 69·2% of subjects remaining disease-free without evidence of relapse, loss of neurological function or new magnetic resonance imaging (MRI) lesions to year 5 post-treatment. A combination of CyTOF mass cytometry and multi-parameter flow cytometry was used to explore the reconstitution kinetics of immune cell subsets in the periphery post-haematopoietic cell transplant (HSCT) and the impact of treatment on the phenotype of circulating T cells in this study population. Repopulation of immune cell subsets progressed similarly for all patients studied 2 years post-therapy, regardless of clinical outcome. At month 2, monocytes and natural killer (NK) cells were proportionally more abundant, while CD4 T cells and B cells were reduced, relative to baseline. In contrast to the changes observed at earlier time-points in the T cell compartment, B cells were proportionally more abundant and expansion in the proportion of naive B cells was observed 1 and 2 years post-therapy. Within the T cell compartment, the proportion of effector memory and late effector subsets of CD4 and CD8 T cells was increased, together with transient increases in proportions of CD45RA-regulatory T cells (Tregs ) and T helper type 1 (Th1 cells) and a decrease in Th17·1 cells. While none of the treatment effects studied correlated with clinical outcome, patients who remained healthy throughout the 5-year study had significantly higher absolute numbers of memory CD4 and CD8 T cells in the periphery prior to stem cell transplantation. © 2017 British Society for Immunology.

  12. Electromagnetically induced transparency-assisted four-wave mixing process in the diamond-type four-level atomic system

    NASA Astrophysics Data System (ADS)

    Wen, Feng; Zheng, Huaibin; Xue, Xinxin; Chen, Haixia; Song, Jianping; Zhang, Yanpeng

    2014-11-01

    With electromagnetically induced transparency (EIT)-assisted configuration, we study the third-order nonlinear four-wave mixing (FWM) process in a diamond-type four-level atomic system both theoretically and experimentally. Following the proposal by the recent study (Willis et al., 2009), we introduce EIT contribution to the theoretical model which will enhance the conversion efficiency of the nonlinear process and narrow the linewidth of the FWM signal. By means of the coherent EIT effect, we get higher conversion efficiency at lower power level of incident beam in such atomic system. Compare to our previous models, the conversion efficiency in such diamond-type atomic system is much smaller which needs higher threshold temperature. In addition, the frequency dependences on incident beams reveal that the dipole transition of one-photon and two-photon processes affect this nonlinear process.

  13. Characterization of electrothermal actuators and arrays fabricated in a four-level, planarized surface-micromachined polycrystalline silicon process

    SciTech Connect

    Comtois, J.H.; Michalicek, M.A.; Barron, C.C.

    1997-06-01

    This paper presents the results of tests performed on a variety of electrothermal microactuators and arrays of these actuators recently fabricated in the four-level planarized polycrystalline silicon (polysilicon) SUMMiT process at the U.S. Department of Energy`s Sandia National Laboratories. These results are intended to aid designers of thermally actuated mechanisms, and will apply to similar actuators made in other polysilicon MEMS processes. The measurements include force and deflection versus input power, maximum operating frequency, effects of long term operation, and ideal actuator and array geometries for different design criteria. A typical application in a stepper motor is shown to illustrate the utility of these actuators and arrays.

  14. Sickle cell disease in the Kurdish population of northern Iraq.

    PubMed

    Al-Allawi, Nasir A S; Jalal, Sana D; Nerwey, Farida F; Al-Sayan, Galawezh O O; Al-Zebari, Sahima S M; Alshingaly, Awny A; Markous, Raji D; Jubrael, Jaladet M S; Hamamy, Hanan

    2012-01-01

    Epidemiological studies have revealed that sickle cell disease patients are clustered in two geographical areas in Iraq, one among the Arabs in the extreme south, another among the Kurdish population in the extreme north, where they constitute major health problems. However, no studies have focused on the genotypes responsible for sickle cell disease or the β-globin gene haplotypes associated with it. For the latter purpose, a total of 103 unrelated Kurdish sickle cell disease patients were evaluated by restriction fragment length polymorphism (RFLP) for the sickle cell mutation, followed by multiplex polymerase chain reaction (PCR) and reverse hybridization for β- and α-thalassemia (β- and α-thal) mutations, whenever indicated. Results showed that the most common genotype was sickle cell anemia (68.0%) followed by Hb S/β(0)-thal and Hb S/β(+)-thal at frequencies of 24.2 and 7.8%, respectively. Eight β-thal mutations were associated with the latter two genotypes including: IVS-II-1 (G>A), IVS-I-110 (G>A), codon 8 (-AA), codon 44 (-C), codon 22 (-7 bp), IVS-I-1 (G>A), codon 30 (G>C) and IVS-I-6 (T>C). In Hb SS patients, the -α(3.7) deletion was documented in 10.0% and was the only α-thal mutation detected. Furthermore, 5' β-globin gene cluster haplotyping of 128 β(S) chromosomes revealed that the most common haplotype seen in 69.5% was the Benin haplotype, followed by the Arab-Indian haplotype in 12.5%. These latter findings closely resemble reports from neighboring Turkey, Syria, Jordan, Lebanon and Mediterranean countries, suggesting a possible common origin, but are in contrast to findings from the Eastern Arabian Peninsula and Iran.

  15. Dielectrophoretic capture of low abundance cell population using thick electrodes

    PubMed Central

    Marchalot, Julien; Chateaux, Jean-François; Faivre, Magalie; Mertani, Hichem C.; Ferrigno, Rosaria; Deman, Anne-Laure

    2015-01-01

    Enrichment of rare cell populations such as Circulating Tumor Cells (CTCs) is a critical step before performing analysis. This paper presents a polymeric microfluidic device with integrated thick Carbon-PolyDimethylSiloxane composite (C-PDMS) electrodes designed to carry out dielectrophoretic (DEP) trapping of low abundance biological cells. Such conductive composite material presents advantages over metallic structures. Indeed, as it combines properties of both the matrix and doping particles, C-PDMS allows the easy and fast integration of conductive microstructures using a soft-lithography approach while preserving O2 plasma bonding properties of PDMS substrate and avoiding a cumbersome alignment procedure. Here, we first performed numerical simulations to demonstrate the advantage of such thick C-PDMS electrodes over a coplanar electrode configuration. It is well established that dielectrophoretic force (FDEP) decreases quickly as the distance from the electrode surface increases resulting in coplanar configuration to a low trapping efficiency at high flow rate. Here, we showed quantitatively that by using electrodes as thick as a microchannel height, it is possible to extend the DEP force influence in the whole volume of the channel compared to coplanar electrode configuration and maintaining high trapping efficiency while increasing the throughput. This model was then used to numerically optimize a thick C-PDMS electrode configuration in terms of trapping efficiency. Then, optimized microfluidic configurations were fabricated and tested at various flow rates for the trapping of MDA-MB-231 breast cancer cell line. We reached trapping efficiencies of 97% at 20 μl/h and 78.7% at 80 μl/h, for 100 μm thick electrodes. Finally, we applied our device to the separation and localized trapping of CTCs (MDA-MB-231) from a red blood cells sample (concentration ratio of 1:10). PMID:26392836

  16. The side population of ovarian cancer cells defines a heterogeneous compartment exhibiting stem cell characteristics.

    PubMed

    Boesch, Maximilian; Zeimet, Alain G; Reimer, Daniel; Schmidt, Stefan; Gastl, Guenther; Parson, Walther; Spoeck, Franziska; Hatina, Jiri; Wolf, Dominik; Sopper, Sieghart

    2014-08-30

    Cancer stem cells (CSC) are believed to be involved in tumor evasion of classical antitumor therapies and have thus become an attractive target for further improvement of anticancer strategies. However, the existence and identity of CSC are still a matter of controversy. In a systematic screen of 13 ovarian cancer cell lines we show that cells with stem cell properties are reliably detectable as a minor population, characterized by ABC transporter expression resulting in the side population (SP) phenotype. In different cell lines, either ABCG2 or ABCB1 was found to be responsible for this effect. Purified SP cells featured virtually all characteristics of bona fide CSC, including clonogenicity, asymmetric division and high tumorigenicity in vivo. Using in-depth phenotyping by multicolor flow cytometry, we found that among the investigated ovarian cancer cell lines the SP compartment exhibits tremendous heterogeneity and is composed of multiple phenotypically distinct subpopulations. Thus, our study confirms previous results showing that CSC are contained within the SP. However, the exact identity of the CSC is still disguised by the high complexity of the CSC-containing compartment. Further functional studies are needed to determine whether a single cellular subset can unambiguously be defined as CSC or whether multiple stem cell-like cells with different properties coexist. Moreover, the observed heterogeneity may reflect a high level of plasticity and likely influences tumor progression, escape from immune-surveillance and development of resistance to anticancer therapies and should therefore be considered in the development of new treatment strategies.

  17. The side population of ovarian cancer cells defines a heterogeneous compartment exhibiting stem cell characteristics

    PubMed Central

    Boesch, Maximilian; Zeimet, Alain G.; Reimer, Daniel; Schmidt, Stefan; Gastl, Guenther; Parson, Walther; Spoeck, Franziska; Hatina, Jiri

    2014-01-01

    Cancer stem cells (CSC) are believed to be involved in tumor evasion of classical antitumor therapies and have thus become an attractive target for further improvement of anticancer strategies. However, the existence and identity of CSC are still a matter of controversy. In a systematic screen of 13 ovarian cancer cell lines we show that cells with stem cell properties are reliably detectable as a minor population, characterized by ABC transporter expression resulting in the side population (SP) phenotype. In different cell lines, either ABCG2 or ABCB1 was found to be responsible for this effect. Purified SP cells featured virtually all characteristics of bona fide CSC, including clonogenicity, asymmetric division and high tumorigenicity in vivo. Using in-depth phenotyping by multicolor flow cytometry, we found that among the investigated ovarian cancer cell lines the SP compartment exhibits tremendous heterogeneity and is composed of multiple phenotypically distinct subpopulations. Thus, our study confirms previous results showing that CSC are contained within the SP. However, the exact identity of the CSC is still disguised by the high complexity of the CSC-containing compartment. Further functional studies are needed to determine whether a single cellular subset can unambiguously be defined as CSC or whether multiple stem cell-like cells with different properties coexist. Moreover, the observed heterogeneity may reflect a high level of plasticity and likely influences tumor progression, escape from immune-surveillance and development of resistance to anticancer therapies and should therefore be considered in the development of new treatment strategies. PMID:25216521

  18. Clonal cell populations unresponsive to radiosensitization induced by telomerase inhibition

    SciTech Connect

    Ju, Yeun-Jin; Shin, Hyun-Jin; Park, Jeong-Eun; Juhn, Kyoung-Mi; Woo, Seon Rang; Kim, Hee-Young; Han, Young-Hoon; Hwang, Sang-Gu; Hong, Sung-Hee; Kang, Chang-Mo; Yoo, Young-Do; Park, Won-Bong; Cho, Myung-Haing; Park, Gil Hong; Lee, Kee-Ho

    2010-11-12

    Research highlights: {yields} In our present manuscript, we have clearly showed an interesting but problematic obstacle of a radiosensitization strategy based on telomerase inhibition by showing that: Clonal population unresponsive to this radiosensitization occasionally arise. {yields} The telomere length of unsensitized clones was reduced, as was that of most sensitized clones. {yields} The unsensitized clones did not show chromosome end fusion which was noted in all sensitized clones. {yields} P53 status is not associated with the occurrence of unsensitized clone. {yields} Telomere end capping in unsensitized clone is operative even under telomerase deficiency. -- Abstract: A combination of a radiotherapeutic regimen with telomerase inhibition is valuable when tumor cells are to be sensitized to radiation. Here, we describe cell clones unresponsive to radiosensitization after telomere shortening. After extensive division of individual transformed clones of mTERC{sup -/-} cells, about 22% of clones were unresponsive to radiosensitization even though telomerase action was inhibited. The telomere lengths of unsensitized mTERC{sup -/-} clones were reduced, as were those of most sensitized clones. However, the unsensitized clones did not exhibit chromosomal end-to-end fusion to the extent noted in all sensitized clones. Thus, a defense mechanism preventing telomere erosion is operative even when telomeres become shorter under conditions of telomerase deficiency, and results in unresponsiveness to the radiosensitization generally mediated by telomere shortening.

  19. Immunophenotyping of immune cell populations in the raccoon (Procyon lotor).

    PubMed

    Heinrich, Franziska; Jungwirth, Nicole; Carlson, Regina; Tipold, Andrea; Böer, Michael; Scheibe, Thomas; Molnár, Viktor; von Dörnberg, Katja; Spitzbarth, Ingo; Puff, Christina; Wohlsein, Peter; Baumgärtner, Wolfgang

    2015-12-15

    The raccoon (Procyon lotor) is a highly adaptable carnivore that has rapidly conquered Europe over the last decades and represents a potential candidate as pathogen reservoir, bearing the risk for transmission of infectious agents, as zoonosis or spill-over, to other wild life and domestic animals and man. Comprehensive investigations of infectious diseases in raccoons require a detailed knowledge of the participating immune cell populations. To close this gap of knowledge, various antibodies were tested for cross-reactivity with leukocytes in lymphoid organs and peripheral blood of raccoons using immunohistochemistry and flow cytometry, respectively. Eight out of 16 antibodies, directed against CD3, CD79α, Pax-5, IgG, CD44, MHC class II, myeloid/histiocyte antigen (MAC387), and Iba-1 exhibited a specific immunoreaction with cells in distinct anatomical compartments in formalin-fixed paraffin-embedded lymphoid tissues. Flow cytometric analysis revealed that 7 out of 18 antibodies directed against CD11c, CD14, CD21, CD44, CD79α, MHC class I and II cross-reacted with peripheral blood-derived raccoon leukocytes. Summarized, the usefulness of several cross-reacting antibodies was determined for the characterization of raccoon immune cells in immunohistochemistry and flow cytometry, offering the opportunity to study the raccoon immune system under normal and diseased conditions.

  20. The Analysis of Cell Population Dynamics in Mammary Gland Development and Tumorigenesis

    DTIC Science & Technology

    2006-08-01

    processes of mammary epithelial cell differentiation during developmentand tumorigenesis. Using FACS, mammary epithelial cell ( MEC ) populations from tumors...developed techniques for viral transduction andtransplantation of primary MECs . 15. SUBJECT TERMS mammary, stem cell, lentivirus, FACS, cancer, imaging 16...epithelial cell ( MEC ) populations from tumors and wildtype tissue was investigated for their outgrowth potential or tumorigenic capacity. We also developed

  1. Transcriptome analysis of a microbial coculture in which the cell populations are separated by a membrane.

    PubMed

    Hosoda, Kazufumi; Ono, Naoaki; Suzuki, Shingo; Yomo, Tetsuya

    2014-01-01

    The microbial coculture of multiple cell populations is used to study community evolution and for bioengineering applications. The cells in coculture undergo dynamic changes because of cell-cell and cell-environment interactions. Transcriptome analysis allows us to study the molecular basis of these changes in cell physiology. For transcriptome analysis, it is essential that the cell populations in the coculture are harvested separately. Here, we describe a method for transcriptome analysis of a microbial coculture in which two different cell populations are separated by a porous membrane.

  2. Cell dualism: presence of cells with alternative membrane potentials in growing populations of bacteria and yeasts.

    PubMed

    Ivanov, Volodymyr; Rezaeinejad, Saeid; Chu, Jian

    2013-10-01

    It is considered that all growing cells, for exception of acidophilic bacteria, have negatively charged inside cytoplasmic membrane (Δψ⁻-cells). Here we show that growing populations of microbial cells contain a small portion of cells with positively charged inside cytoplasmic membrane (Δψ⁺-cells). These cells were detected after simultaneous application of the fluorescent probes for positive membrane potential (anionic dye DIBAC⁻) and membrane integrity (propidium iodide, PI). We found in exponentially growing cell populations of Escherichia coli and Saccharomyces cerevisiae that the content of live Δψ⁻-cells was 93.6 ± 1.8 % for bacteria and 90.4 ± 4.0 % for yeasts and the content of live Δψ⁺-cells was 0.9 ± 0.3 % for bacteria and 2.4 ± 0.7 % for yeasts. Hypothetically, existence of Δψ⁺-cells could be due to short-term, about 1 min for bacteria and 5 min for yeasts, change of membrane potential from negative to positive value during the cell cycle. This change has been shown by the reversions of K⁺, Na⁺, and Ca²⁺ ions fluxes across the cell membrane during synchronous yeast culture. The transformation of Δψ(⁻-cells to Δψ⁺-cells can be explained by slow influx of K⁺ ions into Δψ⁻-cell to the trigger level of K⁺ concentration ("compression of potassium spring"), which is forming "alternative" Δψ⁺-cell for a short period, following with fast efflux of K⁺ ions out of Δψ⁺-cell ("release of potassium spring") returning cell to normal Δψ⁻ state. We anticipate our results to be a starting point to reveal the biological role of cell dualism in form of Δψ⁻- and Δψ⁺- cells.

  3. Mechanochemical feedback underlies coexistence of qualitatively distinct cell polarity patterns within diverse cell populations.

    PubMed

    Park, JinSeok; Holmes, William R; Lee, Sung Hoon; Kim, Hong-Nam; Kim, Deok-Ho; Kwak, Moon Kyu; Wang, Chiaochun Joanne; Edelstein-Keshet, Leah; Levchenko, Andre

    2017-07-11

    Cell polarization and directional cell migration can display random, persistent, and oscillatory dynamic patterns. However, it is not clear whether these polarity patterns can be explained by the same underlying regulatory mechanism. Here, we show that random, persistent, and oscillatory migration accompanied by polarization can simultaneously occur in populations of melanoma cells derived from tumors with different degrees of aggressiveness. We demonstrate that all of these patterns and the probabilities of their occurrence are quantitatively accounted for by a simple mechanism involving a spatially distributed, mechanochemical feedback coupling the dynamically changing extracellular matrix (ECM)-cell contacts to the activation of signaling downstream of the Rho-family small GTPases. This mechanism is supported by a predictive mathematical model and extensive experimental validation, and can explain previously reported results for diverse cell types. In melanoma, this mechanism also accounts for the effects of genetic and environmental perturbations, including mutations linked to invasive cell spread. The resulting mechanistic understanding of cell polarity quantitatively captures the relationship between population variability and phenotypic plasticity, with the potential to account for a wide variety of cell migration states in diverse pathological and physiological conditions.

  4. Circulating Angiogenic Cell Populations, Vascular Function, and Arterial Stiffness

    PubMed Central

    Cheng, Susan; Wang, Na; Larson, Martin G.; Palmisano, Joseph N.; Mitchell, Gary F.; Benjamin, Emelia J.; Vasan, Ramachandran S; Levy, Daniel; McCabe, Elizabeth L.; Vita, Joseph A.; Wang, Thomas J.; Shaw, Stanley Y.; Cohen, Kenneth S.; Hamburg, Naomi M.

    2011-01-01

    Objective Several bone marrow-derived cell populations have been identified that may possess angiogenic activity and contribute to vascular homeostasis in experimental studies. We examined the extent to which lower quantities of these circulating angiogenic cell phenotypes may be related to impaired vascular function and greater arterial stiffness. Methods We studied 1,948 Framingham Heart Study participants (mean age, 66±9 years; 54% women) who were phenotyped for circulating angiogenic cells: CD34+, CD34+/KDR+, and early outgrowth colony forming units (CFU). Participants underwent non-invasive assessments of vascular function including peripheral arterial tone (PAT), arterial tonometry, and brachial reactivity testing. Results In unadjusted analyses, higher CD34+ and CD34+/KDR+ concentrations were modestly associated with lower PAT ratio (β=−0.052±0.011, P<0.001 and β=−0.030±0.011, P=0.008, respectively) and with higher carotid-brachial pulse wave velocity (β=0.144±0.043, P=0.001 and β=0.112±0.043, P=0.009), but not with flow-mediated dilation; higher CD34+ was also associated with lower carotid-femoral pulse wave velocity (β=−0.229±0.094, P=0.015) However, only the association of lower CD34+ concentration with higher PAT ratio persisted in multivariable analyses that adjusted for standard cardiovascular risk factors. In all analyses, CFU was not associated with measures of vascular function or arterial stiffness. Conclusions In our large, community-based sample of men and women, circulating angiogenic cell phenotypes largely were not associated with measures of vascular function or arterial stiffness in analyses adjusting for traditional risk factors. PMID:22093724

  5. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    SciTech Connect

    Stampfer, Martha R; Garbe, James C

    2015-02-24

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  6. Increasing cell culture population doublings for long-term growth of finite life span human cell cultures

    SciTech Connect

    Stampfer, Martha R.; Garbe, James C.

    2016-06-28

    Cell culture media formulations for culturing human epithelial cells are herein described. Also described are methods of increasing population doublings in a cell culture of finite life span human epithelial cells and prolonging the life span of human cell cultures. Using the cell culture media disclosed alone and in combination with addition to the cell culture of a compound associated with anti-stress activity achieves extended growth of pre-stasis cells and increased population doublings and life span in human epithelial cell cultures.

  7. Preface of the "Symposium on Mathematical Models and Methods to investigate Heterogeneity in Cell and Cell Population Biology"

    NASA Astrophysics Data System (ADS)

    Clairambault, Jean

    2016-06-01

    This session investigates hot topics related to mathematical representations of cell and cell population dynamics in biology and medicine, in particular, but not only, with applications to cancer. Methods in mathematical modelling and analysis, and in statistical inference using single-cell and cell population data, should contribute to focus this session on heterogeneity in cell populations. Among other methods are proposed: a) Intracellular protein dynamics and gene regulatory networks using ordinary/partial/delay differential equations (ODEs, PDEs, DDEs); b) Representation of cell population dynamics using agent-based models (ABMs) and/or PDEs; c) Hybrid models and multiscale models to integrate single-cell dynamics into cell population behaviour; d) Structured cell population dynamics and asymptotic evolution w.r.t. relevant traits; e) Heterogeneity in cancer cell populations: origin, evolution, phylogeny and methods of reconstruction; f) Drug resistance as an evolutionary phenotype: predicting and overcoming it in therapeutics; g) Theoretical therapeutic optimisation of combined drug treatments in cancer cell populations and in populations of other organisms, such as bacteria.

  8. Concurrent Isolation of 3 Distinct Cardiac Stem Cell Populations From a Single Human Heart Biopsy.

    PubMed

    Monsanto, Megan M; White, Kevin S; Kim, Taeyong; Wang, Bingyan J; Fisher, Kristina; Ilves, Kelli; Khalafalla, Farid G; Casillas, Alexandria; Broughton, Kathleen; Mohsin, Sadia; Dembitsky, Walter P; Sussman, Mark A

    2017-07-07

    The relative actions and synergism between distinct myocardial-derived stem cell populations remain obscure. Ongoing debates on optimal cell population(s) for treatment of heart failure prompted implementation of a protocol for isolation of multiple stem cell populations from a single myocardial tissue sample to develop new insights for achieving myocardial regeneration. Establish a robust cardiac stem cell isolation and culture protocol to consistently generate 3 distinct stem cell populations from a single human heart biopsy. Isolation of 3 endogenous cardiac stem cell populations was performed from human heart samples routinely discarded during implantation of a left ventricular assist device. Tissue explants were mechanically minced into 1 mm(3) pieces to minimize time exposure to collagenase digestion and preserve cell viability. Centrifugation removes large cardiomyocytes and tissue debris producing a single cell suspension that is sorted using magnetic-activated cell sorting technology. Initial sorting is based on tyrosine-protein kinase Kit (c-Kit) expression that enriches for 2 c-Kit(+) cell populations yielding a mixture of cardiac progenitor cells and endothelial progenitor cells. Flowthrough c-Kit(-) mesenchymal stem cells are positively selected by surface expression of markers CD90 and CD105. After 1 week of culture, the c-Kit(+) population is further enriched by selection for a CD133(+) endothelial progenitor cell population. Persistence of respective cell surface markers in vitro is confirmed both by flow cytometry and immunocytochemistry. Three distinct cardiac cell populations with individualized phenotypic properties consistent with cardiac progenitor cells, endothelial progenitor cells, and mesenchymal stem cells can be successfully concurrently isolated and expanded from a single tissue sample derived from human heart failure patients. © 2017 American Heart Association, Inc.

  9. Abcg2-Labeled Cells Contribute to Different Cell Populations in the Embryonic and Adult Heart.

    PubMed

    Doyle, Michelle J; Maher, Travis J; Li, Qinglu; Garry, Mary G; Sorrentino, Brian P; Martin, Cindy M

    2016-02-01

    ATP-binding cassette transporter subfamily G member 2 (Abcg2)-expressing cardiac-side population cells have been identified in the developing and adult heart, although the role they play in mammalian heart growth and regeneration remains unclear. In this study, we use genetic lineage tracing to follow the cell fate of Abcg2-expressing cells in the embryonic and adult heart. During cardiac embryogenesis, the Abcg2 lineage gives rise to multiple cardiovascular cell types, including cardiomyocytes, endothelial cells, and vascular smooth muscle cells. This capacity for Abcg2-expressing cells to contribute to cardiomyocytes decreases rapidly during the postnatal period. We further tested the role of the Abcg2 lineage following myocardial injury. One month following ischemia reperfusion injury, Abcg2-expressing cells contributed significantly to the endothelial cell lineage, however, there was no contribution to regenerated cardiomyocytes. Furthermore, consistent with previous results showing that Abcg2 plays an important cytoprotective role during oxidative stress, we show an increase in Abcg2 labeling of the vasculature, a decrease in the scar area, and a moderate improvement in cardiac function following myocardial injury. We have uncovered a difference in the capacity of Abcg2-expressing cells to generate the cardiovascular lineages during embryogenesis, postnatal growth, and cardiac regeneration.

  10. Characterization of human skeletal stem and bone cell populations using dielectrophoresis.

    PubMed

    Ismail, A; Hughes, M P; Mulhall, H J; Oreffo, R O C; Labeed, F H

    2015-02-01

    Dielectrophoresis (DEP) is a non-invasive cell analysis method that uses differences in electrical properties between particles and surrounding medium to determine a unique set of cellular properties that can be used as a basis for cell separation. Cell-based therapies using skeletal stem cells are currently one of the most promising areas for treating a variety of skeletal and muscular disorders. However, identifying and sorting these cells remains a challenge in the absence of unique skeletal stem cell markers. DEP provides an ideal method for identifying subsets of cells without the need for markers by using their dielectric properties. This study used a 3D dielectrophoretic well chip device to determine the dielectric characteristics of two osteosarcoma cell lines (MG-63 and SAOS-2) and an immunoselected enriched skeletal stem cell fraction (STRO-1 positive cell) of human bone marrow. Skeletal cells were exposed to a series of different frequencies to induce dielectrophoretic cell movement, and a model was developed to generate the membrane and cytoplasmic properties of the cell populations. Differences were observed in the dielectric properties of MG-63, SAOS-2 and STRO-1 enriched skeletal populations, which could potentially be used to sort cells in mixed populations. This study provide evidence of the ability to characterize different human skeletal stem and mature cell populations, and acts as a proof-of-concept that dielectrophoresis can be exploited to detect, isolate and separate skeletal cell populations from heterogeneous bone marrow cell populations.

  11. In silico lineage tracing through single cell transcriptomics identifies a neural stem cell population in planarians.

    PubMed

    Molinaro, Alyssa M; Pearson, Bret J

    2016-04-27

    The planarian Schmidtea mediterranea is a master regenerator with a large adult stem cell compartment. The lack of transgenic labeling techniques in this animal has hindered the study of lineage progression and has made understanding the mechanisms of tissue regeneration a challenge. However, recent advances in single-cell transcriptomics and analysis methods allow for the discovery of novel cell lineages as differentiation progresses from stem cell to terminally differentiated cell. Here we apply pseudotime analysis and single-cell transcriptomics to identify adult stem cells belonging to specific cellular lineages and identify novel candidate genes for future in vivo lineage studies. We purify 168 single stem and progeny cells from the planarian head, which were subjected to single-cell RNA sequencing (scRNAseq). Pseudotime analysis with Waterfall and gene set enrichment analysis predicts a molecularly distinct neoblast sub-population with neural character (νNeoblasts) as well as a novel alternative lineage. Using the predicted νNeoblast markers, we demonstrate that a novel proliferative stem cell population exists adjacent to the brain. scRNAseq coupled with in silico lineage analysis offers a new approach for studying lineage progression in planarians. The lineages identified here are extracted from a highly heterogeneous dataset with minimal prior knowledge of planarian lineages, demonstrating that lineage purification by transgenic labeling is not a prerequisite for this approach. The identification of the νNeoblast lineage demonstrates the usefulness of the planarian system for computationally predicting cellular lineages in an adult context coupled with in vivo verification.

  12. Regulation of bacteria population behaviors by AI-2 "consumer cells" and "supplier cells".

    PubMed

    Quan, Yufen; Meng, Fankang; Ma, Xinyu; Song, Xinhao; Liu, Xiao; Gao, Weixia; Dang, Yulei; Meng, Yao; Cao, Mingfeng; Song, Cunjiang

    2017-09-19

    Autoinducer-2 (AI-2) is a universal signal molecule and enables an individual bacteria to communicate with each other and ultimately control behaviors of the population. Harnessing the character of AI-2, two kinds of AI-2 "controller cells" ("consumer cells" and "supplier cells") were designed to "reprogram" the behaviors of entire population. For the consumer cells, genes associated with the uptake and processing of AI-2, which includes LsrACDB, LsrFG, LsrK, were overexpressed in varying combinations. Four consumer cell strains were constructed: Escherichia coli MG1655 pLsrACDB (NK-C1), MG1655 pLsrACDBK (NK-C2), MG1655 pLsrACDBFG (NK-C3) and MG1655 pLsrACDBFGK (NK-C4). The key enzymes responsible for production of AI-2, LuxS and Mtn, were also overexpressed, yielding strains MG1655 pLuxS (NK-SU1), and MG1655 pLuxS-Mtn (NK-SU2). All the consumer cells could decrease the environmental AI-2 concentration. NK-C2 and NK-C4 were most effective in AI-2 uptake and inhibited biofilm formation. While suppliers can increase the environmental AI-2 concentration and NK-SU2 was most effective in supplying AI-2 and facilitated biofilm formation. Further, reporter strain, MG1655 pLGFP was constructed. The expression of green fluorescent protein (GFP) in reporter cells was initiated and guided by AI-2. Mixture of consumer cells and reporter cells suggest that consumer cells can decrease the AI-2 concentration. And the supplier cells were co-cultured with reporter cells, indicating that supplier cells can provide more AI-2 compared to the control. The consumer cells and supplier cells could be used to regulate environmental AI-2 concentration and the biofilm formation. They can also modulate the AI-2 concentration when they were co-cultured with reporter cells. It can be envisioned that this system will become useful tools in synthetic biology and researching new antimicrobials.

  13. Side Population Cells From an Immortalized Human Liver Epithelial Cell Line Exhibit Hepatic Stem-Like Cell Properties.

    PubMed

    Tokiwa, Takayoshi; Yamazaki, Taisuke; Enosawa, Shin

    2012-01-01

    The existence of hepatic stem cells in human livers is controversial. We investigated whether the side population (SP) cells derived from an immortalized human liver epithelial cell line THLE-5b possess the properties of hepatic stem-like cells. SP cells derived from THLE-5b were isolated using flow cytometry and were assayed for the expression of phenotypic markers by reverse transcription polymerase chain reaction and immunostaining. THLE-5b SP cells retained the capacity to generate both SP and non-SP cells, showed a capacity for self-renewal, and were more efficient in colony formation than non-SP cells. Neither the SP nor the non-SP cells formed tumors when transplanted into athymic nude mice or severe combined immunodeficient mice. The expression level of stem cell-associated markers such as an ATP-binding cassette membrane transporter, epithelial cell adhesion molecule, c-kit, Thy-1, and octomer binding transcription factor 4 was higher in SP cells than in non-SP cells. When cultivated as rotation-mediated aggregates, the expression of liver-specific genes including tryptophan oxygenase and CYP3A4 was up-regulated in SP cells, suggesting that THLE-5b SP cells have the ability to differentiate into a hepatocyte phenotype. One of the clonal cell lines derived from the SP cells expressed stem cell-associated markers. These results indicate that SP cells derived from THLE-5b possess hepatic stem-like cell properties and suggest that THLE-5b can be used as a model of normal human liver progenitor or stem cell line.

  14. Phase control of probe response in a Doppler-broadened N-type four-level system

    SciTech Connect

    Fan Xijun; Liu Zhongbo; Liang Ying; Jia Kening; Tong Dianmin

    2011-04-15

    In this paper, we investigate theoretically the effect of the relative phase ({phi}) between the probe and driving fields on gain (absorption) and dispersion of the probe field in a Doppler-broadened N-type four-level system with spontaneously generated coherence from different respects. It is shown that gain (absorption) and dispersion are very sensitive to variations in the relative phase, and changing the Doppler width also has an obvious effect on the phase-dependent gain (absorption) and dispersion. When the probe and driving fields have the same propagation directions (copropagating), for the same Doppler width, the dispersion curve with {phi}={alpha} is the same as the gain (absorption) curve with {phi}={alpha}+{pi}/2; however, when the probe and driving fields have opposite propagation directions (counterpropagating), the dispersion curve and gain (absorption) curve are different and the difference becomes more considerable with an increase in Doppler width. In the co- and counterpropagating cases, gain (absorption) and dispersion always vary periodically with varying {phi}, and the period is 2{pi}. By adjusting the value of {phi}, the largest gain (absorption) and dispersion can be obtained, and a large index of refraction without absorption can be realized. Generally speaking, gain decreases with an increase in Doppler width, but by adjusting value of {phi}, at some special values of Doppler width, a larger gain than that without Doppler broadening can be obtained. Our study also shows that gain in the copropagating case is much larger than that in the counterpropagating case.

  15. Emissions enhancement in a pump-coupling V-type coherently controlled four-level atomic system

    NASA Astrophysics Data System (ADS)

    Pentaris, D.; Papademetriou, G.; Efthimiopoulos, T.; Merlemis, N.; Lyras, A.

    2013-12-01

    The nonlinear interaction of a four-level potassium system with a strong pump and a weak coupling laser is investigated. A strong pump pulse excites the two-photon transition ?, causing prompt parametric emissions along the path-1 ? and delayed emissions in the second available de-excitation path-2 ?. A weak coupling pulse is introduced to coherently excite either the transition ? (path-1) or the ? one (path-2) in a V-type scheme. Results are presented for the emissions generated under the combined action of the pump-coupling pulses as a function of their delay for certain peak pulse intensities and coherence relaxation times (CRTs) related to dephasing collisions. We find that emissions in path-1 are considerably enhanced for negative delays (counterintuitive pulse sequence) of the order of the CRT. An approach is suggested for the estimation of CRTs. Emissions in path-2 are enhanced and temporally shifted, suggesting an approach to control this path by varying the pulse delay.

  16. Sertoli Cell Number Defines and Predicts Germ and Leydig Cell Population Sizes in the Adult Mouse Testis.

    PubMed

    Rebourcet, Diane; Darbey, Annalucia; Monteiro, Ana; Soffientini, Ugo; Tsai, Yi Ting; Handel, Ian; Pitetti, Jean-Luc; Nef, Serge; Smith, Lee B; O'Shaughnessy, Peter J

    2017-09-01

    Sertoli cells regulate differentiation and development of the testis and are essential for maintaining adult testis function. To model the effects of dysregulating Sertoli cell number during development or aging, we have used acute diphtheria toxin-mediated cell ablation to reduce Sertoli cell population size. Results show that the size of the Sertoli cell population that forms during development determines the number of germ cells and Leydig cells that will be present in the adult testis. Similarly, the number of germ cells and Leydig cells that can be maintained in the adult depends directly on the size of the adult Sertoli cell population. Finally, we have used linear modeling to generate predictive models of testis cell composition during development and in the adult based on the size of the Sertoli cell population. This study shows that at all ages the size of the Sertoli cell population is predictive of resulting testicular cell composition. A reduction in Sertoli cell number/proliferation at any age will therefore lead to a proportional decrease in germ cell and Leydig cell numbers, with likely consequential effects on fertility and health.

  17. A millifluidic study of cell-to-cell heterogeneity in growth-rate and cell-division capability in populations of isogenic cells of Chlamydomonas reinhardtii.

    PubMed

    Damodaran, Shima P; Eberhard, Stephan; Boitard, Laurent; Rodriguez, Jairo Garnica; Wang, Yuxing; Bremond, Nicolas; Baudry, Jean; Bibette, Jérôme; Wollman, Francis-André

    2015-01-01

    To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers) and a significant subpopulation of slowly dividing cells (slow-growers). These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes.

  18. A Millifluidic Study of Cell-to-Cell Heterogeneity in Growth-Rate and Cell-Division Capability in Populations of Isogenic Cells of Chlamydomonas reinhardtii

    PubMed Central

    Damodaran, Shima P.; Eberhard, Stephan; Boitard, Laurent; Rodriguez, Jairo Garnica; Wang, Yuxing; Bremond, Nicolas; Baudry, Jean; Bibette, Jérôme; Wollman, Francis-André

    2015-01-01

    To address possible cell-to-cell heterogeneity in growth dynamics of isogenic cell populations of Chlamydomonas reinhardtii, we developed a millifluidic drop-based device that not only allows the analysis of populations grown from single cells over periods of a week, but is also able to sort and collect drops of interest, containing viable and healthy cells, which can be used for further experimentation. In this study, we used isogenic algal cells that were first synchronized in mixotrophic growth conditions. We show that these synchronized cells, when placed in droplets and kept in mixotrophic growth conditions, exhibit mostly homogeneous growth statistics, but with two distinct subpopulations: a major population with a short doubling-time (fast-growers) and a significant subpopulation of slowly dividing cells (slow-growers). These observations suggest that algal cells from an isogenic population may be present in either of two states, a state of restricted division and a state of active division. When isogenic cells were allowed to propagate for about 1000 generations on solid agar plates, they displayed an increased heterogeneity in their growth dynamics. Although we could still identify the original populations of slow- and fast-growers, drops inoculated with a single progenitor cell now displayed a wider diversity of doubling-times. Moreover, populations dividing with the same growth-rate often reached different cell numbers in stationary phase, suggesting that the progenitor cells differed in the number of cell divisions they could undertake. We discuss possible explanations for these cell-to-cell heterogeneities in growth dynamics, such as mutations, differential aging or stochastic variations in metabolites and macromolecules yielding molecular switches, in the light of single-cell heterogeneities that have been reported among isogenic populations of other eu- and prokaryotes. PMID:25760649

  19. Phenotype overlap in glial cell populations: astroglia, oligodendroglia and NG-2(+) cells

    PubMed Central

    Alghamdi, Badrah; Fern, Robert

    2015-01-01

    The extent to which NG-2(+) cells form a distinct population separate from astrocytes is central to understanding whether this important cell class is wholly an oligodendrocyte precursor cell (OPC) or has additional functions akin to those classically ascribed to astrocytes. Early immuno-staining studies indicate that NG-2(+) cells do not express the astrocyte marker GFAP, but orthogonal reconstructions of double-labeled confocal image stacks here reveal a significant degree of co-expression in individual cells within post-natal day 10 (P10) and adult rat optic nerve (RON) and rat cortex. Extensive scanning of various antibody/fixation/embedding approaches identified a protocol for selective post-embedded immuno-gold labeling. This first ultrastructural characterization of identified NG-2(+) cells revealed populations of both OPCs and astrocytes in P10 RON. NG-2(+) astrocytes had classic features including the presence of glial filaments but low levels of glial filament expression were also found in OPCs and myelinating oligodendrocytes. P0 RONs contained few OPCs but positively identified astrocytes were observed to ensheath pre-myelinated axons in a fashion previously described as a definitive marker of the oligodendrocyte lineage. Astrocyte ensheathment was also apparent in P10 RONs, was absent from developing nodes of Ranvier and was never associated with compact myelin. Astrocyte processes were also shown to encapsulate some oligodendrocyte somata. The data indicate that common criteria for delineating astrocytes and oligodendroglia are insufficiently robust and that astrocyte features ascribed to OPCs may arise from misidentification. PMID:26106302

  20. Regional Cell Specific RNA Expression Profiling of FACS Isolated Drosophila Intestinal Cell Populations.

    PubMed

    Dutta, Devanjali; Buchon, Nicolas; Xiang, Jinyi; Edgar, Bruce A

    2015-08-03

    The adult Drosophila midgut is built of five distinct cell types, including stem cells, enteroblasts, enterocytes, enteroendocrine cells, and visceral muscles, and is divided into five major regions (R1 to R5), which are morphologically and functionally distinct from each other. This unit describes a protocol for the isolation of Drosophila intestinal cell populations for the purpose of cell type-specific transcriptome profiling from the five different regions. A method to select a cell type of interest labeled with green or yellow fluorescent protein (GFP, YFP) by making use of the GAL4-UAS bipartite system and fluorescent-activated cell sorting (FACS) is presented. Total RNA is isolated from the sorted cells of each region, and linear RNA amplification is used to obtain sufficient amounts of high-quality RNA for analysis by microarray, RT-PCR, or RNA sequencing. This method will be useful for quantitative transcriptome comparison across intestinal cell types in the different regions under normal and various experimental conditions. Copyright © 2015 John Wiley & Sons, Inc.

  1. Enrichment of skin-derived neural precursor cells from dermal cell populations by altering culture conditions.

    PubMed

    Bayati, Vahid; Gazor, Rohoullah; Nejatbakhsh, Reza; Negad Dehbashi, Fereshteh

    2016-01-01

    As stem cells play a critical role in tissue repair, their manipulation for being applied in regenerative medicine is of great importance. Skin-derived precursors (SKPs) may be good candidates for use in cell-based therapy as the only neural stem cells which can be isolated from an accessible tissue, skin. Herein, we presented a simple protocol to enrich neural SKPs by monolayer adherent cultivation to prove the efficacy of this method. To enrich neural SKPs from dermal cell populations, we have found that a monolayer adherent cultivation helps to increase the numbers of neural precursor cells. Indeed, we have cultured dermal cells as monolayer under serum-supplemented (control) and serum-supplemented culture, followed by serum free cultivation (test) and compared. Finally, protein markers of SKPs were assessed and compared in both experimental groups and differentiation potential was evaluated in enriched culture. The cells of enriched culture concurrently expressed fibronectin, vimentin and nestin, an intermediate filament protein expressed in neural and skeletal muscle precursors as compared to control culture. In addition, they possessed a multipotential capacity to differentiate into neurogenic, glial, adipogenic, osteogenic and skeletal myogenic cell lineages. It was concluded that serum-free adherent culture reinforced by growth factors have been shown to be effective on proliferation of skin-derived neural precursor cells (skin-NPCs) and drive their selective and rapid expansion.

  2. Analysis of cell viability in intervertebral disc: Effect of endplate permeability on cell population.

    PubMed

    Shirazi-Adl, A; Taheri, M; Urban, J P G

    2010-05-07

    Responsible for making and maintaining the extracellular matrix, the cells of intervertebral discs are supplied with essential nutrients by diffusion from the blood supply through mainly the cartilaginous endplates (CEPs) and disc tissue. Decrease in transport rate and increase in cellular activity may adversely disturb the intricate supply-demand balance leading ultimately to cell death and disc degeneration. The present numerical study aimed to introduce for the first time cell viability criteria into nonlinear coupled nutrition transport equations thereby evaluating the dynamic nutritional processes governing viable cell population and concentrations of oxygen, glucose and lactic acid in the disc as CEP exchange area dropped from a fully permeable condition to an almost impermeable one. A uniaxial model of an in vitro cell culture analogue of the disc is first employed to examine and validate cell viability criteria. An axisymmetric model of the disc with four distinct regions was subsequently used to investigate the survival of cells at different CEP exchange areas. In agreement with measurements, predictions of the diffusion chamber model demonstrated substantial cell death as essential nutrient concentrations fell to levels too low to support cells. Cells died away from the nutrient supply and at higher cell densities. In the disc model, the nucleus region being farthest away from supply sources was most affected; cell death initiated first as CEP exchange area dropped below approximately 40% and continued exponentially thereafter to depletion as CEP calcified further. In cases with loss of endplate permeability and/or disruptions therein, as well as changes in geometry and fall in diffusivity associated with fluid outflow, the nutrient concentrations could fall to levels inadequate to maintain cellular activity or viability, resulting in cell death and disc degeneration.

  3. Fgf10-positive cells represent a progenitor cell population during lung development and postnatally.

    PubMed

    El Agha, Elie; Herold, Susanne; Al Alam, Denise; Quantius, Jennifer; MacKenzie, BreAnne; Carraro, Gianni; Moiseenko, Alena; Chao, Cho-Ming; Minoo, Parviz; Seeger, Werner; Bellusci, Saverio

    2014-01-01

    The lung mesenchyme consists of a widely heterogeneous population of cells that play crucial roles during development and homeostasis after birth. These cells belong to myogenic, adipogenic, chondrogenic, neuronal and other lineages. Yet, no clear hierarchy for these lineages has been established. We have previously generated a novel Fgf10(iCre) knock-in mouse line that allows lineage tracing of Fgf10-positive cells during development and postnatally. Using these mice, we hereby demonstrate the presence of two waves of Fgf10 expression during embryonic lung development: the first wave, comprising Fgf10-positive cells residing in the submesothelial mesenchyme at early pseudoglandular stage (as well as their descendants); and the second wave, comprising Fgf10-positive cells from late pseudoglandular stage (as well as their descendants). Our lineage-tracing data reveal that the first wave contributes to the formation of parabronchial and vascular smooth muscle cells as well as lipofibroblasts at later developmental stages, whereas the second wave does not give rise to smooth muscle cells but to lipofibroblasts as well as an Nkx2.1(-) E-Cad(-) Epcam(+) Pro-Spc(+) lineage that requires further in-depth analysis. During alveologenesis, Fgf10-positive cells give rise to lipofibroblasts rather than alveolar myofibroblasts, and during adult life, a subpopulation of Fgf10-expressing cells represents a pool of resident mesenchymal stromal (stem) cells (MSCs) (Cd45(-) Cd31(-) Sca-1(+)). Taken together, we show for the first time that Fgf10-expressing cells represent a pool of mesenchymal progenitors in the embryonic and postnatal lung. Our findings suggest that Fgf10-positive cells could be useful for developing stem cell-based therapies for treating interstitial lung diseases.

  4. Mouse adipose tissue stromal cells give rise to skeletal and cardiomyogenic cell sub-populations

    PubMed Central

    Dromard, Cécile; Barreau, Corinne; André, Mireille; Berger-Müller, Sandra; Casteilla, Louis; Planat-Benard, Valerie

    2014-01-01

    We previously reported that adipose tissue could generate cardiomyocyte-like cells from crude stromal vascular fraction (SVF) in vitro that improved cardiac function in a myocardial infarction context. However, it is not clear whether these adipose-derived cardiomyogenic cells (AD-CMG) constitute a homogenous population and if AD-CMG progenitors could be isolated as a pure population from the SVF of adipose tissue. This study aims to characterize the different cell types that constitute myogenic clusters and identify the earliest AD-CMG progenitors in vitro for establishing a complete phenotype and use it to sort AD-CMG progenitors from crude SVF. Here, we report cell heterogeneity among adipose-derived clusters during their course of maturation and highlighted sub-populations that exhibit original mixed cardiac/skeletal muscle phenotypes with a progressive loss of cardiac phenotype with time in liquid culture conditions. Moreover, we completed the phenotype of AD-CMG progenitors but we failed to sort them from the SVF. We demonstrated that micro-environment is required for the maturation of myogenic phenotype by co-culture experiments. These findings bring complementary data on AD-CMG and suggest that their emergence results from in vitro events. PMID:25364749

  5. Integrin-β4 identifies cancer stem cell-enriched populations of partially mesenchymal carcinoma cells

    PubMed Central

    Bierie, Brian; Pierce, Sarah E.; Kroeger, Cornelia; Stover, Daniel G.; Pattabiraman, Diwakar R.; Thiru, Prathapan; Liu Donaher, Joana; Reinhardt, Ferenc; Chaffer, Christine L.; Keckesova, Zuzana; Weinberg, Robert A.

    2017-01-01

    Neoplastic cells within individual carcinomas often exhibit considerable phenotypic heterogeneity in their epithelial versus mesenchymal-like cell states. Because carcinoma cells with mesenchymal features are often more resistant to therapy and may serve as a source of relapse, we sought to determine whether such cells could be further stratified into functionally distinct subtypes. Indeed, we find that a basal epithelial marker, integrin-β4 (ITGB4), can be used to enable stratification of mesenchymal-like triple-negative breast cancer (TNBC) cells that differ from one another in their relative tumorigenic abilities. Notably, we demonstrate that ITGB4+ cancer stem cell (CSC)-enriched mesenchymal cells reside in an intermediate epithelial/mesenchymal phenotypic state. Among patients with TNBC who received chemotherapy, elevated ITGB4 expression was associated with a worse 5-year probability of relapse-free survival. Mechanistically, we find that the ZEB1 (zinc finger E-box binding homeobox 1) transcription factor activity in highly mesenchymal SUM159 TNBC cells can repress expression of the epithelial transcription factor TAp63α (tumor protein 63 isoform 1), a protein that promotes ITGB4 expression. In addition, we demonstrate that ZEB1 and ITGB4 are important in modulating the histopathological phenotypes of tumors derived from mesenchymal TNBC cells. Hence, mesenchymal carcinoma cell populations are internally heterogeneous, and ITGB4 is a mechanistically driven prognostic biomarker that can be used to identify the more aggressive subtypes of mesenchymal carcinoma cells in TNBC. The ability to rapidly isolate and mechanistically interrogate the CSC-enriched, partially mesenchymal carcinoma cells should further enable identification of novel therapeutic opportunities to improve the prognosis for high-risk patients with TNBC. PMID:28270621

  6. Spectrophotometric analysis at the single-cell level: elucidating dispersity within melanic immortalized cell populations.

    PubMed

    Polo-Parada, Luis; Gutiérrez-Juárez, Gerardo; Cywiak, David; Pérez-Solano, Rafael; Baker, Gary A

    2017-03-28

    that when a single or few cancer cells are present within a blood droplet, the photoacoustic signal is indistinguishable from that measured from blood alone. These outcomes have important ramifications for the early photoacoustic detection of cancer cells and circulating tumor emboli, while pointing to the potential of single-cell imaging spectrophotometry to assess heterogeneity within cell populations in more quantitative terms.

  7. Population

    EPA Science Inventory

    Population growth influences many stressors on Narragansett Bay and its Watershed, including all landscape and chemical stressors discussed in other chapters of this report. In numerous ways, population growth affects the condition of the Bay ecosystem, Watershed ecosystem, and h...

  8. The cell-stretcher: A novel device for the mechanical stimulation of cell populations

    NASA Astrophysics Data System (ADS)

    Seriani, S.; Del Favero, G.; Mahaffey, J.; Marko, D.; Gallina, P.; Long, C. S.; Mestroni, L.; Sbaizero, O.

    2016-08-01

    Mechanical stimulation appears to be a critical modulator for many aspects of biology, both of living tissue and cells. The cell-stretcher, a novel device for the mechanical uniaxial stimulation of populations of cells, is described. The system is based on a variable stroke cam-lever-tappet mechanism which allows the delivery of cyclic stimuli with frequencies of up to 10 Hz and deformation between 1% and 20%. The kinematics is presented and a simulation of the dynamics of the system is shown, in order to compute the contact forces in the mechanism. The cells, following cultivation and preparation, are plated on an ad hoc polydimethylsiloxane membrane which is then loaded on the clamps of the cell-stretcher via force-adjustable magnetic couplings. In order to show the viability of the experimentation and biocompatibility of the cell-stretcher, a set of two in vitro tests were performed. Human epithelial carcinoma cell line A431 and Adult Mouse Ventricular Fibroblasts (AMVFs) from a dual reporter mouse were subject to 0.5 Hz, 24 h cyclic stretching at 15% strain, and to 48 h stimulation at 0.5 Hz and 15% strain, respectively. Visual analysis was performed on A431, showing definite morphological changes in the form of cellular extroflections in the direction of stimulation compared to an unstimulated control. A cytometric analysis was performed on the AMVF population. Results show a post-stimulation live-dead ratio deviance of less than 6% compared to control, which proves that the environment created by the cell-stretcher is suitable for in vitro experimentation.

  9. Perivascular Stem Cells: A Prospectively Purified Mesenchymal Stem Cell Population for Bone Tissue Engineering

    PubMed Central

    James, Aaron W.; Zara, Janette N.; Zhang, Xinli; Askarinam, Asal; Goyal, Raghav; Chiang, Michael; Yuan, Wei; Chang, Le; Corselli, Mirko; Shen, Jia; Pang, Shen; Stoker, David; Wu, Ben

    2012-01-01

    Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34−CD45−) and adventitial cells (CD146−CD34+CD45−), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis. PMID:23197855

  10. Perivascular stem cells: a prospectively purified mesenchymal stem cell population for bone tissue engineering.

    PubMed

    James, Aaron W; Zara, Janette N; Zhang, Xinli; Askarinam, Asal; Goyal, Raghav; Chiang, Michael; Yuan, Wei; Chang, Le; Corselli, Mirko; Shen, Jia; Pang, Shen; Stoker, David; Wu, Ben; Ting, Kang; Péault, Bruno; Soo, Chia

    2012-06-01

    Adipose tissue is an ideal source of mesenchymal stem cells for bone tissue engineering: it is largely dispensable and readily accessible with minimal morbidity. However, the stromal vascular fraction (SVF) of adipose tissue is a heterogeneous cell population, which leads to unreliable bone formation. In the present study, we prospectively purified human perivascular stem cells (PSCs) from adipose tissue and compared their bone-forming capacity with that of traditionally derived SVF. PSCs are a population (sorted by fluorescence-activated cell sorting) of pericytes (CD146+CD34-CD45-) and adventitial cells (CD146-CD34+CD45-), each of which we have previously reported to have properties of mesenchymal stem cells. Here, we found that PSCs underwent osteogenic differentiation in vitro and formed bone after intramuscular implantation without the need for predifferentiation. We next sought to optimize PSCs for in vivo bone formation, adopting a demineralized bone matrix for osteoinduction and tricalcium phosphate particle formulation for protein release. Patient-matched, purified PSCs formed significantly more bone in comparison with traditionally derived SVF by all parameters. Recombinant bone morphogenetic protein 2 increased in vivo bone formation but with a massive adipogenic response. In contrast, recombinant Nel-like molecule 1 (NELL-1; a novel osteoinductive growth factor) selectively enhanced bone formation. These studies suggest that adipose-derived human PSCs are a new cell source for future efforts in skeletal regenerative medicine. Moreover, PSCs are a stem cell-based therapeutic that is readily approvable by the U.S. Food and Drug Administration, with potentially increased safety, purity, identity, potency, and efficacy. Finally, NELL-1 is a candidate growth factor able to induce human PSC osteogenesis.

  11. [Population].

    PubMed

    1979-01-01

    Data on the population of Venezuela between 1975 and 1977 are presented in descriptive tables and graphs. Information is included on the employed population according to category, sex, and type of economic activity, and by sex, age, and area on the employment rate and the total, the economically active, and the unemployed population.

  12. Population.

    ERIC Educational Resources Information Center

    King, Pat; Landahl, John

    This pamphlet has been prepared in response to a new problem, a rapidly increasing population, and a new need, population education. It is designed to help teachers provide their students with some basic population concepts with stress placed on the elements of decision making. In the first section of the pamphlet, some of the basic concepts of…

  13. Monitoring intraspecies competition in a bacterial cell population by cocultivation of fluorescently labelled strains.

    PubMed

    Stannek, Lorena; Egelkamp, Richard; Gunka, Katrin; Commichau, Fabian M

    2014-01-18

    Many microorganisms such as bacteria proliferate extremely fast and the populations may reach high cell densities. Small fractions of cells in a population always have accumulated mutations that are either detrimental or beneficial for the cell. If the fitness effect of a mutation provides the subpopulation with a strong selective growth advantage, the individuals of this subpopulation may rapidly outcompete and even completely eliminate their immediate fellows. Thus, small genetic changes and selection-driven accumulation of cells that have acquired beneficial mutations may lead to a complete shift of the genotype of a cell population. Here we present a procedure to monitor the rapid clonal expansion and elimination of beneficial and detrimental mutations, respectively, in a bacterial cell population over time by cocultivation of fluorescently labeled individuals of the Gram-positive model bacterium Bacillus subtilis. The method is easy to perform and very illustrative to display intraspecies competition among the individuals in a bacterial cell population.

  14. Development of a novel cell sorting method that samples population diversity in flow cytometry.

    PubMed

    Osborne, Geoffrey W; Andersen, Stacey B; Battye, Francis L

    2015-11-01

    Flow cytometry based electrostatic cell sorting is an important tool in the separation of cell populations. Existing instruments can sort single cells into multi-well collection plates, and keep track of cell of origin and sorted well location. However currently single sorted cell results reflect the population distribution and fail to capture the population diversity. Software was designed that implements a novel sorting approach, "Slice and Dice Sorting," that links a graphical representation of a multi-well plate to logic that ensures that single cells are sampled and sorted from all areas defined by the sort region/s. Therefore the diversity of the total population is captured, and the more frequently occurring or rarer cell types are all sampled. The sorting approach was tested computationally, and using functional cell based assays. Computationally we demonstrate that conventional single cell sorting can sample as little as 50% of the population diversity dependant on the population distribution, and that Slice and Dice sorting samples much more of the variety present within a cell population. We then show by sorting single cells into wells using the Slice and Dice sorting method that there are cells sorted using this method that would be either rarely sorted, or not sorted at all using conventional single cell sorting approaches. The present study demonstrates a novel single cell sorting method that samples much more of the population diversity than current methods. It has implications in clonal selection, stem cell sorting, single cell sequencing and any areas where population heterogeneity is of importance.

  15. High anti-TNP plaque-forming cell potential of residual mIg+ cells in a T cell population.

    PubMed

    Mond, J J; Mage, M G; Rothstein, T L; Mosier, D E; Herrod, H; Asofsky, R; Paul, W E

    1980-10-01

    In the course of experiments designed to study the immune response of purified populations of B lymphocytes to thymus-independent (TI) antigens, a variety of cell purification procedures were followed. In using anti-immunoglobulin-coated dishes to separate lymphocytes bearing membrane immunoglobulin (mIg) from mIg- lymphocytes, it was found that the nonadherent fraction, which was predominantly mIg-, complement receptor negative, and nonresponsive to the B cell mitogen lipopolysaccharide, gave very substantial anti-TNP plaque-forming cell responses to 2 TI antigens. These responses could be inhibited by incubation of such cells in the presence of anti-mu and thus appeared to be attributable to mIg+ cells. The evidence suggests the existence of a population of B lymphocytes that constitute a minor component of mIg+ cells having a high potential to make in vitro antibody responses. Users of techniques that utilize anti-Ig as a tool for separating B and T lymphocytes should carefully assess the extent to which residual B lymphocytes in the mIg- population contribute to antibody responses being studied.

  16. β-escin selectively targets the glioblastoma-initiating cell population and reduces cell viability

    PubMed Central

    Harford-Wright, Elizabeth; Bidère, Nicolas; Gavard, Julie

    2016-01-01

    Glioblastoma multiforme (GBM) is a highly aggressive tumour of the central nervous system and is associated with an extremely poor prognosis. Within GBM exists a subpopulation of cells, glioblastoma-initiating cells (GIC), which possess the characteristics of progenitor cells, have the ability to initiate tumour growth and resist to current treatment strategies. We aimed at identifying novel specific inhibitors of GIC expansion through use of a large-scale chemical screen of approved small molecules. Here, we report the identification of the natural compound β-escin as a selective inhibitor of GIC viability. Indeed, β-escin was significantly cytotoxic in nine patient-derived GIC, whilst exhibiting no substantial effect on the other human cancer or control cell lines tested. In addition, β-escin was more effective at reducing GIC growth than current clinically used cytotoxic agents. We further show that β-escin triggers caspase-dependent cell death combined with a loss of stemness properties. However, blocking apoptosis could not rescue the β-escin-induced reduction in sphere formation or stemness marker activity, indicating that β-escin directly modifies the stem identity of GIC, independent of the induction of cell death. Thus, this study has repositioned β-escin as a promising potential candidate to selectively target the aggressive population of initiating cells within GBM. PMID:27589691

  17. β-escin selectively targets the glioblastoma-initiating cell population and reduces cell viability.

    PubMed

    Harford-Wright, Elizabeth; Bidère, Nicolas; Gavard, Julie

    2016-10-11

    Glioblastoma multiforme (GBM) is a highly aggressive tumour of the central nervous system and is associated with an extremely poor prognosis. Within GBM exists a subpopulation of cells, glioblastoma-initiating cells (GIC), which possess the characteristics of progenitor cells, have the ability to initiate tumour growth and resist to current treatment strategies. We aimed at identifying novel specific inhibitors of GIC expansion through use of a large-scale chemical screen of approved small molecules. Here, we report the identification of the natural compound β-escin as a selective inhibitor of GIC viability. Indeed, β-escin was significantly cytotoxic in nine patient-derived GIC, whilst exhibiting no substantial effect on the other human cancer or control cell lines tested. In addition, β-escin was more effective at reducing GIC growth than current clinically used cytotoxic agents. We further show that β-escin triggers caspase-dependent cell death combined with a loss of stemness properties. However, blocking apoptosis could not rescue the β-escin-induced reduction in sphere formation or stemness marker activity, indicating that β-escin directly modifies the stem identity of GIC, independent of the induction of cell death. Thus, this study has repositioned β-escin as a promising potential candidate to selectively target the aggressive population of initiating cells within GBM.

  18. IL-25 simultaneously elicits distinct populations of innate lymphoid cells and multipotent progenitor type 2 (MPPtype2) cells.

    PubMed

    Saenz, Steven A; Siracusa, Mark C; Monticelli, Laurel A; Ziegler, Carly G K; Kim, Brian S; Brestoff, Jonathan R; Peterson, Lance W; Wherry, E John; Goldrath, Ananda W; Bhandoola, Avinash; Artis, David

    2013-08-26

    The predominantly epithelial cell-derived cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) can promote CD4(+) Th2 cell-dependent immunity, inflammation, and tissue repair at barrier surfaces through the induction of multiple innate immune cell populations. IL-25 and IL-33 were previously shown to elicit four innate cell populations, named natural helper cells, nuocytes, innate type 2 helper cells, and multipotent progenitor type 2 (MPP(type2)) cells, now collectively termed group 2 innate lymphoid cells (ILC2). In contrast to other types of ILC2, MPP(type2) cells exhibit multipotent potential and do not express T1/ST2 or IL-7Rα, suggesting that MPP(type2) cells may be a distinct population. Here, we show that IL-33 elicits robust ILC2 responses, whereas IL-25 predominantly promotes MPP(type2) cell responses at multiple tissue sites with limited effects on ILC2 responses. MPP(type2) cells were distinguished from ILC2 by their differential developmental requirements for specific transcription factors, distinct genome-wide transcriptional profile, and functional potential. Furthermore, IL-25-induced MPP(type2) cells promoted Th2 cytokine-associated inflammation after depletion of ILC2. These findings indicate that IL-25 simultaneously elicits phenotypically and functionally distinct innate lymphoid- and nonlymphoid-associated cell populations and implicate IL-25-elicited MPP(type2) cells and extramedullary hematopoiesis in the promotion of Th2 cytokine responses at mucosal surfaces.

  19. A cell sorting protocol for selecting high-producing sub-populations of Sf9 and High Five™ cells.

    PubMed

    Vidigal, João; Dias, Mafalda M; Fernandes, Fabiana; Patrone, Marco; Bispo, Cláudia; Andrade, Cláudia; Gardner, Rui; Carrondo, Manuel J T; Alves, Paula M; Teixeira, Ana P

    2013-12-01

    Insect cell lines such as Sf9 and High Five™ have been widely used to produce recombinant proteins mostly by the lytic baculovirus vector system. We have recently established an expression platform in Sf9 cells using a fluorescence-based recombinase mediated cassette exchange (RMCE) strategy which has similar development timelines but avoids baculovirus infection. To expedite cell engineering efforts, a robust fluorescence-activated cell sorting (FACS) protocol optimized for insect cells was developed here. The standard sorting conditions used for mammalian cells proved to be unsuitable, resulting in post-sorting viabilities below 10% for both cell lines. We found that the extreme sensitivity to the shear stress displayed by Sf9 and High Five™ cells was the limiting factor, and using Pluronic F-68 in the cell suspension could increase post-sorting viabilities in a dose dependent manner. The newly developed protocol was then used to sort stable populations of both cell lines tagged with a DsRed-expressing cassette. Before sorting, the average fluorescence intensity of the Sf9 cell population was 3-fold higher than that of the High Five™ cell population. By enriching with the 10% strongest DsRed-fluorescent cells, the productivity of both cell populations could be successfully improved. The established sorting protocol potentiates the use of RMCE technology for recombinant protein production in insect cells.

  20. The role and modulation of CCR6+ Th17 cell populations in rheumatoid arthritis.

    PubMed

    Paulissen, Sandra M J; van Hamburg, Jan Piet; Dankers, Wendy; Lubberts, Erik

    2015-07-01

    The IL-17A producing T-helper-17 (Th17) cell population plays a major role in rheumatoid arthritis (RA) pathogenesis and has gained wide interest as treatment target. IL-17A expressing Th cells are characterized by the expression of the chemokine receptor CCR6 and the transcription factor RORC. In RA, CCR6+ Th cells were identified in peripheral blood, synovial fluid and inflamed synovial tissue. CCR6+ Th cells might drive the progression of an early inflammation towards a persistent arthritis. The CCR6+ Th cell population is heterogeneous and several subpopulations can be distinguished, including Th17, Th22, Th17.1 (also called non-classic Th1 cells), and unclassified or intermediate populations. Interestingly, some of these populations produce low levels of IL-17A but are still very pathogenic. Furthermore, the CCR6+ Th cells phenotype is unstable and plasticity exists between CCR6+ Th cells and T-regulatory (Treg) cells and within the CCR6+ Th cell subpopulations. In this review, characteristics of the different CCR6+ Th cell populations, their plasticity, and their potential impact on rheumatoid arthritis are discussed. Moreover, current approaches to target CCR6+ Th cells and future directions of research to find specific CCR6+ Th cell targets in the treatment of patients with RA and other CCR6+ Th cell mediated autoimmune diseases are highlighted.

  1. Unipotent, Atoh1+ progenitors maintain the Merkel cell population in embryonic and adult mice.

    PubMed

    Wright, Margaret C; Reed-Geaghan, Erin G; Bolock, Alexa M; Fujiyama, Tomoyuki; Hoshino, Mikio; Maricich, Stephen M

    2015-02-02

    Resident progenitor cells in mammalian skin generate new cells as a part of tissue homeostasis. We sought to identify the progenitors of Merkel cells, a unique skin cell type that plays critical roles in mechanosensation. We found that some Atoh1-expressing cells in the hairy skin and whisker follicles are mitotically active at embryonic and postnatal ages. Genetic fate-mapping revealed that these Atoh1-expressing cells give rise solely to Merkel cells. Furthermore, selective ablation of Atoh1(+) skin cells in adult mice led to a permanent reduction in Merkel cell numbers, demonstrating that other stem cell populations are incapable of producing Merkel cells. These data identify a novel, unipotent progenitor population in the skin that gives rise to Merkel cells both during development and adulthood.

  2. A Sub-Cellular Viscoelastic Model for Cell Population Mechanics

    PubMed Central

    Jamali, Yousef; Azimi, Mohammad; Mofrad, Mohammad R. K.

    2010-01-01

    Understanding the biomechanical properties and the effect of biomechanical force on epithelial cells is key to understanding how epithelial cells form uniquely shaped structures in two or three-dimensional space. Nevertheless, with the limitations and challenges posed by biological experiments at this scale, it becomes advantageous to use mathematical and ‘in silico’ (computational) models as an alternate solution. This paper introduces a single-cell-based model representing the cross section of a typical tissue. Each cell in this model is an individual unit containing several sub-cellular elements, such as the elastic plasma membrane, enclosed viscoelastic elements that play the role of cytoskeleton, and the viscoelastic elements of the cell nucleus. The cell membrane is divided into segments where each segment (or point) incorporates the cell's interaction and communication with other cells and its environment. The model is capable of simulating how cells cooperate and contribute to the overall structure and function of a particular tissue; it mimics many aspects of cellular behavior such as cell growth, division, apoptosis and polarization. The model allows for investigation of the biomechanical properties of cells, cell-cell interactions, effect of environment on cellular clusters, and how individual cells work together and contribute to the structure and function of a particular tissue. To evaluate the current approach in modeling different topologies of growing tissues in distinct biochemical conditions of the surrounding media, we model several key cellular phenomena, namely monolayer cell culture, effects of adhesion intensity, growth of epithelial cell through interaction with extra-cellular matrix (ECM), effects of a gap in the ECM, tensegrity and tissue morphogenesis and formation of hollow epithelial acini. The proposed computational model enables one to isolate the effects of biomechanical properties of individual cells and the communication

  3. Population.

    ERIC Educational Resources Information Center

    International Planned Parenthood Federation, London (England).

    In an effort to help meet the growing interest and concern about the problems created by the rapid growth of population, The International Planned Parenthood Federation has prepared this booklet with the aim of assisting the study of the history and future trends of population growth and its impact on individual and family welfare, national,…

  4. Identification of various testicular cell populations in pubertal and adult cockerels

    USDA-ARS?s Scientific Manuscript database

    Precise identification of the male germinal stem cell population is important for their practical use in programs dedicated to the integration of exogenous genetic material in testicular tissues. In the present study, our aim was to identify germinal cell populations in the testes of pubertal and ad...

  5. Fundamental Limits to Collective Concentration Sensing in Cell Populations

    NASA Astrophysics Data System (ADS)

    Fancher, Sean; Mugler, Andrew

    2017-02-01

    The precision of concentration sensing is improved when cells communicate. Here we derive the physical limits to concentration sensing for cells that communicate over short distances by directly exchanging small molecules (juxtacrine signaling), or over longer distances by secreting and sensing a diffusive messenger molecule (autocrine signaling). In the latter case, we find that the optimal cell spacing can be large, due to a trade-off between maintaining communication strength and reducing signal cross-correlations. This leads to the surprising result that sparsely packed communicating cells sense concentrations more precisely than densely packed communicating cells. We compare our results to data from a wide variety of communicating cell types.

  6. Application of a novel population of multipotent stem cells derived from skin fibroblasts as donor cells in bovine SCNT.

    PubMed

    Pan, Shaohui; Chen, Wuju; Liu, Xu; Xiao, Jiajia; Wang, Yanqin; Liu, Jun; Du, Yue; Wang, Yongsheng; Zhang, Yong

    2015-01-01

    Undifferentiated stem cells are better donor cells for somatic cell nuclear transfer (SCNT), resulting in more offspring than more differentiated cells. While various stem cell populations have been confirmed to exist in the skin, progress has been restricted due to the lack of a suitable marker for their prospective isolation. To address this fundamental issue, a marker is required that could unambiguously prove the differentiation state of the donor cells. We therefore utilized magnetic activated cell sorting (MACS) to separate a homogeneous population of small SSEA-4(+) cells from a heterogeneous population of bovine embryonic skin fibroblasts (BEF). SSEA-4(+) cells were 8-10 μm in diameter and positive for alkaline phosphatase (AP). The percentage of SSEA-4(+) cells within the cultured BEF population was low (2-3%). Immunocytochemistry and PCR analyses revealed that SSEA-4(+) cells expressed pluripotency-related markers, and could differentiate into cells comprising all three germ layers in vitro. They remained undifferentiated over 20 passages in suspension culture. In addition, cloned embryos derived from SSEA-4 cells showed significant differences in cleavage rate and blastocyst development when compared with those from BEF and SSEA-4(-) cells. Moreover, blastocysts derived from SSEA-4(+) cells showed a higher total cell number and lower apoptotic index as compared to BEF and SSEA-4(-) derived cells. It is well known that nuclei from pluripotent stem cells yield a higher cloning efficiency than those from adult somatic cells, however, pluripotent stem cells are relatively difficult to obtain from bovine. The SSEA-4(+) cells described in the current study provide an attractive candidate for SCNT and a promising platform for the generation of transgenic cattle.

  7. Application of a Novel Population of Multipotent Stem Cells Derived from Skin Fibroblasts as Donor Cells in Bovine SCNT

    PubMed Central

    Pan, Shaohui; Chen, Wuju; Liu, Xu; Xiao, Jiajia; Wang, Yanqin; Liu, Jun; Du, Yue; Wang, Yongsheng; Zhang, Yong

    2015-01-01

    Undifferentiated stem cells are better donor cells for somatic cell nuclear transfer (SCNT), resulting in more offspring than more differentiated cells. While various stem cell populations have been confirmed to exist in the skin, progress has been restricted due to the lack of a suitable marker for their prospective isolation. To address this fundamental issue, a marker is required that could unambiguously prove the differentiation state of the donor cells. We therefore utilized magnetic activated cell sorting (MACS) to separate a homogeneous population of small SSEA-4+ cells from a heterogeneous population of bovine embryonic skin fibroblasts (BEF). SSEA-4+ cells were 8-10 μm in diameter and positive for alkaline phosphatase (AP). The percentage of SSEA-4+ cells within the cultured BEF population was low (2-3%). Immunocytochemistry and PCR analyses revealed that SSEA-4+ cells expressed pluripotency-related markers, and could differentiate into cells comprising all three germ layers in vitro. They remained undifferentiated over 20 passages in suspension culture. In addition, cloned embryos derived from SSEA-4 cells showed significant differences in cleavage rate and blastocyst development when compared with those from BEF and SSEA-4− cells. Moreover, blastocysts derived from SSEA-4+ cells showed a higher total cell number and lower apoptotic index as compared to BEF and SSEA-4– derived cells. It is well known that nuclei from pluripotent stem cells yield a higher cloning efficiency than those from adult somatic cells, however, pluripotent stem cells are relatively difficult to obtain from bovine. The SSEA-4+ cells described in the current study provide an attractive candidate for SCNT and a promising platform for the generation of transgenic cattle. PMID:25602959

  8. Identification of a distinct population of CD133+CXCR4+ cancer stem cells in ovarian cancer

    PubMed Central

    Cioffi, Michele; D’Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-01-01

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4+CD133+ within ovarian cancer cell lines. The sorted population CD133+CXCR4+ demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133+CXCR4+ sorted OVCAR-5 cells. Most strikingly CXCR4+CD133+ sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133−CXCR4−, CD133+CXCR4−, CD133−CXCR4+ cells. CXCR4+CD133+ OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target. PMID:26020117

  9. Identification of a distinct population of CD133(+)CXCR4(+) cancer stem cells in ovarian cancer.

    PubMed

    Cioffi, Michele; D'Alterio, Crescenzo; Camerlingo, Rosalba; Tirino, Virginia; Consales, Claudia; Riccio, Anna; Ieranò, Caterina; Cecere, Sabrina Chiara; Losito, Nunzia Simona; Greggi, Stefano; Pignata, Sandro; Pirozzi, Giuseppe; Scala, Stefania

    2015-05-28

    CD133 and CXCR4 were evaluated in the NCI-60 cell lines to identify cancer stem cell rich populations. Screening revealed that, ovarian OVCAR-3, -4 and -5 and colon cancer HT-29, HCT-116 and SW620 over expressed both proteins. We aimed to isolate cells with stem cell features sorting the cells expressing CXCR4(+)CD133(+) within ovarian cancer cell lines. The sorted population CD133(+)CXCR4(+) demonstrated the highest efficiency in sphere formation in OVCAR-3, OVCAR-4 and OVCAR-5 cells. Moreover OCT4, SOX2, KLF4 and NANOG were highly expressed in CD133(+)CXCR4(+) sorted OVCAR-5 cells. Most strikingly CXCR4(+)CD133(+) sorted OVCAR-5 and -4 cells formed the highest number of tumors when inoculated in nude mice compared to CD133(-)CXCR4(-), CD133(+)CXCR4(-), CD133(-)CXCR4(+) cells. CXCR4(+)CD133(+) OVCAR-5 cells were resistant to cisplatin, overexpressed the ABCG2 surface drug transporter and migrated toward the CXCR4 ligand, CXCL12. Moreover, when human ovarian cancer cells were isolated from 37 primary ovarian cancer, an extremely variable level of CXCR4 and CD133 expression was detected. Thus, in human ovarian cancer cells CXCR4 and CD133 expression identified a discrete population with stem cell properties that regulated tumor development and chemo resistance. This cell population represents a potential therapeutic target.

  10. Population of Vibrational State of Carotenoid Molecules in Living Cells of Chlorella

    NASA Astrophysics Data System (ADS)

    Kinoshita, Shuichi; Hirata, Kuniko; Kushida, Takashi

    1980-07-01

    Stokes and anti-Stokes Raman spectra have been measured in living cells of Chlorella vulgaris as well as in chloroform, toluene, benzene and β-carotene. Population in the vibrational state has been determined by taking account of resonance Raman effect. The result shows that this population is well explained by thermal distribution even in the case of living biological cells, contrary to recently reported observation of some population enhancement. Possible experimental artifacts are discussed.

  11. Expression of CD34 and CD7 on human T-cell acute lymphoblastic leukemia discriminates functionally heterogeneous cell populations.

    PubMed

    Gerby, B; Clappier, E; Armstrong, F; Deswarte, C; Calvo, J; Poglio, S; Soulier, J; Boissel, N; Leblanc, T; Baruchel, A; Landman-Parker, J; Roméo, P H; Ballerini, P; Pflumio, F

    2011-08-01

    Leukemia-initiating/repopulating cells (LICs), also named leukemic stem cells, are responsible for propagating human acute leukemia. Although they have been characterized in various leukemias, their role in T-cell acute lymphoblastic leukemia (T-ALL) is unclear. To identify and characterize LICs in T-ALL (T-LIC), we fractionated peripheral blood cell populations from patient samples by flow cytometry into three cell fractions by using two markers: CD34 (a marker of immature cells and LICs) and CD7 (a marker of early T-cell differentiation). We tested these populations in both in vitro culture assays and in vivo for growth and leukemia development in immune-deficient mice. We found LIC activity in CD7(+) cells only as CD34(+)CD7(-) cells contained normal human progenitors and hematopoietic stem cells that differentiated into T, B lymphoid and myeloid cells. In contrast, CD34(+)CD7(+) cells were enriched in LICs, when compared with CD34(-)CD7(+) cells. These CD34(+)CD7(+) cells also proliferated more upon NOTCH activation than CD34(-)CD7(+) cells and were sensitive to dexamethasone and NOTCH inhibitors. These data show that CD34 and CD7 expression in human T-ALL samples help in discriminating heterogeneous cell populations endowed with different LIC activity, proliferation capacity and responses to drugs.

  12. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma

    SciTech Connect

    Hayashi, S.; Tanaka, J.; Okada, S.; Isobe, T.; Yamamoto, G.; Yasuhara, R.; Irie, T.; Akiyama, C.; Kohno, Y.; Tachikawa, T.; Mishima, K.

    2013-05-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment - Highlights: ► Lin28a is a SP cell-specific factor in oral squamous cell carcinoma (OSCC) cells. ► SP cells in OSCC cells show cancer stem cell-like properties. ► Lin28a regulates OSCC proliferative and invasive activities.

  13. Distinct human stem cell populations in small and large intestine.

    PubMed

    Cramer, Julie M; Thompson, Timothy; Geskin, Albert; LaFramboise, William; Lagasse, Eric

    2015-01-01

    The intestine is composed of an epithelial layer containing rapidly proliferating cells that mature into two regions, the small and the large intestine. Although previous studies have identified stem cells as the cell-of-origin for intestinal epithelial cells, no studies have directly compared stem cells derived from these anatomically distinct regions. Here, we examine intrinsic differences between primary epithelial cells isolated from human fetal small and large intestine, after in vitro expansion, using the Wnt agonist R-spondin 2. We utilized flow cytometry, fluorescence-activated cell sorting, gene expression analysis and a three-dimensional in vitro differentiation assay to characterize their stem cell properties. We identified stem cell markers that separate subpopulations of colony-forming cells in the small and large intestine and revealed important differences in differentiation, proliferation and disease pathways using gene expression analysis. Single cells from small and large intestine cultures formed organoids that reflect the distinct cellular hierarchy found in vivo and respond differently to identical exogenous cues. Our characterization identified numerous differences between small and large intestine epithelial stem cells suggesting possible connections to intestinal disease.

  14. A mammary repopulating cell population characterized in mammary anlagen reveals essential mammary stroma for morphogenesis.

    PubMed

    Song, Jiazhe; Xue, Kai; She, Ji; Ding, Fangrong; Li, Song; Shangguan, Rulan; Dai, Yunping; Du, Liying; Li, Ning

    2014-09-10

    The cells with mammary repopulating capability can achieve mammary gland morphogenesis in a suitable cellular microenvironment. Using cell surface markers of CD24, CD29 and CD49f, mouse mammary repopulating unit (MRU) has been identified in adult mammary epithelium and late embryonic mammary bud epithelium. However, embryonic MRU remains to be fully characterized at earlier mammary anlagen stage. Here we isolated discrete populations of E14.5 mouse mammary anlagen cells. Only Lin(-)CD24(med)CD29(+) cell population was predicted as E14.5 MRU by examining their capacities of forming mammosphere and repopulating cleared mammary fat pad in vivo. However, when we characterized gene expressions of this E14.5 cell population by comparing with adult mouse MRU (Lin(-)CD24(+)CD29(hi)), the gene profiling of these two cell populations exhibited great differences. Real-time PCR and immunostaining assays uncovered that E14.5 Lin(-)CD24(med)CD29(+) cell population was a heterogeneous stroma-enriched cell population. Then, limiting dilutions and single-cell assays also confirmed that E14.5 Lin(-)CD24(med)CD29(+) cell population possessed low proportion of stem cells. In summary, heterogeneous Lin(-)CD24(med)CD29(+) cell population exhibited mammary repopulating ability in E14.5 mammary anlagen, implying that only suitable mammary stroma could enable mammary gland morphogenesis, which relied on the interaction between rare stem cells and microenvironment. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Coculture with endothelial cells reduces the population of cycling LeX neural precursors but increases that of quiescent cells with a side population phenotype

    SciTech Connect

    Mathieu, Celine . E-mail: marc-andre.mouthon@cea.fr

    2006-04-01

    Neural stem cell proliferation and differentiation are regulated by external cues from their microenvironment. As endothelial cells are closely associated with neural stem cell in brain germinal zones, we investigated whether endothelial cells may interfere with neurogenesis. Neural precursor cells (NPC) from telencephalon of EGFP mouse embryos were cocultured in direct contact with endothelial cells. Endothelial cells did not modify the overall proliferation and apoptosis of neural cells, albeit they transiently delayed spontaneous apoptosis. These effects appeared to be specific to endothelial cells since a decrease in proliferation and a raise in apoptosis were observed in cocultures with fibroblasts. Endothelial cells stimulated the differentiation of NPC into astrocytes and into neurons, whereas they reduced differentiation into oligodendrocytes in comparison to adherent cultures on polyornithine. Determination of NPC clonogenicity and quantification of LeX expression, a marker for NPC, showed that endothelial cells decreased the number of cycling NPC. On the other hand, the presence of endothelial cells increased the number of neural cells having 'side population' phenotype, another marker reported on NPC, which we have shown to contain quiescent cells. Thus, we show that endothelial cells may regulate neurogenesis by acting at different level of NPC differentiation, proliferation and quiescence.

  16. A Mathematical and Computational Approach for Integrating the Major Sources of Cell Population Heterogeneity

    PubMed Central

    Stamatakis, Michail; Zygourakis, Kyriacos

    2010-01-01

    Several approaches have been used in the past to model heterogeneity in bacterial cell populations, with each approach focusing on different source(s) of heterogeneity. However, a holistic approach that integrates all the major sources into a comprehensive framework applicable to cell populations is still lacking. In this work we present the mathematical formulation of a cell population master equation (CPME) that describes cell population dynamics and takes into account the major sources of heterogeneity, namely stochasticity in reaction, DNA-duplication, and division, as well as the random partitioning of species contents into the two daughter cells. The formulation also takes into account cell growth and respects the discrete nature of the molecular contents and cell numbers. We further develop a Monte Carlo algorithm for the simulation of the stochastic processes considered here. To benchmark our new framework, we first use it to quantify the effect of each source of heterogeneity on the intrinsic and the extrinsic phenotypic variability for the well-known two-promoter system used experimentally by Elowitz et al. (2002). We finally apply our framework to a more complicated system and demonstrate how the interplay between noisy gene expression and growth inhibition due to protein accumulation at the single cell level can result in complex behavior at the cell population level. The generality of our framework makes it suitable for studying a vast array of artificial and natural genetic networks. Using our Monte Carlo algorithm, cell population distributions can be predicted for the genetic architecture of interest, thereby quantifying the effect of stochasticity in intracellular reactions or the variability in the rate of physiological processes such as growth and division. Such in silico experiments can give insight into the behavior of cell populations and reveal the major sources contributing to cell population heterogeneity. PMID:20685607

  17. Chase-and-run between adjacent cell populations promotes directional collective migration

    PubMed Central

    Theveneau, Eric; Steventon, Benjamin; Scarpa, Elena; Garcia, Simon; Trepat, Xavier; Streit, Andrea; Mayor, Roberto

    2016-01-01

    Collective cell migration in morphogenesis and cancer progression often involves the coordination of multiple cell types. How reciprocal interactions between adjacent cell populations lead to new emergent behaviours remains unknown. Here we studied the interaction between Neural Crest (NC) cells, a highly migratory cell population, and placodal cells, an epithelial tissue that contributes to sensory organs. We found that NC cells “chase” placodal cells by chemotaxis, while placodal cells “run” when contacted by NC. Chemotaxis to Sdf1 underlies the chase, while repulsion involving PCP and N-Cadherin signalling is responsible for the run. This “chase-and-run” requires the generation of asymmetric forces, which depend on local inhibition of focal adhesions. The cell interactions described here are essential for correct NC migration and for segregation of placodes in vivo and are likely to represent a general mechanism of coordinated migration. PMID:23770678

  18. 3-Bromopyruvate inhibits cell proliferation and induces apoptosis in CD133+ population in human glioma.

    PubMed

    Xu, Dong-Qiang; Tan, Xiao-Yu; Zhang, Bao-Wei; Wu, Tao; Liu, Ping; Sun, Shao-Jun; Cao, Yin-Guang

    2016-03-01

    The study was aimed to investigate the role of 3-bromopyruvate in inhibition of CD133+ U87 human glioma cell population growth. The results demonstrated that 3-bromopyruvate inhibited the viability of both CD133+ and parental cells derived from U87 human glioma cell line. However, the 3-bromopyruvate-induced inhibition in viability was more prominent in CD133+ cells at 10 μM concentration after 48 h. Treatment of CD133+ cells with 3-bromopyruvate caused reduction in cell population and cell size, membrane bubbling, and degradation of cell membranes. Hoechst 33258 staining showed condensation of chromatin material and fragmentation of DNA in treated CD133+ cells after 48 h. 3-Bromopyruvate inhibited the migration rate of CD133+ cells significantly compared to the parental cells. Flow cytometry revealed that exposure of CD133+ cells to 3-bromopyruvate increased the cell population in S phase from 24.5 to 37.9 % with increase in time from 12 to 48 h. In addition, 3-bromopyruvate significantly enhanced the expression of Bax and cleaved caspase 3 in CD133+ cells compared to the parental cells. Therefore, 3-bromopyruvate is a potent chemotherapeutic agent for the treatment of glioma by targeting stem cells selectively.

  19. Detection and characterization of side population in Ewing's sarcoma SK-ES-1 cells in vitro

    SciTech Connect

    Yang, Min; Zhang, Rui; Yan, Ming; Ye, Zhengxu; Liang, Wei; Luo, Zhuojing

    2010-01-01

    Dye exclusion is a valuable technique to isolate cancer stem cells (CSCs) based on an ability of stem cell to efflux fluorescent DNA-binding dye, especially for tumors without unique surface markers. It has been proven that side population (SP) cells that exclude Hoechst 33342 dye are enriched with stem-like cells in several cancer cell lines. In this study, we isolated and characterized SP cells from human Ewing's sarcoma cell line SK-ES-1 in vitro. SP cells were detected in SK-ES-1 and comprised 1.2% of total cell population. Only SP cells had the capacity to regenerate both SP and non-SP cells. The proliferation rates were similar between SP and non-SP cells. However, the clonogenicity and invasiveness of SP cells were significantly higher than that of non-SP cells. Further characterization of this SP phenotype presented other properties. SP cells exhibited increased multi-drug resistance and the ATP binding cassette protein (ABC) transporters were up-regulated in SP population. These findings suggest that SP cells derived from Ewing's sarcoma play the critical role in tumor metastasis and recurrence and might be an ideal target for clinical therapy.

  20. Isolation and phenotypic characterization of cancer stem-like side population cells in colon cancer.

    PubMed

    Feng, Long; Wu, Jian-Bing; Yi, Feng-Ming

    2015-09-01

    Previous studies in cancer biology suggest that chemotherapeutic drug resistance and tumor relapse are driven by cells within a tumor termed 'cancer stem cells'. In the present study, a Hoechst 33342 dye exclusion technique was used to identify cancer stem‑like side population (SP) cells in colon carcinoma, which accounted for 3.4% of the total cell population. Following treatment with verapamil, the population of SP cells was reduced to 0.6%. In addition, the sorted SP cells exhibited marked multidrug resistance and enhanced cell survival rates compared with non‑SP cells. The SP cells were able to generate more tumor spheres and were CD133 positive. Subsequent biochemical analysis revealed that the levels of the adenosine triphosphate‑binding cassette sub‑family G member 2 transporter protein, B‑cell lymphoma anti‑apoptotic factor and autocrine production of interleukin‑4 were significantly enhanced in the colon cancer SP cells, which contributed to drug resistance, protection of the cells from apoptosis and tumor recurrence. Therefore, the findings suggested that treatment failure and colon tumorigenesis is dictated by a small population of SP cells, which indicate a potential target in future therapies.

  1. Aldehyde Dehydrogenase Activity Identifies a Population of Human Skeletal Muscle Cells With High Myogenic Capacities

    PubMed Central

    Vauchez, Karine; Marolleau, Jean-Pierre; Schmid, Michel; Khattar, Patricia; Chapel, Alain; Catelain, Cyril; Lecourt, Séverine; Larghéro, Jérôme; Fiszman, Marc; Vilquin, Jean-Thomas

    2009-01-01

    Aldehyde dehydrogenase 1A1 (ALDH) activity is one hallmark of human bone marrow (BM), umbilical cord blood (UCB), and peripheral blood (PB) primitive progenitors presenting high reconstitution capacities in vivo. In this study, we have identified ALDH+ cells within human skeletal muscles, and have analyzed their phenotypical and functional characteristics. Immunohistofluorescence analysis of human muscle tissue sections revealed rare endomysial cells. Flow cytometry analysis using the fluorescent substrate of ALDH, Aldefluor, identified brightly stained (ALDHbr) cells with low side scatter (SSClo), in enzymatically dissociated muscle biopsies, thereafter abbreviated as SMALD+ (for skeletal muscle ALDH+) cells. Phenotypical analysis discriminated two sub-populations according to CD34 expression: SMALD+/CD34− and SMALD+/CD34+ cells. These sub-populations did not initially express endothelial (CD31), hematopoietic (CD45), and myogenic (CD56) markers. Upon sorting, however, whereas SMALD+/CD34+ cells developed in vitro as a heterogeneous population of CD56− cells able to differentiate in adipoblasts, the SMALD+/CD34− fraction developed in vitro as a highly enriched population of CD56+ myoblasts able to form myotubes. Moreover, only the SMALD+/CD34− population maintained a strong myogenic potential in vivo upon intramuscular transplantation. Our results suggest that ALDH activity is a novel marker for a population of new human skeletal muscle progenitors presenting a potential for cell biology and cell therapy. PMID:19738599

  2. Single Cell Dynamics Causes Pareto-Like Effect in Stimulated T Cell Populations

    PubMed Central

    Cosette, Jérémie; Moussy, Alice; Onodi, Fanny; Auffret-Cariou, Adrien; Neildez-Nguyen, Thi My Anh; Paldi, Andras; Stockholm, Daniel

    2015-01-01

    Cell fate choice during the process of differentiation may obey to deterministic or stochastic rules. In order to discriminate between these two strategies we used time-lapse microscopy of individual murine CD4 + T cells that allows investigating the dynamics of proliferation and fate commitment. We observed highly heterogeneous division and death rates between individual clones resulting in a Pareto-like dominance of a few clones at the end of the experiment. Commitment to the Treg fate was monitored using the expression of a GFP reporter gene under the control of the endogenous Foxp3 promoter. All possible combinations of proliferation and differentiation were observed and resulted in exclusively GFP–, GFP+ or mixed phenotype clones of very different population sizes. We simulated the process of proliferation and differentiation using a simple mathematical model of stochastic decision-making based on the experimentally observed parameters. The simulations show that a stochastic scenario is fully compatible with the observed Pareto-like imbalance in the final population. PMID:26648396

  3. Pax3/Pax7 mark a novel population of primitive myogenic cells during development

    PubMed Central

    Kassar-Duchossoy, Lina; Giacone, Ellen; Gayraud-Morel, Barbara; Jory, Aurélie; Gomès, Danielle; Tajbakhsh, Shahragim

    2005-01-01

    Skeletal muscle serves as a paradigm for the acquisition of cell fate, yet the relationship between primitive cell populations and emerging myoblasts has remained elusive. We identify a novel population of resident Pax3+/Pax7+, muscle marker-negative cells throughout development. Using mouse mutants that uncouple myogenic progression, we show that these Pax+ cells give rise to muscle progenitors. In the absence of skeletal muscle, they apoptose after down-regulation of Pax7. Furthermore, they mark the emergence of satellite cells during fetal development, and do not require Pax3 function. These findings identify critical cell populations during lineage restriction, and provide a framework for defining myogenic cell states for therapeutic studies. PMID:15964993

  4. Pax3/Pax7 mark a novel population of primitive myogenic cells during development.

    PubMed

    Kassar-Duchossoy, Lina; Giacone, Ellen; Gayraud-Morel, Barbara; Jory, Aurélie; Gomès, Danielle; Tajbakhsh, Shahragim

    2005-06-15

    Skeletal muscle serves as a paradigm for the acquisition of cell fate, yet the relationship between primitive cell populations and emerging myoblasts has remained elusive. We identify a novel population of resident Pax3+/Pax7+, muscle marker-negative cells throughout development. Using mouse mutants that uncouple myogenic progression, we show that these Pax+ cells give rise to muscle progenitors. In the absence of skeletal muscle, they apoptose after down-regulation of Pax7. Furthermore, they mark the emergence of satellite cells during fetal development, and do not require Pax3 function. These findings identify critical cell populations during lineage restriction, and provide a framework for defining myogenic cell states for therapeutic studies.

  5. Adult Human Mesenchymal Stem Cell Differentiation at the Cell Population and Single-Cell Levels Under Alternating Electric Current

    PubMed Central

    Wechsler, Marissa E.; Hermann, Brian P.

    2016-01-01

    Mesenchymal stem cells, precursors that can differentiate into osteoblasts, chondrocytes, and adipocytes, have tremendous potential for derivation of cells with specific (e.g., osteogenic) phenotypes for tissue engineering and tissue regeneration applications. To date, the predominant strategy to achieve directed differentiation of MSCs into osteoblasts was to recapitulate the normal developmental ontogeny of osteoblasts using growth factors (e.g., bone morphogenetic proteins). In contrast, the effects of biophysical stimuli alone on such outcomes remain, at best, partially understood. This in vitro study examined and optimized the effects of alternating electric current alone on the differentiation of adult human mesenchymal stem cells (hMSCs) at the cell population and single-cell levels. hMSCs, cultured on flat, indium-tin-oxide-coated glass in the absence of supplemented exogenous growth factors were exposed to alternating electric current (5–40 μA, 5–10 Hz frequency, sinusoidal waveform), for 1–24 h daily for up to 21 consecutive days. Compared to results obtained from the respective controls, hMSC populations exposed to the alternating electric current alone (in the absence of exogenous growth factors) expressed genes at various stages of differentiation (specifically, TAZ, Runx-2, Osterix, Osteopontin, and Osteocalcin). Optimal osteogenic differentiation was achieved when hMSCs were exposed to a 10 μA, 10 Hz alternating electric current for 6 h daily for up to 21 days. Exclusive osteodifferentiation was observed since genes for the chondrocyte (Collagen Type II) and adipocyte (FABP-4) lineages were not expressed under all conditions of the biophysical stimulus tested. Single cell mRNAs for 45 genes (indicative of hMSC differentiation) were monitored using Fluidigm Systems. Homogeneous expression of the early osteodifferentiation genes (specifically, TAZ and Runx-2) was observed in hMSCs exposed to the alternating electric current at 7 and

  6. Adult Human Mesenchymal Stem Cell Differentiation at the Cell Population and Single-Cell Levels Under Alternating Electric Current.

    PubMed

    Wechsler, Marissa E; Hermann, Brian P; Bizios, Rena

    2015-12-28

    Mesenchymal stem cells, precursors that can differentiate into osteoblasts, chondrocytes, and adipocytes, have tremendous potential for derivation of cells with specific (e.g., osteogenic) phenotypes for tissue engineering and tissue regeneration applications. To date, the predominant strategy to achieve directed differentiation of MSCs into osteoblasts was to recapitulate the normal developmental ontogeny of osteoblasts using growth factors (e.g., bone morphogenetic proteins). In contrast, the effects of biophysical stimuli alone on such outcomes remain, at best, partially understood. This in vitro study examined and optimized the effects of alternating electric current alone on the differentiation of adult human mesenchymal stem cells (hMSCs) at the cell population and single-cell levels. hMSCs, cultured on flat, indium-tin-oxide-coated glass in the absence of supplemented exogenous growth factors were exposed to alternating electric current (5-40 μA, 5-10 Hz frequency, sinusoidal waveform), for 1-24 h daily for up to 21 consecutive days. Compared to results obtained from the respective controls, hMSC populations exposed to the alternating electric current alone (in the absence of exogenous growth factors) expressed genes at various stages of differentiation (specifically, TAZ, Runx-2, Osterix, Osteopontin, and Osteocalcin). Optimal osteogenic differentiation was achieved when hMSCs were exposed to a 10 μA, 10 Hz alternating electric current for 6 h daily for up to 21 days. Exclusive osteodifferentiation was observed since genes for the chondrocyte (Collagen Type II) and adipocyte (FABP-4) lineages were not expressed under all conditions of the biophysical stimulus tested. Single cell mRNAs for 45 genes (indicative of hMSC differentiation) were monitored using Fluidigm Systems. Homogeneous expression of the early osteodifferentiation genes (specifically, TAZ and Runx-2) was observed in hMSCs exposed to the alternating electric current at 7 and 21

  7. 75 FR 54351 - Cell and Gene Therapy Clinical Trials in Pediatric Populations; Public Workshop

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-07

    ... HUMAN SERVICES Food and Drug Administration Cell and Gene Therapy Clinical Trials in Pediatric... public workshop entitled ``Cell and Gene Therapy Clinical Trials in Pediatric Populations.'' The purpose... therapy clinical researchers, and other stakeholders regarding best practices related to cell and...

  8. Basal p21 controls population heterogeneity in cycling and quiescent cell cycle states

    PubMed Central

    Overton, K. Wesley; Spencer, Sabrina L.; Noderer, William L.; Meyer, Tobias; Wang, Clifford L.

    2014-01-01

    Phenotypic heterogeneity within a population of genetically identical cells is emerging as a common theme in multiple biological systems, including human cell biology and cancer. Using live-cell imaging, flow cytometry, and kinetic modeling, we showed that two states—quiescence and cell cycling—can coexist within an isogenic population of human cells and resulted from low basal expression levels of p21, a Cyclin-dependent kinase (CDK) inhibitor (CKI). We attribute the p21-dependent heterogeneity in cell cycle activity to double-negative feedback regulation involving CDK2, p21, and E3 ubiquitin ligases. In support of this mechanism, analysis of cells at a point before cell cycle entry (i.e., before the G1/S transition) revealed a p21–CDK2 axis that determines quiescent and cycling cell states. Our findings suggest a mechanistic role for p21 in generating heterogeneity in both normal tissues and tumors. PMID:25267623

  9. Microplate cell-retaining methodology for high-content analysis of individual non-adherent unanchored cells in a population.

    PubMed

    Deutsch, Assaf; Zurgil, Naomi; Hurevich, Ihar; Shafran, Yana; Afrimzon, Elena; Lebovich, Pnina; Deutsch, Mordechai

    2006-12-01

    A high throughput Microtiter plate Cell Retainer (MCR) has been developed to enable, for the first time, high-content, time-dependent analysis of the same single non-adherent and non-anchored cells in a large cell population, while bio-manipulating the cells. The identity of each cell in the investigated population is secured, even during bio-manipulation, by cell retention in a specially designed concave microlens, acting as a picoliter well (PW). The MCR technique combines micro-optical features and microtiter plate methodology. The array of PWs serves as the bottom of a microtiter plate, fitted with a unique flow damper element. The latter enables rapid fluid exchange without dislodging the cells from their original PWs, thus maintaining the cells' identity. Loading cell suspensions and reagents into the MCR is performed by simple pouring, followed by gravitational sedimentation and settling of cells into the PWs. Cell viability and cell division within the MCR were shown to be similar to those obtained under similar conditions in a standard microtiter plate. The efficiency of single cell occupancy in the MCR exceeded 90%. No cell dislodging was observed when comparing images before and after bio-manipulations (rinsing, staining, etc.). The MCR permits the performance of kinetic measurements on an individual cell basis. Data acquisition is governed by software, controlling microscope performance, stage position and image acquisition and analysis. The PW's unique micro-optical features enable rapid, simultaneous signal analysis of each individual cell, bypassing lengthy image analysis.

  10. STATs Shape the Active Enhancer Landscape of T Cell Populations

    PubMed Central

    Vahedi, Golnaz; Takahashi, Hayato; Nakayamada, Shingo; Sun, Hong-wei; Sartorelli, Vittorio; Kanno, Yuka; O’Shea, John J.

    2012-01-01

    SUMMARY Signaling pathways are intimately involved in cellular differentiation, allowing cells to respond to their environment by regulating gene expression. While enhancers are recognized as key elements that regulate selective gene expression, the interplay between signaling pathways and actively used enhancer elements is not clear. Here, we use CD4+ T cells as a model of differentiation, mapping the acquisition of cell-type-specific enhancer elements in T-helper 1 (Th1) and Th2 cells. Our data establish that STAT proteins have a major impact on the acquisition of lineage-specific enhancers and the suppression of enhancers associated with alternative cell fates. Transcriptome analysis further supports a functional role for enhancers regulated by STATs. Importantly, expression of lineage-defining master regulators in STAT-deficient cells fails to fully recover the chromatin signature of STAT-dependent enhancers. Thus, these findings point to a critical role of STATs as environmental sensors in dynamically molding the specialized enhancer architecture of differentiating cells. PMID:23178119

  11. Topological defects in confined populations of spindle-shaped cells

    NASA Astrophysics Data System (ADS)

    Duclos, Guillaume; Erlenkämper, Christoph; Joanny, Jean-François; Silberzan, Pascal

    2017-01-01

    Most spindle-shaped cells (including smooth muscles and sarcomas) organize in vivo into well-aligned `nematic’ domains, creating intrinsic topological defects that may be used to probe the behaviour of these active nematic systems. Active non-cellular nematics have been shown to be dominated by activity, yielding complex chaotic flows. However, the regime in which live spindle-shaped cells operate, and the importance of cell-substrate friction in particular, remains largely unexplored. Using in vitro experiments, we show that these active cellular nematics operate in a regime in which activity is effectively damped by friction, and that the interaction between defects is controlled by the system’s elastic nematic energy. Due to the activity of the cells, these defects behave as self-propelled particles and pairwise annihilate until all displacements freeze as cell crowding increases. When confined in mesoscopic circular domains, the system evolves towards two identical +1/2 disclinations facing each other. The most likely reduced positions of these defects are independent of the size of the disk, the cells’ activity or even the cell type, but are well described by equilibrium liquid crystal theory. These cell-based systems thus operate in a regime more stable than other active nematics, which may be necessary for their biological function.

  12. Assessing Four Levels of Creative Mathematical Ability in Israeli Adolescents Utilizing Out-of-School Activities: A Circular Three-Stage Technique.

    ERIC Educational Resources Information Center

    Livne, Nava L.; Milgram, Roberta M.

    2000-01-01

    A questionnaire of out-of-school activities was developed to assess mathematical creative ability at four levels using a three-stage circular technique. Israeli high school students (n=139) reported whether they had performed the activities. Resulting data provided evidence of the construct validity of a 12-item scale for assessing creative…

  13. The Flawed Four-Level Evaluation Model [and] Invited Reaction: Reaction to Holton Article [and] Final Word: Response to Reaction to Holton Article.

    ERIC Educational Resources Information Center

    Holton, Elwood F., III; Kirkpatrick, Donald L.

    1996-01-01

    Holton critiques Kirkpatrick's four-level evaluation model and presents a new model that accounts for primary intervening variables. Kirkpatrick argues that the criticism fails to account for his model's practical utility. Holton elaborates on the distinction between a model and a taxonomy. (SK)

  14. Relationship of total viable and culturable cells in epiphytic populations of Pseudomonas syringae.

    PubMed

    Wilson, M; Lindow, S E

    1992-12-01

    The direct viable count method, used to detect viable but nonculturable bacteria in aquatic systems, was modified to examine epiphytic populations of Pseudomonas syringae. Viable-population sizes determined from the number of cells that elongated when incubated with yeast extract and nalidixic acid were compared with those determined by the conventional plate count method. The plate count method accurately determined the number of viable cells in epiphytic P. syringae populations in a state of active growth under conditions of high relative humidity. The plate count method also accurately determined the number of viable cells in P. syringae inoculum, or a growing P. syringae population, subject to desiccation stress under conditions of low relative humidity. In epiphytic populations of P. syringae older than 80 h, however, the plate count underestimated the viable-population size by about two- to fourfold, suggesting that up to 75% of the P. syringae population was nonculturable. These nonculturable cells may have entered a starvation-survival state, induced by low nutrient availability in the phyllosphere environment. Epiphytic P. syringae populations undergoing rapid size changes due to growth and death under fluctuating environmental conditions in the field should be accurately enumerated by the plate count method. However, the possible underestimation of viable-population size under some circumstances should be considered in epidemiological studies of phytopathogenic bacteria and when genetically engineered microorganisms in terrestrial ecosystems are monitored.

  15. Two biochemically distinct populations of histaminocytes separated by isokinetic sedimentation of dispersed rat gastric cells.

    PubMed

    Lemmi, C A; Wojdani, A; Adomian, G E; Lechago, J; Dascanio, G; Narhi, L O

    1985-07-01

    Two populations of histaminocytes, with different sedimentation rates (SR), were separated by a computer developed isokinetic gradient using dispersed rat gastric mucosal cells. Histamine content, histidine decarboxylase (HDC) activity and incorporation of radiolabelled histidine metabolites were used to assess the migration of specific cells throughout the gradients. One histaminocyte population, with cells of lower SR, contained high HDC activity and undetectable levels of histamine, whereas the other population, with cells of higher SR, contained lower HDC activity and high concentration of histamine. Both types of histaminocytes incorporated 3H-histidine metabolites. Electron microscopy showed that the fractions containing histaminocytes with lower SR had 3.5 times more endocrine ECL cells than the original population of dispersed fundic cells and lacked A and D cells, whereas the fractions with histaminocytes of higher SR were associated with a 2.7 times higher concentration of A and D cells and with a 7.7 times higher ratio of a variety of partial cells with a distinct mitochondrial morphology. These results are consistent with prior novel information regarding the separation of two populations of rat histaminocytes using different sedimentation techniques.

  16. Correlations and functional connections in a population of grid cells.

    PubMed

    Dunn, Benjamin; Mørreaunet, Maria; Roudi, Yasser

    2015-02-01

    We study the statistics of spike trains of simultaneously recorded grid cells in freely behaving rats. We evaluate pairwise correlations between these cells and, using a maximum entropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even when we account for the covariations in firing rates due to overlapping fields, both the pairwise correlations and functional connections decay as a function of the shortest distance between the vertices of the spatial firing pattern of pairs of grid cells, i.e. their phase difference. They take positive values between cells with nearby phases and approach zero or negative values for larger phase differences. We find similar results also when, in addition to correlations due to overlapping fields, we account for correlations due to theta oscillations and head directional inputs. The inferred connections between neurons in the same module and those from different modules can be both negative and positive, with a mean close to zero, but with the strongest inferred connections found between cells of the same module. Taken together, our results suggest that grid cells in the same module do indeed form a local network of interconnected neurons with a functional connectivity that supports a role for attractor dynamics in the generation of grid pattern.

  17. Side population in human glioblastoma is non-tumorigenic and characterizes brain endothelial cells

    PubMed Central

    Golebiewska, Anna; Bougnaud, Sébastien; Stieber, Daniel; Brons, Nicolaas H. C.; Vallar, Laurent; Hertel, Frank; Klink, Barbara; Schröck, Evelin; Bjerkvig, Rolf

    2013-01-01

    The identification and significance of cancer stem-like cells in malignant gliomas remains controversial. It has been proposed that cancer stem-like cells display increased drug resistance, through the expression of ATP-binding cassette transporters that detoxify cells by effluxing exogenous compounds. Here, we investigated the ‘side population’ phenotype based on efflux properties of ATP-binding cassette transporters in freshly isolated human glioblastoma samples and intracranial xenografts derived thereof. Using fluorescence in situ hybridization analysis on sorted cells obtained from glioblastoma biopsies, as well as human tumour xenografts developed in immunodeficient enhanced green fluorescence protein-expressing mice that allow an unequivocal tumour-stroma discrimination, we show that side population cells in human glioblastoma are non-neoplastic and exclusively stroma-derived. Tumour cells were consistently devoid of efflux properties regardless of their genetic background, tumour ploidy or stem cell associated marker expression. Using multi-parameter flow cytometry we identified the stromal side population in human glioblastoma to be brain-derived endothelial cells with a minor contribution of astrocytes. In contrast with their foetal counterpart, neural stem/progenitor cells in the adult brain did not display the side population phenotype. Of note, we show that CD133-positive cells often associated with cancer stem-like cells in glioblastoma biopsies, do not represent a homogenous cell population and include CD31-positive endothelial cells. Interestingly, treatment of brain tumours with the anti-angiogenic agent bevacizumab reduced total vessel density, but did not affect the efflux properties of endothelial cells. In conclusion our findings contribute to an unbiased identification of cancer stem-like cells and stromal cells in brain neoplasms, and provide novel insight into the complex issue of drug delivery to the brain. Since efflux properties of

  18. Novel Microchip-Based Tools Facilitating Live Cell Imaging and Assessment of Functional Heterogeneity within NK Cell Populations.

    PubMed

    Forslund, Elin; Guldevall, Karolin; Olofsson, Per E; Frisk, Thomas; Christakou, Athanasia E; Wiklund, Martin; Onfelt, Björn

    2012-01-01

    Each individual has a heterogeneous pool of NK cells consisting of cells that may be specialized towards specific functional responses such as secretion of cytokines or killing of tumor cells. Many conventional methods are not fit to characterize heterogeneous populations as they measure the average response of all cells. Thus, there is a need for experimental platforms that provide single cell resolution. In addition, there are transient and stochastic variations in functional responses at the single cell level, calling for methods that allow studies of many events over extended periods of time. This paper presents a versatile microchip platform enabling long-term microscopic studies of individual NK cells interacting with target cells. Each microchip contains an array of microwells, optimized for medium or high-resolution time-lapse imaging of single or multiple NK and target cells, or for screening of thousands of isolated NK-target cell interactions. Individual NK cells confined with target cells in small microwells is a suitable setup for high-content screening and rapid assessment of heterogeneity within populations, while microwells of larger dimensions are appropriate for studies of NK cell migration and sequential interactions with multiple target cells. By combining the chip technology with ultrasonic manipulation, NK and target cells can be forced to interact and positioned with high spatial accuracy within individual microwells. This setup effectively and synchronously creates NK-target conjugates at hundreds of parallel positions in the microchip. Thus, this facilitates assessment of temporal aspects of NK-target cell interactions, e.g., conjugation, immune synapse formation, and cytotoxic events. The microchip platform presented here can be used to effectively address questions related to fundamental functions of NK cells that can lead to better understanding of how the behavior of individual cells add up to give a functional response at the

  19. Novel Microchip-Based Tools Facilitating Live Cell Imaging and Assessment of Functional Heterogeneity within NK Cell Populations

    PubMed Central

    Forslund, Elin; Guldevall, Karolin; Olofsson, Per E.; Frisk, Thomas; Christakou, Athanasia E.; Wiklund, Martin; Önfelt, Björn

    2012-01-01

    Each individual has a heterogeneous pool of NK cells consisting of cells that may be specialized towards specific functional responses such as secretion of cytokines or killing of tumor cells. Many conventional methods are not fit to characterize heterogeneous populations as they measure the average response of all cells. Thus, there is a need for experimental platforms that provide single cell resolution. In addition, there are transient and stochastic variations in functional responses at the single cell level, calling for methods that allow studies of many events over extended periods of time. This paper presents a versatile microchip platform enabling long-term microscopic studies of individual NK cells interacting with target cells. Each microchip contains an array of microwells, optimized for medium or high-resolution time-lapse imaging of single or multiple NK and target cells, or for screening of thousands of isolated NK-target cell interactions. Individual NK cells confined with target cells in small microwells is a suitable setup for high-content screening and rapid assessment of heterogeneity within populations, while microwells of larger dimensions are appropriate for studies of NK cell migration and sequential interactions with multiple target cells. By combining the chip technology with ultrasonic manipulation, NK and target cells can be forced to interact and positioned with high spatial accuracy within individual microwells. This setup effectively and synchronously creates NK-target conjugates at hundreds of parallel positions in the microchip. Thus, this facilitates assessment of temporal aspects of NK-target cell interactions, e.g., conjugation, immune synapse formation, and cytotoxic events. The microchip platform presented here can be used to effectively address questions related to fundamental functions of NK cells that can lead to better understanding of how the behavior of individual cells add up to give a functional response at the

  20. Four-level evaluation of health promotion intervention for preventing early childhood caries: a randomized controlled trial.

    PubMed

    Basir, Leila; Rasteh, Bita; Montazeri, Ali; Araban, Marzieh

    2017-10-02

    Early childhood caries (ECC) is the most common dental disease among children, which can affect children's primary teeth during their teething. This study evaluates an intervention for preventing early childhood caries in a pediatric population in Ahvaz, Iran. The population of this study (IRCT2017070210804N10) consists of 104 women with 12 to 36 months of age without dental caries referred to a health care center in Ahvaz, Iran. The children were randomly assigned to either an experimental or control group in equal numbers. First, the demographic information of participants was collected through a questionnaire containing components of perceived threat, health literacy, and oral health behaviors using a valid and reliable questionnaire. The ECC status of the children was established by a dentist. Control group received "standard well baby care". The experimental group received standard well baby care in addition to educational interventions, including lecture and group discussion. After 6 months, the participant completed the questionnaire for the second time, and the children's teeth were reexamined. Data were analyzed using SPSS version 15 at a significance level of p < 0.05. The mean ages of women and children were 31 ± 6.68 years and 18 ± 7.21 months, respectively. Before the intervention, no significant difference was documented between the groups for the study variables, p > 0.05. However, after the intervention, a significant difference was observed between the perceived threats (41.15 ± 4.46 in the experimental group and 38.26 ± 4.21 in the control group, p = 0.001), health literacy (20.98 ± 2.15 in the experimental group and 19.76 ± 2.70 in the control group, p = 0.01), oral health behaviors (7.75 ± 2.30 in the experimental group and 6.15 ± 2.65 in the control group, p = 0.01), and the incidence of ECC (13% in the experimental group and 35% in the control group, p = 0.001). This intervention had positive effects on

  1. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency.

    PubMed

    de Sá Rodrigues, L C; Holmes, K E; Thompson, V; Newton, M A; Stein, T J

    2017-03-01

    An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells.

  2. Tumourigenic canine osteosarcoma cell lines associated with frizzled-6 up-regulation and enhanced side population cell frequency

    PubMed Central

    de Sá Rodrigues, L. C.; Holmes, K. E.; Thompson, V.; Newton, M. A.; Stein, T. J.

    2016-01-01

    An increased serum alkaline phosphatase concentration is known to be associated with a negative prognosis in canine and human osteosarcoma. To expand upon previous studies regarding the biological relevance of increased serum alkaline phosphatase as a negative prognostic factor, xenogeneic heterotopic transplants were performed using six canine primary osteosarcoma cell lines generated from patients with differing serum alkaline phosphatase concentrations (three normal and three increased). Three of the six cell lines were capable of generating tumours and tumour formation was independent of the serum alkaline phosphatase status of the cell line. Microarray analysis identified 379 genes as being differentially expressed between the tumourigenic and non-tumourigenic cell lines. Frizzled-6 was upregulated to the greatest extent (7.78-fold) in tumourigenic cell lines compared with non-tumourigenic cell lines. Frizzled-6, a co-receptor for Wnt ligands has been associated with enhanced tumour-initiating cells and poor prognosis for other tumours. The increased expression of frizzled-6 was confirmed by quantitative reverse transcription polymerase chain reaction (QPCR) and Western blot analysis. Additionally, the tumourigenic cell lines also had an increase in the percentage of side population cells compared with non-tumourigenic cell lines (5.89% versus 1.58%, respectively). There were no differences in tumourigenicity, frizzled-6 or percentage of side population cells noted between osteosarcoma cell lines generated from patients of differing serum alkaline phosphatase concentration. However, to our knowledge this is the first study to identified frizzled-6 as a possible marker of osteosarcoma cell populations with enhanced tumourigenicity and side population cells. Future work will focus on defining the role of frizzled-6 in osteosarcoma tumourigenesis and tumour-initiating cells. PMID:25689105

  3. The Epidermis Comprises Autonomous Compartments Maintained by Distinct Stem Cell Populations

    PubMed Central

    Page, Mahalia E.; Lombard, Patrick; Ng, Felicia; Göttgens, Berthold; Jensen, Kim B.

    2013-01-01

    Summary The complex anatomy of the epidermis contains multiple adult stem cell populations, but the extent to which they functionally overlap during homeostasis, wound healing, and tumor initiation remains poorly defined. Here, we demonstrate that Lrig1+ve cells are highly proliferative epidermal stem cells. Long-term clonal analysis reveals that Lrig1+ve cells maintain the upper pilosebaceous unit, containing the infundibulum and sebaceous gland as independent compartments, but contribute to neither the hair follicle nor the interfollicular epidermis, which are maintained by distinct stem cell populations. In contrast, upon wounding, stem cell progeny from multiple compartments acquire lineage plasticity and make permanent contributions to regenerating tissue. We further show that oncogene activation in Lrig1+ve cells drives hyperplasia but requires auxiliary stimuli for tumor formation. In summary, our data demonstrate that epidermal stem cells are lineage restricted during homeostasis and suggest that compartmentalization may constitute a conserved mechanism underlying epithelial tissue maintenance. PMID:23954751

  4. Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior

    NASA Technical Reports Server (NTRS)

    Cai, Li; Hayes, Nancy L.; Takahashi, Takao; Caviness, Verne S Jr; Nowakowski, Richard S.

    2002-01-01

    Mechanisms that regulate neuron production in the developing mouse neocortex were examined by using a retroviral lineage marking method to determine the sizes of the lineages remaining in the proliferating population of the ventricular zone during the period of neuron production. The distribution of clade sizes obtained experimentally in four different injection-survival paradigms (E11-E13, E11-E14, E11-E15, and E12-E15) from a total of over 500 labeled lineages was compared with that obtained from three models in which the average behavior of the proliferating population [i.e., the proportion of cells remaining in the proliferative population (P) vs. that exiting the proliferative population (Q)] was quantitatively related to lineage size distribution. In model 1, different proportions of asymmetric, symmetric terminal, and symmetric nonterminal cell divisions coexisted during the entire developmental period. In model 2, the developmental period was divided into two epochs: During the first, asymmetric and symmetric nonterminal cell divisions occurred, but, during the second, asymmetric and symmetric terminal cell divisions occurred. In model 3, the shifts in P and Q are accounted for by changes in the proportions of the two types of symmetric cell divisions without the inclusion of any asymmetric cell divisions. The results obtained from the retroviral experiments were well accounted for by model 1 but not by model 2 or 3. These findings demonstrate that: 1) asymmetric and both types of symmetric cell divisions coexist during the entire period of neurogenesis in the mouse, 2) neuron production is regulated in the proliferative population by the independent decisions of the two daughter cells to reenter S phase, and 3) neurons are produced by both asymmetric and symmetric terminal cell divisions. In addition, the findings mean that cell death and/or tangential movements of cells in the proliferative population occur at only a low rate and that there are no

  5. Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior

    NASA Technical Reports Server (NTRS)

    Cai, Li; Hayes, Nancy L.; Takahashi, Takao; Caviness, Verne S Jr; Nowakowski, Richard S.

    2002-01-01

    Mechanisms that regulate neuron production in the developing mouse neocortex were examined by using a retroviral lineage marking method to determine the sizes of the lineages remaining in the proliferating population of the ventricular zone during the period of neuron production. The distribution of clade sizes obtained experimentally in four different injection-survival paradigms (E11-E13, E11-E14, E11-E15, and E12-E15) from a total of over 500 labeled lineages was compared with that obtained from three models in which the average behavior of the proliferating population [i.e., the proportion of cells remaining in the proliferative population (P) vs. that exiting the proliferative population (Q)] was quantitatively related to lineage size distribution. In model 1, different proportions of asymmetric, symmetric terminal, and symmetric nonterminal cell divisions coexisted during the entire developmental period. In model 2, the developmental period was divided into two epochs: During the first, asymmetric and symmetric nonterminal cell divisions occurred, but, during the second, asymmetric and symmetric terminal cell divisions occurred. In model 3, the shifts in P and Q are accounted for by changes in the proportions of the two types of symmetric cell divisions without the inclusion of any asymmetric cell divisions. The results obtained from the retroviral experiments were well accounted for by model 1 but not by model 2 or 3. These findings demonstrate that: 1) asymmetric and both types of symmetric cell divisions coexist during the entire period of neurogenesis in the mouse, 2) neuron production is regulated in the proliferative population by the independent decisions of the two daughter cells to reenter S phase, and 3) neurons are produced by both asymmetric and symmetric terminal cell divisions. In addition, the findings mean that cell death and/or tangential movements of cells in the proliferative population occur at only a low rate and that there are no

  6. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum

    PubMed Central

    Choi, Eunyoung; Roland, Joseph T.; Barlow, Brittney J.; O’Neal, Ryan; Rich, Amy E.; Nam, Ki Taek; Shi, Chanjuan; Goldenring, James R.

    2014-01-01

    Objective The glands of the stomach body and antral mucosa contain a complex compendium of cell lineages. In lower mammals, the distribution of oxyntic glands and antral glands define the anatomical regions within the stomach. We examined in detail the distribution of the full range of cell lineages within the human stomach. Design We determined the distribution of gastric gland cell lineages with specific immunocytochemical markers in entire stomach specimens from three non-obese organ donors. Results The anatomical body and antrum of the human stomach were defined by the presence of ghrelin and gastrin cells, respectively. Concentrations of somatostatin cells were observed in the proximal stomach. Parietal cells were seen in all glands of the body of stomach as well as in over 50% of antral glands. MIST1-expressing chief cells were predominantly observed in the body, although individual glands of the antrum also showed MIST1-expressing chief cells. While classically-described antral glands were observed with gastrin cells and deep antral mucous cells without any parietal cells, we also observed a substantial population of mixed-type glands containing both parietal cells and G cells throughout the antrum. Conclusions Enteroendocrine cells show distinct patterns of localization in the human stomach. The existence of antral glands with mixed cell lineages indicates that human antral glands may be functionally chimeric with glands assembled from multiple distinct stem cell populations. PMID:24488499

  7. Distinctions Among Circulating Antibody Secreting Cell Populations, Including B-1 Cells, in Human Adult Peripheral Blood1

    PubMed Central

    Quách, Tâm D.; Rodríguez-Zhurbenko, Nely; Hopkins, Thomas J.; Guo, Xiaoti; Vázquez, Ana María Hernández; Li, Wentian; Rothstein, Thomas L.

    2015-01-01

    Human antibody secreting cell (ASC) populations in circulation are not well studied. In addition to B-1 (CD20+CD27+CD38lo/intCD43+) cell and the conventional plasmablast (CD20-CD27hiCD38hi) cell populations, here we identified a novel B cell population termed 20+38hi B cells (CD20+CD27hiCD38hi) that spontaneously secretes antibody. At steady state, 20+38hi B cells are distinct from plasmablasts on the basis of CD20 expression, amount of antibody production, frequency of mutation, and diversity of B cell receptor repertoire. However, cytokine treatment of 20+38hi B cells induces loss of CD20 and acquisition of CD138, suggesting that 20+38hi B cells are precursors to plasmablasts, or pre-plasmablasts. We then evaluated similarities and differences between CD20+CD27+CD38lo/intCD43+ B-1 cells, CD20+CD27hiCD38hi 20+38hi B cells, CD20-CD27hiCD38hi plasmablasts, and CD20+CD27+CD38lo/intCD43- memory B cells. We found that B-1 cells differ from 20+38hi B cells and plasmablasts in numbers of ways, including antigen expression, morphological appearance, transcriptional profiling, antibody skewing, antibody repertoire, and secretory response to stimulation. In terms of gene expression, B-1 cells align more closely with memory B cells than with 20+38hi B cells or plasmablasts, but differ in that memory B cells do not express antibody secretion related genes. We found that, B-1 cell antibodies utilize Vh4-34, which is often associated with autoreactivity, 3 to 6-fold more often than other B cell populations. Along with selective production of IgM anti-PC, this data suggests that human B-1 cells might be preferentially selected for autoreactivity/natural-specificity. In sum, our results indicate that human healthy adult peripheral blood at steady state consists of 3 distinct ASC populations. PMID:26740107

  8. Stem Cell-Like Differentiation Potentials of Endometrial Side Population Cells as Revealed by a Newly Developed In Vivo Endometrial Stem Cell Assay

    PubMed Central

    Miyazaki, Kaoru; Maruyama, Tetsuo; Masuda, Hirotaka; Yamasaki, Akiko; Uchida, Sayaka; Oda, Hideyuki; Uchida, Hiroshi; Yoshimura, Yasunori

    2012-01-01

    Background Endometrial stem/progenitor cells contribute to the cyclical regeneration of human endometrium throughout a woman's reproductive life. Although the candidate cell populations have been extensively studied, no consensus exists regarding which endometrial population represents the stem/progenitor cell fraction in terms of in vivo stem cell activity. We have previously reported that human endometrial side population cells (ESP), but not endometrial main population cells (EMP), exhibit stem cell-like properties, including in vivo reconstitution of endometrium-like tissues when xenotransplanted into immunodeficient mice. The reconstitution efficiency, however, was low presumably because ESP cells alone could not provide a sufficient microenvironment (niche) to support their stem cell activity. The objective of this study was to establish a novel in vivo endometrial stem cell assay employing cell tracking and tissue reconstitution systems and to examine the stem cell properties of ESP through use of this assay. Methodology/Principal Findings ESP and EMP cells isolated from whole endometrial cells were infected with lentivirus to express tandem Tomato (TdTom), a red fluorescent protein. They were mixed with unlabeled whole endometrial cells and then transplanted under the kidney capsule of ovariectomized immunodeficient mice. These mice were treated with estradiol and progesterone for eight weeks and nephrectomized. All of the grafts reconstituted endometrium-like tissues under the kidney capsules. Immunofluorescence revealed that TdTom-positive cells were significantly more abundant in the glandular, stromal, and endothelial cells of the reconstituted endometrium in mice transplanted with TdTom-labeled ESP cells than those with TdTom-labeled EMP cells. Conclusions/Significance We have established a novel in vivo endometrial stem cell assay in which multi-potential differentiation can be identified through cell tracking during in vivo endometrial tissue

  9. The motile response of alveolar macrophages. An experimental study using single-cell and cell population approaches.

    PubMed

    Glasgow, J E; Farrell, B E; Fisher, E S; Lauffenburger, D A; Daniele, R P

    1989-02-01

    In this report, we studied the applicability of a random walk model of individual cell motility in predicting the motile behavior of alveolar macrophage populations under agarose. The migration of a population of cells in the absence of a chemotactic or chemokinetic gradient can be characterized by the random motility coefficient, mu, which is analogous to a particle diffusion coefficient. Random walk theory relates this latter coefficient to particle speed and collision time (equivalent to the time between changes in particle direction). By analogy, according to a similar random walk theory for cell migration, mu for a cell population is a function of the speed and persistence time (with direction changes governed by cell behavioral processes rather than by collisions) of individual cells. To test the model, normal guinea pig alveolar macrophages were incubated in the presence or absence of uniform concentrations of the chemotactic tripeptide formyl-norleucyl leucyl phenylalanine (FNLLP) to elicit different levels of motile activity. Mu was calculated from cell population density profiles obtained by fixing and staining cultures after 2, 3, or 4 days. In parallel experiments, individual cell speeds and persistence times were measured from 1-h, time-lapse video microscopy recordings. The value of mu calculated from single-cell measurements was in good agreement with that from population studies for stimulated random migration (at 10(-7) to 10(-11) M FNLLP), but not in the absence of stimulant. Overall, these results support the applicability of the random walk model of individual cell migration to randomly migrating alveolar macrophage populations.

  10. A general mathematical framework to model generation structure in a population of asynchronously dividing cells.

    PubMed

    León, Kalet; Faro, Jose; Carneiro, Jorge

    2004-08-21

    In otherwise homogeneous cell populations, individual cells undergo asynchronous cell cycles. In recent years, interest in this fundamental observation has been boosted by the wide usage of CFSE, a fluorescent dye that allows the precise estimation by flow cytometry of the number of divisions performed by different cells in a population, and thus the generation structure. In this work, we propose two general mathematical frameworks to model the time evolution of generation structure in a cell population. The first modeling framework is more descriptive and assumes that cell division time is distributed in the cell population, due to intrinsic noise in the molecular machinery in individual cells; while the second framework assumes that asynchrony in cell division stems from randomness in the interactions individual cells make with environmental agents. We reduce these formalisms to recover two preexistent models, which build on each of the hypotheses. When confronted to kinetics data on CFSE labeled cells taken from literature, these models can fit precursor frequency distributions at each measured time point. However, they fail to fit the whole kinetics of precursor frequency distributions. In contrast, two extensions of those models, derived also from our general formalisms, fit equally well both the whole kinetics and individual profiles at each time point, providing a biologically reasonable estimation of parameters. We prove that the distribution of cell division times is not Gaussian, as previously proposed, but is better described by an asymmetric distribution such as the Gamma distribution. We show also that the observed cell asynchrony could be explained by the existence of a single transitional event during cell division. Based on these results, we suggest new ways of combining theoretical and experimental work to assess how much of noise in internal machinery of the cell and interactions with the environmental agents contribute to the asynchrony in cell

  11. Primmorphs from archaeocytes-dominant cell population of the sponge hymeniacidon perleve: improved cell proliferation and spiculogenesis.

    PubMed

    Zhang, Xiaoying; Cao, Xupeng; Zhang, Wei; Yu, Xingju; Jin, Meifang

    2003-12-05

    Marine sponges (Porifera) possess an extraordinary diversity of bioactive metabolites for new drug discovery and development. In vitro cultivation of sponge cells in a bioreactor system is very attractive for the sustainable production of sponge-derived bioactive metabolites; however, it is still a challenging task. The recent establishment of sponge primmorphs, multicellular aggregates from dissociated mixed-cell population (MCP), has been widely acknowledged to hold great promise for cultivation in vitro. Here we present a new method to establish an in vitro sponge primmorph culture from archaeocyte-dominant cell population (ADCP) enriched by a Ficoll gradient, rather than a mixed-cell population (MCP). Our rationale is based upon the totipotency (the ability of a cell to differentiate into other cell types) of archaeocyte cells and the different biological functions of various sponge cell types. A sponge, Hymeniacidon perleve collected from the China Yellow Sea was used as a model system for this investigation. Distinct dynamics of primmorph formation were observed while significant increases in DNA synthesis, cell proliferation (up to threefold), and cell growth (up to fourfold) were achieved. Furthermore, a time-dependent spiculogenesis was clearly demonstrated in our longterm culture, indicating high metabolic activity of primmorphs from the ADCP. This new method represents an important step forward to advance sponge cell culture in vitro that may lead to commercial exploitation of sponge-derived drugs.

  12. An altered endometrial CD8 tissue resident memory T cell population in recurrent miscarriage

    PubMed Central

    Southcombe, J. H.; Mounce, G.; McGee, K.; Elghajiji, A.; Brosens, J.; Quenby, S.; Child, T.; Granne, I.

    2017-01-01

    When trying to conceive 1% of couples have recurrent miscarriages, defined as three or more consecutive pregnancy losses. This is not accounted for by the known incidence of chromosomal aneuploidy in miscarriage, and it has been suggested that there is an immunological aetiology. The endometrial mucosa is populated by a variety of immune cells which in addition to providing host pathogen immunity must facilitate pregnancy. Here we characterise the endometrial CD8-T cell population during the embryonic window of implantation and find that the majority of cells are tissue resident memory T cells with high levels of CD69 and CD103 expression, proteins that prevent cells egress. We demonstrate that unexplained recurrent miscarriage is associated with significantly decreased expression of the T-cell co-receptor CD8 and tissue residency marker CD69. These cells differ from those found in control women, with less expression of CD127 indicating a lack of homeostatic cell control through IL-7 signalling. Nevertheless this population is resident in the endometrium of women who have RM, more than three months after the last miscarriage, indicating that the memory CD8-T cell population is altered in RM patients. This is the first evidence of a differing pre-pregnancy phenotype in endometrial immune cells in RM. PMID:28112260

  13. An altered endometrial CD8 tissue resident memory T cell population in recurrent miscarriage.

    PubMed

    Southcombe, J H; Mounce, G; McGee, K; Elghajiji, A; Brosens, J; Quenby, S; Child, T; Granne, I

    2017-01-23

    When trying to conceive 1% of couples have recurrent miscarriages, defined as three or more consecutive pregnancy losses. This is not accounted for by the known incidence of chromosomal aneuploidy in miscarriage, and it has been suggested that there is an immunological aetiology. The endometrial mucosa is populated by a variety of immune cells which in addition to providing host pathogen immunity must facilitate pregnancy. Here we characterise the endometrial CD8-T cell population during the embryonic window of implantation and find that the majority of cells are tissue resident memory T cells with high levels of CD69 and CD103 expression, proteins that prevent cells egress. We demonstrate that unexplained recurrent miscarriage is associated with significantly decreased expression of the T-cell co-receptor CD8 and tissue residency marker CD69. These cells differ from those found in control women, with less expression of CD127 indicating a lack of homeostatic cell control through IL-7 signalling. Nevertheless this population is resident in the endometrium of women who have RM, more than three months after the last miscarriage, indicating that the memory CD8-T cell population is altered in RM patients. This is the first evidence of a differing pre-pregnancy phenotype in endometrial immune cells in RM.

  14. From the cell cycle to population cycles in phytoplankton-nutrient interactions

    SciTech Connect

    Pascual, M.; Caswell, H.

    1997-04-01

    The internal demographic structure of a population influences its dynamics and its response to the environment. Most models for phytoplankton ignore internal structure and group all cells in a single variable such as total biomass or density. However, a cell does have a life history, the cell division cycle. We investigate the significance of the cell cycle to phytoplankton population dynamics in a variable nutrient environment, using chemostate models. Following the transition point hypothesis, nutrient uptake affects cell development only within a limited segment of the cell cycle. Simulation results demonstrate oscillations in cell numbers and population structure generated by this interaction. When nutrient input is varied periodically, the population displays an aperiodic response with frequencies different from that of the forcing. These results also hold for a model that includes nutrient storage by the cells. These dynamics differ from those of traditional chemostate models and from cell cycle models driven by light cycles. Resource control of cell cycle progression may explain the time delays previously postulated to explain oscillatory transients in chemostate experiments. 78 refs., 22 figs.

  15. Lin28a is a putative factor in regulating cancer stem cell-like properties in side population cells of oral squamous cell carcinoma.

    PubMed

    Hayashi, S; Tanaka, J; Okada, S; Isobe, T; Yamamoto, G; Yasuhara, R; Irie, T; Akiyama, C; Kohno, Y; Tachikawa, T; Mishima, K

    2013-05-01

    Cancer stem cells (CSCs) are among the target cells of cancer therapy because they are uniquely involved in both cancer progression and sensitivity to chemotherapeutic agents. We identified side population (SP) cells, which are known to be an enriched population of CSC, in five oral squamous cell carcinoma (OSCC) cells (SCC9, SCC25, TOSCC7, TOSCC17, and TOSCC23). The percentages of SP cells ranged from 0% to 3.3%, with TOSCC23 cells showing the highest percentages of SP cells (3.3% of the total cell population). The SP cells isolated from TOSCC23 cells also showed greater cell proliferation and invasion compared to non-SP (MP) cells. Therefore, our initial findings suggested that SP cells were enriched for CSC-like cells. Furthermore, DNA microarray analysis revealed that the expression of cell proliferation-related and anti-apoptotic genes was greater in SP cells compared to MP cells. We focused on Lin28a, which showed the highest expression (approximately 22-fold) among the upregulated genes. The overexpression of Lin28a in TOSCC23 cells increased their proliferation, colony formation, and invasion. These findings suggest that Lin28a is an appropriate CSC target molecule for OSCC treatment. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Aligning bona fide dendritic cell populations across species.

    PubMed

    Dutertre, Charles-Antoine; Wang, Lin-Fa; Ginhoux, Florent

    2014-01-01

    Dendritic cells (DC) are professional antigen sensing and presenting cells that link innate and adaptive immunity. Consisting of functionally specialized subsets, they form a complex cellular network capable of integrating multiple environmental signals leading to immunity or tolerance. Much of DC research so far has been carried out in mice and increasing efforts are now being devoted to translating the findings into humans and other species. Recent studies have aligned these cellular networks across species at multiple levels from phenotype, gene expression program, ontogeny and functional specializations. In this review, we focus on recent advances in the definition of bona fide DC subsets across species. The understanding of functional similarities and differences of specific DC subsets in different animals not only brings light in the field of DC biology, but also paves the way for the design of future effective therapeutic strategies targeting these cells.

  17. A Stochastic Cellular Automata Approach to Population Dynamics of Cells in a HIV Immune Response Model

    NASA Astrophysics Data System (ADS)

    Pandey, Ras B.

    1998-03-01

    A stochastic cellular automata (SCA) approach is introduced to study the growth and decay of cellular population in an immune response model relevant to HIV. Four cell types are considered: macrophages (M), helper cells (H), cytotoxic cells (C), and viral infected cells (V). Mobility of the cells is introduced and viral mutation is considered probabilistically. In absence of mutation, the population of the host cells, helper (N_H) and cytotxic (N_C) cells in particular, dominates over the viral population (N_V), i.e., N_H, NC > N_V, the immune system wins over the viral infection. Variation of cellular population with time exhibits oscillations. The amplitude of oscillations in variation of N_H, NC and NV with time decreases at high mobility even at low viral mutation; the rate of viral growth is nonmonotonic with NV > N_H, NC in the long time regime. The viral population is much higher than that of the host cells at higher mutation rate, a possible cause of AIDS.

  18. Simultaneous Isolation of Three Different Stem Cell Populations from Murine Skin.

    PubMed

    Forni, Maria Fernanda; Ramos Maia Lobba, Aline; Pereira Ferreira, Alexandre Hamilton; Sogayar, Mari Cleide

    2015-01-01

    The skin is a rich source of readily accessible stem cells. The level of plasticity afforded by these cells is becoming increasingly important as the potential of stem cells in Cell Therapy and Regenerative Medicine continues to be explored. Several protocols described single type stem cell isolation from skin; however, none of them afforded simultaneous isolation of more than one population. Herein, we describe the simultaneous isolation and characterization of three stem cell populations from the dermis and epidermis of murine skin, namely Epidermal Stem Cells (EpiSCs), Skin-derived Precursors (SKPs) and Mesenchymal Stem Cells (MSCs). The simultaneous isolation was possible through a simple protocol based on culture selection techniques. These cell populations are shown to be capable of generating chondrocytes, adipocytes, osteocytes, terminally differentiated keratinocytes, neurons and glia, rendering this protocol suitable for the isolation of cells for tissue replenishment and cell based therapies. The advantages of this procedure are far-reaching since the skin is not only the largest organ in the body, but also provides an easily accessible source of stem cells for autologous graft.

  19. Differential localization of T-bet and Eomes in CD8 T-cell memory populations

    PubMed Central

    McLane, Laura M.; Banerjee, Pinaki P.; Cosma, Gabriela L.; Makedonas, George; Wherry, E. John; Orange, Jordan S.; Betts, Michael R.

    2013-01-01

    In mice, two T-box transcription factors, T-bet and Eomes, drive the differentiation of CD8 T-cell lineages; however, little is known regarding their role in human CD8 T-cell differentiation. Here, we characterized T-bet and Eomes expression and localization within human CD8 memory T-cell populations. We find T-bet and Eomes are broadly expressed in human memory CD8 T cells, with increasing levels of T-bet and Eomes strongly correlating with differentiation from central memory to effector memory and effector subpopulations. In resting T-cells, T-bet levels directly correlate to subcellular localization, with a higher propensity for nuclear expression of T-bet within T-bethi cells and predominately cytoplasmic expression in T-betlo cells. Additionally, Eomes is also localized to either the nucleus or cytoplasm. Upon T-cell receptor stimulation, the percentage of T-cells that express T-bet dramatically increases, while the percentage of cells expressing Eomes remains largely unchanged across all memory populations. Interestingly, T-bet, but not Eomes, relocalizes to the nucleus in the majority of cells across all populations within 24 hours post-stimulation. These data indicate that T-bet and Eomes are likely regulated at the level of subcellular localization, potentially via different mechanisms. Together, these findings suggest a novel model for CD8 T-cell differentiation in humans based on the localization of T-bet and Eomes. PMID:23455505

  20. Simultaneous Isolation of Three Different Stem Cell Populations from Murine Skin

    PubMed Central

    Forni, Maria Fernanda; Ramos Maia Lobba, Aline; Pereira Ferreira, Alexandre Hamilton; Sogayar, Mari Cleide

    2015-01-01

    The skin is a rich source of readily accessible stem cells. The level of plasticity afforded by these cells is becoming increasingly important as the potential of stem cells in Cell Therapy and Regenerative Medicine continues to be explored. Several protocols described single type stem cell isolation from skin; however, none of them afforded simultaneous isolation of more than one population. Herein, we describe the simultaneous isolation and characterization of three stem cell populations from the dermis and epidermis of murine skin, namely Epidermal Stem Cells (EpiSCs), Skin-derived Precursors (SKPs) and Mesenchymal Stem Cells (MSCs). The simultaneous isolation was possible through a simple protocol based on culture selection techniques. These cell populations are shown to be capable of generating chondrocytes, adipocytes, osteocytes, terminally differentiated keratinocytes, neurons and glia, rendering this protocol suitable for the isolation of cells for tissue replenishment and cell based therapies. The advantages of this procedure are far-reaching since the skin is not only the largest organ in the body, but also provides an easily accessible source of stem cells for autologous graft. PMID:26462205

  1. In vitro expansion of the mammary stem/progenitor cell population by xanthosine treatment

    PubMed Central

    2012-01-01

    Background Mammary stem cells are critical for growth and maintenance of the mammary gland and therefore are of considerable interest for improving productivity and efficiency of dairy animals. Xanthosine treatment has been demonstrated to promote expansion of putative mammary stem cells in vivo, and hepatic and hair follicle stem cells in vitro. In the latter, xanthosine promoted the symmetrical division of hepatic and hair follicle stem cells. The objective of this study was to determine if treating primary cultures of bovine mammary epithelial cells (MEC) with xanthosine increases the stem/progenitor cell population by promoting symmetrical division of mammary stem cells. Results In vitro treatment with xanthosine increased the population of MEC during the exponential phase of cell growth, reducing the doubling time from 86 h in control cultures to 60 h in xanthosine-treated cultures. The bromodeoxyuridine (BrdU) labeling index and the proportion of MEC in S-phase both were increased by xanthosine treatment, indicating that increased cell accretion was due to increased cell proliferation. Analysis of daughter-pairs indicated that xanthosine promoted a shift from asymmetric to symmetric cell division. Moreover, the 30 % increase in symmetric cell division was concomitant with an increase in the proportion of MEC that were positive for a putative stem cell marker (FNDC3B) and a trend toward increased telomerase activity. These results suggest that xanthosine treatment in vitro can increase cell proliferation, promote symmetric cell division and enhance stem/progenitor cell activity. Conclusions Xanthosine treatment increased the proliferation rate of bovine MEC in vitro. This was likely to be mediated by an increase in the proportion of stem/progenitor cells in the MEC population due to promotion of symmetrical stem cell division by xanthosine. PMID:22698263

  2. Reduced satellite cell population may lead to contractures in children with cerebral palsy

    PubMed Central

    SMITH, LUCAS R; CHAMBERS, HENRY G; LIEBER, RICHARD L

    2014-01-01

    AIM Satellite cells are the stem cells residing in muscle responsible for skeletal muscle growth and repair. Skeletal muscle in cerebral palsy (CP) has impaired longitudinal growth that results in muscle contractures. We hypothesized that the satellite cell population would be reduced in contractured muscle. METHOD We compared the satellite cell populations in hamstring muscles from participants with CP contracture (n=8; six males, two females; age range 6–15y; Gross Motor Function Classification System [GMFCS] levels II–V; 4 with hemiplegia, 4 with diplegia) and from typically developing participants (n=8; six males, two females, age range 15–18y). Muscle biopsies were extracted from the gracilis and semitendinosus muscles and mononuclear cells were isolated. Cell surface markers were stained with fluorescently conjugated antibodies to label satellite cells (neural cell adhesion molecule) and inflammatory and endothelial cells (CD34 and CD4 respectively). Cells were analyzed using flow cytometry to determine cell populations. RESULTS After gating for intact cells a mean of 12.8% (SD 2.8%) were determined to be satellite cells in typically developing children, but only 5.3% (SD 2.3%;p<0.05) in children with CP. Hematopoietic and endothelial cell types were equivalent in typically developing children and children with CP (p>0.05) suggesting the isolation procedure was valid. INTERPRETATION A reduced satellite cell population may account for the decreased longitudinal growth of muscles in CP that develop into fixed contractures or the decreased ability to strengthen muscle in CP. This suggests a unique musculoskeletal disease mechanism and provides a potential therapeutic target for debilitating muscle contractures. PMID:23210987

  3. Reduced satellite cell population may lead to contractures in children with cerebral palsy.

    PubMed

    Smith, Lucas R; Chambers, Henry G; Lieber, Richard L

    2013-03-01

    Satellite cells are the stem cells residing in muscle responsible for skeletal muscle growth and repair. Skeletal muscle in cerebral palsy (CP) has impaired longitudinal growth that results in muscle contractures. We hypothesized that the satellite cell population would be reduced in contractured muscle. We compared the satellite cell populations in hamstring muscles from participants with CP contracture (n=8; six males, two females; age range 6-15y; Gross Motor Function Classification System [GMFCS] levels II-V; 4 with hemiplegia, 4 with diplegia) and from typically developing participants (n=8; six males, two females, age range 15-18y). Muscle biopsies were extracted from the gracilis and semitendinosus muscles and mononuclear cells were isolated. Cell surface markers were stained with fluorescently conjugated antibodies to label satellite cells (neural cell adhesion molecule) and inflammatory and endothelial cells (CD34 and CD4 respectively). Cells were analyzed using flow cytometry to determine cell populations. After gating for intact cells a mean of 12.8% (SD 2.8%) were determined to be satellite cells in typically developing children, but only 5.3% (SD 2.3%; p<0.05) in children with CP. Hematopoietic and endothelial cell types were equivalent in typically developing children and children with CP (p>0.05) suggesting the isolation procedure was valid. A reduced satellite cell population may account for the decreased longitudinal growth of muscles in CP that develop into fixed contractures or the decreased ability to strengthen muscle in CP. This suggests a unique musculoskeletal disease mechanism and provides a potential therapeutic target for debilitating muscle contractures. © The Authors. Developmental Medicine & Child Neurology © 2012 Mac Keith Press.

  4. HLA-targeted flow cytometric sorting of blood cells allows separation of pure and viable microchimeric cell populations.

    PubMed

    Drabbels, Jos J M; van de Keur, Carin; Kemps, Berit M; Mulder, Arend; Scherjon, Sicco A; Claas, Frans H J; Eikmans, Michael

    2011-11-10

    Microchimerism is defined by the presence of low levels of nonhost cells in a person. We developed a reliable method for separating viable microchimeric cells from the host environment. For flow cytometric cell sorting, HLA antigens were targeted with human monoclonal HLA antibodies (mAbs). Optimal separation of microchimeric cells (present at a proportion as low as 0.01% in artificial mixtures) was obtained with 2 different HLA mAbs, one targeting the chimeric cells and the other the background cells. To verify purity of separated cell populations, flow-sorted fractions of 1000 cells were processed for DNA analysis by HLA-allele-specific and Y-chromosome-directed real-time quantitative PCR assays. After sorting, PCR signals of chimeric DNA markers in the positive fractions were significantly enhanced compared with those in the presort samples, and they were similar to those in 100% chimeric control samples. Next, we demonstrate applicability of HLA-targeted FACS sorting after pregnancy by separating chimeric maternal cells from child umbilical cord mononuclear cells. Targeting allelic differences with anti-HLA mAbs with FACS sorting allows maximal enrichment of viable microchimeric cells from a background cell population. The current methodology enables reliable microchimeric cell detection and separation in clinical specimens.

  5. Microfluidic isolation of cancer-cell-derived microvesicles from hetergeneous extracellular shed vesicle populations

    PubMed Central

    Santana, Steven M.; Antonyak, Marc A.; Cerione, Richard A.

    2015-01-01

    Extracellular shed vesicles, including exosomes and microvesicles, are disseminated throughout the body and represent an important conduit of cell communication. Cancer-cell-derived microvesicles have potential as a cancer biomarker as they help shape the tumor microenvironment to promote the growth of the primary tumor and prime the metastatic niche. It is likely that, in cancer cell cultures, the two constituent extracellular shed vesicle subpopulations, observed in dynamic light scattering, represent an exosome population and a cancer-cell-specific microvesicle population and that extracellular shed vesicle size provides information about provenance and cargo. We have designed and implemented a novel microfluidic technology that separates microvesicles, as a function of diameter, from heterogeneous populations of cancer-cell-derived extracellular shed vesicles. We measured cargo carried by the microvesicle subpopulation processed through this microfluidic platform. Such analyses could enable future investigations to more accurately and reliably determine provenance, functional activity, and mechanisms of transformation in cancer. PMID:25342569

  6. Outcomes Evaluation of Zero-Profile Devices Compared to Stand-Alone PEEK Cages for the Treatment of Three- and Four-Level Cervical Disc Disease

    PubMed Central

    Paschel, Erin; Mashaly, Hazem; Sabry, Hatem; Jalalod'din, Hasan; Saoud, Khaled

    2016-01-01

    Background: Anterior cervical discectomy and fusion (ACDF) is a well-accepted treatment option for patients with cervical spine disease. Three- and four-level discectomies are known to be associated with a higher complication rate and lower fusion rate than single-level surgery. This study was performed to evaluate and compare zero-profile fixation and stand-alone PEEK cages for three- and four-level ACDF. Methods: Two cohorts of patients who underwent ACDF for the treatment of three- and four-level disease were compared. Thirty-three patients underwent implantation of zero-profile devices that included titanium screw fixation (Group A). Thirty-five patients underwent implantation of stand-alone PEEK cages without any form of screw fixation (Group B). Results: In Group A, twenty-seven patients underwent a three-level and six patients a four-level ACDF, with a total of 105 levels. In Group B, thirty patients underwent a three-level and five patients underwent a four-level ACDF, with a total number of 110 levels. In Group A, the mean preoperative visual analog scale score (VAS) for arm pain was 6.4 (range 3-8), and the mean postoperative VAS for arm pain decreased to 2.5 (range 1-7). In group B, the mean preoperative VAS of arm pain was 7.1 (range 3-10), and the mean postoperative VAS of arm pain decreased to 2 (range 0-4). In Group A, four patients (12%) developed dysphagia, and in Group B, three patients (9%) developed dysphagia.  Conclusions: This study found zero-profile instrumentation and PEEK cages to be both safe and effective for patients who underwent three- and four-level ACDF, comparable to reported series using plate devices. Rates of dysphagia for the cohort were much lower than reports using plate devices. Zero-profile segmental fixation devices and PEEK cages may be considered as viable alternatives over plate fixation for patients requiring multi-level anterior cervical fusion surgery. PMID:27738574

  7. Transforming growth factor-β signaling is constantly shaping memory T-cell population

    PubMed Central

    Ma, Chaoyu; Zhang, Nu

    2015-01-01

    The long-term maintenance of memory T cells is essential for successful vaccines. Both the quantity and the quality of the memory T-cell population must be maintained. The signals that control the maintenance of memory T cells remain incompletely identified. Here we used two genetic models to show that continuous transforming growth factor-β signaling to antigen-specific T cells is required for the differentiation and maintenance of memory CD8+ T cells. In addition, both infection-induced and microbiota-induced inflammation impact the phenotypic and functional identity of memory CD8+ T cells. PMID:26283373

  8. Simulating invasion with cellular automata: connecting cell-scale and population-scale properties.

    PubMed

    Simpson, Matthew J; Merrifield, Alistair; Landman, Kerry A; Hughes, Barry D

    2007-08-01

    Interpretive and predictive tools are needed to assist in the understanding of cell invasion processes. Cell invasion involves cell motility and proliferation, and is central to many biological processes including developmental morphogenesis and tumor invasion. Experimental data can be collected across a wide range of scales, from the population scale to the individual cell scale. Standard continuum or discrete models used in isolation are insufficient to capture this wide range of data. We develop a discrete cellular automata model of invasion with experimentally motivated rules. The cellular automata algorithm is applied to a narrow two-dimensional lattice and simulations reveal the formation of invasion waves moving with constant speed. The simulation results are averaged in one dimension-these data are used to identify the time history of the leading edge to characterize the population-scale wave speed. This allows the relationship between the population-scale wave speed and the cell-scale parameters to be determined. This relationship is analogous to well-known continuum results for Fisher's equation. The cellular automata algorithm also produces individual cell trajectories within the invasion wave that are analogous to cell trajectories obtained with new experimental techniques. Our approach allows both the cell-scale and population-scale properties of invasion to be predicted in a way that is consistent with multiscale experimental data. Furthermore we suggest that the cellular automata algorithm can be used in conjunction with individual data to overcome limitations associated with identifying cell motility mechanisms using continuum models alone.

  9. Infection Spread and Virus Release in Vitro in Cell Populations as a System with Percolation

    NASA Astrophysics Data System (ADS)

    Ochoa, Juan G. Diaz

    The comprehension of the innate immune system of cell populations is not only of interest to understand systems in vivo but also in vitro, for example, in the control of the release of viral particles for the production of vaccines. In this report I introduce a model, based on dynamical networks, that simulates the cell signaling responsible for this innate immune response and its effect on the infection spread and virus production. The central motivation is to represent a cell population that is constantly mixed in a bio-reactor where there is a cell-to-cell signaling of cytokines (which are proteins responsible for the activation of the antiviral response inside the cell). Such signaling allows the definition of clusters of linked immune cells. Additionally, depending on the density of links, it is possible to identify critical threshold parameters associated to a percolation phase transition. I show that the control of this antiviral response is equivalent to a percolation process.

  10. Clonal analysis of childhood acute lymphoblastic leukemia with "cytogenetically independent" cell populations.

    PubMed Central

    Pui, C H; Raskind, W H; Kitchingman, G R; Raimondi, S C; Behm, F G; Murphy, S B; Crist, W M; Fialkow, P J; Williams, D L

    1989-01-01

    Acute lymphoblastic leukemia (ALL) is generally regarded as a clonal disease in which a single abnormal progenitor cell gives rise to neoplastic progeny. Five of 463 cases of childhood ALL with adequately banded leukemic cells were found to have two cytogenetically independent cell populations. In addition, two of the four cases tested had more than two rearranged immunoglobulin genes and (or) T cell receptor genes. To investigate the clonality of these unusual leukemias, we examined the neoplastic cells for X-linked markers extrinsic to the disease. Leukemic cells from each of the three patients heterozygous for an X-linked, restriction fragment length polymorphism showed a single active parental allele, suggesting that both apparently independent cell populations developed from a common progenitor. These cases provide evidence that leukemogenesis involves a multistep process of mutation and suggest that karyotypic abnormalities may be a late event of malignant transformation. Images PMID:2566623

  11. Variability in Beta-Adrenergic Receptor Population in Cultured Chicken Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B; Bridge, Kristin Y.; Vaughn, Jeffrey R.

    1998-01-01

    Investigations into expression of the beta-adrenergic receptor (bAR) in chicken skeletal muscle cells in culture were initiated because several beta-adrenergic receptor agonists are known to increase skeletal muscle protein deposition in avian and mammalian species. During initial attempts to study the bAR population on the surface of chicken skeletal muscle cells, we observed a high degree of variability that was later found to be the result of using different batches of horse serum in the cell culture media. The separation between total binding and nonspecific binding in cells grown in two serum samples was approximately two-fold The number of nuclei within multinucleated myotubes was not significantly different in cells grown in the two serum samples. To investigate whether these two sera had an effect on coupling efficiency between bAR population and cAMP production, the ability of these cells to synthesize cAMP was also assessed. Despite the two-fold difference in receptor population, the ability of these cells to synthesize cAMP was not significantly different. Because of the possible link between bAR population and muscle protein, we also determined if the quantity of the major skeletal muscle protein, myosin, was affected by conditions that so drastically affected the bAR population. The quantity of myosin heavy chain was not significantly different.

  12. Variability in Beta-Adrenergic Receptor Population in Cultured Chicken Muscle Cells

    NASA Technical Reports Server (NTRS)

    Young, Ronald B; Bridge, Kristin Y.; Vaughn, Jeffrey R.

    1998-01-01

    Investigations into expression of the beta-adrenergic receptor (bAR) in chicken skeletal muscle cells in culture were initiated because several beta-adrenergic receptor agonists are known to increase skeletal muscle protein deposition in avian and mammalian species. During initial attempts to study the bAR population on the surface of chicken skeletal muscle cells, we observed a high degree of variability that was later found to be the result of using different batches of horse serum in the cell culture media. The separation between total binding and nonspecific binding in cells grown in two serum samples was approximately two-fold The number of nuclei within multinucleated myotubes was not significantly different in cells grown in the two serum samples. To investigate whether these two sera had an effect on coupling efficiency between bAR population and cAMP production, the ability of these cells to synthesize cAMP was also assessed. Despite the two-fold difference in receptor population, the ability of these cells to synthesize cAMP was not significantly different. Because of the possible link between bAR population and muscle protein, we also determined if the quantity of the major skeletal muscle protein, myosin, was affected by conditions that so drastically affected the bAR population. The quantity of myosin heavy chain was not significantly different.

  13. [The role of mast cell population in aortic intima in development of human atherosclerosis].

    PubMed

    Zhdanov, V S; Drobkova, I P; Tcherpachenko, N M; Sirotkin, V N

    2002-01-01

    To assess the role of mast cells in development of human atherosclerosis. Autopsy material (transverse cross-sections of the aorta and membranous preparations of intima) from 53 persons who died of accidental causes. Original method of the study of aortic cellular populations on membranous preparations of intima allowed to analyze character of accumulation of lipids in fatty streaks, as well as changes of mast cells and relative amount of various cellular populations in intact intima and during development of early atherosclerotic lesions. In intact intima mast cells are consistently found, their quantity depends on age and degree of intimal hyperplasia. Density of mast cell population in age groups 17-29 and 30-49 years was 5.8 and 9.6 cells/mm2, respectively. Ratio of mast cells to total amount of lymphocytes and monocytes was 1:6. Two types of fatty streaks ('early' and 'transitional') can be distinguished depending on structure of lipid inclusions and cellular composition. Compared with intact intima 'early' fatty streaks have increased content of lymphocytes and monocytes. Average density of mast cells in early streaks is 12.2 cells/mm2 with ratio of mast cells to total amount of lymphocytes and monocytes 1:11. Development of 'transitional' fatty streaks preceding plaque formation is characterized by signs of inflammation with multifold increase of content of lymphocytes and monocytes and ratio of amount of mast cells to that of mononuclear cells 1:20. Density of mast cells including their degranulating forms is the highest (18.1 cells/mm2) on periphery of 'transitional' fatty streaks while substantially smaller amount of mast cells (3.2 cells/mm2) can be found in central areas of these streaks. Mast cells actively participate in atherogenesis, development and progression of atherosclerotic lesions. Formation of fatty streaks in human aorta is associated with signs of immune inflammation (lymphocytic-monocytic reaction and increased amount of mast cells).

  14. Distinct populations of quiescent and proliferative pancreatic β-cells identified by HOTcre mediated labeling

    PubMed Central

    Hesselson, Daniel; Anderson, Ryan M.; Beinat, Marine; Stainier, Didier Y. R.

    2009-01-01

    Pancreatic β-cells are critical regulators of glucose homeostasis, and they vary dramatically in their glucose stimulated metabolic response and levels of insulin secretion. It is unclear whether these parameters are influenced by the developmental origin of individual β-cells. Using HOTcre, a Cre-based genetic switch that uses heat-induction to precisely control the temporal expression of transgenes, we labeled two populations of β-cells within the developing zebrafish pancreas. These populations originate in distinct pancreatic buds and exhibit gene expression profiles suggesting distinct functions during development. We find that the dorsal bud derived β-cells are quiescent and exhibit a marked decrease in insulin expression postembryonically. In contrast, ventral bud derived β-cells proliferate actively, and maintain high levels of insulin expression compared with dorsal bud derived β-cells. Therapeutic strategies to regulate β-cell proliferation and function are required to cure pathological states that result from excessive β-cell proliferation (e.g., insulinoma) or insufficient β-cell mass (e.g., diabetes mellitus). Our data reveal the existence of distinct populations of β-cells in vivo and should help develop better strategies to regulate β-cell differentiation and proliferation. PMID:19706417

  15. Proteomics analysis reveals a Th17-prone cell population in presymptomatic graft-versus-host disease

    PubMed Central

    Li, Wei; Liu, Liangyi; Gomez, Aurelie; Zhang, Jilu; Zhang, Qing; Choi, Sung W.; Greenson, Joel K.; Liu, Chen; Jiang, Di; Virts, Elizabeth; Kelich, Stephanie L.; Chu, Hong Wei; Flynn, Ryan; Blazar, Bruce R.; Hanenberg, Helmut; Hanash, Samir

    2016-01-01

    Gastrointestinal graft-versus-host-disease (GI-GVHD) is a life-threatening complication occurring after allogeneic hematopoietic cell transplantation (HCT), and a blood biomarker that permits stratification of HCT patients according to their risk of developing GI-GVHD would greatly aid treatment planning. Through in-depth, large-scale proteomic profiling of presymptomatic samples, we identified a T cell population expressing both CD146, a cell adhesion molecule, and CCR5, a chemokine receptor that is upregulated as early as 14 days after transplantation in patients who develop GI-GVHD. The CD4+CD146+CCR5+ T cell population is Th17 prone and increased by ICOS stimulation. shRNA knockdown of CD146 in T cells reduced their transmigration through endothelial cells, and maraviroc, a CCR5 inhibitor, reduced chemotaxis of the CD4+CD146+CCR5+ T cell population toward CCL14. Mice that received CD146 shRNA–transduced human T cells did not lose weight, showed better survival, and had fewer CD4+CD146+CCR5+ T cells and less pathogenic Th17 infiltration in the intestine, even compared with mice receiving maraviroc with control shRNA–transduced human T cells. Furthermore, the frequency of CD4+CD146+CCR5+ Tregs was increased in GI-GVHD patients, and these cells showed increased plasticity toward Th17 upon ICOS stimulation. Our findings can be applied to early risk stratification, as well as specific preventative therapeutic strategies following HCT. PMID:27195312

  16. Two distinct populations of doublecortin-positive cells in the perilesional zone of cortical infarcts.

    PubMed

    Kunze, Albrecht; Achilles, Alexandra; Keiner, Silke; Witte, Otto W; Redecker, Christoph

    2015-04-15

    Recovery following stroke depends on cellular plasticity in the perilesional zone (PZ). Doublecortin (DCX), a protein mainly labeling immature neurons in neurogenic niches is also highly expressed in the vicinity of focal cortical infarcts. Notably, the number of DCX+ cells positively correlates with the recovery of functional deficits after stroke though the nature and origin of these cells remains unclear. In the present study, we aimed to characterize the population of DCX+ cells in the vicinity of ischemic infarcts in a mouse model in detail. Employing a photothrombosis model, distinct immunohistochemical techniques, stereology and confocal microscopy, we show that: i) DCX+ cells in the perilesional zone do not constitute a homogenous population and two cell types, stellate and polar cells can be distinguished according to their morphology. ii) Stellate cells are mainly located in the lateral and medial vicinity of the insult and express astrocytic markers. iii) Polar cells are found almost exclusively in the corpus callosum region including in the preserved deep cortical layers close to the subventricular zone (SVZ). Further, they do not show any colocalisation of glial markers. Polar morphology and distribution suggest a migration towards the lesion. In summary, our findings provide evidence that in mice DCX+ cells in the perilesional zone of cortical infarcts comprise a distinct cell population and the majority of cells are of glial nature.

  17. Spatially Directed Guidance of Stem Cell Population Migration by Immobilized Patterns of Growth Factors

    PubMed Central

    Miller, Eric D.; Li, Kang; Kanade, Takeo; Weiss, Lee E.; Walker, Lynn M.; Campbell, Phil G.

    2011-01-01

    We investigated how engineered gradients of exogenous growth factors, immobilized to an extracellular matrix material, influence collective guidance of stem cell populations over extended time (>1 day) and length (>1 mm) scales in vitro. Patterns of low-to-high, high-to-low, and uniform concentrations of heparin-binding epidermal growth factor-like growth factor were inkjet printed at precise locations on fibrin substrates. Proliferation and migration responses of mesenchymal stem cells seeded at pattern origins were observed with time-lapse video microscopy and analyzed using both manual and automated computer vision-based cell tracking techniques. Based on results of established chemotaxis studies, we expected that the low-to-high gradient would most effectively direct cell guidance away from the cell source. All printed patterns, however, were found to direct net collective cell guidance with comparable responses. Our analysis revealed that collective “cell diffusion” down a cell-to-cell confinement gradient originating at the cell starting lines and not the net sum of directed individual cell migration up a growth factor concentration gradient is the principal driving force for directing mesenchymal stem cell population outgrowth from a cell source. These results suggest that simple uniform distributions of growth factors immobilized to an extracellular matrix material may be as effective in directing cell migration into a wound site as more complex patterns with concentration gradients. PMID:21272933

  18. Antibiotic regimen based on population analysis of residing persister cells eradicates Staphylococcus epidermidis biofilms.

    PubMed

    Yang, Shoufeng; Hay, Iain D; Cameron, David R; Speir, Mary; Cui, Bintao; Su, Feifei; Peleg, Anton Y; Lithgow, Trevor; Deighton, Margaret A; Qu, Yue

    2015-12-21

    Biofilm formation is a major pathogenicity strategy of Staphylococcus epidermidis causing various medical-device infections. Persister cells have been implicated in treatment failure of such infections. We sought to profile bacterial subpopulations residing in S. epidermidis biofilms, and to establish persister-targeting treatment strategies to eradicate biofilms. Population analysis was performed by challenging single biofilm cells with antibiotics at increasing concentrations ranging from planktonic minimum bactericidal concentrations (MBCs) to biofilm MBCs (MBCbiofilm). Two populations of "persister cells" were observed: bacteria that survived antibiotics at MBCbiofilm for 24/48 hours were referred to as dormant cells; those selected with antibiotics at 8 X MICs for 3 hours (excluding dormant cells) were defined as tolerant-but-killable (TBK) cells. Antibiotic regimens targeting dormant cells were tested in vitro for their efficacies in eradicating persister cells and intact biofilms. This study confirmed that there are at least three subpopulations within a S. epidermidis biofilm: normal cells, dormant cells, and TBK cells. Biofilms comprise more TBK cells and dormant cells than their log-planktonic counterparts. Using antibiotic regimens targeting dormant cells, i.e. effective antibiotics at MBCbiofilm for an extended period, might eradicate S. epidermidis biofilms. Potential uses for this strategy are in antibiotic lock techniques and inhaled aerosolized antibiotics.

  19. Controlling of group velocity via terahertz signal radiation in a defect medium doped by four-level InGaN/GaN quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Jafarzadeh, Hossein; Sangachin, Elnaz Ahmadi; Asadpour, Seyyed Hossein

    2015-07-01

    In this paper, we propose a novel scheme for controlling the group velocity of transmitted and reflected pulse from defect medium doped with four-level InGaN/GaN quantum dot nanostructure. Quantum dot nanostructure is designed numerically by Schrödinger and Poisson equations which solve self consistently. By size control of quantum dot and external voltage, one can design a four-level quantum dot with appropriate energy levels which can be suitable for controlling the group velocity of pulse transmission and reflection from defect slab with terahertz signal field. It is found that in the presence and absence of terahertz signal field the behaviors of transmission and reflection pulses are completely different. Moreover, it is shown that for strong terahertz signal field, by changing the thickness of the slab, simultaneous peak and dip for transmission and reflection pulse are obtained.

  20. Side population of a murine mantle cell lymphoma model contains tumour-initiating cells responsible for lymphoma maintenance and dissemination

    PubMed Central

    Vega, Francisco; Davuluri, Yogesh; Cho-Vega, Jeong Hee; Singh, Rajesh R; Ma, Shuguang; Wang, Rui-Yu; Multani, Asha S; Drakos, Elias; Pham, Lan V; Lee, Yen-Chiu Lin; Shen, Long; Ambrus Jr, Julian; Medeiros, L Jeffrey; Ford, Richard J

    2010-01-01

    Abstract ‘Cancer stem cells’ or ‘tumour initiating cells’ in B-cell non-Hodgkin lymphomas have not been demonstrated, although some studies focused on other cancer types suggest that such populations exist and represent tumour cells resistant to therapy and involved in relapse. These cells may also represent a putative neoplastic ‘cell of origin’ in lymphomas, but there is little substantive data to support this suggestion. Using cell lines derived from a recently established murine IL-14α× c-Myc double transgenic/mantle cell lymphoma-blastoid variant model, heretofore referred to as DTG cell lines, we identified a subset of cells within the side population (SP) with features of ‘tumour-initiating cells’. These features include higher expression of ABCG2 and BCL-2, longer telomere length, greater self-renewal ability and higher in vitro clonogenic and in vivo tumorigenic capacities compared with non-SP. In addition, in vitro viability studies demonstrated that the non-SP lymphoma subpopulation has a limited lifespan in comparison with the SP fraction. Syngenic transplant studies showed that non-SP derived tumours, in comparison to the SP-derived tumours, exhibit greater necrosis/apoptosis and less systemic dissemination capability. In conclusion, our data support the interpretation that the DTG SP fraction contains a cell population highly capable of tumour maintenance and systemic dissemination and lends support to the concept that ‘tumour-initiating cells’ occur in lymphomas. PMID:19656242

  1. Skin telocytes versus fibroblasts: two distinct dermal cell populations

    PubMed Central

    Kang, Yuli; Zhu, Zaihua; Zheng, Yonghua; Wan, Weiguo; Manole, Catalin G; Zhang, Qiangqiang

    2015-01-01

    It is already accepted that telocytes (TCs) represent a new type of interstitial cells in human dermis. In normal skin, TCs have particular spatial relations with different dermal structures such as blood vessels, hair follicles, arrector pili muscles or segments of sebaceous and/or eccrine sweat glands. The distribution and the density of TCs is affected in various skin pathological conditions. Previous studies mentioned the particular (ultra)structure of TCs and also their immunophenotype, miR imprint or proteome, genome or secretome features. As fibroblast is the most common intersitital cell (also in human dermis), a dedicated comparison between human skin TCs and fibroblasts (Fbs) was required to be performed. In this study, using different techniques, we document several points of difference between human dermis TCs and Fbs. By transmission electron microscopy (TEM) and scanning electron microscopy (SEM), we demonstrated TCs with their hallmark cellular prolongations – telopodes. Thus, we showed their ultrastructural distinctiveness from Fbs. By RayBio Human Cytokine Antibody Array V analyses performed on the supernatant from separately cultured TCs and Fbs, we detected the cytokine profile of both cell types, individually. Two of 79 detected cytokines – epithelial-derived neutrophil-activating peptide 78 and granulocyte chemotactic protein-2 – were 1.5 times higher in the supernatant of TCs (comparing with Fbs). On the other hand, 37 cytokines were at least 1.5 higher in Fbs supernatant (comparing with TCs), and among them six cytokines – interleukin 5, monocyte chemotactic protein-3 (MCP-3), MCP-4, macrophage inflammatory protein-3, angiogenin, thrombopoietin – being 9.5 times higher (results also confirmed by ELISA testing). In summary, using different techniques, we showed that human dermal TCs and Fbs are different in terms of ultrastructure and cytokine profile. PMID:26414534

  2. Antibiotic regimen based on population analysis of residing persister cells eradicates Staphylococcus epidermidis biofilms

    PubMed Central

    Yang, Shoufeng; Hay, Iain D.; Cameron, David R.; Speir, Mary; Cui, Bintao; Su, Feifei; Peleg, Anton Y.; Lithgow, Trevor; Deighton, Margaret A.; Qu, Yue

    2015-01-01

    Biofilm formation is a major pathogenicity strategy of Staphylococcus epidermidis causing various medical-device infections. Persister cells have been implicated in treatment failure of such infections. We sought to profile bacterial subpopulations residing in S. epidermidis biofilms, and to establish persister-targeting treatment strategies to eradicate biofilms. Population analysis was performed by challenging single biofilm cells with antibiotics at increasing concentrations ranging from planktonic minimum bactericidal concentrations (MBCs) to biofilm MBCs (MBCbiofilm). Two populations of “persister cells” were observed: bacteria that survived antibiotics at MBCbiofilm for 24/48 hours were referred to as dormant cells; those selected with antibiotics at 8 X MICs for 3 hours (excluding dormant cells) were defined as tolerant-but-killable (TBK) cells. Antibiotic regimens targeting dormant cells were tested in vitro for their efficacies in eradicating persister cells and intact biofilms. This study confirmed that there are at least three subpopulations within a S. epidermidis biofilm: normal cells, dormant cells, and TBK cells. Biofilms comprise more TBK cells and dormant cells than their log-planktonic counterparts. Using antibiotic regimens targeting dormant cells, i.e. effective antibiotics at MBCbiofilm for an extended period, might eradicate S. epidermidis biofilms. Potential uses for this strategy are in antibiotic lock techniques and inhaled aerosolized antibiotics. PMID:26687035

  3. Sensitivity of bone cell populations to weightlessness and simulated weightlessness

    NASA Technical Reports Server (NTRS)

    Roberts, W. E.; Morey-Holton, E. R.; Gonsalves, M. R.

    1984-01-01

    A rat suspension model for simulating certain aspects of weightlessness is discussed. Perturbations in physiological systems induced by this head down suspension model are verified by flight data. Findings of a suppression of osteoblast differentiation help explain the inhibition of bone formation inflight and during Earth-bound simulations. Since the anatomical site for these studies was in the maxilla, which is gravity loaded but non weightbearing in ground-based simulations, the similarity of bone cell kinetic changes, both inflight and in the ground-based model, suggest that fluid shifts rather than unloading may play an important role in bone alterations, at least at this sampling site.

  4. An efficient and reproducible process for transmission electron microscopy (TEM) of rare cell populations.

    PubMed

    Kumar, Sachin; Ciraolo, Georgianne; Hinge, Ashwini; Filippi, Marie-Dominique

    2014-02-01

    Transmission electron microscopy (TEM) provides ultra-structural details of cells at the sub-organelle level. However, details of the cellular ultrastructure, and the cellular organization and content of various organelles in rare populations, particularly in the suspension, like hematopoietic stem cells (HSCs) remained elusive. This is mainly due to the requirement of millions of cells for TEM studies. Thus, there is a vital requirement of a method that will allow TEM studies with low cell numbers of such rare populations. We describe an alternative and novel approach for TEM studies for rare cell populations. Here we performed a TEM study from 10,000 HSC cells with relative ease. In particular, tiny cell pellets were identified by Evans blue staining after PFA-GA fixation. The cell pellet was pre-embedded in agarose in a small microcentrifuge tube and processed for dehydration, infiltration and embedding. Semi-thin and ultra-thin sections identified clusters of numerous cells per sections with well preserved morphology and ultrastructural details of golgi complex and mitochondria. Together, this method provides an efficient, easy and reproducible process to perform qualitative and quantitative TEM analysis from limited biological samples including cells in suspension. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Predators inhibit brain cell proliferation in natural populations of electric fish, Brachyhypopomus occidentalis.

    PubMed

    Dunlap, Kent D; Tran, Alex; Ragazzi, Michael A; Krahe, Rüdiger; Salazar, Vielka L

    2016-02-10

    Compared with laboratory environments, complex natural environments promote brain cell proliferation and neurogenesis. Predators are one important feature of many natural environments, but, in the laboratory, predatory stimuli tend to inhibit brain cell proliferation. Often, laboratory predatory stimuli also elevate plasma glucocorticoids, which can then reduce brain cell proliferation. However, it is unknown how natural predators affect cell proliferation or whether glucocorticoids mediate the neurogenic response to natural predators. We examined brain cell proliferation in six populations of the electric fish, Brachyhypopomus occidentalis, exposed to three forms of predator stimuli: (i) natural variation in the density of predatory catfish; (ii) tail injury, presumably from predation attempts; and (iii) the acute stress of capture. Populations with higher predation pressure had lower density of proliferating (PCNA+) cells, and fish with injured tails had lower proliferating cell density than those with intact tails. However, plasma cortisol did not vary at the population level according to predation pressure or at the individual level according to tail injury. Capture stress significantly increased cortisol, but only marginally decreased cell proliferation. Thus, it appears that the presence of natural predators inhibits brain cell proliferation, but not via mechanisms that depend on changes in basal cortisol levels. This study is the first demonstration of predator-induced alteration of brain cell proliferation in a free-living vertebrate.

  6. Assessment of the purity of isolated cell populations for lineage-specific chimerism monitoring post haematopoietic stem cell transplantation.

    PubMed

    Hanson, V; Adams, B; Lord, J; Barker, A; Poulton, K; Lee, H

    2013-10-01

    Following haematopoietic stem cell transplantation, monitoring the proportion of donor and recipient haematopoiesis in the patient (chimerism) is an influential tool in directing further treatment choices. Short tandem repeat (STR) analysis is a method of chimerism monitoring using DNA isolated from peripheral blood, bone marrow or specific isolated cell lineages such as CD3+ T cells. For lineage-specific STR analysis on cell populations isolated from peripheral blood, a qualitative estimation of the purity of each isolated population is essential for the correct interpretation of the test data. We describe a rapid, inexpensive method for the determination of purity using a simple flow cytometry method. The method described for assessing the purity of sorted CD3+ cells can be applied to any cell population isolated using the same technology. Data obtained were comparable to results from a commercial polymerase chain reaction (PCR)-based method for the assessment of purity (Non-T Genomic Detection Kit, Accumol, Calgary, AB, Canada) (P = 0.59). Of the 303 samples tested by flow cytometry, 290 (95.7%) exceeded 90% purity, and 215 (70.95%) were over 99% pure. There were some outlying samples, showing diversity between samples and the unpredictability of purity of isolated cell populations. This flow cytometry method can be easily assimilated into routine testing protocols, allowing purity assessment in multiple-sorted cell populations for lineage-specific chimerism monitoring using a single secondary antibody and giving results comparable to a PCR-based method. As purity of isolated cell lineages is affected by time after venepuncture and storage temperature, assessment of each sample is recommended to give a reliable indication of sample quality and confidence in the interpretation of the results. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Optimized Stem Cell Detection Using the DyeCycle-Triggered Side Population Phenotype.

    PubMed

    Boesch, Maximilian; Wolf, Dominik; Sopper, Sieghart

    2016-01-01

    Tissue and cancer stem cells are highly attractive target populations for regenerative medicine and novel potentially curative anticancer therapeutics. In order to get a better understanding of stem cell biology and function, it is essential to reproducibly identify these stem cells from biological samples for subsequent characterization or isolation. ABC drug transporter expression is a hallmark of stem cells. This is utilized to identify (cancer) stem cells by exploiting their dye extrusion properties, which is referred to as the "side population assay." Initially described for high-end flow cytometers equipped with ultraviolet lasers, this technique is now also amenable for a broader scientific community, owing to the increasing availability of violet laser-furnished cytometers and the advent of DyeCycle Violet (DCV). Here, we describe important technical aspects of the DCV-based side population assay and discuss potential pitfalls and caveats helping scientists to establish a valid and reproducible DCV-based side population assay. In addition, we investigate the suitability of blue laser-excitable DyeCycle dyes for side population detection. This knowledge will help to improve and standardize detection and isolation of stem cells based on their expression of ABC drug transporters.

  8. Dual-Color HIV Reporters Trace a Population of Latently Infected Cells and Enable Their Purification

    PubMed Central

    Calvanese, Vincenzo; Chavez, Leonard; Laurent, Timothy; Ding, Sheng; Verdin, Eric

    2014-01-01

    SUMMARY HIV latency constitutes the main barrier for clearing HIV infection from patients. Our inability to recognize and isolate latently infected cells hinders the study of latent HIV. We engineered two HIV-based viral reporters expressing different fluorescent markers: one HIV promoter-dependent marker for productive HIV infection, and a second marker under a constitutive promoter independent of HIV promoter activity. Infection of cells with these viruses allows the identification and separation of latently-infected cells from uninfected and productively infected cells. These reporters are sufficiently sensitive and robust for high-throughput screening to identify drugs that reactivate latent HIV. These reporters can be used in primary CD4 T lymphocytes and reveal a rare population of latently infected cells responsive to physiological stimuli. In summary, our HIV-1 reporters enable visualization and purification of latent cell populations and open up new perspectives for studies of latent HIV infection. PMID:24074592

  9. Calcium Imaging Reveals Coordinated Simple Spike Pauses in Populations of Cerebellar Purkinje Cells.

    PubMed

    Ramirez, Jorge E; Stell, Brandon M

    2016-12-20

    The brain's control of movement is thought to involve coordinated activity between cerebellar Purkinje cells. The results reported here demonstrate that somatic Ca(2+) imaging is a faithful reporter of Na(+)-dependent "simple spike" pauses and enables us to optically record changes in firing rates in populations of Purkinje cells in brain slices and in vivo. This simultaneous calcium imaging of populations of Purkinje cells reveals a striking spatial organization of pauses in Purkinje cell activity between neighboring cells. The source of this organization is shown to be the presynaptic gamma-Aminobutyric acid producing (GABAergic) network, and blocking ionotropic gamma-Aminobutyric acid receptor (GABAARs) abolishes the synchrony. These data suggest that presynaptic interneurons synchronize (in)activity between neighboring Purkinje cells, and thereby maximize their effect on downstream targets in the deep cerebellar nuclei. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Dual-color HIV reporters trace a population of latently infected cells and enable their purification.

    PubMed

    Calvanese, Vincenzo; Chavez, Leonard; Laurent, Timothy; Ding, Sheng; Verdin, Eric

    2013-11-01

    HIV latency constitutes the main barrier for clearing HIV infection from patients. Our inability to recognize and isolate latently infected cells hinders the study of latent HIV. We engineered two HIV-based viral reporters expressing different fluorescent markers: one HIV promoter-dependent marker for productive HIV infection, and a second marker under a constitutive promoter independent of HIV promoter activity. Infection of cells with these viruses allows the identification and separation of latently infected cells from uninfected and productively infected cells. These reporters are sufficiently sensitive and robust for high-throughput screening to identify drugs that reactivate latent HIV. These reporters can be used in primary CD4 T lymphocytes and reveal a rare population of latently infected cells responsive to physiological stimuli. In summary, our HIV-1 reporters enable visualization and purification of latent-cell populations and open up new perspectives for studies of latent HIV infection.

  11. Notch inhibition suppresses nasopharyngeal carcinoma by depleting cancer stem-like side population cells.

    PubMed

    Yu, Shudong; Zhang, Ruxin; Liu, Fenye; Wang, Hong; Wu, Jing; Wang, Yanqing

    2012-08-01

    The cancer stem cell (CSC) is responsible for the initiation, proliferation and radiation resistance. Side population (SP) cells are a rare subset of cells enriched with CSCs. The targeting of key signaling pathways that are active in CSCs is a therapeutic approach to treating cancer. Notch signaling is important for the self-renewal and maintenance of stem cells. Our previous studies demonstrated that downregulation of Notch signaling could enhance radiosensitivity of nasopharyngeal carcinoma (NPC) cells. In this study, we found that Notch signaling was highly activated in SP cells compared with that of non-SP (NSP) cells of NPC. Therefore, Notch inhibition could reduce the proportion of SP cells. As SP cells decreased, proliferation, anti-apoptosis and tumorigenesis were also decreased. This study shows that Notch inhibition may be a promising clinical approach in CSC-targeting therapy for NPC.

  12. Dysregulated Lymphoid Cell Populations in Mouse Models of Systemic Lupus Erythematosus.

    PubMed

    De Groof, Aurélie; Hémon, Patrice; Mignen, Olivier; Pers, Jacques-Olivier; Wakeland, Edward K; Renaudineau, Yves; Lauwerys, Bernard R

    2017-05-13

    Biases in the distribution and phenotype of T, B, and antigen-presenting cell populations are strongly connected to mechanisms of disease development in mouse models of systemic lupus erythematosus (SLE). Here, we describe longitudinal changes in lymphoid and antigen-presenting cell subsets in bone marrow, blood and spleen from two lupus-prone strains (MRL/lpr and B6.Sle1.Sle2.Sle3 tri-congenic mice), and how they integrate in our present understanding of the pathogenesis of the disease. In particular, we focus on (autoreactive) T cell activation patterns in lupus-prone mice. Break of T cell tolerance to chromatin constituents (histone peptides) is key to the development of the disease and is related to T cell intrinsic defects, contributed by genetic susceptibility factors and by extrinsic amplificatory mechanisms, in particular over-stimulation by antigen-presenting cells. We also describe shifts in B cell sub-populations, going from skewed immature B cell populations as an indication of disturbed central and peripheral tolerance checkpoints, to enriched long-lived plasma cells, which are key to persistent autoantibody production in the disease. B cell activation mechanisms in SLE are both T cell-dependent (break of tolerance and production of specific autoantibodies) and -independent (polyclonal B cell activation, production of autoantibodies by long-lived plasma cells). By providing a comprehensive evaluation of B and T cell surface markers in two major mouse models of SLE and a description of their changes before and after disease onset, this review illustrates how the study of lymphoid cell phenotype delivers key information regarding pathogenic pathways and supplies tools to assess the beneficial effects of novel therapeutic interventions.

  13. A method for cell type marker discovery by high-throughput gene expression analysis of mixed cell populations.

    PubMed

    Andrade-Navarro, Miguel A; Kanji, Femina; Palii, Carmen G; Brand, Marjorie; Atkins, Harold; Perez-Iratxeta, Carol

    2013-10-03

    Gene transcripts specifically expressed in a particular cell type (cell-type specific gene markers) are useful for its detection and isolation from a tissue or other cell mixtures. However, finding informative marker genes can be problematic when working with a poorly characterized cell type, as markers can only be unequivocally determined once the cell type has been isolated. We propose a method that could identify marker genes of an uncharacterized cell type within a mixed cell population, provided that the proportion of the cell type of interest in the mixture can be estimated by some indirect method, such as a functional assay. We show that cell-type specific gene markers can be identified from the global gene expression of several cell mixtures that contain the cell type of interest in a known proportion by their high correlation to the concentration of the corresponding cell type across the mixtures. Genes detected using this high-throughput strategy would be candidate markers that may be useful in detecting or purifying a cell type from a particular biological context. We present an experimental proof-of-concept of this method using cell mixtures of various well-characterized hematopoietic cell types, and we evaluate the performance of the method in a benchmark that explores the requirements and range of validity of the approach.

  14. Repeated cisplatin treatment can lead to a multiresistant tumor cell population with stem cell features and sensitivity to 3-bromopyruvate.

    PubMed

    Wintzell, My; Löfstedt, Lina; Johansson, Joel; Pedersen, Anne B; Fuxe, Jonas; Shoshan, Maria

    2012-12-01

    Cisplatin is used in treatment of several types of cancer, including epithelial ovarian carcinoma (EOC). In order to mimic clinical treatment and to investigate longterm effects of cisplatin in surviving cancer cells, two EOC cell lines were repeatedly treated with low doses. In the SKOV-3 cell line originating from malignant ascites, but not in A2780 cells from a primary tumor, this led to emergence of a stable population (SKOV-3-R) which in the absence of cisplatin showed increased motility, epithelial-mesenchymal transition (EMT) and expression of cancer stem cell markers CD117, CD44 and ALDH1. Accordingly, the cells formed self-renewing spheres in serum-free stem cell medium. Despite upregulation of mitochondrial mass and cytochrome c, and no upregulation of Bcl-2/Bcl-xL, SKOV-3-R were multiresistant to antineoplastic drugs. Cancer stem cells, or tumor-initiating cells (TICs) are highly chemoresistant and are believed to cause relapse into disseminated and resistant EOC. Our second aim was therefore to target resistance in these TIC-like cells. Resistance could be correlated with upregulation of hexokinase-II and VDAC, which are known to form a survival-promoting mitochondrial complex. The cells were thus sensitive to 3-bromopyruvate, which dissociates hexokinase-II from this complex, and were particularly sensitive to combination treatment with cisplatin at doses down to 0.1 x IC 50. 3-bromopyruvate might thus be of use in targeting the especially aggressive TIC populations.

  15. CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells

    PubMed Central

    Gracz, Adam D.; Fuller, Megan K.; Wang, Fengchao; Li, Linheng; Stelzner, Matthias; Dunn, James C.Y.; Martin, Martin G.; Magness, Scott T.

    2013-01-01

    Recent seminal studies have rapidly advanced the understanding of intestinal epithelial stem cell (IESC) biology in murine models. However, the lack of techniques suitable for isolation and subsequent downstream analysis of IESCs from human tissue has hindered the application of these findings toward the development of novel diagnostics and therapies with direct clinical relevance. This study demonstrates that the cluster of differentiation genes CD24 and CD44 are differentially expressed across LGR5 positive “active” stem cells as well as HOPX positive “facultative” stem cells. Fluorescence-activated cell sorting enables differential enrichment of LGR5 cells (CD24−/CD44+) and HOPX (CD24+/CD44+) cells for gene expression analysis and culture. These findings provide the fundamental methodology and basic cell surface signature necessary for isolating and studying intestinal stem cell populations in human physiology and disease. PMID:23553902

  16. Modelling targets for anticancer drug control optimization in physiologically structured cell population models

    NASA Astrophysics Data System (ADS)

    Billy, Frédérique; Clairambault, Jean; Fercoq, Olivier; Lorenzi, Tommaso; Lorz, Alexander; Perthame, Benoît

    2012-09-01

    The main two pitfalls of therapeutics in clinical oncology, that limit increasing drug doses, are unwanted toxic side effects on healthy cell populations and occurrence of resistance to drugs in cancer cell populations. Depending on the constraint considered in the control problem at stake, toxicity or drug resistance, we present two different ways to model the evolution of proliferating cell populations, healthy and cancer, under the control of anti-cancer drugs. In the first case, we use a McKendrick age-structured model of the cell cycle, whereas in the second case, we use a model of evolutionary dynamics, physiologically structured according to a continuous phenotype standing for drug resistance. In both cases, we mention how drug targets may be chosen so as to accurately represent the effects of cytotoxic and of cytostatic drugs, separately, and how one may consider the problem of optimisation of combined therapies.

  17. Partial Characterization of the Sox2+ Cell Population in an Adult Murine Model of Digit Amputation

    PubMed Central

    Agrawal, Vineet; Siu, Bernard F.; Chao, Hsu; Hirschi, Karen K.; Raborn, Eric; Johnson, Scott A.; Tottey, Stephen; Hurley, Katherine B.; Medberry, Chris J.

    2012-01-01

    Tissue regeneration in response to injury in adult mammals is generally limited to select tissues. Nonmammalian species such as newts and axolotls undergo regeneration of complex tissues such as limbs and digits via recruitment and accumulation of local and circulating multipotent progenitors preprogrammed to recapitulate the missing tissue. Directed recruitment and activation of progenitor cells at a site of injury in adult mammals may alter the default wound-healing response from scar tissue toward regeneration. Bioactive molecules derived from proteolytic degradation of extracellular matrix (ECM) proteins have been shown to recruit a variety of progenitor cells in vitro and in vivo to the site of injury. The present study further characterized the population of cells accumulating at the site of injury after treatment with ECM degradation products in a well-established model of murine digit amputation. After a mid-second phalanx digit amputation in 6–8-week-old adult mice, treatment with ECM degradation products resulted in the accumulation of a heterogeneous population of cells, a subset of which expressed the transcription factor Sox2, a marker of pluripotent and adult progenitor cells. Sox2+ cells were localized lateral to the amputated P2 bone and coexpressed progenitor cell markers CD90 and Sca1. Transgenic Sox2 eGFP/+ and bone marrow chimeric mice showed that the bone marrow and blood circulation did not contribute to the Sox2+ cell population. The present study showed that, in addition to circulating progenitor cells, resident tissue-derived cells also populate at the site of injury after treatment with ECM degradation products. Although future work is necessary to determine the contribution of Sox2+ cells to functional tissue at the site of injury, recruitment and/or activation of local tissue-derived cells may be a viable approach to tissue engineering of more complex tissues in adult mammals. PMID:22530556

  18. Eukaryotic transcriptional dynamics: from single molecules to cell populations

    PubMed Central

    Coulon, Antoine; Chow, Carson C.; Singer, Robert H.; Larson, Daniel R.

    2013-01-01

    Transcriptional regulation is achieved through combinatorial interactions between regulatory elements in the human genome and a vast range of factors that modulate the recruitment and activity of RNA polymerase. Experimental approaches for studying transcription in vivo now extend from single-molecule techniques to genome-wide measurements. Parallel to these developments is the need for testable quantitative and predictive models for understanding gene regulation. These conceptual models must also provide insight into the dynamics of transcription and the variability that is observed at the single-cell level. In this Review, we discuss recent results on transcriptional regulation and also the models those results engender. We show how a non-equilibrium description informs our view of transcription by explicitly considering time-and energy-dependence at the molecular level. PMID:23835438

  19. Comparative analyses of B cell populations in trout kidney and mouse bone marrow; establishing “B cell signatures”

    PubMed Central

    Zwollo, Patty; Mott, Katrina; Barr, Maggie

    2010-01-01

    This study aimed to identify the frequency and distribution of developing B cell populations in the kidney of the rainbow trout, using four molecular B cell markers that are highly conserved between species, including two transcription factors, Pax5 and EBF1, recombination activating gene RAG1, and the immunoglobulin heavy chain mu. Three distinct B cell stages were defined: early developing B cells (CLP, pro-B, and early pre-B cells), late developing B cell (late pre-B, immature B, and mature B cells), and IgM-secreting cells. Developmental stage-specific, combinatorial expression of Pax5, EBF1, RAG1 and immunoglobulin mu was determined in trout anterior kidney cells by flow cytometry. Trout staining patterns were compared to a well-defined primary immune tissue, mouse bone marrow, and using mouse surface markers B220 and CD43. A remarkable level of similarity was uncovered between the primary immune tissues of both species. Subsequent analysis of the entire trout kidney, divided into five contiguous segments K1-K5, revealed a complex pattern of early developing, late developing, and IgM-secreting B cells. Patterns in anterior kidney segment K1 were most similar to those of mouse bone marrow, while the most posterior part of the kidney, K5, had many IgM-secreting cells, but lacked early developing B cells. A potential second B lymphopoiesis site was uncovered in segment K4 of the kidney. The B cell patterns, or “B cell signatures” described here provide information on the relative abundance of distinct developing B cell populations in the trout kidney, and can be used in future studies on B cell development in other vertebrate species. PMID:20705088

  20. a Simple Evolutionary Model for Cancer Cell Population and its Implications on Cancer Therapy

    NASA Astrophysics Data System (ADS)

    Yao, Peng; Wen, Shutang; Li, Baoshun; Li, Yuxiao

    We established a simple evolutionary model based on the cancer stem cell hypothesis. By taking cellular interactions into consideration, we introduced the evolutionary games theory into the quasispecies model. The fitness values are determined by both genotypes and cellular interactions. In the evolutionary model, a cancer cell population can evolve in different patterns. For single peak intrinsic fitness landscape, the evolution pattern can transit with increasing differentiation probability from malignant cells to benign cells in four different modes. For a large enough value of differentiation probability, the evolution is always the case that the malignant cells extinct ultimately, which might give some implications on cancer therapy.

  1. Single-cell analysis of population context advances RNAi screening at multiple levels

    PubMed Central

    Snijder, Berend; Sacher, Raphael; Rämö, Pauli; Liberali, Prisca; Mench, Karin; Wolfrum, Nina; Burleigh, Laura; Scott, Cameron C; Verheije, Monique H; Mercer, Jason; Moese, Stefan; Heger, Thomas; Theusner, Kristina; Jurgeit, Andreas; Lamparter, David; Balistreri, Giuseppe; Schelhaas, Mario; De Haan, Cornelis A M; Marjomäki, Varpu; Hyypiä, Timo; Rottier, Peter J M; Sodeik, Beate; Marsh, Mark; Gruenberg, Jean; Amara, Ali; Greber, Urs; Helenius, Ari; Pelkmans, Lucas

    2012-01-01

    Isogenic cells in culture show strong variability, which arises from dynamic adaptations to the microenvironment of individual cells. Here we study the influence of the cell population context, which determines a single cell's microenvironment, in image-based RNAi screens. We developed a comprehensive computational approach that employs Bayesian and multivariate methods at the single-cell level. We applied these methods to 45 RNA interference screens of various sizes, including 7 druggable genome and 2 genome-wide screens, analysing 17 different mammalian virus infections and four related cell physiological processes. Analysing cell-based screens at this depth reveals widespread RNAi-induced changes in the population context of individual cells leading to indirect RNAi effects, as well as perturbations of cell-to-cell variability regulators. We find that accounting for indirect effects improves the consistency between siRNAs targeted against the same gene, and between replicate RNAi screens performed in different cell lines, in different labs, and with different siRNA libraries. In an era where large-scale RNAi screens are increasingly performed to reach a systems-level understanding of cellular processes, we show that this is often improved by analyses that account for and incorporate the single-cell microenvironment. PMID:22531119

  2. Changes in the population of perivascular cells in the bone tissue remodeling zones under microgravity

    NASA Astrophysics Data System (ADS)

    Katkova, Olena; Rodionova, Natalia; Shevel, Ivan

    2016-07-01

    Microgravity and long-term hypokinesia induce reduction both in bone mass and mineral saturation, which can lead to the development of osteoporosis and osteopenia. (Oganov, 2003). Reorganizations and adaptive remodeling processes in the skeleton bones occur in the topographical interconnection with blood capillaries and perivascular cells. Radioautographic studies with 3H- thymidine (Kimmel, Fee, 1980; Rodionova, 1989, 2006) have shown that in osteogenesis zones there is sequential differentiation process of the perivascular cells into osteogenic. Hence the study of populations of perivascular stromal cells in areas of destructive changes is actual. Perivascular cells from metaphysis of the rat femoral bones under conditions of modeling microgravity were studied using electron microscopy and cytochemistry (hindlimb unloading, 28 days duration) and biosatellite «Bion-M1» (duration of flight from April 19 till May 19, 2013 on C57, black mice). It was revealed that both control and test groups populations of the perivascular cells are not homogeneous in remodeling adaptive zones. These populations comprise of adjacent to endothelium poorly differentiated forms and isolated cells with signs of differentiation (specific increased volume of rough endoplasmic reticulum in cytoplasm). Majority of the perivascular cells in the control group (modeling microgravity) reveals reaction to alkaline phosphatase (marker of the osteogenic differentiation). In poorly differentiated cells this reaction is registered in nucleolus, nucleous and cytoplasm. In differentiating cells activity of the alkaline phosphatase is also detected on the outer surface of the cellular membrane. Unlike the control group in the bones of experimental animals reaction to the alkaline phosphatase is registered not in all cells of perivascular population. Part of the differentiating perivascular cells does not contain a product of the reaction. Under microgravity some poorly differentiated perivascular

  3. Characterization of immune cell populations in oral mucosal tissue of healthy adult cats.

    PubMed

    Harley, R; Gruffydd-Jones, T J; Day, M J

    2003-01-01

    The aim of this study was to characterize the leucocyte subsets present in the oral mucosa of healthy cats. Immunohistochemical labelling and computer-assisted morphometric analysis was used to identify expression of MHC class II, CD3, CD79a, IgG, IgM, IgA, and leucocyte antigen L1 (L1) by cells in sections from 19 cats, and expression of CD4 and CD8 by cells in sections from 17 cats. Mast cells were detected by toluidine blue staining. In the epithelial compartment, CD3(+) intraepithelial lymphocytes were detected, and CD8(+) cells were more common than CD4(+) cells. MHC class II labelling revealed intraepithelial and subepithelial cells with a characteristic dendritic morphology. In some sections these dendritic cells were closely associated with subepithelial clusters of CD3(+) T cells containing both CD4(+) and CD8(+) cells. In the lamina propria and submucosal compartments, the cells most commonly identified were mast cells. CD3(+) T-lymphocytes were also observed, and CD4(+) and CD8(+) cells were detected in similar numbers. L1(+) and CD79(+) cells were detected least frequently. The few plasma cells present were generally found to be either IgG(+) or IgA(+). Within the stroma surrounding the salivary glands, CD79a(+) and IgA(+) cells predominated. Slight epithelial labelling for L1 was seen in some sections. The normal feline oral mucosa clearly contains a range of immune cell populations.

  4. Comparison of nonciliated tracheal epithelial cells in six mammalian species: ultrastructure and population densities.

    PubMed

    Plopper, C G; Mariassy, A T; Wilson, D W; Alley, J L; Nishio, S J; Nettesheim, P

    1983-12-01

    Three types of nonciliated epithelial cells in mammalian conducting respiratory airways are thought to be secretory: mucous (goblet) cells, serous epithelial cells, and Clara cells. Mucous and serous cells are considered to be the secretory cells of the trachea. Clara cells are considered to be the secretory cells of the most distal conducting airways or bronchioles. To ascertain if mucous and serous epithelial cells are common to the tracheal epithelium of mammalian species, we characterized the ultrastructure and population densities of tracheal epithelial cells in six species: hamster (H), rat (Rt), rabbit (Rb), cat (C), Bonnet monkey (M. radiata) (B), and sheep (S). Following fixation by airway infusion with glutaraldehyde/paraformaldehyde, tracheal tissue was processed for light and electron microscopy (EM) by a selective embedding technique. Tracheal epithelium over cartilage was quantitated by light microscopy and characterized by transmission EM. Mucous cells were defined by abundant large nonhomogeneous granules, numerous Golgi complexes, basally located nuclei and granular endoplasmic reticulum (GER). The percentage of mucous cells in the tracheal epithelium was: H (0%), Rt (0.5%), Rb (1.3%), C (20.2%), B (8%), S (5.1%). Serous cells had homogeneous, electron-dense granules and extensive GER. Serous cells were present only in rats (39.2%). Clara cells had homogeneous electron-dense granules, abundant agranular endoplasmic reticulum (AER) and basal GER. Clara cells were found in hamsters (41.4%) and rabbits (17.6%). In sheep trachea, 35.9% of the epithelial cells had small electron-lucent granules, abundant AER and numerous Golgi complexes. In Bonnet monkey trachea, 16% of the epithelial cells had small electron-lucent granules, numerous polyribosomes, perinuclear Golgi apparatus and moderate GER. In cat trachea, 5.4% of the epithelial cells lacked granules, and had moderate numbers of mitochondria, moderate amounts of polyribosomes, a central nucleus, and

  5. Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations

    PubMed Central

    Rehe, Klaus; Wilson, Kerrie; Bomken, Simon; Williamson, Daniel; Irving, Julie; den Boer, Monique L; Stanulla, Martin; Schrappe, Martin; Hall, Andrew G; Heidenreich, Olaf; Vormoor, Josef

    2013-01-01

    Leukaemia-propagating cells are more frequent in high-risk acute B lymphoblastic leukaemia than in many malignancies that follow a hierarchical cancer stem cell model. It is unclear whether this characteristic can be more universally applied to patients from non-‘high-risk’ sub-groups and across a broad range of cellular immunophenotypes. Here, we demonstrate in a wide range of primary patient samples and patient samples previously passaged through mice that leukaemia-propagating cells are found in all populations defined by high or low expression of the lymphoid differentiation markers CD10, CD20 or CD34. The frequency of leukaemia-propagating cells and their engraftment kinetics do not differ between these populations. Transcriptomic analysis of CD34high and CD34low blasts establishes their difference and their similarity to comparable normal progenitors at different stages of B-cell development. However, consistent with the functional similarity of these populations, expression signatures characteristic of leukaemia propagating cells in acute myeloid leukaemia fail to distinguish between the different populations. Together, these findings suggest that there is no stem cell hierarchy in acute B lymphoblastic leukaemia. PMID:23229821

  6. Influence of Molecular Noise on the Growth of Single Cells and Bacterial Populations

    PubMed Central

    Schmidt, Mischa; Creutziger, Martin; Lenz, Peter

    2012-01-01

    During the last decades experimental studies have revealed that single cells of a growing bacterial population are significantly exposed to molecular noise. Important sources for noise are low levels of metabolites and enzymes that cause significant statistical variations in the outcome of biochemical reactions. In this way molecular noise affects biological processes such as nutrient uptake, chemotactic tumbling behavior, or gene expression of genetically identical cells. These processes give rise to significant cell-to-cell variations of many directly observable quantities such as protein levels, cell sizes or individual doubling times. In this study we theoretically explore if there are evolutionary benefits of noise for a growing population of bacteria. We analyze different situations where noise is either suppressed or where it affects single cell behavior. We consider two specific examples that have been experimentally observed in wild-type Escherichia coli cells: (i) the precision of division site placement (at which molecular noise is highly suppressed) and (ii) the occurrence of noise-induced phenotypic variations in fluctuating environments. Surprisingly, our analysis reveals that in these specific situations both regulatory schemes [i.e. suppression of noise in example (i) and allowance of noise in example (ii)] do not lead to an increased growth rate of the population. Assuming that the observed regulatory schemes are indeed caused by the presence of noise our findings indicate that the evolutionary benefits of noise are more subtle than a simple growth advantage for a bacterial population in nutrient rich conditions. PMID:22238678

  7. Different populations of Wnt-containing vesicles are individually released from polarized epithelial cells

    PubMed Central

    Chen, Qiuhong; Takada, Ritsuko; Noda, Chiyo; Kobayashi, Satoru; Takada, Shinji

    2016-01-01

    Accumulating evidence suggests that exosomes are heterogeneous in molecular composition and physical properties. Here we examined whether epithelial cells secrete a heterogeneous population of exosomes, and if that is the case, whether epithelial cell polarity affects release of different populations of exosomes, especially that of those carrying Wnt. Sucrose-density ultracentrifugation and molecular marker analysis revealed that different populations of exosomes or exosome-like vesicles were released from MDCK cells depending on the cell polarity. Wnt3a associated with these vesicles were detectable in culture media collected from both apical and basolateral sides of the cells. Basolaterally secreted Wnt3a were co-fractionated with a typical exosomal protein TSG101 in fractions having typical exosome densities. In contrast, most of apically secreted Wnt3a, as well as Wnt11, were co-fractionated with CD63 and Hsp70, which are also common to the most exosomes, but recovered in higher density fractions. Wnt3a exhibiting similar floatation behavior to the apically secreted ones were also detectable in the culture media of Wnt3a-expressing L and HEK293 cells. The lipidation of Wnt3a was required for its basolateral secretion in exosomes but was dispensable for the apical one. Thus, epithelial cells release Wnt via distinct populations of vesicles differing in secretion polarity and lipidation dependency. PMID:27765945

  8. Acute B lymphoblastic leukaemia-propagating cells are present at high frequency in diverse lymphoblast populations.

    PubMed

    Rehe, Klaus; Wilson, Kerrie; Bomken, Simon; Williamson, Daniel; Irving, Julie; den Boer, Monique L; Stanulla, Martin; Schrappe, Martin; Hall, Andrew G; Heidenreich, Olaf; Vormoor, Josef

    2013-01-01

    Leukaemia-propagating cells are more frequent in high-risk acute B lymphoblastic leukaemia than in many malignancies that follow a hierarchical cancer stem cell model. It is unclear whether this characteristic can be more universally applied to patients from non-'high-risk' sub-groups and across a broad range of cellular immunophenotypes. Here, we demonstrate in a wide range of primary patient samples and patient samples previously passaged through mice that leukaemia-propagating cells are found in all populations defined by high or low expression of the lymphoid differentiation markers CD10, CD20 or CD34. The frequency of leukaemia-propagating cells and their engraftment kinetics do not differ between these populations. Transcriptomic analysis of CD34(high) and CD34(low) blasts establishes their difference and their similarity to comparable normal progenitors at different stages of B-cell development. However, consistent with the functional similarity of these populations, expression signatures characteristic of leukaemia propagating cells in acute myeloid leukaemia fail to distinguish between the different populations. Together, these findings suggest that there is no stem cell hierarchy in acute B lymphoblastic leukaemia.

  9. Fast estimation of motion from selected populations of retinal ganglion cells.

    PubMed

    Cerquera, Alexander; Freund, Jan

    2011-02-01

    We explore how the reconstruction efficiency of fast spike population codes varies with population size, population composition and code complexity. Our study is based on experiments with moving light patterns which are projected onto the isolated retina of a turtle Pseudemys scripta elegans. The stimulus features to reconstruct are sequences of velocities kept constant throughout segments of 500 ms. The reconstruction is based on the spikes of a retinal ganglion cell (RGC) population recorded extracellularly via a multielectrode array. Subsequent spike sorting yields the parallel spike trains of 107 RGCs as input to the reconstruction method, here a discriminant analysis trained and tested in jack-knife fashion. Motivated by behavioral response times, we concentrate on fast reconstruction, i.e., within 150 ms following a trigger event defined via significant changes of the population spike rate. Therefore, valid codes involve only few (≤3) spikes per cell. Using only the latency t(1) of each cell (with reference to the trigger event) corresponds to the most parsimonious population code considered. We evaluate the gain in reconstruction efficiency when supplementing t(1) by spike times t(2) and t(3). Furthermore, we investigate whether sub-populations of smaller size benefit significantly from a selection process or whether random compilations are equally efficient. As selection criteria we try different concepts (directionality, reliability, and discriminability). Finally, we discuss the implications of a selection process and its inter-relation with code complexity for optimized reconstruction.

  10. Functional and phenotypic differences of pure populations of stem cell-derived astrocytes and neuronal precursor cells.

    PubMed

    Kleiderman, Susanne; Sá, João V; Teixeira, Ana P; Brito, Catarina; Gutbier, Simon; Evje, Lars G; Hadera, Mussie G; Glaab, Enrico; Henry, Margit; Sachinidis, Agapios; Alves, Paula M; Sonnewald, Ursula; Leist, Marcel

    2016-05-01

    Availability of homogeneous astrocyte populations would facilitate research concerning cell plasticity (metabolic and transcriptional adaptations; innate immune responses) and cell cycle reactivation. Current protocols to prepare astrocyte cultures differ in their final content of immature precursor cells, preactivated cells or entirely different cell types. A new method taking care of all these issues would improve research on astrocyte functions. We found here that the exposure of a defined population of pluripotent stem cell-derived neural stem cells (NSC) to BMP4 results in pure, nonproliferating astrocyte cultures within 24-48 h. These murine astrocytes generated from embryonic stem cells (mAGES) expressed the positive markers GFAP, aquaporin 4 and GLT-1, supported neuronal function, and acquired innate immune functions such as the response to tumor necrosis factor and interleukin 1. The protocol was applicable to several normal or disease-prone pluripotent cell lines, and the corresponding mAGES all exited the cell cycle and lost most of their nestin expression, in contrast to astrocytes generated by serum-addition or obtained as primary cultures. Comparative gene expression analysis of mAGES and NSC allowed quantification of differences between the two cell types and a definition of an improved marker set to define astrocytes. Inclusion of several published data sets in this transcriptome comparison revealed the similarity of mAGES with cortical astrocytes in vivo. Metabolic analysis of homogeneous NSC and astrocyte populations revealed distinct neurochemical features: both cell types synthesized glutamine and citrate, but only mature astrocytes released these metabolites. Thus, the homogeneous cultures allowed an improved definition of NSC and astrocyte features. © 2015 Wiley Periodicals, Inc.

  11. Attenuated Toxoplasma gondii Stimulates Immunity to Pancreatic Cancer by Manipulation of Myeloid Cell Populations.

    PubMed

    Sanders, Kiah L; Fox, Barbara A; Bzik, David J

    2015-08-01

    Suppressive myeloid cells represent a significant barrier to the generation of productive antitumor immune responses to many solid tumors. Eliminating or reprogramming suppressive myeloid cells to abrogate tumor-associated immune suppression is a promising therapeutic approach. We asked whether treatment of established aggressive disseminated pancreatic cancer with the immunotherapeutic attenuated Toxoplasma gondii vaccine strain CPS would trigger tumor-associated myeloid cells to generate therapeutic antitumor immune responses. CPS treatment significantly decreased tumor-associated macrophages and markedly increased dendritic cell infiltration of the pancreatic tumor microenvironment. Tumor-resident macrophages and dendritic cells, particularly cells actively invaded by CPS, increased expression of costimulatory molecules CD80 and CD86 and concomitantly boosted their production of IL12. CPS treatment increased CD4(+) and CD8(+) T-cell infiltration into the tumor microenvironment, activated tumor-resident T cells, and increased IFNγ production by T-cell populations. CPS treatment provided a significant therapeutic benefit in pancreatic tumor-bearing mice. This therapeutic benefit depended on IL12 and IFNγ production, MyD88 signaling, and CD8(+) T-cell populations. Although CD4(+) T cells exhibited activated effector phenotypes and produced IFNγ, CD4(+) T cells as well as natural killer cells were not required for the therapeutic benefit. In addition, CD8(+) T cells isolated from CPS-treated tumor-bearing mice produced IFNγ after re-exposure to pancreatic tumor antigen, suggesting this immunotherapeutic treatment stimulated tumor cell antigen-specific CD8(+) T-cell responses. This work highlights the potency and immunotherapeutic efficacy of CPS treatment and demonstrates the significance of targeting tumor-associated myeloid cells as a mechanism to stimulate more effective immunity to pancreatic cancer.

  12. Preparation of single cells from aggregated Taxus suspension cultures for population analysis.

    PubMed

    Naill, Michael C; Roberts, Susan C

    2004-06-30

    A method for the isolation of single plant cells from Taxus suspension cultures has been developed for the analysis of single cells via rapid throughput techniques such as flow cytometry. Several cell wall specific enzymes, such as pectinase, pectolyase Y-23, macerozyme, Driselase(R), and cellulase were tested for efficacy in producing single cell suspensions. The method was optimized for single cell yield, viability, time, and representivity of aggregated cell cultures. The best combination for single cell isolation was found to be 0.5% (w/v) pectolyase Y-23 and 0.04% (w/v) cellulase. High viability (>95%) and high yields of single cell aggregates (>90%) were obtained following 4 hours of digestion for four separate Taxus cell lines. In addition, methyl jasmonate elicitation (200 microM) was found to have no effect on three of the four tested Taxus lines. Isolated single cells were statistically similar to untreated cell cultures for peroxidase activity (model cell wall protein) and paclitaxel content (secondary metabolite produced in Taxus cell cultures). In comparison, protoplasts showed marked changes in both peroxidase activity and paclitaxel content as compared to untreated cultures. The use of flow cytometry was demonstrated with isolated cells that were found to have > 99% viability upon staining with fluorescein diacetate. The development of a method for the isolation of single plant cells will allow the study of population dynamics and culture variability on a single cell level for the development of population models of plant cell cultures and secondary metabolism. Copyright 2004 Wiley Periodicals, Inc.

  13. Enhanced bone-forming activity of side population cells in the periodontal ligament.

    PubMed

    Ninomiya, Tadashi; Hiraga, Toru; Hosoya, Akihiro; Ohnuma, Kiyoshi; Ito, Yuzuru; Takahashi, Masafumi; Ito, Susumu; Asashima, Makoto; Nakamura, Hiroaki

    2014-04-01

    Regeneration of alveolar bone is critical for the successful treatment of periodontal diseases. The periodontal ligament (PDL) has been widely investigated as a source of cells for the regeneration of periodontal tissues. In the present study where we attempted to develop an effective strategy for alveolar bone regeneration, we examined the osteogenic potential of side population (SP) cells, a stem cell-containing population that has been shown to be highly abundant in several kinds of tissues, in PDL cells. Isolated SP cells from the rat PDL exhibited a superior ability to differentiate into osteoblastic cells compared with non-SP (NSP) and unsorted PDL cells in vitro. The mRNA expressions of osteoblast markers and bone morphogenetic protein (BMP) 2 were significantly upregulated in SP cells and were further increased by osteogenic induction. To examine the bone-forming activity of SP cells in vivo, PDL SP cells isolated from green fluorescent protein (GFP)-transgenic rats were transplanted with hydroxyapatite (HA) disks into wild-type animals. SP cells exhibited a high ability to induce the mineralized matrix compared with NSP and unsorted PDL cells. At 12 weeks after the implantation, some of the pores in the HA disks with SP cells were filled with mineralized matrices, which were positive for bone matrix proteins, such as osteopontin, bone sialoprotein, and osteocalcin. Furthermore, osteoblast- and osteocyte-like cells on and in the bone-like mineralized matrices were GFP positive, suggesting that the matrices were directly formed by the transplanted cells. These results suggest that PDL SP cells possess enhanced osteogenic potential and could be a potential source for cell-based regenerative therapy for alveolar bone.

  14. Role of heterogeneous cell population on modulation of dendritic cell phenotype and activation of CD8 T cells for use in cell-based immunotherapies.

    PubMed

    Frizzell, Hannah; Park, Jaehyung; Comandante Lou, Natacha; Woodrow, Kim A

    2017-01-01

    Dendritic cell (DC)-based immunotherapies have much utility in their ability to prime antigen-specific adaptive immune responses. However, there does not yet exist a consensus standard to how DCs should be primed. In this study, we aimed to determine the role of heterogeneous co-cultures, composed of both CD11c+ (DCs) and CD11c- cells, in combination with monophosphoryl lipid A (MPLA) stimulation on DC phenotype and function. Upon DC priming in different co-culture ratios, we observed reduced expression of MHCII and CD86 and increased antigen uptake among CD11c+ cells in a CD11c- dependent manner. DCs from all culture conditions were induced to mature by MPLA treatment, as determined by secretion of pro-inflammatory cytokines IL-12 and TNF-α. Antigen-specific stimulation of CD4+ T cells was not modulated by co-culture composition, in terms of proliferation nor levels of IFN-γ. However, the presence of CD11c- cells enhanced cross-presentation to CD8+ T cells compared to purified CD11c+ cells, resulting in increased cell proliferation along with higher IFN-γ production. These findings demonstrate the impact of cell populations present during DC priming, and point to the use of heterogeneous cultures of DCs and innate immune cells to enhance cell-mediated immunity. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. The effect of EIF dynamics on the cryopreservation process of a size distributed cell population.

    PubMed

    Fadda, S; Briesen, H; Cincotti, A

    2011-06-01

    Typical mathematical modeling of cryopreservation of cell suspensions assumes a thermodynamic equilibrium between the ice and liquid water in the extracellular solution. This work investigates the validity of this assumption by introducing a population balance approach for dynamic extracellular ice formation (EIF) in the absence of any cryo-protectant agent (CPA). The population balance model reflects nucleation and diffusion-limited growth in the suspending solution whose driving forces are evaluated in the relevant phase diagram. This population balance description of the extracellular compartment has been coupled to a model recently proposed in the literature [Fadda et al., AIChE Journal, 56, 2173-2185, (2010)], which is capable of quantitatively describing and predicting internal ice formation (IIF) inside the cells. The cells are characterized by a size distribution (i.e. through another population balance), thus overcoming the classic view of a population of identically sized cells. From the comparison of the system behavior in terms of the dynamics of the cell size distribution it can be concluded that the assumption of a thermodynamic equilibrium in the extracellular compartment is not always justified. Depending on the cooling rate, the dynamics of EIF needs to be considered. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. The evolution of carrying capacity in constrained and expanding tumour cell populations

    NASA Astrophysics Data System (ADS)

    Gerlee, Philip; Anderson, Alexander R. A.

    2015-10-01

    Cancer cells are known to modify their micro-environment such that it can sustain a larger population, or, in ecological terms, they construct a niche which increases the carrying capacity of the population. It has however been argued that niche construction, which benefits all cells in the tumour, would be selected against since cheaters could reap the benefits without paying the cost. We have investigated the impact of niche specificity on tumour evolution using an individual based model of breast tumour growth, in which the carrying capacity of each cell consists of two components: an intrinsic, subclone-specific part and a contribution from all neighbouring cells. Analysis of the model shows that the ability of a mutant to invade a resident population depends strongly on the specificity. When specificity is low selection is mostly on growth rate, while high specificity shifts selection towards increased carrying capacity. Further, we show that the long-term evolution of the system can be predicted using adaptive dynamics. By comparing the results from a spatially structured versus well-mixed population we show that spatial structure restores selection for carrying capacity even at zero specificity, which poses a solution to the niche construction dilemma. Lastly, we show that an expanding population exhibits spatially variable selection pressure, where cells at the leading edge exhibit higher growth rate and lower carrying capacity than those at the centre of the tumour.

  17. The evolution of carrying capacity in constrained and expanding tumour cell populations.

    PubMed

    Gerlee, Philip; Anderson, Alexander R A

    2015-08-12

    Cancer cells are known to modify their micro-environment such that it can sustain a larger population, or, in ecological terms, they construct a niche which increases the carrying capacity of the population. It has however been argued that niche construction, which benefits all cells in the tumour, would be selected against since cheaters could reap the benefits without paying the cost. We have investigated the impact of niche specificity on tumour evolution using an individual based model of breast tumour growth, in which the carrying capacity of each cell consists of two components: an intrinsic, subclone-specific part and a contribution from all neighbouring cells. Analysis of the model shows that the ability of a mutant to invade a resident population depends strongly on the specificity. When specificity is low selection is mostly on growth rate, while high specificity shifts selection towards increased carrying capacity. Further, we show that the long-term evolution of the system can be predicted using adaptive dynamics. By comparing the results from a spatially structured versus well-mixed population we show that spatial structure restores selection for carrying capacity even at zero specificity, which poses a solution to the niche construction dilemma. Lastly, we show that an expanding population exhibits spatially variable selection pressure, where cells at the leading edge exhibit higher growth rate and lower carrying capacity than those at the centre of the tumour.

  18. Population depletion activates autonomous CD154-dependent survival in biopsylike Burkitt lymphoma cells.

    PubMed

    Challa, Anita; Eliopoulos, Aristides G; Holder, Michelle J; Burguete, Alondra Schweizer; Pound, John D; Chamba, Anita; Grafton, Gillian; Armitage, Richard J; Gregory, Christopher D; Martinez-Valdez, Hector; Young, Lawrence; Gordon, John

    2002-05-01

    Population size is governed through cells reacting to a variety of intrinsic and extrinsic cues. Tumors, while liberated from many of the homeostatic constraints placed on physiologic counterparts, can nonetheless remain subject to both social and environmental control. Burkitt lymphoma cells faithful to the biopsy phenotype were used to model the reliance of the colony, if any, on an inbuilt population sensor. Below a normally suicidal threshold number of cells, low picomolar quantities of exogenous CD40 ligand (CD40L/CD154) were found to sustain the clone without the discernible shift in phenotype that accompanies high CD40L encounter. Although CD154 was undetectable in populous cultures, message was induced as numbers became limiting. Correspondingly, attempts to neutralize endogenous CD40L activity failed to perturb cells at optimal densities but resulted in their marked decline as the critical threshold was approached. These data reveal an auto-inducible survival mechanism seemingly regulated through the monitoring of population size, a process somewhat akin to that of "quorum sensing" among gram-negative bacteria in which diffusible molecules provide a means of communication to coordinate gene expression with population density. This process could be activated as cells discern depletions in their community or when deprived of signals otherwise furnished within an appropriate environmental niche.

  19. Salamander limb regeneration involves the activation of a multipotent skeletal muscle satellite cell population.

    PubMed

    Morrison, Jamie I; Lööf, Sara; He, Pingping; Simon, András

    2006-01-30

    In contrast to mammals, salamanders can regenerate complex structures after injury, including entire limbs. A central question is whether the generation of progenitor cells during limb regeneration and mammalian tissue repair occur via separate or overlapping mechanisms. Limb regeneration depends on the formation of a blastema, from which the new appendage develops. Dedifferentiation of stump tissues, such as skeletal muscle, precedes blastema formation, but it was not known whether dedifferentiation involves stem cell activation. We describe a multipotent Pax7+ satellite cell population located within the skeletal muscle of the salamander limb. We demonstrate that skeletal muscle dedifferentiation involves satellite cell activation and that these cells can contribute to new limb tissues. Activation of salamander satellite cells occurs in an analogous manner to how the mammalian myofiber mobilizes stem cells during skeletal muscle tissue repair. Thus, limb regeneration and mammalian tissue repair share common cellular and molecular programs. Our findings also identify satellite cells as potential targets in promoting mammalian blastema formation.

  20. Population diversity and function of hyperpolarization-activated current in olfactory bulb mitral cells

    PubMed Central

    Angelo, Kamilla; Margrie, Troy W.

    2011-01-01

    Although neurons are known to exhibit a broad array of intrinsic properties that impact critically on the computations they perform, very few studies have quantified such biophysical diversity and its functional consequences. Using in vivo and in vitro whole-cell recordings here we show that mitral cells are extremely heterogeneous in their expression of a rebound depolarization (sag) at hyperpolarized potentials that is mediated by a ZD7288-sensitive current with properties typical of hyperpolarization-activated cyclic nucleotide gated (HCN) channels. The variability in sag expression reflects a functionally diverse population of mitral cells. For example, those cells with large amplitude sag exhibit more membrane noise, a lower rheobase and fire action potentials more regularly than cells where sag is absent. Thus, cell-to-cell variability in sag potential amplitude reflects diversity in the integrative properties of mitral cells that ensures a broad dynamic range for odor representation across these principal neurons. PMID:22355569

  1. Three distinct cell populations express extracellular matrix proteins and increase in number during skeletal muscle fibrosis.

    PubMed

    Chapman, Mark A; Mukund, Kavitha; Subramaniam, Shankar; Brenner, David; Lieber, Richard L

    2017-02-01

    Tissue extracellular matrix (ECM) provides structural support and creates unique environments for resident cells (Bateman JF, Boot-Handford RP, Lamandé SR. Nat Rev Genet 10: 173-183, 2009; Kjaer M. Physiol Rev 84: 649-98, 2004). However, the identities of cells responsible for creating specific ECM components have not been determined. In striated muscle, the identity of these cells becomes important in disease when ECM changes result in fibrosis and subsequent increased tissue stiffness and dysfunction. Here we describe a novel approach to isolate and identify cells that maintain the ECM in both healthy and fibrotic muscle. Using a collagen I reporter mouse, we show that there are three distinct cell populations that express collagen I in both healthy and fibrotic skeletal muscle. Interestingly, the number of collagen I-expressing cells in all three cell populations increases proportionally in fibrotic muscle, indicating that all cell types participate in the fibrosis process. Furthermore, while some profibrotic ECM and ECM-associated genes are significantly upregulated in fibrotic muscle, the fibrillar collagen gene expression profile is not qualitatively altered. This suggests that muscle fibrosis in this model results from an increased number of collagen I-expressing cells and not the initiation of a specific fibrotic collagen gene expression program. Finally, in fibrotic muscle, we show that these collagen I-expressing cell populations differentially express distinct ECM proteins-fibroblasts express the fibrillar components of ECM, fibro/adipogenic progenitors cells differentially express basal laminar proteins, and skeletal muscle progenitor cells differentially express genes important for the satellite cell.

  2. Bone marrow-derived cells in the population of spinal microglia after peripheral nerve injury

    PubMed Central

    Tashima, Ryoichi; Mikuriya, Satsuki; Tomiyama, Daisuke; Shiratori-Hayashi, Miho; Yamashita, Tomohiro; Kohro, Yuta; Tozaki-Saitoh, Hidetoshi; Inoue, Kazuhide; Tsuda, Makoto

    2016-01-01

    Accumulating evidence indicates that peripheral nerve injury (PNI) activates spinal microglia that are necessary for neuropathic pain. Recent studies using bone marrow (BM) chimeric mice have reported that after PNI, circulating BM-derived cells infiltrate into the spinal cord and differentiate into microglia-like cells. This raises the possibility that the population of spinal microglia after PNI may be heterogeneous. However, the infiltration of BM cells in the spinal cord remains controversial because of experimental adverse effects of strong irradiation used for generating BM chimeric mice. In this study, we evaluated the PNI-induced spinal infiltration of BM-derived cells not only by irradiation-induced myeloablation with various conditioning regimens, but also by parabiosis and mice with genetically labelled microglia, models without irradiation and BM transplantation. Results obtained from these independent approaches provide compelling evidence indicating little contribution of circulating BM-derived cells to the population of spinal microglia after PNI. PMID:27005516

  3. Cell lineage distribution atlas of the human stomach reveals heterogeneous gland populations in the gastric antrum.

    PubMed

    Choi, Eunyoung; Roland, Joseph T; Barlow, Brittney J; O'Neal, Ryan; Rich, Amy E; Nam, Ki Taek; Shi, Chanjuan; Goldenring, James R

    2014-11-01

    The glands of the stomach body and antral mucosa contain a complex compendium of cell lineages. In lower mammals, the distribution of oxyntic glands and antral glands define the anatomical regions within the stomach. We examined in detail the distribution of the full range of cell lineages within the human stomach. We determined the distribution of gastric gland cell lineages with specific immunocytochemical markers in entire stomach specimens from three non-obese organ donors. The anatomical body and antrum of the human stomach were defined by the presence of ghrelin and gastrin cells, respectively. Concentrations of somatostatin cells were observed in the proximal stomach. Parietal cells were seen in all glands of the body of the stomach as well as in over 50% of antral glands. MIST1 expressing chief cells were predominantly observed in the body although individual glands of the antrum also showed MIST1 expressing chief cells. While classically described antral glands were observed with gastrin cells and deep antral mucous cells without any parietal cells, we also observed a substantial population of mixed type glands containing both parietal cells and G cells throughout the antrum. Enteroendocrine cells show distinct patterns of localisation in the human stomach. The existence of antral glands with mixed cell lineages indicates that human antral glands may be functionally chimeric with glands assembled from multiple distinct stem cell populations. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Population dynamics during cell proliferation and neuronogenesis in the developing murine neocortex

    NASA Technical Reports Server (NTRS)

    Nowakowski, Richard S.; Caviness, Verne S Jr; Takahashi, Takao; Hayes, Nancy L.

    2002-01-01

    During the development of the neocortex, cell proliferation occurs in two specialized zones adjacent to the lateral ventricle. One of these zones, the ventricular zone, produces most of the neurons of the neocortex. The proliferating population that resides in the ventricular zone is a pseudostratified ventricular epithelium (PVE) that looks uniform in routine histological preparations, but is, in fact, an active and dynamically changing population. In the mouse, over the course of a 6-day period, the PVE produces approximately 95% of the neurons of the adult neocortex. During this time, the cell cycle of the PVE population lengthens from about 8 h to over 18 h and the progenitor population passes through a total of 11 cell cycles. This 6-day, 11-cell cycle period comprises the "neuronogenetic interval" (NI). At each passage through the cell cycle, the proportion of daughter cells that exit the cell cycle (Q cells) increases from 0 at the onset of the NI to 1 at the end of the NI. The proportion of daughter cells that re-enter the cell cycle (P cells) changes in a complementary fashion from 1 at the onset of the NI to 0 at the end of the NI. This set of systematic changes in the cell cycle and the output from the proliferative population of the PVE allows a quantitative and mathematical treatment of the expansion of the PVE and the growth of the cortical plate that nicely accounts for the observed expansion and growth of the developing neocortex. In addition, we show that the cells produced during a 2-h window of development during specific cell cycles reside in a specific set of laminae in the adult cortex, but that the distributions of the output from consecutive cell cycles overlap. These dynamic events occur in all areas of the PVE underlying the neocortex, but there is a gradient of maturation that begins in the rostrolateral neocortex near the striatotelencephalic junction and which spreads across the surface of the neocortex over a period of 24-36 h. The

  5. Unique spectral markers discern recurrent Glioblastoma cells from heterogeneous parent population

    PubMed Central

    Kaur, Ekjot; Sahu, Aditi; Hole, Arti R.; Rajendra, Jacinth; Chaubal, Rohan; Gardi, Nilesh; Dutt, Amit; Moiyadi, Aliasgar; Krishna, C. Murali; Dutt, Shilpee

    2016-01-01

    An inability to discern resistant cells from bulk tumour cell population contributes to poor prognosis in Glioblastoma. Here, we compared parent and recurrent cells generated from patient derived primary cultures and cell lines to identify their unique molecular hallmarks. Although morphologically similar, parent and recurrent cells from different samples showed variable biological properties like proliferation and radiation resistance. However, total RNA-sequencing revealed transcriptional landscape unique to parent and recurrent populations. These data suggest that global molecular differences but not individual biological phenotype could differentiate parent and recurrent cells. We demonstrate that Raman Spectroscopy a label-free, non-invasive technique, yields global information about biochemical milieu of recurrent and parent cells thus, classifying them into distinct clusters based on Principal-Component-Analysis and Principal-Component-Linear-Discriminant-Analysis. Additionally, higher lipid related spectral peaks were observed in recurrent population. Importantly, Raman spectroscopic analysis could further classify an independent set of naïve primary glioblastoma tumour tissues into non-responder and responder groups. Interestingly, spectral features from the non-responder patient samples show a considerable overlap with the in-vitro generated recurrent cells suggesting their similar biological behaviour. This feasibility study necessitates analysis of a larger cohort of naïve primary glioblastoma samples to fully envisage clinical utility of Raman spectroscopy in predicting therapeutic response. PMID:27221528

  6. The MYpop toolbox: Putting yeast stress responses in cellular context on single cell and population scales.

    PubMed

    Spiesser, Thomas; Kühn, Clemens; Krantz, Marcus; Klipp, Edda

    2016-09-01

    Systems biology holds the promise to integrate multiple sources of information in order to build ever more complete models of cellular function. To do this, the field must overcome two significant challenges. First, the current strategy to model average cells must be replaced with population based models accounting for cell-to-cell variability. Second, models must be integrated with each other and with basic cellular function. This requires a core model of cellular physiology as well as a multiscale simulation platform to support large-scale simulation of culture or tissues from single cells. Here, we present such a simulation platform with a core model of yeast physiology as scaffold to integrate and simulate SBML models. The software automates this integration helping users simulate their model of choice in context of the cell division cycle. We benchmark model merging, simulation and analysis by integrating a minimal model of osmotic stress into the core model and analyzing it. We characterize the effect of single cell differences on the dynamics of osmoadaptation, estimating when normal cell growth is resumed and obtaining an explanation for experimentally observed glycerol dynamics based on population dynamics. Hence, the platform can be used to reconcile single cell and population level data.

  7. ERBB3 Positively Correlates with Intestinal Stem Cell Markers but Marks a Distinct Non Proliferative Cell Population in Colorectal Cancer

    PubMed Central

    Jardé, Thierry; Kass, Lisa; Staples, Margaret; Lescesen, Helen; Carne, Peter; Oliva, Karen; McMurrick, Paul J.; Abud, Helen E.

    2015-01-01

    Several studies have suggested ERBB3/HER3 may be a useful prognostic marker for colorectal cancer. Tumours with an intestinal stem cell signature have also been shown to be more aggressive. Here, we investigate whether ERBB3 is associated with intestinal stem cell markers in colorectal cancer and if cancer stem cells within tumours are marked by expression of ERBB3. Expression of ERBB3 and intestinal stem cell markers (LGR5, EPHB2, CD44s and CD44v6) was assessed by qRT-PCR in primary colorectal tumours (stages 0 to IV) and matched normal tissues from 53 patients. The localisation of ERBB3, EPHB2 and KI-67 within tumours was investigated using co-immunofluorescence. Expression of ERBB3 and intestinal stem cell markers were significantly elevated in adenomas and colorectal tumours compared to normal tissue. Positive correlations were found between ERBB3 and intestinal stem cell markers. However, co-immunofluorescence analysis showed that ERBB3 and EPHB2 marked specific cell populations that were mutually exclusive within tumours with distinct proliferative potentials, the majority of ERBB3+ve cells being non-proliferative. This pattern resembles cellular organisation within normal colonic epithelium where EPHB2 labelled proliferative cells reside at the crypt base and ERBB3+ve cells mark differentiated cells at the top of crypts. Our results show that ERBB3 and intestinal stem cell markers correlate in colorectal cancers. ERBB3 localises to differentiated cell populations within tumours that are non-proliferative and distinct from cancer stem cells. These data support the concept that tumours contain discrete stem, proliferative and differentiation compartments similar to that present in normal crypts. PMID:26367378

  8. ERBB3 Positively Correlates with Intestinal Stem Cell Markers but Marks a Distinct Non Proliferative Cell Population in Colorectal Cancer.

    PubMed

    Jardé, Thierry; Kass, Lisa; Staples, Margaret; Lescesen, Helen; Carne, Peter; Oliva, Karen; McMurrick, Paul J; Abud, Helen E

    2015-01-01

    Several studies have suggested ERBB3/HER3 may be a useful prognostic marker for colorectal cancer. Tumours with an intestinal stem cell signature have also been shown to be more aggressive. Here, we investigate whether ERBB3 is associated with intestinal stem cell markers in colorectal cancer and if cancer stem cells within tumours are marked by expression of ERBB3. Expression of ERBB3 and intestinal stem cell markers (LGR5, EPHB2, CD44s and CD44v6) was assessed by qRT-PCR in primary colorectal tumours (stages 0 to IV) and matched normal tissues from 53 patients. The localisation of ERBB3, EPHB2 and KI-67 within tumours was investigated using co-immunofluorescence. Expression of ERBB3 and intestinal stem cell markers were significantly elevated in adenomas and colorectal tumours compared to normal tissue. Positive correlations were found between ERBB3 and intestinal stem cell markers. However, co-immunofluorescence analysis showed that ERBB3 and EPHB2 marked specific cell populations that were mutually exclusive within tumours with distinct proliferative potentials, the majority of ERBB3+ve cells being non-proliferative. This pattern resembles cellular organisation within normal colonic epithelium where EPHB2 labelled proliferative cells reside at the crypt base and ERBB3+ve cells mark differentiated cells at the top of crypts. Our results show that ERBB3 and intestinal stem cell markers correlate in colorectal cancers. ERBB3 localises to differentiated cell populations within tumours that are non-proliferative and distinct from cancer stem cells. These data support the concept that tumours contain discrete stem, proliferative and differentiation compartments similar to that present in normal crypts.

  9. Identification of a population of cells with hematopoietic stem cell properties in mouse aorta-gonad-mesonephros cultures

    SciTech Connect

    Nobuhisa, Ikuo; Ohtsu, Naoki; Okada, Seiji; Nakagata, Naomi; Taga, Tetsuya . E-mail: taga@kaiju.medic.kumamoto-u.ac.jp

    2007-03-10

    The aorta-gonad-mesonephros (AGM) region is a primary source of definitive hematopoietic cells in the midgestation mouse embryo. In cultures of dispersed AGM regions, adherent cells containing endothelial cells are observed first, and then non-adherent hematopoietic cells are produced. Here we report on the characterization of hematopoietic cells that emerge in the AGM culture. Based on the expression profiles of CD45 and c-Kit, we defined three cell populations: CD45{sup low} c-Kit{sup +} cells that had the ability to form hematopoietic cell colonies in methylcellulose media and in co-cultures with stromal cells; CD45{sup low} c-Kit{sup -} cells that showed a granulocyte morphology; CD45{sup high} c-Kit{sup low/-} that exhibited a macrophage morphology. In co-cultures of OP9 stromal cells and freshly prepared AGM cultures, CD45{sup low} c-Kit{sup +} cells from the AGM culture had the abilities to reproduce CD45{sup low} c-Kit{sup +} cells and differentiate into CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} cells, whereas CD45{sup low} c-Kit{sup -} and CD45{sup high} c-Kit{sup low/-} did not produce CD45{sup low} c-Kit{sup +} cells. Furthermore, CD45{sup low} c-Kit{sup +} cells displayed a long-term repopulating activity in adult hematopoietic tissue when transplanted into the liver of irradiated newborn mice. These results indicate that CD45{sup low} c-Kit{sup +} cells from the AGM culture have the potential to reconstitute multi-lineage hematopoietic cells.

  10. Cytotoxic effects induced by docetaxel, gefitinib and cyclopamine on side population and non-side population cell fractions from human invasive prostate cancer cells

    PubMed Central

    Mimeault, Murielle; Johansson, Sonny L.; Henichart, Jean-Pierre; Depreux, Patrick; Batra, Surinder K.

    2011-01-01

    The present study has been undertaken to establish the therapeutic benefit of co-targeting epidermal growth factor receptor (EGFR) and sonic hedgehog pathways by using gefitinib and cyclopamine, respectively, for improving the efficacy of the current chemotherapeutic drug, docetaxel, to counteract the prostate cancer (PC) progression from locally invasive to metastatic and recurrent disease stages. The data from immuofluorescence analyses revealed that EGFR/Tyr1173-pEGFR, sonic hedgehog ligand (SHH), smoothened co-receptor (SMO) and GLI-1 were co-localized with the CD133+ stem cell-like marker in a small subpopulation of PC cells. These signaling molecules were also present in the bulk tumor mass of CD133− PC cells with a luminal phenotype detected in patient’s adenocarcinoma tissues. Importantly, the results revealed that the CD133+/CD44high/AR−/low side population (SP) cell fraction endowed with a high self-renewal potential isolated from tumorigenic and invasive WPE1-NB26 cells by Hoechst dye technique was insensitive to current chemotherapeutic drug, docetaxel. In contrast, the docetaxel treatment induced significant anti-proliferative and apoptotic effects on the CD133−/CD44low/AR+ non-SP cell fraction isolated from WPE1-NB26 cell line. Of therapeutic interest, the results have also indicated that combined docetaxel, gefitinib and cyclopamine induced greater anti-proliferative and apoptotic effects on SP and non-SP cell fractions isolated from WPE1-NB26 cells than individual drugs or two-drug combinations. Altogether, these observations suggest that EGFR and sonic hedgehog cascades may represent the potential therapeutic targets of great clinical interest to eradicate the total PC cell mass and improve the current docetaxel-based therapies against locally advanced and invasive PCs, and thereby prevent metastases and disease relapse. PMID:20179163

  11. Sorting and biological characteristics analysis for side population cells in human primary hepatocellular carcinoma

    PubMed Central

    Jiang, Yegui; Gao, Hucheng; Liu, Mingdong; Mao, Qing

    2016-01-01

    Hepatocellular carcinoma (HCC) is the fifth most common cause of the tumor worldwide, its incidence is increasing year by year. This study aims to investigate the sorting and biological characteristics of side population (SP) cells. Human HCC tissues used were obtained from patients undergoing surgical resection. SP cells were sorted using flow cytometry. Cell cycle assay, apoptosis assay and colony formation assay were performed to detect cell proliferation and apoptosis. Invasion assay was employed to examine SP cell invasion. Tumorigenicity assay was used to evaluate tumorigenicity. HCC related microRNAs (miRNA) were analyzed using Micro-array analysis. Target genes were predicted using miRNA database. GO analsis was employed to predict target gene function. Apoptosis percentage was lower and cell viability was higher in SP cells than non-SP (NSP) cells. Colony forming ability of SP cells was significantly higher than NSP cells. Transwell assay positive cells in SP cells were higher significantly than NSP cells. Tumorigenicity of SP cells was higher significantly than NSP cells. 107 differentially expression miRNA were discovered, including 45 up-expressed miRNAs and 62 down-expressed miRNAs in SP cells. Up-regulated hsa-miR-193b-3p and hsa-miR-505-3p predict 25 and 35 target genes, and correlated with 4 and 42 GO terms, respectively. Down-regulated hsa-miR-200a-3p, hsa-miR-194-5p, hsa-miR-130b-3p predict 133, 48 and 127 target genes, and correlate with 10, 7 and 109 GO terms, respectively. In conclusion, proliferation, colony formation, anti-apoptosis, self-renewal capavility, invasive characteristic and tumorigenicity in SP cells isolated from HCC tissues was higher compared to NSP cells. Therefore, sorted SP cells could characterize with biological functions of cancer stem cells. PMID:27725897

  12. Age-Related Change in Vestibular Ganglion Cell Populations in Individuals With Presbycusis and Normal Hearing.

    PubMed

    Gluth, Michael B; Nelson, Erik G

    2017-04-01

    We sought to establish that the decline of vestibular ganglion cell counts uniquely correlates with spiral ganglion cell counts, cochlear hair cell counts, and hearing phenotype in individuals with presbycusis. The relationship between aging in the vestibular system and aging in the cochlea is a topic of ongoing investigation. Histopathologic age-related changes the vestibular system may mirror what is seen in the cochlea, but correlations with hearing phenotype and the impact of presbycusis are not well understood. Vestibular ganglion cells, spiral ganglion cells, and cochlear hair cells were counted in specimens from individuals with presbycusis and normal hearing. These were taken from within a large collection of processed human temporal bones. Correlations between histopathology and hearing phenotype were investigated. Vestibular ganglion cell counts were positively correlated with spiral ganglion cell counts and cochlear hair cell counts and were negatively correlated with hearing phenotype. There was no statistical evidence on linear regression to suggest that the relationship between age and cell populations differed significantly according to whether presbycusis was present or not. Superior vestibular ganglion cells were more negatively correlated with age than inferior ganglion cells. No difference in vestibular ganglion cells was noted based on sex. Vestibular ganglion cell counts progressively deteriorate with age, and this loss correlates closely with changes in the cochlea, as well as hearing phenotype. However, these correlations do not appear to be unique in individuals with presbycusis as compared with those with normal hearing.

  13. A study of the genetical structure of the Cuban population: red cell and serum biochemical markers.

    PubMed Central

    González, R; Ballester, J M; Estrada, M; Lima, F; Martínez, G; Wade, M; Colombo, B; Vento, R

    1976-01-01

    Gene frequencies of several red cell and serum gentic markers were determined in the three main racial groups--whites, mulattoes and Negroes--of the Cuban population. The results were used to estimate the relative contribution of Caucasian and Negro genes to the genetic makeup of these three groups and to calculate the frequencies of these genes in the general Cuban population. PMID:1008061

  14. Differentiating quiescent cancer cell populations in heterogeneous samples with fluorescence lifetime imaging

    NASA Astrophysics Data System (ADS)

    Heaster, Tiffany M.; Walsh, Alex J.; Skala, Melissa C.

    2016-03-01

    Measurement of relative fluorescence intensities of NAD(P)H and FAD with fluorescence lifetime imaging (FLIM) allows metabolic characterization of cancerous populations and correlation to treatment response. However, quiescent populations of cancer cells introduce heterogeneity to the tumor and exhibit resistance to standard therapies, requiring a better understanding of this influence on treatment outcome. Significant differences were observed between proliferating and quiescent cell populations upon comparison of respective redox ratios (p<0.05) and FAD lifetimes (p<0.05) across monolayers and in mixed samples. These results demonstrate that metabolic activity may function as a marker for separation and characterization of proliferating and quiescent cancer cells within mixed samples, contributing to comprehensive investigation of heterogeneity-dependent drug resistance.

  15. Methods for diversity and overlap analysis in T-cell receptor populations

    PubMed Central

    Rempała, Grzegorz A.; Seweryn, Michałl

    2012-01-01

    The paper presents some novel approaches to the empirical analysis of diversity and similarity (overlap) in biological or ecological systems. The analysis is motivated by the molecular studies of highly diverse mammalian T-cell receptor (TCR) populations, and is related to the classical statistical problem of analyzing two-way contingency tables with missing cells and low cell counts. The new measures of diversity and overlap are proposed, based on the information-theoretic as well as geometric considerations, with the capacity to naturally up-weight or down-weight the rare and abundant population species. The consistent estimates are derived by applying the Good-Turing sample-coverage correction. In particular, novel consistent estimates of the Shannon entropy function and the Morisita-Horn index are provided. Data from TCR populations in mice are used to illustrate the empirical performance of the proposed methods vis a vis the existing alternatives. PMID:23007599

  16. Real-time imaging reveals unique heterogeneous population features in insect cell cultures.

    PubMed

    Hidalgo, David; Paz, Enrique; Palomares, Laura A; Ramírez, Octavio T

    2017-10-10

    Heterogeneity of cellular populations has been frequently observed. We used live cell imaging to follow Sf9 insect cells before and after infection with baculovirus, to understand population dynamics. It was possible to identify in real time cells with distinctive phenotypes. Mobile cells with an elongated bipolar shape were observed. They extended pseudopods and actively moved about the culture surface. The presence of actively moving elongated cells increased when cultures were subjected to oxygen limiting or excessive conditions, suggesting that stress triggered differentiation of cells to the mobile phenotype. A dual reporter baculovirus (DRBac), coding for two fluorescent proteins under promoters with different temporality, was designed to follow sequential phenomena through infection. Oxygen limitation reduced the number of cells that expressed the reporter proteins, possibly because it reduced the efficiency of baculovirus infection. Elongated cells did not show signs of infection. To our knowledge, this is the first time that actively moving cells are observed in real time in Sf9 cultures, which had distinctive responses towards infection. Anoxia was identified as a factor that modulates baculovirus infection. Results open a new approach for understanding the insect-cell baculovirus system. Particular cellular phenotypes with unique traits can be isolated for specific applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Persistence of side population cells with high drug efflux capacity in pancreatic cancer

    PubMed Central

    Zhou, Jing; Wang, Chun-You; Liu, Tao; Wu, Bin; Zhou, Feng; Xiong, Jiong-Xin; Wu, He-Shui; Tao, Jing; Zhao, Gang; Yang, Ming; Gou, Shan-Miao

    2008-01-01

    AIM: To investigate the persistence of side population (SP) cells in pancreatic cancer and their role and mechanism in the drug resistance. METHODS: The presentation of side population cells in pancreatic cancer cell line PANC-1 and its proportion change when cultured with Gemcitabine, was detected by Hoechst 33342 staining and FACS analysis. The expression of ABCB1 and ABCG2 was detected by real-time PCR in either SP cells or non-SP cells. RESULTS: SP cells do exist in PANC-1, with a median of 3.3% and a range of 2.1-8.7%. After cultured with Gemcitabine for 3 d, the proportion of SP cells increased significantly (3.8% ± 1.9%, 10.7% ± 3.7%, t = 4.616, P = 0.001 < 0.05). ABCB1 and ABCG2 expressed at higher concentrations in SP as compared with non-SP cells (ABCB1: 1.15 ± 0.72, 5.82 ± 1.16, t = 10.839, P = 0.000 < 0.05; ABCG2: 1.16 ± 0.75, 5.48 ± 0.94, t = 11.305, P = 0.000 < 0.05), which may contribute to the efflux of fluorescent staining and drug resistance. CONCLUSION: SP cells with inherently high resistance to chemotherapeutic agents do exist in pancreatic cancers, which may be candidate cancer stem cells contributing to the relapse of the tumor. PMID:18240351

  18. Identification and visualization of multidimensional antigen-specific T-cell populations in polychromatic cytometry data.

    PubMed

    Lin, Lin; Frelinger, Jacob; Jiang, Wenxin; Finak, Greg; Seshadri, Chetan; Bart, Pierre-Alexandre; Pantaleo, Giuseppe; McElrath, Julie; DeRosa, Steve; Gottardo, Raphael

    2015-07-01

    An important aspect of immune monitoring for vaccine development, clinical trials, and research is the detection, measurement, and comparison of antigen-specific T-cells from subject samples under different conditions. Antigen-specific T-cells compose a very small fraction of total T-cells. Developments in cytometry technology over the past five years have enabled the measurement of single-cells in a multivariate and high-throughput manner. This growth in both dimensionality and quantity of data continues to pose a challenge for effective identification and visualization of rare cell subsets, such as antigen-specific T-cells. Dimension reduction and feature extraction play pivotal role in both identifying and visualizing cell populations of interest in large, multi-dimensional cytometry datasets. However, the automated identification and visualization of rare, high-dimensional cell subsets remains challenging. Here we demonstrate how a systematic and integrated approach combining targeted feature extraction with dimension reduction can be used to identify and visualize biological differences in rare, antigen-specific cell populations. By using OpenCyto to perform semi-automated gating and features extraction of flow cytometry data, followed by dimensionality reduction with t-SNE we are able to identify polyfunctional subpopulations of antigen-specific T-cells and visualize treatment-specific differences between them.

  19. Defining the Diverse Cell Populations Contributing to Lignification in Arabidopsis Stems.

    PubMed

    Smith, Rebecca A; Schuetz, Mathias; Karlen, Steven D; Bird, David; Tokunaga, Naohito; Sato, Yasushi; Mansfield, Shawn D; Ralph, John; Samuels, A Lacey

    2017-06-01

    Many land plants evolved tall and sturdy growth habits due to specialized cells with thick lignified cell walls: tracheary elements that function in water transport and fibers that function in structural support. The objective of this study was to define how and when diverse cell populations contribute lignin precursors, monolignols, to secondary cell walls during lignification of the Arabidopsis (Arabidopsis thaliana) inflorescence stem. Previous work demonstrated that, when lignin biosynthesis is suppressed in fiber and tracheary element cells with thickened walls, fibers become lignin-depleted while vascular bundles still lignify, suggesting that nonlignifying neighboring xylem cells are contributing to lignification. In this work, we dissect the contributions of different cell types, specifically xylary parenchyma and fiber cells, to lignification of the stem using cell-type-specific promoters to either knock down an essential monolignol biosynthetic gene or to introduce novel monolignol conjugates. Analysis of either reductions in lignin in knockdown lines, or the addition of novel monolignol conjugates, directly identifies the xylary parenchyma and fiber cell populations that contribute to the stem lignification and the developmental timing at which each contribution is most important. © 2017 American Society of Plant Biologists. All Rights Reserved.

  20. Identification and characterization of a resident vascular stem/progenitor cell population in preexisting blood vessels.

    PubMed

    Naito, Hisamichi; Kidoya, Hiroyasu; Sakimoto, Susumu; Wakabayashi, Taku; Takakura, Nobuyuki

    2012-02-15

    Vasculogenesis, the in-situ assembly of angioblast or endothelial progenitor cells (EPCs), may persist into adult life, contributing to new blood vessel formation. However, EPCs are scattered throughout newly developed blood vessels and cannot be solely responsible for vascularization. Here, we identify an endothelial progenitor/stem-like population located at the inner surface of preexisting blood vessels using the Hoechst method in which stem cell populations are identified as side populations. This population is dormant in the steady state but possesses colony-forming ability, produces large numbers of endothelial cells (ECs) and when transplanted into ischaemic lesions, restores blood flow completely and reconstitutes de-novo long-term surviving blood vessels. Moreover, although surface markers of this population are very similar to conventional ECs, and they reside in the capillary endothelium sub-population, the gene expression profile is completely different. Our results suggest that this heterogeneity of stem-like ECs will lead to the identification of new targets for vascular regeneration therapy.

  1. Quantitative determination of transformed cells in a mixed population by stimultaneous fluorescence analysis of cell surface and DNA an individual cells.

    PubMed Central

    Hawkes, S P; Bartholomew, J C

    1977-01-01

    Cell-surface labeling with fluorescamine indicates that the fluorescence of Balb 3T3 A31 cells in considerably decreased after both viral and chemical transformation. This phenomenon, coupled with the technique of flow microfluorometry, enabled nontransformed and transformed cells to be distinguished. A second fluroescent probe, propidium iodide, which intercalates into DNA, was used in combination with fluorescamine in order to obtain a ratio of cell-surface labeling to DNA content. This manipulation allowed enhanced resolution of two populations and the detection of small numbers of transformants in a predominantly normal population. PMID:193110

  2. Array tomography: characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure

    PubMed Central

    Wacker, Irene; Chockley, Peter; Bartels, Carolin; Spomer, Waldemar; Hofmann, Andreas; Gengenbach, Ulrich; Singh, Sachin; Thaler, Marlene; Grabher, Clemens; SCHRÖDER, RASMUS R

    2015-01-01

    For 3D reconstructions of whole immune cells from zebrafish, isolated from adult animals by FAC-sorting we employed array tomography on hundreds of serial sections deposited on silicon wafers. Image stacks were either recorded manually or automatically with the newly released ZEISS Atlas 5 Array Tomography platform on a Zeiss FEGSEM. To characterize different populations of immune cells, organelle inventories were created by segmenting individual cells. In addition, arrays were used for quantification of cell populations with respect to the various cell types they contained. The detection of immunological synapses in cocultures of cell populations from thymus or WKM with cancer cells helped to identify the cytotoxic nature of these cells. Our results demonstrate the practicality and benefit of AT for high-throughput ultrastructural imaging of substantial volumes. Lay Description To look at immune cells from zebrafish we employed array tomography, a technique where arrays of serial sections deposited on solid substrates are used for imaging. Cell populations were isolated from the different organs of zebrafish involved in haematopoiesis, the production of blood cells. They were chemically fixed and centrifuged to concentrate them in a pellet that was then dehydrated and embedded in resin. Using a custom-built handling device it was possible to place hundreds of serial sections on silicon wafers as well ordered arrays. To image a whole cell at a resolution that would allow identifying all the organelles (i.e. compartments surrounded by membranes) inside the cell, stacks of usually 50–100 images were recorded in a scanning electron microscope (SEM). This recording was either done manually or automatically using the newly released Atlas Array Tomography platform on a ZEISS SEM. For the imaging of the sections a pixel size of about 5 nm was chosen, which defines membrane boundaries very well and allows segmentation of the membrane topology. After alignment of the

  3. Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective

    PubMed Central

    Bayramoglu, Bihter; Toubiana, David; van Vliet, Simon; Inglis, R. Fredrik; Shnerb, Nadav; Gillor, Osnat

    2017-01-01

    Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells’ close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies—or bet-hedging—as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population. PMID:28165017

  4. Bet-hedging in bacteriocin producing Escherichia coli populations: the single cell perspective

    NASA Astrophysics Data System (ADS)

    Bayramoglu, Bihter; Toubiana, David; van Vliet, Simon; Inglis, R. Fredrik; Shnerb, Nadav; Gillor, Osnat

    2017-02-01

    Production of public goods in biological systems is often a collaborative effort that may be detrimental to the producers. It is therefore sustainable only if a small fraction of the population shoulders the cost while the majority reap the benefits. We modelled this scenario using Escherichia coli populations producing colicins, an antibiotic that kills producer cells’ close relatives. Colicin expression is a costly trait, and it has been proposed that only a small fraction of the population actively expresses the antibiotic. Colicinogenic populations were followed at the single-cell level using time-lapse microscopy, and showed two distinct, albeit dynamic, subpopulations: the majority silenced colicin expression, while a small fraction of elongated, slow-growing cells formed colicin-expressing hotspots, placing a significant burden on expressers. Moreover, monitoring lineages of individual colicinogenic cells showed stochastic switching between expressers and non-expressers. Hence, colicin expressers may be engaged in risk-reducing strategies—or bet-hedging—as they balance the cost of colicin production with the need to repel competitors. To test the bet-hedging strategy in colicin-mediated interactions, competitions between colicin-sensitive and producer cells were simulated using a numerical model, demonstrating a finely balanced expression range that is essential to sustaining the colicinogenic population.

  5. Further analyses of human kidney cell populations separated on the space shuttle

    NASA Astrophysics Data System (ADS)

    Stewart, Robin M.; Todd, Paul; Cole, Kenneth D.; Morrison, Dennis R.

    Cultured human embryonic kidney cells were separated into electrophoretic subpopulations in laboratory experiments and in two separation experiments on the STS-8 (Challenger) Space Shuttle flight using the mid-deck Continuous Flow Electrophoretic Separator (CFES). Populations of cells from each fraction were cultured for the lifetime of the cells, and supernatant medium was withdrawn and replaced at 4-day intervals. Withdrawn medium was frozen at -120°C for subsequent analysis. Enzyme assays, antibodies and gel electrophoresis were used as analytical tools for the detection and quantitation of plasminogen activators in these samples. These assays of frozen culture supernatant fluids confirmed the electrophoretic separation of plasminogen-activator producing cells from non-producing cells, the isolation of cells capable of sustained production, and the separation of cells that produce different plasminogen activators from one another.

  6. Further analyses of human kidney cell populations separated on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Stewart, Robin M.; Todd, Paul; Cole, Kenneth D.; Morrison, Dennis R.

    1992-01-01

    Cultured human embryonic kidney cells were separated into electrophoretic subpopulations in laboratory experiments and in two separation experiments on the STS-8 (Challenger) Space Shuttle flight using the mid-deck Continuous Flow Electrophoretic Separator (CFES). Populations of cells from each fraction were cultured for the lifetime of the cells, and supernatant medium was withdrawn and replaced at 4-day intervals. Withdrawn medium was frozen at -120 C for subsequent analysis. Enzyme assays, antibodies and gel electrophoresis were used as analytical tools for the detection and quantization of plasminogen activators in these samples. These assays of frozen-culture supernatant fluids confirmed the electrophoretic separation of plasminogen-activator-producing cells from nonproducing cells, the isolation of cells capable of sustained production, and the separation of cells that produce different plasminogen activators from one other.

  7. Inhibition of hedgehog signaling reduces the side population in human malignant mesothelioma cell lines.

    PubMed

    Kim, H-A; Kim, M-C; Kim, N-Y; Kim, Y

    2015-08-01

    Deregulation of crucial embryonic pathways, including hedgehog signaling, has been frequently implicated in a variety of human cancers and is emerging as an important target for anticancer therapy. This study evaluated the potential anticancer effects of cyclopamine, a chemical inhibitor of hedgehog signaling, in human malignant mesothelioma (HMM) cell lines. Cyclopamine treatment significantly decreased the proliferation of HMM cells by promoting apoptosis and shifting the cell cycle toward dormant phase. The clonogenicity and mobility of HMM cells were significantly decreased by cyclopamine treatment. Treatment of HMM cells with cyclopamine significantly reduced the abundance of side population cells, which were measured using an assay composed of Hoechst 33342 dye staining and subsequent flow cytometry. Furthermore, the expression levels of stemness-related genes were significantly affected by cyclopamine treatment. Taken together, the present study showed that targeting hedgehog signaling could reduce a more aggressive subpopulation of the cancer cells, suggesting an alternative approach for HMM therapy.

  8. Inhibition of hedgehog signaling reduces the side population in human malignant mesothelioma cell lines

    PubMed Central

    Kim, H-A; Kim, M-C; Kim, N-Y; Kim, Y

    2015-01-01

    Deregulation of crucial embryonic pathways, including hedgehog signaling, has been frequently implicated in a variety of human cancers and is emerging as an important target for anticancer therapy. This study evaluated the potential anticancer effects of cyclopamine, a chemical inhibitor of hedgehog signaling, in human malignant mesothelioma (HMM) cell lines. Cyclopamine treatment significantly decreased the proliferation of HMM cells by promoting apoptosis and shifting the cell cycle toward dormant phase. The clonogenicity and mobility of HMM cells were significantly decreased by cyclopamine treatment. Treatment of HMM cells with cyclopamine significantly reduced the abundance of side population cells, which were measured using an assay composed of Hoechst 33342 dye staining and subsequent flow cytometry. Furthermore, the expression levels of stemness-related genes were significantly affected by cyclopamine treatment. Taken together, the present study showed that targeting hedgehog signaling could reduce a more aggressive subpopulation of the cancer cells, suggesting an alternative approach for HMM therapy. PMID:26206198

  9. Further analyses of human kidney cell populations separated on the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Stewart, Robin M.; Todd, Paul; Cole, Kenneth D.; Morrison, Dennis R.

    1992-01-01

    Cultured human embryonic kidney cells were separated into electrophoretic subpopulations in laboratory experiments and in two separation experiments on the STS-8 (Challenger) Space Shuttle flight using the mid-deck Continuous Flow Electrophoretic Separator (CFES). Populations of cells from each fraction were cultured for the lifetime of the cells, and supernatant medium was withdrawn and replaced at 4-day intervals. Withdrawn medium was frozen at -120 C for subsequent analysis. Enzyme assays, antibodies and gel electrophoresis were used as analytical tools for the detection and quantization of plasminogen activators in these samples. These assays of frozen-culture supernatant fluids confirmed the electrophoretic separation of plasminogen-activator-producing cells from nonproducing cells, the isolation of cells capable of sustained production, and the separation of cells that produce different plasminogen activators from one other.

  10. Induced dual EIT and EIA resonances with optical trapping phenomenon in near/far fields in the N-type four-level system

    NASA Astrophysics Data System (ADS)

    Osman, Kariman I.; Joshi, Amitabh

    2017-01-01

    The optical trapping phenomenon is investigated in the probe absorptive susceptibility spectra, during the interaction of four-level N-type atomic system with three transverse Gaussian fields, in a Doppler broadened medium. The system was studied under different temperature settings of 87Rb atomic vapor as well as different non-radiative decay rate. The system exhibits a combination of dual electromagnetically induced transparency with electromagnetically induced absorption (EIA) or transparency (EIT) resonances simultaneously in near/far field. Also, the optical trapping phenomenon is considerably affected by the non-radiative decay rate.

  11. Manipulation of pulse propagation in a four-level quantum system via an elliptically polarized light in the presence of external magnetic field

    NASA Astrophysics Data System (ADS)

    Karimi, R.; Asadpour, S. H.; Batebi, S.; Soleimani, H. Rahimpour

    2015-10-01

    The influence of external magnetic field and relative phase between two electric field components of the probe field on absorption-dispersion and group index of a four-level atomic system with two degenerate sublevels are investigated. The results show that, the behaviors of weak probe light can be controlled by an external magnetic field. It is shown that in the presence of the external magnetic field the additional electromagnetically induced transparency (EIT) window can be obtained. Our result also reveal that the switching from slow to fast light or vice versa can be manipulated by changing the phase difference between the two circularly polarized components of a single coherent field.

  12. Dynamical behavior of atom-photon entanglement for a four-level atom near the band edge of a 3D-anisotropic photonic crystal

    NASA Astrophysics Data System (ADS)

    Sahrai, M.; Boroojerdi, V. Tahmoorian Askari

    2017-06-01

    Time evolution of the entanglement between a four-level atom near the band edge of a photonic crystal and its spontaneous emission field is investigated. It is shown that the quantum entropy has a faster oscillator behavior as the upper levels move further into the band gap. Entanglement oscillations can be controlled by the intensity and the detuning of the coupling field. An enhanced entanglement is achieved in the presence of quantum interference resulting from the two possible decay channels. In addition, the atom-photon entanglement will be influenced noticeably by the reservoir coupling constant, intensity of coupling field, and the detuning.

  13. An exploratory study of an undefined acquired neuromotor speech disorder within the context of the four level framework for speech sensorimotor control.

    PubMed

    Schmulian, D; van der Merwe, A; Groenewald, E

    1997-01-01

    In this study, the speech of a 28-year-old male with acquired brain injury and who presents with an undefined neuromotor speech disorder which cannot be categorised as either apraxia of speech or dysarthria, is described. Voice onset time, vowel duration, utterance duration and vowel formant analyses were done acoustically. A perceptual analysis and intelligibility rating were also executed. The subject was found to present with unique perceptual symptoms, intelligible speech, prolonged sound duration and distorted vowel quality. The results are interpreted within the context of the Four Level Framework of Speech Sensorimotor Control (Van der Merwe, 1997).

  14. ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS: Selective Deflection of Polarized Light Via Coherently Driven Four-Level Atoms in a Double-Λ Configuration

    NASA Astrophysics Data System (ADS)

    Guo, Yu

    2010-05-01

    We study the interaction of a weak probe field, having two circular polarized components, i.e., σ- and σ+ polarization, with an optically dense medium of four-level atoms in a double-Λ configuration, which is mediated by the electromagnetically induced transparency with a polarized control light with spatially inhomogeneous profile. We analyse the deflection of the polarized probe light and we find that we can selectively determine which circular component will be deflected after the polarized probe light enters the atom medium via adjusting the polarization and detuning of the control field.

  15. Highly dissipative Hénon map behavior in the four-level model of the CO 2 laser with modulated losses

    NASA Astrophysics Data System (ADS)

    Pando L., C. L.; Acosta, G. A. Luna; Meucci, R.; Ciofini, M.

    1995-02-01

    We show that the four-level model for the CO 2 laser with modulated losses behaves in a qualitatively similar way as the highly dissipative Hénon map. The ubiquity of elements of the universal sequence, their related symbolic dynamics, and the presence of reverse bifurcations of chaotic bands in the model are reminiscent of the logistic map which is the limit of the Hénon map when the Jacobian equals zero. The coexistence of attractors, its dynamics related to contraction of volumes in phase space and the associated return maps can be correlated with those of the highly dissipative Hénon map.

  16. Non-Markovian Process in the Interaction Between a Four-Level N-Type Atom with a Cavity Field Surrounded by a Kerr Medium

    NASA Astrophysics Data System (ADS)

    Mandani, Somayeh; Sarbishaei, Mohsen; Javidan, Kurosh

    2017-10-01

    We have investigated the dynamics of a four-level N-type atom in cavity QED with consideration to the Kerr effect. The non-Markovianity of the system has been studied using the Breuer-Laine-Piilo (BLP) measure ( N B L P ). Moreover the effects of system parameters like temperature and atom-field coupling have also been discussed. The evolution equation of the system has been derived using the time convolution-less(TCL) master equation. Some interesting behaviour of the system and their reasons are discussed.

  17. Characterization of a population of neural progenitor cells in the infant hippocampus

    PubMed Central

    Paine, S M L; Willsher, A R; Nicholson, S L; Sebire, N J; Jacques, T S

    2014-01-01

    Aims Abnormalities of the hippocampus are associated with a range of diseases in children, including epilepsy and sudden death. A population of rod cells in part of the hippocampus, the polymorphic layer of the dentate gyrus, has long been recognized in infants. Previous work suggested that these cells were microglia and that their presence was associated with chronic illness and sudden infant death syndrome. Prompted by the observations that a sensitive immunohistochemical marker of microglia used in diagnostic practice does not typically stain these cells and that the hippocampus is a site of postnatal neurogenesis, we hypothesized that this transient population of cells were not microglia but neural progenitors. Methods Using archived post mortem tissue, we applied a broad panel of antibodies to establish the immunophenotype of these cells in 40 infants dying suddenly of causes that were either explained or remained unexplained, following post mortem investigation. Results The rod cells were consistently negative for the microglial markers CD45, CD68 and HLA-DR. The cells were positive, in varying proportions, for the neural progenitor marker, doublecortin, the neural stem cell marker, nestin and the neural marker, TUJ1. Conclusions These data support our hypothesis that the rod cells of the polymorphic layer of the dentate gyrus in the infant hippocampus are not microglia but a population of neural progenitors. These findings advance our understanding of postnatal neurogenesis in the human hippocampus in health and disease and are of diagnostic importance, allowing reactive microglia to be distinguished from the normal population of neural progenitors. PMID:23742713

  18. Numerical modelling of label-structured cell population growth using CFSE distribution data

    PubMed Central

    Luzyanina, Tatyana; Roose, Dirk; Schenkel, Tim; Sester, Martina; Ehl, Stephan; Meyerhans, Andreas; Bocharov, Gennady

    2007-01-01

    Background The flow cytometry analysis of CFSE-labelled cells is currently one of the most informative experimental techniques for studying cell proliferation in immunology. The quantitative interpretation and understanding of such heterogenous cell population data requires the development of distributed parameter mathematical models and computational techniques for data assimilation. Methods and Results The mathematical modelling of label-structured cell population dynamics leads to a hyperbolic partial differential equation in one space variable. The model contains fundamental parameters of cell turnover and label dilution that need to be estimated from the flow cytometry data on the kinetics of the CFSE label distribution. To this end a maximum likelihood approach is used. The Lax-Wendroff method is used to solve the corresponding initial-boundary value problem for the model equation. By fitting two original experimental data sets with the model we show its biological consistency and potential for quantitative characterization of the cell division and death rates, treated as continuous functions of the CFSE expression level. Conclusion Once the initial distribution of the proliferating cell population with respect to the CFSE intensity is given, the distributed parameter modelling allows one to work directly with the histograms of the CFSE fluorescence without the need to specify the marker ranges. The label-structured model and the elaborated computational approach establish a quantitative basis for more informative interpretation of the flow cytometry CFSE systems. PMID:17650320

  19. Lipid droplet organelle distribution in populations of dividing cells studied by simulation

    NASA Astrophysics Data System (ADS)

    Dalhaimer, Paul

    2013-06-01

    One of the key questions in cell biology is how organelles are passed from parent to daughter cells. To help address this question, I used Brownian dynamics to simulate lipid droplets as model organelles in populations of dividing cells. Lipid droplets are dynamic bodies that can form both de novo and by fission, they can also be depleted. The quantitative interplay among these three events is unknown but would seem crucial for controlling droplet distribution in populations of dividing cells. Surprisingly, of the three main events studied: biogenesis, fission, and depletion, the third played the key role in maintaining droplet organelle number—and to a lesser extent volume—in populations of dividing cells where formation events would have seemed paramount. In the case of lipid droplets, this provides computational evidence that they must be sustained, most likely through contacts with the endoplasmic reticulum. The findings also agree with video microscopy experiments over much shorter timescales where droplet depletion in fission yeast cells was not observed. In general, this work shows that organelle maintenance is invaluable and lack thereof cannot necessarily be compensated for by organelle formation. This study provides a time-accurate, physical-based template for long-term cell division studies.

  20. CD271 Defines a Stem Cell-Like Population in Hypopharyngeal Cancer

    PubMed Central

    Imai, Takayuki; Tamai, Keiichi; Oizumi, Sayuri; Oyama, Kyoko; Yamaguchi, Kazunori; Sato, Ikuro; Satoh, Kennichi; Matsuura, Kazuto; Saijo, Shigeru; Sugamura, Kazuo; Tanaka, Nobuyuki

    2013-01-01

    Cancer stem cells contribute to the malignant phenotypes of a variety of cancers, but markers to identify human hypopharyngeal cancer (HPC) stem cells remain poorly understood. Here, we report that the CD271+ population sorted from xenotransplanted HPCs possesses an enhanced tumor-initiating capability in immunodeficient mice. Tumors generated from the CD271+ cells contained both CD271+ and CD271− cells, indicating that the population could undergo differentiation. Immunohistological analyses of the tumors revealed that the CD271+ cells localized to a perivascular niche near CD34+ vasculature, to invasive fronts, and to the basal layer. In accordance with these characteristics, a stemness marker, Nanog, and matrix metalloproteinases (MMPs), which are implicated in cancer invasion, were significantly up-regulated in the CD271+ compared to the CD271− cell population. Furthermore, using primary HPC specimens, we demonstrated that high CD271 expression was correlated with a poor prognosis for patients. Taken together, our findings indicate that CD271 is a novel marker for HPC stem-like cells and for HPC prognosis. PMID:23626764

  1. Vaccination Recommendations for the Hematology and Oncology and Post–Stem Cell Transplant Populations

    PubMed Central

    Tsang, Vivian

    2012-01-01

    Vaccination is a simple yet important process used to prevent many infections in the general population. For patients with suppressed immune systems, especially those who are undergoing chemotherapy or who have undergone stem cell transplant, repeat vaccination or boosters may be crucial in prolonging and/or extending immunity. The purpose of this review is to examine the need for each vaccine in two separate oncology populations: patients receiving concurrent chemotherapy and post–stem cell transplant patients. In addition, the importance of avoiding live vaccines and criteria for reconsideration at a future time will also be discussed. PMID:25031932

  2. Stem Leydig cell differentiation: gene expression during development of the adult rat population of Leydig cells.

    PubMed

    Stanley, Erin L; Johnston, Daniel S; Fan, Jinjiang; Papadopoulos, Vassilios; Chen, Haolin; Ge, Ren-Shan; Zirkin, Barry R; Jelinsky, Scott A

    2011-12-01

    Leydig cells are the testosterone-producing cells in the adult male. Adult Leydig cells (ALCs) develop from stem Leydig cells (SLCs) through at least two intermediate cells, progenitor Leydig cells (PLCs) and immature Leydig cells (ILCs). Microarray gene expression was used to identify the transcriptional changes that occur with the differentiation of SLCs to PLCs and, thus, with the entry of SLCs into the Leydig cell lineage; to comprehensively examine differentiation through the development of ALCs; and to relate the pattern of gene expression in SLCs to that in a well-established stem cell, bone marrow stem cells (BSCs). We show that the pattern of gene expression by SLCs was more similar to the expression by BSCs, an established stem cell outside the male reproductive tract, than to any of the cells in the Leydig cell developmental lineage. These results indicated that the SLCs have many of the molecular characteristics of other stem cells. Pathway analysis indicated that development of Leydig cells from SLCs to PLCs was associated with decreased expression of genes related to adhesion and increased expression of genes related to steroidogenesis. Gene expression changes between PLCs and ILCs and between ILCs and ALCs were relatively minimal, suggesting that these cells are highly similar. In contrast, gene expression changes between SLCs and ALCs were quite distinct.

  3. Generation of highly enriched populations of optic vesicle-like retinal cells from human pluripotent stem cells.

    PubMed

    Ohlemacher, Sarah K; Iglesias, Clara L; Sridhar, Akshayalakshmi; Gamm, David M; Meyer, Jason S

    2015-02-02

    The protocol outlined below is used to differentiate human pluripotent stem cells (hPSCs) into retinal cell types through a process that faithfully recapitulates the stepwise progression observed in vivo. From pluripotency, cells are differentiated to a primitive anterior neural fate, followed by progression into two distinct populations of retinal progenitors and forebrain progenitors, each of which can be manually separated and purified. The hPSC-derived retinal progenitors are found to self-organize into three-dimensional optic vesicle-like structures, with each aggregate possessing the ability to differentiate into all major retinal cell types. The ability to faithfully recapitulate the stepwise in vivo development in a three-dimensional cell culture system allows for the study of mechanisms underlying human retinogenesis. Furthermore, this methodology allows for the study of retinal dysfunction and disease modeling using patient-derived cells, as well as high-throughput pharmacological screening and eventually patient-specific therapies.

  4. Towards the rational design of synthetic cells with prescribed population dynamics.

    PubMed

    Dalchau, Neil; Smith, Matthew J; Martin, Samuel; Brown, James R; Emmott, Stephen; Phillips, Andrew

    2012-11-07

    The rational design of synthetic cell populations with prescribed behaviours is a long-standing goal of synthetic biology, with the potential to greatly accelerate the development of biotechnological applications in areas ranging from medical research to energy production. Achieving this goal requires well-characterized components, modular implementation strategies, simulation across temporal and spatial scales and automatic compilation of high-level designs to low-level genetic parts that function reliably inside cells. Many of these steps are incomplete or only partially understood, and methods for integrating them within a common design framework have yet to be developed. Here, we address these challenges by developing a prototype framework for designing synthetic cells with prescribed population dynamics. We extend the genetic engineering of cells (GEC) language, originally developed for programming intracellular dynamics, with cell population factors such as cell growth, division and dormancy, together with spatio-temporal simulation methods. As a case study, we use our framework to design synthetic cells with predator-prey interactions that, when simulated, produce complex spatio-temporal behaviours such as travelling waves and spatio-temporal chaos. An analysis of our design reveals that environmental factors such as density-dependent dormancy and reduced extracellular space destabilize the population dynamics and increase the range of genetic variants for which complex spatio-temporal behaviours are possible. Our findings highlight the importance of considering such factors during the design process. We then use our analysis of population dynamics to inform the selection of genetic parts, which could be used to obtain the desired spatio-temporal behaviours. By identifying, integrating and automating key stages of the design process, we provide a computational framework for designing synthetic systems, which could be tested in future laboratory studies.

  5. Taxonomic Separation of Hippocampal Networks: Principal Cell Populations and Adult Neurogenesis

    PubMed Central

    van Dijk, R. Maarten; Huang, Shih-Hui; Slomianka, Lutz; Amrein, Irmgard

    2016-01-01

    While many differences in hippocampal anatomy have been described between species, it is typically not clear if they are specific to a particular species and related to functional requirements or if they are shared by species of larger taxonomic units. Without such information, it is difficult to infer how anatomical differences may impact on hippocampal function, because multiple taxonomic levels need to be considered to associate behavioral and anatomical changes. To provide information on anatomical changes within and across taxonomic ranks, we present a quantitative assessment of hippocampal principal cell populations in 20 species or strain groups, with emphasis on rodents, the taxonomic group that provides most animals used in laboratory research. Of special interest is the importance of adult hippocampal neurogenesis (AHN) in species-specific adaptations relative to other cell populations. Correspondence analysis of cell numbers shows that across taxonomic units, phylogenetically related species cluster together, sharing similar proportions of principal cell populations. CA3 and hilus are strong separators that place rodent species into a tight cluster based on their relatively large CA3 and small hilus while non-rodent species (including humans and non-human primates) are placed on the opposite side of the spectrum. Hilus and CA3 are also separators within rodents, with a very large CA3 and rather small hilar cell populations separating mole-rats from other rodents that, in turn, are separated from each other by smaller changes in the proportions of CA1 and granule cells. When adult neurogenesis is included, the relatively small populations of young neurons, proliferating cells and hilar neurons become main drivers of taxonomic separation within rodents. The observations provide challenges to the computational modeling of hippocampal function, suggest differences in the organization of hippocampal information streams in rodent and non-rodent species, and

  6. Peripheral Immune Cell Populations Associated with Cognitive Deficits and Negative Symptoms of Treatment-Resistant Schizophrenia

    PubMed Central

    Turner, Lorinda; Mustafa, Syed; Hatton, Alex; Smith, Kenneth G. C.; Lyons, Paul A.; Bullmore, Edward T.

    2016-01-01

    Background Hypothetically, psychotic disorders could be caused or conditioned by immunological mechanisms. If so, one might expect there to be peripheral immune system phenotypes that are measurable in blood cells as biomarkers of psychotic states. Methods We used multi-parameter flow cytometry of venous blood to quantify and determine the activation state of 73 immune cell subsets for 18 patients with chronic schizophrenia (17 treated with clozapine), and 18 healthy volunteers matched for age, sex, BMI and smoking. We used multivariate methods (partial least squares) to reduce dimensionality and define populations of differentially co-expressed cell counts in the cases compared to controls. Results Schizophrenia cases had increased relative numbers of NK cells, naïve B cells, CXCR5+ memory T cells and classical monocytes; and decreased numbers of dendritic cells (DC), HLA-DR+ regulatory T-cells (Tregs), and CD4+ memory T cells. Likewise, within the patient group, more severe negative and cognitive symptoms were associated with decreased relative numbers of dendritic cells, HLA-DR+ Tregs, and CD4+ memory T cells. Motivated by the importance of central nervous system dopamine signalling for psychosis, we measured dopamine receptor gene expression in separated CD4+ cells. Expression of the dopamine D3 (DRD3) receptor was significantly increased in clozapine-treated schizophrenia and covaried significantly with differentiated T cell classes in the CD4+ lineage. Conclusions Peripheral immune cell populations and dopaminergic signalling are disrupted in clozapine-treated schizophrenia. Immuno-phenotypes may provide peripherally accessible and mechanistically specific biomarkers of residual cognitive and negative symptoms in this treatment-resistant subgroup of patients. PMID:27244229

  7. Pure populations of murine macrophages from cultured embryonic stem cells. Application to studies of chemotaxis and apoptotic cell clearance.

    PubMed

    Zhuang, Lihui; Pound, John D; Willems, Jorine J L P; Taylor, A Helen; Forrester, Lesley M; Gregory, Christopher D

    2012-11-30

    Embryonic stem cells provide a potentially convenient source of macrophages in the laboratory. Given the propensity of macrophages for plasticity in phenotype and function, standardised culture and differentiation protocols are required to ensure consistency in population output and activity in functional assays. Here we detail the development of an optimised culture protocol for the production of murine embryonic stem cell-derived macrophages (ESDM). This protocol provides improved yields of ESDM and we demonstrate that the cells are suitable for application to the study of macrophage responses to apoptotic cells. ESDM so produced were of higher purity than commonly used primary macrophage preparations and were functional in chemotaxis assays and in phagocytosis of apoptotic cells. Maturation of ESDM was found to be associated with reduced capacity for directed migration and increased capacity for phagocytic clearance of apoptotic cells. These results show ESDM to be functionally active in sequential phases of interaction with apoptotic cells and establish these macrophage populations as useful models for further study of molecular mechanisms underlying the recognition and removal of apoptotic cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Cancer stem cells and cisplatin-resistant cells isolated from non-small-lung cancer cell lines constitute related cell populations.

    PubMed

    Lopez-Ayllon, Blanca D; Moncho-Amor, Veronica; Abarrategi, Ander; Ibañez de Cáceres, Inmaculada; Castro-Carpeño, Javier; Belda-Iniesta, Cristobal; Perona, Rosario; Sastre, Leandro

    2014-10-01

    Lung cancer is the top cause of cancer-related deceases. One of the reasons is the development of resistance to the chemotherapy treatment. In particular, cancer stem cells (CSCs), can escape treatment and regenerate the bulk of the tumor. In this article, we describe a comparison between cancer cells resistant to cisplatin and CSCs, both derived from the non-small-cell lung cancer cell lines H460 and A549. Cisplatin-resistant cells were obtained after a single treatment with the drug. CSCs were isolated by culture in defined media, under nonadherent conditions. The isolated CSCs were clonogenic, could be differentiated into adherent cells and were less sensitive to cisplatin than the original cells. Cisplatin resistant and CSCs were able to generate primary tumors and to metastasize when injected into immunodeficient Nu/Nu mice, although they formed smaller tumors with a larger latency than untreated cells. Notably, under appropriated proportions, CSCs synergized with differentiated cells to form larger tumors. CSCs also showed increased capacity to induce angiogenesis in Nu/Nu mice. Conversely, H460 cisplatin-resistant cells showed increased tendency to develop bone metastasis. Gene expression analysis showed that several genes involved in tumor development and metastasis (EGR1, COX2, MALAT1, AKAP12, ADM) were similarly induced in CSC and cisplatin-resistant H460 cells, in agreement with a close similarity between these two cell populations. Cells with the characteristic growth properties of CSCs were also isolated from surgical samples of 18 out of 44 lung cancer patients. A significant correlation (P = 0.028) was found between the absence of CSCs and cisplatin sensitivity.

  9. Molecular noise can minimize the collective sensitivity of a clonal heterogeneous cell population.

    PubMed

    Forment, Marzo; Rodrigo, Guillermo

    2017-03-07

    It is now widely accepted that molecular noise, rather than be always detrimental, introduces in many circumstances the required boost to reach fundamental cellular activities or strategies otherwise unattainable. In threshold-like genetic systems, molecular noise serves to generate heterogeneous responses in a clonal population, also in a tissue, due to cell-to-cell variability. Here, we derived a mathematical framework from which we could study in detail this effect. We focused on a minimal decision-making gene circuit implemented as a transcriptional positive-feedback loop. We evidenced that when the individual responses of each cell within the population are averaged, a sort of collective behavior, the resulting dose-response curve is linearized. In other words, the population is less sensitive than the individuals, which otherwise enhances the information transfer from signal to response. We found that the distance to the ideal linear response of the cell population is minimized for a particular noise level, and also characterized the interplay between intrinsic and extrinsic noise. Overall, our results highlight how cells could, by acting as a collective, entangle their genetic systems with their environments by adjusting the intracellular noise levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Flow Cytometric Single-Cell Identification of Populations in Synthetic Bacterial Communities.

    PubMed

    Rubbens, Peter; Props, Ruben; Boon, Nico; Waegeman, Willem

    2017-01-01

    Bacterial cells can be characterized in terms of their cell properties using flow cytometry. Flow cytometry is able to deliver multiparametric measurements of up to 50,000 cells per second. However, there has not yet been a thorough survey concerning the identification of the population to which bacterial single cells belong based on flow cytometry data. This paper not only aims to assess the quality of flow cytometry data when measuring bacterial populations, but also suggests an alternative approach for analyzing synthetic microbial communities. We created so-called in silico communities, which allow us to explore the possibilities of bacterial flow cytometry data using supervised machine learning techniques. We can identify single cells with an accuracy >90% for more than half of the communities consisting out of two bacterial populations. In order to assess to what extent an in silico community is representative for its synthetic counterpart, we created so-called abundance gradients, a combination of synthetic (i.e., in vitro) communities containing two bacterial populations in varying abundances. By showing that we are able to retrieve an abundance gradient using a combination of in silico communities and supervised machine learning techniques, we argue that in silico communities form a viable representation for synthetic bacterial communities, opening up new opportunities for the analysis of synthetic communities and bacterial flow cytometry data in general.

  11. Flow Cytometric Single-Cell Identification of Populations in Synthetic Bacterial Communities

    PubMed Central

    Boon, Nico; Waegeman, Willem

    2017-01-01

    Bacterial cells can be characterized in terms of their cell properties using flow cytometry. Flow cytometry is able to deliver multiparametric measurements of up to 50,000 cells per second. However, there has not yet been a thorough survey concerning the identification of the population to which bacterial single cells belong based on flow cytometry data. This paper not only aims to assess the quality of flow cytometry data when measuring bacterial populations, but also suggests an alternative approach for analyzing synthetic microbial communities. We created so-called in silico communities, which allow us to explore the possibilities of bacterial flow cytometry data using supervised machine learning techniques. We can identify single cells with an accuracy >90% for more than half of the communities consisting out of two bacterial populations. In order to assess to what extent an in silico community is representative for its synthetic counterpart, we created so-called abundance gradients, a combination of synthetic (i.e., in vitro) communities containing two bacterial populations in varying abundances. By showing that we are able to retrieve an abundance gradient using a combination of in silico communities and supervised machine learning techniques, we argue that in silico communities form a viable representation for synthetic bacterial communities, opening up new opportunities for the analysis of synthetic communities and bacterial flow cytometry data in general. PMID:28122063

  12. Effects of radiation on rat respiratory epithelial cells: Critical target cell populations and the importance of cell-cell interactions

    NASA Astrophysics Data System (ADS)

    Terzaghi-Howe, M.; Ford, J.

    1994-10-01

    The oncongenic effects of radiation on rat respiratory tissues are modulated in vivo within the intact tissue. The degree of modulation as well as the mechanism whereby modulation occurs appears to be different for different types of ionizing radiations. A combined cell culture -in vivo model is described. This model has been developed to evaluate the influence of the host and tissue environment on development and expression of the neoplastic phenotype in irradiated rat trachea. Our data indicates that the potentially oncogenic effects of neutrons, X Rays, and α-particles are different depending on the exposure conditions employed and the conditions under which exposed cells are maintained following exposure.

  13. TRAP-rc, Translating Ribosome Affinity Purification from Rare Cell Populations of Drosophila Embryos.

    PubMed

    Bertin, Benjamin; Renaud, Yoan; Aradhya, Rajaguru; Jagla, Krzysztof; Junion, Guillaume

    2015-09-10

    Measuring levels of mRNAs in the process of translation in individual cells provides information on the proteins involved in cellular functions at a given point in time. The protocol dubbed Translating Ribosome Affinity Purification (TRAP) is able to capture this mRNA translation process in a cell-type-specific manner. Based on the affinity purification of polysomes carrying a tagged ribosomal subunit, TRAP can be applied to translatome analyses in individual cells, making it possible to compare cell types during the course of developmental processes or to track disease development progress and the impact of potential therapies at molecular level. Here we report an optimized version of the TRAP protocol, called TRAP-rc (rare cells), dedicated to identifying engaged-in-translation RNAs from rare cell populations. TRAP-rc was validated using the Gal4/UAS targeting system in a restricted population of muscle cells in Drosophila embryos. This novel protocol allows the recovery of cell-type-specific RNA in sufficient quantities for global gene expression analytics such as microarrays or RNA-seq. The robustness of the protocol and the large collections of Gal4 drivers make TRAP-rc a highly versatile approach with potential applications in cell-specific genome-wide studies.

  14. ABCB5 identifies a therapy-refractory tumor cell population in colorectal cancer patients

    PubMed Central

    Wilson, Brian J.; Schatton, Tobias; Zhan, Qian; Gasser, Martin; Ma, Jie; Saab, Karim R.; Schanche, Robin; Waaga-Gasser, Ana-Maria; Gold, Jason S.; Huang, Qin; Murphy, George F.; Frank, Markus H.; Frank, Natasha Y.

    2012-01-01

    Identification and reversal of treatment resistance mechanisms of clinically refractory tumor cells is critical for successful cancer therapy. Here we show that ATP-binding cassette member B5 (ABCB5) identifies therapy-refractory tumor cells in colorectal cancer patients following fluorouracil (5-FU)-based chemoradiation therapy and provide evidence for a functional role of ABCB5 in colorectal cancer 5-FU resistance. Examination of human colon and colorectal cancer specimens revealed ABCB5 to be expressed only on rare cells within healthy intestinal tissue, whereas clinical colorectal cancers exhibited substantially increased levels of ABCB5 expression. Analysis of successive, patient-matched biopsy specimens obtained prior to and following neoadjuvant 5-FU-based chemoradiation therapy in a series of colorectal cancer patients revealed markedly enhanced abundance of ABCB5-positive tumor cells when residual disease was detected. Consistent with this finding, the ABCB5-expressing tumor cell population was also treatment-refractory and exhibited resistance to 5-FU-induced apoptosis in a colorectal cancer xenograft model of 5-FU monotherapy. Mechanistically, shRNA-mediated ABCB5 knockdown significantly inhibited tumorigenic xenograft growth and sensitized colorectal cancer cells to 5-FU-induced cell killing. Our results identify ABCB5 as a novel molecular marker of therapy-refractory tumor cells in colorectal cancer patients and point to a need for consistent eradication of ABCB5-positive resistant tumor cell populations for more effective colorectal cancer therapy. PMID:21652540

  15. Phototheranostics of CD44-positive cell populations in triple negative breast cancer

    PubMed Central

    Jin, Jiefu; Krishnamachary, Balaji; Mironchik, Yelena; Kobayashi, Hisataka; Bhujwalla, Zaver M.

    2016-01-01

    Triple-negative breast cancer (TNBC) is one of the most lethal subtypes of breast cancer that has limited treatment options. Its high rates of recurrence and metastasis have been associated, in part, with a subpopulation of breast cancer stem-like cells that are resistant to conventional therapies. A compendium of markers such as CD44high/CD24low, and increased expression of the ABCG2 transporter and increased aldehyde dehydrogenase (ALDH1), have been associated with these cells. We developed a CD44-targeted monoclonal antibody photosensitizer conjugate for combined fluorescent detection and photoimmunotherapy (PIT) of CD44 expressing cells in TNBC. The CD44-targeted conjugate demonstrated acute cell killing of breast cancer cells with high CD44 expression. This cell death process was dependent upon CD44-specific cell membrane binding combined with near-infrared irradiation. The conjugate selectively accumulated in CD44-positive tumors and caused dramatic tumor shrinkage and efficient elimination of CD44-positive cell populations following irradiation. This novel phototheranostic strategy provides a promising opportunity for the destruction of CD44-positive populations that include cancer stem-like cells, in locally advanced primary and metastatic TNBC. PMID:27302409

  16. The effect of continuous low dose-rate gamma irradiation on cell population kinetics of lymphoid tissue

    NASA Technical Reports Server (NTRS)

    Foster, B. R.

    1973-01-01

    The problem studied involved cell proliferation in mice thymus undergoing irradiation at a dose rate of 10 roetgens/day for 105 days. Specifically, the aim was to determine wheather or not a steady state of cell population can be established for the indicated period of time and what compensatory mechanisms of cell population are involved.

  17. Optical micromanipulation of mixed yeast cell populations for analyzing growth behavior

    NASA Astrophysics Data System (ADS)

    Glueckstad, Jesper; Rodrigo, Peter J.; Daria, Vincent R.; Siegumfeldt, Henrik; Nissen, Peter; Arneborg, Nils

    2005-03-01

    We use spatially sculptured light for user-interactive micromanipulation of mixed yeast cell populations to analyze growth behavioural patterns. There is negligible absorption in the near-infrared region of the light spectrum making it suitable for direct manipulation of individual cells in a growing population. Rather than using a single-beam optical trap, multiple cells are manipulated using a system based on the Generalized Phase Contrast (GPC) method, which allows arbitrary trapping configurations i.e. control over the number of traps, and the size/shape of each trap. This enables the cells to be selectively trapped in all three-dimensions (3D) and manipulated in real-time while under direct observation. Here, we impose controlled experiments using these multiple 3D optical traps to show the alteration of growth patterns in mixed cultures of Saccharomyces cerevisiae and Hanseniaspora uvarum experiencing spatially constrained conditions.

  18. Pannexin-1 influences peritoneal cavity cell population but is not involved in NLRP3 inflammasome activation.

    PubMed

    Wang, Hongbin; Xing, Yue; Mao, Liming; Luo, Yi; Kang, Lishan; Meng, Guangxun

    2013-04-01

    Pannexin-1 (Panx1) forms nonselective large channel in cell plasma membrane and has been shown to be associated with NLRP3 inflammasome activation, ATP release and phagocytes recruitment. In the current study, by manipulation of Panx1 expression in human myeloid cells and application of Panx1 deficient mice, we failed to find a correlation between Panx1 and NLRP3 inflammasome activation, although an interaction between these two proteins was evident. However, in thioglycollate induced peritonitis, Panx1 deficient mice showed much more phagocytes infiltration. Further analyses showed that mice deficient for Panx1 exhibited enlarged F4/80(low)Gr1(-)Ly6C(-)cell population in the peritonea. Our study thus reveals an important role for Panx1 in regulation of peritoneal cell population and peritonitis development.

  19. Normalizing for individual cell population context in the analysis of high-content cellular screens

    PubMed Central

    2011-01-01

    Background High-content, high-throughput RNA interference (RNAi) offers unprecedented possibilities to elucidate gene function and involvement in biological processes. Microscopy based screening allows phenotypic observations at the level of individual cells. It was recently shown that a cell's population context significantly influences results. However, standard analysis methods for cellular screens do not currently take individual cell data into account unless this is important for the phenotype of interest, i.e. when studying cell morphology. Results We present a method that normalizes and statistically scores microscopy based RNAi screens, exploiting individual cell information of hundreds of cells per knockdown. Each cell's individual population context is employed in normalization. We present results on two infection screens for hepatitis C and dengue virus, both showing considerable effects on observed phenotypes due to population context. In addition, we show on a non-virus screen that these effects can be found also in RNAi data in the absence of any virus. Using our approach to normalize against these effects we achieve improved performance in comparison to an analysis without this normalization and hit scoring strategy. Furthermore, our approach results in the identification of considerably more significantly enriched pathways in hepatitis C virus replication than using a standard analysis approach. Conclusions Using a cell-based analysis and normalization for population context, we achieve improved sensitivity and specificity not only on a individual protein level, but especially also on a pathway level. This leads to the identification of new host dependency factors of the hepatitis C and dengue viruses and higher reproducibility of results. PMID:22185194

  20. Ab initio phenomenological simulation of the growth of large tumor cell populations

    NASA Astrophysics Data System (ADS)

    Chignola, Roberto; DelFabbro, Alessio; Dalla Pellegrina, Chiara; Milotti, Edoardo

    2007-06-01

    In a previous paper we have introduced a phenomenological model of cell metabolism and of the cell cycle to simulate the behavior of large tumor cell populations (Chignola and Milotti 2005 Phys. Biol. 2 8). Here we describe a refined and extended version of the model that includes some of the complex interactions between cells and their surrounding environment. The present version takes into consideration several additional energy-consuming biochemical pathways such as protein and DNA synthesis, the tuning of extracellular pH and of the cell membrane potential. The control of the cell cycle, which was previously modeled by means of ad hoc thresholds, has been directly addressed here by considering checkpoints from proteins that act as targets for phosphorylation on multiple sites. As simulated cells grow, they can now modify the chemical composition of the surrounding environment which in turn acts as a feedback mechanism to tune cell metabolism and hence cell proliferation: in this way we obtain growth curves that match quite well those observed in vitro with human leukemia cell lines. The model is strongly constrained and returns results that can be directly compared with actual experiments, because it uses parameter values in narrow ranges estimated from experimental data, and in perspective we hope to utilize it to develop in silico studies of the growth of very large tumor cell populations (106 cells or more) and to support experimental research. In particular, the program is used here to make predictions on the behavior of cells grown in a glucose-poor medium: these predictions are confirmed by experimental observation.

  1. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles

    PubMed Central

    Ono, Yusuke; Boldrin, Luisa; Knopp, Paul; Morgan, Jennifer E.; Zammit, Peter S.

    2010-01-01

    Skeletal muscles of body and limb are derived from somites, but most head muscles originate from cranial mesoderm. The resident stem cells of muscle are satellite cells, which have the same embryonic origin as the muscle in which they reside. Here, we analysed satellite cells with a different ontology, comparing those of the extensor digitorum longus (EDL) of the limb with satellite cells from the masseter of the head. Satellite cell-derived myoblasts from MAS and EDL muscles had distinct gene expression profiles and masseter cells usually proliferated more and differentiated later than those from EDL. When transplanted, however, masseter-derived satellite cells regenerated limb muscles as efficiently as those from EDL. Clonal analysis showed that functional properties differed markedly between satellite cells: ranging from clones that proliferated extensively and gave rise to both differentiated and self-renewed progeny, to others that divided minimally before differentiating completely. Generally, masseter-derived clones were larger and took longer to differentiate than those from EDL. This distribution in cell properties was preserved in both EDL-derived and masseter-derived satellite cells from old mice, although clones were generally less proliferative. Satellite cells, therefore, are a functionally heterogeneous population, with many occupants of the niche exhibiting stem cell characteristics in both somite-derived and branchiomeric muscles. PMID:19835858

  2. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles.

    PubMed

    Ono, Yusuke; Boldrin, Luisa; Knopp, Paul; Morgan, Jennifer E; Zammit, Peter S

    2010-01-01

    Skeletal muscles of body and limb are derived from somites, but most head muscles originate from cranial mesoderm. The resident stem cells of muscle are satellite cells, which have the same embryonic origin as the muscle in which they reside. Here, we analysed satellite cells with a different ontology, comparing those of the extensor digitorum longus (EDL) of the limb with satellite cells from the masseter of the head. Satellite cell-derived myoblasts from MAS and EDL muscles had distinct gene expression profiles and masseter cells usually proliferated more and differentiated later than those from EDL. When transplanted, however, masseter-derived satellite cells regenerated limb muscles as efficiently as those from EDL. Clonal analysis showed that functional properties differed markedly between satellite cells: ranging from clones that proliferated extensively and gave rise to both differentiated and self-renewed progeny, to others that divided minimally before differentiating completely. Generally, masseter-derived clones were larger and took longer to differentiate than those from EDL. This distribution in cell properties was preserved in both EDL-derived and masseter-derived satellite cells from old mice, although clones were generally less proliferative. Satellite cells, therefore, are a functionally heterogeneous population, with many occupants of the niche exhibiting stem cell characteristics in both somite-derived and branchiomeric muscles.

  3. Threshold effect of growth rate on population variability of Escherichia coli cell lengths

    PubMed Central

    2017-01-01

    A long-standing question in biology is the effect of growth on cell size. Here, we estimate the effect of Escherichia coli growth rate (r) on population cell size distributions by estimating the coefficient of variation of cell lengths (CVL) from image analysis of fixed cells in DIC microscopy. We find that the CVL is constant at growth rates less than one division per hour, whereas above this threshold, CVL increases with an increase in the growth rate. We hypothesize that stochastic inhibition of cell division owing to replication stalling by a RecA-dependent mechanism, combined with the growth rate threshold of multi-fork replication (according to Cooper and Helmstetter), could form the basis of such a threshold effect. We proceed to test our hypothesis by increasing the frequency of stochastic stalling of replication forks with hydroxyurea (HU) treatment and find that cell length variability increases only when the growth rate exceeds this threshold. The population effect is also reproduced in single-cell studies using agar-pad cultures and ‘mother machine’-based experiments to achieve synchrony. To test the role of RecA, critical for the repair of stalled replication forks, we examine the CVL of E. coli ΔrecA cells. We find cell length variability in the mutant to be greater than wild-type, a phenotype that is rescued by plasmid-based RecA expression. Additionally, we find that RecA-GFP protein recruitment to nucleoids is more frequent at growth rates exceeding the growth rate threshold and is further enhanced on HU treatment. Thus, we find growth rates greater than a threshold result in increased E. coli cell lengths in the population, and this effect is, at least in part, mediated by RecA recruitment to the nucleoid and stochastic inhibition of division. PMID:28386413

  4. Simultaneous electromagnetically induced transparency for two circularly polarized lasers coupled to the same linearly polarized laser in a four-level atomic system in the W scheme

    SciTech Connect

    Bahrim, Cristian; Nelson, Chris

    2011-03-15

    Electromagnetic induced transparency (EIT) can be produced in a four-level atomic system in the W scheme using a linearly polarized optical field for simultaneously slowing down two {sigma}{sup +} and {sigma}{sup -} circularly polarized optical fields. This four-level atomic system can be set up with a |{sup 1}S{sub 0}> ground state and three Zeeman levels of the |{sup 1}P{sub 1}> excited state of any alkali-metal atom placed in a weak magnetic field. We apply our W scheme to ultracold magnesium atoms for neglecting the collisional dephasing. Atomic coherences are reported after solving a density matrix master equation including radiative relaxations from Zeeman states of the |{sup 1}P{sub 1}> multiplet to the |{sup 1}S{sub 0}> ground state. The EIT feature is analyzed using the transit time between the normal dispersive region and the EIT region. The evolution of the EIT feature with the variation of the coupling field is discussed using an intuitive dressed-state representation. We analyze the sensitivity of an EIT feature to pressure broadening of the excited Zeeman states.

  5. Incoherent control of Goos-Hänchen shifts in a four-level InGaN/GaN quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Solookinejad, G.; Panahi, M.; Ahmadi Sangachin, E.; Asadpour, Seyyed Hossein

    2016-04-01

    In this paper, we propose a new configuration for manipulating Goos-Hänchen (GH) shifts in reflected and transmitted probe beams in a fixed geometrical scheme with a confined four-level InGaN/GaN quantum dot nanostructure. Here, the four-level quantum dot nanostructure is driven by a weak probe light, a coherent coupling field, and two broadband polarized fields that serve as the incoherent pumping fields. We theoretically show that by modulation of the external coupling field, incoherent pumping rates, and detuning of the probe light, the GH shifts in the reflected and transmitted probe light can be controlled. Our results show that enhanced GH shifts of reflected and transmitted probe beams can be obtained by simultaneous use of incoherent pumping rates and detuning of the probe light. Moreover, we find that the GH shifts in both reflected and transmitted probe beams can be negative or positive at certain angles of the incident probe field. Thus, these results may provide some new possibilities for technological applications in all-optical systems based on nanostructure devices.

  6. Revisiting the four-level inverted-Y system under both Doppler-free and Doppler-broadened conditions: an analytical approach

    NASA Astrophysics Data System (ADS)

    Ghosh, Arindam; Islam, Khairul; Bhattacharyya, Dipankar; Bandyopadhyay, Amitava

    2016-10-01

    We report the occurrence of electromagnetically induced transparency (EIT) in the simulated probe response signal for a four-level inverted-Y type system that is being acted upon by a weak coherent probe field, a strong coherent pump field and a coherent repump field. There are two ground energy levels, one intermediate energy level and one uppermost energy level. The weak probe field couples the lowest ground level to the intermediate level whereas the repump field connects the other ground level with the intermediate level. The strong control field couples the intermediate level with the uppermost energy level, thereby forming an inverted-Y type system. The density matrix based theoretical model has been developed and solved analytically for this four-level system and the probe response signal has been simulated at different values of the control and repump Rabi frequencies, control and repump frequency detunings and under both Doppler-free and Doppler-broadened conditions using the parameters of 87Rb D2 transition. Extremely low line width (few tens of kHz) for the EIT signal has been noticed under thermal averaging for copropagating probe, control and repump field configuration. The EIT signal is found to be immune to the variation in the control Rabi frequency.

  7. Melanopsin‐expressing ganglion cells on macaque and human retinas form two morphologically distinct populations

    PubMed Central

    Liao, Hsi‐Wen; Ren, Xiaozhi; Peterson, Beth B.; Marshak, David W.; Yau, King‐Wai; Gamlin, Paul D.

    2016-01-01

    ABSTRACT The long‐term goal of this research is to understand how retinal ganglion cells that express the photopigment melanopsin, also known as OPN4, contribute to vision in humans and other primates. Here we report the results of anatomical studies using our polyclonal antibody specifically against human melanopsin that confirm and extend previous descriptions of melanopsin cells in primates. In macaque and human retina, two distinct populations of melanopsin cells were identified based on dendritic stratification in either the inner or the outer portion of the inner plexiform layer (IPL). Variation in dendritic field size and cell density with eccentricity was confirmed, and dendritic spines, a new feature of melanopsin cells, were described. The spines were the sites of input from DB6 diffuse bipolar cell axon terminals to the inner stratifying type of melanopsin cells. The outer stratifying melanopsin type received inputs from DB6 bipolar cells via a sparse outer axonal arbor. Outer stratifying melanopsin cells also received inputs from axon terminals of dopaminergic amacrine cells. On the outer stratifying melanopsin cells, ribbon synapses from bipolar cells and conventional synapses from amacrine cells were identified in electron microscopic immunolabeling experiments. Both inner and outer stratifying melanopsin cell types were retrogradely labeled following tracer injection in the lateral geniculate nucleus (LGN). In addition, a method for targeting melanopsin cells for intracellular injection using their intrinsic fluorescence was developed. This technique was used to demonstrate that melanopsin cells were tracer coupled to amacrine cells and would be applicable to electrophysiological experiments in the future. J. Comp. Neurol. 524:2845–2872, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. PMID:26972791

  8. Melanopsin-expressing ganglion cells on macaque and human retinas form two morphologically distinct populations.

    PubMed

    Liao, Hsi-Wen; Ren, Xiaozhi; Peterson, Beth B; Marshak, David W; Yau, King-Wai; Gamlin, Paul D; Dacey, Dennis M

    2016-10-01

    The long-term goal of this research is to understand how retinal ganglion cells that express the photopigment melanopsin, also known as OPN4, contribute to vision in humans and other primates. Here we report the results of anatomical studies using our polyclonal antibody specifically against human melanopsin that confirm and extend previous descriptions of melanopsin cells in primates. In macaque and human retina, two distinct populations of melanopsin cells were identified based on dendritic stratification in either the inner or the outer portion of the inner plexiform layer (IPL). Variation in dendritic field size and cell density with eccentricity was confirmed, and dendritic spines, a new feature of melanopsin cells, were described. The spines were the sites of input from DB6 diffuse bipolar cell axon terminals to the inner stratifying type of melanopsin cells. The outer stratifying melanopsin type received inputs from DB6 bipolar cells via a sparse outer axonal arbor. Outer stratifying melanopsin cells also received inputs from axon terminals of dopaminergic amacrine cells. On the outer stratifying melanopsin cells, ribbon synapses from bipolar cells and conventional synapses from amacrine cells were identified in electron microscopic immunolabeling experiments. Both inner and outer stratifying melanopsin cell types were retrogradely labeled following tracer injection in the lateral geniculate nucleus (LGN). In addition, a method for targeting melanopsin cells for intracellular injection using their intrinsic fluorescence was developed. This technique was used to demonstrate that melanopsin cells were tracer coupled to amacrine cells and would be applicable to electrophysiological experiments in the future. J. Comp. Neurol. 524:2845-2872, 2016. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc. © 2016 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.

  9. TRIM28 multi-domain protein regulates cancer stem cell population in breast tumor development

    PubMed Central

    Czerwińska, Patrycja; Shah, Parantu K.; Tomczak, Katarzyna; Klimczak, Marta; Mazurek, Sylwia; Sozańska, Barbara; Biecek, Przemysław; Korski, Konstanty; Filas, Violetta; Mackiewicz, Andrzej; Andersen, Jannik N.; Wiznerowicz, Maciej

    2017-01-01

    The expression of Tripartite motif-containing protein 28 (TRIM28)/Krüppel-associated box (KRAB)-associated protein 1 (KAP1), is elevated in at least 14 tumor types, including solid and hematopoietic tumors. High level of TRIM28 is associated with triple-negative subtype of breast cancer (TNBC), which shows higher aggressiveness and lower survival rates. Interestingly, TRIM28 is essential for maintaining the pluripotent phenotype in embryonic stem cells. Following on that finding, we evaluated the role of TRIM28 protein in the regulation of breast cancer stem cells (CSC) populations and tumorigenesis in vitro and in vivo. Downregulation of TRIM28 expression in xenografts led to deceased expression of pluripotency and mesenchymal markers, as well as inhibition of signaling pathways involved in the complex mechanism of CSC maintenance. Moreover, TRIM28 depletion reduced the ability of cancer cells to induce tumor growth when subcutaneously injected in limiting dilutions. Our data demonstrate that the downregulation of TRIM28 gene expression reduced the ability of CSCs to self-renew that resulted in significant reduction of tumor growth. Loss of function of TRIM28 leads to dysregulation of cell cycle, cellular response to stress, cancer cell metabolism, and inhibition of oxidative phosphorylation. All these mechanisms directly regulate maintenance of CSC population. Our original results revealed the role of the TRIM28 in regulating the CSC population in breast cancer. These findings may pave the way to novel and more effective therapies targeting cancer stem cells in breast tumors. PMID:27845900

  10. Increased autophagic response in a population of metastatic breast cancer cells.

    PubMed

    Li, Y I; Libby, Emily Falk; Lewis, Monica J; Liu, Jianzhong; Shacka, John J; Hurst, Douglas R

    2016-07-01

    Breast cancer cells are heterogeneous in their ability to invade and fully metastasize, and thus also in their capacity to survive the numerous stresses encountered throughout the multiple steps of the metastatic cascade. Considering the role of autophagy as a survival response to stress, the present study hypothesized that distinct populations of breast cancer cells may possess an altered autophagic capacity that influences their metastatic potential. It was observed that a metastatic breast cancer cell line, MDA-MB-231, that was sensitive to autophagic induction additionally possessed the ability to proliferate following nutrient deprivation. Furthermore, a selected subpopulation of these cells that survived multiple exposures to starvation conditions demonstrated a heightened response to autophagic induction compared to their parent cells. Although this subpopulation maintained a more grape-like pattern in three-dimensional culture compared to the extended spikes of the parent population, autophagic induction in this subpopulation elicited an invasive phenotype with extended spikes. Taken together, these results suggest that autophagic induction may contribute to the ability of distinct breast cancer cell populations to survive and invade.

  11. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells

    PubMed Central

    Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic

    2015-01-01

    A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated. PMID:26274954

  12. Detecting Antigen-Specific T Cell Responses: From Bulk Populations to Single Cells.

    PubMed

    Phetsouphanh, Chansavath; Zaunders, John James; Kelleher, Anthony Dominic

    2015-08-12

    A new generation of sensitive T cell-based assays facilitates the direct quantitation and characterization of antigen-specific T cell responses. Single-cell analyses have focused on measuring the quality and breadth of a response. Accumulating data from these studies demonstrate that there is considerable, previously-unrecognized, heterogeneity. Standard assays, such as the ICS, are often insufficient for characterization of rare subsets of cells. Enhanced flow cytometry with imaging capabilities enables the determination of cell morphology, as well as the spatial localization of the protein molecules within a single cell. Advances in both microfluidics and digital PCR have improved the efficiency of single-cell sorting and allowed multiplexed gene detection at the single-cell level. Delving further into the transcriptome of single-cells using RNA-seq is likely to reveal the fine-specificity of cellular events such as alternative splicing (i.e., splice variants) and allele-specific expression, and will also define the roles of new genes. Finally, detailed analysis of clonally related antigen-specific T cells using single-cell TCR RNA-seq will provide information on pathways of differentiation of memory T cells. With these state of the art technologies the transcriptomics and genomics of Ag-specific T cells can be more definitively elucidated.

  13. Increasing magnetite contents of polymeric magnetic particles dramatically improves labeling of neural stem cell transplant populations.

    PubMed

    Adams, Christopher F; Rai, Ahmad; Sneddon, Gregor; Yiu, Humphrey H P; Polyak, Boris; Chari, Divya M

    2015-01-01

    Safe and efficient delivery of therapeutic cells to sites of injury/disease in the central nervous system is a key goal for the translation of clinical cell transplantation therapies. Recently, 'magnetic cell localization strategies' have emerged as a promising and safe approach for targeted delivery of magnetic particle (MP) labeled stem cells to pathology sites. For neuroregenerative applications, this approach is limited by the lack of available neurocompatible MPs, and low cell labeling achieved in neural stem/precursor populations. We demonstrate that high magnetite content, self-sedimenting polymeric MPs [unfunctionalized poly(lactic acid) coated, without a transfecting component] achieve efficient labeling (≥90%) of primary neural stem cells (NSCs)-a 'hard-to-label' transplant population of major clinical relevance. Our protocols showed high safety with respect to key stem cell regenerative parameters. Critically, labeled cells were effectively localized in an in vitro flow system by magnetic force highlighting the translational potential of the methods used. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Differential Clonal Expansion in an Invading Cell Population: Clonal Advantage or Dumb Luck?

    PubMed

    Newgreen, Donald F; Zhang, Dongcheng; Cheeseman, Bevan L; Binder, Benjamin J; Landman, Kerry A

    2017-01-01

    In neoplastic cell growth, clones and subclones are variable both in size and mutational spectrum. The largest of these clones are believed to represent those cells with mutations that make them the most "fit," in a Darwinian sense, for expansion in their microenvironment. Thus, the degree of quantitative clonal expansion is regarded as being determined by innate qualitative differences between the cells that originate each clone. Here, using a combination of mathematical modelling and clonal labelling experiments applied to the developmental model system of the forming enteric nervous system, we describe how cells which are qualitatively identical may consistently produce clones of dramatically different sizes: most clones are very small while a few clones we term "superstars" contribute most of the cells to the final population. The basis of this is minor stochastic variations ("luck") in the timing and direction of movement and proliferation of individual cells, which builds a local advantage for daughter cells that is cumulative. This has potentially important consequences. In cancers, especially before strongly selective cytotoxic therapy, the assumption that the largest clones must be the cells with deterministic proliferative ability may not always hold true. In development, the gradual loss of clonal diversity as "superstars" take over the population may erode the resilience of the system to somatic mutations, which may have occurred early in clonal growth.

  15. The epidermis comprises autonomous compartments maintained by distinct stem cell populations.

    PubMed

    Page, Mahalia E; Lombard, Patrick; Ng, Felicia; Göttgens, Berthold; Jensen, Kim B

    2013-10-03

    The complex anatomy of the epidermis contains multiple adult stem cell populations, but the extent to which they functionally overlap during homeostasis, wound healing, and tumor initiation remains poorly defined. Here, we demonstrate that Lrig1(+ve) cells are highly proliferative epidermal stem cells. Long-term clonal analysis reveals that Lrig1(+ve) cells maintain the upper pilosebaceous unit, containing the infundibulum and sebaceous gland as independent compartments, but contribute to neither the hair follicle nor the interfollicular epidermis, which are maintained by distinct stem cell populations. In contrast, upon wounding, stem cell progeny from multiple compartments acquire lineage plasticity and make permanent contributions to regenerating tissue. We further show that oncogene activation in Lrig1(+ve) cells drives hyperplasia but requires auxiliary stimuli for tumor formation. In summary, our data demonstrate that epidermal stem cells are lineage restricted during homeostasis and suggest that compartmentalization may constitute a conserved mechanism underlying epithelial tissue maintenance. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Biliary glycoprotein (BGP) expression on T cells and on a natural-killer-cell sub-population.

    PubMed

    Moller, M J; Kammerer, R; Grunert, F; von Kleist, S

    1996-03-15

    Human T and natural-killer (NK) cells, that are thought to be the major cytotoxic effector-cell populations in the defence against neoplastic cells, were isolated from blood and decidua in order to analyze their expression of carcinoembronic-antigen-(CEA)-family-member proteins. Biliary glycoprotein (BGP,CD66a) was the only member of the carcinoembryonic antigen family detected. While freshly isolated T-cells expressed low amounts of BGP, freshly isolated NK cells were negative. After in vitro stimulation for 3 days, T cells up-regulated their BGP expression and a sub-group of NK cells (CD16- CD56+), known to predominate in decidua revealed de novo expression of BGP. In contrast, stimulated CD16+ CD56+ NK cells, which occur exclusively in the blood, remained negative. The expression of BGP could be shown on the protein level by using a panel of 12 well-defined MAbs and on the transcription level in rt-PCR and subsequent oligonucleotide hybridization. Interestingly, rIL-2-stimulated T cells expressed 3-fold higher levels of BGP compared with those seen after stimulation with phytohemagglutinin (PHA). PHA, on the other hand, induced a higher expression of HLA-DR, an activation marker of T cells. The differential regulation implies a distinct function of BGP and HLA-DR.

  17. Killer cell immunoglobulin-like receptor (KIR) locus profiles in the Tunisian population.

    PubMed

    Meriem, Bani; Jihen, Seket; Houda, Kaabi; Ghaya, Cherif; Manel, Chaabane; Hedi, Bellali; Slama, Hmida

    2015-05-01

    Killer cell immunoglobulin-like receptors (KIRs) are a family of inhibitory and activatory receptors that are expressed by most natural killer (NK) cells. The KIR gene family is polymorphic: genomic diversity is achieved through differences in gene content and allelic polymorphism. The number of KIR loci has been reported to vary among individuals, resulting in different KIR haplotypes. In this study we report the genotypic structure of KIRs in 267 unrelated and healthy Tunisian subjects by polymerase chain reaction-sequence-specific primer (PCR-SSP) method. All 16 KIR genes were observed in the population with different frequencies; framework genes KIR3DP1 and KIR3DL2 and the nonframework genes KIR2DL1 and KIR2DP1 were present in all individuals. A total of 26 different KIR gene profiles and 54 subgenotypes were observed in the tested population samples. Genotype 1, with a frequency of 36.6%, is the most commonly observed in the Tunisian population. Our results showed that the Tunisian population possesses the previously reported general features of the Caucasian as well as African populations, with some additional interesting differences. Such knowledge of the KIR gene distribution in populations is very useful in the study of associations with diseases and in selection of donors for haploidentical bone marrow transplantation.

  18. Oral Squamous Cell Carcinoma Mutational Profile in Taiwanese Population | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    Oral squamous cell carcinoma (OSCC) is a major oral cancer subtype that is the fourth most common cancer affecting Taiwanese men. Despite known risk behaviors such as cigarette smoking, alcohol drinking, and betel nut chewing often indulged by Taiwanese men, the genetic contribution to the incidence or progression of OSCC has yet been elucidated in the Taiwanese population.

  19. Numerically exploring habitat fragmentation effects on populations using cell-based coupled map lattices

    Treesearch

    Michael Bevers; Curtis H. Flather

    1999-01-01

    We examine habitat size, shape, and arrangement effects on populations using a discrete reaction-diffusion model. Diffusion is modeled passively and applied to a cellular grid of territories forming a coupled map lattice. Dispersal mortality is proportional to the amount of nonhabitat and fully occupied habitat surrounding a given cell, with distance decay. After...

  20. Single-cell analysis reveals a nestin+ tendon stem/progenitor cell population with strong tenogenic potentiality

    PubMed Central

    Yin, Zi; Hu, Jia-jie; Yang, Long; Zheng, Ze-Feng; An, Cheng-rui; Wu, Bing-bing; Zhang, Can; Shen, Wei-Liang; Liu, Huan-huan; Chen, Jia-lin; Heng, Boon Chin; Guo, Guo-ji; Chen, Xiao; Ouyang, Hong-Wei

    2016-01-01

    The repair of injured tendons remains a formidable clinical challenge because of our limited understanding of tendon stem cells and the regulation of tenogenesis. With single-cell analysis to characterize the gene expression profiles of individual cells isolated from tendon tissue, a subpopulation of nestin+ tendon stem/progenitor cells (TSPCs) was identified within the tendon cell population. Using Gene Expression Omnibus datasets and immunofluorescence assays, we found that nestin expression was activated at specific stages of tendon development. Moreover, isolated nestin+ TSPCs exhibited superior tenogenic capacity compared to nestin− TSPCs. Knockdown of nestin expression in TSPCs suppressed their clonogenic capacity and reduced their tenogenic potential significantly both in vitro and in vivo. Hence, these findings provide new insights into the identification of subpopulations of TSPCs and illustrate the crucial roles of nestin in TSPC fate decisions and phenotype maintenance, which may assist in future therapeutic strategies to treat tendon disease. PMID:28138519

  1. Temporal patterns of cortical proliferation of glial cell populations after traumatic brain injury in mice

    PubMed Central

    Susarla, Bala T.S.; Villapol, Sonia; Yi, Jae-Hyuk; Geller, Herbert M.; Symes, Aviva J.

    2014-01-01

    TBI (traumatic brain injury) triggers an inflammatory cascade, gliosis and cell proliferation following cell death in the pericontusional area and surrounding the site of injury. In order to better understand the proliferative response following CCI (controlled cortical impact) injury, we systematically analyzed the phenotype of dividing cells at several time points post-lesion. C57BL/6 mice were subjected to mild to moderate CCI over the left sensory motor cortex. At different time points following injury, mice were injected with BrdU (bromodeoxyuridine) four times at 3-h intervals and then killed. The greatest number of proliferating cells in the pericontusional region was detected at 3 dpi (days post-injury). At 1 dpi, NG2+ cells were the most proliferative population, and at 3 and 7 dpi the Iba-1+ microglial cells were proliferating more. A smaller, but significant number of GFAP+ (glial fibrillary acidic protein) astrocytes proliferated at all three time points. Interestingly, at 3 dpi we found a small number of proliferating neuroblasts [DCX+ (doublecortin)] in the injured cortex. To determine the cell fate of proliferative cells, mice were injected four times with BrdU at 3 dpi and killed at 28 dpi. Approximately 70% of proliferative cells observed at 28 dpi were GFAP+ astrocytes. In conclusion, our data suggest that the specific glial cell types respond differentially to injury, suggesting that each cell type responds to a specific pattern of growth factor stimulation at each time point after injury. PMID:24670035

  2. Fundamental trade-offs between information flow in single cells and cellular populations.

    PubMed

    Suderman, Ryan; Bachman, John A; Smith, Adam; Sorger, Peter K; Deeds, Eric J

    2017-05-30

    Signal transduction networks allow eukaryotic cells to make decisions based on information about intracellular state and the environment. Biochemical noise significantly diminishes the fidelity of signaling: networks examined to date seem to transmit less than 1 bit of information. It is unclear how networks that control critical cell-fate decisions (e.g., cell division and apoptosis) can function with such low levels of information transfer. Here, we use theory, experiments, and numerical analysis to demonstrate an inherent trade-off between the information transferred in individual cells and the information available to control population-level responses. Noise in receptor-mediated apoptosis reduces information transfer to approximately 1 bit at the single-cell level but allows 3-4 bits of information to be transmitted at the population level. For processes such as eukaryotic chemotaxis, in which single cells are the functional unit, we find high levels of information transmission at a single-cell level. Thus, low levels of information transfer are unlikely to represent a physical limit. Instead, we propose that signaling networks exploit noise at the single-cell level to increase population-level information transfer, allowing extracellular ligands, whose levels are also subject to noise, to incrementally regulate phenotypic changes. This is particularly critical for discrete changes in fate (e.g., life vs. death) for which the key variable is the fraction of cells engaged. Our findings provide a framework for rationalizing the high levels of noise in metazoan signaling networks and have implications for the development of drugs that target these networks in the treatment of cancer and other diseases.

  3. A Retrospective Analysis of Oral Langerhans Cell Histiocytosis in an Iranian Population: a 20-year Evaluation

    PubMed Central

    Atarbashi Moghadam, Saede; Lotfi, Ali; Piroozhashemi, Batool; Mokhtari, Sepideh

    2015-01-01

    Statement of the Problem Langerhans cell histiocytosis is a rare disease with unknown pathogenesis and is characterized by local or disseminated proliferation of Langerhans cells. There is no previous investigation on prevalence of oral Langerhans cell histiocytosis in Iranian population. Purpose The purpose of this study was to assess the relative frequency of oral Langerhans cell histiocytosis in an Iranian population and to compare the data with previous reports. Materials and Method Pathology files of Oral and Maxillofacial Pathology Department of Dental School of Shahid Beheshti University of Medical Sciences from 1992 to 2012 were searched for cases recorded as oral Langerhans cell histiocytosis. A total number of 20 cases were found and the clinical information of patients was recorded. Results The relative frequency of oral Langerhans cell histiocytosis was 0.34% and the most common location was the posterior mandible. In addition, the mean age of patients was 27 years and there was a definite male predominance. Most lesions were localized and tooth mobility was the most common oral presentation. Conclusion In Iranian population as in many other countries, the relative frequency of oral Langerhans cell histiocytosis is low. Moreover, tooth mobility and periodontal lesions are the frequent early signs of disease. Therefore, in patients with periodontal problems, good oral health, and no response to the treatment; Langerhans cell histiocytosis must be considered. Additionally, although most cases of oral Langerhans cell histiocytosis are localized, systemic involvement must also be considered and dental professionals have an important role in early detection of the disease. PMID:26535408

  4. Cell Differentiation in a Bacillus thuringiensis Population during Planktonic Growth, Biofilm Formation, and Host Infection.

    PubMed

    Verplaetse, Emilie; Slamti, Leyla; Gohar, Michel; Lereclus, Didier

    2015-04-28

    Bacillus thuringiensis (Bt) is armed to complete a full cycle in its insect host. During infection, virulence factors are expressed under the control of the quorum sensor PlcR to kill the host. After the host's death, the quorum sensor NprR controls a necrotrophic lifestyle, allowing the vegetative cells to use the insect cadaver as a bioincubator and to survive. Only a part of the Bt population sporulates in the insect cadaver, and the precise composition of the whole population and its evolution over time are unknown. Using fluorescent reporters to record gene expression at the single-cell level, we have determined the differentiation course of a Bt population and explored the lineage existing among virulent, necrotrophic, and sporulating cells. The dynamics of cell differentiation were monitored during growth in homogenized medium, biofilm formation, and colonization of insect larvae. We demonstrated that in the insect host and in planktonic culture in rich medium, the virulence, necrotrophism, and sporulation regulators are successively activated in the same cell. In contrast, in biofilms, activation of PlcR is dispensable for NprR activation and we observed a greater heterogeneity than under the other two growth conditions. We also showed that sporulating cells arise almost exclusively from necrotrophic cells. In biofilm and in the insect cadaver, we identified an as-yet-uncharacterized category of cells that do not express any of the reporters used. Overall, we showed that PlcR, NprR, and Spo0A act as interconnected integrators to allow finely tuned adaptation of the pathogen to its environment. Bt is an entomopathogen found ubiquitously in the environment and is a widely used biopesticide. Studies performed at the population level suggest that the infection process of Bt includes three successive steps (virulence, necrotrophism, and sporulation) controlled by different regulators. This study aimed to determine how these phenotypes are activated at the

  5. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    PubMed

    Moyer, Bryan D; Hevezi, Peter; Gao, Na; Lu, Min; Kalabat, Dalia; Soto, Hortensia; Echeverri, Fernando; Laita, Bianca; Yeh, Shaoyang Anthony; Zoller, Mark; Zlotnik, Albert

    2009-12-04

    Using fungiform (FG) and circumvallate (CV) taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive), sour cells (PKD2L1-positive), as well as other taste cell populations. Transmembrane protein 44 (TMEM44), a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1), a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1), a calcium-binding transmembrane protein; and anoctamin 7 (ANO7), a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B), a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. Identification of genes encoding multi-transmembrane domain proteins expressed in primate taste buds provides new insights into the processes of taste cell

  6. Expression of Genes Encoding Multi-Transmembrane Proteins in Specific Primate Taste Cell Populations

    PubMed Central

    Gao, Na; Lu, Min; Kalabat, Dalia; Soto, Hortensia; Echeverri, Fernando; Laita, Bianca; Yeh, Shaoyang Anthony; Zoller, Mark; Zlotnik, Albert

    2009-01-01

    Background Using fungiform (FG) and circumvallate (CV) taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. Methodology/Principal Findings Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive), sour cells (PKD2L1-positive), as well as other taste cell populations. Transmembrane protein 44 (TMEM44), a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1), a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1), a calcium-binding transmembrane protein; and anoctamin 7 (ANO7), a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B), a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. Conclusions/Significance Identification of genes encoding multi-transmembrane domain proteins expressed in primate

  7. Murine peripheral NK-cell populations originate from site-specific immature NK cells more than from BM-derived NK cells.

    PubMed

    Pinhas, Nissim; Sternberg-Simon, Michal; Chiossone, Laura; Shahaf, Gitit; Walzer, Thierry; Vivier, Eric; Mehr, Ramit

    2016-05-01

    Murine NK cells can be divided by the expression of two cell surface markers, CD27 and Mac-1 (a.k.a. CD11b), into four separate subsets. These subsets suggest a linear development model: CD27(-) Mac-1(-) → CD27(+) Mac-1(-) → CD27(+) Mac-1(+) → CD27(-) Mac-1(+) . Here, we used a combination of BrdU labeling experiments and mathematical modeling to gain insights regarding NK-cell development in mouse bone marrow (BM), spleen and liver. The modeling results that best fit the experimental data show that the majority of NK cells already express CD27 upon entering the NK-cell developmental pathway. Additionally, only a small fraction of NK cells exit the BM to other sites, suggesting that peripheral NK-cell populations originate from site-specific immature NK cells more than from BM-derived mature NK cells.

  8. Malignant behaviorial characteristics of CD133(+/-) glioblastoma cells from a Northern Chinese population.

    PubMed

    Liu, Xiaozhi; Chen, Lei; Jiang, Zhongmin; Wang, Junfei; Su, Zhiguo; Li, Gang; Yu, Shizhu; Liu, Zhenlin

    2013-01-01

    Following emergence of the tumor stem cell theory, the increasing number of related studies demonstrates the theory's growing importance in cancer research and its potential for clinical applications. Few studies have addressed the in vitro or in vivo properties of glioma stem cells from a Han Chinese population. In the present study, surgically obtained glioblastoma tissue was classified into two subtypes, CD133(+) and CD133(-). The hierarchy, invasiveness, growth tolerance under low nutrient conditions and colony forming abilities of the tissue samples were analyzed. Additionally, the characteristics of tumor cells transplanted subcutaneously or re-transplanted into nude mice were observed. The results demonstrated that CD133(+) glioblastoma cells derived from Han Chinese glioma specimens were more prone to primitive cell differentiation and more invasive than CD133(-) glioblastoma cells, leading to increased tumor malignancy compared with CD133(-) cells. The tumor formation rates of CD133(+) and CD133(-) cells in mice were 26/30 and 2/30, respectively. A comparison of tumor subtypes demonstrated that CD133(+) glioblastoma cells had a lower incidence of cell apoptosis in the tumor tissue and higher protein expression levels of Oct4, Sox2, PCNA, EGFR, Ang2, MMP2 and MMP9 compared with CD133(-) cells. Flow cytometry revealed that in the CD133(+) and CD133(-) glioblastoma cell-induced tumors, the percentage of CD133(+) cells was 2.47±0.67 and 0.44±0.14%, respectively. The tumor formation rates following the re-transplantation of CD133(+) or CD133(-) tumors into nude mice were 10/10 and 4/10, respectively. These findings suggest that the CD133(+) glioblastoma cell subpopulation has a stronger malignant cell phenotype than the CD133(-) subpopulation and that its recurrence rate is increased compared with the primitive tumorigenic rate following in vivo transplantation.

  9. Muscle side population cells from dystrophic or injured muscle adopt a fibro-adipogenic fate.

    PubMed

    Penton, Christopher M; Thomas-Ahner, Jennifer M; Johnson, Eric K; McAllister, Cynthia; Montanaro, Federica

    2013-01-01

    Muscle side population (SP) cells are rare multipotent stem cells that can participate in myogenesis and muscle regeneration upon transplantation. While they have been primarily studied for the development of cell-based therapies for Duchenne muscular dystrophy, little is known regarding their non-muscle lineage choices or whether the dystrophic muscle environment affects their ability to repair muscle. Unfortunately, the study of muscle SP cells has been challenged by their low abundance and the absence of specific SP cell markers. To address these issues, we developed culture conditions for the propagation and spontaneous multi-lineage differentiation of muscle SP cells. Using this approach, we show that SP cells from wild type muscle robustly differentiate into satellite cells and form myotubes without requiring co-culture with myogenic cells. Furthermore, this myogenic activity is associated with SP cells negative for immune (CD45) and vascular (CD31) markers but positive for Pax7, Sca1, and the mesenchymal progenitor marker PDGFRα. Additionally, our studies revealed that SP cells isolated from dystrophic or cardiotoxin-injured muscle fail to undergo myogenesis. Instead, these SP cells rapidly expand giving rise to fibroblast and adipocyte progenitors (FAPs) and to their differentiated progeny, fibroblasts and adipocytes. Our findings indicate that muscle damage affects the lineage choices of muscle SP cells, promoting their differentiation along fibro-adipogenic lineages while inhibiting myogenesis. These results have implications for a possible role of muscle SP cells in fibrosis and fat deposition in muscular dystrophy. In addition, our studies provide a useful in vitro system to analyze SP cell biology in both normal and pathological conditions.

  10. A population of mitochondrion-rich cells in the pars recta of mouse kidney.

    PubMed

    Forbes, M S; Thornhill, B A; Galarreta, C I; Chevalier, R L

    2016-03-01

    Following perfusion of adult mouse kidney with a solution of nitroblue tetrazolium (NBT), certain epithelial cells in the pars recta (S3) segments of proximal tubules react to form cytoplasmic deposits of blue diformazan particles. Such cells are characterized by dark cytoplasm, small and often elliptical nuclei, elaborate, process-bearing profiles, and abundant mitochondria. The atypical epithelial cells display the additional characteristic of immunoreactivity for a wide spectrum of antigens, including mesenchymal proteins such as vimentin. Though present in kidneys of untreated or sham-operated animals, they are particularly evident under experimental conditions such as unilateral ureteral obstruction (UUO), appearing in both contralateral and obstructed kidneys over the course of a week's duration, but disappearing from the obstructed kidney as it undergoes the profound atrophy attributable to deterioration of the population of its proximal tubules. The cells do not appear in neonatal kidneys, even those undergoing UUO, but begin to be recognizable soon after weaning (28 days). It is possible that diformazan-positive cells in the mouse S3 tubular segment constitute a resident population of cells that can replenish or augment the tubule. Although somewhat similar cells, with dark cytoplasm and vimentin expression, have been described in human, rat, and transgenic mouse kidney (Smeets et al. in J Pathol 229: 645-659, 2013; Berger et al. in Proc Natl Acad Sci U S A 111: 1533-1538, 2014), those cells-known as "scattered tubule cells" or "proximal tubule rare cells"- differ from the S3-specific cells in that they are present throughout the entire proximal tubule, often lack a brush border, and have only a few mitochondria.

  11. Pituitary tumors contain a side population with tumor stem cell-associated characteristics.

    PubMed

    Mertens, Freya; Gremeaux, Lies; Chen, Jianghai; Fu, Qiuli; Willems, Christophe; Roose, Heleen; Govaere, Olivier; Roskams, Tania; Cristina, Carolina; Becú-Villalobos, Damasia; Jorissen, Mark; Poorten, Vincent Vander; Bex, Marie; van Loon, Johannes; Vankelecom, Hugo

    2015-08-01

    Pituitary adenomas cause significant endocrine and mass-related morbidity. Little is known about the mechanisms that underlie pituitary tumor pathogenesis. In the present study, we searched for a side population (SP) in pituitary tumors representing cells with high efflux capacity and potentially enriched for tumor stem cells (TSCs). Human pituitary adenomas contain a SP irrespective of hormonal phenotype. This adenoma SP, as well as the purified SP (pSP) that is depleted from endothelial and immune cells, is enriched for cells that express 'tumor stemness' markers and signaling pathways, including epithelial-mesenchymal transition (EMT)-linked factors. Pituitary adenomas were found to contain self-renewing sphere-forming cells, considered to be a property of TSCs. These sphere-initiating cells were recovered in the pSP. Because benign pituitary adenomas do not grow in vitro and have failed to expand in immunodeficient mice, the pituitary tumor cell line AtT20 was further used. We identified a SP in this cell line and found it to be more tumorigenic than the non-SP 'main population'. Of the two EMT regulatory pathways tested, the inhibition of chemokine (C-X-C motif) receptor 4 (CXCR4) signaling reduced EMT-associated cell motility in vitro as well as xenograft tumor growth, whereas the activation of TGFβ had no effect. The human adenoma pSP also showed upregulated expression of the pituitary stem cell marker SOX2. Pituitaries from dopamine receptor D2 knockout (Drd2(-/-)) mice that bear prolactinomas contain more pSP, Sox2(+), and colony-forming cells than WT glands. In conclusion, we detected a SP in pituitary tumors and identified TSC-associated characteristics. The present study adds new elements to the unraveling of pituitary tumor pathogenesis and may lead to the identification of new therapeutic targets.

  12. Molecular and functional heterogeneity of early postnatal porcine satellite cell populations is associated with bioenergetic profile.

    PubMed

    Miersch, Claudia; Stange, Katja; Hering, Silvio; Kolisek, Martin; Viergutz, Torsten; Röntgen, Monika

    2017-03-27

    During postnatal development, hyperplastic and hypertrophic processes of skeletal muscle growth depend on the activation, proliferation, differentiation, and fusion of satellite cells (SC). Therefore, molecular and functional SC heterogeneity is an important component of muscle plasticity and will greatly affect long-term growth performance and muscle health. However, its regulation by cell intrinsic and extrinsic factors is far from clear. In particular, there is only minor information on the early postnatal period which is critical for muscle maturation and the establishment of adult SC pools. Here, we separated two SC subpopulations (P40/50, P50/70) from muscle of 4-day-old piglets. Our results characterize P40/50 as homogeneous population of committed (high expression of Myf5), fast-proliferating muscle progenitors. P50/70 constituted a slow-proliferating phenotype and contains high numbers of differentiated SC progeny. During culture, P50/70 is transformed to a population with lower differentiation potential that contains 40% Pax7-positive cells. A reversible state of low mitochondrial activity that results from active down-regulation of ATP-synthase is associated with the transition of some of the P50/70 cells to this more primitive fate typical for a reserve cell population. We assume that P40/50 and P50/70 subpopulations contribute unequally in the processes of myofiber growth and maintenance of the SC pool.

  13. Molecular and functional heterogeneity of early postnatal porcine satellite cell populations is associated with bioenergetic profile

    PubMed Central

    Miersch, Claudia; Stange, Katja; Hering, Silvio; Kolisek, Martin; Viergutz, Torsten; Röntgen, Monika

    2017-01-01

    During postnatal development, hyperplastic and hypertrophic processes of skeletal muscle growth depend on the activation, proliferation, differentiation, and fusion of satellite cells (SC). Therefore, molecular and functional SC heterogeneity is an important component of muscle plasticity and will greatly affect long-term growth performance and muscle health. However, its regulation by cell intrinsic and extrinsic factors is far from clear. In particular, there is only minor information on the early postnatal period which is critical for muscle maturation and the establishment of adult SC pools. Here, we separated two SC subpopulations (P40/50, P50/70) from muscle of 4-day-old piglets. Our results characterize P40/50 as homogeneous population of committed (high expression of Myf5), fast-proliferating muscle progenitors. P50/70 constituted a slow-proliferating phenotype and contains high numbers of differentiated SC progeny. During culture, P50/70 is transformed to a population with lower differentiation potential that contains 40% Pax7-positive cells. A reversible state of low mitochondrial activity that results from active down-regulation of ATP-synthase is associated with the transition of some of the P50/70 cells to this more primitive fate typical for a reserve cell population. We assume that P40/50 and P50/70 subpopulations contribute unequally in the processes of myofiber growth and maintenance of the SC pool. PMID:28344332

  14. Pentoxifylline Inhibits WNT Signalling in β-Cateninhigh Patient-Derived Melanoma Cell Populations

    PubMed Central

    Talar, Beata; Gajos-Michniewicz, Anna; Talar, Marcin; Chouaib, Salem; Czyz, Malgorzata

    2016-01-01

    Background The heterogeneity of melanoma needs to be addressed and combination therapies seem to be necessary to overcome intrinsic and acquired resistance to newly developed immunotherapies and targeted therapies. Although the role of WNT/β-catenin pathway in melanoma was early demonstrated, its contribution to the lack of the melanoma patient response to treatment was only recently recognized. Using patient-derived melanoma cell populations, we investigated the influence of pentoxifylline on melanoma cells with either high or low expression of β-catenin. Findings Our results indicate that pentoxifylline inhibits the activity of the canonical WNT pathway in melanoma cell populations with high basal activity of this signalling. This is supported by lowered overall activity of transcription factors TCF/LEF and reduced nuclear localisation of active β-catenin. Moreover, treatment of β-cateninhigh melanoma cell populations with pentoxifylline induces downregulation of genes that are targets of the WNT/β-catenin pathway including connective tissue growth factor (CTGF) and microphthalmia-associated transcription factor (MITF-M), a melanocyte- and melanoma cell-specific regulator. Conclusions These results suggest that pentoxifylline, a drug approved by the FDA in the treatment of peripheral arterial disease, might be tested in a subset of melanoma patients with elevated activity of β-catenin. This pharmaceutical might be tested as an adjuvant drug in combination therapies when the response to immunotherapy is prevented by high activity of the WNT/β-catenin pathway. PMID:27351373

  15. A Distinct Macrophage Population Mediates Metastatic Breast Cancer Cell Extravasation, Establishment and Growth

    PubMed Central

    Qian, Binzhi; Deng, Yan; Im, Jae Hong; Muschel, Ruth J.; Zou, Yiyu; Li, Jiufeng; Lang, Richard A.; Pollard, Jeffrey W.

    2009-01-01

    Background The stromal microenvironment and particularly the macrophage component of primary tumors influence their malignant potential. However, at the metastatic site the role of these cells and their mechanism of actions for establishment and growth of metastases remain largely unknown. Methodology/Principal Findings Using animal models of breast cancer metastasis, we show that a population of host macrophages displaying a distinct phenotype is recruited to extravasating pulmonary metastatic cells regardless of species of origin. Ablation of this macrophage population through three independent means (genetic and chemical) showed that these macrophages are required for efficient metastatic seeding and growth. Importantly, even after metastatic growth is established, ablation of this macrophage population inhibited subsequent growth. Furthermore, imaging of intact lungs revealed that macrophages are required for efficient tumor cell extravasation. Conclusion/Significance These data indicate a direct enhancement of metastatic growth by macrophages through their effects on tumor cell extravasation, survival and subsequent growth and identifies these cells as a new therapeutic target for treatment of metastatic disease. PMID:19668347

  16. Doped overoxidized polypyrrole microelectrodes as sensors for the detection of dopamine released from cell populations.

    PubMed

    Sasso, Luigi; Heiskanen, Arto; Diazzi, Francesco; Dimaki, Maria; Castillo-León, Jaime; Vergani, Marco; Landini, Ettore; Raiteri, Roberto; Ferrari, Giorgio; Carminati, Marco; Sampietro, Marco; Svendsen, Winnie E; Emnéus, Jenny

    2013-07-07

    A surface modification of interdigitated gold microelectrodes (IDEs) with a doped polypyrrole (PPy) film for detection of dopamine released from populations of differentiated PC12 cells is presented. A thin PPy layer was potentiostatically electropolymerized from an aqueous pyrrole solution onto electrode surfaces. The conducting polymer film was doped during electropolymerization by introducing counter-ions in the monomer solution. Several counter-ions were tested and the resulting electrode modifications were characterized electrochemically to find the optimal dopant that increases sensitivity in dopamine detection. Overoxidation of the PPy films was shown to contribute to a significant enhancement in sensitivity to dopamine. The changes caused by overoxidation in the electrochemical behavior and electrode morphology were investigated using cyclic voltammetry and SEM as well as AFM, respectively. The optimal dopant for dopamine detection was found to be polystyrene sulfonate anion (PSS(-)). Rat pheochromocytoma (PC12) cells, a suitable model to study exocytotic dopamine release, were differentiated on IDEs functionalized with an overoxidized PSS(-)-doped PPy film. The modified electrodes were used to amperometrically detect dopamine released by populations of cells upon triggering cellular exocytosis with an elevated K(+) concentration. A comparison between the generated current on bare gold electrodes and gold electrodes modified with overoxidized doped PPy illustrates the clear advantage of the modification, yielding 2.6-fold signal amplification. The results also illustrate how to use cell population based dopamine exocytosis measurements to obtain biologically significant information that can be relevant in, for instance, the study of neural stem cell differentiation into dopaminergic neurons.

  17. An equation-free approach to analyzing heterogeneous cell population dynamics.

    PubMed

    Bold, Katherine A; Zou, Yu; Kevrekidis, Ioannis G; Henson, Michael A

    2007-09-01

    We propose a computational approach to modeling the collective dynamics of populations of coupled, heterogeneous biological oscillators. We consider the synchronization of yeast glycolytic oscillators coupled by the membrane exchange of an intracellular metabolite; the heterogeneity consists of a single random parameter, which accounts for glucose influx into each cell. In contrast to Monte Carlo simulations, distributions of intracellular species of these yeast cells are represented by a few leading order generalized Polynomial Chaos (gPC) coefficients, thus reducing the dynamics of an ensemble of oscillators to dynamics of their (typically significantly fewer) representative gPC coefficients. Equation-free (EF) methods are employed to efficiently evolve this coarse description in time and compute the coarse-grained stationary state and/or limit cycle solutions, circumventing the derivation of explicit, closed-form evolution equations. Coarse projective integration and fixed-point algorithms are used to compute collective oscillatory solutions for the cell population and quantify their stability. These techniques are extended to the special case of a "rogue" oscillator; a cell sufficiently different from the rest "escapes" the bulk synchronized behavior and oscillates with a markedly different amplitude. The approach holds promise for accelerating the computer-assisted analysis of detailed models of coupled heterogeneous cell or agent populations.

  18. Responses of retinal ganglion cells to extracellular electrical stimulation, from single cell to population: model-based analysis.

    PubMed

    Tsai, David; Chen, Spencer; Protti, Dario A; Morley, John W; Suaning, Gregg J; Lovell, Nigel H

    2012-01-01

    Retinal ganglion cells (RGCs), which survive in large numbers following neurodegenerative diseases, could be stimulated with extracellular electric pulses to elicit artificial percepts. How do the RGCs respond to electrical stimulation at the sub-cellular level under different stimulus configurations, and how does this influence the whole-cell response? At the population level, why have experiments yielded conflicting evidence regarding the extent of passing axon activation? We addressed these questions through simulations of morphologically and biophysically detailed computational RGC models on high performance computing clusters. We conducted the analyses on both large-field RGCs and small-field midget RGCs. The latter neurons are unique to primates. We found that at the single cell level the electric potential gradient in conjunction with neuronal element excitability, rather than the electrode center location per se, determined the response threshold and latency. In addition, stimulus positioning strongly influenced the location of RGC response initiation and subsequent activity propagation through the cellular structure. These findings were robust with respect to inhomogeneous tissue resistivity perpendicular to the electrode plane. At the population level, RGC cellular structures gave rise to low threshold hotspots, which limited axonal and multi-cell activation with threshold stimuli. Finally, due to variations in neuronal element excitability over space, following supra-threshold stimulation some locations favored localized activation of multiple cells, while others favored axonal activation of cells over extended space.

  19. Responses of Retinal Ganglion Cells to Extracellular Electrical Stimulation, from Single Cell to Population: Model-Based Analysis

    PubMed Central

    Tsai, David; Chen, Spencer; Protti, Dario A.; Morley, John W.; Suaning, Gregg J.; Lovell, Nigel H.

    2012-01-01

    Retinal ganglion cells (RGCs), which survive in large numbers following neurodegenerative diseases, could be stimulated with extracellular electric pulses to elicit artificial percepts. How do the RGCs respond to electrical stimulation at the sub-cellular level under different stimulus configurations, and how does this influence the whole-cell response? At the population level, why have experiments yielded conflicting evidence regarding the extent of passing axon activation? We addressed these questions through simulations of morphologically and biophysically detailed computational RGC models on high performance computing clusters. We conducted the analyses on both large-field RGCs and small-field midget RGCs. The latter neurons are unique to primates. We found that at the single cell level the electric potential gradient in conjunction with neuronal element excitability, rather than the electrode center location per se, determined the response threshold and latency. In addition, stimulus positioning strongly influenced the location of RGC response initiation and subsequent activity propagation through the cellular structure. These findings were robust with respect to inhomogeneous tissue resistivity perpendicular to the electrode plane. At the population level, RGC cellular structures gave rise to low threshold hotspots, which limited axonal and multi-cell activation with threshold stimuli. Finally, due to variations in neuronal element excitability over space, following supra-threshold stimulation some locations favored localized activation of multiple cells, while others favored axonal activation of cells over extended space. PMID:23285287

  20. Impairment in natural killer cells editing of immature dendritic cells by infection with a virulent Trypanosoma cruzi population.

    PubMed

    Batalla, Estela I; Pino Martínez, Agustina M; Poncini, Carolina V; Duffy, Tomás; Schijman, Alejandro G; González Cappa, Stella M; Alba Soto, Catalina D

    2013-01-01

    Early interactions between natural killer (NK) and dendritic cells (DC) shape the immune response at the frontier of innate and adaptive immunity. Activated NK cells participate in maturation or deletion of DCs that remain immature. We previously demonstrated that infection with a high virulence (HV) population of the protozoan parasite Trypanosoma cruzi downmodulates DC maturation and T-cell activation capacity. Here, we evaluated the role of NK cells in regulating the maturation level of DCs. Shortly after infection with HV T. cruzi, DCs in poor maturation status begin to accumulate in mouse spleen. Although infection induces NK cell cytotoxicity and cytokine production, NK cells from mice infected with HV T. cruzi exhibit reduced ability to lyse and fail to induce maturation of bone marrow-derived immature DCs (iDCs). NK-mediated lysis of iDCs is restored by in vitro blockade of the IL-10 receptor during NK-DC interaction or when NK cells are obtained from T. cruzi-infected IL-10 knockout mice. These results suggest that infection with a virulent T. cruzi strain alters NK cell-mediated regulation of the adaptive immune response induced by DCs. This regulatory circuit where IL-10 appears to participate might lead to parasite persistence but can also limit the induction of a vigorous tissue-damaging T-cell response.

  1. Defining Sickle Cell Disease Mortality Using a Population-Based Surveillance System, 2004 through 2008

    PubMed Central

    Paulukonis, Susan T.; Eckman, James R.; Snyder, Angela B.; Hagar, Ward; Feuchtbaum, Lisa B.; Zhou, Mei; Grant, Althea M.

    2016-01-01

    Objective Population-based surveillance data from California and Georgia for years 2004 through 2008 were linked to state death record files to determine the all-cause death rate among 12,143 patients identified with sickle cell disease (SCD). Methods All-cause death rates, by age, among these SCD patients were compared with all-cause death rates among both African Americans and the total population in the two states. All-cause death rates were also compared with death rates for SCD derived from publicly available death records: the compressed mortality files and multiple cause of death files. Results Of 12,143 patients identified with SCD, 615 patients died. The all-cause mortality rate for the SCD population was lower than the all-cause mortality rate among African Americans and similar to the total population all-cause mortality rates from birth through age 4 years, but the rate was higher among those with SCD than both the African American and total population rates from ages 5 through 74 years. The count of deceased patients identified by using population-based surveillance data (n=615) was more than twice as high as the count identified in compressed mortality files using SCD as the underlying cause of death alone (n=297). Conclusion Accurate assessment of all-cause mortality and age at death requires long-term surveillance via population-based registries of patients with accurately diagnosed SCD. PMID:26957672

  2. Establishment and characterization of a cell population derived from a dentigerous cyst.

    PubMed

    Muñiz-Lino, Marcos A; Rodríguez-Vázquez, Mariana; Chávez-Munguía, Bibiana; Ortiz-García, Josué Z; González-López, Lorena; Hernández-Hernández, Fidel C; Licéaga-Escalera, Carlos; García-Muñoz, Alejandro; Rodríguez, Mario A

    2017-09-01

    Dentigerous cyst (DC) occurs in approximately 20% of jaw cysts, being the second major common odontogenic cyst, after radicular cyst. This oral lesion has the ability to destroy maxillary bones and could be the origin of several odontogenic tumors. However, molecules implicated in its pathogenesis as well as those involved in its neoplastic transformation remain unknown. Here, we established a cell population derived from a DC as an in vitro model for the study of this oral lesion. Cell culture was performed from a DC from a 44-year-old male. Cells were cultured at 37°C in DMEM/F12 medium containing 10% fetal bovine serum. Expression of epithelial markers was analyzed by Western blot and immunofluorescence. Ultrastructural characterization was carried out by transmission electron microscopy. Conditioned media were obtained and characterized by zymography and Western blot. Cells showed spindle-shaped morphology, but they express epithelial markers, such as cytokeratins and the odontogenic ameloblast-associated protein. The ultrastructural analysis showed well-formed desmosomes present in adhering contiguous cells, confirming the epithelial lineage of this cell population. Cells also contain several vesicles adjacent to plasma membrane, suggesting an active secretion. Indeed, the analysis of the conditioned medium revealed the presence of several secreted proteins, among them the matrix metalloproteinase-2. Our work provides a useful model to identify the molecular mechanisms involved in the pathogenesis of DC. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Specific labelling of cell populations in blood with targeted immuno-fluorescent/magnetic glyconanoparticles.

    PubMed

    Gallo, Juan; García, Isabel; Genicio, Nuria; Padro, Daniel; Penadés, Soledad

    2011-12-01

    Current performance of iron oxide nanoparticle-based contrast agents in clinical use is based on the unspecific accumulation of the probes in certain organs or tissues. Specific targeted biofunctional nanoparticles would significantly increase their potential as diagnostic and therapeutic tools in vivo. In this study, multimodal fluorescent/magnetic glyco-nanoparticles were synthesized from gold-coated magnetite (glyco-ferrites) and converted into specific probes by the covalent coupling of protein G and subsequent incubation with an IgG antibody. The immuno-magnetic-fluorescent nanoparticles were applied to the specific labelling of peripheral blood mononuclear cells (PBMCs) in a complex biological medium, as human blood. We have been able to label specifically PBMCs present in blood in a percentage as low as 0.10-0.17%. Red blood cells (RBCs) were also clearly labelled, even though the inherent T(2) contrast arising from the high iron content of these cells (coming mainly from haemoglobin). The labelling was further assessed at cellular level by fluorescence microscopy. In conclusion, we have developed new contrast agents able to label specifically a cell population under adverse biological conditions (low abundance, low intrinsic T(2), high protein content). These findings open the door to the application of these probes for the labelling and tracking of endogenous cell populations like metastatic cancer cells, or progenitor stem cells that exist in very low amount in vivo. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. CD133 marks a stem cell population that drives human primary myelofibrosis

    PubMed Central

    Triviai, Ioanna; Stübig, Thomas; Niebuhr, Birte; Hussein, Kais; Tsiftsoglou, Asterios; Fehse, Boris; Stocking, Carol; Kröger, Nicolaus

    2015-01-01

    Primary myelofibrosis is a myeloproliferative neoplasm characterized by bone marrow fibrosis, megakaryocyte atypia, extramedullary hematopoiesis, and transformation to acute myeloid leukemia. To date the stem cell that undergoes the spatial and temporal chain of events during the development of this disease has not been identified. Here we describe a CD133+ stem cell population that drives the pathogenesis of primary myelofibrosis. Patient-derived circulating CD133+ but not CD34+CD133− cells, with a variable burden for JAK2V617F mutation, had multipotent cloning capacity in vitro. CD133+ cells engrafted for up to 10 months in immunocompromised mice and differentiated into JAK2-V617F+ myeloid but not lymphoid progenitors. We observed the persistence of human, atypical JAK2-V617F+ megakaryocytes, the initiation of a prefibrotic state, bone marrow/splenic fibrosis and transition to acute myeloid leukemia. Leukemic cells arose from a subset of CD133+ cells harboring EZH2D265H but lacking a secondary JAK2V617F mutation, consistent with the hypothesis that deregulation of EZH2 activity drives clonal growth and increases the risk of acute myeloid leukemia. This is the first characterization of a patient-derived stem cell population that drives disease resembling both chronic and acute phases of primary myelofibrosis in mice. These results reveal the importance of the CD133 antigen in deciphering the neoplastic clone in primary myelofibrosis and indicate a new therapeutic target for myeloproliferative neoplasms. PMID:25724578

  5. A colitogenic memory CD4+ T cell population mediates gastrointestinal graft-versus-host disease

    PubMed Central

    Zhou, Vivian; Agle, Kimberle; Chen, Xiao; Beres, Amy; Komorowski, Richard; Belle, Ludovic; Taylor, Carolyn; Zhu, Fenlu; Haribhai, Dipica; Williams, Calvin B.; Verbsky, James; Blumenschein, Wendy; Sadekova, Svetlana; Bowman, Eddie; Ballantyne, Christie; Weaver, Casey; Serody, David A.; Vincent, Benjamin; Serody, Jonathan; Cua, Daniel J.; Drobyski, William R.

    2016-01-01

    Damage to the gastrointestinal tract is a major cause of morbidity and mortality in graft-versus-host disease (GVHD) and is attributable to T cell–mediated inflammation. In this work, we identified a unique CD4+ T cell population that constitutively expresses the β2 integrin CD11c and displays a biased central memory phenotype and memory T cell transcriptional profile, innate-like properties, and increased expression of the gut-homing molecules α4β7 and CCR9. Using several complementary murine GVHD models, we determined that adoptive transfer and early accumulation of β2 integrin–expressing CD4+ T cells in the gastrointestinal tract initiated Th1-mediated proinflammatory cytokine production, augmented pathological damage in the colon, and increased mortality. The pathogenic effect of this CD4+ T cell population critically depended on coexpression of the IL-23 receptor, which was required for maximal inflammatory effects. Non–Foxp3-expressing CD4+ T cells produced IL-10, which regulated colonic inflammation and attenuated lethality in the absence of functional CD4+Foxp3+ T cells. Thus, the coordinate expression of CD11c and the IL-23 receptor defines an IL-10–regulated, colitogenic memory CD4+ T cell subset that is poised to initiate inflammation when there is loss of tolerance and breakdown of mucosal barriers. PMID:27500496

  6. Changes in the neuroglial cell populations of the rat spinal cord after local X-irradiation.

    PubMed

    Hubbard, B M; Hopewell, J W

    1979-10-01

    A 16 mm length of cervical spinal cord of young adult female rats was irradiated with 4000 rad of 250 kV X rays. Counts of astrocyte and oligodendrocyte nuclei were made in the dorsal columns of both irradiated and control cervical cords during the latent period before the onset of radionecrosis. The numbers of both astrocyte and oligodendrocyte nuclei were reduced one month after exposure to radiation. Both cell populations showed an apparent recovery but this was subsequently followed by a rapid loss of cells prior to the development of white-matter necrosis. The oligodendrocyte population in unirradiated spinal cords increased with age, and mitotic figures were observed among the neuroglia of both irradiated and control cervical spinal cords. A slow, natural turnover of neuroglial cells in the cervical spinal cord is proposed and the relevance of this to the manifestation of delayed white matter necrosis is discussed.

  7. Effects of extracellular nucleotides on single cells and populations of human osteoblasts: contribution of cell heterogeneity to relative potencies

    PubMed Central

    Jane Dixon, C; Bowler, Wayne B; Walsh, Catherine A; Gallagher, James A

    1997-01-01

    Human osteoblasts responded to the application of extracellular nucleotides, acting at P2-receptors, with increases in cytosolic free calcium concentration ([Ca2+]i).In populations of human osteoblasts, adenosine 5′-diphosphate (ADP) evoked a rise in [Ca2+]i with less than 40% of the amplitude of that induced by adenosine 5′-triphosphate (ATP).ATP and uridine 5′-triphosphate (UTP) were applied to single human osteoblasts and induced [Ca2+]i rises of comparable amplitude in every cell tested.However, from the results of single cell studies with ADP (and 2-methylthioATP (2-meSATP)) two groups of cells were delineated: one group responded to ADP (or 2-meSATP) with a rise in [Ca2+]i indistinguishable from that evoked by ATP; whereas the second group failed completely to respond to ADP (or 2-meSATP).Therefore heterogeneity of receptor expression exists within this population of human osteoblasts. The limited distribution of the ADP-responsive receptor underlies the small response to ADP, compared with ATP, recorded in populations of human osteoblasts. This heterogeneity may reflect differences in the differentiation status of individual cells. PMID:9138681

  8. Studies on T cell maturation on defined thymic stromal cell populations in vitro

    PubMed Central

    1992-01-01

    We describe an in vitro system in which positive selection of developing T cells takes place on defined stromal cell preparations, which include major histocompatibility complex class II+ epithelial cells but exclude cells of bone marrow origin. In this system, maturation of double-positive T cell receptor negative (TCR-), CD4+8+ thymocytes into single-positive TCR+, CD4+ and CD8+ cells takes place together with the development of functional competence. As in vivo, this maturation is associated with the upregulation of TCR levels as cells progress from double-positive to single-positive status. We also show that class II+ epithelial cells in these cultures are less efficient than dendritic cells in mediating the deletion (negative selection) of V beta 8+ cells by the superantigen staphylococcal enterotoxin B. For the first time, this approach provides a model in which the cellular interactions involved in both positive and negative selection can be studied under controlled in vitro conditions. PMID:1512547

  9. In vivo regulation of murine hair growth: insights from grafting defined cell populations onto nude mice.

    PubMed

    Lichti, U; Weinberg, W C; Goodman, L; Ledbetter, S; Dooley, T; Morgan, D; Yuspa, S H

    1993-07-01

    The nude mouse graft model for testing the hair-forming ability of selected cell populations has considerable potential for providing insights into factors that are important for hair follicle development and proper hair formation. We have developed a minimal component system consisting of immature hair follicle buds from newborn pigmented C57BL/6 mice and adenovirus E1A-immortalized rat vibrissa dermal papilla cells. Hair follicle buds contribute to formation of hairless skin when grafted alone or with Swiss 3T3 cells, but produce densely haired skin when grafted with a fresh dermal cell preparation. The fresh dermal cell preparation represents the single cell fraction after hair follicles have been removed from a collagenase digest of newborn mouse dermis. It provides dermal papilla cells, fibroblasts, and possibly other important growth factor-producing cell types. Rat vibrissa dermal papilla cells supported dense hair growth at early passage in culture but progressively lost this potential during repeated passage in culture. Of 19 E1A-immortalized, clonally derived rat vibrissa dermal papilla cell lines, the four most positive clones supported hair growth to the extent of approximately 200 to 300 hairs per 1-2 cm2 graft area. The remaining clones were moderately positive (five clones), weakly positive (three clones), or negative (seven clones). Swiss 3T3 cells prevented contraction of the graft area but did not appear to affect the number of hairs in the graft site produced by dermal papilla cells plus hair follicle buds alone. The relatively low hair density (estimated 1-5% of normal) resulting from grafts of hair follicle buds with the most positive of the immortalized dermal papilla cell clones compared to fresh dermal cells suggests that optimal reconstitution of hair growth requires some function of dermal papilla cells partially lost during the immortalization process and possibly the contribution of other cell types present in the fresh dermal cell

  10. Analysis of immune cell populations in atrial myocardium of patients with atrial fibrillation or sinus rhythm

    PubMed Central

    Smorodinova, Natalia; Bláha, Martin; Melenovský, Vojtěch; Rozsívalová, Karolína; Přidal, Jaromír; Ďurišová, Mária; Pirk, Jan; Kautzner, Josef; Kučera, Tomáš

    2017-01-01

    Background Atrial fibrillation (AF) is the most common arrhythmia and despite obvious clinical importance remains its pathogenesis only partially explained. A relation between inflammation and AF has been suggested by findings of increased inflammatory markers in AF patients. Objective The goal of this study was to characterize morphologically and functionally CD45-positive inflammatory cell populations in atrial myocardium of patients with AF as compared to sinus rhythm (SR). Methods We examined 46 subjects (19 with AF, and 27 in SR) undergoing coronary bypass or valve surgery. Peroperative bioptic samples of the left and the right atrial tissue were examined using immunohistochemistry. Results The number of CD3+ T-lymphocytes and CD68-KP1+ cells were elevated in the left atrial myocardium of patients with AF compared to those in SR. Immune cell infiltration of LA was related to the rhythm, but not to age, body size, LA size, mitral regurgitation grade, type of surgery, systemic markers of inflammation or presence of diabetes or hypertension. Most of CD68-KP1+ cells corresponded to dendritic cell population based on their morphology and immunoreactivity for DC-SIGN. The numbers of mast cells and CD20+ B-lymphocytes did not differ between AF and SR patients. No foci of inflammation were detected in any sample. Conclusions An immunohistochemical analysis of samples from patients undergoing open heart surgery showed moderate and site-specific increase of inflammatory cells in the atrial myocardium of patients with AF compared to those in SR, with prevailing population of monocyte-macrophage lineage. These cells and their cytokine products may play a role in atrial remodeling and AF persistence. PMID:28225836

  11. Cell Differentiation in a Bacillus thuringiensis Population during Planktonic Growth, Biofilm Formation, and Host Infection

    PubMed Central

    Verplaetse, Emilie; Slamti, Leyla; Gohar, Michel

    2015-01-01

    ABSTRACT Bacillus thuringiensis (Bt) is armed to complete a full cycle in its insect host. During infection, virulence factors are expressed under the control of the quorum sensor PlcR to kill the host. After the host’s death, the quorum sensor NprR controls a necrotrophic lifestyle, allowing the vegetative cells to use the insect cadaver as a bioincubator and to survive. Only a part of the Bt population sporulates in the insect cadaver, and the precise composition of the whole population and its evolution over time are unknown. Using fluorescent reporters to record gene expression at the single-cell level, we have determined the differentiation course of a Bt population and explored the lineage existing among virulent, necrotrophic, and sporulating cells. The dynamics of cell differentiation were monitored during growth in homogenized medium, biofilm formation, and colonization of insect larvae. We demonstrated that in the insect host and in planktonic culture in rich medium, the virulence, necrotrophism, and sporulation regulators are successively activated in the same cell. In contrast, in biofilms, activation of PlcR is dispensable for NprR activation and we observed a greater heterogeneity than under the other two growth conditions. We also showed that sporulating cells arise almost exclusively from necrotrophic cells. In biofilm and in the insect cadaver, we identified an as-yet-uncharacterized category of cells that do not express any of the reporters used. Overall, we showed that PlcR, NprR, and Spo0A act as interconnected integrators to allow finely tuned adaptation of the pathogen to its environment. PMID:25922389

  12. Flow cytometry analysis of cell population dynamics and cell cycle during HIV-1 envelope-mediated formation of syncytia in vitro.

    PubMed

    Torres-Castro, Israel; Cortés-Rubio, César N; Sandoval, Guadalupe; Lamoyi, Edmundo; Larralde, Carlos; Huerta, Leonor

    2014-01-01

    Cell fusion occurs in physiological and pathological conditions and plays a role in regulation of cell fate. The analysis of cell population dynamics and cell cycle in cell-cell fusion experiments is necessary to determine changes in the quantitative equilibrium of cell populations and to identify potential bystander effects. Here, using cocultures of Jurkat HIV-1 envelope expressing cells and CD4(+) cells as a model system and flow cytometry for the analysis, the number, viability, and cell cycle status of the populations participating in fusion were determined. In 3-day cocultures, a sustained reduction of the number of CD4(+) cells was observed while they showed high viability and normal cell cycle progression; fusion, but not inhibition of proliferation or death, accounted for their decrease. In contrast, the number of Env(+) cells decreased in cocultures due to fusion, death, and an inherent arrest at G1. Most of syncytia formed in the first 6 h of coculture showed DNA synthesis activity, indicating that the efficient recruitment of proliferating cells contributed to amplify the removal of CD4(+) cells by syncytia formation. Late in cocultures, approximately 50% of syncytia were viable and a subpopulation still underwent DNA synthesis, even when the recruitment of additional cells was prevented by the addition of the fusion inhibitor T-20, indicating that a population of syncytia may progress into the cell cycle. These results show that the quantitative analysis of cellular outcomes of cell-cell fusion can be performed by flow cytometry.

  13. Robust detection of alternative splicing in a population of single cells

    PubMed Central

    Welch, Joshua D.; Hu, Yin; Prins, Jan F.

    2016-01-01

    Single cell RNA-seq experiments provide valuable insight into cellular heterogeneity but suffer from low coverage, 3′ bias and technical noise. These unique properties of single cell RNA-seq data make study of alternative splicing difficult, and thus most single cell studies have restricted analysis of transcriptome variation to the gene level. To address these limitations, we developed SingleSplice, which uses a statistical model to detect genes whose isoform usage shows biological variation significantly exceeding technical noise in a population of single cells. Importantly, SingleSplice is tailored to the unique demands of single cell analysis, detecting isoform usage differences without attempting to infer expression levels for full-length transcripts. Using data from spike-in transcripts, we found that our approach detects variation in isoform usage among single cells with high sensitivity and specificity. We also applied SingleSplice to data from mouse embryonic stem cells and discovered a set of genes that show significant biological variation in isoform usage across the set of cells. A subset of these isoform differences are linked to cell cycle stage, suggesting a novel connection between alternative splicing and the cell cycle. PMID:26740580

  14. c-Kit immunoexpression delineates a putative endothelial progenitor cell population in developing human lungs.

    PubMed

    Suzuki, Takaya; Suzuki, Satoshi; Fujino, Naoya; Ota, Chiharu; Yamada, Mitsuhiro; Suzuki, Takashi; Yamaya, Mutsuo; Kondo, Takashi; Kubo, Hiroshi

    2014-05-01

    Expression of c-Kit and its ligand, stem cell factor (SCF), in developing human lung tissue was investigated by immunohistochemistry. Twenty-eight human fetal lungs [age range 13 to 38 gestational wk (GW)] and 12 postnatal lungs (age range 1-79 yr) were evaluated. We identified c-Kit(+) cells in the lung mesenchyme as early as 13 GW. These mesenchymal c-Kit(+) cells in the lung did not express mast cell tryptase or α-smooth muscle actin. However, these cells did express CD34, VEGFR2, and Tie-2, indicating their endothelial lineage. Three-dimensional reconstructions of confocal laser scanning images revealed that c-Kit(+) cells displayed a closed-end tube formation that did not contain hematopoietic cells. From the pseudoglandular phase to the canalicular phase, c-Kit(+) cells appeared to continuously proliferate, to connect with central pulmonary vessels, and finally, to develop the lung capillary plexus. The spatial distribution of c-Kit- and SCF-positive cells was also demonstrated, and these cells were shown to be in close association. Our results suggest that c-Kit expression in early fetal lungs marks a progenitor population that is restricted to endothelial lineage. This study also suggests the potential involvement of c-Kit signaling in lung vascular development.

  15. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes

    PubMed Central

    Stern, Joel N. H.; Yaari, Gur; Vander Heiden, Jason A.; Church, George; Donahue, William F.; Hintzen, Rogier Q.; Huttner, Anita J.; Laman, Jon D.; Nagra, Rashed M.; Nylander, Alyssa; Pitt, David; Ramanan, Sriram; Siddiqui, Bilal A.; Vigneault, Francois; Kleinstein, Steven H.; Hafler, David A.; O’Connor, Kevin C.

    2015-01-01

    Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by autoimmune mediated demyelination and neurodegeneration. The CNS of patients with MS harbors expanded clones of antigen-experienced B cells that reside in distinct compartments including the meninges, cerebrospinal fluid (CSF) and parenchyma. It is not understood whether this immune infiltrate initiates its development in the CNS or in peripheral tissues. B cells in the CSF can exchange with those in peripheral blood, implying that CNS B cells may have access to lymphoid tissue that may be the specific compartment(s) in which CNS resident B cells encounter antigen and experience affinity maturation. In this study, paired tissues were used to determine whether the B cells that populate the CNS mature in the draining cervical lymph nodes (CLNs). High-throughput sequencing of the antibody repertoire demonstrated that clonally expanded B cells were present in both compartments. Founding members of clonal families were more often found in the draining CLNs. More mature clonal family members derived from these founders were observed in the draining CLNs and also in the CNS, including lesions. These data provide new evidence that B cells traffic freely across the tissue barrier with the majority of B cell maturation occurring outside of the CNS in the secondary lymphoid tissue. Our study may aid in further defining the mechanisms of immunomodulatory therapies that either deplete circulating B cells or impact the intrathecal B cell compartment by inhibiting lymphocyte transmigration into the CNS. PMID:25100741

  16. A role for matrix stiffness in the regulation of cardiac side population cell function

    PubMed Central

    Qiu, Yiling; Bayomy, Ahmad F.; Gomez, Marcus V.; Bauer, Michael; Du, Ping; Yang, Yanfei; Zhang, Xin

    2015-01-01

    The mechanical properties of the local microenvironment may have important influence on the fate and function of adult tissue progenitor cells, altering the regenerative process. This is particularly critical following a myocardial infarction, in which the normal, compliant myocardial tiss